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ABSTRACT 

Vapor intrusion (VI) occurs when contaminants in the vapor phase migrate in the 

shallow subsurface and enter buildings through cracks, seams, and gaps and has been 

recognized as a serious human-health threat as occupants are exposed to potentially 

harmful concentrations over long periods of time. The VI pathway has recently (2017) 

been identified as a primary exposure pathway and implemented into the Hazard Ranking 

System for inclusion on the Nation Priorities List. However, assessing VI and human 

exposure is not simple and current methods are time-, cost-, and labor-intensive; 

intrusive; and temporally and spatially variability. Trees are ideal candidates for 

environmental biomonitors because they are ubiquitous, active samplers of vapor and 

groundwater and because they are thought to sample over large spatial and temporal 

scales, effectively averaging variability. Sampling trees is noninvasive and does not 

require the construction of sampling ports in homes, increasing the likelihood of 

obtaining property access and VI data. Tree samples are representative of the shallow 

subsurface with a footprint similar to a residential building. Directional tree sampling can 

also be used to elucidate shallow subsurface contamination from a single tree, and tree 

sampling is shown to be correlated with VI samples, especially when environmental 

samples are averaged over months and years. However, non-uniform distributions of tree-

core samples likely resulted in large interpolation error in areas where trees are sparse. 

Although these findings demonstrate that tree sampling can augment traditional VI 

assessment methods, tree sampling is best applied as a screening tool because of the 

many parameters, and their associate uncertainties, that control mass transfer of 

contaminants in the subsurface and entry into plants and the built environment.   
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1. INTRODUCTION 

1.1. ENVIRONMENTAL CONTAMINANTS 

Our modern national and global landscape is dotted with current and legacy 

contamination from the 1,337 current Superfund sites in the US with 53 currently (2017) 

proposed1 and about 340,000 currently identified and an estimated 2.5 million potential 

contaminated sites in 33 countries in Europe.2 Many other sites undoubtedly do exist and 

will result around the planet from industrialization, particularly in developing countries. 

Two predominant contaminant families at these sites are chlorinated solvents and 

hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xylenes). The most commonly 

encountered chlorinated solvents, trichloroethylene (TCE) and perchloroethylene (PCE), 

are known carcinogens linked to birth defects 3-7 and have low MCLs of 5 µg/L in water 

and EPA risk-based action limits of 0.48 µg/L and 11 µg/L in air.8, 9 Since its inception in 

1983, only 392 Superfund sites have been deleted from the National Priorities List (NPL) 

after attaining cleanup goals. The more than 1,300 remaining NPL and unknown 

contaminated sites still pose an unquantified threat to human health. Of the over 1,700 

proposed, current, and deleted NPL sites, more than 1,400 (more than 80%) are listed for 

volatile organic compound (VOC) contamination with 884, 393, and 278 sites currently 

(2017) listed for benzene, TCE, and PCE, respectively.10 VOC pollutants also pose 

additional health threats because contamination can exist in the vapor form, be sorbed 

onto soil, or dissolved in water. 

1.2. VAPOR INTRUSION 

Vapor intrusion (VI) occurs when contaminants in the vapor phase migrate in the 

shallow subsurface and then enter residential or commercial buildings through cracks, 

seams, and gaps.  Initially a concern because of radon exposure in residential homes in 

the 1980s, VI has been recognized as a serious human-health threat as occupants are 

exposed to potentially harmful concentrations over long periods of time.11, 12 Although VI 

can occur in commercial, industrial, or residential settings, residential areas pose special 

problems as occupants spend a majority of their time in these spaces and are 
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unknowingly exposed to concentrations of contaminants in indoor air, which have a 

much greater impact (up to three orders of magnitude more) on human health than 

outdoor sources.13 As plumes often exist for decades before any identification, and 

sampling of residential homes is not carried out routinely, this exposure can be extremely 

prolonged. 

The VI pathway has recently (2017) been implemented into the Hazard Ranking 

System14 for inclusion on the NPL, allowing a site to be added to the NPL solely based 

on the existence of VI; therefore, screening for VI will be required at an increasing rate; 

however, measurement of VI is not simple and is time-, cost-, and labor-intensive. VI risk 

is often determined through multiple lines of evidence including a combination of indoor-

air samples within structures, sub-slab or crawlspace samples underneath structure 

foundations, and soil-gas samples collected outside structures but near foundations 

(collectively known as VI samples) and through the inclusion of nearby groundwater and 

soil sample data.14 VI samples are often collected as a time-integrated sample from a 

single location using SUMMA passive samplers over a 24-hour period or as a discrete 

sample over a short period of time (less than several minutes) using a pump, capturing 

relatively small subsurface volumes over small periods of time. VI samples collected 

outside structures introduce the risk of theft or disturbance of sampling equipment and 

require multiple utility clearances and drill-rig access, which complicate sampling and 

introduce large liabilities for contractors; whereas, samples collected inside structures 

require assess agreements from owners for personnel to enter homes and install one or 

more invasive sub-slab ports.15, 16 Collectively, these methods are expensive, time and 

personnel intensive and invasive to the residential property. Simpler, quicker, less-

invasive and more cost-effective screening methods are needed in order to effectively 

meet this demand, and such methods would allow for sampling of more suspected sites to 

preemptively protect human health.  

Other substantial challenges in VI potential assessment include addressing the 

temporal and spatial variability present in VI samples. Most risk models assume long-

term exposure to contamination, while VI samples provide “snap shots” of 

contamination, which are highly variable in indoor-air15, 17, 18 and sub-slab and soil-gas 

samples.15, 19-22 Characterizing site-specific variability is time- and cost-intensive as 
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multiple sampling events are required within a year to capture seasonal differences in 

contaminant concentrations. In addition to temporal variability of contaminant 

concentrations in VI samples, contaminant concentrations also substantially vary spatially 

in the subsurface;20, 23, 24 however, VI samples have a relatively small subsurface footprint 

but are often used to represent relatively large areas. Consequently, these temporal and 

spatial variabilities introduces large amounts of uncertainty in actual exposure of 

contaminants to occupants.25   

1.3. TRADITIONAL VAPOR INTRUSION ASSESSMENT METHODS 

In order to characterize the potential for VI, traditional sampling methods 

including groundwater, soil, soil-gas, sub-slab sampling, have been used as proxies for VI 

risk, measured by indoor-air samples, and each has associated advantages and 

disadvantages. 

Groundwater sampling and analysis commonly play a role in VI investigations. 

Groundwater is sometimes already available because of previous site characterization 

efforts or is collected as part of the VI investigation. Depending on the local geology, 

groundwater samples are collected using direct-push technology or more time- and cost-

intensive drilling efforts such as air-rotary drilling methods.14 In all efforts, focus is put 

on characterization of contaminants at the water table, and groundwater concentrations 

are compared to the groundwater VISLs.26 Because the contaminant concentration in 

groundwater is not directly representative of the indoor-air concentration, an attenuation 

factor is assumed based on site-specific geology. Groundwater concentrations are 

assumed to represent a potential upper-bound indoor-air concentration.14 Groundwater 

concentrations tend to have smaller variability than other samples, but wells are invasive 

and expensive to drill, which limits installation and the spatial density of data, 

particularly at the early screening stages of an investigation.  

Soil sampling may be used to characterize the general location of subsurface 

vapor sources, and is commonly conducted using direct-push drill rigs. Because of the 

potential for volatilization during soil sampling, preservation, and chemical analysis, the 

EPA does not recommend the use of soil sampling for estimating VI potential and does 
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not publish VISLs for soil samples. Because of the existence of utilities near buildings, 

drilling can be difficult or impossible for logistical or safety reasons.  

Soil-gas sampling is an inexpensive sampling method that is often used to identify 

and locate subsurface vapor sources and to assess potential preferential pathways for 

vapor transport.  Soil-gas sampling generally consists of driving a probe into the 

subsurface and establishing a negative pressure, thereby evacuating the vapor in the 

interstitial pore space. Soil-gas samples are typically collected less than a few feet below 

ground surface as grab samples, rather than time-integrated samples, but equilibration 

times between 2 to 48 hours are recommended to allow subsurface conditions to 

equilibrate after the probe has been installed.27 Samples are collected as close as possible 

to the building of interest. Modeling results indicate that soil-gas samples collected 

outside the footprint of the building tend to be smaller than directly under the building. 

Given these modeling results and some supporting field evidence, soil-gas concentrations 

from the exterior of buildings are generally not expected to accurately estimate sub-slab 

or indoor-air concentrations. Several rounds of soil-gas sample are recommended to 

develop an understanding of the temporal variability of soil-gas concentrations. The 

consequent repeat rounds of sampling each incur personnel and equipment mobilization 

costs, and costs negatively impact the frequency and amount of data collected.  As with 

soil sampling, the existence of utilities near buildings can complicate the drilling process, 

making it logistically difficult to collect sample and compromising safety. 

Sub-slab sampling is one of the most common VI sampling methods used to 

assess VI potential where soil-gas is sampled from the air space immediately below the 

foundation of the building. To collect sub-slab samples, sampling ports are installed on 

the lowest floor of the house by drilling approximately 1-inch holes through the 

foundation, and leak tests are conducted to ensure that an air-tight port has been 

established. Sub-slab samples are the most accurate sample that assesses VI potential. 

Currently, it is recommended to collected sub-slab samples alongside indoor-air samples 

to establish multiple lines of evidence for VI. When combined with other methods (e.g., 

groundwater or soil-gas), sub-slab samples can be used to assess whether the VI pathway 

is complete (i.e., contaminant vapor are capable of being transported from the source into 

the building). Using an attenuation factor, contaminant concentrations in sub-slab 
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samples can be used to estimate indoor-air concentrations and the potential for VI. 

Although sub-slab samples are the most representative sample for VI potential, 

substantial variability in concentration both spatially and temporally is frequently 

encountered; 15, 19-22 therefore, EPA recommends multiple samples in space and time to 

accurately characterize VI potential.14 Also, this method is highly invasive to the property 

owner, making it difficult to acquire permission from building owners to install sub-slab 

ports, and takes between one to three days per house to install the port. The entry and 

sampling can certainly cause elevated concern and anxiety by the homeowner. The cost, 

invasive nature, and unsettling nature of sub-slab sampling often result in delayed use of 

sub-slab sampling as a screening tool, and thereby prolonging potential exposure. As with 

soil and soil-gas sampling, because of the existence of utilities under buildings, drilling 

can be difficult or impossible for logistical or safety reasons. 

Indoor-air sampling is the only VI sampling method that truly measures VI 

exposure; however, several issues commonly confound the exclusive use of indoor-air 

samples to complete the VI pathway. Indoor-air samples are commonly collected in 

evacuated canisters (i.e., SUMMA canisters) over a period of time, commonly 24 hours.14 

One potential issue in indoor-air sampling is the existence of contaminants in the indoor 

environment that are unrelated to subsurface contamination (e.g., indoor sources such as 

consumer products, combustion processes, building materials and outdoor sources such 

as airborne releases from nearby, regional, and global sources);14 without the collection 

of other samples (e.g., sub-slab samples), the VI pathway cannot be completed.14 The 

spatial and temporal variability of indoor-air samples is also high because of soil-gas 

entry rates, exchange rates, intra-building mixing, as well as other factors. 14, 15, 17, 18 

Although less invasive than sub-slab samples because no ports are installed, indoor-air 

sampling is intrusive to occupants who often refuse entry because of the imposition of the 

process.15  

1.4. UPTAKE OF CONTAMINANTS BY TREES 

Tree-root systems occupy large subsurface volumes similar to the same 

subsurface horizon as basements of structures and have tremendous surface areas that are 

in direct contact with multiple environmental media, are sessile, and uptake vapors and 



6 

groundwater from the subsurface as well as moderately hydrophobic compounds in 

corresponding vapor28-32 and aqueous phases.31, 33-36 Translocation of groundwater is 

active31, not passive, and is driven by wind, solar radiation, and water vapor pressure 

deficits in the atmosphere. Many of the common contaminants (e.g., TCE, PCE, and 

benzene) are readily taken up, translocate up via xylem tissue, and are slowly released 

into the atmosphere where they degrade rapidly (Figure 1.1).37 Uptake of contaminants 

occurs and is limited across the root-membrane boundary38-41 within the tree’s subsurface 

sampling zone, where contaminants are thought to be spatially averaged.42, 43  As 

contaminants translocation through the xylem tissue they experience retardation, which 

results in a time-weighted average.44, 45 These properties of plants provide long-term 

averaging of complex subsurface environments over large areas analogous to the chronic 

exposure characterized by VI.   

 

 

 

 
Figure 1.1. Depiction of the various fate and transport mechanisms that control the 

ultimate fate of environmental chemicals in the vadose, saturated, and above-ground 
zones. 
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1.5. PHYTOSCREENING 

Trees have been used as biomonitors, a practiced called phytoscreening.33, 34, 36, 43, 

46-49 Trees are ideal candidates for biomonitors because they are ubiquitous active 

samplers and because they are thought to sample over large spatial and temporal scales. 

Sampling trees is noninvasive and, unlike direct VI sampling, does not require entry into 

peoples’ homes and the construction of sampling ports, greatly increasing the likelihood 

of obtaining property access and VI data.  

Tree cores are collected using low-cost field equipment.  Typically, a five-

millimeter core is extracted from the outside of the tree, 100 centimeters above ground 

and placed into a septum-capped glass vial using forceps. The sample is allowed to 

equilibrate overnight and analyzed for VOCs using headspace gas chromatography (GC). 

Results should be only interpreted semi-quantitatively to indicate relative concentrations 

because of the numerous fate and transport mechanisms in the tree system (Figure 1.1). 

Comparisons of concentrations in tree tissue with concentrations in other media (e.g., 

groundwater) are tenuous; however, concentrations in tree tissue have been shown to 

correlate better with concentrations in soil vapor than in water (Figure 1.2).28 

 

 

 

 
Figure 1.2. Relationship of PCE in tree cores collected at the New Haven Superfund site 

plotted versus the groundwater concentrations and soil concentrations measured at 
several soil depths. Taken from figure 6 of reference 28. 
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Trees are often not restricted to the same limitations and negative impacts as 

traditional sampling techniques.  The common practice in site assessment of soil is to 

characterize contamination down to the refusal depth of the instrument, which is highly 

dependent on the site-specific residuum and underlying bedrock properties. In contrast, 

tree roots commonly penetrate through small cracks in physical barriers (e.g., bedrock, 

concrete foundations, and septic lines) in order to reach water and nutrients.  

Exploiting the ability of trees to access domains unavailable to traditional 

methods makes it an ideal candidate for site assessment; however, tree sampling is not 

without its limitations (Table 1.1). Because root systems grow to a depth of adequate 

moisture, shallow clayey soils, which have high water-holding capacities and large 

mechanical impedances, restrict root growth to shallower depths.50 Additionally, 

occasional false negatives in data occur and could be a result of a number of things. For 

example, BTEX compounds can readily degrade in the rhizosphere in the presence of 

oxygen, which is increased in the vicinity of trees as diurnal fluctuations of the water 

table increase oxygen transport in the subsurface.51, 52 Without taking into account this 

rhizodegradation, results would be interpreted incorrectly.   Also, due to the proximity of 

roots with the surface, large rainfall events deliver contaminant-free water to the root 

zone quickly and effectively can cause dilution of the contaminants.53 Other 

disadvantages of phytoscreening include the semi-quantitate nature of tree-core results 

because of the number of site-specific parameters that control contaminant partitioning 

and transport54 and the phytotoxicity of contaminants at high concentrations.  

Even with these limitations, the combination of simplicity, speed, and cost-

effectiveness make trees ideal candidates for VI potential surrogates; however, more 

field-scale research needs to be done to determine the subsurface volumes (representative 

footprint and depth) sampled by trees, understand characteristics of directional uptake in 

the field, and establish correlations between tree-core samples and measure VI samples.  

 

 

 

 

 



9 

Table 1.1. Advantages and disadvantages of tree sampling. 
Advantages Disadvantages 

Temporal-averaging Susceptible to rainwater infiltration 

Spatial-averaging Limited to root zone 

Ubiquitous Semi-quantitative 

Cost-effective Trees won't survive if contamination too high 

Active sampler False negatives 

Noninvasive  
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2. GOALS AND OBJECTIVES 

The overarching goal of this research is to improve VI assessment through the use 

of plant sampling (i.e., phytoscreening).  Specifically, the targeted goal is to improve the 

knowledge of how trees interact with the subsurface and to relate that knowledge to the 

field of VI assessment, thereby advancing phytoforensic technologies in VI assessment 

and protecting human health.  To reach this specific goal, a set of specific objectives was 

developed, and completing these objectives will assess a set of scientific hypotheses that, 

if supported, will result in completing the stated goal. 

  

• Objective 1: Determine the lateral extent (i.e., footprint) sampled by trees as a 

function of measured physical tree properties.  

o Hypothesis: The environmental footprint of a tree will be directly 

proportionate to its diameter, and larger trees will occupy a footprint and 

sample an environmental volume similar to the footprint of a typical 

residential home.  

• Objective 2: Assess the depth sampled by trees through correlation between 

contaminant concentrations in trees and multiple media.  

o Hypothesis: Contaminant concentrations in trees are more representative 

of shallow, rather than deep, subsurface contamination in soil and 

groundwater.  

• Objective 3: Characterize factors that affect the relationship between contaminant 

distributions in directional tree-core samples and the subsurface. 

o Hypothesis: Sectorial uptake of contaminants can be quantified and 

elucidate contaminant distribution in the subsurface via directional tree-

core sampling in a field setting, and disagreement between contaminant 

distributions in directional tree-core samples and the subsurface can be 

attributed to in-planta concentration gradients. 
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• Objective 4: Assess the potential for directional tree sampling to indicate the 

direction of shallow soil-gas contamination. 

o Hypothesis: Directional tree-sampling can indicate the direction of 

shallow soil-gas contamination. 

• Objective 5: Correlate field tree-sampling results with characterized soil-gas 

contamination and VI potential at the field scale. 

o Hypothesis: Tree-core samples will be well correlated over large urban 

areas with VI samples and other subsurface media sampling methods.  

 

By completing the above objectives, conclusive support of the underlying 

hypotheses was attained and the overall goal to improve the knowledge base of VI 

assessment through the use of plant sampling (i.e., phytoscreening) was achieved.  The 

fundamental understanding of how trees interact with the subsurface was notably 

enhanced in multiple ways that related to improved characterization approaches. The 

following publications present data and statistical analyses that map to the above 

objectives, and the collective knowledge gained has direct and immediate benefit to the 

field of VI assessment. The new knowledge and directly applicable techniques have 

thereby advanced phytoforensic technologies in VI assessment and offer increased and 

rapid protection of human health.   
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ABSTRACT 

Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built 

environment presents a threat to human health. Traditional VI assessments are often 

labor-, time-, and cost-intensive; whereas traditional subsurface methods sample a 

relatively small volume in the subsurface and are difficult to collect within and near 

structures. Trees could provide a similar subsurface sample where roots act as the 

“sampler’ and are already onsite. Regression models were developed to assess the 

relation between PCE concentrations in over 500 tree-core samples with PCE 

concentrations in over 50 groundwater and 1,000 soil samples collected from a 

tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas 
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chromatography. Results indicate that in-planta concentrations are significantly and 

positively related to PCE concentrations in groundwater samples collected at depths less 

than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values 

greater than 0.90). Results indicate that a 30-cm diameter tree characterizes soil 

concentrations at depths less than 6 m over an area of 700 to 1,600 m2, the volume of a 

typical basement. These findings indicate that tree sampling may be an appropriate 

method to detect contamination at shallow depths at sites with VI.

INTRODUCTION 

Subsurface pollutants remain a human-health burden with over 1,700 sites on the 

Superfund National Priorities List (NPL) in the United States with an additional 53 

proposed sites.1 Since its inception in 1983, only 392 sites have been deleted from the 

NPL after attaining cleanup goals. The more than 1,300 NPL sites remaining and 

unknown contaminated sites still pose an unquantified threat to human health. Of the over 

1,700 NPL sites, more than 1,400 are listed for volatile organic compound (VOC) 

contamination with 884, 393, and 278 sites listed for benzene, trichloroethene (TCE), and 

tetrachloroethene (PCE), respectively.2 VOC pollutants also pose additional health threats 

because contamination can exist in the vapor form, be sorbed onto soil, or dissolved in 

water. 

