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ABSTRACT 

Hilbert Huang Transform faces several challenges in dealing with closely-spaced 

frequency components, short-time and weak disturbances, and interrelationships between 

two time-varying modes of nonlinear vibration due to its mixed mode problem associated 

with empirical mode decomposition (EMD). To address these challenges, analytical 

mode decomposition (AMD) based on Hilbert Transform is proposed and developed for 

an adaptive data analysis of both stationary and non-stationary responses. With a suite of 

predetermined bisecting frequencies, AMD can analytically extract the individual 

components of a structural response between any two bisecting frequencies and function 

like an adaptive bandpass filter that can deal with frequency-modulated responses with 

significant frequency overlapping. It is simple in concept, rigorous in mathematics, and 

reliable in signal processing. 

In this dissertation, AMD is studied for various effects of bisecting frequency 

selection, response sampling rate, and noise. Its robustness, accuracy, efficiency, and 

adaptability in signal analysis and system identification of structures are compared with 

other time-frequency analysis techniques such as EMD and wavelet analysis. Numerical 

examples and experimental validations are extensively conducted for structures under 

impulsive, harmonic, and earthquake loads, respectively. They consistently demonstrate 

AMD’s superiority to other time-frequency analysis techniques. In addition, to identify 

time-varying structural properties with a narrow band excitation, a recursive Hilbert 

Huang Transform method is also developed. Its effectiveness and accuracy are illustrated 

by both numerical examples and shake table tests of a power station structure. 
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1. INTRODUCTION  

1.1. STRUCTURAL HEALTH MONITORING AND DAMAGE DETECTION 

Structural health monitoring has been an active research field since more than ten 

years ago. Its overall goal is to provide a diagnosis and prognosis tool for structural 

condition at any moment during the service life of an engineering structure. It includes 

several main steps such as sensor deployment, data acquisition, feature extraction, and 

condition evaluation. Techniques in structural health monitoring can be classified into 

local and global groups, depending upon the space coverage of damage detection. The 

local group is used to detect any local damage on a small part of the structure. Often 

referred to as nondestructive evaluation, this group of techniques includes acoustics 

emission, hardness testing, and thermal field mapping. These methods all require that the 

vicinity of the damage is known a priori and that the portion of a structure being 

inspected must be accessible. Due to these limitations, the local techniques are often 

limited to the damage detection on or near the surface of the structure. The global group 

of technologies can be applied to assess the system condition of complex structures. They 

are dominated by the examination of changes in vibration characteristics. 

Vibration-based methods for system identification and damage detection have 

been widely studied as summarized in a comprehensive review by Doebling et al. (1996; 

1998). The basic idea is that the modal parameters such as natural frequencies, mode 

shapes, and modal damping are functions of the physical properties of the structure such 

as mass, damping, and stiffness. Therefore, changes in physical property will cause 

changes in the modal properties. The main advantage of vibration-based methods is that 

measurements at one location are sufficient to assess the condition of the whole structure. 

More recently, Sohn et al. (2004) described the vibration-based structural health 

monitoring in four parts: (1) operational evaluation, (2) data acquisition, fusion, and 

cleansing, (3) feature extraction and data compression, and (4) statistical model 

development for feature discrimination. Operational evaluation begins to understand the 

purposes of structural monitoring, unique aspects of a structure, and unique features of 

the damage that is to be detected. The data acquisition process involves selecting the 

types of sensors, sensor locations, the number of sensors, data acquisition, storage, etc. 
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Then, data fusion means to integrate information from disparate sources and assess 

threats on the basis of data coming in from different sources (Klein, 1999). Data cleaning 

is a process of accepting and rejecting data in the feature selection process. For example, 

filtering has been widely used to filter out the noise component of measurements. Feature 

extraction is a process of identifying damage sensitive properties from vibration 

measurements. These properties can be used to distinguish damage from the undamaged 

structure.  

 

1.2. STRUCTURAL PARAMETER IDENTIFICATION 

A critical step for vibration-based structural health monitoring is to extract 

dynamic features such as natural frequencies, mode shapes, and damping ratios from 

structural responses. This step is often referred to as structural parameter identification. 

Structural parameter identification involves various methods in frequency domain such as 

frequency response method, in time domain such as least-squares estimation method and 

stochastic subspace method, and in time-frequency domain such as wavelet transform and 

Hilbert transform based methods. The identified structural parameters can serve as an 

index in structural damage detection, condition assessment, vibration mitigation, and 

long-term health monitoring. 

1.2.1. Frequency Domain. With the development of digital signal processing 

techniques such as Fast Fourier Transform (FFT), modal tests and analysis become 

competitive in modal property characterization of structures (Alvin et al., 2003). In order 

to determine modal parameters, the frequency response function of a structure between 

its excitation and structural response is estimated from the available vibration 

measurements. It can be readily derived from their Fourier transforms as illustrated in 

Figure 1.1. 

 

 

Figure 1.1. Relationship between Excitation and Response 
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In Figure 1.1, F(ω) and X(ω) represent the Fourier transforms of the measured 

excitation and the measured response, respectively; Z(ω) = F(ω) - M(ω) is the Fourier 

transform of the actual excitation and Y(ω) = X(ω) - N(ω) is the Fourier transform of the 

actual response; M(ω) and N(ω) represent the mechanical and measurement noises to the 

input and structural response, respectively; FRF(ω) is the frequency response function of 

the structural system. Mathematically, the response Y(ω) can be related to the excitation 

Z(ω) by: 

                                                 (1.1) 

According to Trendafilova (1998) and Monaco et al. (2000), frequency response 

functions can be used to quantify and localize minor damage. However, they face 

difficulties when the input excitation is unknown with ambient vibration of structures. In 

this case, Brincker et al. (2000; 2001) developed a frequency domain decomposition 

method under two assumptions: (1) white noise input, and (2) lightly structural damping. 

Singular value decomposition (SVD) can then be applied to expand the power spectrum 

density matrix of output responses into the same form as conventional matrix 

decomposition in modal analysis. Consequently, a first-order linear approximation of the 

output power spectrum density matrix is used for the estimation of mode shapes and 

damping coefficient. Although powerful for closed-spaced natural frequency 

identification, SVD requires the availability of pre-selected natural frequencies and is 

applicable only when the assumptions are valid.  

1.2.2. Time Domain. Structural parameter identification in time domain includes 

a number of computationally efficient techniques such as least-squares estimation, Auto-

Regressive Moving-Average (ARMA), and natural excitation technique (NExT). Least-

squares estimation has been widely applied to system identification (Benedettini et al., 

1995; Loh et al., 1995; Smyth et al., 1999; Lin et al., 2001; Yang and Lin, 2005). For 

example, Smyth et al. (1999) presented an adaptive estimation approach for the on-line 

identification of hysteretic systems under arbitrary dynamic loading. Yang (2005) 

introduced a new adaptive tracking technique to identify time-varying structural 

parameters. These methods placed more weight on the current data point and thus 

introduced a forgetting factor on the previous data so that their effect is reduced. 
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Natural frequencies, mode shapes, and damping ratios can be identified from a 

multivariate ARMA model derived from the equation of motion of a structural system. 

This model has been extensively studied in the last two decades (Lee and Yun, 1991; He 

and Roeck, 1997). Without knowing the exact degrees of freedom of the system, it often 

produces more eigenvalues than the actual number of frequencies (Bodeux and Golinval, 

2000). Therefore, only some of the estimated eigenvalues are associated with the modes 

of vibration. To distinguish the physical from nonphysical modes, Bodeux and Golinval 

(2000) presented a prediction error identification scheme to evaluate the model 

parameters for vibration-based damage detection.  

The NExT method was developed by James et al. (1995; 1996) to effectively 

extract modal parameters from ambient vibration. Under the white noise excitation, a 

cross-correlation function between the stationary responses at two degrees of freedom of 

a system resembles the free vibration of the system and can thus be used to identify the 

system parameters. For mode shapes, one of the degree of freedom must be used as a 

reference point. In combination with the Eigen-system Realization Algorithm, Caicedo et 

al. (2004) further applied this method to the IASC-ASCE benchmark problem. However, 

two significant issues cannot be overlooked for a proper implementation of this 

technique: (1) a stationary pink noise excitation, and (2) an independent reference signal 

of the measured responses. In many applications with ambient vibration, a long record of 

data is required. However, if the record is too long, the assumption for stationary 

responses may no longer be justifiable. 

1.2.3. Time-Frequency Analysis. Most of the structural parameter identification 

works in time domain or in frequency domain have been focused on time invariant linear 

systems. In recent years, researchers embarked on the parameter identification of time-

varying linear systems or nonlinear systems that are of great interest in the damage 

detection of engineering structures. In this case, measured responses are typically non-

stationary and modal parameters in frequency domain change over time. As such, time-

frequency analysis of measured responses has been developed to decompose and analyze 

non-stationary signals. 

During the last two decades, wavelet analysis and Hilbert transform have been 

attracting wide attention in the structural health monitoring community. The interest to 
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the topic of time-frequency analysis is still rising as evidenced by the increasing number 

of papers published in technical journals and conference proceedings.  

Wavelet analysis can be viewed as Fourier spectral analysis with adjustable time 

windows (Chui, 1992; Flandrin, 1999) for a non-stationary data series. Due to the 

introduction of adjustable windows, wavelet analysis provides multiple levels of details 

and approximations in time-frequency domain so that transient features of the data series 

can be retained in the frequency characteristics. As a result, it has been widely applied to 

non-stationary dynamic signal analysis (Staszewski, 1997; Ruzzene et al., 1997; Gurly 

and Karrem, 1999; Hou et al., 2000; Kijewski and Kareem, 2002; 2003). Even so, 

wavelet analysis still has several issues. For example, wavelet analysis is a non-adaptive 

data analysis tool since the basic wavelet remains unchanged with the signal 

characteristics. It also has the so-called leakage problem due to limited length of the basic 

wavelet function. Therefore, in the time-frequency plane, the frequency curves are often 

smeared in a large range especially at low frequency. To extract distinct time-frequency 

curves, Wang and Ren (2007) presented a SVD based wavelet ridge extraction method 

for further signal analysis and reconstruction. However, according to the Heisenberg-

Gabor uncertainty principle, a signal cannot be concentrated on an arbitrary small time-

frequency region. In other words, it is impossible to achieve high resolution both in time 

and frequency domain. 

More recently, empirical mode decomposition (EMD) was developed by Huang et 

al. (1998; 1999; 2003) to decompose a stationary and non-stationary data series into a 

finite number of intrinsic mode functions (IMFs), each having a well-behaved Hilbert 

transform. The well-known Hilbert-Huang transform (HHT) combines EMD with Hilbert 

spectral analysis; it is an adaptive data analysis tool for non-stationary signals. Some 

HHT applications in engineering, biomedical, financial and geophysical data analyses 

have been presented by Huang and Shen (2005) and Huang and Attoh-Oine (2005). More 

research about the EMD applications in signal processing can be found in Chen and Feng 

(2003), Yang et al. (2004), Peng et al. (2005), Shi and Law (2007), Shi et al. (2009), and 

Zheng et al. (2009). Although powerful in extracting the properties of non-stationary 

signals, EMD still faces several challenges in some engineering applications: 1) difficult 

to decompose signals with closely-spaced frequency components such as wave groups in 
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ocean engineering, free vibration and beating responses in structural and mechanical 

systems, 2) difficult to separate a short time weak signal from a stationary strong 

response, and 3) impossible to deal with the time-varying feature between two modes of 

vibration for nonlinear systems. Attempts have been made by a few investigators to 

address these challenges (Chen and Feng, 2003; Peng et al., 2005; and Zheng et al., 

2009). However, it is still quite a challenge to consistently and reliably extract individual 

components from a non-stationary response when their time-varying frequencies are 

closely spaced, particularly resulting from a nonlinear structural system.  

 

1.3. OBJECTIVES OF THIS STUDY 

To address the above challenges, analytical mode decomposition (AMD) is 

sought to accurately decompose any signal to physically meaningful components in 

various engineering applications. Therefore, the main objective of this study is to develop 

a signal decomposition theorem based on the Hilbert transform of a harmonics 

multiplicative time series, which will serve as the foundation for AMD in structural 

health monitoring. It decomposes a time series into many signals whose Fourier spectra 

are non-vanishing over mutually-exclusive frequency ranges separated by constant 

bisecting frequencies for stationary and non-stationary signals with no overlapping 

component frequencies, and by time-varying bisecting frequencies for non-stationary 

signals with overlapping component frequencies. 

The performance of AMD with constant bisecting frequencies in dealing with the 

closely-spaced modes of vibration of linear structures will be investigated with stationary, 

transient, and intermittent signals both numerically and experimentally. For structural 

parameter identification, AMD in combination with Hilbert spectral analysis is 

demonstrated with the free vibration and harmonic vibration of a three degree-of-freedom 

(DOF) mechanical system and the ambient vibration of a 36-story building with a 4-story 

light appendage. AMD will then be applied to identify the modal properties of a ¼-scale 

3-story building frame with closely-spaced modes due to the presence of multiple tuned 

mass dampers based on a series of shake table tests. 

The performance of AMD with time-varying bisecting frequencies will be 

investigated with non-stationary, frequency-modulated signals. In this case, each 
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frequency modulated individual component between any two bisecting frequencies can 

be analytically extracted. The signal decomposition theorem developed in this study will 

be demonstrated to function like an adaptive bandpass filter that allows a complete pass 

of frequency band between two adjacent bisecting frequencies. Parametric studies will be 

conducted for bisecting frequencies selection, sampling rate and noise effects. 

Representative engineering applications will be studied with frequency gradually varied, 

amplitude and frequency modulated, and nonlinear shear buildings under impulsive, 

harmonic, white noise and earthquake loads. Unlike EMD, AMD is simple in concept, 

rigorous in mathematics, efficient in computation, and reliable in signal processing. The 

time-varying bisecting frequencies will be applied to the parametric identification of 

nonlinear systems. 

The secondary objective of this study is to develop a recursive time-varying 

parameter identification method under narrow band excitations based on Hilbert 

transform. To validate the proposed method, time-varying parameters will be identified 

for 1- and 2-story buildings with three scenarios of time-varying parameters: abrupt, 

gradual, and periodical stiffness variations under earthquake excitations. Noise effects 

will be taken into account in numerical simulations. The method will be applied to 

identify a real-world high voltage switch structure from shake table test data. The high 

voltage switch includes a friction mechanism for opening and closure of the switch. 

 

1.4. RESEARCH SIGNIFICANCE 

The critical issue for parameter identification is to extract useful information from 

the field measured data sets. This requires a robust and high performance signal analysis 

methodology. Although vibration-based methodologies have been extensively 

investigated for time-invariant structural systems during the last two decades, there are 

still several challenges as mentioned above, particularly for systems with closely-spaced 

modes of vibration. Therefore, a reliable signal processing method is quite necessary to 

address these challenges.  

Recently, parameter identification for time-varying structures has received 

considerable attention. Some methods such as least-squares based techniques are accurate 

but inefficient. Other methods such as HHT are inaccurate for MDOF systems. 
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Therefore, it is highly important to develop a methodology that can accurately and 

efficiently identify the parameters of time-varying structural systems.  

When subjected to extreme loads such as tornados and earthquakes, a structure 

may experience damage. One of the important objectives in structural health monitoring 

of civil infrastructures is to identify the state of the structure and to detect damage as it 

occurs. The damage of the structure is reflected by a local change of structural 

parameters. Hence, it is important to develop methodologies that are capable of detecting 

structural parameter changes. 

 

1.5. DISSERTATION ORGANIZATION 

This dissertation consists of eight sections. In Section 1, the concepts of structural 

health monitoring and structural parameter identification are introduced. The objectives 

and significance of this study are presented. In Section 2, the state-of-the-art development 

in system identification is reviewed particularly for time-varying parameters of linear and 

nonlinear systems. In Section 3, a signal decomposition theorem with Hilbert transform 

or AMD in structural health monitoring is discovered and demonstrated to have 

addressed the challenges associated with EMD or those of Hilbert vibration 

decomposition (HVD). 

The theorem is applied to identify the time-invariant parameters of various 

structures with closely-spaced modes from free, harmonic and ambient vibration in 

Section 4. In particular, AMD is combined with the conventional random decrement 

technique (RDT) to develop a new system identification method with ambient vibration, 

referred to as the RDT-AMD method. The new method is applied to a 3-DOF mechanical 

system and a 36-story building with 4-story appendage system, both with closely-spaced 

modal frequencies, demonstrating its effectiveness in practical applications. Finally, its 

accuracy in modal parameter identification is validated with shake table testing of a 3-

story building. Parametric studies are conducted to investigate the bisecting frequency 

selection and frequency resolution of the new method.  

In Section 5, AMD is extended to the time-varying parameter identification of 

from non-stationary responses of both linear and nonlinear systems. Its aim is to lay a 

mathematical foundation for the decomposition of amplitude- and frequency-modulated 
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signals and establish admittance requirements for the selection of time-varying bisecting 

frequencies, one between any two adjacent modulated frequencies. Parametric studies are 

conducted to understand and quantify the effects of bisecting frequency selection, signal 

frequency overlapping, sampling rate, and signal noise. Time-varying modal parameters 

of a nonlinear shear building under impulsive, white noise and earthquake loads will be 

tracked using the mathematically rigorous theorem.  

In Section 6, in order to track the variation of structural parameters under force 

vibration, a recursive HHT method is developed.  It allows the structural identification of 

a building story-by–story and thus is computationally efficient in the determination of 

both stiffness and damping coefficients. The method is validated with one- and two-story 

buildings with three types of time-varying parameters (abruptly, gradually, and 

periodically) under earthquake excitations even when a simulated measurement noise up 

to 5% of  the signal intensity was injected to the building responses. 

In Section 7, the parameter identification and ultimate behavior of a time-varying 

power station structure are extensively studied based on shake table test results. A series 

of harmonic tests with constant amplitude and increasing excitation frequency is 

conducted. Modal parameters are identified for each excitation frequency based on the 

proposed recursive HHT approach. 

In Section 8, the main findings and conclusions of this study are summarized and 

further researches on AMD and time-varying system identification are recommended. 
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2. LITERATURE REVIEW 

The focus of this study is to develop an adaptive data analysis method for the 

parameter identification of structures with closely-spaced modes, time-varying properties, 

and hysteretic behaviors. Therefore, structural dynamic parameters and their role in 

structural health monitoring are briefly reviewed. 

 

2.1. STRUCTURAL DYNAMICAL PARAMETERS  

The actual implementation of a vibration-based structural health monitoring starts 

with designing a dynamic experiment. The type and number of sensors, and sensor 

placement are first decided so that physical quantities of interest can be measured. Then, 

some damage sensitive properties or structural parameters are extracted from the 

measured dynamic responses. The critical issue in feature extraction is to identify the 

appropriate dynamic parameters for a particular application, such as natural frequencies, 

mode shapes, damping, and nonlinear properties. All these parameters play a significant 

role in system identification and damage detection. 

2.1.1. Natural Frequency. Natural frequency is one of the basic dynamic 

properties of structures. The amount of literature related to system identification and 

damage detection with frequency shifts is quite large (Loland and Dodds, 1976; 

Vandiver, 1977; Cawley and Adams, 1979; Ismail, et al., 1990; Stubbs and Osegueda, 

1990a; 1990b; Skjaerbaek, et al., 1996; Leutenegger et al., 1999).  

The observation that changes in structural properties cause changes in vibration 

natural frequencies was the impetus for the intensive research works in structural health 

monitoring. For example, Loand and Dodds (1976) used the changes in the resonant 

frequencies, mode shapes, and response spectra to identify damage of an offshore oil 

platform. Frequency changes of 10% to 15% were observed when a structural 

modification was implemented to resemble a structural failure near the waterline. They 

concluded that change in response spectrum can be used to monitor structural integrity. 

However, Farrar, et al. (1994) conducted a dynamic test on the I-40 bridge and found that 

when the cross-section stiffness at the center of a main plate girder had been reduced 

96.4%, no significant reduction in the modal frequencies was observed. In general, 
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natural frequency represents global behavior of a structural system. Depending on the 

redundancy, the influence of local damage on the change in natural frequency may 

change. As such, the appropriateness of using frequency shift as a damage indicator must 

be evaluated case by case.  

2.1.2. Mode Shape, Mode Shape Curvature, and Modal Strain Energy. West 

(1984) first used the mode shape to locate structural damage without a prior finite 

element model. The author first used the modal assurance criteria to ensure the level of 

mode correlation between the conventional test and acoustic test of an undamaged space 

shuttle orbiter body flap. The mode shapes evaluated from the measured displacements or 

accelerations of a structure were then used to detect existing damage. Similar approaches 

have been taken by other researchers such as Stanbridge et al. (1997) and Ettouney 

(1998). Their research concluded that change in mode shape can be used to detect the 

location of damage with acceptable accuracy. However, whether this method is 

applicable for real-world structures is yet to be seen because the number of mode shapes 

and natural frequencies that can be reliably identified from experiments is quite limited. 

Mode shape curvature is basically the second derivative of the mode shape with 

respect to the location coordinate. Pandey et al. (1991) demonstrated that absolute 

changes in mode shape curvature can be used for damage detection for beam like 

structures. It is more sensitive to damage than the mode shape itself. However, the 

derivative of mode shape is also sensitive to noise. In addition, numerical evaluation on 

the second derivative of mode shapes sometimes caused unacceptable errors. Therefore, 

Chance et al. (1994) used the measured strain instead to evaluate curvature directly, 

improving its accuracy significantly.  

Mode strain energy is another potential damage indicator. The i
th
 modal strain 

energy in the j
th 

element stiffness is defined by the i
th
 mode shape    and element stiffness 

kj, which is   
     . Its fraction of the total modal strain energy is defined as the i

th
 modal 

strain energy ratio for the j
th 

element. The difference in element modal strain energy ratio 

before and after damage can be used to detect the structural damage. The studies based on 

the modal strain energy for damage detection (Carrasco et al., 1997; Choi and Stubbs, 

1997) demonstrated that the modal strain energy method performed very well for damage 

location in truss, beam, and plate structures. In all cases, the modal strain energy method 
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needs information from the undamaged structure. Therefore, a baseline model is required 

to apply this method. 

2.1.3. Damping. Damping is another important dynamic property of structures. 

Change in damping has been used to detect nonlinear effects caused by cracking 

(Modena et al., 1999; Adhikari and Woodhouse, 2001). However, damping has not been 

used as extensively as natural frequencies and mode shapes in structural health 

monitoring due mainly to its excessive variation. The large variation is likely attributed to 

the fact that damping effect is a complicated phenomenon in structural dynamics; its 

mechanism is unclear in many applications. Although viscous or complex damping has 

been widely considered in structural dynamics textbooks for convenience in 

mathematical derivation, real-world structures can have significant friction and inelastic 

deformation effects. Therefore, further research is needed in order to use damping as a 

damage indicator in structural health monitoring. 

2.1.4. Nonlinear Feature. Stiffness and damping force nonlinearities can 

introduce dynamic phenomena and behaviors that are dramatically different from those 

predicted by the linear theory. Brandon (1997; 1999) stated that the nonlinear response of 

a mechanical system was often overlooked and valuable information was lost when one 

discarded the time series data and focused on the spectral data. Therefore, the author 

advocated the use of time-domain system identification techniques such as ARMA model 

and autocorrelation function to retain the important nonlinear information. Although a 

few attempts were made to take advantage of nonlinear behaviors (Vakakis et al., 2004; 

Kershenc et al., 2005), it is still a challenge to identify a nonlinear system due to its 

highly individualistic nature. 

 

2.2. PARAMETER IDENTIFICATION WITH CLOSELY-SPACED MODES 

With the development of signal decomposition techniques, such as fast Fourier 

transform, wavelet transform, and Hilbert transform, various methods in frequency 

domain and for time-frequency analysis have become competitive in modal property 

characterization. Over the past decades, a vast amount of literature based on Fourier 

transform, wavelet transform, and Hilbert transform can be found for the time-invariant 

modal parameter identification of linear structures (Doebling et al., 1996; Sohn et al., 
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2004). Most of them, however, faced a challenge in identifying the modal parameters of a 

structure with closely-spaced modes, particularly in the presence of measurement noise. 

Following is a detailed discussion of such a challenge and research needs to address it. 

A classical approach in frequency domain is just to take the discrete Fourier 

transform of dynamic responses and estimate the well separated modes of vibration 

directly from the peaks of power spectral density functions (Bendat and Piersol, 1993). In 

the case of close modes, it is difficult to distinguish two nearby peaks. For example, 

consider a 20 second time duration dynamic response signal of                  

     , where                                       , and                 . 

The three frequencies were set to 1 1.1f   Hz, 2 1.2f   Hz, and 3 1.3f   Hz with a 

frequency spacing of 0.1 Hz. A sampling rate of 50 point per second is used. The original 

signal and its Fourier spectrum are presented in Figure 2.1.  

