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ABSTRACT 

Surface chemistry greatly influences the concentration of reactants and products in 

indoor environments, thus affecting human exposure. The large amount of surface area serves 

as a support for heterogeneous reactions such as those taking place between ozone and other 

species associated with that surface. Ozonation reactions can generate carcinogens, asthma 

promoters and irritants. Therefore, investigation of the significance of ozone reactions on 

surfaces is necessary for controlling, and for developing a better understanding of, occupant 

exposure to ozone and heterogeneous ozone reaction products. 

In this dissertation, bench scale experiments were conducted in a plug flow reactor to 

quantify the reaction rate of ozone with two representative compounds, α-terpineol and 

dihydromyrcenol, adsorbed on beads representative of indoor surface materials. Both the 

reaction probability and a second-order rate coefficient were measured. A new method of 

measuring terpenoids in the presence of ozone was developed. Experiments were also 

conducted in a room-sized chamber to compare kinetics at lab and full scale. Products of the 

heterogeneous surface reaction have also been identified. The rate constants suggest that these 

surface reactions take place at a rate comparable to or higher than the air exchange rate or the 

rate of gas-phase reactions. Thus, surface conversion is predicted to significantly affect 

exposure (to reactants and products) and existing indoor air models must be modified to 

include these reactions.   
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SECTION 

1.  INTRODUCTION 

Although the ozone layer in the upper level of the atmosphere prevents potentially 

damaging ultraviolet light from reaching the Earth’s surface and thus is beneficial to people, 

ozone in the lower atmosphere (troposphere) is an air pollutant and harms people’s health 

(Weschler 2006; Bell et al. 2004). Ozone, a strong oxidant, reacts readily with other 

compounds in the atmosphere and in indoor environments. The products of these reactions also 

exhibit deleterious health effects. Well studied homogeneous reactions with terpenoid 

compounds generate a host of gas-phase and aerosol products of concern. This research is 

directed to improving our understanding of the indoor heterogeneous chemical rates of ozone 

with terpenoids typical of indoor cleaning and personal care products. 

 

1.1 OZONE AND OZONE CHEMISTRY 

Ozone in the troposphere is formed by photochemical reactions that include 

hydrocarbons and nitrogen oxides and the energy imparted by sunlight. Hydrocarbons are 

emitted into the atmosphere by both anthropogenic activities (e.g., automotive traffic 

emissions, industrial processes, application of paint and solvents) and natural processes (e.g., 

emissions from forests and oceans). Nitrogen oxides, in addition to being a precursor of ozone, 

are also directly harmful to human health (Chauhan et al. 1998). They are mainly produced and 
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emitted by fuel combustion (Faiz, Weaver, and Walsh 1996). Reactions between hydrocarbons 

and nitrogen oxides are facilitated by sunlight, and the reactions generate not only ozone, but 

also particulate matter (PM) and other components of smog (Atkinson 2000). High outdoor 

ozone concentrations are generally associated with urban areas which generate high emissions 

of ozone precursors. In addition, ozone concentrations in rural areas are increasing (Seinfeld 

and Pandis 2006; Lelieveld and Dentener 2000).  

Adverse health effects of ozone range from mild sensory irritation to severe 

impairment and death. According to the World Health Organization, ozone can irritate the 

respiratory system and harm lung function (World Health Organization 2003). Correlations 

between exposure to high ambient ozone level and some symptoms, such as cough, lower and 

upper respiratory symptoms, and shortness of breath, have been identified in epidemiological 

studies (Galizia and Kinney 1999; Kinney 1999). Even modest increases (~ 0.010 ppm) in 

ambient ozone result in measurably higher morbidity and mortality (Nyberg and Pershagen 

1996; Hubbell et al. 2005; Jerrett et al. 2009).  In response to these findings, the 8-hr ozone 

standard has been recently been reduced to between 0.070 and 0.075 ppm by the United States 

Environmental Protection Agency (US EPA) (National Ambient Air Quality Standards for 

ozone, 2008). 

Ozone is also a continuing problem in indoor environments. Tropospheric ozone enters 

residential and commercial buildings by infiltration and by natural or mechanical ventilation. 

Ozone can also be generated indoors by appliances such as laser printers and electrostatic air 
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cleaners (Kissel 1993; Boeniger 1995; Britigan, Alshawa, and Nizkorodov 2006). In the 

absence of such indoor sources, indoor ozone concentrations are almost always lower than 

outdoor ozone concentrations. The indoor to outdoor ratio of ozone concentrations ranges from 

about 0.1 to 0.8 and this ratio is highly dependent on the air exchange rate (Weschler, Shields, 

and Naik 1989). Lower indoor ozone concentrations are caused by both gas phase homogenous 

reactions (e.g., reaction with nitric oxide to form nitrogen dioxide) and heterogeneous 

reactions on indoor surfaces. Although ozone concentrations are lower indoors, people spend ~ 

90% of their time indoors (Klepeis et al. 2001). Because of this, approximately half of ozone 

exposure occurs indoors (Weschler 2006).  

Ozone reactions not only decrease the ozone concentration indoors but also generate 

hazardous reaction products. Secondary Organic Aerosols (SOA), usually associated with 

smog, are produced indoors from ozone-terpene reactions, either in air or on surfaces (Sarwar 

et al. 2004; Waring et al. 2008). Dicarbonyls are also produced from both gas phase (Harrison 

and Wells 2009; Ham, Proper, and Wells 2006; Forester, Ham, and Wells 2006; Wells 2005; 

Yu et al. 1999; Calogirou, Larsen, and Kotzias 1999) and surface ozone terpene reactions 

(Ham and Wells 2009; Ham and Wells 2008).The yield of dicarbonyls from gas phase ozone 

reaction with some terpenes can vary from ~5% to ~90% (Forester and Wells 2009). The 

ozonide, an intermediate in the reaction path with olefins, is thought to be responsible for 

observed eye and membrane irritation in ozone-terpene reaction mixtures (Wilkins et al. 2003; 

Wolkoff et al. 2000). Exposure to SOA and dicarbonyls may cause lung disease, respiratory 
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symptoms and occupational asthma (Kreiss et al. 2002; Delfino 2002; Anderson et al. 2007). 

Furthermore, formaldehyde, an EPA listed carcinogen, is produced by the ozone reaction with 

latex paint (Reiss et al. 1995) and carpets in  homes (Wang and Morrison 2006; Wang and 

Morrison 2010).  

 

1.2 INDOOR SURFACES AND POLLUTANT INTERACTIONS 

Unlike ambient environments, indoor environments usually incorporate a very large 

surface area in a relatively small volume. The surface area-to-volume ratio is roughly two 

orders of magnitude larger than that for an outdoor urban air parcel (Nazaroff, Weschler, and 

Corsi 2003).  

Many kinds of surface materials are present in indoor environments: painted surfaces 

(wall and ceiling), textiles (carpets, curtains, upholstery, clothing and bed sheets), wood (floors 

and furniture), glass (windows and mirrors), plastics/polymers (vinyl flooring and coatings), 

hair and skin (occupants and pets) and so forth. All indoor surfaces are covered with dust, dirt 

and oils that can also influence their interactions with pollutants.  

The morphology of indoor surfaces varies considerably. Some surfaces (e.g. textiles) 

are fluffy with substantial internal surface area and roughness scales measured in the 

millimeter to centimeter range. Others, such as latex paint, are porous at a more microscopic 

scale. The geometric or ‘projected’ surface to volume ratio of typical indoor environments 

range from 2 to 4 m2 m-3 (Hodgson, Ming, and Singer 2004). Floor, ceiling and walls account 
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for most of the projected area, while the furnishings and textiles may account for a large 

fraction of the internal surface area. For example, the surface area of the fibers in carpet is 

roughly 50-100 times the projected area of the carpet itself (Morrison and Nazaroff 2002).  

Many indoor materials serve as adsorptive sink for indoor pollutants (such as volatile 

organic compounds), which means they have the potential to reduce the peak concentration of 

pollutants, but also to prolong occupant exposure due to their re-emission (Won, Corsi, and 

Rynes 2000). The interactions of organic compounds with indoor materials and their effects on 

indoor air quality have been studied extensively. Many models have been developed for 

organic adsorption on different indoor materials (Singer et al. 2007; Jørgensen 2007; Huang, 

Haghighat, and Blondeau 2006) and their emissions from these materials (Yan, Zhang, and 

Wang 2009; Xu and Little 2006; Haghighat and Huang 2003). In general, volatile species 

adsorb weakly, while low-volatility or polar species adsorb more strongly. For the same 

equilibrium air concentration, the surface concentration for a terpene alcohol such as 

a-terpineol will be much higher than that for a more volatile, less polar, terpene such as 

limonene. Under these conditions, a reactive molecule such as ozone will strike the adsorbed 

terpineol much more frequently than adsorbed limonene while the gas-phase collision rates 

would be equal.  

When ozone encounters an indoor surface it can strike and rebound, adsorb or react 

with the substrate, an adsorbed molecule or other debris coating the substrate. Ozone can 

spontaneously decompose to oxygen, even on otherwise unreactive surfaces such as clean 
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glass. Different substrates can have very different ability to “consume” ozone; the products and 

their yields can also be quite different (Hoang, Kinney, and Corsi 2009; Klenø et al. 2001). 

Ozone reaction rates and products have been quantified and/or identified from such substrates 

as latex paint (Reiss et al. 1995), carpet (Morrison and Nazaroff 2002), aircraft cabin materials 

and clothing fabrics (Coleman et al. 2008), and even human skin lipids (Wisthaler and 

Weschler 2009; Pandrangi and Morrison 2008). Products from the heterogeneous ozone 

reaction with these surfaces include aldehydes (e.g. formaldehyde), ketones (e.g. acetone), 

other carbonyls, dicarbonyls and hydrocarbonyls. Although not precisely quantified, Weschler 

et al estimated that the reaction with occupants and their clothing were responsible for >55% 

ozone removal in a simulated aircraft cabin (Weschler et al. 2007). Thus, ozone surface 

chemistry can significantly alter the concentration of indoor air species, and affect human 

exposure to indoor pollutants.  

 

1.3 TERPENE CHEMISTRY 

The terpene is a category of hydrocarbons built up from isoprene sub-units (Zubay and 

Atkinson 1988). They are naturally emitted from flowers and plants and usually can be found 

in essential oils and resins (Kesselmeier and Staudt 1999). Strictly speaking, a terpenoid is 

modified terpene, wherein methyl groups are moved or removed, or oxygen functionality 

added (IUPAC 1978). However, as is common usage, the terms terpene and terpenoid are used 

interchangeably throughout this dissertation. Terpenes are emitted in large quantities into the 
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atmosphere (Isidorov, Zenkevich, and Ioffe 1985) and participate in atmospheric chemistry, 

which is why there is a much higher concentration of aerosols in the atmosphere above forest 

(Tunved et al. 2006). Many terpenes contain carbon-carbon double bonds which react readily 

with ozone. These important atmospheric reactions have been studied for many years. See 

reviews in (Yu et al. 1999; Atkinson and Arey 2003).  

Because many terpenes have a pleasant odor, they have been extensively used as 

fragrance compounds in household products, including but not limited to perfume, soap, 

shampoo, detergents, air fresheners, candles, and cosmetics. Large quantities of terpenes are 

produced by chemical synthesis each year. For d-limonene only, the worldwide annual 

production was ~70 million kg in 2009 (Kerton 2009). Because of this, indoor concentrations 

tend to be much higher than outdoors and can be the dominant components of indoor VOCs 

(Singer et al. 2006; Nazaroff and Weschler 2004).  

Some terpenes that dominate indoor measurements include limonene and α-pinene 

(Nazaroff and Weschler 2004). These are used as “top-notes” and are the first compounds to 

evaporate and develop the fragrance desired by the manufacturer (McDaniel and McDaniel 

2010). Others emit somewhat more slowly and provide a longer-lasting experience. For 

example, the terpene alcohol α-terpineol is a major component of pine oil (Nazaroff and 

Weschler 2004), and has been found in liquid cleaner/disinfectant, liquid floor detergent 

(Colombo et al. 1991) and air fresheners (Salthammer and Uhde 2009). Dihydromyrcenol is 

one of the principal components of lavender (Nazaroff and Weschler 2004) and has been found 



in liquid floor detergent (Colombo et al.

terpenes are listed in Table 1.1.

 

Category Name 

Monoterpene 

α-myrcene

limonene

α-pinene

∆-3-carene

Sesquiterpene zingiberene

Triterpene squalene

Monoterpene 

alcohol 

α-terpineol

linalool

dihydromyrcenol

 

 Ozone-terpene reactions in 

products include gaseous

in liquid floor detergent (Colombo et al. 1991). The formulas and structures of some typical 

terpenes are listed in Table 1.1. 

Table 1.1 List of terpenes 

 Formula Structure

myrcene C10H16 

limonene C10H16 

 

pinene C10H16 

carene C10H16 

zingiberene C15H24 

squalene C30H50 

terpineol C10H18O 

 

linalool C10H18O 

dihydromyrcenol C10H20O 

terpene reactions in the gas phase have been studied for many years. The 

gaseous and particulate products (Yu et al. 1999). Nøjgaard

8 

s and structures of some typical 

Structure Found in 

 
Bay, wild 

thyme 

 

Orange 

peel 

 

Pine resin 

 
Turpentine 

 
Ginger oil 

 

Shark liver 

oil, human 

skin 

Pine tree 

oil 

 
Kiwifruit 

and apple 

 
lavender 

gas phase have been studied for many years. The 

Nøjgaard et al. found that 
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limonene oxidation products can cause trigeminal stimulation and possibly eye irritation when 

ozone and limonene concentration were in their high end of indoor related concentrations 

(Nøjgaard, Christensen, and Wolkoff 2005). The ozone terpene reactions are generally 

believed to initially form a primary (unstable) ozonide which reacts further to form a 

semi-stable secondary ozonide. The mechanism is shown in Figure 1.1 . 

 

 

 
Figure 1.1 Ozone terpene reaction mechanisms 

 

 

This secondary ozonide further decomposes to form aldehydes, dialdehydes, ketones, 

carboxylic acids, hydroxycarbonyls, and others; some are much less volatile than the original 

terpene and condense to form secondary organic aerosols (Claeys et al. 2004).  

Specific gaseous products include glyoxal, methylglyoxal, glycolaldehyde, and 

dicarbonyls such as these have been identified as irritants and sensitizers (Anderson et al. 