Of particular concern is vapor intrusion (VI) of VOCs in the built environment.3, 4 

Vapor intrusion occurs when contaminants in the vapor phase migrate in the shallow 

subsurface and enter residential or commercial buildings through cracks, seams, and gaps 

(Figure 1). Initially a concern because of radon exposure in residential homes in the 

1980s, VI has been recognized as a serious human-health threat as occupants are exposed 

to potentially harmful concentrations over long periods of time.5, 6 Two such common 

carcinogens are tetrachloroethylene (PCE) and trichloroethylene (TCE), which have 

maximum contaminant levels of 5 µg/L in drinking water7 and vapor intrusion screening 

levels of 11 µg/m3 for PCE and 0.48 µg/m3 for TCE8. TCE is of particular concern 

because of the carcinogenic effects on fetuses with low-level exposure to TCE during the 

first trimester.3 Because indoor-air quality is highly spatially and temporally variable, and 

because many of the chemicals that pose threats can be derived from sources inside 

buildings, such as cleaning products or building materials, the presence of contaminant 
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concentrations in the shallow subsurface below structures (i.e., the VI potential) is 

measured and used to screen for VI risk, which is based on a target excess lifetime cancer 

risk of 1 x 10-9 and Hazard Quotient of 1.8 Vapor intrusion potential is typically measured 

with direct methods (e.g., sub-slab sampling of soil gas) or indirect methods (e.g., 

groundwater, soil, or soil-gas sampling). These direct and indirect methods for 

measurement of VI risk and potential are invasive, time, and resource intensive (on the 

order of thousands to hundreds of thousands of dollar),9, 10 or may not be done at all due 

to the inability to safely collect samples. Accurate characterization of subsurface 

contamination near and under the foundation of buildings is paramount in determining VI 

risk and potential; however, the subsurface volume sampled by traditional soil-gas 

samples is relatively small and limited by soil porosity, tortuosity, and the pumped soil-

gas volume.11  

 

 

 

 
Figure 1. Schematic of the relationship between vapor intrusion from a hypothetical 
groundwater source, the built environment, and tree assessment of soil, soil-gas, and 

groundwater contamination distribution.  
 

 

 

Tree-root systems occupy large subsurface volumes and surface areas that are in 

direct contact with multiple environmental media, are sessile, and uptake vapors and 

groundwater from the subsurface. Trees can take up moderately hydrophobic 
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contaminants dissolved in water after entry across the root-membrane boundary,12-14 a 

process that is viewed as primarily being controlled by the octanol-water partitioning 

coefficient (log KOW).15 Plants are also active in vapor-phase gas exchange via root-tissue 

respiration. For deciduous trees in particular (as well as some evergreens), the rooting 

volume (lateral16 and vertical17 penetration) can be substantial; therefore, trees interact 

directly with contaminants in groundwater, soil, and soil gas over large subsurface 

volumes and over long periods of time. Roots can also occupy the same subsurface 

horizon as basements of structures (Figure 1). Pollutant molecules collected from the 

subsurface by tree roots can move to aboveground tissues via the translocation pathway, 

allowing for easily accessible, above-ground tissue sampling to be used as a method to 

analyze for pollutants that reside in the subsurface above the saturated zone. 

Translocation is driven by wind, solar radiation, and water vapor pressure deficits in the 

atmosphere and is active, not passive, because trees are essentially hydraulic pumps. 

Tree-coring is the most common method of tissue collection and is cost- and time-

efficient, with sample collection taking only minutes per tree. Analysis of the collected 

sample has been shown to be rapid, sensitive, and cost effective depending on site 

conditions and the analytical methods used.18-21 Tree-coring as a screening tool for site 

characterization has gained national and international regulatory acceptance by the 

United States (U.S.) Environmental Protection Agency (EPA) in 200822 and the European 

Union in 2012.23  

Although recent research has addressed the use of trees to measure contaminant 

concentrations in water24 and soil gas in the natural environment,11 the authors are aware 

of only limited studies22, 25 that have compared the use of tree-core sample collection and 

analysis of VOCs to traditional methods of VOC sampling to assess VI risks to the built 

environment. Additionally, the impact of tree characteristics (such as tree species, size, 

and rooting characteristics) on relationships between groundwater, soil, and vapor 

concentrations and in-planta concentrations is fairly well known,22, 26, 27 but little is 

known about how these tree characteristics affect the spatial representation of plant 

sampling. 
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Study Site 

To investigate the subsurface volume that is effectively sampled by trees and if 

trees can be used to assess VI risk, the Vienna Wells site, a Superfund site in Vienna, 

Missouri, was selected, and tree-core, groundwater, and soil samples were collected. The 

site is characterized primarily by PCE and trichlorotrifluoroethane (CFC-113) 

contamination from historical use of chlorinated solvents as degreasers during hat-

manufacturing processes. In 2006, the PCE concentration in one pubic-supply well about 

150 meters (m) north of the hat factory building exceeded the EPA’s maximum 

contaminant level of 5.0 micrograms per liter (µg/L), and after a site investigation, the 

EPA concluded that the former hat factory was the likely source of PCE contamination in 

the public-supply well.28  

The 32,000-m2 site is composed of the former hat factory building and about 

16,000 m2 of heavily wooded area. Overburden near the hat factory is composed 

primarily of clay and chert to the west, and a sandstone layer outcrops to the east. 

Thickness of the clay overburden ranges from less than about 1 m overlying sandstone 

bedrock to the east to between 2 and 4 m in the remainder of the site to the west (Figure 

2).  

The total depths of monitoring wells ranged from 0 to 53 m below ground surface 

(Table S1) and had 3-m screened intervals at the bottom of each well (Figure 2). Wells 

with total depths ranging from less than 20 m below ground surface were designated 

“shallow wells” (9 wells), and wells with total depths below 20 m were designated “deep 

wells” (8 wells). Depths to groundwater vary from 9 m on the west part of the hat factory 

property to about 11 m on the east part of the site.29 

METHODS 

Tree-core, groundwater, and soil samples were collected at the Vienna Wells site 

from May 2013 to April 2016. Global positioning system (GPS) locations were collected 

for each tree using either a Trimble GeoExplorer XH® (Trimble Navigation Limited, 

Sunnyvale, California) with a sub-meter accuracy or using smart phones (iPhone 5 

[Apple, Cupertino, California] and Samsung S5 [Samsung, Seoul, South Korea]), which 

have been shown to have an average accuracy of about 5–8 m.24, 30 All tree-core, 

averaged groundwater (2013-2016 sample concentrations), and soil data used in this 
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paper are available at U.S. Geological Survey (USGS) ScienceBase, 

https://doi.org/10.5066/F71835D8. Raw (non-averaged) groundwater data are available in 

the USGS National Water Information System (NWIS), 

http://dx.doi.org/10.5066/F7P55KJN (see table S1 for NWIS station IDs). 

Tree-Core Sampling and Analysis 

Tree-core sampling was conducted over seven days during six major phases 

occurring during September 2011, May 2013, August 2013, July 2014, May 2015, and 

October 2015. A total of 525 tree-core samples were collected and analyzed using 

established methods.22, 31 Briefly, samples were collected at about 1 m above land surface 

using an increment borer and cores were transferred using a pair of stainless steel forceps 

into a 20-milliliter (mL) glass vial fitted with a Teflon-lined septum cap. Predominant 

tree types sampled included cedar (Cedrus sp.), oak (Quercus sp.), elm (Ulmaceae sp.), 

sycamore (Plantanus sp.), ash (Fraxinus sp.), and walnut (Juglandaceae sp.). The 

diameter of each tree sampled was measured to the nearest centimeter using diameter 

tape at the sample-collection height. After overnight equilibration with room temperature 

at the Center for Research in Energy and Environment (CREE) at the Missouri University 

of Science and Technology (Missouri S&T), the headspace in tree-core samples was 

analyzed by gas chromatograph (GC) using an Agilent 7890 gas chromatograph (Agilent 

Technologies, Inc., Santa Clara, California) equipped with a micro-electron-capture 

detector (µECD) fitted with a CombiPAL solid-phase microextraction (SPME) fiber auto 

sampler with a 100-µm polydimethylsiloxane (PDMS) SPME fiber. All concentrations in 

tree-core samples were reported as mass of constituent per volume of water in the tree 

core using a mass balance approach to account for partitioning of constituents into tree 

tissue.32 The method detection levels (MDLs) for PCE and TCE were previously 

determined to be 0.47 and 7.7 nanograms per liter (ng/L), respectively.33 

Groundwater Sampling and Analysis 

A total of 56 groundwater samples were collected from monitoring wells on five 

separate occasions between July 2013 and April 2016 (Figure 2). Conventional sampling 

methods were used to collect groundwater samples.34 Briefly, groundwater was pumped  

from each monitoring well using a submersible pump until at least 1.5 well volumes had 
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been removed and once physical properties (e.g. temperature, pH) and chemical 

characteristics (e.g., dissolved oxygen) had stabilized.35 All samples were analyzed using 

EPA method 8260B by one of two laboratories (RTI Laboratories, Inc., Livonia, 

Michigan and National Water Quality Laboratory, Denver, Colorado) using gas 

chromatography-mass spectrometry (GC-MS) with detection limits of 0.022, 0.022, and 1 

µg/L for PCE, TCE, and CFC-113, respectively. 

 

 

 

 
Figure 2. Maximum concentration of tetrachloroethylene (PCE) and construction 

information in groundwater wells and surficial lithology (primarily clay and sandstone). 
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Soil Sampling and Analysis 

Over 1,000 soil samples were collected by the USGS and the EPA across the site 

from 366 boreholes using a truck-mounted Geoprobe™ (Geoprobe Systems, Salina, 

Kansas) drill rig. Continuous soil cores were collected over 54 cumulative days using a 

50-millimeter by 1.2-m long core barrel fitted with disposable acetate sleeve. Depth-to-

refusal, as defined as the maximum possible drilling depth, across the site ranged from 

0.6 m to about 5.5 m, with shallower refusal depths on the east part of the site (0.69–2.4 

m). For samples collected by the USGS, a disposable plastic syringe was used to collect 

5-mL samples at 0.5- or 1-m intervals. Soil samples were quickly transferred into a 

standard 40-mL VOC vial pre-filled with 20 mL of organic free deionized water and 

heated for 35 minutes to 40 °C in a heater block. A gas-tight syringe was used to 

withdraw a 100-µL headspace sample for injection into an Inficon Voyager portable GC 

(Inficon, Bad Ragaz, Switzerland) equipped with a photoionization detector (PID). The 

analysis was run using nitrogen as a carrier gas at a pressure of 55 kilopascals and an 

oven temperature of 63 °C with a total runtime of 6 minutes. The MDLs for PCE and 

TCE were determined to be 11 and 8.4 micrograms per kilogram soil (µg/kg), 

respectively. Because the PID was used rather than an electron capture detector (ECD), 

CFC-113 was not measured in soil samples by the portable GC. For samples collected by 

the EPA, samples were collected according to EPA method 5035 and analyzed by EPA 

Region 7 laboratory. Additionally, a total of 51 soil samples were collected by the USGS 

and analyzed by a USGS contract lab (RTI Laboratories, Livonia, Michigan) for analysis 

of PCE, TCE, and CFC-113 using EPA method 8260B to validate and augment the 

dataset analyzed by the portable GC. These quality control/quality assurance data (Figure 

S1) indicate good correlation (coefficient of determination [R2] of 0.89) between soil 

samples analyzed by the contract laboratory GC and the portable GC.  

Statistical Methods 

Simple and multiple linear regression approaches were used to develop 

explanatory models that express the concentrations of PCE, TCE, and CFC-113 in 

groundwater and soil samples as a function of concentrations of PCE, TCE, and CFC-113 

in tree-core samples. All model residuals were normally distributed after concentration 

data were log-transformed; therefore, linear regression was conducted on the log-
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transformed concentrations using the Python module StatsModels (Python Software 

Foundation, Delaware) with a significance level of 0.05. For simple linear regression 

(SLR), the model was: 

𝐿𝐿𝐿𝐿𝐿𝐿10(𝐶𝐶𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝛽𝛽1 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿10(𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + 𝛽𝛽2 + 𝜀𝜀 

where 𝐿𝐿𝐿𝐿𝐿𝐿10(𝐶𝐶𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is the logarithm of the concentration in groundwater, in µg/L, 

or soil, in µg/kg; 𝛽𝛽1 and 𝛽𝛽2 are coefficients, 𝐿𝐿𝐿𝐿𝐿𝐿10(𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) is the logarithm of the 

concentration in the tree-core sample in ng/L; and 𝜀𝜀 is the error term.  

Tree diameter was negatively skewed (Figure S2), so tree diameters were placed 

into three classes (class 1: diameters ≤ 25 cm [50th percentile], class 2: diameters > 25 cm 

and < 41 cm [75th percentile], and class 3: diameters ≥ 41 cm). For multiple linear 

regression (MLR), the model was: 

𝐿𝐿𝐿𝐿𝐿𝐿10(𝐶𝐶𝐺𝐺𝐺𝐺 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝛽𝛽1 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿10(𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) + 𝛽𝛽2 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛽𝛽3 +  𝜀𝜀 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the tree-diameter class categorical variable, and 𝛽𝛽1, 𝛽𝛽2 , and 𝛽𝛽3 

are coefficients.  

Samples with PCE concentrations less than the MDL (4% of groundwater 

samples, 70% of soil samples, and 30% of tree-core samples) were replaced with the 

MDL and used in statistical analysis. Samples with TCE and CFC-113 concentrations 

less than the MDL were not included in the statistical analysis. The adjusted coefficient 

of determination (R2), which accounts for spurious increases in model fits with an 

increase in the number of explanatory variables, was used to measure model fit.  

Because TCE contamination was measured in air blanks during the October 2015 

sampling event (likely occurring from pairs of recently purchased synthetic gloves), 

gloves were no longer used, and field PCE contamination was suspected in tree-core 

samples collected during the October 2015 event; therefore, the 56 tree-core samples 

collected during October 2015 were excluded from the tree-core dataset and subsequent 

models. 

Integrated Sampling Areas and Volumes 

To develop regression models between pairs of tree-core and groundwater sample 

results, a well-centric approach was used by developing different buffer radii, or circular 

sampling areas, ranging from 1 to 149 m in 2-m increments around each monitoring well 
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sampled (Figure 3). For each well, trees sampled within each buffer were averaged into 

the three diameter size classes previously defined and paired with the average 

groundwater sample result, producing up to three data points per well, and used in 

regression analysis. 

To develop regression models between tree-core and soil samples, a tree-centric 

approach was used by creating representative volumes around each tree with the 

assumption that the subsurface volumes that equate to tree root lateral and vertical 

distribution are best represented by a cylinder (Figure 3). To assess whether the lateral 

extent of the buffer was proportional to the tree diameter, two sets of volumes were 

created: a volume with a constant radius and a volume with radii linearly proportionate to 

tree-trunk diameter. To assess the volume sampled by each tree, a variety of buffer radii 

and depth interval combinations were assessed. Constant-radius volumes were created 

from 3 to 90 m in 3-m increments. Linearly-proportionate volumes were created using a 

hypothetical root-to-trunk (R/T) diameter ratio ranging from 0.1 to 6 meters per 

centimeter (m/cm) in increments of 0.1 m/cm. The depth intervals included all possible 

combinations of depths from 0 to 5.5 m, the largest refusal depth at the Vienna Wells site. 

All soil samples contained within each tree buffer radius and depth interval combination 

were averaged and used in the regression analysis. 

Concentrations of contaminants in tree-cores have been shown to vary temporally 

on a daily, weekly, monthly, and yearly basis,17, 33 and the typical range of concentrations 

in an individual tree is approximately an order of magnitude from periods of little 

evapotranspiration to periods of large evapotranspiration. These temporal changes in 

contaminant concentrations in tree-cores likely contribute to error in regression models 

because time is not taken into account but do not negate the approach used for method 

evaluation in this paper. 

Python was used to pre- and post-process all sample data and conduct spatial joins 

between tree data, groundwater, and soil data. The Python module ArcPy (Environmental 

Systems Research Institute, Redlands, California) was used to construct buffers and 

average soil samples within each resulting volume. 
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RESULTS AND DISCUSSION 

Areas with large PCE concentrations in soil samples (greater than 1,000 µg/kg) 

generally were co-located with areas with large PCE concentrations in tree-core samples 

(greater than 1,000 ng/L). A total of 382 of the 525 tree-core samples contained PCE 

concentrations greater than the detection limit (Figure 4). Tree-core samples with large 

PCE concentrations were clustered near and northeast of the former hat factory and to the 

east in the vicinity of the sandstone outcrop area (Figure 2). PCE was detected in 310 soil 

samples, and PCE concentrations were largest in soil samples in two of the three areas of 

contamination indicated by tree-core sampling: near and northeast of the former hat 

factory. This discrepancy between PCE concentrations in tree-core and soil samples in 

the sandstone outcrop area likely exists because many trees were sampled across the 

property line, and soil sampling across the property boundary was not plausible because 

of steep slopes; however, the presence of the sandstone unit resulted in shallow refusal 

depths during soil sampling and may act as a barrier for vapor transport in the subsurface 

that trees roots are able to locally penetrate.  

Groundwater 

SLR models based on PCE in tree-core and shallow groundwater samples gave 

the best relation (Figure 5), with an adjusted R2 of 0.84. Measures of model fits (adjusted 

R2 values) were low (< 0.3) for SLR models based on PCE in tree-core and combined 

shallow and deep groundwater samples for buffer radii between 21 and 42 m and >109 m. 

Model fit measures were highest when including trees less than 41 m from wells and 

generally decreased with increasing buffer radii distance. Model fits also may be high at 

distances < about 27 m for SLR models incorporating only shallow groundwater because 

very few wells had trees present within 27 m. Lack of data at buffer radii <27 m makes 

interpretation indeterminate and does not necessarily disprove correlation. Most MLR 

models were not significant, which indicates that tree diameter adds little information 

about PCE groundwater concentrations. The adjusted R2 increase at 39 m from 0.28 in 

the SLR model incorporating shallow and deep groundwater to 0.75 in the SLR model 

incorporating only shallow groundwater indicates that these trees are better indicators of 

shallow groundwater than deep groundwater. Although CFC-113 and TCE were detected 
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in many trees, CFC-113 and TCE were not detected in enough samples to build a robust, 

significant model or to draw specific conclusions. 

Soil  

Models describing PCE in soil samples using tree-core samples with a constant 

buffer radius had poor fits (R2<0.1) for buffer radii between 6 and 12 m and at greater 

depths (> 3 m; Figure 6). At buffer radii greater than 12 m, measures of model fit 

decreased quickly to a R2 of around 0 at buffer radii of 18 to 30 m. These poor model fits 

indicate that representing the subsurface volume sampled by trees as a constant radius is a 

poor approach.  

SLR models between PCE in soil and tree-cores using diameter-dependent buffers 

(Figure 7) had notably better fits than models with constant-diameter buffers (Figure 6). 

Measures of model fit ranged from an adjusted R2 of about 0.5 to just less than 1 at buffer 

distances between a hypothetical R/T ratio of 0.8 and 1.8 m/cm. Although models for 

shallow and deep soil intervals were significant, models fits were higher for shallow 

soils. MLR models incorporating tree diameter as an explanatory variable generally were 

not better, likely because the diameter-dependent buffer limited the number of soil 

samples to be included in the model, capturing differences in sampling volume between 

trees. However, the large difference between model fit measures in the constant-diameter 

(Figure 6) and diameter-dependent buffers (Figure 7) indicates that trees interact with a 

subsurface volume directly proportionate to their diameter, an important aspect to 

consider when collecting and interpreting tree-core data; therefore, tree-core samples 

from larger trees represent a proportionally larger environmental volume. 

Comparison and Contrast to Previous Studies 

Findings reported from this investigation compare well with other studies that 

explored the effects of tree sampling characteristics on relationships of groundwater, soil, 

and soil-gas concentrations to in-planta concentrations and the spatial representation of 

plant sampling. Several studies have found significant correlation coefficients between 

contaminants in tree-core and groundwater samples 18, 21, 36, 37 and between tree-core and 

soil samples 36. Struckhoff et al. demonstrated higher correlations between contaminants 

in tree-core samples and shallow soil samples than between contaminants in tree-core  
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Figure 3. Schematic illustrating sampling areas for well-centric buffer radii and sample 
volumes for tree-centric buffer radii. For comparisons between PCE concentrations in 

tree-core and groundwater samples, tree-core samples are averaged within a given well-
centric buffer radius and within three tree size classes and used to build regressions for 

that given buffer distance. For comparisons between PCE concentrations in tree-core and 
soil samples, soil samples within a given tree-centric buffer are averaged for a given 

depth interval and used to build a regression for that given buffer distance. Plots are only 
for illustrative purposes and do not include actual data; theoretical values increase from 

bottom to top and left to right.  
 
 

samples and deeper soil and groundwater samples 38. The effects of tree diameter as well 

as other tree characteristics in 1,913 trees from 39 field sites were also examined and 

revealed that trees of larger diameter had significantly higher PCE concentrations but 

explained only a small portion of the variance in PCE concentrations in groundwater.39 

Although tree species is another important factor in relating contaminant concentrations 

in tree-core samples with other media, tree size has been shown to dominate.39 Findings  
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Figure 4. Maximum concentrations of PCE in soil and groundwater samples and average concentrations of PCE in tree-core samples, 

Vienna, Missouri, 2012-2015.
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Figure 5. Measures of model fit in SLR and MLR models between PCE in groundwater and tree-core samples at different buffer 

distances around wells. Yellow and red dots are models that include shallow and deep groundwater samples. Transparent markers 
indicate insignificant models (p-value > 0.05) and opaque markers indicate significant (p-value ≤ 0.05) models. Values adjacent to 

symbols indicate sample size.
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Figure 6. Measures of model fit in a) SLR and b) MLR models between PCE in soil and 

tree-core samples with at least one significant model with an adjusted R2 value above 0.4. 
Soil samples used in each model were located within a constant buffer distance around 

each tree. Transparent markers indicate insignificant models (p-value > 0.05) and opaque 
markers indicate significant (p-value ≤ 0.05) models. Different colors denote differing 

soil-sample depth intervals. Values adjacent to symbols indicate sample size. 
 