 

 

 

 

 

 

 Figure 2.1. A Signal with Closely-Spaced Frequency and Its Fourier Spectrum 
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frequency domains, a finite length signal is equivalent to the application of a rectangular 

window on its corresponding infinite long signal. Both transforms introduce numerical 

errors in two ways: signal modification by windowing and end effect due to sharp edges 

or brick walls of the windows. Applying a rectangular window in the frequency/time 

domain is equivalent to execute a convolution between a sinc function and the 

time/frequency function over an infinite range. This means that the time/frequency 

function is now a distorted signal, therefore, the brick wall with the rectangular window 

or the sudden change of frequency corresponds to an infinitely long oscillation in the time 

domain that cannot be represented accurately with the Fourier transform and its inverse 

transform. An improper selection of the beginning and end of a signal could introduce an 

artificial oscillation as illustrated in Figure 2.2. In the case of splitting closely-spaced 

frequency components, there is no space to soften the brick wall by designing two 

smooth edges of a window.   

 

 

 

 

 

 

 

Figure 2.2. Decomposed Signals by Bandpass Filtering versus Exact Signals 
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In order to detect closely-spaced modes, Brincker et al. (2001) presented a 

singular value decomposition method in frequency domain under two assumptions: (1) 

white noise input, and (2) lightly structural damping. In this case, the output power 

spectrum density matrix can be separated into the effects of a set of single DOF systems, 

each corresponding to an individual mode from which the mode shapes and damping can 

be estimated. By using the decomposition technique, closely-spaced modes were 

identified with high accuracy even in the case of strong noise contamination of the 

dynamic measurements.  

Wavelet transform as one of the time-frequency analysis tools has attracted wide 

attention in recent years. This method has been widely applied to structural modal 

parameter identification (Lardies et al., 2002; Kijewski et al., 2003; Yan et al., 2006; Min 

et al., 2009). However, for a structure with closely-spaced modes, it is difficult to select 

appropriate wavelet parameters such as center frequency and bandwidth to distinguish the 

closely-spaced modes. Attempts have been made by a few investigators to identify close-

spaced modes with wavelet transform. Teng and Zhu (2010) used an adaptive genetic 

algorithm to optimize the parameters of wavelet including the center frequency and its 

bandwidth. The parameters of wavelet were optimized with the adaptive genetic 

algorithm, whose objective function is the standard deviation between the wavelet ridge 

and fitting line. In doing so, their numerical simulations with three closely-spaced modes 

demonstrated that the wavelet transform in combination with the adaptive genetic 

algorithm can be used to identify the closely-spaced modes of vibration.   

HHT is another time-frequency analysis method developed for stationary and 

non-stationary signal analysis and has been widely applied in structural parameter 

identification and damaged detection. However, central to HHT, the EMD sift process is 

unable to decompose signals with closely-spaced modes. With the HHT method, Chen 

and Xu (2002) explored the possibility to identify the modal parameters of a structure 

with closely-spaced modes. For the structure with closely-spaced modes, the cutoff 

frequencies determined from the power spectrum density of the measured response time 

history were used in the signal sifting process with the intermittency check. The random 

decrement technique was further applied to each of the modal responses decomposed by 

EMD with the cutoff frequency intermittency check to obtain the free modal responses. 
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Then, the modal parameters such as naturel frequencies and damping ratios can be 

identified. The results of their research show that damping ratios identified using the 

HHT method is much more accurate than those from the fast Fourier transform analysis.  

Wang (2005) presented another HHT based method to decompose a signal with 

close frequency components. A temporary complex time series was introduced to shift 

down the frequencies of its components. This can greatly increase the ratio between the 

higher and lower frequencies so that individual components can be separated with EMD. 

The key point of this method is to increase the ratio of the frequencies of two 

components. Consider a signal with two cosine functions: 

                                                               (2.1) 

in which       and   is a phase angle. The ratio of the two frequencies is        . 

It can be increased by subtracting a temporary frequency    in the numerator and 

denominator simultaneously. The ratio between the two downshifted frequencies 

becomes                  . To achieve this downshifting process, a complex 

analytic signal      is defined as: 

                                                                 (2.2) 

 in which,      represents Hilbert transform of the function in the bracket and   √   is 

an imaginary unit. Downshifting in frequency components can be achieved by 

multiplying an exponential function,       , to yield a new complex signal: 

                                                             (2.3) 

For a proper   ,                   can be as large as 1.5, and the new 

complex signal can be easily separated by EMD: 

     ∑      
 
                                               (2.4) 

in which       is the k
th

 decomposed component named as intrinsic mode function, and 

   is a residual function. The decomposition of the original analytical complex signal can 

then be upshifted back by multiplying       with both sides of Equation (2.4): 

               ∑       
     

                               (2.5) 

Therefore, the decomposition of original signal can be expressed as: 

                 ∑       
     

                            (2.6) 

in which,       represents the real part of the complex function in bracket. Although 

successful for general systems, this method may still face a challenge as the space 



 

 

17 

between two frequencies decreases, particularly for flexible structures such as long-span 

bridges with very low natural frequencies. Overall, it is still a challenge to consistently 

and reliably identify the properties of structures with closely-spaced modes. 

 

2.3. TIME-VARYING PARAMETER IDENTIFICATION 

The measured dynamic responses in structural and mechanical systems are often 

irregular in amplitude and frequency over time, which is referred to as amplitude- and 

frequency-modulated signals. Such responses must be characterized with time-varying 

features such as instantaneous frequency. For example, consider a dynamic response with 

a sudden drop of frequency:      {
                  
                  

, the original signal and its 

Fourier spectrum are presented in Figure 2.3. It can be seen from Figure 2.3 that the 

Fourier spectrum loses the time essence of frequency drop at 5 sec, which is important in 

real time structural health monitoring. To enable the identification of damage location 

and occurrence, least-squares based methods in time domain have recently been applied 

into time-varying parameter identification. Advanced time-frequency analysis techniques 

such as wavelet transform and Hilbert transform have also been used as summarized 

below.  

 

 

 

 

 

 

Figure 2.3. A Dynamic Signal with Sudden Drop Frequency 
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2.3.1. Least-Squares Based Method. Least-squares estimation is a 

computationally efficient approach in time domain and has been widely applied to 

structural system identification (Bendedettine et al.; 1995, Bodson, 1995; Loh and Tou, 

1995; Smith et al., 1997; Yongkyu, 2002; Ravindra, 2006). A constant forgetting factor is 

commonly used in the above methods. For example, Smyth et al. (1999; 2002) and Lin et 

al. (2001) presented a modified least-squares method for the on-line identification of 

hysteretic systems under arbitrary dynamic loading. The drawback of the constant 

forgetting factor approach is a trade-off between tracking ability and noise sensitivity. A 

smaller factor allows a more accurate tracking on the variation of structural parameters 

but makes the approach more sensitive to noise effect. 

Yang and Lin (2005) presented a new adaptive tracking technique based on the 

least-squares estimation approach to identify time-varying structural parameters. Their 

method is able to track the abrupt changes of structural parameters due to damage. The 

tracking algorithm is based on the adaptation of the current measure data to determine the 

parameter variations and the covariance of the residual error is only contributed by 

measurement noises. Their proposed approach was applied to linear structures, such as 

the Phase I ASCE structural health monitoring benchmark building and a nonlinear 

elastic structure. Yang et al. (2006; 2007) further detected damage to structures using the 

adaptive tracking technique with unknown excitations. Simulation results for a Duffing-

type nonlinear ASCE benchmark building demonstrated that the method is quite effective 

and accurate for tracking the variations of structural parameters due to damage.  

Yang et al. (2009) further proposed a new least-squares based method, referred to 

as the adaptive quadratic sum-squares error, for the online system identification and 

damage detection of structures. This new technique can be briefly described as follows. 

The error vector    at time       (   is a sampling time) between the observation data 

and the theoretical data is a nonlinear function of the unknown parametric vector  . The 

error vector    was linearized for   at the previous time step          , so that    is a 

linear function of unknown parametric vector  . Consequently, the sum-squares error 

becomes a quadratic function of  . The analytical recursive solution for the estimate  ̂ of 

  can then be obtained by minimizing the quadratic sum-squares error. The simulation 

results, including  a two-story steel frame finite element model, a plane truss with finite 
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element model, and a 5-DOF hysteretic shear beam building, demonstrated the accuracy 

of the method in tracking the variation of structural parameters such as stiffness 

degradation due to damage. The adaptive quadratic sum-squares error method was further 

developed by Huang et al. (2010). The advantage of this method is that the unknown 

parametric vector is directly estimated and the state vector is updated, thus reducing 

computational efforts. The accuracy and effectiveness of the proposed method was 

demonstrated by numerical simulations and the experimental data taken from a scaled 

three-story building model. 

More recently, Wang and Chen (2011) developed a moving-window curve fitting 

method based on the least-squares estimation in each fixed window. Central to the new 

method is the transformation from a dynamic to static problem by integrating the 

dynamic measurements and loads over time. This method can be applied to locate and 

quantify multiple cracks and sudden reductions in stiffness in beam-like structures. It is a 

computationally efficient, straightforward identification method for multi-span 

continuous highway bridges.  

2.3.2. Wavelet Transform Based Method. Wavelet transform as an advanced 

time-frequency analysis technique has been designed for non-stationary time signals of 

linear systems in the past two decades. Wavelet analysis is essentially an advanced short-

time Fourier transform method with adjustable windows at various times. Due to its 

flexibility in window length selection, wavelet analysis reveals the detail and 

approximation of a time signal at multiple levels and retains the transient characteristics 

of the data series with time-frequency spectral decomposition. The integral wavelet 

transform is the convolution of a signal      and the conjugate of a scaled parent wavelet 

function           with a dilation scale a>0 and translational value b:  

       
 

√ 
∫     

 

  
  (

   

 
)                (2.7) 

in which   is inversely proportional to frequency,        is the wavelet coefficient that 

represents the similitude between the dilated and shifted parent wavelet and the signal at 

time b and scale  , and * represents an operation of complex conjugate. The distribution 

of the wavelet coefficient in time-frequency plane can be used for signal time-frequency 

analysis. In particular, the extracted ridge lines can be used for signal reconstruction. 
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Gurly and Kareem (1999) used wavelet transform to decompose a random process 

into localized orthogonal basis functions, providing a convenient format for the 

modeling, analysis, and simulation of non-stationary processes. The time-frequency 

analysis of wavelet transform provided insight into the characteristics of transient signals. 

The analysis of non-stationary signals including wind, wave and earthquake applications 

was typically accomplished by the continuous wavelet transform in Equation (2.7).  

Staszewski (1997) compared the cross section procedure, impulse response 

recovery procedure, and ridge detection procedure in damping identification of a dynamic 

system. The wavelet transform was used to decouple the system into single harmonic 

modes. The mathematical framework of the decoupling procedure was presented.  

Hou et al. (2000) presented a wavelet-based approach for structural health 

monitoring and damage detection. Both numerical simulation for a simple structural 

mode with breakage springs and actual recorded data of the building response during an 

earthquake event were analyzed. The results demonstrated that structural damage or a 

change in system stiffness can be detected by spikes in the details of the wavelet 

decomposition of the response data. The locations of the spikes can accurately indicate 

the time instances when the structural damage occurred.  

Kijewski and Kareem (2003) argued that civil engineering structures usually 

possess long period motions and thus require finer frequency resolution of parent 

wavelets. Although many parent wavelets are available, the authors focused on the 

Morlet wavelet due to its unique properties in continuous wavelet transform. The Morlet 

wavelet is defined by: 

                                                           (2.8) 

It is essentially a Gaussian-windowed Fourier transform with harmonic oscillations at the 

central frequency of   . In their study, Kijewski and Kareem (2003) demonstrated that a 

proper selection of Morlet wavelet central frequencies is required to balance modal 

separation. In doing so, the instantaneous frequency of a signal can be identified from the 

wavelet phase or from the ridges of the amplitude.  

Although widely used in signal processing, wavelet analysis is non-adaptive to a 

particular data series. It depends upon the introduction of a predetermined parent wavelet. 

Therefore, some of the highly transient features in a time signal may be lost in the 
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process of wavelet transform. In addition, wavelet analysis has end leakages due to the 

limited length of the basic wavelet function. This often results in a time-frequency ridge 

pattern with thick and blurred lines, particularly in a low frequency range. To enhance the 

time and frequency resolution, Wang and Ren (2007) presented a SVD based wavelet 

ridge extraction method for signal analysis and reconstruction. However, according to the 

Heisenberg-Gabor uncertainty principle (Flandrin, 1999), a time signal cannot be 

decomposed and reconstructed in an arbitrarily small time-frequency region. It is 

difficult, if not impossible, to simultaneously achieve high resolution both in time and 

frequency domains. 

2.3.3. Hilbert Transform Based Method. Perhaps, the most advanced time-

frequency analysis technique involves Hilbert transform. Since a decade ago, EMD and 

Hilbert spectral analysis, called HHT, has been developed for non-stationary and 

nonlinear data analysis by Huang et al. (1998; 1999; 2003). Over the last two decades, 

HHT has received wide attention in time-varying system identification, particularly in 

recent years (Shi and Law, 2007; Shi et al., 2009; Bao et al., 2009).  

Shi and Law (2007) proposed an identification algorithm for linear, time-varying 

systems based on the HHT method. The proposed method was verified with free 

vibration response data. Three ideal cases of time-varying properties, including smoothly, 

abruptly and periodically varying systems, were studied. Shi et al. (2009) then further 

develop this identification algorithm for time-varying systems from the forced vibration 

response data. Similarly, smoothly, abruptly and periodically varying systems were 

studied to demonstrate the effectiveness of their identification algorithm. 

Consider a linear n-DOF system with time-varying parameters, the equation of 

motion can be written as: 

     ̈         ̇                                                  (2.9) 

where     ,     , and      are time-varying mass, damping, and stiffness matrices, 

respectively;      is the external load vector;      is the displacement vector. Mass is 

considered to be constant in this study. 

The Hilbert transform of both sides of Equation (2.9) leads to: 

    ̈            ̇                                           (2.10) 
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When                change slowly in comparison with the building velocity and 

displacement, the Bedrosian’s theorem (Stefan, 1996) can be applied to the second and 

third terms of Equation (2.10). That is, 

       ̇            ̇    ,                                      (2.11) 

Then, Equation (2.10) becomes: 

    ̈            ̇                                          (2.12) 

By introducing an analytic signal of                   , Equations (2.9) and 

(2.12) can be combined into: 

     ̈         ̇                                            (2.13) 

where                    is the analytic signal of the external load vector. 

The key of the identification algorithm by Shi et al. (2009) is to decompose the 

response      into n modal responses by the EMD process: 

      ∑      
 
                                                (2.14) 

The analytic signal      ∑      
 
    ∑                  

 
    can then be 

formulated, and Equation (2.13) can be written into: 

    ∑  ̈    
 
        ∑  ̇    

 
        ∑      

 
                (2.15) 

By left multiplying   
     on both sides of Equation (2.15) and using the 

orthogonal properties of IMF, the following equation can be obtained: 

  
         ̈       

         ̇       
                

            (2.16) 

For an n-story shear-type building, Equation (2.16) contains 2n equations for the 

evaluation of 2n time-varying parameters at any time instant t with a given mass matrix. 

An important advantage of the proposed algorithm is that only one set of IMFs is 

required to solve all the time-varying unknown system parameters. However, the 

identification results of time-varying parameters using one set of IMFs are inaccurate 

since the orthogonality of two IMFs is defined over the entire duration of a signal rather 

than at each time step. 

More recently, Bao et al. (2009) used the auto-correlation functions of various 

structural responses to reduce noise effects so that the accuracy of the HHT method can 

be improved. In essence, a bandpass filter and an effective IMF selection procedure were 

combined to overcome the modal perturbation issue of time-varying systems. The 



 

 

23 

robustness and effectiveness were verified both by numerical simulations and laboratory 

measured vibration data on a scaled concrete steel composite beam model. 

Although powerful in extracting the time-varying properties of non-stationary 

signals, EMD faces several challenges in some engineering applications as presented in 

the previous section. For a dynamic response signal, the decomposed IMFs by EMD may 

be equivalent to the modal responses when the modes of vibration are well separated. As 

the spacing of two vibration modes is reduced to sufficiently small, the corresponding 

two IMFs may be inseparable and thus cannot represent the modal responses. Shi and 

Law (2007) and Shi et al. (2009) considered that each IMF represents a modal response 

and concluded that only one set of IMFs is required to solve all the time-varying 

parameters. Obviously, simply using an IMF to represent a modal response may not be 

justifiable. Therefore, to extract each modal response by EMD, a bandpass filter was used 

to pre-process the dynamic response (Chen and Xu, 2002; Yang et al. 2003; Bao et al. 

2009).  

More recently, Feldman (2006; 2008; 2011) introduced a new signal 

decomposition formulation, called Hilbert Vibration Decomposition (HVD), for non-

stationary signals. It includes three steps: 1) to estimate the instantaneous frequency of 

the largest energy vibration component, 2) to extract the envelope of the largest energy 

vibration component, and 3) to subtract the largest energy component from the original 

signal and repeat the whole process for the remaining signal. The key idea behind HVD is 

that the instantaneous frequency of an analytic signal is dominated by the largest energy 

component. Therefore, the instantaneous frequency can be extracted by using a lowpass 

filter. Once the instantaneous frequency is detected, the so-called coherent demodulation 

or phase lock-in amplifier detection technique is used to extract the envelope of the 

largest energy vibration component. According to Braun and Feldman (2011), HVD faces 

serious challenges when applied to separate low amplitude harmonics from significant 

noise additions; its inaccuracy is greatly amplified even with insignificant noise. Overall, 

it is still quite a challenge to consistently and reliably extract individual components from 

a data series, particularly when its time-varying frequencies are closely-spaced. 
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3. ANALYTICAL MODE DECOMPOSITION 

3.1. HILBERT TRANSFORM AND ANALYTIC SIGNAL 

Hilbert transform is one of the integral transform like Laplace and Fourier 

transform. It is named after David Hilbert, who first introduced it to solve a special case 

of integral equations in the area of mathematical physics (Korpel, 1982). The Hilbert 

transform of a function      is defined by an integral transform (Titchmarsh, 1950; Hahn, 

1996): 

        
 

 
 ∫

    

   

 

  
                                           (3.1) 

in which P indicates the Cauchy principal value around    . Physically, Hilbert 

transform is equivalent to a special kind of linear filter, where all the amplitudes of 

spectral components remain unchanged, but their phases are shifted by    . 

Mathematically, the Hilbert transform         of the original function represents a 

convolution of      and  
 

  
, which can be written as: 

              
 

  
                                              (3.2) 

Note that the Hilbert transform of a time signal      is another signal in time 

domain. If      is real valued,         is also real valued. 

As defined in Equation (2.2), an analytic signal is the complex signal whose 

imaginary part is the Hilbert transform of the real part (Vakman, 1998; Huang and Shen, 

2005; Schreier and Scharf, 2010; Feldman, 2011). The analytic signal can be viewed as a 

vector at the origin of the complex plane having a length      and an angle     . The 

projection on the real axis is the original signal      and the projection on the imaginary 

axis is the Hilbert transform of the original signal. The traditional representation of the 

analytic signal in its exponential form can be written as (Gabor, 1946; Hartmann, 2004): 

                                                            (3.3) 

      √                , and              
       

    
            (3.4) 

Here,      is the instantaneous amplitude, and      is the phase function. The 

instantaneous frequency is simply defined as: 

     
  

  
                                                   (3.5) 
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It can also be expressed into: 

     
     ̇        ̇          

     
                                    (3.6) 

For any signal, there is a unique value of the instantaneous phase at any given 

time. For a non-stationary signal whose spectral contents vary with time, the 

instantaneous frequency plays an important role in the understanding of signal 

characteristics. The instantaneous amplitude, phase angle and frequency can be expressed 

by a phasor rotating in the complex plane, as shown in Figure 3.1.  A phasor can be 

viewed as a vector at the original of the complex plane having a length      and a phase 

angle      with an angle speed of     . The projections on the real and imaginary axle 

are the original signal and Hilbert transform of the original signal, respectively. 

 

 

 

 

 

 

Figure 3.1. Instantaneous Amplitude, Phase Angle and Frequency in Complex Plane 

 

3.2. HILBERT SPECTRAL ANALYSIS 

To have a physical meaning for instantaneous frequency, Cohen (1995) presented 

the Hilbert transform of a mono-component function. In this case, the instantaneous 

characteristics agree with the intuitive meaning of the signal amplitude, phase and 

frequency.  

3.2.1. Hilbert Spectrum. The original signal can be expressed as the real part 

      of an analytic signal: 

              ∫       
 
                                               (3.7) 

The Hilbert spectrum         of the signal x(t) is then defined by: 

 

        {
             
              

                                          (3.8) 

x(t) 

H[x(t)] ω(t) 

 (t) 

O 

a(t) 
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3.2.2. Hilbert Spectra of Simple Functions. A sine frequency modulated signal 

x(t) is a frequency modulated cosine signal as defined by: 

                                                                (3.9) 

The instantaneous frequency in Hz can then be calculated as: 

     
 

  

               

  
                                    (3.10) 

The frequency of the original signal ranges from 2 Hz to 4 Hz. The original signal 

and its Hilbert transform are presented in Figure 3.2. The Fourier spectrum and Hilbert 

spectrum are compared in Figure 3.3. It can be clearly seen that Fourier spectrum cannot 

detect the instantaneous frequency modulation over time since it represents the total 

energy distribution over time in frequency domain. On the other hand, the Hilbert 

spectrum accurately delineates the instantaneous frequency as a function of time. 

 

 

 

 

 

Figure 3.2. Original Signal and Its Hilbert Transform 

 

       

 

Figure 3.3. Fourier and Hilbert Spectra 
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Consider another example signal with a sudden drop of frequency as defined by: 

     {
                  
                  

                                    (3.11) 

The frequency drops from 3 Hz to 1.5 Hz at 5 sec. The original signal and its 

Hilbert transform are shown in Figure 3.4. The Fourier spectrum and Hilbert spectrum 

are shown in Figure 3.5. It can be clearly seen from Figure 3.5, the instantaneous 

frequency can be detected from the Hilbert spectrum of the analytic signal. On the other 

hand, Fourier spectrum loses the time essence at 5 sec.  

 

 

 

  

 

Figure 3.4. Original Signal and Its Hilbert Transform 

 

        

 

Figure 3.5. Fourier and Hilbert Spectra 
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3.3. EMD AND HHT 

3.3.1. EMD. A description of the Hilbert transform with emphasis on its multiple 

mathematical formulations can be found in Hahn (1996). However, the instantaneous 

frequency defined in Equations (3.5) and (3.6) is applicable to narrowband signals or 

mono-component functions that have well-behaved Hilbert transform. To decompose a 

general time series into many narrowband signals, Huang et al. (1998) introduced the 

EMD process. 

As discussed by Huang et al. (1998, 1999), the EMD method is necessary to deal 

with data from non-stationary processes associated with nonlinear phenomena and 

systems. In contrast to the previous methods, EMD is intuitive and adaptive to the 

original data. The main underlying assumption is that any data series consists of a series 

of intrinsic modes of vibration. Each intrinsic mode represents a simple oscillation which 

will have the same number of extrema and zero-crossing points or different number by 

one only. According to Huang et al. (1998, 1999), a general signal      can be 

decomposed into a summation of l intrinsic mode functions (IMFs):                   

and a residual signal      after EMD process. 

     ∑      
 
                                                 (3.12) 

The EMD process decomposes a signal      by the following sifting steps:  

(1) Identify all the local maxima and minima of the signal and represent the upper 

and lower envelopes of the signal by two cubic spline lines.  

(2) Compute the average of the upper and lower envelopes,       , and subtract 

it from the signal,            (=      when k=1), 

                                                          (3.13) 

(3) Repeat Steps (1) and (2) for the remaining function,        (k=1,2,…), until it 

satisfies the two IMF conditions: (a) for the whole dataset, the number of 

extrema (maxima or minima) and the number of zero-crossings must either 

equal or differ at most by one; (b) at any point, the average value of the 

envelopes defined by the local maxima and by the local minima is zero. Then, 

       becomes the first IMF. That is, 

 

 



 

 

29 

                                                            (3.14) 

The first IMF found by Equation (3.14) contains the highest frequency component 

of the original signal    . It can be separated from the original signal, leaving a residue 

                               : 

                                                         (3.15) 

Since the residue      still contains low frequency components in the data series, 

it can be treated as a new signal and subjected to the same sifting steps as described 

above. This procedure can be repeated with all the subsequent residues      : 

                                                       (3.16) 

The EMD process stops when it satisfies the two criteria established by Huang et 

al. (1999; 2003): either when the residue becomes so small that it is less than the 

predetermined value of any substantial consequence, or when the residue becomes a 

monotonic function from which no more IMFs can be extracted. Equation (3.12) is 

finally obtained by summing up all the terms in Equations (3.15) and (3.16).  