2007). For example, workers at a microwave popcorn plant were exposed to diacetyl (a 
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dicarbonyl similar to glyoxal) and they have twice expected rates of asthma (Kreiss et al. 2002). 

Even irritation can exact a toll. As Mendell et al. (Mendell et al. 2002) pointed out, there are up 

to 60 million people in the United States working in indoor office environment have one or 

more weekly building-related symptoms. The annual cost due to illness or performance losses 

was estimated to range from 20-70 billion. Exposure to indoor volatile organic compounds was 

ascribed as one major reason for building related symptoms (Spengler, Samet, and McCarthy 

2001). At the cellular level, some VOCs can induce cellular damage to lung cells and cause 

inflammatory response (Doyle et al. 2007; Sexton et al. 2004; Kasper et al. 2000).  

Ozonation of terpenes generates secondary organic aerosols in the ~0.015 to 0.7 µm 

size range (Rohr et al. 2003). Particles which have aerodynamic diameters less than 2.5 µm 

(PM2.5) are correlated with daily mortality. A 10 µg m-3 increase in two-day mean PM2.5 was 

associated with a 1.5% (95% CI 1.1% to 1.9%) increase in total daily mortality (Schwartz, 

Dockery, and Neas 1996).  

 In buildings, the rates of chemical reactions determine whether this chemistry is 

“important” relative to other phenomena such as emissions or ventilation. There are three 

major removal mechanisms for reactive pollutants: air exchange, adsorption/absorption and 

reaction. In general, the rate of chemical reactions must be a substantial fraction of the air 

exchange rate to significantly influence the steady-state indoor concentrations of reactants, 

assuming rates are reported on the same basis (usually first-order, or units of h-1). The gas 

phase reaction rate of ozone and some terpenes (e.g. citronellol, d-limonene, ∆-carene, 
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α-pinene, α-terpineol, dihydromyrcenol, isoprene, and geraniol) have been quantified, in terms 

of bimolecular second-order reaction rate coefficient (Ham, Proper, and Wells 2006; Forester, 

Ham, and Wells 2006; Wells 2005; Forester, Ham, and Wells 2007; Khamaganov and Hites 

2001). At typical ozone concentrations in buildings, pseudo-first-order rates of many terpenes 

compete with air exchange as the dominant removal mechanism for these compounds. 

Surface reactions of ozone with terpenes may also have rates that compete with air 

exchange, but have only recently been studied. The products of surface ozone reactions with 

α-terpineol and dihydromyrcenol have been investigated (Ham and Wells 2008; Ham and 

Wells 2009). Some of the same products were identified from both surface reaction and gas 

phase reaction. However, the relative yields of products were different. It was suggested that 

large molecular weight products (not observed directly) were formed from the surface 

reactions. Springs et al. (Springs and Morrison 2007.) studied the surface reaction probability 

of ozone and two volatile terpenes: ∆-3-carene and d-limonene. The surface ozone reaction 

probability of ∆-3-carene and d-limonene were roughly 10 to 100 times greater than the 

corresponding gas-phase values. However, to achieve measurable adsorption on surfaces, the 

concentrations of ∆-3-carene and d-limonene used in this research were ~1000 ppb, which is 

very high compared with typical indoor concentrations (10-100 ppb). Extrapolation of results 

suggested that ozone uptake on indoor surfaces would not be substantially increased due to 

adsorbed ∆-3-carene and d-limonene. However, terpene removal and product formation rates 

may be a non-significant fraction of the whole. The research reported in this dissertation was 
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motivated by the fact that terpenes with similar gas phase ozone reactivity but a much lower 

vapor pressure (e.g. α-terpineol) could achieve high surface coverage at low air concentrations 

and thus may substantially increase ozone-terpene conversion rates in buildings.  

 

1.4 OZONE INTERACTIONS WITH SURFACES 

The reaction probability, γ, is defined as the probability that a reaction occurs when two 

particles (molecules in this case) undergo a collision (McNaught and Wilkinson 1997). Its 

value ranges from 0 to 1 and depends on the physical and chemical properties of the reactant 

molecules and the reaction, such as activation energy, the energy of molecules before and after 

collision, the cross sectional area of reactant molecules. It is independent of the macro scale 

conditions, such as fluid flow or the concentration of each reactant. When the collision of 

ozone and a second molecule takes place in the gas phase, the gas phase reaction probability, 

γgas, is proportional to their bimolecular reaction rate constant, as shown in Equation (1). 

 

���� � ��,��� · 
����  (1) 

 

where the k2,gas is the bimolecular reaction rate constant (cm3 molecule-1 s-1), 
��� is the 

density of gas, which is 2.5 × 1019 molecule cm-3 at 25°C, and z is the collision frequency, 

which is 3 × 109 s-1 (Springs and Morrison 2008).   
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The calculation of surface reaction probability is briefly discussed here. The overall 

flux of a reactive pollutant to a surface depends on boundary layer mass-transfer conditions 

and the probability of reaction with the surface itself. However, flux to an indoor surface has 

traditionally been parameterized by a single combined parameter known as the deposition 

velocity, vd. To provide a rationale for using the deposition velocity, Cano-Ruiz et al. 

(Cano-Ruiz et al. 1993) derived an equation that combined the resistance of boundary layer 

mass transfer and the resistance of the surface to pollutant “uptake”.  The relationship between 

deposition velocity, surface reaction probability, and transport-limited deposition velocity is 

shown in Equation (2) (Cano-Ruiz et al. 1993). 

 

1
���� � �� � �

4 � 1
�� � 1

���� (2) 

 

where <v>  is the Boltzmann velocity for pollutant, which is pollutant specific and temperature 

specific and �� is the transport-limited deposition velocity (i.e. when ����=1). Under typical 

indoor air velocity conditions, the ozone deposition to surface is limited by transport through 

the boundary layer to the surface when ���� > ~3×10-4, and is limited by surface kinetics alone 

when ���� < ~5×10-7.  

Several studies have quantified the ozone uptake to specific surfaces (Hoang, Kinney, 

and Corsi 2009; Klenø et al. 2001) and some of these studies were done in situ, in occupied 

homes (Wang and Morrison 2006; Wang and Morrison 2010). In these studies, ozone was 
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assumed to be reacting with “the surface”, regardless of its composition. Further, the surfaces 

were isolated (using a flow-through reactor with clean gases) from the rest of the building, 

meaning that the conditions were not entirely “real”. Real indoor surfaces adsorb and interact 

with numerous gas-phase species in the building. Thus, ozone consumption and reactions with 

adsorbed species were necessarily neglected. Thus, models that attempt to assess occupant 

exposure to reactants and products (Carslaw 2007) do not include this very important 

component of the reaction system. 

 

1.5 OZONE REACTION PROBABILITY WITH SURFACE ATTACHED 
SPECIES 

The reaction probability of ozone and surface-bound compounds has been investigated, 

mainly to advance our understanding of ambient atmospheric chemistry. In these studies, the 

compounds were attached to an inert substrate (e.g. silicon and gold) so that the orientation of 

molecules on the surface was well defined. Then ozone was introduced to react with the 

compound loaded surface and other surface chemistry techniques were used to investigate 

surface reactions. 

Dubowski et al. studied the ozone oxidation of three-carbon and eight-carbon vinyl 

terminated self-assembled monolayers (SAMs, C3= and C8=) on a silicon Attenuated Total 

Reflectance (ATR) crystal (Dubowski et al. 2004). The ozone concentrations ranged over 5 

orders of magnitude for different experiments and the initial ozone reaction probabilities were 

quantified. As the ozone concentration increased, the measured initial reaction probability 
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decreased. The rate of change in the C=C and C=O bonds were measured. The kinetics 

suggested that ozone was rapidly adsorbed onto the surface and then reacted more slowly with 

the alkene moiety. This overall reaction mechanism is known as the Langmuir-Hinshelwood 

mechanism. Molecular dynamics calculations also supported this mechanism. In a similar 

SAMs experiment focused on the products, McIntire et al. found large organic aggregates (~ 

0.1 – 1 µm) were formed on the substrate, while the surrounding substrate was depleted of 

carbon (McIntire et al. 2005). This was consistent with other studies which suggested stable 

secondary ozonides were formed on surfaces (McIntire, Ryder, and Finlayson-Pitts 2009). 

Geiger and colleagues also developed a linker strategy to bind tropospherically 

relevant alkenes onto a glass surface, and used Sum Frequency Generation (SFG) to 

characterize the terpene loaded surfaces and track their interaction with ozone (Voges et al. 

2007). The surface reaction probability of several terpenes were quantified and also a 

Langmuir-Hinshelwood type mechanism was suggested (Stokes et al. 2008; Stokes et al. 2009). 

Their studies suggested that the surface reaction probability was affected by stereochemistry 

and orientation. When the C=C double bonds were oriented toward the gas phase, the reaction 

probability was higher than when C=C double bonds were oriented towards the substrate 

(Stokes et al. 2009). 

A key observation has been that reaction probabilities of substrate-attached alkenes are 

larger than observed for gas-phase reactions. Stokes et al. (Stokes et al. 2009) measured the 

surface reaction probability of several compounds and compared the results with that of other 
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studies. The compilation comparisons along with the data reported by Springs and Morrison 

(Springs, Wells, and Morrison, submitted to Indoor Air ) are shown in Figure 1.2.  

 

 

 
Figure 1.2 Comparison of the surface reaction probability with the gas phase 

reaction probability. Solid dots are from Stokes et al. (Stokes et al. 2009), and 

hollow dots are from Springs and Morrison (Springs, Wells, and Morrison, 

submitted to Indoor Air).  

Note that 1) the surface reaction probabilities do not appear to be correlated with 

gas-phase reaction probabilities, 2) all reaction probabilities are greater than their gas-phase 

counterparts and 3) surface reaction probabilities are up to five orders of magnitude greater 

than in the gas phase. 
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When these observations are extrapolated to compounds which adsorb to indoor 

surfaces, we may predict that low volatility and high ozone reactivity compounds can 

substantially alter our expectations of indoor conversion rates of these compounds. Low 

volatility compounds can potentially cover a substantial portion of indoor surface, even at low 

indoor air concentrations. Further, the surface reaction probability is likely to be greater than 

the gas phase reaction probability, which may already be high enough to cause gas-phase 

chemistry to substantially alter indoor concentrations of reactants and products. 

The reaction probability for the reaction of ozone with an adsorbed species can be 

determined by comparing ozone flux to a surface with and without the adsorbed compound. 

For clean bare surfaces, the “background” reaction probability, γbkg , can be determined by 

quantifying the flux and deposition velocity to that surface and applying equation (2). For a 

surface supporting an adsorbed species, the new area-averaged reaction probability can be 

found by quantifying the ozone flux and deposition velocity and again applying equation (2). 

The resulting (or total) reaction probability, γtotal, is, theoretically, a linear combination of the 

individual reaction probabilities of all available surface sites. Thus, the total reaction 

probability, γtotal, is the linear combination of background reaction probability, γbkg , and ozone 

reaction probability with surface-bond compounds ,γcom, as shown in Equation (3). 

 

������ � ��������  �!"� #1 � ����$ (3) 

 



18 

where fcom is the fractional coverage of the compound on the surface. There are two key 

assumptions in defining the compound reaction probability in this way: 

1. The heterogeneous ozone surface reaction follows the Eley-Rideal mechanism. In 

this mechanism, the reactant (terpene in this research) is adsorbed to the surface and ozone 

directly reacts with it from gas phase, without initially adsorbing. This assumption is in conflict 

with the aforementioned observation that heterogeneous ozone surface reactions are more 

likely to follow a Langmuir-Hinshelwood mechanism, in which ozone initially adsorbs before 

it reacts. However, this continues to be an active area of research and the “jury is still out” on 

the full mechanism. Further, it is very difficult to quantify how fast adsorbed ozone migrates on 

surface, collides and reacts with other species. Finally, this “effective” surface reaction 

probability (even if fictitious) can be used directly in conjunction with reactor or building 

models to calculate conversion rates, and ultimately estimate personal exposure to reactants 

and products.    

2. The adsorbed molecules form no more than a monolayer on surfaces. This 

assumption is more likely to be true when the adsorbed amount is small and the surface 

coverage is low (e.g. <1%). As more molecules adsorb, they are more likely to interact with 

each other, and even form multi-layer ‘islands’ on surfaces. Thus the calculated fractional 

coverage, fcom, based on adsorption isotherms, is equal to or larger than the true surface 

coverage. The compound reaction probability, γcom, resulting from application of equation (3) 

will be less than or equal to the true value. Therefore, the compound-specific surface reaction 
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probability quantified in this dissertation is called the ‘minimum effective’ reaction 

probability.  

 

1.6 INDOOR AIR QUALITY MODELS AND SURFACE REACTIONS 

Existing mass balance models used to calculate indoor concentrations of reactants 

generally include air exchange, deposition to surface due to background reactivity, and gas 

phase reaction as removal mechanisms for ozone and reactive VOCs. The mass balance at 

steady state is expressed as in Equation (4). 

 

%&'(,)* � %&'(,���  ��,!"�+&'(,���  ��,���&'(,���&���,���, (4) 

 

where the ��,!"� is the area-averaged background ozone deposition velocity (cm s-1), Q is the 

flow rate through the room (cm3 s-1), A and V are surface area and volume of the room 

respectively (cm2 and cm3), &'(,��� and &'(,)* are the inlet and outlet of ozone concentration 

(molecule cm-3), and ��,��� is the bimolecular second-order reaction rate constant (cm3 

molecule-1 s-1). The surface reaction element of Equation (4) can further be sub-divided by 

taking into account differences in the reactivity and flow characteristics of specific surfaces (vd, 

bkg, 1A1 + vd,bkg, 2A2 + …).  

Where sufficient information about surface coverage ( f ) is available, the change in the 

surface deposition velocity due to an adsorbed reactant can be related to the reaction 
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probability of the background and the adsorbed compound as in Equations (2) and (3). 

However, the fractional coverage may not be available, as it can be difficult to determine in 

field settings. In lieu of using the reaction probability directly, an overall rate coefficient that is 

related to the gas-phase concentration of the adsorbing reactant may instead be applied. 

Assuming that the surface reactivity is the dominant resistance to ozone uptake, the reactant 

molecule (e.g. a terpenoid) has a much higher reaction probability than the background surface, 

but also that the fractional coverage of the reactant is small, the total ozone deposition velocity 

can be expressed as in Equation (5). 