 
 

presented in this study demonstrate a direct relationship between tree-trunk diameter and 

the representative subsurface volume sampled by trees. 

Implications 

These findings indicate that the tree species sampled are indicators of shallow (< 

20 m) PCE contamination in soil (2-4 m) and groundwater but are poorer indicators of 

deeper (>20 m) PCE contamination at this site. Although this study focused primarily on 

PCE because of its variable and wide-spread distribution, similar findings were observed 
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with TCE and CFC-113 concentrations in the groundwater and soil samples collected 

(see SI).  

 

 

 

 
Figure 7. Measures of model fit in a) SLR and b) MLR models between PCE in soil 
samples at various depth intervals and tree-core samples with at least one significant 

model with an adjusted R2 value above 0.4. Soil samples used in each model were located 
within a diameter-dependent buffer distance around each tree. Different colors denote 
differing soil-sample depth intervals. Values adjacent to symbols indicate sample size. 

 
 

 

The sample density and frequency carried out at this site in tree, groundwater, and 

soil would not have been feasible at a populated residential site; therefore, this endeavor 

does not directly demonstrate a link between tree-core concentrations and site-specific, 
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measured VI in homes. However, the close physical connection between tree roots and 

shallow (< 20 m) subsurface contamination demonstrated in this paper and the well-

established connection between shallow groundwater, soil, and soil-gas samples with VI 

demonstrated repeatedly in the literature4, 40-43 serve to affirm that tree sampling is a well-

suited screening tool for potential VI risk. Tree sampling is also applicable in VI 

screening because trees are typically present in areas where humans are located, 

especially in residential areas where VI presents the most substantial health risk.3 The 

highest model fits for shallow subsurface soil contamination were at hypothetical R/T 

ratios between 1 and 1.5 m/cm, which equates to an area between 700 and 1,600 m2 (30- 

and 60-m-diameter circle) for a typical tree with a trunk diameter of 30 cm. In summary, 

the representative subsurface volume sampled by larger trees is similar to the volume of a 

typical basement.  

Plant properties, particularly trunk diameter, are important factors to consider 

when interpreting tree-core data not only because of the diffusive loss that must be taken 

into account,22, 26, 27, 31 but because these findings indicate trees may integrate 

contaminants in the soil zone in a volume proportional to their diameter. In practice, 

sampling larger trees likely will provide more information on the large-scale contaminant 

variability in soil, whereas smaller trees will provide information on the small-scale 

variability. For VI or groundwater screening purposes, larger trees are preferred because 

they have less diffusive loss and have higher probabilities of capturing contamination if 

present because of their larger subsurface sampling volumes; however, concentrations of 

contaminants in larger trees could be diluted if zones of contamination in the vadose zone 

are mixed with larger zones of clean water, but this kind of subsurface heterogeneity 

might be determined if directional tree-coring is used.44  

Tree sampling is cost-effective, rapid, and likely provides subsurface information 

over larger volumes (greater than several hundred m2 in a tree with a diameter of 30 cm) 

than traditional VI and subsurface samples. No heavy equipment is required and 

sampling of each tree requires less than 10 minutes time of one field technician. Because 

trees are essentially preinstalled “samplers,” tree sampling is less invasive than VI and 

traditional sampling, eliminating problems with underground utilities or concerns of theft 

or disruption of sampling canisters and increasing the likelihood of obtaining permissions 
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from home or business owners. Although tree sampling offers many benefits over 

traditional methods, tree sampling is best applied as a pre-screening tool in conjunction 

with VI or traditional methods because concentrations in tree-core samples cannot be 

used to quantify groundwater, soil, or soil-gas concentrations, but tree-core sampling can 

be accurately used to indicate the presence of contamination and aid in determining areas 

where to focus VI and traditional efforts.  

SUPPORTING INFORMATION 

Additional information including a list of wells sampled for groundwater, a 

histogram of tree diameters sampled, figures of model results for CFC-113 and TCE 

concentrations, detailed model results for PCE, residual plots for select PCE models, and 

a plot of quality control/quality assurance data is available free of charge at pubs.acs.org. 
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Figure S1. Relation between concentration of tetrachloroethylene (PCE) in laboratory 

samples and portable gas chromatograph (GC) samples from groundwater and soil 
samples.  
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Figure S2. Histogram of tree diameters sampled at the Vienna Wells site and used in 

statistical analyses.   
 

 

 

Table S1. Well names and National Water Information System station IDs for 
groundwater samples.  

  

Well name NWIS Station ID Total Depth, in meters
JW-01 383636091123802 6
JW-SEEP 381120091563802 0
MK-01 383638091125001 43
MW-01 383638091125001 18
MW-01A 383638091125002 13
MW-02D 383639091125901 24
MW-03D 383639091125901 20
MW-03S 381122091563801 15
MW-04D 383639091125901 21
MW-04S 383640091130701 14
MW-05D 383640091130701 23
MW-05S 383640091130702 14
MW-06 383644091131601 36
MW-06A 383648091124501 29
MW-07 383648091124501 16
MW-08A 381122091563902 53
WP-020 383631091124801 0
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Table S2. Measures of model fit and coefficients in simple linear regression model 
between tetrachloroethylene (PCE) concentrations in all tree-core and groundwater 

samples. Shallow (<20 m) and deep (≥20 m) groundwater samples are combined in these 
models. 

   

Intercept Log CTree Intercept Log CTree

1 - - - - - -
3 0.277 3 0.142 0.411 2.45 -0.772
5 0.277 3 0.142 0.411 2.45 -0.772
7 0.366 4 0.029 0.240 2.45 -0.672
9 0.228 4 0.039 0.303 2.44 -0.730

11 -0.273 5 0.158 0.731 2.15 -0.245
13 -0.224 6 0.092 0.784 2.00 -0.138
15 0.028 7 0.043 0.328 1.19 0.267
17 -0.064 10 0.010 0.516 1.15 0.123
19 0.092 10 0.027 0.205 0.936 0.280
21 0.276 12 0.003 0.046 0.879 0.292
23 0.282 12 0.003 0.044 0.876 0.295
25 0.283 12 0.003 0.043 0.874 0.294
27 0.283 13 0.002 0.036 0.879 0.291
29 0.118 15 0.004 0.114 0.844 0.238
31 0.117 15 0.004 0.115 0.844 0.237
33 0.138 15 0.004 0.095 0.827 0.247
35 0.135 15 0.005 0.098 0.816 0.245
37 0.185 17 0.003 0.048 0.814 0.262
39 0.185 17 0.003 0.048 0.814 0.262
41 0.188 20 0.003 0.032 0.744 0.267
43 0.273 21 0.003 0.009 0.653 0.313
45 0.007 23 0.001 0.294 1.04 0.159
47 0.022 23 0.001 0.235 1.02 0.174
49 0.056 24 0.001 0.139 0.930 0.212
51 0.049 24 0.001 0.153 0.935 0.207
53 -0.015 26 0.000 0.437 1.01 0.098
55 -0.019 26 0.000 0.476 1.02 0.090
57 -0.010 28 0.000 0.397 1.02 0.099
59 -0.012 29 0.000 0.421 0.989 0.096
61 -0.007 29 0.000 0.378 0.975 0.107
63 -0.014 29 0.000 0.438 0.990 0.096
65 -0.013 29 0.000 0.434 0.993 0.097
67 0.010 30 0.002 0.263 0.880 0.142
69 0.008 30 0.002 0.276 0.888 0.138

Buffer 
distance, 
in meters

Adjusted R2 

for PCE

P-Values
Sample 

Size

Model Coefficients
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Table S2. (continued) Measures of model fit and coefficients in simple linear regression 
model between tetrachloroethylene (PCE) concentrations in all tree-core and groundwater 
samples. Shallow (<20 m) and deep (≥20 m) groundwater samples are combined in these 

models. 

  

Intercept Log CTree Intercept Log CTree

71 0.007 30 0.002 0.281 0.890 0.137
73 0.009 31 0.001 0.270 0.909 0.138
75 -0.016 31 0.000 0.475 0.989 0.090
77 -0.007 31 0.001 0.385 0.955 0.111
79 -0.010 31 0.001 0.408 0.954 0.113
81 -0.006 32 0.001 0.372 0.952 0.125
83 -0.003 34 0.001 0.352 0.953 0.119
85 0.005 34 0.001 0.287 0.922 0.136
87 0.005 34 0.001 0.288 0.923 0.136
89 0.009 34 0.001 0.260 0.909 0.144
91 -0.004 34 0.001 0.359 0.957 0.121
93 -0.001 34 0.001 0.333 0.945 0.130
95 -0.010 34 0.001 0.421 0.973 0.118
97 -0.013 34 0.001 0.456 0.987 0.110
99 0.053 36 0.003 0.094 0.858 0.242
101 0.055 36 0.003 0.090 0.853 0.245
103 0.059 36 0.003 0.082 0.846 0.251
105 0.053 36 0.002 0.095 0.871 0.239
107 0.058 36 0.004 0.084 0.845 0.253
109 0.145 38 0.010 0.011 0.726 0.356
111 0.160 38 0.013 0.007 0.696 0.374
113 0.157 38 0.012 0.008 0.704 0.370
115 0.164 38 0.012 0.007 0.696 0.382
117 0.160 38 0.013 0.007 0.696 0.381
119 0.159 38 0.012 0.008 0.701 0.379
121 0.166 38 0.013 0.006 0.692 0.386
123 0.158 41 0.001 0.006 0.819 0.330
125 0.097 42 0.000 0.025 0.958 0.269
127 0.095 42 0.000 0.027 0.965 0.267
129 0.122 43 0.000 0.012 0.907 0.295
131 0.117 43 0.000 0.014 0.921 0.288
133 0.117 43 0.000 0.014 0.921 0.289
135 0.115 43 0.000 0.015 0.924 0.288
137 0.116 43 0.000 0.014 0.921 0.289
139 0.114 43 0.000 0.015 0.926 0.285
141 0.102 43 0.000 0.021 0.947 0.272
143 0.099 43 0.000 0.022 0.952 0.269

Buffer 
distance, 
in meters

Adjusted R2 

for PCE
Sample 

Size

P-Values Model Coefficients
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Table S3. Model fits and coefficients for multiple linear regression between 
tetrachloroethylene (PCE) concentrations in all tree-core and groundwater samples. 

Shallow (<20 m) and deep (≥20 m) groundwater samples are combined in these models. 

  

Intercept Log CTree
Tree 

Diameter
Intercept Log CTree

Tree 
Diameter

1 - - - - - - - -
3 - - - - - - - -
5 - - - - - - - -
7 - - - - - - - -
9 - - - - - - - -
11 - - - - - - - -
13 - - - - - - - -
15 - - - - - - - -
17 0.217 5 0.661 0.303 0.232 0.644 1.79 -0.143
19 0.263 6 0.957 0.185 0.153 0.071 2.16 -0.146
21 0.138 7 0.052 0.809 0.270 1.91 0.072 -0.018
23 -0.191 10 0.037 0.594 0.715 1.28 0.109 -0.006
25 -0.028 10 0.079 0.264 0.801 1.02 0.268 -0.004
27 0.199 12 0.035 0.077 0.831 0.944 0.283 -0.003
29 0.206 12 0.035 0.074 0.834 0.939 0.286 -0.003
31 0.207 12 0.036 0.073 0.841 0.935 0.285 -0.002
33 0.216 13 0.024 0.059 0.808 0.949 0.282 -0.003
35 0.076 15 0.023 0.175 0.534 1.05 0.214 -0.008
37 0.075 15 0.024 0.176 0.536 1.05 0.213 -0.008
39 0.094 15 0.026 0.151 0.554 1.02 0.224 -0.008
41 0.098 15 0.024 0.145 0.505 1.03 0.223 -0.008
43 0.130 17 0.020 0.059 0.826 0.866 0.259 -0.002
45 0.130 17 0.020 0.059 0.824 0.867 0.259 -0.002
47 0.149 20 0.010 0.035 0.692 0.816 0.270 -0.003
49 0.262 21 0.008 0.012 0.414 0.814 0.305 -0.006
51 0.068 23 0.001 0.279 0.140 1.39 0.159 -0.014
53 0.090 23 0.000 0.202 0.125 1.37 0.181 -0.014
55 0.120 24 0.001 0.121 0.121 1.29 0.216 -0.015
57 0.109 24 0.001 0.142 0.130 1.30 0.206 -0.014
59 0.094 26 0.000 0.227 0.060 1.39 0.149 -0.016
61 0.086 26 0.000 0.262 0.064 1.39 0.138 -0.016
63 0.075 28 0.000 0.204 0.078 1.34 0.148 -0.014
65 0.032 29 0.000 0.264 0.148 1.25 0.134 -0.011
67 0.041 29 0.000 0.224 0.138 1.24 0.150 -0.012
69 0.030 29 0.000 0.277 0.150 1.24 0.136 -0.011

P-Values Model CoefficientsBuffer 
distance, 
in meters

Adjusted 
R2 for 
PCE

Sample 
Size
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Table S3. (continued) Model fits and coefficients for multiple linear regression between 
tetrachloroethylene (PCE) concentrations in all tree-core and groundwater samples. 

Shallow (<20 m) and deep (≥20 m) groundwater samples are combined in these models. 

   

Intercept Log CTree
Tree 

Diameter
Intercept Log CTree

Tree 
Diameter

71 0.030 29 0.000 0.272 0.149 1.25 0.137 -0.011
73 0.099 30 0.000 0.112 0.063 1.18 0.201 -0.014
75 0.096 30 0.000 0.118 0.064 1.19 0.198 -0.014
77 0.094 30 0.000 0.123 0.066 1.19 0.195 -0.014
79 0.105 31 0.000 0.118 0.052 1.22 0.193 -0.014
81 0.072 31 0.000 0.231 0.063 1.28 0.150 -0.014
83 0.088 31 0.000 0.167 0.055 1.25 0.176 -0.014
85 0.083 31 0.000 0.183 0.057 1.24 0.181 -0.014
87 0.089 32 0.000 0.158 0.052 1.24 0.197 -0.014
89 0.101 34 0.000 0.130 0.037 1.25 0.193 -0.014
91 0.113 34 0.000 0.100 0.034 1.22 0.209 -0.014
93 0.114 34 0.000 0.099 0.034 1.22 0.210 -0.014
95 0.119 34 0.000 0.088 0.033 1.21 0.216 -0.015
97 0.088 34 0.000 0.174 0.048 1.26 0.177 -0.013
99 0.088 34 0.000 0.176 0.051 1.25 0.177 -0.013

101 0.072 34 0.000 0.251 0.059 1.27 0.165 -0.013
103 0.067 34 0.000 0.282 0.061 1.29 0.155 -0.013
105 0.058 36 0.002 0.058 0.285 1.02 0.287 -0.008
107 0.061 36 0.002 0.055 0.282 1.02 0.289 -0.008
109 0.066 36 0.002 0.049 0.272 1.01 0.297 -0.008
111 0.054 36 0.002 0.063 0.311 1.03 0.277 -0.007
113 0.065 36 0.002 0.050 0.271 1.01 0.301 -0.008
115 0.163 38 0.004 0.005 0.191 0.936 0.399 -0.009
117 0.179 38 0.005 0.004 0.186 0.908 0.416 -0.009
119 0.175 38 0.005 0.004 0.187 0.916 0.412 -0.009
121 0.183 38 0.005 0.003 0.189 0.908 0.422 -0.009
123 0.181 38 0.005 0.004 0.176 0.911 0.425 -0.009
125 0.180 38 0.005 0.004 0.179 0.915 0.423 -0.009
127 0.187 38 0.005 0.003 0.174 0.908 0.430 -0.009
129 0.167 41 0.001 0.004 0.237 1.04 0.343 -0.007
131 0.105 42 0.000 0.019 0.250 1.18 0.283 -0.008
133 0.104 42 0.000 0.020 0.240 1.19 0.283 -0.008
135 0.125 43 0.000 0.009 0.293 1.10 0.314 -0.007
137 0.120 43 0.000 0.010 0.287 1.12 0.308 -0.007
139 0.121 43 0.000 0.010 0.287 1.12 0.308 -0.007
141 0.119 43 0.000 0.010 0.290 1.12 0.307 -0.007
143 0.119 43 0.000 0.010 0.297 1.11 0.307 -0.007
145 0.116 43 0.000 0.011 0.296 1.12 0.304 -0.007
147 0.104 43 0.000 0.015 0.301 1.14 0.291 -0.007
149 0.101 43 0.000 0.016 0.311 1.14 0.287 -0.007

Buffer 
distance, 
in meters

Adjusted 
R2 for 
PCE

Sample 
Size

P-Values Model Coefficients
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Table S4. Measures of model fit and parameter coefficients in simple linear regression 
models between tetrachloroethylene (PCE) concentrations in tree-core and shallow (<20 

m) and deep (≥20 m) groundwater samples. 

  

Intercept Log CTree Intercept Log CTree Intercept Log CTree Intercept Log CTree

1 - - - - - - - - - - - -
3 - - - - - - - - - - - -
5 - - - - - - - - - - - -
7 - - - - - - - - - - - -
9 - - - - - - - - - - - -

11 - - - - - - - - - - - -
13 - - - - - - - - - - - -
15 - - - - - - - - - - - -
17 - - - - - - - - - - - -
19 -0.863 3 0.004 0.831 1.78 0.001 - - - - - -
21 -0.795 3 0.004 0.793 1.78 0.002 -0.252 4 0.259 0.594 1.12 0.272
23 0.778 4 0.026 0.077 1.08 0.353 -0.243 6 0.109 0.888 1.10 0.041
25 0.703 4 0.067 0.104 0.928 0.420 -0.130 6 0.168 0.551 0.900 0.204
27 0.812 5 0.007 0.024 0.967 0.331 0.031 7 0.082 0.325 0.828 0.248
29 0.828 5 0.006 0.021 0.960 0.332 0.032 7 0.081 0.323 0.829 0.250
31 0.837 5 0.006 0.019 0.956 0.332 0.032 7 0.082 0.324 0.828 0.249
33 0.782 6 0.002 0.012 0.951 0.319 0.026 7 0.081 0.330 0.832 0.247
35 0.744 7 0.001 0.008 0.876 0.345 -0.110 8 0.105 0.599 0.810 0.140
37 0.744 7 0.001 0.008 0.876 0.345 -0.109 8 0.106 0.597 0.809 0.140
39 0.754 7 0.001 0.007 0.872 0.344 -0.091 8 0.113 0.543 0.783 0.160
41 0.525 7 0.008 0.040 0.873 0.307 -0.077 8 0.109 0.505 0.773 0.172
43 0.537 9 0.002 0.015 0.884 0.298 -0.076 8 0.109 0.504 0.773 0.172
45 0.537 9 0.002 0.015 0.884 0.298 -0.077 8 0.109 0.505 0.773 0.172
47 0.587 10 0.001 0.006 0.824 0.319 -0.030 10 0.094 0.417 0.694 0.179
49 0.671 11 0.004 0.001 0.631 0.407 -0.018 10 0.091 0.385 0.686 0.190
51 0.668 11 0.004 0.001 0.633 0.406 -0.093 12 0.012 0.806 1.34 -0.068
53 0.675 11 0.004 0.001 0.633 0.390 -0.098 12 0.013 0.900 1.30 -0.035
55 0.722 12 0.005 0.000 0.528 0.446 -0.098 12 0.013 0.900 1.30 -0.034
57 0.723 12 0.005 0.000 0.527 0.446 -0.096 12 0.012 0.845 1.32 -0.053
59 0.606 13 0.009 0.001 0.557 0.365 -0.027 13 0.006 0.427 1.42 -0.182
61 0.611 13 0.009 0.001 0.554 0.366 -0.014 13 0.005 0.381 1.45 -0.200
63 0.608 15 0.004 0.000 0.569 0.349 -0.014 13 0.005 0.381 1.45 -0.200
65 0.611 15 0.004 0.000 0.568 0.350 0.002 14 0.005 0.330 1.40 -0.223
67 0.595 15 0.003 0.000 0.594 0.351 -0.017 14 0.007 0.394 1.37 -0.199
69 0.595 15 0.003 0.000 0.594 0.351 0.011 14 0.006 0.307 1.45 -0.246

P-Values Model Coefficients
Sample Size

Shallow Groundwater Deep Groundwater

Adjusted R2 

for PCE
Buffer 

distance, 
in meters

Adjusted 
R2 for 
PCE

Sample 
Size

P-Values Model Coefficients
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Table S4. (continued) Measures of model fit and parameter coefficients in simple linear 
regression models between tetrachloroethylene (PCE) concentrations in tree-core and 

shallow (<20 m) and deep (≥20 m) groundwater samples. 