As an example to illustrate the EMD process, a frequency modulated signal is 

considered: 

                                                     (3.17) 

The exact instantaneous frequencies of the high and low frequency components 

are: 1.75+0.5cos(2πt) and 1.0+0.25cos(πt) in Hz. The signal was analyzed over a period 

of 30 sec with a sampling rate of 20 Hz. The original signal and its IMFs are presented in 

Figure 3.6 and Figure 3.7, respectively. It can be seen from Figure 3.7 that four IMFs are 

obtained with dominant frequencies decreasing as the EMD process proceeds. 

 

 

 

Figure 3.6. Original Signal with Two Cosine Frequency Modulated Components 
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Figure 3.7. First Four IMFs of the Original Signal 

 

3.3.2. HHT. The IMFs decomposed by the EMD process have well-behaved 

Hilbert transform since each IMF is a narrowband signal and can be considered as a 

mono-component function. The combination of EMD and Hilbert spectral analysis is 

often referred to as HHT (Huang et al., 1998; 1999). The Hilbert transform and analytic 

signal of each IMF can be computed as: 

         
 

 
  ∫

     

   

 

  
                                           (3.18) 

                            
                                   (3.19) 

in which       √  
               and             

        

     
 are instantaneous 

amplitude and phase for the i
th
 IMF. 

The instantaneous frequency of the i
th
 IMF can be expressed as: 

      
      

  
 

      ̇          ̇           

  
    

                             (3.20) 

The i
th
 IMF       can thus be expressed into: 

               
 ∫        

 
                                     (3.21) 

The Hilbert spectrum of the i
th

 IMF       is then defined as: 

         {
               
                

                               (3.22) 

0 5 10 15 20 25 30
-2

0

2

0 5 10 15 20 25 30
-1

0

1

0 5 10 15 20 25 30
-0.2

0

0.2

0 5 10 15 20 25 30
-0.05

0

0.05

Time (sec) 

c 1
(t

) 
c 2

(t
) 

c 3
(t

) 
c 4

(t
) 



 

 

31 

The original signal can also be expressed into the real part of all the analytic 

functions of the IMFs. That is,  

        ∑       
 ∫        

 
  

                                (3.23) 

Here, the residue       is intentionally left out since  it is either negligible or a 

monotonic function. The energy remained in the residual term represents a mean offset. 

Finally, the Hilbert spectrum of the original signal is defined by: 

        ∑          
                                   (3.24) 

The entire HHT process can be summarized in a block diagram as shown in 

Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Block Diagram of the HHT Process 
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no need to introduce spurious harmonics in order to represent non-stationary and 

nonlinear waveform deformations as the case with Fourier transform and wavelet 

transform. Therefore, HHT is a superior tool for time-frequency analysis of non-

stationary signals particularly when they carry nonlinear features of a physical 

phenomenon or a mechanical system.  

 

 

 

Figure 3.9. Hilbert Spectrum of Two Cosine Frequency Modulated Components 
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function is rich in high frequency. The second purpose is to down shift the frequency 

components of the signal using so that the ratio of two close frequencies in a wave group 

can be increased for a smooth EMD process. Overall, it is still quite a challenge to 

consistently and reliably identify the properties of structures with closely-spaced modes. 

To illustrate the issue with time-varying feature extractions of a nonlinear system, 

a signal      with two frequency modulated cosine components is considered: 

                                                        (3.25) 

in which                                and                                

(            . The frequency of       component is                         

Hz, and the frequency of       component is                       Hz. The signal 

was analyzed with a sampling rate of 20 Hz. The first two IMFs using the conventional 

EMD are presented in Figure 3.10. It can be clearly seen that the first IMF has two 

components that are mixed together. The two instantaneous frequencies obtained from 

Hilbert spectral analysis are presented in Figure 3.11. In comparison with their exact 

values, also shown in Figure 3.11, the instantaneous frequencies obtained from HHT are 

incorrect since the two components are not completely separated. 

 

 

 

 

 

Figure 3.10. The First Two IMFs by EMD 
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Figure 3.11. Two Instantaneous Frequencies by HHT 

 

3.4. HILBERT VIBRATION DECOMPOSITION 

Another technique called Hilbert vibration decomposition (HVD) was developed 

by Feldman (2006; 2011) for decomposition of non-stationary and multicomponent 

dynamic signals. Its main idea is to decompose a signal into a sum of components with 

slowly-varying instantaneous amplitudes and frequencies: 

     ∑           ∫                                           (3.26) 

where       and       are the instantaneous amplitude and instantaneous frequency of 

the i
th

 component. Each mono-component           ∫          is an intrinsic mode of 

the original signal with a simple oscillatory waveform. If only one term is needed in 

Equation (3.26) ,      is called a mono-component signal. Otherwise, it is referred to as a 

multi-component signal with a broadband spectrum. 

3.4.1. Instantaneous Frequency of the Largest Energy Component. Consider a 

multi-component signal with two harmonics as described by Equation (3.26). Its analytic 

function can be derived as: 

           
 ∫        

 
        

 ∫        
 
        ∫       

 
         (3.27) 

The instantaneous amplitude      and instantaneous frequency      of the 

analytic signal can be related to individual component parameters by:  

        
       

                   {∫                
 

 
}        (3.28) 
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             [  

                   {∫                
 
 

}]

     
  

        
       

             {∫                
 
 

}

     
     (3.29) 

The signal envelope      consists of a slowly varying part, including the sum of 

the squared of individual component amplitudes, and a rapidly varying (oscillating) part. 

The instantaneous frequency      also has two parts: a slowly varying part    and a 

rapidly varying asymmetrical oscillating part. The rapidly oscillating part of the 

instantaneous frequency has an important feature (Vakman, 1998; Feldman, 2006; 2010). 

When the derivatives of both       and       are negligible and 

                                        , the integration of the oscillatory part of the 

instantaneous frequency in one cycle related to the frequency difference of two 

components is approximately equal to zero. Therefore, the instantaneous frequency of the 

largest energy component can be extracted by a low-pass filter. For a more general case 

of three and more quasi-harmonics in the signal, the instantaneous frequency has a more 

complicated form. However, lowpass filtering can still be used to extract the 

instantaneous frequency of the largest energy component.  

3.4.2. Envelope of the Largest Energy Component. Once the instantaneous 

frequency is extracted, the envelope of the largest energy component can be readily 

estimated by a well-known technique (Fink, 1975) as called differently in various 

applications: synchronous detection, coherent demodulation, and lock-in amplifier 

detection. The essence of this technique is to extract the amplitude of a signal with a 

known frequency by multiplying the initial signal by two reference signals that are 

exactly 90° out of phase with one another. For convenience, the two reference signals are 

selected to be      ∫         and      ∫         whose frequency is exactly the same 

as that of the r
th
 component of the original signal. 

When the original signal, Equation (3.26) with an explicit phase angle    for each 

component, is multiplied by the reference signal      ∫        , the combined signal is 

equal to: 
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        ∑           ∫           

 

      ∫         

 
 

 
                   ∫                         (3.30) 

in which,    is the initial phase angle of the r component. Similarly, when the initial 

signal is multiplied by the reference signal      ∫        , the combined signal 

becomes, 

 ̃       
 

 
                   ∫                         (3.31) 

Each of the obtained parts consists of a slowly varying function, which includes 

the amplitude and the initial phase, and a rapidly oscillatory part. Therefore, a low-pass 

filter can be used to extract the slowly varying function. The amplitudes of the slowly 

varying parts in Equations (3.30) and (3.31) can then be written as: 

        
 

 
              and    ̃       

 

 
                 (3.32) 

Finally, the amplitude of the largest energy component of the original signal can 

be expressed with:  

      √             ̃                                  (3.33) 

Once fully extracted, the largest energy component can be subtracted from the 

original signal and the HVD process can be repeated until all of the individual 

components are separated. The HVD process can be represented by a block diagram as 

illustrated in Figure 3.12.   

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Block Diagram of Hilbert Vibration Decomposition 
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3.5. BEDROSIAN THEOREM 

3.5.1. Bedrosian Theorem Derivation. Bedrosian theorem is also called the 

product theorem of Hilbert transform. Discovered by Bedrosian (1962), it can be stated as 

follows: 

Let      and      denote two generally complex functions in          of the 

real variable t. If 

(a) The Fourier transform  ̂    of      vanishes for | |   , and the Fourier 

transform  ̂    of      vanishes for | |    where   is an arbitrary positive 

constant, or 

(b)      and      are analytic (i.e., their real and imaginary parts are Hilbert 

pairs), 

the Hilbert transform of the product of      and      is given by: 

                                                          (3.34) 

The theorem can be proved by examining the inverse Fourier transform of both 

sides of Equation (3.34). The inverse Fourier transform of the product          can be 

written as: 

         
 

     
∫   

 

  
∫   

 

  
 ̂    ̂                       (3.35) 

Applying Hilbert transform on both sides of Equation (3.35) yields: 

            
 

     
∫   

 

  
∫   

 

  
 ̂    ̂                          (3.36) 

The Hilbert transform of          is: 

 [        ]                                               (3.37) 

where        is a sign function. Therefore, substituting Equation (3.37) into Equation 

(3.36) gives: 

            
 

     
∫   

 

  
∫   

 

  
 ̂    ̂                       (3.38) 

Figure 3.13 illustrates the integration plane. Under the first condition of the 

theorem, the product  ̂    ̂    is non-vanishing only in the shaded region in Figure 3.13. 

In this case,                . Equation (3.38) can then be expressed into: 
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∫   

 

  

∫   
 

  

 ̂    ̂                   

     
 

  
∫   

 

  
 ̂                                   (3.39) 

 

 

Figure 3.13. Integration Region 

 

3.5.2. Illustrative Examples. To illustrate accuracy of the Bedrosian theory, 

several functions are tested and taken as examples.  

Let                  ,      Hz, and        sec., and          

         be: 

                                             {
               

                 
                                         (3.40) 

                                 {
                             
                    

                                
                            (3.41) 

                                                  
            

 
              

                                               (3.42)                       

Figure 3.14 compares the Hilbert transforms of the product               

         evaluated by its definition and the Bedrosian theorem. For    , the 

u 

v 

u+v=0 

-a a 

-a 
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frequency component of       is less than that of       the frequency of       that of 

      

 

 

 

 

 

 

 

              

                        (a) Bedrosian theory                                   (b) Exact signal 

 

Figure 3.14. Hilbert Transform of Product Signals 
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3.6. A NEW SIGNAL DECOMPOSITION THEOREM 

A new signal decomposition theorem based on Hilbert transform of a harmonics 

multiplicative time series was recently discovered by Chen and Wang (2011). In 

structural health monitoring, this theorem leads to the development of analytical mode 

decomposition (AMD) for stationary and non-stationary dynamic responses. Following is 

a presentation of the theorem and its proof. For simplicity and clarity, this section is 

focused on signals with time-invariant frequencies. 

3.6.1. AMD Theorem and Proof. Let x(t) denote a real time series of n 

significant frequency components                                                   

in L
2
(-∞, +∞) of the real time variable t. It can be decomposed into n signals   

   
    

(i=1,2,…,n) whose Fourier spectra are equal to  ̂    over n mutually exclusive 

frequency ranges  | |      ,      | |        ,          | |          , and 

         | | . That is, 

     ∑   
   

    
         (3.43) 

Here,  ̂    is the Fourier transform of x(t),   represents a frequency variable, and 

                            are n-1 bisecting frequencies. Each signal has a 

narrow bandwidth in the frequency domain and can be determined by: 

  
   

           
                         

   
                      (3.44) 

                                                                          

                      (3.45) 

The AMD theorem is proven in two steps. The first step is to split a time series 

into two signals whose Fourier spectra are non-vanishing over two mutually exclusive 

frequency ranges about a bisecting frequency. The second step is to apply the bisecting 

process to derive the decomposed signals   
   

    (i=1,2,…,n) as stated in the theorem. 

A time series can generally be expressed into a summation of two signals: 

            ̅            (3.46) 

whose Fourier transforms  ̂    
 
and  ̂̅     vanish for | |     and | |    , 

respectively. Here,    is an arbitrary positive value referred to as the bisecting frequency. 
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Due to the Parseval’s theorem in Fourier transforms and the fact that  ̂    
 
and  ̂̅     are 

equal to  ̂    over two mutually exclusive frequency ranges of         and        , 

respectively: 

∫ |     |
   

  
   ∫ | ̂    | 

  

  
      ∫ | ̂   |

   

  
      ∫ |    | 

  

  
        

(3.47) 

 

∫ | ̅    |
   

  
   ∫ | ̂̅    | 

  

  
      ∫ | ̂   |

   

  
      ∫ |    | 

  

  
        

(3.48) 

Therefore, both            ̅     are real functions in L
2
(-∞, +∞).  

Let                 and                . The Hilbert transform of          
 

(k=c, s) can be expressed into: 

                                    ̅              (3.49) 

Since the Fourier transforms of       and       vanish at all frequencies except 

for | |    , they are non-vanishing over mutually exclusive frequency ranges with the 

Fourier transforms       and  ̅    . The first term on the right-hand side of Equation 

(3.49) has a low-pass function of       and a high-pass function of      . The second 

term has a low-pass function of       and a high-pass function of  ̅    . According to the 

Bedrosian theorem, Equation (3.49) can be rewritten as: 

                                   ̅                               (3.50) 

When k is set to c and s, respectively, two algebraic equations for two unknowns, 

      and    ̅     , can be obtained, leading to 

      
                                   

                           
                                  (3.51) 

   ̅      
                                         

                           
                         (3.52) 

The Hilbert transforms of       and       can be expressed into: 

                   and                                        (3.53) 

They meet the following relation: 

                                                        (3.54) 

Equations (3.51) and (3.52) then become: 

                                                           (3.55) 

   ̅                                                        (3.56) 



 

 

42 

The signal  ̅     and the Hilbert transform of       can be derived from Equation 

(3.46) and expressed into: 

 ̅                                                          (3.57) 

                    ̅                                         (3.58) 

By selecting                     , a time series can be bisected into two 

signals in various ways as follows: 

            ̅            ̅                ̅   (t)   (3.59) 

Each decomposed signal can be expressed into: 

  
   

         
                                     

   
     ̅         (3.60) 

in which                     and  ̅       can be evaluated by using Equation 

(3.55) and Equation (3.57) with        and        , respectively, and the AMD 

theorem is proven. 

3.6.2. Lowpass and Bandpass Filter Based on AMD Theorem. The component 

in a signal with frequency less than the bisecting frequency can be analytically extracted 

by Equation (3.45). This process operates like a lowpass filter, which requires only the 

Hilbert transform and the bisecting frequency. The block diagram of such a heterodyne-

like filter is shown in Figure 3.15. With multiple steps of bisecting, an original time series 

with multiple closely-spaced frequency components can be decomposed into many 

signals, each component with frequency between two adjacent bisecting frequencies. This 

process operates like a bandpass filter. The diagram of such a bandpass filter is presented 

in Figure 3.16. 

 

 

 

 

 

 

 

Figure 3.15. Block Diagram of a Lowpass Filter with a Bisecting Frequency     
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Figure 3.16. Block Diagram of a Bandpass Filter with Two Bisecting Frequencies: 

        and     

 

3.6.3. Comparison with a Frequency Filtering Technique. The signal 

decomposition theorem is developed to split a time series into n signals whose frequency 

contents are mutually exclusive about n-1 bisecting frequencies. This process appears 

somewhat similar to a bandpass filtering technique with multiple rectangular windows in 

the frequency domain. Therefore, a comparative study was conducted to understand their 

difference. For fair comparisons, the cutoff frequencies in frequency bandpass filters 

were set to equal the bisecting frequencies used with the AMD method. 

A time series with three close frequency components was considered:      

                 . The three frequencies were set to 1 1.1f   Hz, 2 1.2f   Hz, and 

3 1.3f   Hz with a frequency spacing of 0.1 Hz. A time step of 0.02 sec was used in 

numerical simulations. The three individual components were selected as: 

1 1( ) cos(2 )x t f t , 2 2( ) cos(2 / 6)x t f t   , and 3 3( ) cos(2 )x t f t . The decomposed 

signals obtained following the AMD procedure and their Fourier transforms (normalized 

by the number of data points in the time series) are presented in Figures. 3.17 and 3.18, 

respectively. 
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Figure 3.17. Decomposed Signals by AMD  

 

          

 

 

     

Figure 3.18. Fourier Spectra of the Decomposed Signals by AMD 
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It can be seen from Figures. 3.17 and 3.18 that the decomposed signals are in 

excellent agreement with the exact signals both in time and frequency domains. The 

AMD method can accurately separate the three components. Note that a slight difference 

observed at the beginning and end of the time series is due to the end effect of Hilbert 

transforms as a result of a finite time series. In this study, the mirror image technique 

about the first or the last maxima/minima of the original signal was used to minimize the 

end effect in the numerical integration of Hilbert transforms (Huang et al., 2003) 

Figure 3.19 compares the decomposed signals of the time series used in Figure 

3.17 by bandpass filtering with the original signals with         Hz. It can be clearly 

seen from Figure 3.19 that the decomposed signals are significantly weaker than the 

original signals at the ends of signal. In comparison with Figure 3.17, the bandpass 

filtering technique is considerably less accurate than the AMD method. The transient 

oscillations at the beginning and end of the signals due to filtering are substantially more 

significant than those by the AMD method. 

With bandpass filtering, a time series of finite length in engineering applications 

is first transformed into the frequency domain (Fourier transform). In the time domain, 

the finite length signal is equivalent to the application of a rectangular window into the 

infinite long time series. After having been multiplied by a rectangular window in the 

frequency domain, the Fourier spectrum is transformed back to the time domain (inverse 

Fourier transform). Both transforms introduce numerical errors in two ways: signal 

modification by windowing and end effect due to sharp edges or brick walls of the 

windows. Applying a rectangular window in the frequency/time domain is equivalent to 

execute a convolution between a sinc function and the time/frequency function over an 

infinite range. This means that the time/frequency function is now a distorted signal as 

indicated in Figure 3.19. The brick wall with the rectangular window or the sudden 

change of frequency corresponds to an infinitely long oscillation in the time domain that 

cannot be represented accurately with the Fast Fourier Transform and its inverse 

transform. An improper selection of the beginning and end of a signal could introduce an 

artificial oscillation as illustrated in Figure 3.19. In the case of splitting closely-spaced 

frequency components, there is no space to soften the brick wall by designing two 

smooth edges of a window. 
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On the other hand, the AMD method splits a time series into two signals in two 

mutually exclusive frequency ranges that extend to the negative and positive infinity, 

respectively. It only involves two Hilbert transforms that were evaluated with the inverse 

Fourier transforms of one-sided spectra without rectangular windows. Therefore, the 

problems associated with frequency bandpass filtering don’t exist with the AMD method. 

 

 

 

 

 

 

 

Figure 3.19. Decomposed Signals by Frequency Filtering and Exact Signals 

   

3.7. AMD FOR NONSTATIONARY SIGNALS 

In this section, the AMD Theorem is extended to the processing of non-stationary 

signals with time-varying frequencies. For simplicity, frequency modulated signals are 

considered here. The goal is to decompose each frequency modulated individual 

component from a general non-stationary time series by properly selecting two time-
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varying bisecting frequencies that cover the component frequency at any time instant. 

The essence of the AMD theorem for non-stationary signal processing is basically an 

adaptive bandpass filter, whose bandpass frequency depends on the frequency 

characteristics of the signal over time. 

3.7.1. AMD Theorem for Non-stationary Signals. For a non-stationary time 

series, particularly associated with nonlinear dynamic systems, the dominant frequencies 

can vary with time. Depending upon the dynamic characteristics of an engineering 

system, they may overlap over the duration of the signal as illustrated in Figure 3.20 for 

    and    . Here the subscript t signifies a parameter in time domain. Specifically,     

is always larger than     at each time instant but can be smaller than     if they are 

compared at two different times. To successfully separate the frequency components, 

time-varying bisecting frequencies must be used. 

 

 

 

Figure 3.20. Illustration on Varying Bisecting Frequencies in Time Domain 

 

 The AMD theorem presented in Section 3.6 was proven in two steps: bisecting of 

a time series and its decomposition by repeating the bisecting process. The second step is 

the same both for stationary and non-stationary signals. Following is a brief derivation for 

the first step with necessary modifications.  

Let x(t) denote a real time series in L
2
(-∞, +∞) of the real time variable t. 

Consider a time-varying bisecting frequency of       , as illustrated in Figure 3.20, for 

the decomposition of the time series into a lowpass and a highpass component:  

            ̅    .                                        (3.61) 
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For clarity,        is referred to as the bisecting frequency in time domain as 

indicated by its subscript t. Corresponding to the time-varying bisecting frequency, we 

can define a phase angle in phase domain by: 

   ∫    
 

 
              (3.62) 

Since          at all times, Equation (3.62) is a non-decreasing function. In 

this case, the phase and time domains are mapped by a unique one-to-one relation. 

Therefore, the time variable can be expressed into a function of the phase angle. The 

original time series can then be written as a function of phase angle,     , which also 

belongs to L
2
(-∞, +∞) of the real phase angle   because: 

∫ |    | 
  

  
   ∫ |    |    

  

  
             ∫ |    | 

  

  
             (3.63) 

in which         represents the maximum bisecting frequency in time domain that is less 

than the maximum natural frequency (finite value) of an engineering system. In this case, 

the AMD theorem is directly applicable to      if a bisecting frequency in phase domain 

is defined and designated as     as illustrated in Figure 3.21. That is,      can be 

decomposed into two components whose Fourier spectra are equal to  ̂     over two 

mutually exclusive frequency ranges  |  |       and      |  | . The lowpass 

component can then be evaluated by: 

                                                            (3.64) 

where      . After Equation (3.62) has been introduced, Equation (3.64) can be 

expressed into a function of time. Note that     and     in Figure 3.20 are two time-

varying frequencies of a time series while     and     in Figure 3.21 are their 

corresponding frequencies in phase domain, which vary with the phase angle. As 

illustrated in Figures 3.20 and 3.21 the bisecting frequency fluctuates significantly in time 

domain but is equal to one in phase domain. The constant bisecting frequency in phase 

domain can be obtained regardless of how rapidly the time-varying frequencies change in 

time domain. 
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Figure 3.21. Illustration on Varying Bisecting Frequencies in Phase Domain 

 

3.7.2. Role of Transform from Time Domain to Phase Domain. Equation 

(3.64) differs from Equation (3.45) in Section 3.6 in that it involves Hilbert transform in 

phase domain instead of time domain. It is thus desirable to examine the condition under 

which their difference is small. As defined in Equation (3.1), the Hilbert transforms of a 

real time series y(t) and      can be respectively expressed into: 

        
 

 
 ∫

    

   
  

  

  
               (3.65) 

        
 

 
 ∫

    

   
  

  

  
                 (3.66) 

After Equation (3.62) has been introduced,   ∫    
 

 
      and   

∫    
 

 
     , Equation (3.66) can be rewritten as: 

        
 

 
 ∫

    

∫         
 
 

       
  

  

  
                  (3.67) 

In general, Equation (3.67) differs from Equation (3.66) unless        is constant. 

To understand their similarity and difference in other cases, four signals were analyzed 

over 30 sec, including: 

Case 1:                                                     

Case 2:                                                   

Case 3:                                                       and 

Case 4:                                                    . 

Each of the first three series has two time-varying frequency components in 

parallel; they represent slow, medium, and fast fluctuations of frequencies over time. The 

last series has two non-parallel time-varying frequencies. In all cases, the time-varying 
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bisecting frequency is taken to be the average of the frequencies of the two components. 

The frequency of individual components and the bisecting frequency are presented in 

Figure 3.22. For clarity, the slowly and fast varying frequencies are presented for 30 and 

2 seconds, respectively, while all other cases are shown in 10 seconds.  

 

             
 

            
 

Figure 3.22. Component Frequencies and Bisecting Frequency: (a) Case 1, (b) Case 2, (c) 

Case 3, and (d) Case 4 

 

Equation (3.64) is directly applied in phase domain. It can also be used in time 

domain if Equation (3.62) is introduced before the Hilbert transform is executed. The 

decomposed lowpass component is compared with its original signal in Figure 3.23 in 

time domain and in Figure 3.24 in phase domain. It is clearly observed from Figures 3.23 

and 3.24 that the decomposed component and the exact signal are all in excellent 

agreement for the first three cases with parallel component frequencies as shown in 

Figure 3.22(a-c), being in time or phase domains. The decomposed lowpass component 

in the fourth case with nonparallel component frequencies, Figure 3.22(d), is more 

accurate in phase domain than in time domain. This is mainly attributed to the two close-

spaced frequencies and incomplete cycle at the end of 30 sec, as indicated in Figure 

3.22(d). Overall, the difference in time and phase domains is small since the singularity 

in Hilbert transform likely dominates the principal value integral as shown in Equations. 
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(3.65-3.67) and thus results in a small variation of ∫         
 

 
               as r 

approaches t around the singular point as illustrated in Figure 3.25. As expected, the more 

rapid the change in modulated frequencies, the larger the variation of the integration. 