 

��,����� � ��,!"�  ��,��� · &��� � ��,!"�  ��,��� (5) 

 

where ��,����� is the total ozone deposition velocity of compound loaded surface (cm s-1), 

��,��� is an effective second-order surface reaction rate coefficient (cm4 molecule-1 s-1)，&��� 

is the gas-phase concentration of the reactant (molecule cm-3), ��,!"� is the ozone deposition 

velocity associated with background surface reactivity (cm s-1), and ��,��� is the ozone 

deposition velocity associated with surface-bond compound. Incorporating the adsorbed 

compound, Equation (4) becomes, 

 

%&'(,)* � %&'(,���  #��,!"�  ��,���$+&'(,���  ��,���&'(,���&���, (6) 
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Thus, Equations (5) and (6), can be used to estimate indoor concentrations of reactants 

and the conversion rates due to heterogeneous and/or homogeneous mechanisms. Further, the 

surface reaction rate coefficient, ��,���, can be determined at bench scale or in field 

experiments and compared directly. If comparable, bench-scale measurements then become a 

powerful tool for estimating exposure in buildings for multiple compounds under many 

different conditions.  
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2. GOALS AND OBJECTIVES 

Although indoor ozone chemistry has been studied in great detail, little of the existing 

research allows us to estimate the impact of adsorbed reactants on the resulting indoor 

concentrations of ozone, reactants and products. Evidence points to this surface chemistry as 

being particularly important for low-volatility terpenes. Specific questions that remain 

unanswered include: how fast does this surface reaction take place? Is this surface reaction fast 

enough to significantly alter the indoor concentration of reactants and products? Can 

bench-scale measurements of these reaction rates be extrapolated to full-scale environments? 

Therefore, in this research, an experimental method to quantify the ozone reaction rate 

with surface-bounded terpene species was developed. Also, mathematical models for my 

experiment system that allow us to calculate the rate parameters from the resulting 

experimental data were developed. A second-order surface reaction rate was newly defined 

and demonstrated to be a more useful term than the reaction probability for characterizing the 

flux (or surface conversion rates) at least for the two compounds studied in this research. The 

objectives of this research were: 

(1) to develop a reliable analytical method to quantify ozone reactive terpenes, for 

single compound and also terpene mixtures, in the samples where ozone is present. 
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(2) to quantify the adsorption, surface reaction rates, and surface reaction probability of 

ozone with terpenes (α-terpineol and dihydromyrcenol) adsorbed on relevant indoor materials, 

for a relevant range of relative humidity conditions; 

(3) to compare the surface bound reaction probability with reported values of the 

gas-phase reaction probability; 

(4) to determine by extrapolation and experiment to what extent the ozone surface 

reaction alters the concentration of specific terpenes and ozone, and  

(5) to identify some of the heterogeneous reaction products that result from ozone 

reacting with spontaneously adsorbed terpenes.  
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3. MATERIALS AND METHOD 

To fulfill the aforementioned objectives, the following experimental plan has been 

implemented: 

1) Develop a reliable sample preparation and analytical method to measure the 

concentration of reactive organic compounds in the presence of ozone. 

Please refer to paper I. 

2) Quantify the ozone/α-terpineol surface reaction kinetics on polyvinyl chloride, glass, 

and latex paint surfaces using a bench-scale reactor and mathematical modeling.  

Please refer to paper II. 

3) Quantify the ozone/dihydromyrcenol surface reaction kinetics on polyvinyl chloride, 

glass, and latex paint surfaces using a bench-scale reactor, and evaluate and compare these 

kinetics in a room-sized chamber equipped with latex painted wallboard. 

Please refer to paper III. 

4) Identify some of products of heterogeneous surface reaction between ozone and two 

terpene alcohols (α-terpineol and dihydromyrcenol) 

Please refer to paper IV. 
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ABSTRACT 

Dynamic gas sampling using solid phase micro-extraction (SPME) was evaluated for 

recovery of reactive terpenes and terpenoids in the presence of ozone. For limonene, 

α-terpineol and dihydromyrcenol in the 20-60 ppb range, this method achieves > 80% recovery 

for ozone mixing ratios up to 100 ppb. Both the experimental results and a model analysis 

indicate that higher ozone concentrations and longer sampling times result in lower percent 

recovery. Typically greater than 90% recovery and ppb level method detection limits were 

achieved with a 5 minute sampling. Increasing the flowrate from 100 sccm to 400 sccm flow (5 

to 20 cm s-1) through the active sampler did not significantly affect sensitivity or recovery in 

most cases, probably due to negligible mass-transfer improvements. The recovery for each 
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compound improves when sampling from a mixture of different species than that from a single 

compound sample. This may be due to competition for ozone amongst adsorbed species. 

Dynamic SPME sampling can improve detection and quantification of terpenes in reactive 

environments, especially for low vapor pressure (< 5mmHg at 25°C) compounds that can be 

lost to ozone scrubbers used in other methods.  

KEYWORDS  

SPME, terpene, ozone, recovery, α-terpineol, dihydromyrcenol  

1. Introduction 

Quantification of the concentration and emission rates of biogenic terpenes and 

terpenoids is important for both atmospheric and indoor air quality research. Biogenic terpenes 

such as isoprene and pinene contribute to the formation of photochemical oxidants and 

aerosols in the atmosphere [1,2]. In recent simulations, Curci et al. [3] estimated that biogenic 

VOCs contribute to, on average, 5% of ozone maxima over Europe, but 15% or greater in some 

urban areas.  In buildings, ozone reactions with unsaturated terpenes can generate 

formaldehyde, aerosols and irritants [2,4-6].  Many terpenes are present at much higher 

concentrations indoors relative to outdoors, because they are widely used as fragrances and 

solvents in cleaning products, air fresheners, and personal care products [4,7-9]. Thus 

quantification of terpenes in either environment is crucial for understanding and predicting the 

concentrations of the products of this chemistry. 
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In both indoor and outdoor environments, ozone and other oxidants coexist with 

reactive terpenes, making measurement problematic. Although smog levels have improved, 

outdoor urban ozone concentrations can still rise over 100 ppb [10]. Indoor ozone 

concentrations tend to follow outdoor concentrations, and are between 10 and 70% of outdoor 

levels [11].  Even the lower indoor concentrations of ozone can interfere with the 

measurement of terpenes [12]. Analytical methods that collect and concentrate compounds on 

surfaces may be especially prone to recovery problems if ozone is not removed prior to 

collection. Unsaturated compounds attached or sorbed to surfaces tend to react rapidly with 

ozone. For example, Stokes et al. [13] showed that a surface bound unsaturated organic such as 

1-pentene can react with ozone at rates nearly five orders of magnitude faster than it would in 

the gas phase. Surface conversion rates may be more related to the orientation and availability 

of double-bonds rather than to the gas-phase rates [14].  As surface coverage of the terpene 

increases, the rate of terpene-ozone reactions increase and recovery suffers. Relative to higher 

volatility terpenes, reduced recovery would also be anticipated for lower volatility or polar 

terpenes with higher equilibrium surface coverage. 

Evidence for this effect has been observed during the collection of terpenes on sorbent 

surfaces [15-17]. Tenax, Carbosorb, and other sorbents are widely used to collect and 

concentrate gas-phase compounds for thermal desorption, separation and quantification by 

GC-MS or other methods [18]. At the inlet of a sorbent cartridge, analytes rapidly approach 

equilibrium surface coverage (maximum for those conditions) and are exposed to ambient 



28 

concentrations of ozone during the entire duration of sampling. Surface conversion rates are 

thereby maximized in the inlet region. Several authors [15,19,20] have shown that when ozone 

is present, reactive terpenes degrade during sampling on Tenax, reducing recovery. Calogirou 

et al. [15] showed that recovery was reduced for lower volatility compounds, polar oxygenates 

and compounds with multiple unsaturations. Several methods, such as adding an ozone trap 

before the sorption tube [21-28] or adding trans-2-butene to the sample gas as ozone scavenger 

[29], have been developed to overcome this problem. However, lower-volatility and polar 

terpenes tend to adsorb to traps, again reducing recovery [15]. The addition of scavenger gases 

increases the complexity and cost of sampling. Calogirou et al. also improved recovery by 

reducing the total sample time, thereby reducing the ozone-terpene contact time on the sorbent 

surface. However, even for very short sampling times, some terpenes still exhibited low 

recovery (<50%) due to their very high reaction rate with ozone on the surface of the sorbent. 

Solid phase micro extraction (SPME) is widely used in analysis of organic compounds 

in both air and water [30-33]. By concentrating sorbates into a thin layer of sorbent material, 

SPME combines sampling, extraction, and concentration, and does not require a solvent for 

sample introduction and analysis [34]. While it is common to use SPME as an equilibrium 

sampler, a potential advantage of this method is that it can be applied such that the sorbent 

material surface does not reach equilibrium with the gas. The surface coverage of the analyte is 

minimized, reducing the average rate of ozone-terpene collisions. Researchers have studied 

SPME sampling of low-reactivity aromatic compounds in the presence of ozone [35] and also 
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verified that the SPME fiber will not be affected or damaged when the ozone mixing ratio is as 

high as 1000 ppb.  Several ozone-terpene kinetics studies have used SPME in the presence of 

ozone to detect terpenes [36, 37]. Harrison et al. [36] measured ozone-citronellal kinetics using 

a polydimethylsiloxane divinylbenzene (PDMS/DVB) coated SPME fiber in the presence of 

0.3-0.5 ppm citronellal and 0.05-0.15 ppm ozone. No explicit determination of how ozone 

would affect recovery was reported, but kinetic results with reference terpene compounds 

suggested that ozone did not significantly impact recovery. 

In an effort to improve terpene measurements in reactive environments and eliminate 

the need to trap ozone or introduce other species into the collecting media, we have evaluated 

the impact of ozone on terpene and terpenoid recovery in a dynamic SPME sampling system. 

Our objective was to identify conditions, such as the sampling time, that result in good 

recovery and sensitivity. 

2. Experimental 

2.1 Reagents and supplies 

(R)-(+)-Limonene, dihydromyrcenol (DHM), tetrahydromyrcenol (THM),  

α-terpineol, citronellal, (1R)-(+)-α-pinene,  (1S)-(+)-3-carene, linalyl acetate, linalool, and 

β-citronellol were obtained from Sigma Aldrich (St. Louis, MO) at the highest purity available. 

They were chosen to represent volatile and semi-volatile terpenes and terpenoids with high and 

low reactivity. The vapor pressure and gas phase ozone reaction rates are listed in Table 1. 

THM is fully saturated and not expected to react with ozone. It is used as a control and an 
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internal standard for sampling in the presence of ozone. Supelco StableFlex™ SPME fibers 

(65µm PDMS-DVB coating; manual holder) were obtained from Sigma-Aldrich (St. Louis, 

MO). 

2.2 Experimental apparatus 

A sketch of the apparatus used to produce the gas mixture is shown in Fig 1. A Parker 

Balston (Haverhill, MA) zero air generator was used to deliver clean air to the system, and 

MKS (Crewe, UK) flow controllers were used to control the flow at desired rates. In this study, 

the relative humidity of the gas mixture was 50% for all experiments. Ozone was generated and 

monitored by a Dasibi (Glendale, CA) ozone generator and monitor. The ozone concentration 

in the gas standard was controlled by adjusting the voltage to the UV lamp in the ozone 

generator. To minimize the extent of analyte-ozone reactions in the gas phase, ozone was 

introduced through a port 10 cm upstream of the sampling port, for a residence time of 0.1 s 

prior to reaching the SPME fiber. Terpenes were generated using a temperature controlled 

flow-through system consisting of diffusion tubes in a glass reservoir. A range of diffusion 

tube sizes (diameter and length) were used to adjust the concentration of terpenes. The 

temperature was maintained at 25.0 ± 0.5°C for all experiments. The concentrations of terpenes 

were measured in the absence of ozone using thermal desorption tubes (Markes International 

Ltd., Llantrisant, UK). To verify that the concentration of the gas standard was stable during 

experiments, a standalone SRI (Torrance, CA) flame ionization detector (model 110) was used 

to draw a sample from the exhaust at 80 sccm and its signal was recorded. 
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2.3 Dynamic sampler 

A 3/8 inch (95 mm) stainless steel compression tee (Swagelok, Solon, OH) was used as 

the main body of the SPME sampling device (Fig 2a). A modified Teflon Mininert valve body 

(Supelco, Bellefonte, PA) with a septum seal was inserted into the tee to center and stabilize 

the SPME needle. The two other ports of the tee were used as the gas inlet and outlet. The flow 

rate through the dynamic sampler was controlled at 100 sccm or 400 sccm, by a flow controller 

attached to vacuum. To sample, the SPME fiber was inserted through the valve and exposed 

(parallel) to the flowing gas mixture (Fig 2b). Exposing the fiber to a flowing stream reduces 

the sampling time by decreasing the boundary layer resistance to mass transfer [42]. The 

dynamic sampling device was placed in a temperature controlled cabinet maintained at 

25.0±0.5°C. 

2.4 SPME/GC/FID 

Each SPME sample was analyzed immediately after sample collection. An Agilent 

6890 gas chromatograph with a flame ionization detector (GC/FID) was used in this study. For 

SPME fibers, a liner with a 0.75 mm inner diameter was used in the injection port. The 

injection port was maintained at 250°C for fast desorption in splitless mode. The SPME fiber 

was retained in the injection port for 5 minutes. A single fiber was used repeatedly for all 

experiments. A HP-5 capillary column (30.0m×320µm; 0.25µm film thickness) was used 

under 8 psi constant pressure. The oven temperature ramp was 50°C to 250°C at a rate of 

20°C/min. FID detector temperature was set to 250°C. The total run time was 10 minutes. 
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2.5 Calibration of thermal desorption tubes 

The concentrations of terpenes were measured in the absence of ozone using thermal 

desorption tubes filled with Tenax-TA (Markes, Llantrisant, UK), thermal desorber (Markes, 

Llantrisant, UK), and  Agilent 6890 GC/FID system [18]. The standard solution was prepared 

by dissolving a small amount of each terpene into methanol. The solution concentration of the 

9 terpenes ranged from 20.6 – 23.3 ng/µL. To develop a gravimetric calibration curve for TD 

tubes, different volumes of the standard solution (10, 20, 40, 80 µL) were injected into 5 

different TD tubes, purged with high purity nitrogen to drive off methanol, and injected and 

analyzed on the GC/FID system. To verify the terpene concentration in the dynamic sampler, 

gas (without ozone) was drawn through a TD tube at 100 sccm for 10 minutes. Triplicates were 

used to ensure the accuracy of the sampling. Resulting FID peak areas were compared against 

the gravimetric calibration.   