  

Intercept Log CTree Intercept Log CTree Intercept Log CTree Intercept Log CTree

71 0.585 15 0.002 0.001 0.612 0.350 0.001 14 0.006 0.335 1.42 -0.228
73 0.534 15 0.005 0.001 0.606 0.348 -0.058 15 0.021 0.635 1.22 -0.114
75 0.516 15 0.004 0.002 0.621 0.344 -0.058 15 0.021 0.633 1.22 -0.115
77 0.513 15 0.004 0.002 0.624 0.343 -0.056 15 0.021 0.624 1.23 -0.118
79 0.517 16 0.003 0.001 0.634 0.349 -0.049 15 0.017 0.565 1.26 -0.139
81 0.484 16 0.005 0.002 0.634 0.345 -0.001 15 0.007 0.340 1.38 -0.223
83 0.445 16 0.004 0.003 0.670 0.339 -0.039 15 0.015 0.505 1.29 -0.160
85 0.436 16 0.006 0.003 0.642 0.357 -0.034 15 0.015 0.474 1.33 -0.184
87 0.460 17 0.008 0.002 0.613 0.383 -0.024 15 0.015 0.427 1.37 -0.214
89 0.371 19 0.005 0.003 0.657 0.324 -0.023 15 0.014 0.421 1.38 -0.215
91 0.372 19 0.005 0.003 0.656 0.324 -0.042 15 0.021 0.522 1.31 -0.173
93 0.364 19 0.005 0.004 0.663 0.322 -0.044 15 0.021 0.536 1.30 -0.166
95 0.385 19 0.006 0.003 0.647 0.326 -0.044 15 0.021 0.533 1.30 -0.170
97 0.354 19 0.004 0.004 0.678 0.329 -0.031 15 0.017 0.461 1.35 -0.201
99 0.401 19 0.005 0.002 0.647 0.354 -0.031 15 0.017 0.461 1.35 -0.201
101 0.417 19 0.013 0.002 0.581 0.421 -0.033 15 0.017 0.472 1.34 -0.197
103 0.369 19 0.012 0.003 0.614 0.404 -0.037 15 0.018 0.492 1.32 -0.187
105 0.339 19 0.008 0.005 0.653 0.386 -0.046 17 0.072 0.591 1.01 0.140
107 0.346 19 0.008 0.005 0.649 0.387 -0.045 17 0.072 0.584 1.01 0.142
109 0.346 19 0.008 0.005 0.649 0.387 -0.042 17 0.072 0.558 0.995 0.152
111 0.299 19 0.004 0.009 0.712 0.359 -0.042 17 0.072 0.558 0.995 0.152
113 0.355 19 0.008 0.004 0.643 0.400 -0.043 17 0.077 0.570 0.997 0.149
115 0.356 19 0.011 0.004 0.625 0.408 0.057 19 0.126 0.167 0.810 0.323
117 0.379 19 0.010 0.003 0.616 0.414 0.069 19 0.148 0.145 0.766 0.346
119 0.359 19 0.009 0.004 0.636 0.402 0.069 19 0.148 0.144 0.767 0.346
121 0.341 19 0.009 0.005 0.643 0.404 0.083 19 0.149 0.123 0.746 0.365
123 0.317 19 0.012 0.007 0.644 0.401 0.083 19 0.149 0.123 0.747 0.365
125 0.311 19 0.011 0.008 0.653 0.397 0.084 19 0.146 0.122 0.749 0.365
127 0.297 19 0.010 0.009 0.668 0.388 0.096 19 0.155 0.106 0.724 0.380
129 0.155 21 0.000 0.044 0.922 0.255 0.130 20 0.093 0.066 0.736 0.378
131 0.153 21 0.000 0.045 0.920 0.257 0.046 21 0.020 0.178 1.02 0.266
133 0.140 21 0.000 0.053 0.935 0.251 0.046 21 0.020 0.178 1.02 0.266
135 0.232 22 0.000 0.014 0.816 0.317 0.046 21 0.019 0.177 1.02 0.267
137 0.221 22 0.000 0.016 0.832 0.311 0.042 21 0.017 0.187 1.03 0.259
139 0.223 22 0.000 0.015 0.830 0.311 0.042 21 0.017 0.186 1.03 0.259
141 0.212 22 0.000 0.018 0.837 0.309 0.042 21 0.017 0.186 1.03 0.259
143 0.220 22 0.000 0.016 0.827 0.313 0.042 21 0.017 0.187 1.04 0.259
145 0.216 22 0.000 0.017 0.831 0.310 0.040 21 0.016 0.192 1.04 0.255
147 0.216 22 0.000 0.017 0.832 0.309 0.026 21 0.013 0.229 1.08 0.235
149 0.217 22 0.000 0.017 0.829 0.307 0.024 21 0.011 0.236 1.09 0.231

Buffer 
distance, 
in meters

Adjusted 
R2 for 
PCE

P-ValuesSample 
Size

Model Coefficients Adjusted R2 

for PCE

P-Values
Sample Size

Model Coefficients

Shallow Groundwater Deep Groundwater
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Table S5. Measures of model fit and parameter coefficients in multiple linear regression 
models between tetrachloroethylene (PCE) concentrations in tree-core and shallow (<20 

m) and deep (≥ 20 m) groundwater samples. 

  

Intercept Log CTree
Tree 

Diameter Intercept Log CTree
Tree 

Diameter Intercept Log CTree
Tree 

Diameter Intercept Log CTree
Tree 

Diameter

1 - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - - -
9 - - - - - - - - - - - - - - - -
11 - - - - - - - - - - - - - - - -
13 - - - - - - - - - - - - - - - -
15 - - - - - - - - - - - - - - - -
17 - - - - - - - - - - - - - - - -
19 - - - - - - - - - - - - - - - -
21 - - - - - - - - -0.727 4 0.439 0.947 0.624 2.21 -0.059 -0.024
23 0.969 4 0.043 0.068 0.169 1.29 0.478 -0.026 -0.605 6 0.252 0.999 0.774 1.33 0.000 -0.008
25 0.981 4 0.041 0.054 0.115 1.09 0.631 -0.033 -0.497 6 0.364 0.674 0.896 1.00 0.182 -0.003
27 0.788 5 0.047 0.056 0.501 1.13 0.333 -0.010 -0.210 7 0.301 0.440 0.961 0.859 0.242 -0.001
29 0.805 5 0.045 0.052 0.505 1.12 0.333 -0.009 -0.209 7 0.298 0.438 0.958 0.862 0.243 -0.001
31 0.814 5 0.044 0.049 0.509 1.11 0.333 -0.009 -0.210 7 0.300 0.439 0.960 0.860 0.242 -0.001
33 0.812 6 0.011 0.017 0.291 1.16 0.328 -0.012 -0.216 7 0.297 0.446 0.955 0.867 0.240 -0.001
35 0.827 7 0.004 0.006 0.139 1.18 0.348 -0.015 -0.294 8 0.232 0.757 0.717 1.05 0.096 -0.008
37 0.827 7 0.004 0.006 0.139 1.18 0.348 -0.015 -0.293 8 0.234 0.756 0.718 1.05 0.097 -0.008
39 0.830 7 0.004 0.006 0.147 1.17 0.346 -0.015 -0.278 8 0.252 0.698 0.741 1.00 0.120 -0.007
41 0.622 7 0.015 0.031 0.206 1.23 0.324 -0.019 -0.261 8 0.241 0.645 0.739 0.980 0.137 -0.007
43 0.461 9 0.010 0.026 0.896 0.902 0.300 -0.001 -0.261 8 0.242 0.645 0.741 0.979 0.137 -0.007
45 0.461 9 0.010 0.026 0.896 0.902 0.300 -0.001 -0.261 8 0.241 0.645 0.740 0.980 0.137 -0.007
47 0.528 10 0.006 0.012 0.995 0.824 0.319 0.000 -0.165 10 0.189 0.459 0.787 0.805 0.175 -0.004
49 0.681 11 0.007 0.002 0.289 0.810 0.395 -0.006 -0.148 10 0.180 0.423 0.773 0.801 0.187 -0.004
51 0.678 11 0.007 0.002 0.288 0.813 0.394 -0.006 -0.077 12 0.015 0.890 0.312 1.75 -0.038 -0.018
53 0.722 11 0.003 0.001 0.150 0.851 0.385 -0.008 -0.080 12 0.015 0.981 0.307 1.72 -0.006 -0.018
55 0.731 12 0.009 0.000 0.274 0.714 0.436 -0.007 -0.080 12 0.015 0.987 0.307 1.71 0.004 -0.018
57 0.733 12 0.009 0.000 0.275 0.712 0.436 -0.007 -0.079 12 0.015 0.926 0.310 1.73 -0.025 -0.018
59 0.650 13 0.005 0.001 0.154 0.778 0.378 -0.008 0.045 13 0.005 0.712 0.205 1.83 -0.085 -0.020
61 0.653 13 0.005 0.001 0.156 0.774 0.378 -0.008 0.054 13 0.004 0.635 0.210 1.85 -0.109 -0.020
63 0.645 15 0.002 0.000 0.150 0.749 0.367 -0.007 0.054 13 0.004 0.636 0.210 1.85 -0.108 -0.020
65 0.647 15 0.002 0.000 0.151 0.746 0.367 -0.007 0.006 14 0.006 0.491 0.330 1.70 -0.162 -0.015
67 0.648 15 0.001 0.000 0.110 0.790 0.376 -0.008 -0.008 14 0.008 0.564 0.315 1.68 -0.138 -0.015
69 0.648 15 0.001 0.000 0.110 0.790 0.376 -0.008 0.017 14 0.006 0.440 0.322 1.76 -0.189 -0.015

Buffer 
distance, 

in 
meters

Adjusted 
R2 for 
PCE

P-Values Model Coefficients

Shallow Groundwater Deep Groundwater

Model CoefficientsAdjusted 
R2 for 
PCE

P-Values
Sample 

Size
Sample 

Size
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Table S5. (continued) Measures of model fit and parameter coefficients in multiple linear 
regression models between tetrachloroethylene (PCE) concentrations in tree-core and 

shallow (<20 m) and deep (≥ 20 m) groundwater samples. 

  

Intercept Log CTree
Tree 

Diameter Intercept Log CTree
Tree 

Diameter Intercept Log CTree
Tree 

Diameter Intercept Log CTree
Tree 

Diameter

71 0.629 15 0.001 0.000 0.137 0.801 0.372 -0.008 0.006 14 0.007 0.490 0.325 1.72 -0.167 -0.015
73 0.598 15 0.002 0.000 0.105 0.810 0.382 -0.009 0.016 15 0.010 0.911 0.186 1.59 -0.027 -0.018
75 0.579 15 0.002 0.001 0.112 0.826 0.378 -0.009 0.015 15 0.010 0.913 0.186 1.59 -0.026 -0.018
77 0.576 15 0.002 0.001 0.112 0.829 0.377 -0.009 0.016 15 0.010 0.888 0.187 1.60 -0.034 -0.018
79 0.591 16 0.001 0.000 0.083 0.845 0.377 -0.009 0.018 15 0.009 0.830 0.194 1.62 -0.052 -0.018
81 0.570 16 0.001 0.001 0.073 0.850 0.380 -0.010 0.043 15 0.005 0.561 0.229 1.71 -0.138 -0.016
83 0.552 16 0.001 0.001 0.058 0.896 0.387 -0.011 0.024 15 0.008 0.744 0.200 1.65 -0.078 -0.017
85 0.537 16 0.001 0.001 0.065 0.862 0.406 -0.011 0.026 15 0.008 0.707 0.204 1.68 -0.096 -0.017
87 0.568 17 0.001 0.000 0.046 0.835 0.437 -0.011 0.032 15 0.008 0.647 0.210 1.71 -0.123 -0.017
89 0.519 19 0.000 0.000 0.024 0.905 0.385 -0.012 0.034 15 0.008 0.635 0.210 1.72 -0.127 -0.017
91 0.520 19 0.000 0.000 0.024 0.905 0.385 -0.012 0.024 15 0.010 0.742 0.196 1.67 -0.088 -0.017
93 0.511 19 0.000 0.000 0.025 0.911 0.384 -0.012 0.022 15 0.010 0.765 0.195 1.66 -0.080 -0.018
95 0.533 19 0.000 0.000 0.022 0.896 0.387 -0.012 0.023 15 0.010 0.755 0.195 1.67 -0.084 -0.017
97 0.432 19 0.001 0.002 0.086 0.905 0.360 -0.009 0.029 15 0.009 0.684 0.205 1.69 -0.111 -0.017
99 0.461 19 0.002 0.001 0.108 0.865 0.374 -0.008 0.029 15 0.009 0.684 0.205 1.69 -0.111 -0.017

101 0.464 19 0.005 0.001 0.135 0.789 0.437 -0.008 0.027 15 0.009 0.696 0.203 1.69 -0.106 -0.017
103 0.410 19 0.005 0.002 0.160 0.819 0.418 -0.008 0.026 15 0.009 0.715 0.200 1.68 -0.099 -0.017
105 0.378 19 0.004 0.004 0.170 0.857 0.402 -0.008 -0.107 17 0.082 0.523 0.693 1.11 0.190 -0.006
107 0.384 19 0.004 0.003 0.170 0.853 0.402 -0.008 -0.106 17 0.081 0.515 0.688 1.11 0.193 -0.006
109 0.384 19 0.004 0.003 0.170 0.853 0.402 -0.008 -0.101 17 0.080 0.486 0.670 1.10 0.208 -0.006
111 0.311 19 0.004 0.009 0.270 0.898 0.362 -0.006 -0.101 17 0.080 0.486 0.670 1.10 0.208 -0.006
113 0.399 19 0.004 0.003 0.154 0.850 0.418 -0.008 -0.104 17 0.084 0.501 0.681 1.10 0.203 -0.006
115 0.394 19 0.005 0.003 0.169 0.828 0.423 -0.008 0.035 19 0.095 0.127 0.443 1.02 0.387 -0.011
117 0.415 19 0.005 0.002 0.172 0.817 0.426 -0.007 0.050 19 0.107 0.108 0.426 0.985 0.414 -0.011
119 0.394 19 0.005 0.003 0.179 0.837 0.415 -0.007 0.051 19 0.106 0.108 0.424 0.986 0.414 -0.011
121 0.385 19 0.004 0.003 0.156 0.850 0.422 -0.008 0.062 19 0.111 0.096 0.444 0.967 0.422 -0.010
123 0.372 19 0.004 0.004 0.134 0.855 0.428 -0.008 0.062 19 0.111 0.096 0.444 0.968 0.422 -0.010
125 0.362 19 0.004 0.004 0.144 0.862 0.422 -0.008 0.063 19 0.109 0.095 0.441 0.971 0.423 -0.010
127 0.347 19 0.004 0.005 0.148 0.877 0.414 -0.008 0.077 19 0.112 0.082 0.429 0.952 0.438 -0.011
129 0.174 21 0.000 0.044 0.248 1.14 0.253 -0.007 0.109 20 0.082 0.058 0.460 0.984 0.403 -0.009
131 0.172 21 0.000 0.045 0.247 1.13 0.255 -0.007 0.020 21 0.029 0.155 0.486 1.26 0.291 -0.009
133 0.166 21 0.000 0.048 0.225 1.15 0.253 -0.007 0.020 21 0.029 0.156 0.487 1.26 0.290 -0.009
135 0.225 22 0.001 0.012 0.373 0.963 0.328 -0.005 0.021 21 0.028 0.154 0.485 1.27 0.291 -0.009
137 0.214 22 0.001 0.014 0.370 0.981 0.322 -0.005 0.017 21 0.026 0.161 0.480 1.28 0.285 -0.009
139 0.217 22 0.001 0.013 0.364 0.981 0.324 -0.005 0.017 21 0.026 0.161 0.483 1.28 0.285 -0.009
141 0.206 22 0.001 0.016 0.373 0.986 0.321 -0.005 0.017 21 0.026 0.161 0.483 1.28 0.285 -0.009
143 0.210 22 0.001 0.015 0.393 0.971 0.323 -0.005 0.017 21 0.026 0.161 0.481 1.28 0.285 -0.009
145 0.207 22 0.001 0.015 0.390 0.976 0.320 -0.005 0.015 21 0.025 0.165 0.481 1.29 0.282 -0.009
147 0.207 22 0.001 0.015 0.389 0.977 0.319 -0.005 0.000 21 0.022 0.197 0.488 1.32 0.262 -0.009
149 0.206 22 0.001 0.016 0.409 0.969 0.315 -0.005 -0.002 21 0.021 0.203 0.490 1.34 0.259 -0.009

Buffer 
distance, 

in 
meters

Adjusted 
R2 for 
PCE

Sample 
Size

P-Values Model Coefficients

Shallow Groundwater Deep Groundwater

Model CoefficientsP-Values
Sample 

Size

Adjusted 
R2 for 
PCE
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Figure S3. Measures of model fit in a) simple linear regression (SLR) and b) multiple 

linear regression (MLR) models between TCE in soil and tree-core samples with at least 
one significant model with an adjusted R2 value above 0.3. Soil samples used in each 

model were located within a constant buffer radius around each tree. Transparent markers 
indicate insignificant models (p-value > 0.05) and opaque markers indicate significant (p-

value ≤ 0.05) models. Values adjacent to symbols indicate sample size 
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Figure S4. Measures of model fit in a) simple linear regression (SLR) and b) multiple 
linear regression (MLR) models between trichloroethylene (TCE) in soil and tree-core 

samples with at least one significant model with an adjusted R2 value above 0.4Soil 
samples used in each model were located within a hypothetical diameter-dependent 

buffer distance radius around each tree. Values adjacent to symbols indicate sample size 
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Figure S5. Simple linear regression models and model residuals between 

tetrachloroethylene (PCE) in shallow (< 20 meters below ground surface) and deep (> 20 
meters below ground surface) groundwater and trees within 39 meters of wells.   
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Figure S6. Simple linear regression model and model residuals between 

tetrachloroethylene (PCE) in soil and tree-core samples. All soil samples were located 
within 0.3 to 0.9 meters below ground surface and within a trunk-to-root ratio of 1.2 

meter/centimeter around each tree. 
 

 

 
Figure S7. Simple linear regression model and model residuals between 

tetrachloroethylene (PCE) in soil and tree-core samples. All soil samples were located 
within 1.8 to 2.1 meters below ground surface and within a trunk-to-root ratio of 2.2 

meters/centimeter around each tree. 
 

ACKNOWLEDGEMENTS 

This material is based upon work supported by the National Science Foundation 

under grant no. #1336877. Support was given by the United States Environmental 

Protection Agency Region 7, with special assistance from Hoai Tran. Special thanks to D. 

Charlie Smith, Cory Pollpeter, and Paul Brenden of the USGS and Dr. Honglan Shi, Eric 

Fallon, Rahul Sukharia, and Tommy Goodwin with the Environmental Engineering 



45 

 

Program and the Center for Research in Energy and Environment at Missouri S&T. Any 

use of trade, firm, or product names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government. 

REFERENCES 

1. USEPA Superfund: National Priorities List (NPL). 
https://www.epa.gov/superfund/superfund-national-priorities-list-npl (July, 2017). 

2. USEPA Superfund Enterprise Management System (SEMS). 
http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm (July 2017). 

3. Forand, S. P.; Lewis-Michl, E. L.; Gomez, M. I., Adverse birth outcomes and 
maternal exposure to trichloroethylene and tetrachloroethylene through soil vapor 
intrusion in New York State. Environ Health Perspect 2012, 120, (4), 616-21. 
DOI: 10.1289/ehp.1103884. 

4. USEPA, Technical Guide for Assessing and Mitigating the Vapor Intrusion 
Pathway from Subsurface Vapor Sources to Indoor Air. In Office of Solid Waste 
and Emergency Response, Ed. 2015; p 267. 

5. Little, J. C.; Daisey, J. M.; Nazaroff, W. W., Transport of subsurface 
contaminants into buildings. Environmental Science & Technology 1992, 26, (11), 
2058-2066. DOI: 10.1021/es00035a001. 

6. Moseley, C. L.; Meyer, M. R., Petroleum contamination of an elementary school: 
a case history involving air, soil-gas, and groundwater monitoring. Environmental 
Science & Technology 1992, 26, (1), 185-192. DOI: 10.1021/es00025a023. 

7. USEPA National Primary Drinking Water Regulations. 
https://www.epa.gov/ground-water-and-drinking-water/national-primary-
drinking-water-regulations (April 2017). 

8. USEPA Vapor Intrusion Screening Level (VISL) Calculator 
https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-levels-visls (April 
2017). 

9.   Fitzgerald, J., One regulatory perspective on the vapor intrusion pathway. 
Groundwater Monitoring & Remediation 2009, 29, (1), 51-52. DOI: 
10.1111/j.1745-6592.2008.01213.x. 

 



46 

 

10. McAlary, T.; Ettinger, R.; Johnson, P.; Eklund, B.; Hayes, H.; Chadwick, D.; 
Rivera-Duarte, I. Review of Best Practices, Knowledge and Data Gaps, and 
Research Opportunities for the US Department of Navy Vapor Intrusion Focus 
Areas; DTIC Document: 2009. 

11. MDHSS, Public health assessment: Vienna Wells, Maries County, Missouri. In 
2015; p 84. 

12. Briggs, G. G.; Bromilow, R. H.; Evans, A. A., Relationships between lipophilicity 
and root uptake and translocation of non-ionised chemicals by barley. Pesticide 
Science 1982, 13, (5), 495-504. DOI: 10.1002/ps.2780130506. 

13. Burken, J. G.; Schnoor, J. L., Predictive Relationships for Uptake of Organic 
Contaminants by Hybrid Poplar Trees. Environmental Science & Technology 
1998, 32, (21), 3379-3385. DOI: 10.1021/es9706817. 