Note that effort was made to compensate the end effect in Hilbert transform by mirror 

imaging the time function from the first and last maxima/minima of a time signal. 

Furthermore, the Fast Fourier Transform was performed for each of the four 

cases. The Fourier spectra are presented in Figure 3.26 for the signal in time domain and 

in Figure 3.27 for the signal in phase domain. It can be observed from Figure 3.26 that 

there is a strong overlapping between two frequency components in time domain. Once 

transferred to phase domain, the two frequency components are well separated as shown 

in Figure 3.27. The difference in frequency overlapping in time and phase domains was 

illustrated in Figures 3.20 and 3.21. 

 

 

 

 

 

 

Figure 3.23. The Decomposed Lowpass and Exact Signal in Time Domain: (a) Case 1, 

(b) Case 2, (c) Case 3, and (d) Case 4 
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Figure 3.24. The Decomposed Lowpass and Exact Signal in Phase Domain: (a) Case 1, 

(b) Case 2, (c) Case 3, and (d) Case 4 

 

          
 

 

 

Figure 3.25. Variation of ∫         
 

 
               with Bisecting Frequency 
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Figure 3.26. Fourier Spectra of Individual Components in Time Domain 

 

                   

 

                    

 

Figure 3.27. Fourier Spectra of Individual Components in Phase Domain 
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Due to significant overlapping of the frequency contents in time domain, it is 

recommended that an adaptive lowpass filter be applied in phase domain as schematically 

illustrated in Figure 3.28 and an adaptive bandpass filter is presented in Figure 3.29. 

 

 

 

 

 

 

 

 

Figure 3.28. Block Diagram of an Adptive Lowpass Filter with a Time Varying Bisecting 

Frequency   (t) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29. Block Diagram of an Adaptive Bandpass Filter with Two Time Varying 

Bisecting Frequencies:            and        
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3.8. SUMMARY  

In this section, Hilbert transform, analytic signal, and Hilbert spectral analysis 

were first introduced. To execute a well-behaved Hilbert transform in Hilbert spectrum 

analysis, two signal decomposition methods (EMD and HVD) were then described 

briefly. Although powerful in adaptive data analysis, these methods still face several 

challenges in engineering applications. 

To address these challenges for both stationary and non-stationary signal analysis, 

a new signal decomposition theorem was discovered and proven in this study. The 

essence of this theorem is the exact separation of a general time series into two time 

functions whose Fourier spectra are non-vanishing over two mutually-exclusive 

frequency ranges separated by a bisecting frequency. With multiple steps of bisecting, an 

original time series with multiple closely-spaced frequency components can be 

decomposed into many signals, each dominated by a narrowband frequency component. 

Therefore, AMD functions like a suite of “perfect” bandpass filters. Unlike frequency 

filtering techniques in frequency domain, this bandpass filter decomposes signals directly 

in time domain, eliminating the problems associated with frequency bandpass filtering. 

For stationary and non-stationary signals with invariant frequencies, constant bisecting 

frequencies are selected. For non-stationary signals with varying frequencies, time-

varying bisecting frequencies were introduced to deal with significant frequency 

overlapping in the entire time domain, though separated at any time instant. In this case, 

it is recommended that the AMD theorem be applied in phase domain. 
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4. PARAMETER IDENTIFICATION OF TIME INVARIANT SYSTEMS WITH 

AMD-HILBERT SPECTRAL ANALYSIS 

Emphasis in this section is placed on the understanding of the minimum spacing 

between two discernible frequencies, the effect of a bisecting frequency selection on the 

AMD accuracy, and the application of the AMD theorem in various engineering systems. 

 

4.1. BISECTING FREQUENCY SELECTION 

To investigate the effect of bisecting frequency selections on the accuracy of 

signal decompositions, two frequency resolutions were considered:          Hz and 

         Hz. They correspond to a time series of 20 sec and 40 sec, respectively. 

Furthermore, three relative intensities of the three frequency components were chosen to 

understand their potential influence on the selection of the bisecting frequency. 

Therefore, a total of six cases were analyzed with the following original signals: (1) 

                                      , and                 ; (2)       

                                   , and                    ; and (3) 

                                         , and                 .  

The Fourier spectra for the above six cases are presented in Figure 4.1. The 

amplitudes of the pulses depend upon the frequency resolution used in numerical 

integrations. As the resolution improves from 0.05 Hz to 0.025 Hz, the three pulses in 

each case become narrower and higher and their relative amplitudes are more accurate. 

This is mainly due to the decreasing aliasing effect and the decreasing impact by the 

incomplete data set whose total number of points is not equal to the multiplier of 2 in the 

Fast Fourier Transform. However, selection in the frequency resolution has little effect on 

the Fourier spectrum comparison between the decomposed signal and the exact signal so 

long as they use the same resolution. Therefore, all examples to illustrate the superiority 

of the AMD theorem over existing technologies were analyzed with the minimum 

frequency resolution of 0.05 Hz. For system identification and damage detection, 0.025 

Hz frequency resolution is recommended to ensure the accurate representation of various 

frequency components in a structural response. Note that a weak signal in between two 

strong signals requires a higher frequency resolution to detect. 
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Figure 4.1. Fourier Spectra of Time Series in Six Cases: (a, b) for                 
                         , (c, d) for                              

                  , and (e, f) for                                   
                                    

 

The amplitude ratio between the Fourier transforms of the decomposed signal 

 ̂ 
   

     and the original signal  ̂      is presented in Figure 4.2 for         in each of 

the six cases. The bisecting frequency was considered as a weighted average of the 

beginning and end frequencies of a range:                    and        

            , in which     represents the weight factor on the center frequency   . 

It can be seen from Figure 4.2 that the relative error in signal decomposition is nearly 

independent of the relative signal amplitudes and less than 3.3% when the bisecting 

frequency takes 80%~120% of the frequency at      . Therefore, the bisecting 

frequency can be selected to be the average of the lower and higher frequencies and the 

accuracy in mode decomposition is insensitive to this selection.  
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Figure 4.2. Effect of Bisecting Frequency Selection on Amplitude Ratio: (a, b),      
                                    , (c, d),                    

                            , and (e, f),                              
                                         

 

4.2. SIGNAL DECOMPOSITION IN ENGINEERING APPLICATIONS 

To demonstrate the sensitivity to noise and the performance advantage over 

existing techniques in the literature, the AMD method was applied to analyze four 

examples representing various engineering applications. The results are compared with 

those from the existing techniques. 
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4.2.1. Noise Effects. Consider a 20-sec, two-frequency time series      

                    with the Gaussian white noise        :                   

and                   where           and          . The ratio of the two 

frequencies is          . The standard deviation of the mean-zero white noise is 10% 

of the signal strength. That is,          |           |. A time step of 0.02 sec 

was used in simulations. 

Following the EMD process, four IMFs were determined from the time series. 

The first two IMFs had wideband frequency components that were mainly contributed by 

the white noise. The 3
rd

 and 4
th

 IMFs, IMF3 and IMF4, and their Fourier transforms are 

compared with their respective exact signals in Figures 4.3 and 4.4, respectively. It can be 

clearly seen that both IMFs have significant errors and the two frequency components are 

still mixed after the application of EMD. 

To apply the proposed AMD method,                     rad/sec was 

selected. Figures 4.5 and 4.6 present the decomposed signals and their Fourier 

transforms, respectively. As one can see, the two frequency components were completely 

separated and the decomposed signals are in excellent agreement with their respective 

exact signals. Therefore, the proposed AMD is superior to the EMD. 

 

 

 

 

 

Figure 4.3. IMF3 and IMF4 by EMD versus Exact Signals 
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Figure 4.4. Fourier Spectra of IMF3 and IMF4 by EMD 

 

 

 

 

 

Figure 4.5. Decomposed Signals by AMD versus Exact Signals 

 

     

 

Figure 4.6. Fourier Spectra of the Decomposed Signals by AMD versus Exact Signals 

 

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8
x 10

-3

Frequency (Hz)

A
m

p
lit

u
d
e

0 0.5 1 1.5 2 2.5 3
0

0.002

0.004

0.006

0.008

0.01

Frequency (Hz)

A
m

p
lit

u
d
e

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8
x 10

-3

Frequency (Hz)

A
m

p
lit

u
d
e

0 0.5 1 1.5 2 2.5 3
0

0.002

0.004

0.006

0.008

0.01

Frequency (Hz)

A
m

p
lit

u
d
e

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

Time (sec)

D
e
c
o
m

p
o
s
e
d
 a

n
d
 o

ri
g
in

a
l 
s
ig

n
a
ls

 

 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

Time (sec)

D
e
c
o
m

p
o
s
e
d
 a

n
d
 o

ri
g
in

a
l 
s
ig

n
a
ls

 

 

Decomposed signal Original signal x2

Decomposed signal original signal x1

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

Time (sec)

D
e
c
o
m

p
o
s
e
d
 a

n
d
 o

ri
g
in

a
l 
s
ig

n
a
ls

 

 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

Time (sec)

D
e
c
o
m

p
o
s
e
d
 a

n
d
 o

ri
g
in

a
l 
s
ig

n
a
ls

 

 

Decomposed signal Original signal x2

Decomposed signal original signal x1

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Decomposed signal Original signal x2 Decomposed signal Original signal x1

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Decomposed signal Original signal x2 Decomposed signal Original signal x1

Frequency (Hz) 

A
m

p
li

tu
d
e 

Frequency (Hz) 

A
m

p
li

tu
d
e 

IMF4 IMF3 

𝑥
𝑖 𝑑

  𝑡
  
  

 
 𝑥

𝑖 
𝑡 

 𝑥
  𝑑

  𝑡
  
  

 
 𝑥

 
 𝑡

  
 

 

𝑥
𝑖 𝑑

  𝑡
  
 
 
 
 𝑥

𝑖 
𝑡 

 𝑥  
 𝑑

  𝑡
  
 
 
 
 𝑥

 
 𝑡

  
 

 

Time (sec) 

Time (sec) 

Frequency (Hz) 

A
m

p
li

tu
d
e 

Frequency (Hz) 

A
m

p
li

tu
d
e 

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Decomposed signal Original signal x2 Decomposed signal Original signal x1

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Decomposed signal Original signal x2 Decomposed signal Original signal x1

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Decomposed signal Original signal x2 Decomposed signal Original signal x1

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

0 1 2 3
0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

 

 

Decomposed signal Original signal x2 Decomposed signal Original signal x1



 

 

61 

4.2.2. Closely-Spaced Frequency Components. A two frequency component 

signal was considered:                 ,                       and       

           . Both long period ocean wave and short period mechanical wave were 

analyzed. 

4.2.2.1 Long period ocean wave. The processing of an ocean wave data was 

considered (Wang, 2005). A time step of 0.1 sec was adopted in this example. The two 

frequencies were taken to be         Hz and         Hz. Their ratio was       

     . Figures 4.7 and 4.8 present the 1
st
 and 2

nd
 IMFs, IMF1 and IMF2, and their 

Fourier transforms based on the wave group method with a downshift frequency of 1/28 

Hz (Wang, 2005). Similarly, Figures 4.9 and 4.10 show the decomposed signals and their 

Fourier transforms obtained from the proposed AMD method. The results indicate that 

both the wave group method with EMD and the AMD method can effectively separate 

the two frequency components in this case. However, the Fourier spectra in Figure 4.10 

are still cleaner than those in Figure 4.8 outside the two frequency components          . 

 

 

 

 

 

Figure 4.7. IMF1 and IMF2 by the Wave Group Method with EMD versus Exact Signals 
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Figure 4.8. Fourier Spectra of IMF1 and IMF2 by Wave Group Method with EMD and 

Exact Signals 

 

 

 

 

 

Figure 4.9. Decomposed Signals by AMD versus Exact Signals 

 

       

 

Figure 4.10. Fourier Spectra of the Decomposed Signals by AMD versus Exact Signals 
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4.2.2.2 Short period mechanical wave. A 20-sec signal with           and 

          was considered. The ratio of the two frequencies was            . A time 

step of 0.02 sec was used. Figures 4.11 and 4.12 present the first two IMFs and their 

Fourier spectra based on the wave group method with a downshift frequency of 1.3 Hz. 

Figures 4.13 and 4.14 depict the decomposed signals and their Fourier spectra based on 

the proposed AMD method. It can be clearly seen that the wave group method cannot 

completely separate the two frequency components even though the frequency ratio of 

1.091 is greater than 1.067 in Section 4.2.2.1. This indicates that the wave group method 

with EMD cannot ensure that reasonable solution be achieved for general cases due to the 

inherent issue with EMD. On the other hand, the proposed AMD can consistently 

separate the two close frequency components with high accuracy. 

 

 

 

 

 

Figure 4.11. IMF1 and IMF2 by the Wave Group Method with EMD versus Exact 

Signals 
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Figure 4.12. Fourier Spectra of IMF1 and IMF2 by Wave Group Method with EMD and 

Exact Signals 

 

 

 

 

 

Figure 4.13. Decomposed Signals by AMD versus Exact Signals 

 

            

 

Figure 4.14. Fourier Spectra of the Decomposed Signals by AMD versus Exact Signals 
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4.2.3. Amplitude Decaying Signals. Consider a two frequency component 

amplitude decaying signal:                  ,                            , 

and                             . Here,           ,           , and       . A 

time step of 0.02 sec was used. Figures 4.15 and 4.16 present the two decomposed signals 

and their Fourier spectra by introducing a temporary signal of                      

(Wang, 2005). Similarly, Figure 4.17 and 4.18 show the decomposed signals and their 

Fourier spectra based on the AMD method. Figures 4.15 and 4.16 indicate that the 

existing method (Wang, 2005) cannot completely separate the two frequency 

components. Figures 4.17 and 4.18 clearly demonstrate that the two close frequency 

components have been separated successfully by AMD. 

 

 
 

 

 

Figure 4.15. Decomposed Signals by Adding a Temp-Signal versus Exact Signals 

 

               

 

Figure 4.16. Fourier Spectra of the Decomposed Signals by Adding a Temp-Signal versus 

Exact Signals 
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Figure 4.17. Decomposed Signals by AMD versus Exact Signals 

 

          

 

Figure 4.18. Fourier Spectra of the Decomposed Signals by AMD versus Exact Signals 
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wave. However, the decomposed signal x2(t) by the EMD method is greatly affected by 

the signal x1(t) as shown in Figure 4.20. The proposed AMD theorem gives clean, well 

separate, and significantly more accurate results as illustrated in Figure 4.22. Figures 4.21 

and 4.22 also illustrate that in this case, the optimum bisecting frequency in the AMD 

should weight more of the large wave frequency due mainly to the distributive nature of 

the Fourier spectrum of a short time intermittent signal. As indicated in Figure 4.21, more 

accurate results can be obtained if the bisecting frequency is reduced to slightly above the 

frequency of x1(t), such as 0.003 Hz. 

 

 

 

 

 

Figure 4.19. Decomposed Signals by Adding a Temp-Signal versus Exact Signals 

 

             

 

Figure 4.20. Fourier Spectra of the Decomposed Signals by Adding a Temp-Signal versus 

Exact Signals 
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Figure 4.21. Decomposed Signals by AMD versus Exact Signals 

 

           

 

Figure 4.22. Fourier Spectra of the Decomposed Signals by AMD versus Exact Signals 
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can then be selected in between any two natural frequencies of the structure as shown in 

Figure 4.23. 

 

 

 

Figure 4.23. Representative Fourier Spectrum of a Structural Response 

 

Each decomposed signal by AMD has a narrow frequency band corresponding to 

one mode of vibration. Similar to the HHT method (Yang et al., 2003), the instantaneous 

amplitude        and phase angle        of the i
th

 decomposed mode    
   

    at the p
th

 

DOF can be determined from:  

       
           

              
            

 
                  (4.1) 

If the structure is subjected to an impulsive load, the frequency and damping ratio 

can be detected using the least-squares fit procedure: 

( )pi
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d t

dt

 
   and  

 ln ( )pi

i
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d A t
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                        (4.2) 

In general, the response of the p
th
 DOF       can be expanded into a summation 

of modal contributions, each being the product of the p
th

 modal element     and the 

modal coordinate                  . That is, 

      ∑    
   

    
    ∑         

 
                    (4.3) 

Considering the i
th

 modal contributions from the p
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 and q
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        , the instantaneous mode shape can be described by: 
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|
   

   
|  

      

      
                             (4.4) 

The difference between the phase angles of the p
th

 and q
th

 modal elements     and 

    can be expressed into    
               , which is in theory equal to either 2m

or (2 1)m    (m is an integer). In frequency domain, the modal elements can be directly 

evaluated by: 

   

   
 

    ̂  
   

     

    ̂
  
   

     
                             (4.5) 

In Equation (4.5),  ̂  
        and  ̂  

         are the Fourier transforms of    
   

    

and    
                   and Im[.] represents the imaginary part of the complex 

argument inside the square bracket. 

4.3.2. Numerical Simulation. Consider a 3-DOF mass-spring-dashpot 

representation of a classically-damped mechanical system with closely-spaced modes. As 

shown in Figure 4.24, the system has three masses of                 , four 

springs with stiffness of               and              , and four 

dashpots with damping coefficients of                   and            

     . The system has three natural frequencies of            ,            , and 

           . Three damping ratios of the classically-damped system are         , 

        , and         . The 2
nd

 and 3
rd

 natural frequencies are closely spaced. An 

impulsive force of 10 kN over 0.02 sec was applied on the mass m3 at t=0 sec. The 

displacement time histories at three masses were analytically evaluated and used for 

system identification. A time step of 0.02 sec was used in numerical integrations. 

The EMD of the displacement at mass m3 separated the 1
st
 mode from the 2

nd
 and 

3
rd

, but failed to further separate the 2
nd

 and 3
rd

 modes. With the proposed AMD method, 

all three modes decomposed from the displacement at the third mass can be separated as 

indicated in Figures 4.25 and 4.26 in time and frequency domains, respectively. Figure 

4.27 presents the amplitude and phase angle of each mode from which the natural 

frequencies and damping ratios are identified as given in Table 4.1. It is seen from Table 

4.1 that the modal parameters of the 2
nd

 mode cannot be identified from the displacement 

at mass m2 since m2 happens to be the node of the 2
nd

 mode. In comparison with the exact 
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natural frequencies and damping ratios given in Table 4.1, the identified results are 

accurate to 1.6% for frequency and less than 1% for damping ratio. 

 

 

Figure 4.24. 3-DOF Representation of a Mechanical System 

 

 

 

 

 

 

 

Figure 4.25. Three Modes of Vibration Decomposed by AMD 
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mode, which is in turn longer than that of the 3
rd

 mode. The 1
st
 mode shape is more stable 

after the 2
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 and 3
rd

 modes decay for 30 sec. This indicates that, though not visible in 

Figures 4.25 and 4.26, the 1
st
 mode of vibration decomposed from the system responses 

was slightly disturbed by the presence of the 2
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 and 3
rd
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the identified modal elements were verified by the difference in phase angles between 

any two modes. The results presented in Figure 4.28 indicated that the phase difference 

between any two modes is approximately either 0° or 180°. 

For the time-invariant system as shown in Figure 4.24, the modal elements can be 

directly determined with Equation (4.5). The real and imaginary parts of the Fourier 

transforms of all DOF displacements are presented in Figure 4.29 for each decomposed 

mode of vibration. Based on the ratio of the peak value of the imaginary part, the mode 

matrix   of the 3-DOF system was identified and compared with its theoretical values 

below: 

            [
          
          
         

] and              [
          
          
         

] 

 

It is clearly seen that the identified mode matrix is accurate with a maximum error 

of 1.25%. The 2
nd

 mode is symmetric about mass m2 due to the symmetry of the 3-DOF 

system. The 1
st
 and 3

rd
 modes have masses m1 and m3 moving in the same amount but 

mass m2 in the same or opposite direction as m1 and m3. 

 

          

 

 

 

Figure 4.26. Fourier Spectra of the Decomposed Modes of Vibration by AMD 
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(a) Mode 1 

 

 
(b) Mode 2 

 

    
(c) Mode 3 

 

Figure 4.27. Amplitude and Phase angle of Hilbert Transforms 

 

Table 4.1. Identified Natural Frequencies and Damping Ratios by AMD 

Mode 

Displacement on m1 Displacement on m2 Displacement on m3 Exact 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

1 0.63 0.673 0.64 0.673 0.64 0.673 0.63 0.673 

2 1.11 1.180 - - 1.11 1.181 1.11 1.180 

3 1.24 1.304 1.24 1.304 1.23 1.304 1.23 1.304 
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(a) Mode 1 

 

           

 

(b) Mode 2 

 

             

 

(c) Mode 3 

 

Figure 4.28. Instantaneous Mode Shapes Identified From the Amplitude of Hilbert 

Transforms 
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(a) Mode 1 

 

             

 

(b) Mode 2 

 

            

 

(c) Mode 3 

 

Figure 4.29. Fourier Transform of Three Modes of Vibration Decomposed by AMD 

 

4.4. MODAL PARAMETER IDENTIFICATION FROM FORCE VIBRATION 

4.4.1. Transient Response. Consider a single-DOF system with mass, damping 

and stiffness coefficients equal to          , respectively. Under a harmonic excitation 

              , the equation of motion can be expressed into: 

  ̈      ̇                                                  (4.6) 

0.5 0.6 0.7 0.8 0.9 1
-15

-10

-5

0

5
x 10

-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5

-5

0

5

x 10
-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-4

-2

0

2
x 10

-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

0.5 0.6 0.7 0.8 0.9 1
-1

0

1
x 10

-3

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-4

-2

0

2

4
x 10

-4

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-2

-1

0

1

2
x 10

-4

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

0.5 0.6 0.7 0.8 0.9 1
-15

-10

-5

0

5
x 10

-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5

-5

0

5

x 10
-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-4

-2

0

2
x 10

-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

0.5 0.6 0.7 0.8 0.9 1
-1

0

1
x 10

-3

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-4

-2

0

2

4
x 10

-4

Frequency (Hz)
R

e
a

l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-2

-1

0

1

2
x 10

-4

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

0.5 0.6 0.7 0.8 0.9 1
-15

-10

-5

0

5
x 10

-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5

-5

0

5

x 10
-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-4

-2

0

2
x 10

-4

Frequency (Hz)

Im
a

g
in

a
ry

 p
a

rt
 o

f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

0.5 0.6 0.7 0.8 0.9 1
-1

0

1
x 10

-3

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-4

-2

0

2

4
x 10

-4

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

1 1.1 1.2 1.3 1.4 1.5
-2

-1

0

1

2
x 10

-4

Frequency (Hz)

R
e

a
l 
p

a
rt

 o
f 
F

o
u

ri
e

r 
tr

a
n

s
fo

rm
 (

m
-s

e
c
)

 

 

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

displacement at m1

displacement at m2

displacement at m3

Frequency (Hz) 

Im
ag

in
ar

y
 p

ar
t 

o
f 

F
o
u
ri

er
 

T
ra

n
sf

o
rm

 (
m

-s
ec

) 

Frequency (Hz) 

Im
ag

in
ar

y
 p

ar
t 

o
f 

F
o
u
ri

er
 

T
ra

n
sf

o
rm

 (
m

-s
ec

) 

Frequency (Hz) 

Im
ag

in
ar

y
 p

ar
t 

o
f 

F
o

u
ri

er
 

T
ra

n
sf

o
rm

 (
m

-s
ec

) 

Frequency (Hz) 

R
ea

l 
p
ar

t 
o
f 

F
o
u
ri

er
 

T
ra

n
sf

o
rm

 (
m

-s
ec

) 
Frequency (Hz) 

R
ea

l 
p
ar

t 
o
f 

F
o
u
ri

er
 

T
ra

n
sf

o
rm

 (
m

-s
ec

) 

Frequency (Hz) 

R
ea

l 
p
ar

t 
o

f 
F

o
u

ri
er

 

T
ra

n
sf

o
rm

 (
m

-s
ec

) 



 

 

76 

The complete solution for the displacement response      can be written as 

(Chopra, 2007): 

                                                      (4.7) 

in which    √    is the natural frequency,      √    , and   is the damping 

ratio, which is equal to        ⁄ . 