3. Procedures 

3.1 Internal standard 

THM was chosen as an internal standard since it is saturated and not expected to react 

readily with ozone. To ensure that THM itself does not react with ozone, the peak areas were 

compared for THM at 80 ppb, with and without ozone at 580 ppb (an arbitrarily large value).  

Five replicates were collected at each condition using two sampling times (5 and 30 minutes). 

During all other experiments, THM was maintained at 18 ppb as an internal standard.  
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3.2 Competitive adsorption with internal standard and reaction products 

It has been reported that analytes compete with each other for adsorption sites on 

SPME fibers that contain divinylbenzene [42]. Ozone-terpenoid reaction products may also 

compete with the reagents. The effect of potential competitive adsorption between the analytes, 

internal standard, and ozone reaction products was tested using gas mixtures containing 

limonene only, limonene with 18 ppb THM, and limonene with 18 ppb THM and 100 ppb 

ozone. Sampling time ranged from 2 minutes to 930 minutes. Two limonene concentrations 

were used for each condition (17ppb and 29ppb). Here and throughout, terpene concentrations 

were chosen to reflect the low-ppb range (< 100 ppb) that may be observed in buildings [43]. 

3.3 Effect of ozone concentration, sampling time and flowrate on recovery of individual 
analytes 

For this recovery assessment, the gas mixture contained a single compound 

(d-limonene, α-terpineol or DHM), the internal standard and/or ozone. The sample was 

collected for sampling times ranging from 2-30 minutes at 0, 30, and 100 ppb ozone, at a high 

and low terpenoid mixing ratio, and at a 100 and 400 sccm sample flowrate (equivalent to mean 

velocity in the sampler equal to 5 and 20 cm s-1 respectively). The high and low mixing ratios 

(ppb) for each terpenoid were as follows: d-limonene (17, 29), α-terpineol (15, 48), DHM (18, 

45). The SPME fiber was also exposed to clean air and ozone to test for any coating specific 

reaction products. 

3.4 Effect of ozone concentration and sampling time on recovery of multiple analytes 

The following gas mixture was generated and the SPME recovery evaluated with 0, 30, 

and 100 ppb ozone: 51 ppb pinene, 60 ppb carene, 16 ppb limonene, 39 ppb DHM, 39 ppb 
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THM, 35 ppb citronellal, 17 ppb terpineol, and 14 ppb linalyl acetate. The flow rate was 100 

sccm and samples were collected for times ranging from 2 to 30 minutes. 

3.5 Qualitative sorption-reaction model 

A model was developed to evaluate the qualitative dynamics of sampling in a reactive 

environment. During the early period of sampling, the concentration near the surface of the 

SPME film is very small relative to the mean gas concentration [42]. The concentration at the 

surface is at equilibrium with this near-surface concentration, but the inner pores of the DVB 

may not be at equilibrium. At the concentrations of terpenes used in this study, the surface 

density of terpenes is low and the ozone-terpene reaction rate at the surface is negligible. We 

also apply the reasonable assumption that ozone does not react readily with PDMS or DVB. 

Therefore, the ozone concentration adsorbed to the surface is constant and proportional to the 

measured gas-phase concentration. Finally, the reaction of ozone with the surface bound 

terpene is first-order in each of the reactants. By applying a mass balance, the rate of mass 

adsorbed per unit area of fiber surface (mA) equals to the adsorption rate minus the desorption 

rate and the loss rate due to reaction. The model is expressed in Equation 1. 

��-
�� � ��&. � / 01

2-3
 4�4.54'(5 &'(6 7.                                     ( 1 ) 

where ��is the transport limited deposition velocity (expressed in terms of boundary layer 

thickness and diffusion coefficient by Koziel et al. [42]), &. and &'( are the concentration of 

analyte and ozone in the gas sample, respectively, 4.5 and 4'(5   are adsorption equilibrium 

constants for the analyte and ozone, respectively and 4� is the rate constant for the 
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ozone-analyte reaction on the fiber surface. The adsorption equilibrium constant is defined as 

the gas phase concentration divided by the equilibrium value of mA. The following expressions 

are constant:  

+ � ��&.                                                                   (2) 

8 � 01
2-3

 4�4.54'(5 &'(                                                     (3) 

For an initial adsorbed mass equal to zero, Equation (1) can be solved and simplified: 

7. � .
9 #1 � :;9�$                                                         (4) 

This qualitative model predicts that as sampling time increases, analyte percent 

recovery is expected to diminish. Also, as �� increases the mass on the fiber reaches 

equilibrium more rapidly, but the equilibrium mass is larger and recovery will be higher. 

Therefore, a flowing sampler operated for short sampling time periods (time-weighted 

sampling) may be more advantageous for sampling in reactive media than a static sampler 

operated for long time periods. Equilibrium sampling results in the lowest possible recovery. 

4. Results and discussion 

4.1 Internal standard 

THM recovery averaged 100% ± 7% in the presence of ozone under all conditions and 

was therefore considered to be a suitably non-reactive internal standard for this study. No 

products of a reaction with THM were observed. 
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4.2 Calibration of Tenax sorption tubes and SPME 

The Tenax sorption tubes calibration curves exhibited good linearity (R2 varied from 

0.9942 to 1 for different compounds) in the range of 0 - ~2500 ng. The instrumental detection 

limits varied from 15 - 25 ng. The detection limits for dynamic SPME sampling and GC/FID 

analysis depended on the SPME sampling time. For a 5 minute sampling time, the detection 

limits varied from 1.6 – 5.8 ppb for different compounds. Reproducibility for all compounds 

evaluated was 5% or better. 

4.3 Competitive adsorption with internal standard and reaction products 

In Fig. 3 are shown the results of competitive adsorption experiments with limonene, 

THM and (potentially) ozone reaction products. For very long sampling times, THM 

significantly reduces the mass of limonene collected on the SPME fiber. Competitive 

adsorption was not significant for sampling times less than 10 minutes. For lower-volatility 

compounds (terpineol and DHM), we observed no significant competition up to 30 minutes. 

Therefore, up to 10 minutes, any observed reduction in the recovery of limonene and species 

with similar or lower vapor pressures, is likely due to reactions and/or competition with 

reaction products. A reduced recovery of limonene was observed in the presence of 100ppb 

ozone and the reduction increased with increasing sample time (Fig. 4). This corresponds 

qualitatively with anticipated mass reduction due to a combination of ozone reactions reducing 

limonene concentration on the surface and reaction products competing with limonene 

adsorption. Since the contact time of limonene and ozone in gas phase is less than 0.1 second, 
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reaction products generated by gas-phase reactions are not likely to influence recovery. No 

reaction products were observed for the reaction of ozone in clean air with the coating on the 

fiber. 

4.4 Recovery of single compound 

Shown in Fig. 5 are normalized FID responses for each set of conditions (low 

concentration low flow, high concentration low flow, and high concentration high flow) for 

d-limonene, α-terpineol, and DHM. The curves qualitatively match model predictions: 1) 

under the same conditions (terpene concentration, flow rate, and ozone concentration), longer 

sampling times results in lower recovery, and 2) higher ozone concentrations result in lower 

analyte mass accumulated on the fiber if other conditions (terpene concentration, flow rate, and 

sampling time) are the same.  

Recoveries are shown in Fig. 6. Overall, the recovery ranges from 65% to 115%.  For 

10 minute sampling at 100 ppb ozone, recoveries were ~80% or better. For 5 minute sampling 

at 30 ppb, recovery was generally not significantly lower than 100%. Thus, this method is 

sufficient for quantification of reactive semi-volatile compounds, even in the presence of 

ambient ozone levels. Interestingly, although limonene has a gas phase reactivity that is 300 

times greater than that of dihydromyrcenol, the recovery of limonene is very similar to the 

recovery of DHM for the same sampling conditions. Thus, the method appears to be fairly 

robust for a both low and high reactivity terpenoids. Recovery is reduced as the ozone 

concentration increases and (usually) as sampling time increases. 
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We observed higher velocity does not significantly increase mass accumulated on the 

fiber, except in the case of terpineol (Fig. 5). Therefore, the mass transfer coefficient did not 

significantly increase over this range. This was observed by Koziel et al. [42], but for a 

somewhat higher velocity system and for perpendicular flow. The apparent difference in 

terpineol uptake with increased velocity was reproducible but a satisfactory explanation is not 

apparent. The difference in mass-transfer characteristic due to slight differences in diffusivity 

is not likely to have a significant impact on vt. 

Increasing the flow rate from 100 to 400 sccm does not significantly increase the 

recovery except, perhaps, in the case of DHM. If DHM had a significantly larger adsorption 

equilibrium constant, KA
E, vt would more strongly influence recovery (Equation 4). However, 

this does not appear to be the case as equilibrium mass uptake on the fiber is similar for 

terpineol and for DHM. As the present conditions result in adequate recovery, we did not 

operate the system at a lower flowrate. However, we anticipate that recovery would be 

somewhat reduced for a much lower flowrate, as predicted by Equation 4.  

4.5 Multiple compounds in the presence of ozone 

Shown in Fig. 7 are normalized FID responses for individual compounds in the 

multiple compound mixture. For the higher volatility compounds (pinene, carene, and 

limonene), the adsorption profile is not linear for sampling times greater than 20 minutes. This 

is likely due to the competition for the adsorption sites with the other, lower volatility, 

compounds. 
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Recoveries for individual compounds in the multiple compound mixture are shown in 

Fig. 8. In the presence of ozone, the recoveries of limonene, dihydromyrcenol, and terpineol in 

the mixture are higher than their recoveries in the single compound samples. At a high 

adsorbed surface density, reactive compounds can compete with each other for ozone and, 

potentially, improve recovery for individual compounds by spreading out reactive losses 

across all adsorbed species. All else being equal, more of the lower-volatility species (smaller 

adsorption constant) will be present on the fiber and out-compete the higher-volatility species 

for ozone. Amongst the lower-volatility species, gas-phase reactivity appears to correlate 

roughly with recovery. At 100 ppb ozone, DHM, exhibits significantly higher recoveries than 

terpineol, citronellal or linalyl acetate which have gas-phase reactivity approximately 100 

times greater than DHM. This competition and improved recovery is not anticipated to occur 

for very low gas-phase terpene concentrations (a few ppb). Low adsorbed surface density on 

the SPME fiber would reduce ozone uptake, resulting in higher near-surface ozone 

concentrations and higher relative rates of terpene oxidation on the SPME fiber. The recovery 

of pinene and carene (Fig. 8) was not affected by the displacement phenomenon shown in Fig. 

7.  

4.6 Sensitivity and detection limit in the presence of ozone 

Because of the improved mass transfer conditions, dynamic sampling is more sensitive 

than static sampling for the same time-weighted averaging period [44]. The method detection 

limit was estimated based on twice the standard deviation of the peak areas of the lowest mass 
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injection by SPME. For the eight compounds studied in the presence of ozone, the MDL 

ranged from 1.6 – 5.8 ppb for a 5 minute sampling time, and the presence of 30 or 100 ppb 

ozone does not affect the MDL significantly.  

4.7 Effect of relative humidity 

The effect of humidity was not evaluated in this research. Equilibrium mass collected 

by SPME can be influenced by relative humidity [45]. SPME sampling of BTEX was not 

affected by the relative humidity when the humidity was lower than 45% [46]. For 

time-weighted sampling, and short sample times, uptake on the fiber is transport limited and 

relative humidity is not anticipated to significantly alter the results. However, polar terpenoids 

such as terpineol and DHM are alcohols and strong interactions with water may influence 

equilibrium partitioning (4.5 in Equation 1). The quantity of water on the fiber may also 

influence the rate of the reaction with ozone and distribution of products generated.  

The application of SPME for rapidly quantifying gas-phase concentrations of reactive 

terpenoids in the presence of ozone was demonstrated. We observed good recovery for 

environmentally relevant concentrations, even in the presence of 100 ppb ozone. Properly 

applied, this method improves upon recovery using flow-through sorbent samplers and 

eliminates the need for ozone traps or scavenger gases.  However, if sampling conditions are 

favorable for surface reactions, ozone and other oxidants can consume reactive terpenes 

adsorbed onto the SPME fiber resulting in poor recovery. Interference may also result from 

accumulation of reaction products on adsorption sites in the SPME coating. 



41 

Acknowledgements 

The authors thank Honglan Shi, research chemist in Environmental Research Center of 

Missouri University of Science & Technology, and Jonathan McKinney, graduate student in 

Environmental Engineering Program of Missouri University of Science and Technology, for 

their great help on the experiment and their comments on this paper. 

References 

[1] M.R. Papiez, M.J. Potosnak, W.S. Goliff, A.B. Guenther, S.N. Matsunaga, W.R. 

Stockwell, Atmos. Environ. 43 (2009) 4109-4123. 

[2] C. Geron, S. Owen, A. Guenther, J. Greenberg, R. Rasmussen, J. Hui Bai, Atmos. 

Environ. 40 (2006) 1759-1773. 

[3] G. Curci, M. Beekmann, R. Vautard, G. Smiatek, R. Steinbrecher, J. Theloke, Atmos. 

Environ. 43 (2009) 1444-1455. 

[4] H. Su, C. Chao, H. Chang, P. Wu, Atmos. Environ. 41 (2007) 1230-1236. 

[5] B. Singer, B. Coleman, H. Destaillats, A. Hodgson, M. Lunden, C. Weschler, Atmos. 

Environ. 40 (2006) 6696-6710. 

[6] J. Yu, D.R. Cocker, R.J. Griffin, R.C. Flagan, J.H. Seinfeld, J. Atmos. Chem. 34 (1999) 

207-258. 

[7] W.W. Nazaroff, C.J. Weschler, Atmos. Environ. 38 (2004) 2841-2865. 

[8] G. Sarwar, D. Olson, R. Corsi, C. Weschler, J. Air Waste Manage Assoc. 54 (2004) 

367-377. 

[9] C. Weschler, H. Shields, Atmos. Environ. 33 (1999) 2301-2312. 

[10] Latest Findings on National Air Quality - Status and Trends through 2006, US 

Environmental Protection Agency, 2007, http://www.epa.gov/air/airtrends 

/2007/report/groundlevelozone.pdf 

[11] C. Weschler, Indoor Air. 10 (2000) 269-288. 