14. Cressie, N., Spatial prediction and ordinary kriging. Mathematical Geology 1988, 
20, (4), 405-421. DOI: 10.1007/bf00892986. 

15. Dettenmaier, E. M.; Doucette, W. J.; Bugbee, B., Chemical Hydrophobicity and 
Uptake by Plant Roots. Environmental Science & Technology 2009, 43, (2), 324-
329. DOI: 10.1021/es801751x. 

16. Dobson, M. C.; Moffat, A. J., A Re-Evaluation of Objections to Tree Planting On 
Containment Landfills. Waste Management & Research 1995, 13, (6), 579-600. 
DOI: 10.1177/0734242X9501300607. 

17. Sorek, A.; Atzmon, N.; Dahan, O.; Gerstl, Z.; Kushisin, L.; Laor, Y.; Mingelgrin, 
U.; Nasser, A.; Ronen, D.; Tsechansky, L.; Weisbrod, N.; Graber, E. R., 
“Phytoscreening”: The Use of Trees for Discovering Subsurface Contamination 
by VOCs. Environmental Science & Technology 2007, 42, (2), 536-542. DOI: 
10.1021/es072014b. 

18. Larsen, M.; Burken, J.; Machackova, J.; Karlson, U. G.; Trapp, S., Using Tree 
Core Samples to Monitor Natural Attenuation and Plume Distribution After a 
PCE Spill. Environmental Science & Technology 2008, 42, (5), 1711-1717. DOI: 
10.1021/es0717055. 

19. Limmer, M. A.; Balouet, J.-C.; Karg, F.; Vroblesky, D. A.; Burken, J. G., 
Phytoscreening for Chlorinated Solvents Using Rapid in Vitro SPME Sampling: 
Application to Urban Plume in Verl, Germany. Environmental Science & 
Technology 2011, 45, (19), 8276-8282. DOI: 10.1021/es201704v. 



47 

 

20. Schumacher, J. G.; Struckhoff, G. C.; Burken, J. G., Assessment of Subsurface 
Chlorinated Solvent Contamination Using Tree Cores at the Front Street Site and 
a Former Dry Cleaning Facility at the River-front Superfund Site, New Haven, 
Missouri, 1999-2003. US Department of the Interior, US Geological Survey: 
2004; p 41. 

21. Wahyudi, A.; Bogaert, P.; Trapp, S.; Macháčková, J., Pollutant plume delineation 
from tree core sampling using standardized ranks. Environmental Pollution 2012, 
162, 120-128. DOI: http://dx.doi.org/10.1016/j.envpol.2011.11.010. 

22. Vroblesky, D. A., User’s Guide to the Collection and Analysis of Tree Cores to 
Assess the Distribution of Subsurface Volatile Organic Compounds. 2008; p 59. 

23. Trapp, S.; Larsen, M.; Legind, C. N.; Burken, J.; Macháčková, J.; Karlson, U. G. 
A guide to vegetation sampling for screening of subsurface pollution; BIOTOOL 
Project GOCE003998; European Union Publication: 2012; pp 1-5. 

24. Rein, A.; Holm, O.; Trapp, S.; Popp-Hofmann, S.; Bittens, M.; Leven, C.; 
Dietrich, P., Comparison of Phytoscreening and Direct-Push-Based Site 
Investigation at a Rural Megasite Contaminated with Chlorinated Ethenes. 
Groundwater Monitoring & Remediation 2015, 35, (4), 45-56. DOI: 
10.1111/gwmr.12122. 

25. Vroblesky, D. A.; Willey, R. E.; Clifford, S.; Murphy, J. J. Real-Time and 
Delayed Analysis of Tree and Shrub Cores as Indicators of Subsurface Volatile 
Organic Compound Contamination, Durham Meadows Superfund Site, Durham, 
Connecticut, August 29, 2006; 2007-5212; 2008. 

26. Vroblesky, D. A.; Clinton, B. D.; Vose, J. M.; Casey, C. C.; Harvey, G. J.; 
Bradley, P. M., Ground Water Chlorinated Ethenes in Tree Trunks: Case Studies, 
Influence of Recharge, and Potential Degradation Mechanism. Ground Water 
Monitoring & Remediation 2004, 24, (3), 124-138. DOI: 10.1111/j.1745-
6592.2004.tb01299.x. 

27. Kuehster, T.; Folkes, D.; Wannamaker, E. In Seasonal Variation of Observed 
Indoor Air Concentrations due to Vapor Intrusion, Midwestern States Risk 
Assessment Symposium, Indianapolis.(www. envirogroup. com), 2004; 2004. 

28. McAlary, T.; Dollar, P.; de Haven, P.; Moss, R.; Wilkinson, G.; Llewellyn, J.; 
Crump, D. In Assessment of Subsurface Vapour Transport Through Triassic 
Sandstone and Quarry Fill into Indoor Air in Weston Village, Runcorn, Indoor 
Air, 2002; 2002. 



48 

 

29. Wilson, J. L., Remedial Investigation of the Vienna Wells Site: Maries County, 
Missouri, 2011-2016. In U.S. Geological Survey, Ed. 2017; p 101. 

30. Zandbergen, P. A., Accuracy of iPhone Locations: A Comparison of Assisted 
GPS, WiFi and Cellular Positioning. Transactions in GIS 2009, 13, 5-25. DOI: 
10.1111/j.1467-9671.2009.01152.x. 

31. Ma, X.; Burken, J., Modeling of TCE Diffusion to the Atmosphere and 
Distribution in Plant Stems. Environmental Science & Technology 2004, 38, (17), 
4580-4586. DOI: 10.1021/es035435b. 

32. Baduru, K. K.; Trapp, S.; Burken, J. G., Direct Measurement of VOC 
Diffusivities in Tree Tissues: Impacts on Tree-Based Phytoremediation and Plant 
Contamination. Environmental Science & Technology 2008, 42, (4), 1268-1275. 
DOI: 10.1021/es071552l. 

33. Limmer, M. A.; Holmes, A. J.; Burken, J. G., Phytomonitoring of Chlorinated 
Ethenes in Trees: A Four-Year Study of Seasonal Chemodynamics in Planta. 
Environmental Science & Technology 2014, 48, (18), 10634-10640. DOI: 
10.1021/es502680p. 

34. Wilde, F.; Radtke, D.; Gibs, J.; Iwatsubo, R., Collection of Water Samples: US 
Geological Survey Techniques of Water-Resources Investigations. In Book: 1999. 

35. Wilde, F. Guidelines for field-measured water-quality properties. v. 2.0. 
https://water.usgs.gov/owq/FieldManual/Chapter6/Chapter6.0v2.pdf  

36. Algreen, M.; Kalisz, M.; Stalder, M.; Martac, E.; Krupanek, J.; Trapp, S.; Bartke, 
S., Using pre-screening methods for an effective and reliable site characterization 
at megasites. Environ Sci Pollut Res 2015, 22, (19), 14673-14686. DOI: 
10.1007/s11356-015-4649-6. 

37. Wittlingerova, Z.; Machackova, J.; Petruzelkova, A.; Trapp, S.; Vlk, K.; Zima, J., 
One-year measurements of chloroethenes in tree cores and groundwater at the 
SAP Mimoň Site, Northern Bohemia. Environ Sci Pollut Res 2013, 20, (2), 834-
847. DOI: 10.1007/s11356-012-1238-9. 

38. Struckhoff, G. C.; Burken, J. G.; Schumacher, J. G., Vapor-Phase Exchange of 
Perchloroethene between Soil and Plants. Environmental Science & Technology 
2005, 39, (6), 1563-1568. DOI: 10.1021/es049411w. 



49 

 

39. Limmer, M. A.; Burken, J. G., Phytoscreening with SPME: Analysis of 
Variability. International Journal of Phytoremediation 2015, 17, (11), 1115-1122. 
DOI: 10.1080/15226514.2015.1045127. 

40. USEPA, Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air 
Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). In 
Office of Solid Waste and Emergency Response, Ed. 2002. 

41. Department of Defense, DoD Vapor Intrusion Handbook. Rev. 4.0, Draft Final. 
January 2009. In 2009. 

42. McAlary, T.; Ettinger, R.; Johnson, P.; Eklund, B.; Hayes, H.; Chadwick, D. B.; 
Rivera-Duarte, I., Review of best practices, knowledge and data gaps, and 
research opportunities for the US Department of Navy Vapor Intrusion Focus 
Areas. In 2009. 

43. Interstate Technology Regulatory Council, Vapor Intrusion Pathway: A Practical 
Guideline. In Washington, DC, 2007. 

44. Limmer, M. A.; Shetty, M. K.; Markus, S.; Kroeker, R.; Parker, B. L.; Martinez, 
C.; Burken, J. G., Directional Phytoscreening: Contaminant Gradients in Trees for 
Plume Delineation. Environmental science & technology 2013, 47, (16), 9069-
9076. DOI: 10.1021/es400437q.  



50 

 

II. DIRECTIONAL TREE SAMPLING TO LOCATE SOIL AND SOIL-GAS 
PLUMES WITH APPLICATIONS IN VAPOR INTRUSION 

Jordan L. Wilson†‡*, Matthew A. Limmer҂, V.A. Samaranayake¥, Joel G. Burken‡ 

 

* Corresponding Author: jlwilson@usgs.gov, 573-308-3539 

 
†Missouri Water Science Center, United States Geological Survey, 1400 Independence 

Road, Rolla, Missouri 65401 
‡Department of Civil, Environmental, and Architectural Engineering, Missouri University 

of Science and Technology, 1201 North State Street, Rolla, Missouri 65409 
҂Department of Plant and Soil Science, University of Delaware, 531 South College 

Avenue, Newark, Delaware 19716 
¥Department of Mathematics and Statistics, Missouri University of Science and 

Technology, 1201 North State Street, Rolla, Missouri 65409 

 

ABSTRACT 

Contaminated sites pose ecological and human-health risks through exposure to 

contaminated soil and groundwater. Whereas we can readily locate, monitor, and track 

contaminants in groundwater, it is often harder to perform these tasks in the vadose zone. 

In this study, tree-core samples were collected at a Superfund site to determine if the 

sample-collection location around a particular tree could reveal the subsurface location, 

or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were 

calculated from tree-core data to reveal contaminant distributions in directional tree 

samples at a higher resolution, and vector directions were correlated with soil-gas 

characterization collected using conventional methods. Results clearly demonstrated that 

directional tree coring around tree trunks can indicate gradients in soil and soil-gas 

contaminant plumes, and the strength of the correlations were directly proportionate to 

the magnitude of tree-core concentration gradients. Given the existing link between soil-

gas and vapor intrusion, this study also indicates that directional tree coring might be 

applicable in vapor intrusion assessment.  
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INTRODUCTION 

Legacy contamination in the United States comprises 1,337 current (2017) 

Superfund sites with 53 proposed,1 and in 33 countries in Europe2 such contamination 

comprises about 340,000 currently identified sites with an estimated 2.5 million potential 

contaminated sites. Sites with contaminants can present a human health risk because of 

exposure to contaminated soil, soil-gas, or groundwater, especially in residential or 

commercial areas. Whereas we can readily locate, monitor, and track contaminants in 

groundwater, it is often harder to perform these tasks in the vadose zone.  

Because of the large number of contaminated sites, the uncertain behavior of 

processes that affect contaminant concentrations in the vapor phase is a major hurdle in 

our understanding of contaminant movement in the subsurface. When faced with the 

challenge of characterizing subsurface contamination, the conventional approach is to 

collect soil or soil-gas samples (on the order of thousands of dollars per sample) to 

provide information on the distribution of contaminants in soil and install temporary 

piezometers or monitoring wells, which both require drilling equipment (on the order of 

hundreds to thousands of dollars per location or more), to characterize groundwater 

contamination extent and direction. These conventional methods are time and cost 

intensive, require multiple site visits per location, provide information from a relatively 

small subsurface volume, and large subsurface heterogeneity often confounds delineation 

of contamination.3-6 The conventional approach may be appropriate at small scales (on 

the order of hundreds of m2) but quickly becomes cost prohibitive to capture the same 

amount of variation at larger scales, and many chlorinated VOC plumes can be 

kilometers long. Variations on the conventional methods (such as incremental soil 

sampling) capture more of the subsurface variation but are time and resource intensive.7, 8  

Many common contaminants (e.g., PCE, TCE, and benzene) are taken up in the 

aqueous 9-12 and vapor phase13 by trees, translocated via xylem, and released into the 

atmosphere. Samples of tree-cores can be collected in minutes. Unlike conventional 

sample collection methods used to assess VI, which extrapolate one-dimensional data to 

two and three dimensions, core samples from trees are thought to provide three-

dimensional data through averaging of subsurface contaminant concentrations over large 

subsurface volumes14, 15 and long time-scales.16, 17 With a few exceptions18-21, xylem on 



52 

 

one side of a tree typically derives from similar tissues from roots on the same side,22-25 

and flow is primarily sectorial up the trunk;26 therefore, tree-core samples collected 

around the trunk of a particular tree should provide information on plume directionality. 

It has also been shown in the controlled laboratory setting that tree-core samples provide 

directional information on concentrations of contaminants in mesocosms relative to the 

tree when tree-core samples are collected around the trunk radially, a practice termed 

directional tree coring.27 Several studies have observed variation in contaminant 

concentrations in directional tree samples,10, 15, 20, 28 but directional tree coring was never 

the focus of the studies and none were able to conclude substantial correlation with 

groundwater, soil, or soil-gas. One study focused on using directional tree coring to 

located groundwater contamination but found poor agreement between contaminant 

gradient directions in groundwater and directional tree cores;29 however, many of the 

samples were located in areas with small concentration gradients in groundwater, and 

directional tree coring may not point to the source of contamination, but rather point 

across subsurface contaminant gradients. No studies have adequately assessed tree 

directionality with respect to soil and soil-gas contamination at the field scale, but, if 

proven to be accurate, tree directionality could have focused applications in soil-gas 

characterization. 

Study Site 

To assess the applicability of the directionality of trees with soil and soil-gas 

contamination in a field setting, the Vienna Wells site, a Superfund site in Vienna, 

Missouri, was characterized using tree-core, soil, and soil-gas sampling. The site is 

contaminated primarily by PCE from historical use of chlorinated solvents. The 32,000-

m2 site is composed of a former hat factory building and approximately 16,000 m2 of 

heavily wooded area. Overburden near the hat factory is composed primarily of 

approximately 1 to 5 m thick cherty clay to the west, and less than 1 meter (m) of sandy 

clay where sandstone outcrops (approximately 160 m) to the east. In 2006, the PCE 

concentration in one pubic-supply well about 150 m north of the hat factory building 

exceeded the EPA’s maximum contaminant level of 5.0 µg/L, and a Missouri Department 

of Natural Resources site investigation concluded that the former hat factory was the 

likely source of PCE contamination in the public-supply well.30 Topographic relief across 
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the site is large with about a 30-m decrease in altitude from the western to the eastern 

property boundary. Depth to groundwater varies from about 11 m near the western 

boundary to about 9 m near the eastern boundary (Figure 1). 

METHODS 

Directional sampling for soil gas was assessed at both the site-wide and 

individual-tree scale at the Vienna Wells site. At the site-wide scale, PCE in soil samples 

was characterized using traditional direct-push soil-sampling techniques, and directional 

tree sampling was conducted in several trees across a majority of the site. On the 

individual-tree scale, soil-gas concentrations were characterized over a small 

(approximately 1,100 m2) area to the east of the hat factory property (Figure 1) using 

equilibrium passive samplers, and directional tree sampling was conducted at a higher 

resolution. This was done to better capture in-planta variation.  

Tree-Core Sampling and Analysis 

Tree-core samples were collected and analyzed using established methods31, 32 at 

the Vienna Wells site on July 29, 2014 (Figure 1) as part of the site-wide assessment and 

May 21, 2015, as part of an individual-tree assessment. Tree genus (and number of trees 

sampled, n) sampled during the site-wide study included elm (Ulmaceae sp.; n=5), oak 

(Quercus sp.; n=5), sycamore (Plantanus sp.; n=1), ash (Fraxinus sp.; n=1), and maple 

(Acer sp.; n=1). Tree-core samples were collected at azimuths of 0°, 90°, 180°, and 270° 

corresponding to the cardinal directions (north, east, south, and west), determined using a 

compass to an accuracy of +/- 5 degrees. Diameter tape was used to measure the diameter 

of each tree at breast height to an accuracy of 0.6 cm. Samples were collected with an 

increment borer and cores were transferred using stainless-steel forceps into a 20-

milliliter (mL) glass vial fitted with a Teflon-lined septum cap. After overnight 

equilibration at room temperature, the headspace in tree-core samples was analyzed for 

PCE using an Agilent 7890 gas chromatograph (Agilent Technologies, Inc., Santa Clara, 

California) equipped with a micro-electron-capture detector (µECD) fitted with a 

CombiPAL solid-phase microextraction (SPME) fiber auto sampler. Equilibrium 

partitioning coefficients were used to report concentrations in nanograms per liter (ng/L) 

of sap in tree-core samples.12 Because the trunk of tree 12 had branched near the ground 
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surface, making it difficult to core the east side, a tree-core at 90°, was not collected. To 

assess the finer-scale directionality in-planta, a 24.3-in oak tree (tree 29, Figure 1) was 

sampled on May 21, 2015, east of the hat factory property boundary. The tree was sample 

at azimuths of 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315° at 0.6, 1.2, and 1.8 m above 

ground surface.  

Soil Sampling and Analysis 

A total of 1,016 soil samples were collected across the site from January 2012 to 

April 2015 from 190 boreholes using a truck-mounted Geoprobe™ (Geoprobe Systems, 

Salina, Kansas) drill rig (Figure S1). Continuous soil cores were collected using a 50-

millimeter by 1.2-m long core barrel fitted with disposal acetate sleeve. A disposable 

plastic syringe (end removed) was used to collect about 5-cm3 subsamples at 0.3- or 0.7-

m intervals. Soil samples were quickly transferred into a standard 40-mL VOC vial pre-

filled with 20-mL of organic free deionized water and heated for 35 minutes to 40 °C in a 

heater block. A gas-tight syringe was used to withdraw a 100-µL headspace sample for 

injection into an Inficon Voyager portable GC (Inficon, Bad Ragaz, Switzerland) 

equipped with a photo ionization detector (PID).  The analysis was run using nitrogen as 

a carrier gas at a pressure of 55 kilopascals and an oven temperature of 63 °C with a total 

runtime of 6 minutes. The MDL for PCE was determined to be 11 micrograms per 

kilogram soil (µg/kg). A total of 51 soil samples were analyzed by a U.S. Geological 

Survey (USGS) contract lab for analysis of PCE to validate and augment the dataset 

analyzed by the portable GC. Regression of all 16 samples above the detection limit in 

both the portable GC and laboratory sample resulted in a significant model with a 

Pearson’s correlation coefficient of 0.89.  

Soil-Gas Sampling and Analysis 

To characterize subsurface concentrations of PCE around tree 29, equilibrium 

passive samplers, called solid polymer samplers (SPSs)33, were deployed from July 2015 

to May 2016.  The SPSs were made from polydimethylsiloxane (PDMS) tubing with an 

inner diameter of 2.4 mm, an outer diameter of 5.6 mm, total length of 26 mm, and a total 

mass of 0.90 ± 0.01 g. To clean the SPSs, all SPSs were washed in methanol for two 

days, rinsed with distilled water, and dried in an oven at 100ºC for two days. To hang the 
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SPSs inside of a borehole, the SPS was slid over a #4-40 x 2” stainless steel machine 

screw with stainless steel nuts placed at each end. Stainless steel wire with a diameter of 

0.6 mm was wrapped around each screw to allow it to hang inside the borehole at a 

particular depth before filling and to allow retrieval of the SPS after equilibration. 