As a particular solution of Equation (4.6), the second term of Equation (4.7) 

represents the steady state response of the system, denoted by      :  

                                                            (4.8) 

The coefficients   and   can be solved by substituting Equation (4.8) into 

Equation (4.6), which yields: 
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                     (4.9) 

As a general solution of Equation (4.6), the first term of Equation (4.7) represents 

the transient response of the system, designated by      : 

                                                          (4.10) 

The coefficients A and B can be solved based on the initial displacement      and 

initial velocity  ̇   . They are written as:  

       
  

 

   
 

  

    
 

  
        

 

  
  

  and   
 ̇           

  
 

  

 

 

  

        (
 

  
)
 
 

    
 

  
        

 

  
  

  (4.11) 

When the excitation frequency is not equal to the natural frequency, AMD can be 

used to extract the transient response from a displacement measurement. The extracted 

transient response can then be used for the identification of natural frequency and 

damping ratio of the system following Equation (4.2). 

For a linear n-DOF system, the equation of motion can be written as: 

  ̈      ̇                                             (4.12) 

where  ,  , and   are mass, damping, and stiffness matrices, respectively;      is the 

external load vector;      is the displacement vector. By introducing modal coordinate 

vector                , the displacement vector can be expressed into:  

                                                             (4.13) 

in which   is the mode shape matrix. When classical damping is considered, each of the 

n decoupled equations in modal space can be written as: 
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    ̈      ̇                                                 (4.14) 

where   ,   ,   , and    are the i
th
 modal mass, damping, stiffness and excitation, which 

in turn can be expressed into: 

     
    ,       

    ,       
    ,       

                  (4.15) 

in which    is the i
th
 mode shape vector. 

Under a harmonic excitation,                , the steady state response   
     

of Equation (4.14) can be expressed into: 

  
                                                           (4.16) 
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            (4.17) 

in which    √    ⁄  is the i
th
 natural frequency,           ⁄  is the i

th
 damping 

ratio, and       √    
  is the i

th
 natural frequency with damping effect. 

The transient response of Equation (4.14) is given by: 

  
                                                        (4.18) 
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(4.19) 

The initial modal displacement       and initial modal velocity  ̇     can be 

solved from the initial displacement      and velocity  ̇   : 

      
  

      

  
,   ̇     

  
   ̇   

  
                                    (4.20) 

The complete solution of Equation (4.12) can then be written as: 

      ∑   
 
     

     ∑   
 
     

                                 (4.21) 

The steady state response can first be extracted from a displacement measurement 

by AMD. The remaining transient response in Equation (4.21) can further be decomposed 

into a summation of the modal responses. Finally, the modal parameters (natural 

frequency and damping ratio) can be identified using Equation (4.2).  

4.4.2. Numerical Examples with Harmonic Excitations. In this section, a 

single-DOF system and a 3-DOF system are analyzed as numerical examples to illustrate 

modal parameter identification from transient response.  
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4.4.2.1 Single-DOF system. A single-DOF system with mass          , 

damping coefficient               and stiffness           is subjected to a 

harmonic excitation                   . The system has natural frequency   

       and damping ratio        . The numerically simulated displacement, velocity 

and acceleration responses and their Fourier spectra are presented in Figure 4.30 and 

Figure 4.31, respectively. It can be clearly seen from Figure 4.30 that the responses at the 

beginning include the transient components related to free vibration. Indeed, two peaks 

can be clearly seen in Figure 4.31. They represent the steady state response at the 

excitation frequency of 1.5 Hz and the transient response with natural frequency of 1.0 

Hz, respectively. A sampling rate of 50 Hz was used in simulation.  

 

 

 

   

 

 

 

Figure 4.30. Displacement, Velocity, and Acceleration Responses 

 

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

D
is

p
la

ce
m

en
t 

(m
) 

Time (sec) 

V
el

o
ci

ty
 (

m
/s

ec
) 

Time (sec) 

A
cc

el
er

at
io

n
 (

m
/s

ec
2
) 

Time (sec) 



 

 

79 

        

  

 

 

 

 

Figure 4.31. Fourier Spectra of Displacement, Velocity, and Acceleration Responses 
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To separate the transient response from the steady state response, a bisecting 

frequency of 1.25 Hz was taken as the average of the excitation and theoretical natural 

frequencies. The decomposed transient and steady state responses by AMD are presented 

in Figure 4.32 and their Fourier spectra are in Figure 4.33. Figure 4.34 shows the 

amplitude and phase angle of the transient response, from which the natural frequency 

and damping ratio are determined to be 1.0 Hz and 1.59%, respectively. The identified 

results are in excellent agreement with the exact natural frequency and damping ratio. 

 

 
 

 

 

Figure 4.32. Extracted Transient and Steady State Displacement by AMD 

 

         

 

Figure 4.33. Fourier Spectra of Transient and Steady State Displacement 

 

          

 

Figure 4.34. Amplitude and Phase Angle of Analytic Signal 
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To study the noise effect, a Gaussian white noise with a noise-to-signal ratio of 

10% was injected to the simulated displacement. The noise contaminated displacement is 

presented in Figure 4.35. The decomposed transient response and steady state response 

from the contaminated displacement with a bisecting frequency of 1.25 Hz are presented 

in Figure 4.36, and their Fourier spectra are in Figure 4.37. Figure 4.38 shows the 

amplitude and phase angle of the noise contaminated transient response, from which the 

natural frequency and damping ratio are identified to be 1.0 Hz and 1.55%. Once again, 

they are in excellent agreement with the exact values. Therefore, the modal parameters 

can be identified with high accuracy from the transient response of force vibration even 

with the presence of significant noise.  

 

 

 

Figure 4.35. Displacement Response with 10% Gaussian White Noise 

 

 

 

 

 

Figure 4.36. Extracted Noise Polluted Transient and Steady State Displacement by AMD 
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Figure 4.37. Fourier Spectra of Noise Polluted Transient and Steady State Displacement 

 

         

 

Figure 4.38. Amplitude and Phase Angle of Analytic Signal with 10% Noise 

 

4.4.2.2 3-DOF mechanical system. The same 3-DOF mechanical system as 

presented in Section 4.3.2 was subjected to a harmonic excitation                    

applied on m3. Initially, the system was in equilibrium position at rest. The numerically 

simulated displacement responses at various masses, as shown in Figure 4.39 for m3 with 

a sample rate of 50 Hz, were used for parameter identification. The Fourier spectrum of 

the displacement at m3 is presented in Figure 4.40. It can be clearly seen from Figures 

4.39 and 4.40 that the displacement response includes the steady state response 

component with the excitation frequency and the transient response component with three 

natural frequencies. To extract the transient modal responses, the steady state response 

component was first extracted from the total displacement. Since the transient response 

component attenuates rapidly over time, the later displacement response represents the 

steady state response component from which the excitation frequency can be easily 

identified. In this example, the excitation frequency is 1.5 Hz, corresponding to the 

maximum peak in the Fourier spectrum.  
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Figure 4.39. Displacement at m3  

 

 

 

Figure 4.40. Fourier Spectrum of Displacement at m3 

 

A bisecting frequency of 1.4 Hz in AMD was selected to separate the transient 

and steady state response components as presented in Figure 4.41. The transient response 

was further decomposed into three modes by AMD with two bisecting frequencies of 

0.92 Hz and 1.25 Hz, respectively. The extracted modal responses or free vibration are 

shown in Figure 4.42. The amplitude        and phase angle        (i =1, 2, 3) of each  

modal response are shown in Figure 4.43. The natural frequencies and damping ratios are 

further identified and listed in Table 4.2. It is seen from Table 4.2 that the modal 

parameters of the 2
nd

 mode cannot be identified from the displacement at mass m2 since 

m2 happens to be at the node of the 2
nd

 mode. In comparison with the exact natural 

frequencies and damping ratios given in Table 4.1, the identified results are accurate to 

2% for frequency and less than 24% for damping ratio. 
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Figure 4.41. Extracted Transient and Steady State Displacement using AMD 

 

 

 

 

 

 

 

Figure 4.42. Extracted Modal Responses from the Transient Displacement using AMD 
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Figure 4.43. Amplitude and Phase Angle of the Modal Responses 

 

Table 4.2. Identified Natural Frequencies and Damping Ratios from Force Vibration 

Mode 

Displacement on m1 Displacement on m2 Displacement on m3 Exact 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

1 0.73 0.673 0.71 0.673 0.78 0.673 0.63 0.673 

2 1.10 1.183 - - 1.08 1.181 1.11 1.180 

3 1.12 1.300 1.16 1.302 1.18 1.308 1.23 1.304 

 

 

4.5. MODAL PARAMETER IDENTIFICATION FROM AMBIENT VIBRATION 

The modal parameters of structures can be identified from ambient vibration in 

three steps by combining EMD with the random decrement technique (RDT) (Chen and 

Xu, 2002; Yang and Lei, 2000; Cole, 1968). First, a structural response is decomposed 

into many modal responses using a signal decomposition method such as EMD. Each 

modal response is then sampled to obtain a large number of short-time responses starting 
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at a common threshold value, whose average response resembles the free vibration of the 

structure. Finally, the average response (free vibration) is used to identify modal 

parameters. In this section, AMD will be used in combination with RDT, called RDT-

AMD method, to identify the parameters of closely-spaced modes from ambient 

vibration.  

4.5.1. The RDT-AMD Method. Under a broadband excitation, each modal 

response is narrow banded in frequency domain. As the two natural frequencies of a 

building approach to each other, their corresponding frequency response functions 

overlap in a certain frequency range. Under ambient vibration, this modal interaction 

cannot be properly taken into account in AMD though AMD is effective to separate close 

natural modes (or natural frequencies) included in free vibration. Therefore, this study 

proposes that RDT be first introduced to the ambient responses so that the interaction 

effect between closely-spaced vibration modes can be removed from the extracted free 

vibration. 

The RDT process outputs the average free vibration response over a significantly 

shorter period of time than the duration of a structural response. As a result, the 

frequency resolution after RDT is significantly reduced. To further separate closely-

spaced modes from the free vibration, an advanced signal decomposition technique such 

as AMD is required. Therefore, the proposed RDT-AMD method combines the 

advantages of RDT and AMD in dealing with modal interaction and accurate 

decomposition issues in system identification from ambient vibration. 

In the RDT-AMD method, a displacement response time history at each time 

instant is considered to result from three effects: initial displacement, initial velocity, and 

white noise excitation. The effect from the random input will disappear as a large number 

of the short-time response segments, sampled with the same initial condition, are taken 

and averaged. Therefore, the average response segment represents the free vibration of 

the structure due to the initial condition. In applications, a threshold displacement level is 

preset and N response segments starting at the threshold displacement are taken. The free 

vibration response can be obtained by: 

         
 

 
∑    

                                              (4.22) 
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where          is the ambient vibration response,    is the starting time for each 

segment,      
is the duration of all segments, and       represents the free vibration due 

to the combined modal responses. 

AMD is then applied to decompose the free vibration response       into many 

components, each with a single frequency corresponding to one modal response of free 

vibration. Similar to Section 4.3, the instantaneous amplitude and phase angle of each 

decomposed mode can be determined, from which the instantaneous frequency and 

damping ratio of the structure can be evaluated using the least-square fit procedure. The 

instantaneous mode shape is also related to the ratio between two instantaneous 

amplitude.  

4.5.2. Parametric Study of RDT-AMD Method. In this section, sensitivity 

analyses are conducted to address the effectiveness of the proposed RDT-AMD method 

for closely-spaced modal parameter identification from ambient vibration. 

4.5.2.1 Frequency space index. The same frequency space index  as defined by 

Chen and Xu (2002) is used here. That is:  

  
       

       
                                                        (4.23) 

where    and       are two close natural frequencies. The smaller the space index, the 

closer the two corresponding modes of vibration. To measure the accuracy of a 

decomposed response, an energy error index is introduced and defined by: 

      
∫    

   
                

   
 
 

∫              
   

 
 

                                        (4.24) 

where   
       and              represent the i

th
 decomposed response and exact response. 

Use of the response difference in the numerate of Equation (4.24) ensures that it accounts 

for the effect of both amplitude and phase of the decomposed response. 

To quantify the frequency resolution of the AMD between two modes of 

vibration, a two-story building with closely-spaced natural frequencies was analyzed 

under an impulsive load or a Gaussian white noise excitation applied on the top floor. As 

shown in Figure 4.44, m1 and m2 represent the masses of the first and second floors, k1 

and k2 represent the interval stiffness coefficients of the first and second stories, and c1 

and c2 are corresponding damping coefficients. In this study, Rayleigh damping was 
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considered with a damping ratio of ζ for both modes of vibration. The first and second 

natural frequencies are represented by f1 and f2, respectively. Various cases with different 

building properties are given in Table 4.3. 

 

Figure 4.44. Two-Story Building Example 

 

Table 4.3. Properties of the Two-Story Building 

Case k1 (N-m) k2 (N-m) m1 (kg) m2 (kg) f1 (Hz) f2 (Hz) ζ  

1 

3256 

50 

11.6 

0.167 2.544 2.886 

1% 

0.063 

2 40 0.133 2.562 2.872 0.057 

3 30 0.100 2.579 2.850 0.050 

4 20 0.067 2.598 2.823 0.042 

5 15 0.050 2.612 2.814 0.037 

6 10 0.033 2.629 2.810 0.033 

 

For ambient vibration, the Gaussian white noise excitation      has zero mean 

and a standard deviation of 1 N. The responses of the building were simulated for 1000 

sec. at 0.05 sec. interval. For comparison with the ambient vibration effect on the 

frequency resolution, an impulsive load      of 1 N was suddenly applied at t=0 to 

generate free vibration. The time duration of all free vibration simulations was considered 

20 sec. with a time interval of 0.01 sec.  

The decomposed modal responses by the AMD method and by the bandpass 

filtering technique with multiple rectangular windows in the frequency domain are 

compared with the exact modal responses based on the energy error index defined in 

Equation (4.24). The cutoff frequencies selected in bandpass filters were equal to the 

bisecting frequencies used with the AMD method. The decomposed responses of the first 

mode with AMD and bandpass filtering methods are compared in Figure 4.45 with the 

p(t) x2 

x1 
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exact modal response for free and ambient vibration, respectively. In general, the AMD is 

more accurate than the bandpass filtering technique, particularly at the beginning and end 

of the free vibration.  

 

                

 

         

 

     

         

 

        

 

 

Figure 4.45. Exact and Decomposed Responses of the First Mode from AMD and 

Bandpass Filtering Methods 

 

The energy error index for each mode of vibration is plotted in Figure 4.46 as a 

function of frequency space index. For free vibration as shown in Figure 4.46(a), the 

AMD method results in an energy error index of approximately 7.5% for Mode 1 and 1% 

0 2 4 6 8 10 12 14 16 18 20
-5

0

5
x 10

-3

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.01

0

0.01

 

 

Exact modal response Decomposed modal response

Exact modal response Decomposed modal response

0 2 4 6 8 10 12 14 16 18 20
-5

0

5
x 10

-3

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.01

0

0.01

 

 

Exact modal response Decomposed modal response

Exact modal response Decomposed modal response

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

 

 

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

 

 

Exact modal response Decomposed modal response

Exact modal response Decomposed modal response

0 5 10 15 20 25 30 35 40 45 50
-1

0

1

 

 

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

 

 

Exact modal response Decomposed modal response

Exact modal response Decomposed modal response

M
o
d

al
 

re
sp

o
n
se

 (
m

) 

M
o

d
al

 

re
sp

o
n

se
 (

m
) 

Time (sec)  

AMD 

AMD 

Time (sec)  

M
o

d
al

 

re
sp

o
n

se
 (

m
) 

Time (sec)  

Bandpass filtering 

Time (sec)  

M
o

d
al

 

re
sp

o
n

se
 (

m
) 

Bandpass filtering 

(a) Free Vibration  

(b) Ambient Vibration  



 

 

90 

for Mode 2 when γ = 0.033, while the bandpass filtering method leads to 77% for Mode 

1 and 7% for Mode 2. The main difference between the two methods is attributed to the 

brick wall effect at the two ends of a bandpass filter. Use of a 20-sec. time series 

corresponds to the frequency resolution of 0.05 Hz. As such, applying a rectangular 

window in frequency domain distorts the time series with an infinite duration. The brick 

wall effect associated with the frequency bandpass filtering doesn’t exist with the AMD 

method. If 5% is set for an acceptable energy error index, the AMD and the bandpass 

filtering methods can separate two natural frequencies with γ = 0.037 and 0.063, 

respectively. 

For ambient vibration as shown Figure 4.46(b), the AMD method gives an energy 

error index of 88% for Mode 1 and 10% for Mode 2 when γ = 0.033, while the 

bandpass filtering method results in 118% for Mode 1 and 14% for Mode 2. 

Corresponding to a 5% energy error index, two natural frequencies with γ < 0.063 

cannot be discerned with both methods. Overall, the energy error index for ambient 

vibration is significantly larger than that for free vibration. This is because, unlike free 

vibration, the modal response under ambient excitations is actually a narrow band 

response instead of a mono-frequency response. Therefore, as γ becomes small, the two 

closely-spaced modal responses overlap each other over a certain frequency range. Figure 

4.47 illustrates this point with the Fourier spectra of Modes 1 and 2. The Fourier 

spectrum of Mode 2 significantly affects that of Mode 1 at the fundamental frequency; 

the amplitude from Mode 2 is larger than 50% of the amplitude from Mode 1. However, 

at the second natural frequency, the amplitude from Mode 1 is negligible compared to 

that of Mode 2. This is the reason why the energy error for Mode 1 is significantly greater 

than that for Mode 2 in all cases as shown in Figure 4.46. 
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Figure 4.46. Energy Error Indices Associated with AMD and Bandpass Filtering Methods 

 

              

 

 

Figure 4.47. Fourier Spectra of the Exact Responses of Modes 1 and 2 and Their 

Overlapping 

 

4.5.2.2 Effect of free vibration time duration. To eliminate or minimize the 

frequency overlapping effect between modes of vibration under ambient vibration, RDT 

will be first applied on the measured response to extract the free vibration response in 

application of AMD for modal parameter identification. However, the time duration of 

the free vibration from RDT is often significantly shorter than that of the original 
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measured response. Therefore, the frequency resolution of the free vibration response is 

much lower. Take the two-story building as an example. When γ =0.033, the Fourier 

spectra of the ambient displacement response at the top floor       and its corresponding 

free vibration after RDT with all available 8-sec. time segments at a displacement 

threshold of one standard deviation are presented in Figures 4.48(a) and (b), respectively. 

It can be clearly seen from Figure 4.48 that the frequency resolution of the free vibration 

is much lower than that of the ambient vibration.  

As discussed in Section 4.5.2.1, the AMD method is less sensitive to the use of 

finite duration time series in comparison with the bandpass filtering method. To quantify 

the effect of response duration, the two-story building with γ=0.05 was investigated. 

Towards this endeavor, the free vibration response       at the top floor was simulated 

for 1 to 20 sec with time interval of 1 sec. A time step of 0.01 sec and a sampling 

frequency of 100 Hz were used. The bisecting frequency in AMD took the average of two 

natural frequencies, which is also used as the cutoff frequency in the bandpass filtering 

method. The energy error indices for the AMD method and bandpass filtering method are 

compared in Figure 4.49. The decomposed and exact responses are compared in Figure 

4.50 for a time duration of 1, 5, 10, and 20 sec. It can be clearly seen from Figure 4.49 

that the energy error index is overall larger with the bandpass filtering method, 

particularly as the time duration becomes shorter. AMD results in an energy error index 

of less than 20% with 1-sec time duration and less than 5% with 7-sec time duration, 

while the bandpass filtering method gives an energy error index of greater than 60% and 

20%, respectively. This is because the error for the bandpass filtering method not only 

results from the incomplete cycles of responses, but also from the introduction of a 

rectangular window in the frequency domain. The error for the AMD method only comes 

from the incomplete cycles of responses. It can also be seen from Figure 4.50 that the 

decomposed signal by AMD is much more accurate than that by the bandpass filtering 

method as the time duration becomes shorter. 
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Figure 4.48. Fourier Spectra of Ambient Vibration and Free Vibration after RDT 

 

 

 

Figure 4.49. Energy Error Indices under Free Vibration 

 

 

 

 

Figure 4.50. Decomposed and Exact Mode 1 Response with Time Duration: 1, 5, 10, 15, 

and 20 sec. 
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4.5.3. Application of the RDT-AMD Method. In this section, a 3-DOF system 

and a 36-story building are analyzed as numerical examples to illustrate modal parameter 

identification from ambient vibration using the proposed RDT-AMD method. 

4.5.3.1 3-DOF mechanical system with closely-spaced modes. The same 3-

DOF mechanical system as presented in Section 4.3.2 was analyzed. The Gaussian white 

noise with a standard deviation of 0.1g (g is gravity acceleration) was applied on m3. The 

displacement response at m3 was numerically calculated and sampled at a frequency of 

20 Hz, which is presented in Figure 4.51(a).  

RDT was first applied to the displacement response with a time segment length of 

20 sec and a threshold value of standard deviation of the ambient response. The free 

response extracted by RDT and its Fourier spectrum are shown in Figure 4.51(b).  

 

 

 

(a) Ambient Displacement at m3 

 

 

(b) Free Response Extracted from Ambient Displacement 

 

Figure 4.51. Ambient Displacement and Extracted Free Response 

 

The Fourier spectra of the original ambient response and extracted free response 

are shown in Figure 4.52(a, b). The extracted free response was decomposed into three 

components by AMD with a bisecting frequency of 0.92 Hz and 1.25 Hz, respectively, as 

shown in Figure 4.53. The amplitude        and phase angle        (i =1, 2, 3) of mode i 

are shown in Figure 4.54. The natural frequency and damping ratio are further identified 

and listed in Table 4.4. In comparison with the exact natural frequencies and damping 

ratios given in Table 4.1, the identified results are accurate to 2% for frequency and less 
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than 24% for damping ratio. The results show that the identified damping ratios from 

ambient vibration are not as accurate as that from free vibration. The mode shape 

identified using the ratio of imaginary peak value at natural frequency between each DOF 

is: 

                   ,                 ,                    . 

 

        

  

 (a)  Ambient displacement                   (b) Extracted free response  

 

Figure 4.52. Fourier Spectra of Ambient Displacement and Extracted Free Response 

 

 

 

 

 

Figure 4.53. Decompose Modes from Extracted Free Response using AMD 
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Figure 4.54. Amplitude and Phase Angle of Hilbert Transform of the Free Response 

Obtained by RDT 

 

Table 4.4. Identified Natural Frequencies and Damping Ratios from Ambient Vibration 

Mode 

Displacement on m1 Displacement on m2 Displacement on m3 Exact 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 

1 0.73 0.672 0.71 0.672 0.78 0.672 0.63 0.673 

2 1.15 1.179 - - 1.18 1.175 1.11 1.180 

3 1.20 1.328 1.24 1.320 1.19 1.330 1.23 1.304 

 

4.5.3.2 36-story shear building with light appendage. The same 36-story shear-

type building with a 4-story light appendage (Figure 4.55) as used in Chen and Xu (2002) 

was analyzed as an application example of the proposed method.  