[12] A. Calogirou, B. Larsen, D. Kotzias, Atmos. Environ. 33 (1999) 1423-1439. 

[13] G.Y. Stokes, A.M. Buchbinder, J.M. Gibbs-Davis, K.A. Scheidt, F.M. Geiger, J. Phys. 

Chem. A. 112 (2008) 11688-11698. 

[14] G. Stokes, E. Chen, A. Buchbinder, W. Paxton, A. Keeley, F. Geiger, J. Am. Chem. Soc. 

131 (2009) 13733-13737. 

[15] A. Calogirou, B. Larsen, C. Brussel, M. Duane, D. Kotzias, Anal. Chem. 68 (1996) 

1499-1506. 

[16] J. Bunch, E. Pellizzari, J. Chromatogr. 186 (1979) 811-829. 

[17] F. Jüttner, J. Chromatogr. A. 442 (1988) 157-163. 



42 

[18] EPA method-Compendium of methods for the determination of toxic organic compounds 

in ambient air, 1999. 

[19] P. Clausen, P. Wolkoff, Atmos. Environ. 31 (1997) 715-725. 

[20] H. Wang, G. Morrison, Environ. Sci. Technol. 40 (2006) 5263-5268. 

[21] J. Fick, L. Pommer, B. Andersson, C. Nilsson, Environ. Sci. Technol. 35 (2001) 

1458-1462. 

[22] D.D. Riemer, P.J. Milne, C.T. Farmer, R.G. Zika, Chemosphere. 28 (1994) 837-850. 

[23] S.A. Montzka, M. Trainer, P.D. Goldan, W.C. Kuster, F.C. Fehsenfeld, J. Geophys. Res. 

98 (1993) PP. 1101-1111. 

[24] A. Stromvall, G. Petersson, J. Chromatogr. 589 (1992) 385-389. 

[25] D. Grosjean, E.L. Williams, J.H. Seinfeld, Environ. Sci. Technol. 26 (1992) 1526-1533. 

[26] D. Helmig, J.P. Greenberg, J. Chromatogr. A. 677 (1994) 123-132. 

[27] D. Helmig, J. Greenberg, J. High Resolut. Chromatogr. 18 (1995) 15-18. 

[28] R.S. Martin, H. Westberg, E. Allwine, L. Ashman, J.C. Farmer, B. Lamb, J. Atmos. Chem. 

13 (1991) 1-32. 

[29] R.R. Arnts, Environ. Sci. Technol. 42 (2008) 7663-7669. 

[30] S. Tumbiolo, J. Gal, P. Maria, O. Zerbinati, Anal. Bioanal. Chem. 380 (2004) 824-830. 

[31] J. Regueiro, C. Garcia-Jares, M. Llompart, J. Lamas, R. Cela, J. Chromatogr. A. 1216 

(2009) 2805-2815. 

[32] N. Yassaa, J. Williams, J. Chromatogr. A. 1141 (2007) 138-144. 

[33] G. Pieraccini, S. Furlanetto, S. Orlandini, G. Bartolucci, I. Giannini, S. Pinzauti, J. 

Chromatogr. A. 1180 (2008) 138-150. 

[34] J. Pawliszyn, Handbook of solid phase microextraction, Chemical Industry Press of 

China, 2009. 

[35] G. Xiong, J. Koziel, J. Pawliszyn, J. Chromatogr. A. 1025 (2004) 57-62. 

[36] J. Harrison, J. Ham, J. Wells, Atmos. Environ. 41 (2007) 4482-4491. 

[37] J. Ham, S. Proper, J. Wells, Atmos. Environ. 40 (2006) 726-735. 

[38] US EPA, Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.00, 2010. 

[39] J. Fick, L. Pommer, B. Andersson, C. Nilsson, Atmos. Environ. 36 (2002) 3299-3308. 

[40] C.D. Forester, J.E. Ham, J.R. Wells, Int. J. Chem. Kinet. 38 (2006) 451-463. 

[41] J.R. Wells, Environ. Sci. Technol. 39 (2005) 6937-6943. 

[42] J. Koziel, M. Jia, J. Pawliszyn, Anal. Chem. 72 (2000) 5178-5186. 

[43] A. Hodgson, H. Levin, Volatile organic compounds in indoor air: A review of 

concentrations measured in north america since 1990, Lawrence Berkeley National 

Laboratory, 2003. 

[44] F. Augusto, J. Koziel, J. Pawliszyn, Anal. Chem. 73 (2001) 481-486. 

[45] M. Chai, J. Pawliszyn, Environ. Sci. Technol. 29 (1995) 693-701. 

[46] Y. Gong, I. Eom, D. Lou, D. Hein, J. Pawliszyn, Anal. Chem. 80 (2008) 7275-7282. 

  



43 

Table 1. CAS #, purity, vapor pressure, and gas phase ozone reaction rates of terpenes 

Chemical Name CAS # Purity 
Vapor Pressure 

at 25°C a (mmHg) 

Gas phase ozone reaction 

rate (cm3molecule-1s-1) 

Limonene 5989-27-5 97% 1.45 6.40E-16b 

Dihydromyrcenol 18479-58-8 99% 0.124 <2.00E-18c 

Tetrahydromyrcenol 18479-57-7 95% 0.114 (anticipated ~ 0) 

Terpineol 98-55-5 96% 0.0196 * 3.00E-16d 

Citronellal 106-23-0 93% 0.254 2.40E-16e 

Pinene 7785-70-8 98% 4.54 8.20E-17 b 

Carene 13466-78-9 99% 2.09 1.20E-16 b 

Linalyl acetate 115-95-7 97% 0.131 4.30E-16 f 

a. Vapor pressures are reported as the mean of estimated values by Antoine and Grain 

methods, except for terpineol, whose vapor pressure is estimated by modified Grain methods. 

All of the values are calculated by EPI Suite [38]. 

b. Measured value. [39] 

  c. Measured value. [40] 

d. Measured value. [41] 

e. Measured value. [36] 

f. Estimated value by using AOPWIN module in EPI Suite [38]. 
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Figure 1. Apparatus used for gas standard generation and experimental 

determination of recovery. 
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Figure 2. (a) Schematic of the dynamic sampler. (b) The dynamic sampler coupled 

with a SPME fiber assembly.  
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Figure 3. The effect of 18 ppb THM on the mass collected (FID signal) of 17ppb 

limonene.   
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Figure 4. The effect of 100 ppb ozone on the mass collected (FID signal) of 17 ppb 

limonene, with 18 ppb THM.  
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Figure 5. Single compound responses for different concentrations, flow rates and 

ozone levels.  
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Figure 6. Single compound recovery for different concentrations, flow rates, and 

ozone mixing ratios.  
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Figure 7. Normalized FID responses as a function of sampling time for individual 

terpenes in a gas mixture with ozone.  
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Figure 8. The recovery as a function of sampling time of individual terpenes in a 

gas mixture with ozone.  



52 

II. Surface Reaction Rate and Probability of Ozone and α-Terpineol on Polyvinyl Chloride, 

Glass, and Latex Paint Surfaces: Laboratory Experiments and Modeling  

(to be submitted to Environmental Science and Technology) 

SHI SHU AND GLENN MORRISON* 

Department of Civil, Architecture and Environmental Engineering, Missouri University of 

Science and Technology 

*Corresponding author phone: (573)341-7192; e-mail: gcm@mst.edu;  

fax: (573)341-4729 

Abstract 

Low volatility terpenoids emitted from consumer products can react with ozone on 

surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products 

in indoor air. We measured the reaction probability and a second-order surface-specific 

reaction rate for the ozonation of α-terpineol, a representative indoor terpenoid, adsorbed onto 

polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged 

from (0.38 to 6.75)×10-5 and was sensitive to humidity, substrate and mass adsorbed. On 

average, ozone and α-terpineol are about 10 times more likely to react with each other on these 

surfaces than they are in the gas phase. The second-order surface-specific rate constant ranged 

from (6.20 to 33.1)×10-15 cm4 s-1 molecule-1 and was much less sensitive to conditions or 

substrate. Combined with surface areas and air exchange rates typical of indoor environments, 

the rate of heterogeneous ozonation of α-terpineol is predicted to be comparable to that for 

homogeneous ozonation. 
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Introduction 

Ozone reactions with organic compounds on indoor surfaces result in lower ozone and 

higher product concentrations in buildings. Unsaturated oils used as lubricants in the 

production of carpet yarn make carpet one of the most ozone-reactive surfaces in buildings (1). 

Cooking oils and cleaners leave organic residues that can make counters and floors as, or more, 

reactive than carpet (2,3). Skin oils on cabin surfaces and clothing were shown to be 

responsible for at least half of the ozone consumed during simulated aircraft experiments (4). 

These reactions generate a host of oxidized organic species including aldehydes, ketones, and 

carboxylic acids (1,2,4,5). 

Volatile compounds may also increase surface reactivity, at least temporarily. Many 

studies have shown that homogeneous ozone reactions with terpenes and related compounds 

increase indoor concentrations of formaldehyde, irritants and aerosols (6).  However, there are 

some indications that heterogeneous ozone-terpene reactions may also be important.  Based 

on the results of ozone reactions with dried cleaner residues, Destaillats et al. (7) and Singer et 

al. (8) attributed ozone consumption and product formation, in part, to chemistry with 

unsaturated species remaining on surfaces.  Oxidation of volatile terpenes on heat-exchanger 

surfaces was inferred from larger-than-anticipated conversion rates (9). Even Teflon surfaces 

may support ozone-terpene reactions (10,11). 
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The results of these studies are primarily qualitative, or provide relative reactivity 

information. While detailed models of indoor chemistry have been developed (12), they do not 

include individual heterogeneous reactions due to a lack of kinetic and yield data. Yet the 

impact of adsorbed organics could be substantial. The rate of ozone reactions with 

surface-bound, unsaturated, organics can be substantially higher than the heterogeneous 

reaction. For example, the reaction probability for cyclohexene, functionalized to ensure its 

attachment to a glass surface, was shown to be 200 times greater than for the gas phase reaction 

(13). However, it is not clear how these values can be used to predict conversion rates on real 

indoor surfaces.   

Enhanced reaction rates and high surface loadings point to substantial surface 

reactivity. Based on a combination of adsorption isotherms and conversion rates, Springs and 

Morrison (14,15) observed that the effective reaction probability for ozone reacting with 

terpenes (∆-carene and d-limonene) adsorbed to glass and polyvinylchloride (PVC) beads was 

10-100 times greater than that for the homogeneous reaction. When combined with the 

observation that more than half of the mass of two volatile terpenes (d-limonene and α-pinene) 

partitioned to surfaces in a furnished room, conversion rates at surfaces may be even greater 

than in the gas-phase.  

Since less volatile terpenoids, such as terpene alcohols, will partition to indoor surfaces 

to a greater degree than those studied by Springs and Morrison, we seek to quantify the impact 

that a terpene alcohol can have on ozone reaction rates with surfaces relevant to indoor 
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environments. Specifically, we quantify an area-specific second-order reaction rate coefficient, 

k2, associated with the ozone/α-terpineol reaction on three surfaces relevant to indoor 

environments (glass, polyvinylchloride, and latex paint). This coefficient can be used to 

estimate the relative impact of heterogeneous ozone-terpene reactions on indoor air 

concentrations of both ozone and α-terpineol. Further, this quantitative analysis can improve 

existing indoor chemical models by directly relating indoor terpenoid concentrations with the 

resulting enhancement in surface conversion rates. We also quantify a minimum effective 

reaction probability associated with these reactions. 

We have chosen as a representative reactant 1-methyl-4-isopropyl-1- cyclohexen-8-ol 

(α-terpineol), naturally occurring monoterpene alcohol (structure shown in Figure 1). It is 

extensively used in fragrances for bath preparations, soaps, detergents, polishes, and other 

household products (16) and was observed to be the highest emitting terpene alcohol from a 

general purpose cleaner (17).  α-Terpineol has a low vapor pressure (~2.6 Pa at 25°C; 

estimated using EPI suite, 2010) (18) and is therefore likely to exhibit substantial sorptive 

partitioning at equilibrium (19,20). The bimolecular rate constant for the gas phase reaction 

between ozone and α-terpineol (21) is among the highest reported for related compounds of 

indoor interest. 

Methods 

Materials  α-Terpineol (≥96%, FCC, Kosher, FG) was purchased from Sigma Aldrich 

(St. Louis, MO, USA). Polyvinyl Chloride (PVC) beads were purchased from Engineering 
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Laboratories Inc. (Oakland, NJ, USA). The diameters and other parameters are found in Table 

1. The soda lime glass beads were purchased at MO-SCI Specialty Products, L.L.C. (Rolla, 

MO, USA). Latex paint (American Tradition®, color coding 4007-9A, sky blue, flat) was 

applied to ceramic (zirconium silicate; Ceroglass Inc.) beads and cured for more than 4 years, 

to provide Latex paint surface. 5 L Pyrex bottles with polypropylene plug-seal caps were 

purchased from Fisher Scientific (Pittsburgh, PA, USA). A mini-nert valve with 1/8" male NPT, 

purchased from VICI Precision Sampling (Baton Rouge, LA, USA), was customer-modified 

and attached to each cap. 

Analytical  Stainless steel sorption tubes packed with Tenax-TA (Markes, 

 Llantrisant, UK) and Solid Phase Micro Extraction (SPME; 65 µm PDMS-DVB Coating 

StableFlexTM; Supelco) were both used as sample preparation methods for conventional gas 

chromatography with flame ionization detector (GC/FID) detection of α-terpineol. Tenax-TA 

tubes were used to quantify the concentration of terpineol at the exhaust of each reactor. 4 liters 

of exhaust gas were collected over 20 minutes for later thermal desorption and analysis by 

GC-FID. Tenax tubes were also used to verify the mass of vapor-phase α-terpineol injected by 

syringe into adsorption bottles. Tenax tubes were calibrated by applying a known mass of 

α-terpineol, diluted in methanol, to sorbent, evaporating the solvent, and thermally desorbing 

and injecting the terpineol into the GC-FID. 

In bottles used to conduct α-terpineol adsorption experiments, SPME was used to 

quantify the gas phase α-terpineol concentration. Because the fiber will only adsorb a small 
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amount of the analyte (usually tens or hundreds of nanograms), SPME is especially useful 

when there is only a small amount of analyte, or when the concentration is low. The SPME 

fiber was exposed to the gas for 5 min, and then put into a GC injection port 240°C for 5 min to 

desorb all the α-terpineol. The SPME fiber removes less than 1% of the total mass of 

α-terpineol in the sorption bottle. SPME was calibrated by comparison with Tenax-TA results 

of the same gas mixture. 