A total of 42 SPS clusters (group of SPSs) were surveyed using a Trimble 

GeoExplorer XH® (Trimble Navigation Limited, Sunnyvale, California) with sub-meter 

accuracy (Figure 1). Clusters were placed at 4.6-m intervals on a 45-m by 14-m grid. At 

each cluster location, SPSs were installed at depths ranging from 0.2 to 1.2 m below 

ground surface (bgs), with targets depths of 0.3, 0.6, 0.9, and 1.2 m bgs. The total depth 

of each borehole was measured using a pre-marked 25.4-mm diameter tile probe used to 

make the boreholes. The tile probe was driven into the soil to the desired depth or refusal 

using a hammer drill and removed using a manual slide hammer. The SPS was then 

lowered to the bottom of the borehole and covered with 1 SPS-length of #30 sieved sand 

and 0.5 SPS-length of bentonite, and the remainder of the borehole was filled with coarse 

sand. All SPS samples were placed July 16–20, 2015 and retrieved May 27, 2016 to 

ensure that equilibrium was reached between contamination in the SPS and the 

subsurface.  Upon retrieval, each SPS was placed into a 20-mL glass vial fitted with a 

Teflon-lined septum cap and analyzed using the same methods as the tree-core samples 

but using established SPS-air partitioning coefficients. For SPS samples, equilibrium 

partitioning coefficients33 were used to report concentrations in micrograms per cubic 

meter (µg/m3)  

Passive samplers are contaminant sinks and have the potential to deplete the 

surrounding environment of contaminant before reaching equilibrium, a phenomenon 

termed the “starvation effect.” The starvation effect for a SPS sample in the SPS plot was 

estimated based on conservative values and using theoretical mass transfer equations at 

steady state for passive samplers. 34 Diffusion into the borehole from the surrounding soil 

likely limits mass transfer and diffusion through the sand pack surround the SPS is 

assumed instantaneous compared to diffusion into the borehole. The rate of mass transfer 

of PCE vapor into the borehole from the surrounding soil via vapor diffusion is given by: 

𝑅𝑅𝑀𝑀𝑀𝑀1 =  
2𝜋𝜋ℎ𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒�𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑔𝑔�

ln 𝑟𝑟3𝑟𝑟2
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Where ℎ is the length of the SPS (2.6 cm), 𝑐𝑐𝑠𝑠 is the PCE concentration some distance 

from the SPS (assumed to be 1.00 x 10-6 µg/cm3), 𝑐𝑐𝑔𝑔 is the PCE concentration in the gas 

phase within the sand-filled borehole (assumed to be 0.90 x 10-6 µg/cm3), 𝑟𝑟2 is the radius 

of the borehole, 𝑟𝑟3 is the radius of influence (assumed to be 150 cm), and 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 is the 

effective diffusion coefficient into the borehole from the surrounding soil given by: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎
𝜃𝜃𝑎𝑎10/3

𝜃𝜃𝑇𝑇2
+
𝐷𝐷𝑤𝑤
𝐻𝐻
𝜃𝜃𝑤𝑤
10/3

𝜃𝜃𝑇𝑇2
 

Where 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 is the diffusion coefficient of PCE in air (7.20 x 10-2)35, 𝐷𝐷𝑤𝑤 is the diffusion 

coefficient of PCE in water (8.20 x 10-6)35, 𝜃𝜃𝑇𝑇 is the total porosity (assumed to be a 

conservative 0.20 for sandy clay), 𝜃𝜃𝑎𝑎 is the air-filled porosity of the surrounding soil 

(assumed to be 0.20), 𝜃𝜃𝑤𝑤 is the water-filled porosity (0.00), and 𝐻𝐻 is the dimensionless 

Henry’s Law constant for PCE (0.245 at 5ºC to be conservative). The rate of mass uptake 

by the SPS is given by: 

𝑅𝑅𝑀𝑀𝑀𝑀2 =  𝑐𝑐𝑔𝑔𝑈𝑈𝑈𝑈 =  𝑐𝑐𝑔𝑔
𝐴𝐴
𝐿𝐿
𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆  

Where 𝐴𝐴 is the surface area of the SPS (4.54 cm2), 𝐿𝐿 is the diffusive path length or SPS 

wall thickness (0.16 cm), and 𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 is the diffusion coefficient for PCE through the SPS 

(2.00 x 10-8)33.  

Centroid Determination 

In order to evaluate trees ability to provide directional information of subsurface 

contamination, contaminant centroids were calculated for trees and soil.27 In general, 

centroids were calculating as follows: 

(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = 𝑢𝑢�⃗ =  �
∑ 𝐶𝐶𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

∑ 𝐶𝐶𝑖𝑖𝑖𝑖
,
∑ 𝐶𝐶𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖

∑ 𝐶𝐶𝑖𝑖𝑖𝑖
� 

Where (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐) are the contaminant centroid coordinates, 𝑢𝑢�⃗  is the centroid vector, 𝐶𝐶𝑖𝑖 is the 

contaminant concentrations at location i, and 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are coordinates of location i.  

The angle between the azimuth vectors formed by a particular pair of tree and soil 

contaminant centroids was calculated by: 

∅ = arccos �
𝑢𝑢�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝑢𝑢�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

‖𝑢𝑢�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖ ∙ ‖𝑢𝑢�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠‖
� 
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Where 𝑢𝑢�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑢𝑢�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are contaminant-centroid vectors in a tree and soil pair, and 

‖𝑢𝑢�⃗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡‖ and ‖𝑢𝑢�⃗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠‖ are the magnitudes of the contaminant-centroid vectors for tree and 

soil samples.  For the purposes of comparing contaminant centroids between tree and soil 

samples, contaminants centroids in tree and soil samples were normalized by tree 

diameter.  

Based on previous work at the Vienna Well site on estimating the environmental 

sampling volume of trees, a tree root-to-trunk diameter ratio of 1 m/cm was used to 

estimate the circular area to evaluate the contaminant centroid in soil for each tree (Figure 

1). Within each circle, the contaminant centroid was calculated for soil and the 

corresponding tree and compared. Because tree 29 was located outside of the soil-data 

domain, it was excluded from the directionality analysis.  

Soil, Soil-Gas, Tree-Core Interpolation 

Because soil samples were unevenly spaced, interpolated surfaces for PCE 

concentrations in soil were developed using the inverse-distance-weighting (IDW) 

method in ArcMap and the Python (Python Software Foundation, Delaware) module 

ArcPy (Environmental Systems Research Institute, Redlands, California). Because tree-

core data was often at the boundary of the soil-data domain, a rectangular boundary of 

non-detect soil data at 1-m intervals was seeded into the IDW model to extrapolate 

outside of the soil-data domain (Figure 1). The IDW model was based on the mean PCE 

concentration at each borehole location using a power of 2 and a minimum and maximum 

neighbor search of 10 and 15, respectively. All PCE concentrations less than the 

reporting limit were replaced with the reporting limit for inclusion in interpolation. The 

interpolated surface was then extracted to a 1-m grid for inclusion in the centroid 

calculation.  

In order to visualize the PCE distribution in the subsurface and in-planta, soil-gas 

and individual tree-core samples were interpolated separately using the anisotropic IDW 

method in RockWorks (RockWare, Inc., Golden, Colorado). Soil-gas and tree-core data 

were interpolated over a three-dimensional domain and visualized using voxel (three-

dimensional pixel) models. Soil-gas data were interpolated at a 0.5-m interval in the x- 

and y-dimensions and a 0.03-m in the z-dimension, and tree-core data were interpolated 

at a 0.01-m interval. 
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RESULTS AND DISCUSSION 

Interpolation of soil data resulted in two distinct areas of PCE soil contamination 

defined in the west area of the study area (Figure 1). To the east, PCE concentrations 

were generally below detection. Concentrations of PCE in tree-core samples were largest 

in the west area of the site in the vicinity of the largest PCE concentrations in soil 

samples related to the source of contamination from the hat factory. Although PCE 

concentrations in soil samples on the eastern part of the hat factory property were below 

detection, PCE concentrations in two trees (23 and 28) were large and indicated 

subsurface contamination (Table 1). The disparity between the soil and tree-core data in 

this area to the east is likely because of the drop in altitude from west to east across the 

site, resulting in a shallower depth to the water table (about 9 m below the surface) in the 

vicinity of trees 23 and 28 and tree uptake of PCE directly from the water table or 

through upward diffusion of vapors from the water table.  

Directional Tree Coring and Soil Contamination 

Concentration-centroid vectors in soil (as µg/kg) and tree-core samples (as ng/L) 

at the Vienna Wells site generally had an azimuthal difference (∅) less than 90˚ (Figure 

2). Soil- and tree-vector pairs with the largest differences in concentration-centroid 

direction were generally located in areas with relatively small concentration gradients in 

soil or tree-core samples (Figure 2). In contrast, soil- and tree-vector pairs with the 

smallest differences in concentration-centroid direction were located in areas with 

relatively large concentration gradients in soil and tree-core samples. It should be noted 

that trees 1, 2, and 3 are located adjacent to the hat factory, and the effective subsurface 

sampling area of those trees is likely small than the extent shown because it is unlikely 

that tree roots would extent underneath the foundation. As a result, the soil gradient may 

be overestimated for these three trees. This trend in azimuthal difference between soil- 

and tree-vector pairs with an increase in media concentration gradient is clearly seen in 

Figure 2.  
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Table 1. Summary of tree-core sample results from the site-wide directionality 
assessment. 

  

Tree 
Identifier

Tree type
Diameter, 

in cm
Side PCE, in ng/L

Mean relative standard 
deviation, in percent

1 Elm 40 E 2888
1 Elm 40 N 1600
1 Elm 40 S 27
1 Elm 40 W 1381
2 Ash 54 E 1627
2 Ash 54 N 5404
2 Ash 54 S 5073
2 Ash 54 W 8329
3 Ash 53 E 2892
3 Ash 53 N 1448
3 Ash 53 S 1033
3 Ash 53 W 1330
7 Elm 38 E 1055
7 Elm 38 N 433
7 Elm 38 S 70
7 Elm 38 W 402
8 Elm 44 E 10
8 Elm 44 N 50
8 Elm 44 S 123
8 Elm 44 W 72

11 Elm 34 E 1231
11 Elm 34 N 3111
11 Elm 34 S 44
11 Elm 34 W 1332
12 Maple 28 E 0.47
12 Maple 28 N 0.47
12 Maple 28 S 4.7
16 Sycamore 34 E 2324
16 Sycamore 34 N 4271
16 Sycamore 34 S 1496
16 Sycamore 34 W 3058
19 Oak 98 E 54
19 Oak 98 N 20
19 Oak 98 S 77
19 Oak 98 W 0.47
21 Elm 25 E 45
21 Elm 25 N 219
21 Elm 25 S 819
21 Elm 25 W 526
23 Oak 75 E 221
23 Oak 75 N 154
23 Oak 75 S 65
23 Oak 75 W 49
28 Oak 67 E 410
28 Oak 67 N 459
28 Oak 67 S 385
28 Oak 67 W 1020
29 Oak 62 E 237
29 Oak 62 N 209
29 Oak 62 S 239
29 Oak 62 W 108
31 Oak 72 E 4.7
31 Oak 72 N 14
31 Oak 72 S 4.7
31 Oak 72 W 4.7

46.1

27.0

59.0

106.1

73.5

64.1

76.6

36.6

78.4

56.8

[PCE, tetrachloroethylene; ng/L, nanograms per l i ter; cm, centimeter; E, east; N, north; S, south; 
W, west]

68.8

46.5

42.9

72.6
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Figure 1. Concentration-centroid vectors in tree and soil samples overlaid on inverse-distance-weighting interpolation of soil data, 

locations of solid polymer samplers (SPSs), Vienna, Missouri, 2012-2015. The environmental volumes over which each soil 
concentration-centroid vector was calculated are shown in yellow-dashed circles and are proportionate to tree diameter. 
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Figure 2. Azimuthal difference (Ø) between concentration-centroid vectors in tree and 
soil samples versus the magnitude of the concentration gradient in a) tree and b) soil 

samples normalized by tree diameter. Small azimuthal differences indicate agreement 
between the concentration-centroid vectors in soil and tree-core samples from one 

location. Tree numbers are shown on Figure 1.  
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Directional Tree Coring and Soil-Gas 

The mass transfer rate of PCE to the SPS (9.8 x 10-9 µg/s) was found to be more 

than four orders of magnitude greater than the mass transfer rate of PCE into the SPS 

(5.15 x 10-13 µg/s); therefore, the starvation effect is not likely occurring (i.e., the SPSs 

are not depleting concentrations form the surrounding area) and can be used to accurately 

measure the relative soil-gas distribution.  

Concentrations of PCE in soil-gas samples were largest near the middle of the 

SPS plot (Figures 3a and 3b) in the vicinity of the sampled tree, varied from about 486 to 

3.5 µg/m3 (reporting limit), and concentrations of PCE generally increased with depth 

(see Table S1 in SI). Because the depth to groundwater was about 9 m below ground 

surface and because of the large PCE concentrations in the northeast and southwest 

corners of the SPS plot, the source of this contamination is likely vapor transport from 

groundwater through preferential pathways in the subsurface but may also be the result of 

local dumping that was not detected in nearby soil samples (Figure S1).  

In-planta PCE concentrations were largest on the south and southwest side of the 

tree in the direction of the subsurface plume (Figures 3c and 3d). Concentrations of PCE 

varied within the tree by over two orders of magnitude from a sample at 2,052 ng/L on 

the south side of the tree directly facing the subsurface plume to a sample below the 

reporting limit (4.7 ng/L) on the north side of the tree facing away from the subsurface 

plume (Table 2). This in-plant directionality was observed at all heights and indicates that 

individual trees exhibit directional information on subsurface plume location. Spreading 

of PCE concentration from 0.6 m to 1.2 and 1.8 m is likely the result of nonaxial flow as 

shown by others18-21 and/or contaminant diffusion across vascular tissue but also may be 

a result of axial rotation of vascular tissue that has been hypothesized in another field 

study.10  

Site Implications 

The best agreement between the direction of concentration gradients in directional 

tree cores and soil samples occurred in areas with large subsurface concentration 

gradients (i.e., along the periphery of the contaminant plume) and the least agreement 

occurred  in areas with small subsurface concentration gradients (i.e., far from or directly 
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above the contaminant plume). These results indicate that higher confidence can be 

associated with directional tree-core data when tree-core concentration gradients are 

relatively large, and conversely, less confidence can be associated with directional tree-

core data when concentration gradients are relatively small. Confidence in directional tree 

sampling also should be greater in areas with larger subsurface concentration gradients. 

The link between confidence in tree directionality and large gradients is essentially an 

issue of signal-to-noise because directionality essentially relies on differences in 

concentration (signal) above average in-planta concentrations (noise) to infer direction.  

 

 

 

Table 2. Summary of directional tree-core sample results from tree 29 within the solid 
polymer sampler (SPS) plot. 

 

PCE, in ng/L Direction Height, in m
Mean relative standard 

deviation, in percent

96 N
1,711                  S

284 E
987 W
193 NE
365 SE
232 NW

1541 SW
136 N

2,052                  S
407                     E

1,532                  W
564 NE
496 SE
250 NW
807 SW
4.7 N
932 S
110 E
166 W
842 NE
631 SE
308 NW
876 SW

[PCE, tetrachloroethylene; ng/L, nanograms per liter; m, meters; N, 
north; S, south; E, east; W, west; NE, northeast; SE, southeast; NW, 
northwest; SW, southwest]

89.6

80.3

73.3

1.8

1.2

0.6
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Figure 3. Spatial distribution of tetrachloroethylene (PCE) in a) solid polymer samplers 

(SPSs) less than 1.6 m below ground surface in the subsurface, b) agreement between in-
planta and soil-gas concentration distribution, and spatial distribution of in-planta PCE 

concentrations in tree 29 facing c) northeast and d) southwest within the SPS plot east of 
the hat factory property boundary. Subparts a) and b) are viewed from oblique aerial 

views of 30º from the horizon and at an azimuth of 135º. 
 

 

 

Because of the importance of concentration gradients in the subsurface, 

directional tree coring should be carried out across the entire site to increase the 

likelihood of sampling a tree that intercepts groundwater or soil gas along the periphery 

of the plume where subsurface concentration gradients are largest. Although sampling 

trees located directly in the plume are useful in indicating the plume presence at that 

location, only limited directional information can be obtained. Although this study 
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concentrated on the accuracy of individual trees to indicate the direction of subsurface 

contaminant plumes, directional tree-core samples from more trees with less confidence 

(i.e., lower concentration gradients) also may be useful if the aggregation of that data 

indicates an overlapping area of contamination. 

Ideally, directional tree coring would be conducted as a screening tool to inform 

future sampling activities. Because of the time- and cost-effective nature of tree coring, 

which takes one person only a few minutes per tree and has low analytical costs, tree-core 

sampling would be the initial step in the pre-screening stage of a site assessment. In areas 

where trees exist and concentration gradients are large in directional tree-core samples, 

concentration-centroid vectors can be drawn and used to triangulate areas of further 

investigation. Moreover, directional tree sampling has been shown here to indicate the 

location of shallow subsurface contamination; therefore, directional tree coring likely has 

application in vapor-intrusion assessment. Weights potentially could be attributed to 

vapor intrusion potential depending on the direction of the in-planta contaminant-

centroid vector (facing a particular living space or not). 

SUPPORTING INFORMATION 

Additional information, including a figure showing the distribution of soil-

samples and SPS samples results, is available free of charge at pubs.acs.org. 

 

 

 



 

 

66 

 
Figure S1. Soil sample locations overlaid on inverse-distance-weighting (IDW) interpolation of soil data.   
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Table S1. Solid polymer sampler (SPS) sample results.  

  

Location Depth, in m
PCE, in 
µg/m3

1 0.2 7.6
1 0.3 55.0
1 0.3 56.6
2 0.3 52.8
2 0.6 392.1
3 0.3 6.5
3 0.3 4.4
4 0.9 40.6
5 0.3 13.4
5 0.6 18.4
5 0.9 30.3
6 0.6 54.7
6 0.9 77.1
7 0.6 408.3
7 0.9 460.0
7 1.0 444.2
7 1.2 476.0
8 0.5 28.0
8 0.8 59.7
9 0.3 17.7
9 0.6 27.7
9 1.0 98.5

10 0.3 35.8
10 0.5 27.2
10 0.6 39.1
11 0.2 28.7
11 0.4 47.7
11 0.9 103.4
13 0.3 16.8
13 1.1 93.4
14 0.3 9.0
14 0.6 17.8
15 0.3 9.9
15 0.6 12.6
15 0.9 13.4
16 0.3 9.1
16 0.6 18.3
16 0.9 19.6
17 0.3 40.5
17 0.6 77.7
17 0.9 335.7
17 1.2 388.7

[m, meters; PCE, tetrachloroethylene;  µg/m3, 
micrograms per cubic meter]
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Table S1. (continued) Solid polymer sampler (SPS) sample results.  

 

Location Depth, in m
PCE, in 
µg/m3

18 0.4 423.4
18 0.6 486.4
19 0.3 108.6
19 0.5 452.2
19 0.6 463.9
19 0.8 475.0
20 0.3 17.9
20 0.5 33.5
21 0.5 25.6
21 0.6 33.6
22 0.3 23.2
22 0.4 20.6
22 0.6 27.8
24 0.3 19.2
25 0.3 26.0
25 0.6 47.3
25 0.7 53.7
26 0.3 34.6
26 0.6 63.6
26 0.9 107.1
27 0.3 77.2
27 0.6 105.7
27 0.9 132.9
28 0.3 38.2
28 0.6 87.3
29 0.4 29.1
29 0.6 61.7
29 0.9 91.4
29 1.2 439.7
30 0.3 74.9
30 0.6 424.7
31 0.3 15.1
31 0.3 15.6
32 0.3 18.4
32 0.7 61.0
32 0.8 51.6
33 0.3 9.3
33 0.6 17.2
33 0.9 22.1
34 0.3 12.2
34 0.7 24.4
34 0.9 38.8

[m, meters; PCE, tetrachloroethylene;  µg/m3, 
micrograms per cubic meter]
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Table S1. (continued) Solid polymer sampler (SPS) sample results.  

  
 

 

 

 

Location Depth, in m
PCE, in 
µg/m3

35 0.3 22.4
35 0.6 61.5
35 0.9 93.7
36 0.3 37.3
36 0.6 77.0
36 0.9 413.9
37 0.3 31.6
37 0.6 69.4
37 1.2 430.8
38 0.3 14.2
38 0.6 19.5
38 0.9 30.8
39 0.3 12.2
39 0.6 20.8
39 0.9 27.3
40 0.3 8.3
40 0.6 6.6
40 1.2 20.3
41 0.3 3.5
41 0.6 7.7
41 0.9 10.2
42 0.6 10.3
42 0.9 11.4
42 1.2 13.8
43 0.3 19.2
43 0.6 31.1
43 0.9 45.9
44 0.3 453.3
44 0.6 81.0

[m, meters; PCE, tetrachloroethylene;  µg/m3, 
micrograms per cubic meter]
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Abstract 

Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) 

is an emerging public health concern with notable detrimental impact on public health. 

Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, 

provides a potential non-invasive screening approach to detect VI potential, and plant 

sampling is effective and also time- and cost-efficient. Existing VI assessment methods 

are time- and resource-intensive, invasive, and require access into residential and 

commercial buildings to drill holes through basement slabs to install sampling ports or 

require substantial equipment to install groundwater or soil vapor sampling outside the 

home.  Tree-core samples collected in two days at the PCE Southeast Contamination Site 

in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated a 

positive correlation with groundwater, soil, soil-gas, sub-slab, and indoor-air samples 

collected over a 2 year period. Results indicate moderate to high correlation with average 

indoor-air and sub-slab PCE concentrations over long periods of time (months to years) 

to an interpolated tree-core PCE concentration surface, with Spearman’s correlation 

coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation 
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between sub-slab and indoor-air PCE concentrations (ρ=0.55, n=89). Good correlation 

between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-

core PCE concentration surface indicate that trees are valid indicators of potential VI and 

human exposure to subsurface environment pollutants. The rapid and non-invasive nature 

of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the 

source area, roughly 12 hours of tree-core sampling with minimal equipment at the PCE 

Southeast Contamination Site was sufficient to delineate vapor intrusion potential in the 

study area and offered comparable delineation to traditional sub-slab sampling performed 

at 140 properties over a period of approximately 2 years.  