The main building was assumed to be uniform with a floor mass of 1.2910
6
 kg 

and interval stiffness of 1.010
9
 N/m. The light appendage was modeled with a 4-DOF 

substructure. The mass ratio between each appendage DOF and each building floor is 

0.02. The story stiffness of the appendage is 0.03% of the interval shear stiffness of the 

main building. The first four undamped natural frequencies are 0.184, 0.196, 0.542, and 

0.573 Hz. Classical damping was considered (Chen and Xu 2002; Clough and Penzien 

1993). The modal damping ratios of the first four modes are assumed to be 1% and the 

0 5 10 15 20
-8

-6

-4

-2

Time (Sec)

ln
(A

m
p
li
tu

d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-50

0

50

100

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-6

-5

-4

-3

Time (Sec)

ln
(A

m
p
li
tu

d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-15

-10

-5

0

Time (Sec)

ln
(A

m
p
li
tu

d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-8

-6

-4

-2

Time (Sec)
ln

(A
m

p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-50

0

50

100

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-6

-5

-4

-3

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-15

-10

-5

0

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-8

-6

-4

-2

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-50

0

50

100

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-6

-5

-4

-3

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-15

-10

-5

0

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-8

-6

-4

-2

Time (Sec)
ln

(A
m

p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-50

0

50

100

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-6

-5

-4

-3

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-15

-10

-5

0

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-8

-6

-4

-2

Time (Sec)
ln

(A
m

p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-50

0

50

100

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-6

-5

-4

-3

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-15

-10

-5

0

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-8

-6

-4

-2

Time (Sec)
ln

(A
m

p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-50

0

50

100

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-6

-5

-4

-3

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

0 5 10 15 20
-15

-10

-5

0

Time (Sec)

ln
(A

m
p
lit

u
d
e
) 

(m
/s

e
c
)

0 5 10 15 20
-100

0

100

200

Time (Sec)

P
h
a
s
e
 a

n
g
le

 (
ra

d
)

  
 𝐴

 
 
 𝜏

  
 

  
 𝐴

 
 
 𝜏

  
 

  
 𝐴

 
 
 𝜏

  
 

𝜃
 
 
 𝜏

  
𝜃

 
 
 𝜏

  
𝜃

 
 
 𝜏

  

0 20 40 60 80 100
-3.5

-3

-2.5

-2

-1.5

Time (Sec)

ln(
Am

pli
tud

e) 
(m

/se
c2 )

 

 

0 20 40 60 80 100
-50

0

50

100

150

Time (Sec)

Ph
as

e a
ng

le 
(ra

d)

 

 

Amplitude

Linear least-square fit

Amplitude

Linear least-square fit

Amplitude 

Linear least-squares fit 

0 20 40 60 80 100
-3.5

-3

-2.5

-2

-1.5

Time (Sec)
ln(

Am
pli

tud
e) 

(m
/se

c2 )
 

 

0 20 40 60 80 100
-50

0

50

100

150

Time (Sec)

Ph
as

e a
ng

le 
(ra

d)

 

 

Amplitude

Linear least-square fit

Amplitude

Linear least-square fit

Phase angle 

Linear least-squares fit 

Time (sec) Time (sec) 

(a) Amplitude  (b) Phase Angle (rad) 



 

 

97 

other modal damping ratios are zero. The building was subjected to ground motion, 

which is assumed to be a Gaussian white noise with a standard deviation of 0.001g (g is 

the gravitational acceleration). The acceleration response at the top of the appendage, as 

shown in Figure 4.56 together with the ground motion, was considered to be the 

measured response sampled at 20 Hz. 

 

 

 

Figure 4.55. Shear Building with Light Appendage 

 

  

 

 

 

 

 

Figure 4.56. Simulated Excitation and Response 
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As presented in Figure 4.57, its Fourier spectra indicate that Modes 1 and 2 as 

well as Modes 3 and 4 are closely-spaced. Before RDT was applied to eliminate the 

frequency overlapping effect between closely-spaced modes, the first two modes were 

separated from the remaining modes by AMD with a bisecting frequency of 0.4 Hz. This 

is because these two groups of vibration modes are well separated with negligible 

frequency overlapping. The acceleration response from Modes 1 and 2, and the response 

from Modes 3 and 4 are presented in Figure 4.58 with their corresponding Fourier spectra 

shown in Figure 4.59.  

To further decompose the closely-spaced Modes 1 and 2 or Modes 3 and 4, RDT 

was first applied to extract the free vibration response as shown in Figure 4.60 at a 

threshold of one standard deviation of their group acceleration. AMD was then applied 

with a bisecting frequency equal to the average of the two closely-spaced natural 

frequencies. The instantaneous amplitude        and phase angle        (      i =1, 2, 

3, and 4) from each mode of the extracted free vibration are presented in Figure 4.61. The 

natural frequency and damping ratio identified from Figure 4.61 are given in Table 4.5. 

The maximum errors for damping ratio identification and frequency identification are 6% 

and 1%, respectively. These results demonstrated high accuracy of the proposed RDT-

AMD method for modal parameter identification of closely-spaced modes in practical 

applications. 

 

 

Figure 4.57. Fourier Spectrum of the Acceleration at the Top of Appendage 
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Figure 4.58. Closely-Spaced Modal Responses 

 

          

 

 

Figure 4.59. Fourier Spectra of Closely-Spaced Modal Response 

 

       

   

 

 

Figure 4.60. Extracted Free Response using RDT 
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Figure 4.61. Amplitude and Phase Angle of the Free Vibration Response Extracted from 

Ambient Vibration 

 

Table 4.5. Identified Natural Frequency and Damping Ratio of Building-Appendage 

System 

Mode 

Identified Theoretical Error 

Damping 

ratio (%) 

Frequency 

(Hz) 

Damping 

ratio (%) 

Frequency 

(Hz) 
Damping ratio  Frequency  

1 0.96 0.186 1.00 0.184 -4% 1.0% 

2 1.02 0.194 1.00 0.196 2% -1.0% 

3 1.06 0.545 1.00 0.542 6% 0.6% 

4 0.94 0.569 1.00 0.573 -6% -0.7% 
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4.6. SHAKE TABLE TEST VALIDATION 

To validate the RDT-AMD method for parameter identification, a ¼-scale, 3-

story steel frame installed with a single tuned mass damper on the top floor is considered 

as illustrated in Figure 4.62 (Chen and Wu, 2001). The damper was tuned into the 

fundamental frequency of the structure that is 1.22 m long, 0.61 m wide, and 2.54 m tall. 

Therefore, the structure-damper system has two closely-spaced natural frequencies. A 

series of shake table tests of the structure-damper system were conducted. The modal and 

structural properties of the individual steel frame and damper are summarized in Table 

4.6. 

For comparison, the structure-damper system was excited by a 20 second mean-

zero white noise acceleration with a standard deviation of 0.001g (g is the gravitational 

acceleration) and by a compressed component of the 1952 Taft earthquake with a time 

factor of 3/4. Sampled at 100 Hz, the two base accelerations are shown in Figure 4.63 and 

their corresponding top floor accelerations are presented in Figure 4.64 in time histories 

or Figure 4.65 in Fourier spectra.  

Figure 4.65 consistently indicated the presence of four natural frequencies. Two 

closely-spaced frequency components are observed around the fundamental frequency of 

the structure. Before RDT was applied to eliminate the frequency overlapping effect, the 

first two closely-spaced modes of the structure-damper system were separated by AMD 

with a bisecting frequency of 7 Hz since they are well separated from the remaining two 

modes with negligible frequency overlapping. 

With a threshold acceleration of one standard deviation of the combined response 

of Modes 1 and 2, RDT was first applied to extract the 3.5-sec free vibration response as 

illustrated in Figure 4.66. The free vibration responses were then decomposed by AMD 

with a bisecting frequency equal to the average of the two-closely-spaced frequencies. 
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Figure 4.62. The Shake Table Test Setup 

 

Table 4.6. Modal and Physical Properties of Steel Frame and Damper 

 
Mode number (3-story steel frame) 

Damper 
1 2 3 

Frequency (Hz) 2.743 9.45 18.84 2.72 

Damping ratio (%) 0.48 1.15 1.45 1.40 

Mass or Mass matrix 

(kg) 

 

[
     
     
     

] 39.3 

Damping coefficient 

or damping matrix 
(N-sec/m) 

 

[
               

                 
               

] 18.8 

Stiffness coefficient 

or stiffness matrix 

(106 N/m) 
 

[
                

                 
               

] 0.0114 

(a) 3-Story Steel Frame 

(b) Tuned Mass Damper 



 

 

103 

 

 

 

 

 

 

Figure 4.63. Base Motions to the Structure with Various Excitations 

 

 

 

 

 

 

Figure 4.64. Measured Top Floor Accelerations of the Structure: (a) White Noise 

Excitation and (b) Compressed Taft Earthquake Excitation 
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Figure 4.65. Fourier Spectra of the Measured Top Floor Accelerations 

 

 

 

 

 

 

 

Figure 4.66. Extracted Free Vibration Responses 

 

The instantaneous amplitude        and phase angle        of the third floor 

acceleration (   ) for each mode i (i =1 and 2) are presented in Figure 4.67. Finally, 

the natural frequency and damping ratio were evaluated with the least-squares fitting 

process; the identified results are listed in Table 4.7. It is clearly seen from Table 4.7 that 

the proposed method can consistently identify the closely-spaced natural frequencies with 

high accuracy. However, for the steel frame structure, the damping ratios identified from 

the two tests are somewhat inconsistent due mainly to the fact that the damping 

mechanism of the tuned mass damper is neither purely viscous nor frictional (Chen and 

Wu, 2001). 
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Figure 4.67. Amplitude and Phase Angle of the Free Vibration Response Extracted from 

the Third Floor Acceleration 

 

Table 4.7. Identified Natural Frequencies and Damping Ratios from the Top Floor 

Acceleration 

Mode 
White noise Compressed Taft earthquake 

Damping ratio (%) Frequency (Hz) Damping ratio (%) Frequency (Hz) 

1 0.61 2.36 0.50 2.34 

2 0.84 3.20 1.01 3.16 

 

4.7. SUMMARY 

The bisecting frequency in the AMD theorem can theoretically be selected as any 

value between the two frequencies of interest but practically be recommended to take the 

average of the two frequencies due to the finite length of signals in applications. It is 

insensitive to other choices in 80%~120% of the average value so long as the frequency 
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resolution in the Fast Fourier Transform does not exceed 50% of the spacing of the two 

frequencies. This translates into a discernible frequency spacing of twice the frequency 

resolution of a time series or the required duration of the time series that is equal to two 

divided by the minimum frequency spacing. 

Numerical examples for four representative engineering applications indicate that 

the new theorem is superior to existing techniques: the filtering technique, wave-group 

method, and tempered signal approach that are currently available in the literature to deal 

with the decomposition of closely-spaced modes, beating effects, and small intermittent 

fluctuations. It is simple in concept, efficient in computation, consistent in performance, 

and reliable in signal processing. 

Free modal responses can be simply extracted from the free vibration, and the 

modal parameters can then be readily estimated based on the least-squares procedure. 

Under harmonic excitations, the response can be separated into the transient and the 

steady state response component. Since the transient response decays quickly, the energy 

of the vibration is dominated by the steady state response. Therefore, the steady state 

response can be first extracted using AMD theorem based on the dominant response at 

later time. The transient signal can be obtained by subtracting the steady state response 

from the total response. Then, the free modal responses can be extracted from the 

transient response and used for modal parameter identification. The results of the 3-DOF 

mechanical system simulation demonstrate that the proposed method can accurately 

identify the modal parameters from free or harmonic vibration even with significant noise 

effects. 

For systems with ambient vibration, a new system identification method with 

ambient vibration, combining the advantages of the AMD theorem and the conventional 

RDT, named as RDT-AMD method was developed. In the proposed RDT-AMD method, 

RDT was first applied to extracting the free vibration information from an ambient 

response time history with closely-spaced modes. The extracted free vibration response 

was then decomposed by the theorem into individual modal responses from which modal 

parameters are evaluated. 

 An energy error index is defined as the ratio between the squared modal response 

error and the exact modal energy over the response duration. It accounts for the effects of 
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both amplitude and phase. For a 20-sec ambient vibration response, AMD induces an 

energy error index of 88% for a frequency space index of 0.033. For a 20-sec free 

vibration response, AMD results in an energy error index of approximately 7.5% for a 

frequency space index of 0.033. Even when the duration of free vibration is reduced to 1 

sec, the energy error induced by AMD is less than 20% for a frequency space index of 

0.05. 

While RDT can eliminate modal overlapping effects as two natural frequencies 

approach each other, AMD can accurately separate two closely-spaced frequencies with 

no brick wall effects associated with bandpass filtering. Together, they provide a system 

identification method (RDT-AMD) of high accuracy from ambient vibration. The 

application examples include a 3-DOF mechanical system and a 36-story building with 4-

story appendage system. Finally, shake table tests validated high accuracy of the 

proposed method in modal parameter identification of a building system based on actual 

measurement data. 
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5. IDENTIFICATION OF TIME-VARYING AND WEAKLY NONLINEAR 

SYSTEMS WITH AMD-HILBERT SPECTRAL ANALYSIS 

The AMD developed in Section 3 can decompose signals with amplitude and 

frequency modulations over time. This section applies it for the adaptive analysis of non-

stationary time series that is commonly seen in time-varying and nonlinear engineering 

systems. Its aims are to establish admittance requirements for the selection of time-

varying bisecting frequencies and quantify the effects of bisecting frequency selection, 

signal frequency overlapping, sampling rate, and signal noise. For nonlinear systems, a 

non-parametric identification method is developed and applied to a simple Duffing 

oscillator and a building system with hysteretic behaviors. 

 

5.1. HHT, WAVELET AND AMD-HILBERT SPECTRAL ANALYSIS 

For time-varying and nonlinear systems, the system properties changes over time. 

Therefore, advanced time-frequency analysis must be conducted to identify their 

characteristics. In this study, the AMD-Hilbert spectral analysis is compared with HHT 

and wavelet analysis. Both HHT and wavelet analysis has been reviewed in Sections 2 to 

4.  

5.1.1. AMD-Hilbert Spectral Analysis. AMD-Hilbert spectral analysis is similar 

to the HHT method. The main difference is the use of AMD instead of EMD in signal 

decomposition. Specifically, the IMFs by EMD are replaced by the decomposed signal 

components by AMD. Therefore, as discussed before for the HHT method, the AMD-

Hilbert spectral analysis can be used to identify the instantaneous amplitude, phase, and 

frequency of a time series through the formation of an analytic function of the signal.  

5.1.2. Comparative Study on Instantaneous Frequency. To compare the above 

three time-frequency analysis methods, a signal      with two frequency-modulated 

components was considered: 

                                   (5.1) 

in which                                and                                

(          ). Frequencies of the two components are                         
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and                       Hz, respectively. In all simulations, a sampling rate of 

20 Hz was used. 

For time-frequency analysis with HHT, the first two IMFs by EMD are presented 

in Figure 5.1. Clearly, the first IMF still includes the frequency information from both 

components, a mixed mode problem that is often associated with EMD. As shown in 

Figure 5.2, the instantaneous frequencies identified from the first two IMFs rapidly 

fluctuate over time and quite deviate from their respective exact values. They are 

incorrect because of the mixed mode problem of the two frequency components. 

 

 

 

 

 

Figure 5.1. First Two IMFs from EMD 

 

 

 

Figure 5.2. Instantaneous Frequency from HHT 
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For wavelet analysis, a simplified complex Morlet wavelet was selected as a 

parent wavelet function. It is defined by: 

     
 

√   
 

 
  

              (5.2) 

in which    is a bandwidth parameter and    is the center frequency of the wavelet. To 

have various frequency and time resolutions, three center frequencies of 0.5, 1.0, and 1.5 

Hz with the same bandwidth parameter           were selected. Corresponding to 

each of the center frequency fc, Figure 5.3(a-c) plots the wavelet coefficients W(a, b), 

Equation (2.7) in Section 2.3.2, as a function of b (in sec) and fc/a/∆ (in Hz) in time-

frequency plane. Here ∆ denotes the sampling period and time interval of a data series. It 

can be clearly observed from Figures 5.3 that the smaller the center frequency or the 

dilation scale a, the higher the time resolution and the lower the frequency resolution so 

that the two frequency components cannot be separated. On the other hand, the larger the 

center frequency or the dilation scale a, the higher the frequency resolution and the lower 

the time resolution so that the two frequency components can be separated. In this case, 

the time information is lost and the frequency of each component appears a constant over 

time. By using an appropriate center frequency, the two components can be separated 

with relatively high time resolution as shown in Figure 5.3(b). However, according to the 

Heisenberg-Gabor uncertainty principle, a signal can never be concentrated on an 

arbitrarily small time-frequency region. It is impossible to simultaneously achieve high 

resolutions both in time and frequency domains. 

For AMD-Hilbert spectral analysis, a constant bisecting frequency of 1.53 Hz can 

be selected from Figure 5.3(c). As presented in Figure 5.4, the decomposed signals by 

AMD are in excellent agreement with their respective exact signals, particularly in 

frequency content. 
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Figure 5.3. Wavelet Transform Scalograms for Various Center Frequencies 

 

 

 

 

 

Figure 5.4. Decomposed Signals using AMD 
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5.2. PARAMETRIC STUDIES 

In this section, sensitivity analyses are conducted to address several practical 

issues with AMD. They include the selection of bisecting frequency, mitigation of the 

end effect associated with Hilbert transform, and the effects of sampling rate and noise. 

5.2.1. Bisecting Frequency Selection. For a stationary signal process, bisecting 

frequencies can be selected as constants from the Fourier transform of the signal. For 

non-stationary signals, bisecting frequencies change over time and can be estimated from 

time-frequency analysis tools such as wavelet analysis using the wavelet ridge extraction 

method (Staszewski, 1997, Kijewski and Kareem, 2002, Wang and Ren, 2007). In this 

case, the main differences between AMD-Hilbert spectrum analysis and wavelet analysis 

are summarized below: 

(1) In AMD-Hilbert spectral analysis, wavelet analysis with high frequency 

resolution only is needed for the estimation of time-varying bisecting 

frequencies. Each individual component of a non-stationary signal will then 

be extracted analytically and analyzed with Hilbert spectrum to 

simultaneously achieve high resolution in evaluating component 

characteristics such as instantaneous frequencies both in time and frequency 

domains. 

(2) In the conventional wavelet analysis, a tradeoff must be made to 

simultaneously achieve reasonable resolution both in time and frequency 

domains as illustrated in Figure 5.3. As the frequency resolution increases, the 

time resolution decreases so that the frequency variation is unable to track 

over time. On the other hand, as the time resolution increases, the frequency 

resolution decreases so that the components of a non-stationary signal cannot 

be decomposed appropriately. 

To study the effect of bisecting frequency selection on the time-frequency 

analysis, the same signal as used in Equation (5.6) was analyzed with three choices of 

bisecting frequency (BF): (a) constant, (b) time-varying, and (c) random. The constant 

BF was set to 1.53 Hz from the wavelet scalogram in Figure 3(c). The time-varying BF 

was taken to be the average of the two wavelet ridges in Figure 5.5. The random BF was 

generated from a Gaussian distribution with a mean of 1.53 Hz and coefficient of 
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variation of 1%. These choices of bisecting frequency are shown in Figure 5.6(a). Their 

corresponding instantaneous frequencies obtained by AMD-Hilbert spectrum analysis are 

presented in Figure 5.6(b). It can be clearly seen from Figure 5.6(b) that the differences 

among the three choices of bisecting frequency are negligible. In comparison with their 

exact values, the instantaneous frequencies from AMD-Hilbert spectrum analysis are 

sufficiently accurate in engineering applications. 

 

 

 

Figure 5.5. Instantaneous Frequency from AMD-Hilbert Spectral Analysis and Wavelet 

Analysis 

 

        

 

 

Figure 5.6. AMD-Hilbert Spectrum Analysis with Various Bisecting Frequency 

Selections 
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5.2.2. End Effect Reduction. As indicated in Figure 5.5, AMD-Hilbert spectrum 

analysis has significant end effects due to finite length and incomplete cycle included in a 

non-stationary signal. Although several techniques are available (Qing and Zhong, 2006, 

Feldman, 2008, Xun and Yan, 2008, Cheng et al., 2007), the end effects associated with 

Hilbert transform for a frequency-modulated signal of finite length can never be 

eliminated since the instantaneous frequencies vary with time and it is impossible for the 

signal to end exactly at its complete cycles. In this study, a simple mirror image 

technique about the first and last maxima/minima of the signal was used to extend the 30-

sec signal at its beginning and end to a nearly 90-sec signal. While the original 30-sec 

signal was used in Figure 5.5, the extended nearly 90-sec signal was considered in Figure 

5.6(b). Clearly, the end effects have been significantly reduced by the mirror image 

technique. 

5.2.3. Sampling Rate Selection and Noise Effect. To understand the sampling 

rate and noise effects on the signal decomposition by AMD, the signal in Equation (5.1) 

was discretized at 0.05 sec interval and contaminated with a Gaussian white noise with 

zero mean and a standard deviation of 10% of the amplitude of the signal            . 

The contaminated signal and the noise component are shown in Figure 5.7. To select 

bisecting frequencies, wavelet analysis using the signified complex Morlet wavelet in 

Equation (5.2) with a center frequency of 1.5 Hz and bandwidth parameter of 5 sec
2
 was 

conducted to produce the wavelet scalogram as shown in Figure 5.8. It can be seen that 

three bisecting frequencies were marked in Figure 5.8. The first and third bisecting 

frequencies were used to filter out noises outside the signal frequency range and the 

second frequency was used to decompose the two signal components.  

When a sampling rate of 20 Hz is used, the frequency components of the 

contaminated signal can be accurately reconstructed up to 10 Hz according to the 

Nyquist-Shannon sampling theory. In this case, the noise above 10 Hz due to Gibbs’ 

effects from a 1-10 Hz bandpass filter cannot be represented appropriately. This 

misrepresentation will distort the reconstruction of the contaminated signal since the one-

sided Fourier transform is used to evaluate the Hilbert transforms in the proposed AMD; 

the contaminated signal thus cannot be completely decomposed into two components 

with mutually exclusive frequency spectra. To account for the Gibb’s effects, a higher 
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sampling rate must be used. To illustrate this point, the 30-sec contaminated signal 

(similar to the measured data in engineering applications) was resampled by a linear 

interpolation between any two adjacent data points. For example, the original 0.05 sec 

time interval can be reduced to 0.025 and 0.0125 sec to increase the sampling rate from 

20 Hz to 40 Hz and 80 Hz, respectively. 

Figures 5.9(a-c) show the instantaneous frequencies obtained by AMD for a 

sampling rate of 20 Hz, 40 Hz, and 80 Hz, respectively. The use of 20 Hz sampling rate 

results in significant errors in the estimation of instantaneous frequencies but both 40 Hz 

and 80 Hz sampling rates lead to accurate results in comparison with the exact 

instantaneous frequencies. To help explain the difference in sampling rate effect from 20 

Hz to 40 Hz, the Fourier spectra of the white noise with 0.05-sec and 0.025-sec time 

intervals are compared in Figure 5.10. Figure 5.10(b) confirms that the Gibbs’ effect was 

significant above 10 Hz. To further support the above explanation, Figures 5.11(a, b) 

show the Fourier spectra of the two decomposed signals with 20 Hz and 40 Hz sampling 

rates, respectively. Indeed, as illustrated in Figure 5.11(a), the spectra of the decomposed 

signals are nonzero around 8-9 Hz when the data series was sampled at 20 Hz sampling 

rate. As the sampling rate was increased to 40 Hz, Figure 5.11(b), AMD can accurately 

extract each individual component. 

Figure 5.11 (b) also demonstrated that AMD is a “perfect” adaptive bandpass 

filter for any data series that is appropriately sampled. Referred to Figure 5.8, the noises 

of the contaminated signal below the first and above the third bisecting (cutoff) 

frequencies have been successfully filtered out. To further illustrate the effects of noise 

level, two Gaussian white noises with zero means and standard deviations of 5% and 

20% of the amplitude of the signal             were respectively injected to the signal 

in Equation (5.1). With a 0.025-sec time interval (by a linear interpretation of the 0.05-

sec data series), the instantaneous frequencies with different noise levels are presented in 

Figure 5.12. In comparison with Figure 5.9(b), all the instantaneous frequencies obtained 

from AMD-Hilbert spectral analysis are in an excellent agreement with their respective 

exact values even with 20% noise. Various levels of noise have been effectively filtered 

out by the proposed AMD.  
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Figure 5.7. Contaminated Signal with Noise and the Gaussian White Noise 

 

 

 

Figure 5.8. Continuous Wavelet Analysis: Scalogram and Bisecting Frequencies 

 

                  

 

    

  

Figure 5.9. Instantaneous Frequencies with Various Sampling Rates 
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Figure 5.10. Fourier Spectra of the Gaussian Noise with Different Sampling Rates 

 

 

       

 

 

         

 

 

Figure 5.11. Fourier Spectra of the Decomposed Signals with Different Sampling 

Frequencies 
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Figure 5.12. Instantaneous Frequencies with Different Noises 

 

5.3. SIGNAL DECOMPOSITION WITH FREQUENCY AND AMPLITUDE 

MODULATED COMPONETS 

5.3.1. Frequency Modulated Components. Consider a frequency-modulated 

signal                        with its three components defined by: 
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The original signal with a time interval of 0.01 sec. and a sampling frequency of 

100 Hz is shown in Figure 5.13. The bisecting frequencies represented by the white solid 

lines in Figure 5.14 were selected from the wavelet transform scalogram using the 

simplified Morlet wavelet with a center frequency of 8 Hz and bandwidth parameter of 8 
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sec
2
. Different parameters were used here to ensure that the wavelet ridges in time-

frequency plane are visually identifiable from the scalogram. 