An HP6890 GC-FID with an HP 5MS column was used to analyze samples collected 

on both Tenax-TA tubes and SPME fibers. The carrier gas flow rate was 20 cm3 min-1. The 

initial oven temperature of 100°C was increased to 250°C at a rate of 35°C min-1. The method 

detection limit was 5 ppb for Tenax-TA tube analysis and 1 ppb for SPME analysis. 

Adsorption Apparatus and Procedure  α-Terpineol adsorption experiments  

were carried out using a series of the 5 L Pyrex bottles with customer modified caps. The 

bottles and caps with valves were washed by methanol, rinsed by ultra high purity water and 

then dried at 80°C for at least 24 hours before each experiment. Adsorption experiments were 

carried out in a temperature controlled chamber at 25ºC, and at three relative humidity 

conditions (20%, 50%, and 80%). To generate the desired humidity, each bottle was flushed 

with high purity nitrogen gas for 30 min at 1.0 L min-1, The humidity was controlled by 

sparging a fraction of the flow through high purity water.. For each relative humidity condition, 

beads (PVC, glass, or painted) were added to separate Pyrex bottles, and two replicates were 

carried out at the same time. Two empty bottles were used as controls. The geometric surface 
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area of PVC, glass, and painted surface were 3071 cm2, 4000 cm2, and 1565 cm2 respectively. 

The inner surface area of each Pyrex bottle was estimated to be 1738 cm2. To inject a small 

amount of α-terpineol, headspace gas was drawn from a 1L Boston round bottle containing 

undiluted α-terpineol (96%). This bottle was maintained at 25°C and the resulting headspace 

concentration of (2.0 ± 0.2)×10-5 g L-1 was verified by Tenax-TA tube analysis. A 5 mL gastight 

syringe was used to draw the α-terpineol gas from the 1L bottle and to inject it into the 5L 

Pyrex bottles. After the gas was injected, bottles were rotated on a tumbler at 7 rpm for 10 

hours to allow the α-terpineol to uniformly adsorb to bead and bottle surfaces. In separate 

experiments, no change in concentration was observed after 8 hours; therefore, 10 hours was 

considered sufficient time for equilibrium. SPME was then used to measure the concentration 

of α-terpineol in each bottle . This procedure was repeated (injection, tumble, sample) until the 

final concentration in the bottle was at least 60 ppb. Each combination of humidity, 

concentration and surface was repeated at least once.  

Ozone Reaction Apparatus and Procedure  The apparatus used to measure  

ozone/α-terpineol reaction rates on surfaces is shown in Figure 2. A zero air generator 

(Parker-Balston) supplied clean air to the system, and flow controllers (MKS) maintained the 

flows at desired rates. A saturated α-terpineol water solution was continuously injected into the 

gas flow with a syringe pump and the resulting concentration was verified using Tenax-TA tube 

analysis. Ozone was generated and monitored using a Dasibi UV photometric ozone analyzer. 

The humidity of the reactor stream was controlled by adjusting the ratio of dry and humidified 
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air flow rates. The humidifier and the reactor were maintained at 25°C in a temperature 

controlled chamber (shown by dashed line in Figure 2).  

Two plug flow reactors were used in different phases of the experiment. A 25 cm long 

glass reactor with an inner diameter of 1.1cm inner diameter was used to measure second-order 

reaction rate coefficients and reaction probabilities. The total volume and (geometric surface 

area) were 20 cm3 glass beads (800 cm2) , 20 cm3 PVC beads (473 cm2), and 20 cm3 painted 

beads (313 cm2). A larger 50cm long Teflon reactor with an inner diameter of 1.8 cm was used 

to measure the background reactivity of the beads that was then used to determine the 

minimum ozone/α-terpineol reaction probability on the surface. For these experiments, the 

total volume and surface area of were 100 cm3 glass beads (4000 cm2), 120 cm3 PVC beads 

(2838 cm2), and 120 cm3 painted beads (1878 cm2). 

Before each experiment, the beads were ultra-sonicated for 30 min in high purity water 

to clean the surface and dried in the oven at 50°C for at least 24 hours. The reactor was operated 

with both ozone and α-terpineol for 12 hours to allow a steady-state concentration profile to 

develop before concentrations were measured at the inlet and outlet. At the concentrations used 

in this research, a pseudo-first-order approach for determining reaction rates was not possible. 

Both the ozone and α-terpineol concentrations diminish together and it was necessary to 

maintain inlet concentrations that were of similar magnitude. Otherwise, one of the reactants 

tended to become depleted. Therefore, the mixing ratios of ozone and α-terpineol were within a 
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factor of four of one another for each experiment. Typical inlet concentration pairs of ozone : 

α-terpineol (ppb) were 4:1, 8:3, and 4:2.  

Data Analysis 

Adsorption Analysis  The equilibrium surface concentration on the beads was  

determined by balancing the known mass injected against the gas-phase mass (SPME), mass 

collected on the bottle surface (from control experiments) and the remaining mass on the beads, 

as shown in Equation (1). 

<����� � +!����= · &�,!����=  ,��� · &���  +!=��� · &�,!=��� (1) 

where M?@?AB is the total mass of terpineol injected to each bottle (g),  +!����= and +!=��� are 

the surface area of bottle and beads (cm3), respectively, &�,!����= and  &�,!=��� is the 

concentration of α-terpineol on the surface of the bottle and beads (µg cm-2), respectively. ,��� 

is the volume of gas in each bottle (cm3), and  &��� is the gas phase concentration of 

α-terpineol (µg cm-3).  

The relationship between α-terpineol concentrations on the bead and bottle surfaces 

and the gas phase α-terpineol concentration, was expressed by a Freundlich isotherm (best 

general model for results obtained), as shown in Equation (2). 

&�,!=��� �� !����= � 4C,!=��� �� !����= · &���*  (2) 

where &D is the mass of adsorbed α-terpineol normalized by the surface area of beads (ng cm-2), 

and  &���  is the α-terpineol mixing ratio in gas phase (ppb). In each case, 4C and  E are 

derived from the nonlinear least-squares fit of the isotherms.   
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Area-Specific, Second-Order Reaction Rate Constant  To provide a useful parameter  

for evaluating the impact of indoor surface chemistry, we define the area-specific second-order  

reaction rate constant, k2 (cm4 molec-1 s-1)  associated with overlying gas-phase concentrations, 

CO3 and Cterp, by Equation (3). 

FGH: #7IJ:KLJ:M M;N$ � ��&'(&�=�O #+ ,$⁄  (3) 

where A/V is the surface-area to volume ratio (in the reactor or other system where 

mass-transfer does not limit transport and uptake of either reactant). This second-order rate 

constant can then be used directly in indoor air quality models to estimate reactant product 

fluxes at indoor surfaces. 

To determine k2, we modeled the reactor as a plug flow reactor (PFR). The 

concentration of both ozone and α-terpineol change with distance, z, along the bead-filled 

region of the reactor and can be characterized by two coupled equations (steady-state). For the 

glass beads experiment, the surface area of the glass reactor was included in the total surface 

area, based on the assumption that the reactor has the same adsorption and reactivity 

characteristics as the glass bead, as shown by Equation (4) and (5). 

Q&'(Q� � ���,�����&'(#�$&�=�O#�$# +�����,�=����� · L$ (4) 

Q&�=�OQ� � ���,�����&'(#�$&�=�O#�$# +�����,�=����� · L$ (5) 

where ��,����� is the second-order surface reaction rate on glass surface (cm4molecule-1s-1), 

+����� is the surface area provided by glass beads and the reactor (cm2), ,�=����� is the volume 
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of the bead-filled regions of the reactor (cm3), u is the actual gas velocity in the packed bed (cm 

s-1), and &'(#�$ and &'(#�$ are the ozone and α-terpineol concentration respectively 

(molecule cm-3), since they are functions of position z. Since measurement of low-volatility 

terpenes by SPME or Tenax-TA is unreliable in the presence of ozone (2,22,23), the loss of 

α-terpineol is assumed to be equal to the ozone loss (1:1 stoichiometry) after accounting for 

background ozone removal by reactor surfaces.  Gas-phase conversion of reactants is 

negligible (<<1%) during the 0.6 s residence time of the reactor. 

For the glass reactor filled with PVC or painted beads, two different surfaces are 

present. We use results from the glass bead experiments and include them in equations 6 and 7 

to solve for k2 specific to PVC and paint.  

Q&'(Q� � �#��,R+R  ��,�����+�=�����$&'(#�$&�=�O#�$# 1
,�=����� · L$ (6) 

Q&�=�OQ� � �#��,S+R  ��,�����+�=�����$&'(#�$&�=�O#�$# 1
,�=����� · L$ (7) 

where the  ��,S  is the second-order surface reaction rate on either PVC or painted surface, +R  

is the surface area provided by PVC or painted beads, +TUAV?@T is the surface area of the glass 

reactor. Equations 4 through 7 were solved numerically and the resulting values of k2 were 

adjusted to provide a best fit to experimentally derived values of inlet and outlet 

concentrations. 

Minimum Ozone/α-Terpineol Reaction Probability  Equation (8) was used to  

calculate the reaction probability of ozone with the bare surfaces.  
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����C��= � #�JE &'(,)*&'(,���$ 4 ,�=����� %
� � � +!=��� W + 
 (8) 

where ����C��=  is the reaction probability of ozone associated with the bare substrate ( PVC, 

glass, paint), &'(,)* and &'(,)* are the inlet and outlet ozone concentration, Q is the total flow 

rate, � � � is the Boltzmann velocity for ozone, which is 36,000cm s-1 in this case (24), L is 

the length of the bead-filled region of the reactor,  A is the cross sectional area of the plug flow 

reactor, and ρ is the porosity of the bead  bed. A higher mixing ratio of ozone (~850 ppb) was 

used to allow for a measurable difference between &'(,)* and &'(,���. 

For the glass beads/glass reactor data, the combined (total) reaction probability, ������ 

can be expressed as a linear combination of reactivity of two surface sites (bare glass, and an 

α-terpineol molecule adsorbed to glass) and as a function of the position in reactor, �, as shown 

in Equation (9). 

������ � ��=�O,�������=�O,�����#�$  ������\1 � ��=�O,����� #�$] (9) 

where the ��=�O,�����#�$ is the fraction of the surface area covered with α-terpineol molecules, 

��=�O,����� is the reaction probability of α-terpineol adsorbed on glass surface, and ������ is the 

reaction probability of bare glass surface. The fractional coverage, ��=�O,����� , is determined 

by applying measured isotherms, assuming single-molecular adsorption (no stacking) and 

smooth bead surfaces. Because beads are not smooth, and not all of the adsorbed α-terpineol 

will be available for reaction (in a pore or covered by other molecules), the reaction probability 

determined is the minimum reportable value. 
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For the PVC or painted beads experiments in the glass reactor, the total reaction 

probability, ������ can also be expressed as a function of the position in reactor, �, as shown in 

Equation (10). 

������ � ^ _��=�O,S��=�O,S#�$  �S /1 � ��=�O,S#�$6`   

                         #1 � ^$a��=�O,�������=�O,�=�����#�$  ������#1 � ��=�O,�=�����#�$$b 
(10) 

where F is the fraction of PVC or painted surface area relative to the total area (PVC or painted 

surface area plus the surface area of reactor), f?UTd,R#z$ and f?UTd,TUAV?@T#z$ are the α-terpineol 

coverage on the PVC or painted surface and reactor respectively, γ?UTd,R  and γ?UTd,gBAhh are 

the reaction probability of α-terpineol adsorbed on PVC or painted surface and glass surface 

respectively, �i and γgBAhh are the reaction probability of bare PVC or painted surface and 

glass surface respectively.  

The total surface reaction probability is evaluated in a similar manner as in Equation 

(11) and (12), but must account for changes in both ozone and terpineol through the reactor. 

Q&'(Q� � � ������#�$ � � �
4L

+���C��=,�=����� &'(#�$ (11) 

Q&�=�OQ� � � ������#�$ � � �
4L

+���C��=,�=����� &'(#�$ (12) 

where the +���C��= is the total area of beads and the reactor, and other parameters are defined 

previously. 
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Results and Discussion  

α-Terpineol Adsorption  The α-terpineol adsorption isotherms are shown in  

Figures 3 a, b and c. Freundlich parameters (Equation 2) are also shown in the figures. The 

three different materials exhibit very different α-terpineol sorption characteristics. Glass and 

paint sorb approximately ten times more α-terpineol than PVC under the same conditions. The 

relative humidity more strongly influences α-terpineol adsorption on glass than on PVC or 

paint. As the relative humidity increases, substantially less α-terpineol will adsorb to glass. 

This may be because both water and α-terpineol are polar and they compete with each other for 

adsorption sites on glass. Changes in relative humidity do not strongly influence adsorption on 

PVC, perhaps because the surface is much less polar than glass. Interestingly, water appears to 

increase the capacity of the painted surface for α-terpineol. This is consistent with the 

observations of other studies which found that some polar VOCs adsorption on some building 

materials will increase along with the relative humidity (25,26). In this case, surface water may 

increase the polarity of the surface or even allow for α-terpineol, as a somewhat soluble 

alcohol, to dissolve into water that has condensed in pores, as suggested by other works 

(25,27). Overall, water appears to impact adsorption in very different ways on each of these 

surfaces. 

Area-Specific, Second-Order Reaction Rate Constant  Figure 4 shows the results  

for the area-specific, second-order reaction rate constant, k2. The value of k2 ranges from 0.68 

to 3.17×10-14 cm4s-1molecule-1. This relatively small range is surprising given the very different 
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adsorption capacity of the three materials, and for the very different impact on capacity due to 

differences in humidity. For example, at 40 ppb α-terpineol and 50% RH, k2 ranges from 

0.8-2.2 ×10-14 cm4 s-1 molecule-1, but the adsorbed mass is nearly 30 times higher (per unit area) 

on the painted surface than on the PVC. Qualitatively, k2, follows adsorbed mass concentration 

(paint > glass> PVC), but the differences are small and do not reflect the quantitative 

differences in adsorbed mass concentration. Even though RH can change adsorptive capacity 

by an order of magnitude on glass and paint, there is little impact on k2. It appears that k2 is only 

weakly influenced by the adsorbed mass, but instead is more strongly linked to the gas-phase 

concentration of α-terpineol. This suggests that the ozone reactivity is dependent on the 

interfacial activity of α-terpineol, rather than the amount adsorbed. 