Introduction 

Vapor intrusion (VI) of volatile organic compounds (VOCs) in the built 

environment is a threat to human health through migration of carcinogenic contaminants 

into cracks, seams, and gaps in structures (Fig 1). Although VI can occur in commercial, 

industrial, or residential settings, residential areas pose unique problems as occupants are 

unknowingly exposed to concentrations of contaminants in indoor air for long periods, 

which have a notably greater impact (up to three orders of magnitude more) on human 

health than outdoor sources [1]. Within the Superfund program, the VI pathway has 

recently (2017) been implemented into the Hazard Ranking System [2], allowing a site to 

be listed on the National Priorities List (NPL) solely because of VI. Because of this 

increased emphasis on VI, screening for VI will be required at an increasing rate; 

however, measurement of VI is not simple and is time-, cost-, and labor-intensive, 

requiring access agreements to enter homes to conduct testing. Simpler, quicker, and 

more cost-effective screening methods are needed to effectively assess VI and protect 

human health. 

Because VI is a multimedia concern for compounds that exist in vapor, aqueous, 

and sorbed phases, several different methods exist to assess VI risk; however, many are 

either time- and resource-intensive or require assumptions that often may be violated.  

Vapor intrusion risk is typically measured with direct methods (e.g., indoor-air sampling 

or sub-slab sampling of soil gas) or indirect methods (e.g., groundwater, soil, or soil-gas 
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sampling). These direct and indirect methods for measurement of VI risk are invasive, 

time and resource intensive [3, 4], or may not be done at all because of the inability to 

safely collect samples. The current best practice for assessing potential VI risk from 

environmental samples is through the application of the two-decade-old Johnson-Ettinger 

model [5], which estimates an attenuation factor (i.e., concentration of  the contaminant 

in the environmental samples over the concentration of the contaminant in indoor air). 

The model makes numerous assumptions and attempts to capture a four-dimensional 

problem using a one-dimensional model. The model is also based on approximately 20 

site-specific variables that are difficult to assess [2]. 

Trees have the potential to measure VI potential in situ. Through photosynthesis, 

trees use solar energy and water potential gradients between the atmosphere and the 

subsurface to translocate groundwater and in doing so draw moderately hydrophobic 

contaminants dissolved in groundwater and in the vapor phase across the root-membrane 

boundary [6, 7]. Once contaminants are in root xylem tissues, the compounds can move 

with the transpiration stream to aboveground xylem tissues where they can be readily 

measured.  

 

 

 

 

Fig 1. Schematic of the interplay between vapor intrusion, the built environment, and 
phytoforensic processes. 
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Phytoforensics has been shown to be a cost- and time-effective tool for semi-

quantitatively delineating VOC contamination in groundwater [8-11] and soil vapor [12]. 

To correlate concentrations in aboveground tree tissue with subsurface contaminant 

concentrations, phytoforensic methods intercept contaminants as they transport up the 

xylem and diffuse radially out of the trunk [13]. Phytoforensics uses established trees in 

the vicinity of contaminant plumes and avoids the time and cost associated with drilling 

or sample-port installation for sub-slab sampling. Collection of tree-core samples can be 

conducted in less than five minutes per sample by a single person. Aside from the 

simplicity, speed, and cost-effective nature of phytoforensics, trees are thought to average 

subsurface contaminant concentrations by sampling over large subsurface volumes [14, 

15] and long time-scales [16, 17].  

Methods 

To elucidate the potential of trees to be indicators of VI potential in this study, 

tree-core samples were collected at the Tetrachloroethene (PCE) Southeast 

Contamination Site in York, Nebraska (EPA ID NEN000706200), a Superfund site 

contaminated primarily with PCE. The PCE Southeast Contamination Site was originally 

listed on the National Priorities List in May 2014 after PCE and other VOCs were 

detected in private drinking water wells above the EPA maximum contaminant level 

(MCL). Although the PCE Southeast Contamination Site covers approximately 15 km2, 

the study area for this work covered approximately 2.2 km2 encompassing downtown 

York and the residential area to the east and south (Fig 2).  The likely sources of PCE 

contamination are from several former dry cleaning businesses in the downtown York 

area (Fig 2). During the site assessment, the EPA collected groundwater (Fig 2), soil (S4 

Fig), indoor-air (Fig 4), and sub-slab (S1 Fig) samples from the commercial and 

residential properties in the area of the suspected plume. Residential areas surround the 

downtown area and extend primarily to the north and east. The underlying geology of the 

site primarily consists of alluvial deposits. In order of most recent to oldest deposits, the 

site geology consists of approximately 6 m of clay, 23 m of sand and gravel, 12 m of clay 

and silt, 15 m of sand, 15 m of clay and silt, and 12 m of sand underlain by Cretaceous 



78 

 

 

 

age Carlile Shale Bedrock. Typical groundwater depths in the area range from 9 m below 

ground surface (bgs) in the downtown area to about 18 m bgs near the eastern boundary 

of the study area (Fig 2). The groundwater PCE plume originates in the downtown area 

and extends to the southeast, the predominant direction of groundwater flow, within the 

23 m thick sand and gravel layer.  

In this study, EPA groundwater, soil, soil-gas, and VI (sub-slab and indoor-air) 

data collected within two years of tree sampling was correlated with tree-core samples 

collected by the USGS to elucidate the potential for trees to be indicators of VI potential. 

Groundwater, soil, soil-gas, and VI samples were collected by the EPA Region 7 from 

January 2010 to September 2016.  Within the study area, EPA collected samples over 10 

separate sampling events from November 2014 to September 2016. Tree-core samples 

were collected at the PCE Southeast Contamination Site in York, Nebraska during 

November 2-3, 2016 (Fig 3).  Because trees are thought to provide information about 

subsurface VOC concentrations over a period of time, tree-core PCE concentrations 

collected in November 2016 were used to develop correlations with EPA data from each 

of the 10 sampling events as well as with aggregations of EPA data ranging from the 

aggregation of all sampling events from November 2014 to September 2016 period to the 

aggregation of the last two sampling events (July 2016 and September 2016; Fig 6). 

Correlations were then compared between individual sampling events as well as over 

periods of time to determine over what period of time tree-core PCE data is informative 

of subsurface contamination and, more specifically, vapor intrusion.  All data used in this 

paper are available at U.S. Geological Survey (USGS) ScienceBase, https://doi.org/ 

10.5066/F7CF9P06. 

Tree-core sampling  

Tree-core samples were collected at the site by a two-person team over 12 hours 

during November 2-3, 2016, using published tree-coring methods [18]. A total of 121 

samples, which included 109 environmental samples, 10 replicate samples, 1 trip-blank 

sample, and 1 field-blank sample, were collected. A total of 53 trees were sampled in the 

primarily residential area east of Iowa Street and the remaining 56 trees were sampled in  
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Fig 2. Groundwater tetrachloroethene (PCE) concentrations in the study area in York, Nebraska, from August 2011 to September 
2016. Each set of points in concentric rings represents multiple samples in one area.  
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the vicinity of the downtown York area (Fig 3). Tree-core samples were collected using a 

0.25-inch diameter by 12-inch long steel increment borer and a standard 0.2-inch 

diameter core sample (3 inches long) was extracted from each tree at a 1-m height. Tree-

core samples were analyzed at the Environmental Research Center at the Missouri 

University of Science and Technology in Rolla, Missouri using published methods [11].  

Tree-core samples were allowed to reach equilibrium overnight and run on an Agilent 

7890 gas chromatograph (Agilent Technologies, Inc., Santa Clara, California) with a 

micro-electron-capture detector fitted with a CombiPAL solid-phase microextraction 

(SPME) fiber autosampler. Samples were mass-corrected and PCE concentrations were 

reported in nanograms of contaminant per liter of sap (ng/L). Global positioning system 

(GPS) locations were collected for each tree using a Trimble GeoExplorer XH® (Trimble 

Navigation Limited, Sunnyvale, California) with a sub-meter accuracy. 

Although most trees were sampled in the downtown area, tree density in this area 

was low. In contrast, tree density in the residential area was high, but samples were only 

collected along a few streets in the residential area. Both sources of data sparsity left 

large spatial gaps in the tree-core dataset. Because the source area and many of the EPA 

samples were located in the downtown area where tree-core data were relatively sparse, 

the spatial distribution of the tree-core PCE concentration surface may not be fully  

defined in that area, which likely introduces more error into correlations between EPA 

data and the tree-core PCE concentration surface.  

Groundwater, soil, and soil-gas sampling 

A total of 1,198 groundwater samples were collected and analyzed by the EPA 

from January 2010 to September, 2016 from the site. Of the 629 samples collected 

between November 2014 and September 2016 (S8 Fig), 371 samples were contained 

within the region from where tree-core samples were collected (the “study area”). All 371 

samples were collected between August 2011 and September 2016 (Fig 2) using 

temporary direct-push wells using a Geoprobe Screen Point 16 (Geoprobe, Salina, 

Kansas) apparatus containing a reusable stainless steel screen. Samples were collected 

between 9 and 40 m (average of approximately 15 m) in 40-mL vials. Samples were 

collected from multiple depths within each well with at least one sample near the top of 
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the water table. Correlations were developed with all groundwater data as well as only 

the shallowest groundwater samples within each well and < 12 m deep bgs (S6 Fig) 

because VOC concentrations in trees have been shown to be better correlated with VOC 

concentrations in the shallow subsurface [12].  

A total of 209 soil samples were collected and analyzed by the EPA from 

November 2011 to July 2016 from the study area, and 188 samples were collected in the 

downtown area. Of the 209 samples, 57 samples were collected between November 2014 

and September 2016 (S4 Fig) from depths ranging from 0 to 27 m bgs using direct-push 

technology using a Macro-Core sampler fitted with a disposable polyvinyl chloride liner 

according to EPA standard operating procedure.[19] At a given interval selected for 

sampling, a tipless syringe was used to collect five grams of soil, which was transferred 

into a 40-mL vial for analysis by the EPA Region 7 laboratory. 

EPA collected 18 soil-gas samples in April 2016 in the downtown area and 

collected 20 soil-gas samples in September 2016 in the residential area to the east and 

southeast (S2 Fig). All samples were collected using established soil-gas methods with a 

Geoprobe® Post Run Tubing (PRT) soil-gas sampling system. Samples were collected as 

a discrete concentration (30- to 60-second time-weighted average [TWA]) using Tedlar® 

bags and a small pump. All samples were analyzed onsite by the EPA Region 7 mobile 

laboratory with gas chromatography-mass spectrometry (GC-MS).  

VI sampling 

A total of 255 indoor-air samples (Fig 4) and 461 sub-slab samples (S1 Fig) were 

collected by the EPA in residential and commercial buildings between July 2014 and 

September 2016. Indoor-air concentrations were determined using TWA concentration 

over about 20 hours obtained from SUMMA® canisters deployed at the lowest level 

inside each building. Sub-slab concentrations were determined either as a TWA using 

SUMMA® canisters or as a discrete concentration (30- to 60-second TWA) using Tedlar® 

bags and a small pump. All samples were analyzed onsite by the EPA Region 7 mobile 

laboratory with GC-MS.  
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Data analysis 

Because tree-core samples were not collocated with groundwater, soil, soil-gas, 

sub-slab, and indoor-air samples, interpolated surfaces for tree-core, soil-gas, and sub-

slab PCE concentrations were estimated using a conservative approach by creating a 

triangulated irregular network (TIN) from the concentration data and interpolating a 1-m 

raster surface from the TIN using natural neighbors interpolation [20, 21] in ArcMap ® 

(Environmental Systems Research Institute, Redlands, California) and the Python 

(Python Software Foundation, Delaware) module ArcPy. In addition to being the most 

conservative interpolation method, the TIN method resulted in the most realistic surface 

compared to surfaces developed using kriging and inverse-distance0weighting methods 

were used. Mean soil-gas and sub-slab PCE concentrations at each location were also 

interpolated to calculate correlation with indoor-air PCE concentrations. Because of the 

sparsity of trees in the downtown area, the spatial distribution of tree-core PCE 

concentration data was non-uniform and the interpolated tree-core PCE concentration 

surface may not be fully defined in that area and could affect correlations between EPA 

data and the interpolated tree-core PCE concentration surface.  

To correlate groundwater, soil, soil-gas, sub-slab, and indoor-air PCE 

concentrations with the interpolated tree-core PCE concentration surface and to correlate 

indoor-air PCE concentrations with the interpolated soil-gas and sub-slab PCE 

concentration surfaces, the nonparametric Spearman's rank correlation coefficient [22] (ρ) 

was used at a significance level of 0.05. In this paper, low, moderate, and high values of ρ 

are defined as less than (<) 0.2, between 0.2 and 0.5, and greater than (>) 0.5. To develop 

the correlation dataset, PCE concentrations were extracted from the interpolated tree-

core, soil-gas, and sub-slab surfaces at each groundwater, soil, soil-gas, sub-slab, or 

indoor-air sample location. Correlations were calculated for each of the 10 sampling 

events as well as over multiple sampling events because trees are thought to provide 

information about subsurface concentrations over a period of time. For correlations over 

multiple sampling events, averages were calculated and used in correlation analysis for 

locations with multiple samples. Because there is little spatial variability between sub- 
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Fig 3. Tree-core tetrachloroethene (PCE) concentrations and corresponding tree numbers in the study area in York, Nebraska, 
November, 2016.
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Fig 4. Location and date of indoor-air samples in the study area in York, Nebraska. Each set of points in concentric rings represents 
multiple samples in one area. 
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slab and indoor-air sample locations, correlations between paired sub-slab and indoor-air 

samples collected during the same sampling event were also calculated.  

To assess the effect of the non-uniform distribution of samples on the error in the 

interpolated tree-core PCE surface, groundwater, soil, soil-gas, sub-slab, and indoor-air 

PCE concentrations were also correlated with tree-core PCE concentrations in tree-core 

samples located within 31 m. These correlations remove the potential error that may be 

introduced with non-uniformly distributed tree-core samples and are most representative 

of the true correlation between tree-core concentrations and nearby vapor intrusion 

concentrations.  

Results and discussion 

Trees as indicators 

Concentrations of PCE in tree-core samples from the 109 trees sampled were 

above the detection limit (0.47 ng/L) [11] in 37 trees and above the reporting limit (4.7 

ng/L) in 14 trees. Of the 14 trees with PCE concentrations above the reporting limit, 11 

were in the vicinity of the downtown area with concentrations as high as 1,100 ng/L (Fig 

5). Concentrations of PCE in tree-core samples were also relatively large (250 – 500 

ng/L) in samples east and southeast of the downtown area in the direction of the 

groundwater flow (Fig 2).  

Groundwater 

Because groundwater PCE concentrations were variable and the distribution of 

available trees to sample was poor in the downtown area, correlations of groundwater 

PCE concentrations to the interpolated tree-core PCE concentration surface were poor 

(Fig 6). When either shallow or all groundwater data was included, no significant 

correlations existed between groundwater PCE concentrations and the interpolated tree-

core PCE concentration surface for any sampling event or period of sampling. Where 

groundwater PCE concentrations were large, tree-core data were sparse, and as a result, 

did not allow for full definition of the concentration distribution in those areas (S7 and S9 

Figs). Shallow groundwater samples, which were close to the water table surface, had 
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poor correlation with the interpolated tree-core PCE concentration surface. A better 

assessment of correlation between groundwater PCE and the interpolated tree-core PCE 

concentration surface would likely result if tree-core samples were more uniformly 

distributed within the study area. Additionally, many of the groundwater samples were 

collected greater than 15 m bgs; therefore, trees in some areas might be taking up 

shallower, infiltrated groundwater from local recharge with smaller PCE concentrations 

from dilution than the samples at depth. 

Soil and soil-gas 

Because of the scarcity of tree-core data in areas where soil data was collected (S5 

Fig), correlations between soil PCE concentrations and the interpolated tree-core PCE 

concentration surface were poor (Fig 6). Because tree-core PCE concentrations have been 

shown to correlate well with soil samples [12, 23], tree-core data sparsity and large local 

variability of soil samples likely resulted in poor correlation between soil PCE 

concentrations and the interpolated tree-core PCE concentration surface in this study. 

There was high correlation (n=15; ρ=0.71) when comparing soil samples collected during 

March 2015 with the interpolated tree-core PCE concentration surface, likely because the 

soil samples were located in areas with tree-core samples. Subsequent soil sampling 

events were focused in the downtown area where tree-core samples were not collected. 

Although no significant correlation existed between soil-gas PCE concentrations 

and the interpolated tree-core PCE concentration surface for individual sample events, 

combining the two soil-gas sampling events (March/April 2016 and September 2016) 

resulted in high correlation (n=38; ρ=0.62; Fig 6 and S3 Fig). Because the different 

sampling events were spatially clustered, combining the two sampling events resulted in 

a more distributed dataset.  

Sub-slab  

Correlations between sub-slab PCE concentrations and the interpolated tree-core 

PCE concentration surface were frequently significant, with significant coefficients 

ranging from 0.43 to 0.70 over all individual sampling events from November 2014 to 

December 2015 (Figs 6 and 7). Unlike groundwater and soil correlations, correlations  
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Fig 5. Tree-core tetrachloroethene (PCE) concentrations in the study area overlain on the interpolated tree-core PCE concentration 
surface. 
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Fig 6. Measures of correlation between groundwater, shallow (<12 m) groundwater, soil, soil-gas, sub-slab, and indoor-air PCE 
concentrations and interpolated tree-core, soil-gas, and sub-slab PCE concentration surfaces. Cells highlighted with color with bold 
font are significantly correlated. Cells are colored blue, yellow, orange and red if correlation coefficients are <0.40, 0.40-0.49, 0.50-

0.59, and >0.59, respectively. 
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Fig 7. Sub-slab tetrachloroethene (PCE) concentrations in the study area overlain on the interpolated tree-core PCE surface.  Each set 
of points in concentric rings represents multiple samples in one area. 
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between sub-slab PCE concentrations and the interpolated tree-core PCE concentration 

surface were consistently correlated over time until March/April 2016 and decreased 

when the majority of the dataset consisted of more recent data from March/April 2016 to 

September 2016 sampling events that included samples in areas not well defined by the 

tree-core sample density (S1 Fig). 

Indoor air 

Correlation coefficients between indoor-air PCE concentrations and the 

interpolated tree-core PCE concentration surface were high for the November/December 

2014 (ρ=0.62, n=17) and June 2016 (ρ=0.59, n=23) individual sampling events, but were 

not significant in comparisons for all other individual sampling events across the entire 

site (Figs 6 and 8). However, when correlating groups of averaged indoor-air sampling 

events to the interpolated tree-core PCE concentration surface, correlations were 

significant for all sampling periods, indicating substantial variability between the indoor 

sampling events likely caused by differences in air-exchange rates. Correlation 

coefficients ranged from 0.31 to 0.53 and were generally higher for more recent sampling 

periods. Because aggregating multiple sampling events averages samples from the same 

location and increases the number of sampled locations through longer time periods, 

consistently significant and moderate correlations could indicate that the average indoor-

air PCE concentrations, rather than the individual indoor-air PCE concentration, are more 

correlated to the interpolated tree-core PCE surface (i.e., tree sampling is more indicative 

of a TWA than a “snapshot”), but could also be the result of larger and better distributed 

sample sizes.  

Soil-gas as an indicator of indoor air 

Correlations between indoor-air PCE concentrations and the interpolated soil-gas 

PCE concentration surface (produced from data from two sampling events) for individual 

sampling events and aggregated sampling events were poor with only one significant 

correlation coefficient of -0.62, which occurred during the November/December 2015 

sampling event (Fig 6 and S10 Fig). Because soil-gas samples were collected along two 

city streets, soil-gas data was impacted by the same effects of poor spatial distribution of 

samples that is observed in the tree-core dataset.  
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Fig 8. Indoor-air tetrachloroethene (PCE) concentrations in the study area and interpolated tree-core PCE concentration surface.  Each 
set of points in concentric rings represents multiple samples in one area.
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Sub-slab as an indicator of indoor air 

Correlation coefficients between indoor-air PCE concentrations and the 

interpolated average sub-slab PCE concentration surface (from multiple sampling events) 

were substantially higher than those between indoor-air PCE concentrations and the 

interpolated soil-gas PCE concentration surface (Figs 6 and 9). A total of 6 out of 10 

individual sampling events had significant correlations. Significant correlation 

coefficients ranged from 0.41 to 0.97, with the 0.97 coefficient occurring during the 

November/December 2014 sampling event, and no general trend with time was observed.  

Because one of the current best available and most accepted methods for 

screening for vapor intrusion risk is sub-slab sampling, a pairwise correlation test was 

conducted on all paired indoor-air and sub-slab samples collected during the same 

sampling event and location and indicated a significant correlation coefficient of 0.55 

(n=89), which is comparable to the correlation between indoor-air and the interpolated 

tree-core PCE concentration surface.  