 

 

 

Figure 5.13. Original Signal 

 

 

 

Figure 5.14. Continuous Wavelet Transform Scalogram and Bisecting Frequencies 

 

In this case, EMD failed to separate the signal components since their frequencies 

are too close. However, the three individual components were accurately extracted by 

using AMD as shown in Figure 5.15. The modulated frequencies of three decomposed 

signals from AMD and wavelet scalogram ridges are compared with their exact values in 

Figure 5.16. It can be clearly seen that the instantaneous frequencies obtained by AMD 

are in excellent agreement with the exact values. As shown in Figure 5.16, those by 

wavelet ridges are sufficiently accurate in high frequency ranges but less so in low 

frequency ranges. The instantaneous frequency of the first component suddenly drops at 

12 sec., and it cannot track the linear variation due to low resolution in time domain.  
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Figure 5.15. Decomposed Signals by AMD 

 

 

 

Figure 5.16. Instantaneous Frequencies Obtained from AMD and Wavelet Ridges 

 

5.3.2. Frequency and Amplitude Modulated Components. Consider an 

amplitude and frequency modulated signal                        with three 

components defined by: 
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(5.4) 

The original signal with a time interval of 0.01 sec and a sampling frequency of 

100 Hz is presented in Figure 5.17. The bisecting frequencies represented by the white 

solid lines in Figure 5.18 were selected from the wavelet transform scalogram using the 

simplified Morlet wavelet with a center frequency of 8 Hz and bandwidth parameter of 8 

sec
2
. Similar to the signal in Equation (5.3), EMD cannot separate the signal components 

in Equation (5.4) since their frequencies are too close. However, it can be seen from 

Figure 5.19 that the three individual components were extracted without any visible 

errors by AMD. The modulated frequencies of three decomposed signals from AMD and 

wavelet scalogram ridges are compared with their exact frequencies as presented in 

Figure 5.20. The instantaneous frequencies obtained by wavelet ridges are more accurate 

in high frequency ranges due to relatively high time resolution. However, for most parts, 

instantaneous frequencies cannot be separated as shown in Figure 5.20 since the required 

high time resolution is limited according to the Heisenberg-Gabor uncertainty principle. 

Overall, the instantaneous frequencies from wavelet transform are not a good 

representation of modulated frequencies; they look like straight lines representing the 

average of their respective exact frequencies. On the other hand, the instantaneous 

frequencies obtained from AMD, as shown in Figure 5.20, are in excellent agreement 

with the exact modulated frequencies. 

 

 

 

Figure 5.17. Original Signal 
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Figure 5.18. Continuous Wavelet Transform Scalogram and Bisecting Frequencies 

 

 

 

 

 

Figure 5.19. Decomposed Signals by AMD 

 

 

 

Figure 5.20. Instantaneous Frequencies Obtained from AMD and Wavelet Ridges 
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5.4. INSTANTANEOUS FREQUENCY IDENTIFICATION OF WEAKLY 

NONLINEAR SYSTEMS 

5.4.1. Instantaneous Frequency and Damping Identification. As presented in 

Sections 5.1, the AMD-Hilbert spectral analysis is able to track the instantaneous 

frequencies and damping coefficients of a measured signal. In this section, it is applied to 

nonlinear systems that are often encountered in structural and mechanical engineering. In 

particular, interpreting measured responses for nonlinear behavior with the proposed 

AMD theorem is a main concern.  

Consider a general system with nonlinear damping and restoring forces. Without 

knowing their specific physical model, the damping and restoring forces can be 

represented by the multiplications of a nonlinear damping coefficient and a nonlinear 

stiffness coefficient with the system velocity and displacement, respectively. Therefore, 

the free vibration of a single DOF nonlinear system with a unit mass can be represented 

by the following equation of motion: 

 ̈         ̇  ̇      
                                         (5.5) 

in which      is the displacement of the system, 2    ̇  is the velocity-related nonlinear 

damping coefficient and   
     is the displacement-related nonlinear stiffness coefficient 

or the squared of natural frequency. Through the system responses, both coefficients can 

be viewed as functions of time,   
       

     and      ̇        . Depending on the 

degree of system nonlinearity, they may rapidly vary with time and have overlapping 

frequency spectra with the system responses (Feldman, 2011). Therefore, Equation (5.5) 

can be rewritten as: 

 ̈           ̇      
                                         (5.6) 

And its Hilbert transform can be expressed into: 

   ̈         ̇          ̇     
           

                  (5.7) 

in which     and     represent lowpass and highpass parts of the time-varying nonlinear 

damping coefficient      ;    
  and    

  are the lowpass and highpass part of the time- 

varying nonlinear stiffness coefficient or   
    . 

For a single DOF system, the displacement measurement      is assumed 

available. Its analytic signal      can be expressed into: 
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                         ∫                                 (5.8) 

in which      and      are the instantaneous amplitude and frequency of the analytic 

signal. The first and second derivatives of the analytic signal are then derived as: 

 ̇    
 ̇

 
   )  and   ̈    

 ̈

 
      

 ̇

 
    ̇)                    (5.9) 

Therefore, the velocity and acceleration as well as their Hilbert transforms can be 

expressed into functions of the displacement and its Hilbert transform. That is,  

 ̇      
 ̇

 
       , and      ̇            

 ̇

 
                (5.10) 

 ̈     (
 ̈

 
   )         

 ̇

 
   ̇ , and    ̈      ( 

 ̇

 
   ̇)        

 ̈

 
        

(5.11) 

Substituting Equations (5.10) and (5.11) into Equations (5.7) and (5.8) yields 

 (
 ̈

 
       

 ̇

 
   

 )      ( 
 ̇

 
   ̇      )                   (5.12) 

 ( 
 ̇

 
   ̇               
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  )   
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                            (5.13) 

Since any signal and its Hilbert transform have a 90° phase difference, they 

cannot be zero at the same time. As such, the determinant of the coefficient matrix of 

Equations (5.12) and (5.13) must be zero, leading to: 

(
 ̈

 
       

 ̇

 
   

 )

 

 (
 ̈

 
       

 ̇

 
   

 )(      

 ̇

 
             

 ) 

   
 ̇

 
   ̇           

 ̇

 
   ̇                       
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(5.14) 

If both       and   
     are slowly-varying functions of time,    ,       ,    

 , 

and      
   are approximately equal to zero. Under this condition, the instantaneous 

damping coefficient        and the instantaneous natural frequency       can be 

evaluated from Equation (5.14) and expressed with: 

  
        

 ̈

 
  

 ̇

   
  ̇̇

  
  and         

 ̇

 
 

 

  

̇                     (5.15) 

Equation (5.15) relates the instantaneous damping coefficient and natural 

frequency of an engineering system to those of its measured signals. It can be proven 
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without difficulty that the instantaneous parameters of the signals are identical to those of 

a lightly-damped linear system, which has been used in almost all the system 

identification research to date. For a nonlinear system, Equation (5.15) becomes very 

important to establish one of the critical nonlinear characteristics – the relationship 

between its natural frequency and the amplitude of the system response. However, for a 

weakly nonlinear system, the amplitude and frequency often change slowly over time. As 

a result, the relationship becomes trivial as studied by Feldman (2011).  

For a multi-DOF weakly nonlinear system, the AMD-Hilbert spectral analysis can 

be applied in a similar way as presented for linear systems. In addition to instantaneous 

frequency and damping, instantaneous mode shapes must be estimated as well.  

5.4.2. Frequency Traction for Two-Story Shear Building. This example 

represents an engineering application of the proposed AMD for time-varying system 

identification. It is a two-story shear building as schematically shown in Figure 5.21. It 

has masses of m1=2.6310
5
 kg and m2=1.7510

5
 kg at the lower and upper floors, 

damping coefficients of c1=6.9510
2
 kN-sec/m and c2=1.8610

2
 kN-sec/m for the first 

and second stories, and initial stiffness of k1=2.1010
5
 KN/m and k2 =1.0510

5
 kN/m for 

the first and second stories, respectively. The stiffness of the first story (k1) was set to be 

periodically reduced from 2.1010
5
 kN/m to 1.4010

5
 kN/m from t=4 sec to 16 sec, 

5

1 {2.1 0.058( 4) 0.131sin[ ( 4)] } 10
2

k t t


      kN/m. The stiffness of the second story (k2) 

was set to be linearly reduced from 1.0510
5
 kN/m to 0.7010

5
 KN/m over a period of 

t=4 sec to t=8 sec.  

 

 

Figure 5.21. Two-Story Shear Building 
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The building was subjected to the 1940 El Centro ground acceleration record and 

a synthesized Gaussian white noise with zero mean and 0.1g (g is the gravitational 

acceleration) standard deviation. The displacement at first floor x1 was considered as the 

dynamic response measurement with a time interval of 0.02 sec. From the wavelet 

scalogram of the displacement using the simplified complex Morlet wavelet function 

with a center frequency of 4 Hz and bandwidth parameter of 5 sec
2
, a constant bisecting 

frequency of 4 Hz was selected. The decomposed signals of x1 by AMD and their 

instantaneous frequencies are presented in Figures 5.22 and 5.23, respectively. It can be 

seen from Figure 5.22 that AMD can track the frequency modulation under earthquake 

and white noise excitations. The frequency identification is more accurate for the lower 

frequency component since the first mode dominates the first floor displacement as 

illustrated in Figure 5.22. In comparison with Figures 5.16 and 5.20, Figure 5.23 includes 

a significantly more fluctuation of the identified instantaneous frequencies. By filtering 

out the fast varying part of the instantaneous frequency, the average of the instantaneous 

frequency is accurate to represent the system time-varying frequency. 

 

 

 

 

 

 

 

Figure 5.22. Decomposed Modal Responses by AMD 
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Figure 5.23. Instantaneous Frequencies by AMD 

 

5.4.3. Frequency Traction for a Duffing System. A classic Duffing system with 

a hardening spring and a linear damping element is used as an example of a nonlinear 

elastic force. Specifically, the following equation of motion is considered (Feldman, 

2007):  

 ̈       ̇                                                 (5.16) 

Under an initial displacement of 10 at rest, the free vibration response was 

simulated using the 4
th

 Runge-Kutta method with 0.1 sec time interval and presented in 

Figure 5.24. By AMD-Hilbert spectral analysis of the response, the instantaneous 

frequency and damping coefficient as well as their average values can be obtained from 

the free vibration. They are presented in Figure 5.25 together with the amplitude-

frequency relationship. It can be clearly seen from the average instantaneous frequency in 

Figure 5.25 that the cubic spring nonlinear effect is important in large amplitude. The 

instantaneous frequency decreased rapidly at the beginning of the free vibration and 

gradually approached to an asymptotic value of the corresponding linear system. 

Therefore, the average of the instantaneous frequency can accurately track the variation 

of a weakly nonlinear system. The average damping coefficient identified is 2.5%, which 

is exactly the same as the damping coefficient of the Duffing system.  
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Figure 5.24. Free Response and Its Fourier Spectrum of a Duffing System 

 

         

 

(a) Instantaneous Frequency             (b) Damping Coefficient 

 

 

 

(c) Frequency-Amplitude Relation 

 

Figure 5.25. Identified Dynamic Characteristics of the Analytic Signal 
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5.4.4. Frequency Traction for a Hysteretic Nonlinear Structure. A one-story 

shear building with a tuned mass damper as schematically shown in Figure 5.26 is 

considered as an example. It has masses of m1=100 kg at the first floor and m2=10 kg for 

the attached mass. The damping ratios of the first and second mode of the 2-DOF system 

at low amplitude are set to 1% and 5%, respectively. It has elastic stiffness of k1=100 

kN/m and k2 =9.5 kN/m for the first building story and the mass damper, respectively. 

The hysteretic behavior of the building is represented by a Bouc-Wen model (Wen, 

1976). The equation of motion of the building and the mass damper can be described as: 

   ̈      ̇      ̇                                    (5.17a) 

   ̈      ̇      ̇                                       (5.17b) 

 ̇    ̇    ̇ | |
   | ̇ || |

                                   (5.17c) 

in which               ⁄     ,          is the yield deformation,       1/m, 

    ,     ,    ,                  ,                      , 

and               .  

 

 

Figure 5.26. A One-Story Shear Building with a Tuned Mass Damper  

 

5.4.4.1 Free vibration. A series of free vibration were simulated to verify the 

nonlinearity effects on the instantaneous frequency. The initial displacements at the first 

floor were set to 0.01, 0.02, 0.05, and 0.1 m. As discussed in Section 5.4, the 

instantaneous frequency of the decomposed response includes a slowly-varying part and 
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a rapidly-varying part. The rapidly-varying part can be filtered out by AMD with a 

suitable bisecting frequency. Another way to eliminate the rapidly-varying part is to 

integrate the instantaneous frequency over time duration. Therefore, the phase of the 

decomposed response can describe the structural nonlinearity during the vibration. The 

nonlinearity index   can be defined as (Liming et al., 2005):  

  √
∫             

   

∫       
   

                                       (5.18) 

where       and       represent the phase angles of the decomposed response from the 

nonlinear and its corresponding linear systems, respectively. The above nonlinearity 

index   also represents the damage severity of the structure during vibration. Therefore, 

  is also called as a damage index. 

Again, the free vibration responses were simulated using the 4
th

–order Runge-

Kutta method with time interval of 0.02 sec. When the initial displacement was set to less 

than or equal to 0.01 m, the structural system was considered to behave linearly. 

Otherwise, the structural system was considered as a nonlinear system. The responses of 

the linear and nonlinear systems and their Fourier spectra with initial displacement of 

0.01 m and 0.05 m at the first floor are presented in Figure 5.27 and Figure 5.28, 

respectively. The identified instantaneous frequencies of linear and nonlinear systems 

from the simulated displacement at the first floor are presented in Figure 5.29. It can be 

clearly seen from Figure 5.29, the instantaneous frequency is significantly reduced at the 

beginning of the vibration when the amplitude of the response is significant. To further 

quantify the nonlinear effects on the phase, the free vibration with the initial 

displacements at the first floor of 0.02, and 0.1 m were simulated. The hysteretic loops 

are shown in Figure 5.30, and the phases of the first decomposed modal responses are 

presented in Figure 5.31. As demonstrated in Figures 5.30 and 5.31, a large initial 

displacement represents strong nonlinearity, and the phase angle is small for the strong 

nonlinear vibration. The damage indices with various initial displacements from 0.01 to 

0.1 m are further presented in Figure 5.32.   It can be seen from Figure 5.32 that the 

damage index is increased as the initial displacement increased.  
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Figure 5.27. Free Vibration Responses of Linear and Nonlinear Systems 

 

           

 

Figure 5.28. Fourier Spectra of Free Responses of Linear and Nonlinear Systems 

 

         

 

Figure 5.29. Instantaneous Frequencies of Mode 1 and 2 Responses from    
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Figure 5.30. Bouc-Wen Hysteretic Loops with Various Initial Displacements  

 

 

 

 

Figure 5.31. Phases of the Decomposed First Modal Response via AMD 
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Figure 5.32. Damage Index E from Free Vibration 

 

5.4.4.2 Ambient vibration. In this section, the one-story shear building with a 

tuned mass damper is subjected a Gaussian white noise excitation at its base.  

Again, the responses were simulated using the 4
th
–order Runge-Kutta method 

with time interval of 0.02 seconds. The excitation for the linear simulation was set to 

       (   is a mean-zero Gaussian white noise with a 1g standard deviation). For the 

linear simulation, the maximum displacement is less than the yield displacement; the 

structure was thus considered as a linear system. The excitation for nonlinear simulation 

was increased to      , and the maximum displacement is larger than the yield 

displacement, the structure was considered as a nonlinear system. The displacement 

responses of the linear and nonlinear structure systems and their Fourier spectra are 

presented in Figure 5.33 and Figure 5.34, respectively. The instantaneous frequencies 

identified from the displacements of the first floor are presented in Figure 5.35. It can be 

seen from Figure 5.34 and Figure 5.35 that the frequency band of the nonlinear structure 

is wider than that of the linear system. To further study the nonlinear influences on the 

structure, an excitation level of      ,      ,       was considered. The Bouc-Wen 

hysteretic loops with various excitations are presented in Figure 5.36. Since the 

instantaneous frequencies for the ambient vibration fluctuate significantly, their 

integration (phase) are presented in Figure 5.37. It can be clearly seen that the structure 

performs like a linear structure when the excitation level is   ; the phase and the 

nonlinearity index are close to those of the corresponding linear structure, respectively. 

However, when the excitation is increased to    , the structure performs strongly 
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nonlinear. In this case, the phase is significantly reduced and the damage index increased. 

The defined damage indices for various excitations from    to     are further presented in 

Figure 5.38. It demonstrates that the damage index is a nonlinear function of standard 

deviation of the excitation. It increases rapidly in a linear fashion at the beginning and 

then slowly increases over time.  

 

 

 

Figure 5.33. Ambient Responses of Nonlinear and Linear Systems 

 

 

Figure 5.34. Fourier Spectra of Ambient Responses of Nonlinear and Linear Systems 

 

 

 

Figure 5.35. Instantaneous Frequencies of the Analytical Signal of Mode 1 and 2 
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Figure 5.36. Bouc-Wen Hysteretic Loops with Various Excitations  

 

 

 

 

Figure 5.37. Phases of the Decomposed First Modal Responses via AMD 
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Figure 5.38. Damage Index E from Ambient Vibration 

 

5.5. SUMMARY 

The basis of the AMD theorem can be interpreted as an adaptive lowpass filter 

whose bisecting frequency varies with the time-varying frequencies of a non-stationary 

signal. By transferring the signal from time to phase domain, the frequency overlapping 

issue over the time duration of the signal can be alleviated or eliminated completely, thus 

giving more accurate decomposition of the signal in phase domain. The adaptive lowpass 

filter is effective for any slowly and rapidly modulated frequency components provided 

that time-varying bisecting frequencies are available. By repeating the process of lowpass 

filtering, AMD can be viewed as a suite of adaptive bandpass filters without brick wall 

effects associated with the conventional bandpass filters. 

Time-varying bisecting frequencies can be estimated from the wavelet analysis 

with high frequency and low time resolution. The decomposed signals by AMD are 

insensitive to the selection of bisecting frequencies. For proper decomposition, a signal 

must be discretized or sampled according to the Nyquist-Shannon sampling criterion. The 

sampling frequency must be at least twice of the maximum frequency in the signal. 

Each individual component with frequency modulations between two time-

varying bisecting frequencies can be analytically extracted by AMD. The extracted 

component has well-behaved Hilbert transform; its instantaneous frequency and 

amplitude can be accurately evaluated by AMD-Hilbert spectral analysis. AMD-Hilbert 

spectral analysis is superior to HHT and wavelet analysis. It can accurately track rapid 

frequency modulations from a non-stationary signal with both amplitude and frequency 
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modulations, particularly when the frequencies are closely spaced. It is promising for the 

time-varying and nonlinear property identification of buildings from earthquake or white 

noise induced responses. 
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6. TIME-VARYING SYSTEM IDENTIFICATION UNDER KNOWN 

EXCITATIONS WITH HHT METHOD 

6.1. HHT METHOD FOR TIME-VARYING SYSTEM IDENTIFICATION 

To achieve the secondary objective of this study, this section presents a recursive 

Hilbert-Huang transform method for the time-varying property identification of shear-

type buildings under base excitations. To overcome non-orthogonality and modal 

perturbation issues, all significant intrinsic mode functions of each signal and their 

Hilbert transforms were summed to track any variation of structural parameters of a 

multi-story building over time. Given floor masses, both the stiffness and damping 

coefficients of the building were identified one-by-one from the top to bottom story. 

6.1.1. Identification of Parameter Variation. Consider a linear SDOF system 

with time-varying parameters. The equation of motion of the system under an external 

load      can be written as: 

     ̈         ̇                                              (6.1) 

where     ,     , and      are the mass, damping and stiffness of the system, 

respectively. In this study, the mass is considered as constant m. The displacement of the 

system      can be decomposed into l IMFs as expressed as: 

     ∑      
 
                                                  (6.2) 

By applying Hilbert transform and introduced analytic signal             

                
      , Equation (6.1) can be rewritten into: 

 ∑  ̈    
 
        ∑  ̇    

 
        ∑      

 
                        (6.3) 

After the Bedrosian’s theorem on the Hilbert transform of two signals has been 

introduced: 

       ̇            ̇    ,                                     (6.4) 

when     , and      change slowly compared to the oscillatory IMFs of the displacement 

in terms of frequency components, which is satisfied in most engineering applications. In 

Equation (6.3),      represents a summation of all analytical functions of the IMFs and 

their Hilbert transform of the loading function     . 
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The first and second time derivatives of ( )iz t are related to ( )iz t by: 

 ̇       
      ,   ̈       

                                      (6.5) 

in which 2( ) 2 ( ) ( )
( ) [ ( )]

( ) ( )i

m i i i
i i

i i

a t a t t
t j t

a t a t


       and 

( )
( )

( )

c i
i i

i

a t
j t

a t
   . Equation 

(6.3) can then be further simplified into: 

∑   
          

 
    ∑           

          ∑   
      

 
         (6.6) 

In matrix form, Equation (6.6) can be expanded into: 

[
   ∑   

      
 
       ∑      

 
    

   ∑   
      

 
       ∑      

 
    

] {
    
    

}  {
         ∑   

      
 
    

         ∑   
      

 
    

}  (6.7) 

in which      
 
and      

 
 represent the real and imaginary parts of the complex function 

in the bracket, respectively. Equation (6.7) will be used for the identification of time-

varying damping       and stiffness       of the SDOF system at each time instant t. Note 

that this study used the summation of all significant IMFs in Equation (6.7) to eliminate 

the orthogonality requirements among IMFs. 

6.1.2. A Recursive HHT Method for Multi-Story Shear Buildings. For a linear 

n-DOF system with time-varying parameters, the equation of motion under external loads 

is similar to Equation (6.1) but in matrix form as given by: 

     ̈         ̇                                          (6.8) 

where     ,     , and      are time-varying mass, damping, and stiffness matrices, 

respectively;      is the external load vector;      is the displacement vector. Again, 

mass is considered to be constant in this study. Corresponding to Equation (6.3), 

Equation (6.8) can be rewritten into: 

     ̈         ̇                                          (6.9) 

After the IMFs and Hilbert transforms of various displacement responses have been 

introduced. In Equation (6.9), 

 ̈    {∑  ̈     
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ls (         ) and lf represent the total number of IMFs of the s
th
 DOF displacement 

and the total number of the correlated external load functions. In this study, the base 

excitation of a structure was considered to simulate earthquake effects. Therefore, the 

external loads applied to all DOFs were correlated and the same number of IMFs was 

considered. The quantity        represents the analytical function of the i
th
 IMF and its 

Hilbert transform of the s
th
 degree of displacement. Similar to Equation (6.5), the first and 

second derivatives  ̇      and  ̈      can be related to the displacement        by  ̇      

   
        

and  ̈         
       . Given constant masses, Equation (6.9) can be used to 

identify the damping and stiffness coefficients of the general n-DOF system. In what 

follows, special formulations for shear-type buildings are derived. 

For a shear-type building as schematically shown in Figure 6.1, interval damping 

and stiffness coefficients are to be identified. In this case, the damping and stiffness 

matrices in Equation (6.8) can be rearranged into two vectors: 

                               , and                                    (6.10) 

 

 

Figure 6.1. Multi-story Shear Building 

 

Similar to Equation (6.7), the damping and stiffness coefficients can be identified 

from Equation (6.11): 

[
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For an n-story building, Equation (6.11) contains 2n equations for the evaluation 

of 2n time-varying parameters at any time instant t. The coefficient matrix and the right-

hand term in Equation (6.11) are detailed in Equation (6.12) after t has been dropped for 

brevity: 
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                                          (6.12) 

 

Considering the sparse characteristics (diagonal and next upper diagonal non-zero 

elements) of its coefficient matrices, Equation (6.11) can be solved with a recursive 

algorithm to expedite the solution process. When the accelerations at all floors are 

measured, the floor displacements and then story drifts can be evaluated by double 

integrations. Therefore, the two algebraic equations for the real and imaginary 

components of responses associated with the top story of the building can be solved 

simultaneously to determine       and       at each time instant t, similar to an SDOF 

system. Once       and       are known, the damping and stiffness of the next story of 
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the building,         and         can be determined using the two algebraic equations in 

Equation (6.11) that are associated with the n-1 story of the building. This process 

continues until all unknown coefficients are identified. The whole process can be 

described as: 

Step 1: Identify damping and stiffness coefficients of the n
th
 DOF. The equation 

of motion is described by: 

 ̈      ̇   ̇                                            (6.13) 

By introducing a drift displacement,           , and a virtual excitation,       

 ̈   , Equation (6.13) can be rewritten as: 

 ̇                                                        (6.14) 

The damping and stiffness coefficients of the n
th
 DOF can then be estimated as a SDOF 

system using the HHT method. 

Step 2: Identify damping and stiffness coefficients of the s
th
 DOF. The equation of 

motion for the s
th
 DOF can be described as: 

 ̈      ̇   ̇                                         (6.15) 

By defining a drift displacement,           , and a virtual excitation,       

 ̈      ̇   ̇                      , after the system parameters      and      

have been obtained, Equation (6.15) can be rewritten as: 

 ̇                                                  (6.16) 

Once again, the damping and stiffness coefficients can be identified as a SDOF system 

using the HHT method. 