The assumption that reactant flux is first order in α-terpineol appears to be reasonable, for 

the narrow range of gas-phase concentrations studied. By comparing the resulting flux and k2 

with concentration at each humidity, the reaction order of α-terpineol is ~1 for most conditions 

and surfaces. To develop a more accurate reaction order, the concentration of both species 

should be expanded to include several orders of magnitude.  

Minimum Reaction Probability Figure 5 shows the results for the minimum  

ozone/α-terpineol reaction probability, γO3,terp. Also shown for comparison is the gas-phase 

reaction probability (2.5 × 10-6) based on the reported (21) gas-phase reaction rate constant in 

dry air. All measured values are higher than the gas-phase value. The highest (PVC, 50% RH) 

is about 25 times greater than that for the gas-phase reaction. The large range of values is 
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consistent with the observation that adsorption characteristics vary widely, but the surface 

reactivity (characterized by k2) does not.  

Again, these values represent the minimum measurable value, not an absolute reaction 

probability. The model used to calculate the ozone α-terpineol reaction probability on surfaces 

was based on the assumption that the α-terpineol molecules form no more than a monolayer. 

This assumption may be valid when the fractional coverage is very small. However, at the 

indoor-relevant concentrations used here, the adsorbed α-terpineol molecules would cover ~ 

3% to ~ 30% of the geometric surface area. Thus, multi-layer “islands” of α-terpineol are 

likely, and not all α-terpineol molecules are equally available for reaction with ozone. Physical 

barriers to reaction, such as adsorption deep within pores, further reduce the reported reaction 

probability. The highest reaction probability occurs for the lowest coverage (PVC), but even 

this result is likely to be lower than the actual value. 

The fact that ozone α-terpineol reaction probabilities on surfaces are larger than that in 

gas phase is consistent with observations from other studies (14,15,28-30). Research on the 

ozone reaction with vinyl-terminated self-assembled monolayers (SAMs) suggested that the 

reaction follows the Langmuir-Hinshelwood mechanism (28,29,31,32).  Instead of a 

gas-phase ozone molecule colliding and reacting with a surface species, ozone is thought to 

first adsorb to the surface and then react. The difference between the gas and surface reaction 

probabilities may simply be that the actual reaction mechanism differs from the assumed 

mechanism used to calculate the reaction probability. Also, when a polar molecule like 
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α-terpineol is adsorbed, the carbon-carbon double bonds may become more available for 

reaction, due to less random molecular orientation of the molecules at the interface. (33,34).  

Surface orientation and double-bond location can significantly influence rates of ozone 

reactions with surface bound olefins (13). 

Implications for Indoor Air Quality  The second-order surface rate constant, as  

defined in this research, can be used in combination with building parameters to estimate the 

relative importance of surface conversion rates and gas-phase conversion rates. When k2 

(cm4s-1molecule-1) is multiplied by the surface to volume ratio (cm-1) of the indoor 

environment the result is directly comparable to the gas phase bimolecular second-order 

reaction rate coefficient (cm3 s-1 molecule-1). For residences, Singer et al. (2007) found the 

surface to volume ratio (S/V) to range from 0.029 to 0.046 cm-1. In combination with the 

measured range for all materials in this study, k2S/V is (2-15) × 10-16 cm3 s-1 molecule-1. Thus, in 

comparison with the bimolecular rate constant (3 × 10-16 cm3 s-1 molecule-1) (21), surface 

conversion occurs at rates roughly equal, or much higher than the gas phase reaction. It is 

striking that the range is relatively narrow despite the observation that the surface mass 

concentration of α-terpineol varies substantially for these different surfaces under the same 

conditions.  

It is not advisable to rely too heavily on this extrapolation to indoor environments with 

“real surfaces”. Surfaces can be coated with water, salts, particles and other organics that may 

influence the apparent surface reactivity of α-terpineol. The influence of “soiled” surfaces has 
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not yet been established. Further, the second-order rate coefficient, k2, was developed based on 

the assumption that the background reactivity is negligible compared with the resulting ozone 

consumption by the ozone-terpineol reaction at the surface. However, brick and masonry 

surfaces have high ozone-reaction probabilities (35,36), even in the absence of adsorbed 

reactants. Surfaces such as carpet or kitchen counters are coated with oils (cooking, skin, etc.) 

that increase the background reactivity of those materials (1,2,5). In addition to being 

inconsistent with the underlying assumptions for k2, highly reactive surfaces consume ozone at 

rates that can be limited by external mass transport, resulting in an ozone-depleted boundary 

layer. This in turn, would reduce the surface ozone-terpineol conversion rates relative to the 

gas-phase rates.  Low reactivity paint, vinyl and glass surfaces are likely to 1) be most 

consistent with the definition of k2 and 2) be the most important locations for the reactions of 

sorbed reactants due to the lack of competition for ozone. 

Allowing that surfaces significantly promote the ozone-terpene reaction rate, any 

differences in reaction products (gas-phase vs. surface reactions) may significantly impact 

product concentrations in air and on surfaces. By exposing a surface manually coated with 

α-terpineol, Ham and Wells (37) showed that unique products were formed on the surface and 

that the distribution of products differed from those identified in the gas-phase reaction (21). 

Further, surface reactions can also promote the formation of secondary organic aerosols (38), 

and the yields may differ substantially from those measured for the gas-phase reaction alone 

(39). 
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Table 1. Parameters of PVC, glass, and painted beads 

Beads Diameter (mm) 
Porosity when 

packed** 

Geometric surface area 

normalized by density (cm2 g-1) 

PVC 1.6 (0.008)* 0.37 25.90 (1.3) 
Glass 0.9 (0.1) 0.40 27.18 (3.0) 
Painted 2.3 (0.4) 0.40 7.58 (1.3) 

* Numbers in parenthesis are uncertainty. 

** Porosity are determined gravimetrically. 

 

  



Figure 1. α-Terpineol
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Figure 2. Packed bed, plug-flow reactor apparatus used to measure the 

second-order reaction rate coefficient, k2, and the reaction probability. 
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Figure 3.  Adsorption isotherms for α-terpineol on glass (a), PVC (b) and paint (c). 

Results were fit to a Freundlich isotherm.  
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Figure 4. Area-specific, second-order surface reaction rate constant, k2, for 

α-terpineol on glass, PVC and paint. The data points are slightly offset horizontally 

for clarity and to avoid overlapping symbols.  
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Figure 5. The ozone-α-terpineol reaction probability on PVC, glass and painted 

surfaces under different relative humidity conditions. The data points are slightly 

offset horizontally for clarity and to avoid overlapping symbols 
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Abstract 

Low volatility terpenoids emitted from consumer products can react with ozone on 

surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products 

in indoor air. We measured the reaction probability and a second-order surface-specific 

reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed 

onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability 

ranged from (0.06 to 8.97) ×10-5 and was very sensitive to humidity, substrate and mass 

adsorbed. On average 1.28×10-5, ozone and dihydromyrcenol are at about 10 times more likely 

to react with each other on these surfaces than they are in the gas phase. The second-order 
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surface-specific rate constant ranged from (0.32 to 7.05) ×10-15 cm4 s-1 molecule-1and was 

much less sensitive to conditions or substrate. We also measured the ozone deposition velocity 

due to adsorbed DHM on painted drywall in a room-sized chamber. The resulting rate 

coefficient, (0.42 - 1.6) ×10-15 cm4 molecule-1 s-1), was consistent with that derived from 

bench-scale experiments for paint under similar conditions. 

Keywords  

indoor air, ozone, dihydromyrcenol, surface reactions, kinetics 

1. Introduction 

Reactions among pollutants in buildings alter indoor air compositions and thus 

influence exposure of occupants to reactants and products. Ozone, a component of urban smog, 

reacts with organic compounds both in the gas phase (homogeneous) and on indoor surfaces 

(heterogeneous). These reactions can result in lower ozone and higher product concentrations 

in buildings.  Homogeneous reactions of ozone with nitrogen oxides and terpenes have been 

thoroughly studied in both ambient and indoor chemistry literature (Hoffmann et al. 1997; 

Calogirou, Larsen, and Kotzias 1999; Hakola et al. 1994; Atkinson and Arey 2003; Yu et al. 

1999). However, heterogeneous ozone chemistry remains poorly understood, especially for the 

surfaces and compounds unique to indoor environments.  

These heterogeneous reactions may be of equal or even greater importance, compared 

with gas-phase reactions in buildings. During a simulated aircraft experiment, more than half 

of ozone was consumed on cabin surfaces and clothing, (Weschler et al. 2007). Based on the 
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results of ozone reactions with dried cleaner residues, Destaillats et al. (Destaillats et al. 2006) 

and Singer et al. (Singer et al. 2006) attributed ozone consumption and product formation, in 

part, to chemistry with unsaturated species remaining on surfaces.  Oxidation of volatile 

terpenes on heat-exchanger surfaces was inferred from larger-than-anticipated conversion rates 

(Fick et al. 2005). Even Teflon surfaces may support ozone-terpene reactions (Fick et al. 2003; 

Pommer 2003). Unsaturated oils (Morrison and Nazaroff 2002; Wang and Morrison 2006; 

Wang and Morrison 2010; Weschler et al. 2007; Wisthaler and Weschler 2009), terpenes 

(Springs and Morrison 2007; Springs and Morrison 2008) and other compounds coat, or adsorb 

onto, building surfaces and increase the apparent ozone reactivity of these surface (Wang and 

G.C. Morrison 2006). Like the gas phase reaction, ozone reactions with terpenes on surfaces 

can also produce irritants and aerosols (Weschler 2004; Waring 2009). These reactions 

generate a host of oxidized organic species including aldehydes, ketones, and carboxylic acids 

(Morrison and Nazaroff 2002; Wang and Morrison 2006; Weschler et al. 2007; Ham and Wells 

2008; Coleman et al. 2008). However, these studies are primarily qualitative, or provide 

relative reactivity information.  

It is important to quantify rates of reactions on indoor surfaces. Existing studies 

directed to chemistry on atmospheric aerosols have shown that the reaction probability of 

ozone with surface-bound organic compounds tend to be much higher than the reaction 

probability of the equivalent gas phase reaction (Dubowski et al. 2004; Voges et al. 2007a; 

Stokes et al. 2008). In combination with the large surface area-to-volume ratio found in 
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buildings, enhanced surface reactivity can cause surface chemistry to dominate homogeneous 

conversion indoors. In spite of its importance, existing indoor air quality models do not yet 

include individual heterogeneous reactions due to a lack of kinetic and product yield data.  

The kinetics of some surface reactions relevant to indoor environments have been 

measured. Springs and Morrison (Springs and Glenn Morrison 2007) found that the 

surface-specific reaction probabilities of ∆-carene and d-limonene were 10-100 times greater 

than those in the gas phase. Because of its likely ubiquity on indoor surfaces, the kinetics of the 

ozone squalene surface reaction has been measured by two groups. A reaction probability of 

(45 ± 14) × 10-5 (Wells, Morrison, and Coleman 2008) and a pseudo-first-order rate constant of 

1.22 × 10-5 s-1 (Petrick and Dubowski 2009) were determined. Shu and Morrison defined and 

quantified a second-order surface reaction rate coefficient for ozone and α-terpineol, which can 

be directly incorporated into indoor air quality models (Shu and Glenn Morrison 2009). Their 

results suggested that more than half of the ozone reacts with α-terpineol on surfaces rather 

than in building air.  

In this research, we measure heterogeneous ozone kinetic rate constants for 

2,6-dimethyl-7-octen-2-ol (dihydromyrcenol), a naturally occurring monoterpene alcohol 

(structure shown in Figure 1). Similar to α-terpineol, it is extensively used in fragrances for 

bath preparations, soaps, detergents, polishes, and other household products (Nazaroff and 

Weschler 2004; Colombo et al. 1991) and was observed to be one of the primary terpene 

alcohols emitted from a general purpose cleaner (Singer et al. 2006). Dihydromyrcenol also 
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has a low vapor pressure (~16.5 Pa at 25°C) (US EPA 2010) and is therefore likely to exhibit 

substantial sorptive partitioning at equilibrium (Singer et al. 2004; Singer et al. 2007). Because 

of its small bimolecular (gas-phase) rate constant, 2 ×10−18 cm3 molecule−1 s−1 (Forester, Ham, 

and Wells 2006), its gas-phase conversion tends to be negligible compared with much more 

reactive terpenes and terpenoids such as limonene and α-terpineol. However, Ham et al. 

observed, qualitatively, that the reaction rate was much higher on a dihydromyrcenol coated 

vinyl tile, than in the gas phase, based on the rate of product emissions (Ham and Wells 2009).  

Thus, we seek to quantify this surface rate and estimate how indoor surfaces influence 

overall conversion of dihydromyrcenol. Specifically, we quantify an area-specific 

second-order reaction rate coefficient, k2, associated with the ozone/ dihydromyrcenol reaction 

on three surfaces relevant to indoor environments (glass, polyvinylchloride, and latex paint). 

This coefficient can be used to estimate the relative impact of heterogeneous ozone-terpene 

reactions on indoor air concentrations of both ozone and dihydromyrcenol. Further, this 

quantitative analysis can improve existing indoor chemical models by directly relating indoor 

terpenoid concentrations with the resulting enhancement in surface conversion rates. We also 

quantify a minimum effective reaction probability associated with these reactions. 

2. Methods 

2.1 Materials 

Dihydromyrcenol (99%) was purchased from Sigma Aldrich (St. Louis, MO, USA). 

The Polyvinyl Chloride (PVC) beads were purchased from Engineering Laboratories Inc. 
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(Oakland, NJ, USA). The soda lime glass beads were purchased from MO-SCI Specialty 

Products, L.L.C. (Rolla, MO, USA).  Latex paint (American Tradition®, color coding 

4007-9A, sky blue, flat) was applied to ceramic (zirconium silicate) beads and cured for more 

than 4 years, to generate a dry latex paint surface. Bead diameters and other parameters are 

found in Table 1. 5 L Pyrex bottles with autoclavable polypropylene plug-seal caps were 

purchased from Fisher Scientific (Pittsburgh, PA, USA). A mini-nert valve with a 1/8 inch male 

NPT connection, purchased from VICI Precision Sampling (Baton Rouge, LA, USA), was 

customer-modified and attached to each cap. For the 8.2 m3 chamber experiments, drywall was 

painted with white satin latex paint (Sherwin Williams), installed in the ventilated chamber and 

allowed to cure for ~ 3 years. 