Effect of non-uniform tree-core sample distribution on correlations 

Correlations between indoor-air and sub-slab PCE concentrations and tree-core 

samples collected within 31 m (Fig 10) generally agreed with the correlations between 

indoor-air and sub-slab PCE concentrations and the interpolated tree-core PCE surface 

(Fig 6). All significant correlation coefficients were moderate or high with values ranging 

from 0.54 to 0.83. Although correlations were insignificant for many individual sampling 

events and sampling periods, correlation significance is limited in part by small sample 

sizes. In contrast, significant correlations between groundwater, soil, and soil-gas PCE 

concentrations and tree-core samples collected within 31 m (Fig 10) were negatively 

correlated with high values ranging from -0.74 to -0.94. This is likely explained by the 

large amount of heterogeneity in the subsurface over small distances, especially near the 

source areas downtown where most of the groundwater, soil, and soil-gas samples in 

these correlations are located. Future should be focused on collecting tree-core samples 

closely paired with vapor intrusion samples in order to better evaluate correlations 

between vapor intrusion and tree-core samples without the potential error associated with 

non-uniform distributions of tree-core samples. The use of a diameter-dependent buffer  



 

 

93 

 

Fig 9. Indoor-air tetrachloroethene (PCE) concentrations in the study area overlain on the interpolated sub-slab PCE concentration 
surface.  Points in each concentric ring represent multiple sampling events at one location.  
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Fig 10. Measures of correlation between groundwater, shallow (<12 m) groundwater, soil, soil-gas, sub-slab, and indoor-air PCE 
concentrations and tree-core concentrations in tree-core samples collected within 31 m. Cell highlighted with color with bold font are 

significantly correlated. Cells are colored orange and red if correlation coefficients are 0.50-0.59, and >0.59, respectively.  
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may also be useful in correlations as it has been shown that trees represent a subsurface 

volume proportionate to their trunk diameter [24]. 

Conclusions and site implications 

Tree-coring is best utilized as an initial screening tool to determine the general 

areas of interest and specific hot spots to focus future VI sampling. Because of the cost- 

and time-efficient nature of tree-coring, several hundred tree-core samples can be 

collected in a week’s time depending on the required permissions on individual 

properties, a potential limiting factors in phytoforensic studies and all methods requiring 

private-property access; however, if trees are located in a city right-of-way and 

permission is granted by the city, tree-core samples can be collected simply by walking 

along city streets with approximately 5 minutes per sample required.  

As VI transport involves multi-media environmental transport and the heterogeneities 

inherent in urban environments, multiple sampling approaches of various media are 

commonly applied, such as groundwater, soil-gas, sub-slab, and indoor-air applied at this 

site in conjunction with the tree core sampling. Phytoforensic sampling has been shown 

offer a blending or composite of these multiple environmental media. [12, 23, 24] 

Findings shown here indicate that PCE concentrations in trees can be highly correlated 

with multiple VI investigative methods, including soil-gas and VI samples (sub-slab and 

indoor-air samples), especially when comparing to indoor-air concentrations over long 

periods, and are comparable to sub-slab samples. Indoor-air PCE concentrations in this 

study collected within two months and, to a lesser extent, with average indoor-air 

concentrations over years, were highly correlated with the interpolated tree-core PCE 

concentration surface. Although this is only one case study, these findings and previous 

studies suggest that trees are valid indicators of VI potential over long temporal periods.  

The non-uniform distribution of tree-core samples in this specific study left 

spatial gaps in the dataset, especially in the residential area, and likely resulted in poor 

definition of the interpolated tree-core PCE concentration surface. Ideally, the collection 

of tree-core samples should be in a more uniformly distributed pattern over the study area 

to avoid spatial gaps in tree-core data and to better define the tree-core PCE concentration 

distribution.  



96 

 

 

 

Like all geospatial datasets, collecting uniformly distributed tree-core data of 

sufficient density over the entire project area is vital to fully describe the tree-core 

concentration surface. Prior knowledge of the local hydrogeology and potential source 

areas can also be used to direct sample density in certain areas as tree-core samples can 

be collected in greater densities in the vicinity of the source areas with decreasing spatial 

density in the downgradient direction. This approach is relatively easy to accomplish, 

however, because tree-coring is an exceptionally rapid and inexpensive practice 

compared to traditional methods. With each sample taking less than 5 minutes to collect, 

a large study area on the order of square kilometers of can be sampled in days compared 

to the weeks and months required from traditional methods. In this study of 

approximately 1 km2 with less than 60 trees in the vicinity of the source area, roughly 12 

hours of tree-core sampling with minimal equipment was sufficient to delineate the vapor 

intrusion potential and offered comparable delineation to traditional sub-slab sampling 

performed at 140 properties over a period of approximately 2 years with multiple 

mobilizations of large, vehicle-mounted equipment. 
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Figure S1. Location and date of sub-slab samples in the York, Nebraska study area. Each set of points in concentric rings represents 

multiple samples in one area. 
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Figure S2. Location and date of soil-gas samples in the York, Nebraska study area. Each set of points in concentric rings represents 

multiple samples in one area. 
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Figure S3. Soil-gas tetrachloroethene (PCE) concentrations in the study area overlain on the interpolated tree-core PCE concentration 

surfaceEach set of points in concentric rings represents multiple samples in one area.  
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Figure S4. Location and date of soil samples in the York, Nebraska study areaEach set of points in concentric rings represents multiple 

samples in one area. 
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Figure S5. Soil tetrachloroethene (PCE) concentrations in the study area overlain on the interpolated tree-core PCE concentration 

surfaceEach set of points in concentric rings represents multiple samples in one area. 
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Figure S6. Location and date of shallow (<12 m) groundwater samples, York, Nebraska in the study area. Each set of points in 

concentric rings represents multiple samples in one area. 
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Figure S7. Groundwater tetrachloroethene (PCE) concentrations in shallow (< 12 m) groundwater samples in the study area overlain 

on the interpolated tree-core PCE concentration surface.  Each set of points in concentric rings represents multiple samples in one 
area. 
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Figure S8. Location and date of all groundwater samples in the York, Nebraska study area. Each set of points in concentric rings 

represents multiple samples in one area. 
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Figure S9. Groundwater tetrachloroethene (PCE) concentrations in all groundwater samples in the study area overlain on the 

interpolated tree-core PCE concentration surface.  Each set of points in concentric rings represents multiple samples in one area. 
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Figure S10. Indoor-air tetrachloroethene (PCE) concentrations in the study area overlain on the interpolated soil-gas PCE 

concentration surfaceEach set of points in concentric rings represents multiple samples in one area. 
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Figure S11. Average concentrations of tetrachloroethylene (PCE) in sub-slab versus interpolated tree-core surface a) from November 
2014 to September 2016 and b) from July 2016 to September 2016 as well as average concentrations of tetrachloroethylene (PCE) in 
indoor-air samples from June 2016 to September 2016 versus c) the interpolated PCE tree-core surface and d) the interpolated PCE 

sub-slab surface. Rho is the spearman’s rank correlation coefficient. 
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SECTION 

 

3. CONCLUSIONS 

The objectives of this work were carried out and the overall goal of improving 

vapor intrusion assessment through the use of plant sampling was achieved. This work 

improves the knowledge of how trees interact with multiple contaminated media in the 

subsurface and relates that knowledge to the field of vapor intrusion assessment. The 

research carried out as part of this project further establishes and validates the use of tree 

sampling as a screening tool for vapor intrusion potential, but the approach is not without 

caveats and limitations that were also elucidated in this research to offer knowledge on 

limitations and possible pitfalls in using plant sampling.  

This work demonstrates that trees are most representative of the shallow 

subsurface, and that the volume sampled by a tree is directly related to the size of the 

tree, measured as tree-trunk diameter in this work. For example, using a root-to-trunk 

diameter ratio of 1 m/cm shown to have the best model fit in this work, a commonly sized 

tree (30-cm diameter) is representative of a large area similar to the footprint of a 

residential building. However, sampled trees are often not located immediately adjacent 

to homes or buildings, therefore some interpretation must be made when extrapolating 

tree-core concentrations to the subsurface below homes because of the large 

heterogeneity of soil-gas in urban areas overall and specifically around built structures.  

Trees were demonstrated to sample large subsurface volumes in this work and therefore 

can minimize concerns of subsurface heterogeneity and pitfalls of traditional methods 

that gather relatively small sample volumes.  

Tree sampling was also demonstrated to have a significant directional component 

that can be used to delineate the spatial distribution of shallow subsurface contamination, 

center around the tree, around homes by sampling a single tree. Provided in-planta 

concentration gradients are present, the multi-directional sampling of a single tree can 

indicate if a home is at increased potential for VI relative to the average in-planta 

concentration.  Where in-planta concentrations gradients are small, the resulting direction 
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of subsurface contamination distribution has higher uncertainty, and the subsurface 

should be interpreted as more uniform (i.e., less heterogeneous distribution of pollutants). 

Directional tree sampling was also shown to be correlated with shallow subsurface soil-

gas contamination, an imperative characteristic of a VI assessment tool. Revealing the 

directionality of tree coring in this work greatly increases the potential application of 

phytoforensics for VI assessment by turning a single large tree into a multidirectional 

sampling point that can provide a 360-degree assessment from that single location with 

just minutes of sampling. The indication of a subsurface pollutant gradient is also 

valuable in assessing the heterogeneity of a site with increased sampling density near 

homes.  

Tree sampling was also shown in this work to be correlated with soil-gas, sub-

slab, and indoor-air samples, especially when averaging soil-gas, sub-slab, and indoor-air 

samples over months and years; however, the non-uniform distribution of tree-core 

samples in this study left spatial gaps in the specific dataset, and likely did not represent 

the true tree-core concentration surface in those gaps well. Collection of tree-core 

samples should be in an evenly distributed pattern if possible, like all geospatial data, to 

avoid spatial gaps in tree-core data and to reduce interpolation error. Although these 

findings demonstrate that tree sampling fills information gaps left by traditional VI 

assessment methods, tree sampling is best applied as a screening tool and to augment 

traditional sampling because of the many parameters, and their associate uncertainties, 

that control mass transfer of contaminants in the subsurface and built environment. The 

time-weighting characteristic of tree-coring also provides insight into potential long-term 

VI exposure, rather than a snap-shot in time and the temporal variability of indoor-air 

sampling or shallow soil sampling. Phytoforensics adds a new tool in assessing VI 

potential and predicting possible exposure.  

Tree sampling is an addition to the vapor intrusion assessment toolkit that 

complements traditional VI methods. Tree sampling is a cost- and time- effective method 

for screening and enhancing delineation of a site, costing on the order of hundreds of 

dollars per sample versus the thousands to hundreds of thousands of dollars associated 

with traditional methods that are applied at sites. The collection of tree-core samples can 

be conducted in less than five minutes per sample by a single person.  Trees are 
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essentially preinstalled and place-bound “samplers” that actively and intimately 

interactive with the subsurface soil, vapor, and groundwater. Tree sampling is less 

invasive than VI and traditional sampling, eliminating concerns and problems of 

disrupting underground utilities or concerns of theft or disruption of sampling canisters 

and increasing the overall data density through the increased likelihood of obtaining 

permissions from home or business owners.  

Directional tree sampling can be used during the initial screening to pinpoint the 

direction and relative magnitude of shallow subsurface contaminant plumes associated 

with vapor intrusion. This novel “one plant, multiple samples” finding is highly valuable 

in informing traditional analyses. These beneficial qualities of tree sampling fill the 

current and growing need for more noninvasive, representative, and cost-effective 

methods in vapor intrusion assessment, as vapor intrusion is noted as a primary pathway 

for subsurface pollutants to impact human health.  
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4. RECOMMENDATIONS FOR FUTURE RESEARCH 

4.1. ROBUST PREDICTIVE MODELING OF VAPOR INTRUSION USING 
TREES 

While this work is the first demonstration of positive correlation between tree 

sampling and VI occurrence and potential, the development of a robust predictive model 

for VI risk and potential as a function of tree-core data would be beneficial to assess the 

predictive potential of tree sampling.  Because simple interpolation techniques were used 

in this work to correlate VI risk, and VI risk is likely a function of more than tree-core 

concentration alone, findings from Papers I and II should be used to create a predictive 

model that incorporates both the effective subsurface sampling volume and directional 

information of each tree with site-specific properties (e.g., geology and hydrology).  

One possible method for developing a predictive model is with more robust 

statistical approaches such as decision tree learning.55 Decision tree learning is a data-

mining approach that provides insight into which model parameters under what 

conditions provide the best model fits as subsets of data are modeled (e.g., models 

incorporating only trees with diameters larger than 6 inches; Figure 4.1).  

 

 

 

 
Figure 4.1. Depiction of regression tree analysis incorporating information on tree 

diameter and sample direction. Each end member is a regression from data fulfilling the 
conditional hierarchy.  
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Using the data from the PCE Southeast Contamination Site, K-fold cross-

validation could be used to develop the model by randomly removing 10% of the data 

(test dataset), building the decision tree using the remaining 90% of the data (training 

set), then validating the model with the test dataset.56 Diameter will be used in the 

decision tree regression as a proxy for subsurface sampling volume, and each sample will 

be categorized as either facing toward or away from the building with indoor-air or sub-

slab data. Because trees closer to VI samples are likely more related than trees distant 

from VI samples, the distance between the tree-core sample and the VI sample will also 

be incorporated into the decision tree regression. Additionally, tree species will be 

included in the regression. Known site-specific properties including depth to groundwater 

and building age and estimates of other site-specific properties including soil porosity and 

soil organic carbon fraction will also be included in the decision tree regression.  

4.2. TRANSLATION OF EFFECTIVE ROOT VOLUME TO A FIELD-
APPLICABLE TOOL 

Geophysical methods such as electrical resistivity tomography (ERT) and ground-

penetrating radar (GPR) have been used successfully to delineate root morphology of 

trees to varying degrees.57-61 With ERT, soils are differentiated by the electrical 

properties of different subsurface regions, and ERT is particularly useful in showing 

differences in water content and porosity. With GPR, electromagnetic radiation is emitted 

from a source and reflects on features in the subsurface (e.g. pipes, septic tanks, roots, 

etc) producing characteristic inflection points. A higher frequency source provides better 

object resolution although with greater signal attenuation. GPR is particularly useful in 

defining individual roots to a high resolution (e.g. 1mm); however, at this resolution the 

presence of water content, commonly found in clay-rich soils, restricts signal penetration 

to a few inches into the subsurface.  

Geophysical assessments are quick and non-invasive and might be used to 

delineate the effective subsurface sampling volume of trees when calibrated with other 

sampling volume data, such as from Paper I. Once a calibrated model is developed, 

geophysical surveys could be conducted at other sites to measure the effective sampling 

volumes of trees.  
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In order to assess root morphology, several geophysical surveys will be conducted 

on trees at the Vienna Wells site in Paper I. Multiple trees will be surveyed, and multiple 

geophysical techniques will be applied at each tree. Trees of various sizes will be selected 

with minimal overlapping of root systems with other trees (i.e. maximum distance from 

other trees). For ERT surveys, three parallel transects consisting of 112 electrodes each at 

1-ft spacings will be placed at 3 tree-crown distances on either side of the trunk and 

through the trunk. Results from all transects will be used to create a pseudo-three-

dimensional model of subsurface electrical resistivity.  For GPR surveys, a 1GHz antenna 

will be used to measure root structure. The survey will consist of transects running from 3 

tree-crown distances on one side of the trunk to the other side (6 tree-crown distances 

total). Spacings between transects will be 10 cm to obtain high resolution images of root 

structures. After transects have been made in one direction, the same number of transects 

will be made in the perpendicular direction, producing a gridded area around the trunk 

extending 3 tree-crown distances in four directions. Results from the GPR survey will be 

post-processed and three-dimensional maps of root structure will be produced. For each 

survey, geophysical results will be related to the effective subsurface root volumes 

measured in Paper I. In addition, the geophysical models will be validated using cross-

validation as well as through implementation of field-validation methods such as 

trenching with two 112-ft trenches per tree located between the ERT survey lines at 1.5 

tree-crown distances.   

Figure 4.2 shows preliminary results of an ERT survey at Schuman Park in Rolla, 

MO. A total of 112 electrodes spaced at 1-ft intervals were placed on a transect 

intersecting a 16-inch (40-cm) oak tree and extending out approximately 2.5 times the 

crown width (Figure 4.2), resulting in a total survey depth of approximately 20 ft. A 1-ft 

spacing was selected to optimize data resolution in the shallow subsurface. These 

preliminary results indicate a zone of large resistivity near the surface and down to 

approximately 3 ft below ground surface and extending out about 2 crown widths, both of 

which are within typical values for the extend of root systems.62 Based on the findings 

from Paper I of a footprint of approximately 1 m/cm, the subsurface sampling footprint 

should be approximately 130 ft in diameter, which compares relatively well with the 

observed zone of large resistivity that extends approximately 90 ft in diameter. Although 
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these preliminary results suggest that a relationship between the subsurface sampling 

volume in Paper I and ERT surveys is likely viable, this single transect at one tree is not 

sufficient enough to establish the relationship. 

 

 

 

 
Figure 4.2. Preliminary electrical resistivity data outlining the hypothesized effective root 

volume (zone of large resistivity) of a large oak tree at Schuman Park in Rolla, MO. 
 
 
 

4.3. SUBSURFACE DIRECTIONAL UPTAKE OF CONTAMINANTS IN ROOT 
BIOMASS 

Directional tree sampling has been studied strictly above-ground in this and 

previous work,34, 54, 63, 64 and above-ground tree tissues have been shown in this work to 

indicate the direction of subsurface contamination based on in-planta concentration 

gradients, but three-dimensional directional uptake and transport of contaminants in the 

subsurface, into below-ground tree tissues, and then into above-ground tree tissue, has 

not been shown in the field setting. Initial results of tree-core samples collected below 



118 

 

ground surface from tree 29 in Paper II indicate a large concentration 0.05 m below 

ground surface on the west side of the tree (facing the general direction of the subsurface 

contaminant plume); however, all other directional tree samples collected at 0.05 m 

below ground surface were below the detection limit, suggesting that PCE tree-core 

concentrations above ground may be the result of PCE transport through a small section 

of lateral root tissue at the base of the tree or possibly the result of PCE transport into the 

central part of the trunk from greater depths (Figure 4.3). Because contaminant 

concentrations diffuse radially with height up the tree trunk, directionality in tree-core 

samples is likely slowly lost. This loss of directionality could also be caused by the 

structure of xylem tissue, as lateral roots assimilate into the outer-most xylem tissues of 

the tree trunk, and deeper roots (e.g., tap roots) assimilate into the central part of the 

trunk. An assessment of contaminant transport from subsurface contamination into 

below-ground tissues and into above-ground tissues would provide insight into 

interpretation of directional tree sampling that would have direct benefit to VI assessment 

as well as the general field of phytoforensics and phytoremediation.  

 

 

 

 
Figure 4.3. Spatial distribution of tetrachloroethylene (PCE) in tree 29 in Paper II 

including tree-cores collected below ground surface at a 45-degree angle.   
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To assess the transport of contaminants from the subsurface into below-ground 

and above-ground tree tissues, soil, soil-gas, root, and tree-core samples will be collected. 

Contaminant characterization of subsurface soil-gas, soil, and groundwater 

concentrations will include the installation of solid phase samplers (SPSs) in concentric 

rings around an isolated tree with radii spaced at 1, 2, 3, and 4 crown widths and at 

locations corresponding to the 8 cardinal and ordinal directions. At each location, SPSs 

will be installed at 1, 2, 3, and 4-ft below ground surface to characterize contaminant 

concentrations in soil-gas. Soil samples collocated with SPS samples will be collected 

using direct-push methods and temporary monitoring wells will be installed to 

characterize contaminant concentrations in groundwater. Root and tree-core samples will 

be collected after the subsurface has been characterized.  The tree’s roots will be 

excavated and samples will be collected near the locations of the SPSs as well as in 

concentric rings around the base of the trunk to fully characterize any potential transport 

of contaminants via deep roots. Tree-core samples will be collected similar to tree 29 in 

Paper II. Each dataset will be interpolated over three-dimensional space in order to 

interpret whether a) the majority of contaminants are transported via lateral roots and 

diffuse with height, b) the majority of contaminants enter through the base of the trunk 

and diffuse out radially, or c) a combination of lateral root and tap root transport 

contaminants. 

4.4. REGULATORY ACCEPTANCE OF PHYTOFORENSICS FOR VAPOR 
INTRUSION ASSESSMENT 

Although this work demonstrates the use of tree sampling as a screening tool for 

vapor intrusion potential, the transfer of this knowledge to the practice of vapor intrusion 

assessment will likely stagnate and meet opposition from state and federal regulatory 

institutions. Because the adoption of novel techniques is slow in general because of 

reluctance to implement technologies without numerous case studies, future research 

should be focused on building a body of field-based knowledge that further establishes 

the connection between tree sampling and vapor intrusion potential under a variety of 

hydrogeological conditions and that further investigates potential limitations of this novel 

method. Because phytoforensics is currently building momentum as a screening tool for 
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general delineation of subsurface contamination in EPA Region 7, future research would 

primarily be carried out through piggy-backing current and potential phytoforensic 

investigations at recently discovered contaminated sites with probable vapor intrusion 

potential. Besides the obvious value of method validation through comparison with vapor 

intrusion samples, this experimental design would provide immediate value to the EPA 

through initial screening of subsurface contamination. Thorough, detailed research at the 

field scale to further demonstrate the phytoforensic sampling validation is critical to 

future acceptance.  

An important aspect of establishing this body of field-based knowledge is 

developing a diverse group of stakeholders including partners from federal and state 

science and regulatory agencies, private consulting firms, and academia. The benefits and 

limitations of phytoforensics for vapor intrusion assessment would be best evaluated 

through this diverse group of stakeholders, with each able to convey concerns and 

questions from their unique viewpoint. Working in concert with multiple stakeholders 

will have the largest probability of advancing broad acceptance and becoming a method 

that is suitable and fully embraced for vapor intrusion assessment by the general 

scientific and public-health community.  
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