Step 3: Repeat Step 2 until all of the parameters are identified. 

6.1.3. Evaluation of Identification Accuracy. An amplitude-based index is 

proposed to evaluate the accuracy of structural identification both for parameters and 

models. Since change in structural properties is mostly associated with the peak 

responses of a structure, an index of accuracy (IA) is defined as an amplitude-weighted 

root-mean-squared value over the duration of structural responses. That is, 
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√∑ ∫    
      

 
 

 
   

                              (6.17) 
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in which 
2

0

( )

( )

sm
sm

T

sm

x t

x t dt

 


 is the weighting factor based on the magnitude of the 

structural response; the indices m and p denote the measured and predicted responses 

such as floor displacement in a multi-story building. The predicted structural responses 

were calculated based on the identified damping and stiffness coefficients. 

 

6.2. APPLICATION OF THE RECURSIVE HHT METHOD 

6.2.1. Single-Story Shear Building. A single-story shear building with mass 

m=1.7510
5
 kg and damping ratio ξ=0.02 is subjected to the 1940 El Centro ground 

acceleration. The stiffness of the building is suddenly reduced from k=2.7610
4
 kN/m. to 

1.7510
4
 kN/m. at time instant t=4 sec. The natural frequency of the building from 0 to 4 

sec is 12.6 Hz and reduced to 10 Hz after t=4 sec. Figure 6.2 shows the displacement time 

history of the building that was numerically calculated using the Runge-Kutta method. 

Given the mass and damping ratio of the building, the stiffness of the building is 

to be identified based on the displacement response presented in Figure 6.2. Figure 6.3 

presents the identified stiffness as a function of time when the numerical displacement in 

Figure 6.2 was used without noise, with 2% and 5% noise-to-signal ratio (NSR) Gaussian 

white noises, respectively. It can be seen from Figure 6.3 that the identified results are in 

good agreement with the exact stiffness values over time, regardless of the presence of 

noise, except for the times with low-amplitude responses. The presence of noise slightly 

decreases the accuracy of identified results. Indeed, the index of accuracy defined in 

Equation (6.17) is equal to 1.7%, 2.6% and 4.7% without, with 2%, and 5% white noises. 

They are all less than 5%, which seems quite satisfactory in engineering applications. 

Note that the identified stiffness results at the beginning when the external excitation is 

extremely low should be disregarded. In engineering applications, visual inspections can 

rule out this potentially false positive identification.  
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Figure 6.2. Displacement Time History of the Stiffness-Varying Building 

 

 

 

 

 

Figure 6.3. Identified Stiffness of the Single-Story Building 

 

6.2.2. Two-Story Shear Building. A two-story shear building as shown in Figure 

6.4 was subjected to the 1940 El Centro ground acceleration record. The masses of the 

building are m1=2.6310
5
 kg and m2=1.7510

5
 kg at the lower and upper floors, 

respectively. The damping coefficients of the first and second stories are c1=6.9510
2
 

KN-sec/m and c2=1.8610
2
 kN-sec/m, respectively. The initial stiffness is k1=2.1010

5
 

KN/m and k2 =1.0510
5
 kN/m for the first and second story. 
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Figure 6.4. Two-Story Shear Building 

 

6.2.2.1 Case 1: Abruptly reduction stiffness. In this case, the initial stiffness 

coefficients of the first story (k1=2k) and second story (k2=k) were respectively reduced 

to 1.4010
5
 kN/m and 0.7010

5
 kN/m at time instant t=4 sec. The exact displacement 

responses of the building as presented in Figure 6.5 were calculated using the Runge-

Kutta method. For comparison, k1 and k2 identified from one IMF method (Shi and Law, 

2009) are plotted in Figure 6.6 as a function of time. The corresponding k1 and k2 

identified based on the proposed recursive method are shown in Figure 6.7. The damping 

coefficients c1 and c2 identified based on the proposed recursive method are shown in 

Figure 6.8. It is clearly observed from Figures 6.6 and 6.7, the k1 and k2 identified from 

the recursive method is in excellent agreement with the exact stiffness while the results 

from the one IMF method presented in Shi and Law (2009) are inconclusive for the 

identification of stiffness due to the non-orthogonal property between IMFs at any time 

instant. For Case 1, the index of accuracy is equal to 2.9%. In comparison with Figure 

6.7, Figure 6.8 indicates that the identification of damping coefficients is less accurate 

likely due to the lower magnitude of damping force. 

Figure 6.7 and Figure 6.8 also indicate that the accuracy of identified results is 

affected by the low amplitude responses used in the identification process. For example, 

the displacements immediately before 10 sec. and after 12 sec. are small, thus leading to 

local fluctuations of the identified stiffness. 
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Figure 6.5. Exact Displacements of the Two-Story Shear Building 

 

 

Figure 6.6. Identified Stiffness Based on One IMF 

 

 

Figure 6.7. Identified Stiffness from the Recursive Method: Case 1 

 

  

Figure 6.8. Identified Damping Coefficient from the Recursive Method: Case 1 
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6.2.2.2 Case 2: Gradually reducing stiffness. In this case, the stiffness of the 

first story (k1) is linearly reduced from 2.1010
5
 to 1.4010

5
 kN/m. over a period of time 

t=4 sec to t=8 sec. The stiffness of the second story (k2=1.0510
5
 kN/m.) remains 

unchanged over the duration of the earthquake. Again, the exact displacements were 

calculated using the Runge-Kutta method. The k1 and k2 values identified from the 

recursive method are shown in Figure 6.9. Clearly, the recursive method can accurately 

track the gradually varied parameter. For Case 2, the index of accuracy is 4.3%. 

 

 

Figure 6.9. Identified Stiffness from the Recursive Method: Case 2 

 

6.2.2.3 Case 3: Periodically reducing stiffness.  In this case, the stiffness of the 

first story (k1) is periodically reduced from 2.1010
5
 kN/m to 1.4010

5
 kN/m over a 

period of time t=4 sec to t=16 sec. That is, 5

1 {2.1 0.058( 4) 0.131sin[ ( 4)] } 10
2

k t t


     

kN/m. The stiffness of the second story (k2) is linearly reduced from 1.0510
5
 kN/m. to 

0.7010
5
 kN/m over a period of time t=4 sec to t=8 sec. The k1 and k2 values identified 

from the recursive method are shown in Figure 6.10. Again, the proposed recursive 

method can accurately track both linear and periodical variations of stiffness. For Case 3, 

the index of accuracy is equal to 4.7%. 

 

 

Figure 6.10. Identified Stiffness from the Recursive Method: Case 3 
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6.3. SUMMARY 

In this section, a recursive HHT method was developed to track any variation of 

structural parameters of a multi-story building over time. The recursive HHT method 

allows the structural identification of a building story-by–story and thus computationally 

efficient in the determination of both stiffness and damping coefficients. The proposed 

HHT method uses a summation of all significant IMFs to address the non-orthogonality 

and model perturbation issues. It is robust in terms of the effect of noise and the 

consistency of identified results over time. With 5% noise in numerical data, the 

identified stiffness coefficients of a two-story building remained stable. For single- and 

multi-story building examples, the identified stiffness and damping coefficients are in 

good agreement with their exact values regardless of their abrupt, gradual and periodical 

variations over time. 
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7. TIME-VARYING SYSTEM IDENTIFICATION OF HIGH VOLTAGE 

SWITCHES OF A POWER SUBSTATION 

7.1. INTRODUCTION OF THE SHAKE TABLE TEST 

A power substation is comprised of interconnected components, such as bushings, 

interrupters, connectors, radiators, circuit breakers and surge arresters, most of which 

support fragile elements such as ceramic bushings or insulators. During earthquakes, 

some components of power substations, for example, porcelain insulators and bushings, 

were quite susceptible to earthquakes and easily broken during strong shaking. Typical 

damage caused during an earthquake is shown in Figure 7.1. These equipment items are 

usually connected to each other through conductor buses or cables. In the event of 

earthquakes, these connections may induce dynamic interaction between various items. 

Previous studies (Kiureghian et al., 1999a; 1999b) have indicated that the dynamic 

characteristics may have contributed significantly to the damage of power substations. 

However, design guidelines or analysis methods that account for this interaction effect 

are currently unavailable. 

Electric switches play a critical role in the operation of a power substation. To 

ensure their functionality and safety during an earthquake event, shake table tests were 

conducted in the Structures Laboratory at the Missouri University of Science and 

Technology in order to understand the behaviors and potential failure modes of electric 

switches. Three full-size switches were provided by Turner Switches Company St. Louis, 

Missouri. 

The unidirectional shake table used to excite each switch specimen. It is driven by 

one actuator that is activated by hydraulic power. It can operate in the frequency range 

from 0.01 Hz to 10 Hz with a maximum payload of 20 tons. The maximum stroke of the 

table is +/-25.4 mm. The MTS406 controller has a function generator such as sine and 

cosine waves. The table can also take external signals to simulate any earthquake ground 

motion. 
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Figure 7.1. Typical Damage Resulting from Earthquakes 

 

7.2. TEST SETUP AND INSTRUMENTATION 

To accommodate a three-pillar switch specimen, an “I” beam was designed and 

bolted onto the table to extend the support length for the switch, as illustrated in Figure 

7.2. In this study, the switch was tested for the dynamic behavior in the plane formed by 

the three pillars. Three porcelain pillars are supported on a hollow square tube that was 

bolted to the I-beam. A wood truss was built and used as top transverse supports to the 

switch under testing. The top horizontal wood member along the excitation direction is 

(a) Broken Bushing of a Transformer 
(b) Broken Bushing of a lightning rod 

 

 (c) Oil Leakage from the Bottom of Radiator (d) Broken Support 
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near the test specimen with a small gap in between. Figure 7.3 illustrates the truss system 

that was constructed to prevent any unwanted, potential lateral stability. Figure 7.4 shows 

the two data acquisition systems used for each test: Synergy Box and Orange Box. The 

Synergy Box was used to take accelerations and displacements. The Orange Box was 

used to take strain readings. Video images were also taken during some of the shake table 

tests. To enhance the video quality, a screen with marked strips was provided in the back 

of the test specimen. The accelerometers and linear variable differential transformers 

(LVDTs) are deployed as illustrated in Figure 7.2. 

 

 

Figure 7.2. Test Setup of the High Voltage Switch on Shake Table (all units: mm) 

 

 

 

Figure 7.3. Wood Truss System 
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Figure 7.4. Two Data Acquisition Systems 

 

The specimen was excited with a sinusoidal motion in a frequency range 4 to 10 

Hz in 0.2 Hz interval. For system identification, the amplitude of the sinusoidal wave of 

the first test was 1.27 mm, and the second test was 2.54 mm. For failure tests, the 

excitation amplitude was increased until the specimen collapsed. When the switch was in 

its closed position, the two LVDTs were set to zero prior to testing. As the hydraulic 

pump was turned on, the excitation frequency was recorded by the data acquisition. 

However, the stroke of the shake table was recorded manually and gradually set into a 

predetermined value, e.g., 2.54 mm to minimize a sudden jerk of the shake table system 

that could damage the specimen unintentionally. In its steady state, the maximum 

displacement can be applied for 15 sec. or longer to acquire adequate data. As a result, 

each run at any excitation frequency will last over 30 sec., which is governed by the 

lower bound of excitation frequency. 

The main objectives of the test are to scan the fundamental frequency of the 

switch and understand its ultimate behavior. To achieve these objectives, the following 

vibration test procedure was used: 

Step 1: Conduct a series of harmonic tests with constant amplitude and increasing 

excitation frequency for identification of the fundamental frequency. 

Step 2: Repeat Step 1 with an increase in the amplitude of the excitation for the 

understanding of potential nonlinearity effects. 

Step 3: Excite the structure at its fundamental frequency with increasing 

amplitude of the excitation for failure tests. 
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7.3. SYSTEM IDENTIFICATION WITH WEAK VIBRATION 

The natural frequency and damping ratio of the switch were identified using the 

global least-squares estimation. The structure can be idealized as a linear SDOF system in 

the horizontal direction with the following equation of motion: 

 ̈         ̇      
        ̈                                 (7.1) 

where   is the damping ratio of the system,    is the natural frequency;  ̈    is the 

relative acceleration measured between accelerometer 4 and 3 in Figure 7.2,      is the 

relative displacement measured between LVDT 7 and 6,  ̈     is the base acceleration 

measured by accelerometer 3, and  ̇    is obtained by the central difference method from 

the measured displacement     . 

Figure 7.5 and Figure 7.6 show the fundamental frequency and damping ratio 

identified using the global least-squares estimation for the first and second tests 

respectively. The fundamental frequency identified from the first test was 7.4 Hz and the 

average damping ratio was 4.8%, which are the same as those observed during testing. 

However, the natural frequency was suddenly reduced at resonance. The fundamental 

frequency identified from the second test was 7.2 Hz and the average damping ratio was 

6.0%, except at resonance, when the natural frequency suddenly dropped.  

 

     

Figure 7.5. Fundamental Frequency and Damping Ratio Identified from the First Test 
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Figure 7.6. Fundamental Frequency and Damping Ratio Identified from the Second Test 

 

The connection between the rigid bus (aluminum pipe) and the left pillar of the 

specimen can be open and close as an electric switcher. Therefore, friction mechanism 

was provided to make the mechanical connection. Under weak vibration, there is no 

sliding at the friction surface and the fundamental frequency was 7.4 Hz as originally 

identified as indicated in Figure 7.7. However, due to sliding between the bus and the 

pillar, the fundamental frequency dropped to approximately 7.0 Hz at resonance during 

the second test. 

 

 

Figure 7.7. Average Relative Displacement from First and Second Tests 

 

7.4. TIME-VARYING PARAMETER IDENTIFICATION WITH THE 

RECURSIVE HHT METHOD 

As shown in Figure 7.7, the relative displacement suddenly changed near the 

excitation frequency 7.4 Hz for the second test. To find the variations of the fundamental 

frequency, the proposed recursive HHT was used. 
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The switch structure was considered as an SDOF system and identified using the 

proposed HHT method in Section 6. For the first series of tests, the relative displacement 

between top and bottom of the switch at an excitation frequency of 7.4 Hz is presented in 

Figure 7.8(a). Prior to EMD, a 4
th

-order Butterworth low-pass filter with a cutoff 

frequency of 30 Hz was employed to pre-process signals for noise reduction. The natural 

frequency identified from the HHT method and its lower and upper bounds identified by 

the conventional least-squares method are shown in Figure 7.8(b). The identified 

damping ratio of the switch is presented in Figure 7.8(c). It can be clearly seen from 

Figure 7.8(b) that the average values of the identified results by the proposed method 

basically lie between the lower and upper bounds. The natural frequency decreases with 

the increasing of excitation intensity due to the slip phase of the aluminum pipe against 

the supporting pillar. Around 6 sec., a significant slip may have occurred, resulting in a 

notable change in identified natural frequency and damping ratio. When the excitation is 

over, the natural frequency gradually resumed to its original value due to the stick phase 

of the friction mechanism. It can also be seen in Figure 7.8(b, c) that the identification of 

damping ratio is less accurate than that of natural frequency due likely to the error 

propagation of approximate natural frequency identified and the complex damping 

mechanism involved in switch vibration. 

For the second series of tests, the relative displacement between the top and 

bottom of the switch structure at an excitation frequency of 6.8 Hz is shown in Figure 

7.9(a). The natural frequency and damping ratio identified from the proposed HHT 

method are shown in Figure 7.9(b) and Figure 7.9(c), respectively. As one can see, the 

average values of the identified results are generally bound by the upper and lower 

natural frequencies (dashed lines in Figure 7.9) that were identified by the conventional 

least-square method. Again, the identified damping ratio is less accurate than the natural 

frequency. 
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(a) Measured Relative Displacement at 7.4 Hz 

 

 

(b)  Identified Natural Frequency 

 

 

(c) Identified Damping  

 

Figure 7.8. Measured Responses and Identified Parameters from the 1
st
 Test 
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(a) Measured Relative Displacement at 6.8 Hz 

 

     

(b) Identified Natural Frequency  

 

      

(c) Identified Damping Ratio  

 

Figure 7.9. Measured Responses and Identified Parameters from the 2
nd

 Test 

 

7.5. ULTIMATE BEHAVIOR TEST OF THE STRUCTRUE 

In order to understand the ultimate behavior of the switches, the level of 

excitations at their fundamental frequency was increased gradually. For the first ultimate 

test, the excitation frequency and amplitude were set to 7.2 Hz and 5.08 mm, 

respectively. Figure 7.10 presents the displacement on the top of the pillar from LVDT 7 

and on the aluminum pipe from LVDT 8. The maximum displacement was 29.2 mm from 

LVDT 7 and 32.5 mm from LVDT 8. During the test, resonance was not observed at 7.2 

Hz. The excitation frequency then dropped to 7.0 Hz. The displacement from LVDT 7 

and LVDT 8 are shown in Figure 7.11. It indicates that the maximum displacement 
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reached at 55 mm. The specimen collapsed as fracture can be observed visually at the 

base of one pillar.  

 

 

 

 

 

Figure 7.10. Displacements Measured from LVDT 7 and LVDT 8: First Test at 7.2 Hz 

 

 

 

 

 

Figure 7.11. Displacements Measured from LVDT 7 and LVDT8: First Test at 7.0 Hz 
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approximately 23 sec. Visual inspection on the test specimen in Figure 7.13 confirmed 

that the bottom support of the mechanical open and close mechanism in a right pillar 

fractured likely due to fatigue. The fractured section had a prior defect (a portion of the 

cross section was cut) as observed in Figure 7.13 and Figure 7.14. Once the pillar 

fractured, the rigid bus was in open position, suddenly increasing the displacement at 

LVDT 8 as indicated in Figure 7.12. The left pillar was disconnected from the switch 

mechanism and continued to vibrate until the test stopped at approximately 25 sec.  

 

 

 

 

 

Figure 7.12. Displacements Measured from LVDT 7 and LVDT8: Third Test 

 

 

 

Figure 7.13. Overall View of the Failed Structure 
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Figure 7.14. Fracture Detail and Failure Location 

 

7.6. SUMMARY 

Three power switches were tested at multiple excitation levels for system 

identification and the understanding of failure mechanism. The damping ratio and natural 

frequency of power switches were identified with conventional modal analysis and the 

recursive HHT method. The failure mechanism was investigated via visual inspection and 

data interpretation from displacement measurements.  

Harmonic tests were conducted to identify the parameters of the structure.  Under 

weak vibration, the fundamental frequency identified from the test was around 7.5 Hz 

and the average damping ratio was 4.8%. As the excitation level increased, the natural 

frequency was suddenly reduced at resonance due to potential sliding at the friction 

surface between the rigid bus and pillar. The time-varying structural parameters were 

then identified using the recursive HHT method. Depending on the level of excitations, 

the fundamental frequency decreased to as low as 7.0 Hz. Prior to the structural collapse, 

the fundamental frequency dropped to around 6.0 Hz. 

The three tested switches consistently failed at the bottom of the open-and-close 

mechanical mechanism. Specifically, the rotatory metal shaft for switch opening 

fractured at the bottom connection with prior defects as observed after the test. This is 

most likely attributed to fatigue effect. 
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8. CONCLUSIONS 

In this dissertation, the state-of-the-art development of vibration-based parameter 

identification and damage detection methods has been reviewed with an emphasis on 

advanced time-frequency analysis, such as wavelet transform, Hilbert transform, and 

Hilbert-Huang Transform (HHT). Challenges and critical issues identified with the 

previous methods include the separation of coupled intermittent weak signal and 

continuous strong signal, simultaneous high resolution in time and frequency domains, 

decomposition of closely-spaced modes of vibration, decoupling of excitation and natural 

frequencies, and non-parametric identification of weakly nonlinear systems.  

To address the above challenges and critical issues in structural health monitoring, 

a new signal decomposition theorem, called analytical mode decomposition (AMD), was 

discovered and mathematically proven based on the Hilbert transform of a harmonics 

multiplicative time series. AMD analytically decomposes a time series into many signals 

whose Fourier spectra are non-vanishing over mutually-exclusive ranges separated by 

predetermined bisecting frequencies based on the time-frequency characteristics of the 

time series. Therefore, it allows the decomposition of signal components with significant 

frequency overlapping over the duration of the signal by using time-dependent bisecting 

frequencies. Parametric studies have been extensively conducted for bisecting 

frequencies selection, sampling rate and noise effect. The AMD attributes and 

capabilities have been illustrated with representative signals, such as stationary, 

amplitude and frequency modulated, and low/high energy coupled processes. 

AMD functions like a suite of “perfect” bandpass filters that are adaptive to the 

time-frequency characteristics of signals, thus achieving high resolution both in time and 

frequency domain. Unlike conventional bandpass filtering techniques where windows are 

applied in frequency domain, the adaptive filters are directly applied in time domain and 

require no windowing in frequency domain, eliminating the so-called brick wall effects at 

the edge of windows. AMD is simple in concept, efficient in computation, consistent in 

performance, and reliable in signal processing.  

Due to high resolution in dual domains, AMD can accurately decompose closely-

spaced modes of vibration in frequency domain and multi-scale components of signal in 
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time domain, which are encountered in structural and mechanical engineering. It has been 

successfully applied to the parameter identification and damage detection of single- 

degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems from free 

vibration, harmonic vibration, and ambient vibration. Its accuracy, resolution, and 

efficiency have been validated either numerically or experimentally with a 36-story 

building with a 4-story appendage, a 3-DOF mechanical system, and a ¼-scaled three-

story steel frame installed with a single tuned mass damper. 

Modal parameters can be directly identified from free vibration or from the 

transient response under harmonic vibration extracted by AMD. The free vibration or 

transient response of a MDOF system can further be decomposed into many modes of 

free vibration by AMD. Each mode of free vibration has a well-behaved Hilbert 

transform and, by Hilbert spectral analysis, thus reveals the instantaneous natural 

frequency and damping ratio. This process is referred to as AMD-Hilbert spectral 

analysis.  

Under ambient vibration, free vibration information of a structure was first 

extracted from the structural responses by the conventional random decrement technique 

(RDT), and then used to identify modal parameters by AMD-Hilbert spectral analysis 

like the case with free vibration. This procedure is referred to as RDT-AMD method. 

While RDT can eliminate modal overlapping effects as two natural frequencies approach 

each other, AMD can accurately separate two closely-spaced frequencies. Together, the 

new method provides a system identification tool of high accuracy from ambient 

vibration. Both the numerical analysis of the 36-story building and the shake table testing 

of the ¼-scale, 3-story steel frame have successfully demonstrated the effectiveness of 

the RDT-AMD method in practical applications. 

For weakly nonlinear systems, a non-parametric identification method has been 

developed with AMD-Hilbert spectral analysis. Without knowing the physical model of a 

nonlinear system, the instantaneous frequency and damping coefficient of measured 

responses can be identified in the same way as for linear systems. By establishing the 

relationship between the instantaneous parameters of the responses and the nonlinear 

system, the parameters of a time-varying, associated linear system can be identified. 

Based on the AMD-Hilbert spectral analysis, the representative frequency-amplitude 
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nonlinear curve can be evaluated effectively based on the analysis of a classical Duffing 

oscillator. The AMD-Hilbert spectral analysis has been successfully applied to identify 

instantaneous parameters and detect damage in a hysteretic shear-type building with a 

single tuned mass damper. 

In addition, a recursive HHT method has been developed to identify the time-

varying structural parameters of shear-type buildings under harmonic excitations. When 

measured responses are available at every floor, the damping and stiffness coefficients of 

each story can be identified one by one from top to the bottom of buildings. The new 

method was validated with the shake table testing of a full-sized power switch system and 

the numerical analysis of 1- and 2-story buildings that have abruptly, gradually, and 

periodically changed stiffness coefficients. 

While this study has demonstrated the accuracy, resolution, efficiency, and 

effectiveness of the AMD theorem in signal decomposition, parameter identification, and 

damage detection of linear and nonlinear systems, there are still several aspects that need 

to be addressed in future research work. They include: 

1. The time-varying bisecting frequency was selected from the scalogram of a 

signal by wavelet analysis. This process adds a significant computational effort to the 

application of AMD-Hilbert spectral analysis. How time-varying bisecting frequencies 

can be extracted directly from the signal by AMD is a topic to explore. 

2. AMD functions like an adaptive lowpass or bandpass filter. How it can be used 

for signal denoising is another topic to investigate.  

3. AMD-Hilbert spectral analysis has been applied to weakly nonlinear systems. 

Whether it can be extended to moderately to strongly nonlinear systems is a topic of great 

interest to the earthquake engineering community. 

4. The proposed recursive HHT method has been validated with complete 

measurements at all degrees of freedom. How this method performs with incomplete 

measurements is a question of practical importance for large scale civil engineering 

structures. 
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