2.2 Analytical 

Stainless steel sorption tubes packed with Tenax-TA (Markes, Llantrisant, UK) and 

Solid Phase Micro Extraction (SPME; 65 µm PDMS-DVB Coating StableFlexTM; Supelco) 

were both used as sample preparation methods for conventional gas chromatography with 

flame ionization detector (GC/FID) detection of dihydromyrcenol. Tenax-TA tubes were used 

to quantify the concentration of dihydromyrcenol at the exhaust of each reactor. 4 liters of 

exhaust gas were collected over 20 min for later thermal desorption and analysis by GC-FID. 

Tenax tubes were also used to verify the mass of vapor-phase dihydromyrcenol injected by 

syringe into adsorption bottles. Tenax tubes were calibrated by applying a known mass of 
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dihydromyrcenol, diluted in methanol, to sorbent, evaporating the solvent, and thermally 

desorbing and injecting the dihydromyrcenol into the GC-FID. 

In bottles used to conduct dihydromyrcenol adsorption experiments, SPME was used 

to quantify the gas phase dihydromyrcenol concentration. Because the fiber will only adsorb a 

small amount of the analyte (usually tens or hundreds of nanograms), SPME is especially 

useful when there is only a small amount of analyte, or when the concentration is low. The 

SPME fiber was exposed to the gas for 5 min, and then inserted into a GC injection port 240°C 

for 5 min to desorb all the dihydromyrcenol. The SPME fiber removes less than 1% of the total 

mass of dihydromyrcenol in the sorption bottle. SPME was calibrated by comparison with 

Tenax-TA results of the same gas mixture. 

An HP6890 GC-FID with an HP 5MS column was used to analyze samples collected 

on both Tenax-TA tubes and SPME fibers. The carrier gas flow rate was 20 cm3 min-1. The 

initial oven temperature of 100°C was increased to 250°C at a rate of 35°C min-1. The method 

detection limit was 5 ppb for Tenax-TA tube analysis and 1 ppb for SPME analysis. 

2.3 Adsorption apparatus and procedure 

Dihydromyrcenol adsorption experiments were carried out using a series of the 5 L 

Pyrex bottles with customer modified caps as described above. The bottles and caps with 

valves were washed with methanol, rinsed with ultra high purity water and then dried at 80°C 

for at least 24 hours before each experiment. Adsorption experiments were carried out in a 

temperature controlled chamber at 25ºC, and at three relative humidity conditions (20%, 50%, 
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and 80%). To generate the desired humidity, each bottle was flushed with high purity nitrogen 

gas for 30 min at 1.0 L min-1. The humidity was controlled by sparging a fraction of the dry 

nitrogen flow through high purity water. For each relative humidity condition, beads (PVC, 

glass, or painted) were added to separate Pyrex bottles, and two replicates were carried out at 

the same time. Two empty bottles were used as controls. The geometric surface area of PVC, 

glass, and painted surface were 3070 cm2, 4000 cm2, and 3120 cm2 respectively. The inner 

surface area of each Pyrex bottle was estimated to be 1740 cm2. To inject a small amount of 

dihydromyrcenol, headspace gas was drawn from a 1 L Boston round bottle containing ~5 g 

pure dihydromyrcenol liquid. This bottle was maintained at 25°C and the resulting headspace 

concentration of 1.18 mg L-1 (181 ppm) was verified by Tenax-TA tube analysis. A 5 mL 

gastight syringe was used to draw the dihydromyrcenol gas from the 1 L bottle and to inject it 

into the 5 L Pyrex bottles. After the gas was injected, bottles were rotated on a tumbler at 7 rpm 

for 10 hours to allow the dihydromyrcenol to uniformly adsorb to bead and bottle surfaces. 

Time required to achieve equilibrium was verified in separate experiments. SPME was use to 

measure the concentration of dihydromyrcenol in each bottle after 10 hours. Each combination 

of humidity, concentration and surface was repeated at least once.  

2.4 Plug flow reactor apparatus and procedure 

The plug flow reactor (PFR) system used to measure ozone/ dihydromyrcenol reaction 

rates on surfaces is shown in Figure 2. A zero air generator (Parker-Balston) supplied clean air 

to the system, and flow controllers (MKS) maintained the flows at desired rates. Diffusion 
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tubes (VICI Metronics, Poulsbo, Washington) filled with pure dihydromyrcenol liquid were 

used to continuously add dihydromyrcenol into the gas flow and the resulting concentration 

was verified using Tenax-TA tube analysis. Ozone was generated and monitored using a Dasibi 

(Glendale, CA) UV photometric ozone analyzer.  The humidity of the reactor stream was 

controlled by adjusting the ratio of dry and humidified air flow rates. The water bubbler and the 

reactor were maintained at 25°C in a temperature controlled chamber (shown by dashed line in 

Figure 2).  

A 50-cm long Teflon reactor with an inner diameter of 1.8 cm was used. The total 

volume and (surface area) were: 100 cm3 glass beads (4000 cm2); 120 cm3 PVC beads (2840 

cm2); and 120 cm3 painted beads (1880 cm2). The surface area of the Teflon reactor was 283 

cm2.  

Before each experiment, the beads were ultra-sonicated for 30 min in high purity water 

to clean the surface and dried in the oven at 50°C for at least 24 hours. Both ozone and 

dihydromyrcenol were delivered to the reactor for 12 hours to allow a steady-state 

concentration profile to develop in the reactor before concentrations were measured at the inlet 

and outlet. Because dihydromyrcenol reacts with ozone, both the ozone and dihydromyrcenol 

concentrations are reduced at the reactor exhaust. Under our experimental conditions, it is 

possible to completely deplete a reactant if the other is introduced at a significantly higher 

molar concentration. Typical inlet concentration pairs of ozone: dihydromyrcenol (ppb) were 

10:4, 10:3, and 10:2.  
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2.5 Chamber experiment apparatus and procedure 

A diagram of the 8.2 m3 chamber used to measure ozone dihydromyrcenol surface 

conversion rates is shown in Fig 3. The chamber (2.03 m × 2.06 m × 1.96 m) was equipped 

with painted drywall on all surfaces including the floor. The chamber was ventilated with 

laboratory room air that was filtered through activated carbon. The air exchange rate was 

maintained at 0.6 ± 0.05 h-1 and was measured by monitoring the decay of methane trace gas 

with a stand-alone flame ionization detector (FID). A small fan was placed in the chamber to 

ensure that the air in the chamber was well mixed. Ozone generation and dihydromyrcenol 

injection methods were the similar to those used in the PFR system, except larger diameter 

diffusion tubes for dihydromyrcenol were used. Using an automated set of Teflon valves, the 

ozone analyzer collected samples from either the gas inlet duct or center of the chamber. The 

ozone and dihydromyrcenol were injected ~1.5 m upstream from the supply register for the 

chamber, resulting in a mixing residence time of ~ 40 seconds. The ozone concentration was 

(3.2 ± 0.1) ×1012 molecule cm-3 (~ 120 ± 4 ppb), and dihydromyrcenol concentration range 

were ~ 0.06 - 5.4×1012 molecule cm-3 (~ 2 - 200 ppb), respectively. Considering that the gas 

phase reaction of ozone and dihydromyrcenol is very slow (2 ×10−18 cm3 molecule−1 s−1), 

homogeneous conversion in the duct was negligible compared with that in the chamber. The 

temperature and relative humidity (RH) inside the chamber were monitored with a thermistor 

and RH transducer (VAISALA ™, Boulder, CO). The temperature and RH conditions were 

those of the laboratory and not independently controlled. Thus, the temperature was (22.5 ± 
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1.0)°C. Because these experiments were performed in winter, the relative humidity was 

generally low and ranged from 8% - 40%; 85 % of the time, the RH ranged between 20% - 

40%. 

Following an air exchange rate measurement, the ozone concentration was raised to ~ 2 

ppm and maintained there for 12 hours to quench ozone-reactive sites and decrease the 

background reactivity. The ozone injection rate was then reduced and ozone allowed achieving 

a new steady state inlet value equal to ~120 ppb. The ozone concentration was allowed to 

decay to ~ 0 ppb prior to starting a dihydromyrcenol reactivity experiment. This experiment 

proceeded as follows: First, dihydromyrcenol was introduced to chamber. After ~ 5 hours, 

SPME was used to quantify the dihydromyrcenol concentration in the chamber. Then ozone 

was introduced, SPME was again used to quantify the dihydromyrcenol concentration in 

chamber again after the ozone concentration had stabilized. 

3. Data analysis 

3.1 Adsorption 

To determine the dihydromyrcenol-specific ozone reaction probability on the surface, 

we require a measure of the surface coverage of dihydromyrcenol under a range of 

concentrations in the PFR experiments. The equilibrium surface concentration on the beads 

was determined by balancing the known mass injected against the gas-phase mass (SPME), 

mass collected on the bottle surface (from control experiments) and the remaining mass on the 

beads, as shown in Equation (1). 
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<����� � +!����=&�,!����=  ,���&���  +!=���&�,!=��� (1) 

where <����� is the total mass of dihydromyrcenol injected to each bottle (g), +!����= and 

+!=��� are the surface area of bottle and beads (cm2), respectively, &�,!����= and &�,!=��� is 

the concentration of dihydromyrcenol on the surface of the bottle and beads (g cm-2), 

respectively. ,��� is the volume of gas in each bottle (cm3), and &��� is the gas phase 

concentration of dihydromyrcenol (g cm-3).  

The relationship between dihydromyrcenol concentrations on the bead and bottle 

surfaces and the gas phase dihydromyrcenol concentration, was expressed by a Freundlich 

isotherm (best general model for results obtained), as shown in Equation (2). 

&�,!=��� �� !����= � 4C,!=��� �� !����= · &���*  (2) 

where &D and &��� are in units of (ng cm-2) and (ppb) respectively. In each case, 4C and E 

are derived from the nonlinear least-squares fit of the isotherms. 

3.2 Area-specific, second-order reaction rate constant 

To provide a useful parameter for evaluating the impact of indoor surface chemistry, 

we define an area-specific second-order reaction rate constant, k2 (cm4 molec-1 s-1) associated 

with overlying gas-phase concentrations, &'( and &jkl, by Equation (3). 

FGH: #7IJ:KLJ:M M;N$ � ��&'(&jkl #+ ,$⁄  (3) 

where #+ ,$⁄  is the surface-area to volume ratio (in the reactor or other system where 

mass-transfer does not limit transport and uptake of either reactant). This is the rate of the 

ozone-dihydromyrcenol reaction, not necessarily the total rate of ozone or dihydromyrcenol 



91 

loss and does not account for background removal of ozone. In our system, background ozone 

removal was negligible compared with that due to its reaction with dihydromyrcenol, when 

dihydromyrcenol was present. This second-order rate constant can be used directly in indoor 

air quality models to estimate reactant and product fluxes at indoor surfaces. 

To determine k2, we modeled the reactor as a plug flow reactor (PFR). The 

concentration of both ozone and dihydromyrcenol change with distance, z, along the 

bead-filled region of the reactor and can be characterized by two coupled equations 

(steady-state). Adsorption and reaction on the surface of the Teflon reactor (283 cm2) is 

negligible compared with that taking place on the beads. A mass balance on the PFR at 

steady-state results in the following equations for the concentration of ozone and 

dihydromyrcenol, both of which are functions of distance (z) down the reactor: 

Q&'(Q� � ���&'(&mno# +!=���,�=����� · L$ (4) 

Q&mnoQ� � ���&'(&mno# +!=���,�=����� · L$ (5) 

where ,�=����� is the volume of the bead-filled regions of the reactor , L is the average gas 

velocity in the reactor. The loss of dihydromyrcenol is assumed to be equal to the ozone loss 

(1:1 stoichiometry) after accounting for background ozone removal by reactor surfaces.  

Gas-phase conversion of ozone or dihydromyrcenol is negligible during the <4 s residence 

time of the reactor. 
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Equations 4 and 5 were solved numerically and the resulting values of k2 were adjusted 

to provide a best fit to experimentally derived values of inlet and outlet concentrations. 

3.3 Minimum ozone/dihydromyrcenol reaction probability 

Equation (6) was used to calculate the reaction probability of ozone with bare surfaces 

(background reactivity) (Morrison and Nazaroff 2000).  

����C��= � #�JE &'(,)*&'(,���$ 4 ,�=����� %
� � � +!=��� W + 
 (6) 

where ����C��=  is the reaction probability of ozone associated with the bare substrate ( PVC, 

glass, and paint), &'(,)* and &'(,��� are the inlet and outlet ozone concentration, % is the 

total flow rate, � � � is the Boltzmann velocity for ozone, which is 360 m s-1 in this case 

(Cano-Ruiz et al. 1993), W is the length of the bead-filled region of the reactor, + is the cross 

sectional area of the plug flow reactor, and 
 is the porosity of the bead bed. At typical 

operating concentrations (~ 120 ppb), there was no measurable difference in the inlet and outlet 

ozone concentrations, indicating negligible background reactivity. A relatively high mixing 

ratio of ozone  (~ 850 ppb) was required to generate a measurable difference the inlet and 

outlet. 

The combined (total) reaction probability, ������, is assumed to be a linear combination 

of the reactivity of adsorbed dihydromyrcenol and exposed surface sites. Because 

dihydromyrcenol is consumed by its reaction with ozone, the ozone and dihydromyrcenol 

concentrations vary along the length of the reactor. Thus, the surface coverage is not uniform 

throughout the reactor and is a function of the position in reactor, as shown in Equation (7). 
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������ � �'(,mno�mno,!=���,p  �!=���\1 � �mno,!=��� ,p] (7) 

where the �mno,!=���,p is the fraction of the surface area covered with dihydromyrcenol 

molecules at position z, �'(,mno is the reaction probability of adsorbed dihydromyrcenol. The 

fractional coverage, �mno,!=���,p , is determined by applying measured isotherms, assuming 

single-molecular adsorption (no stacking) and smooth bead surfaces. Because beads are not 

smooth, and not all of the adsorbed dihydromyrcenol will be equally available for reaction (e.g. 

in a pore or covered by other molecules), the reaction probability determined is the minimum 

reportable value. 

The total surface reaction probability is evaluated in a similar manner as in Equation (8) and (9), 

but must account for changes in both ozone and dihydromyrcenol through the reactor. 

Q&'(Q� � � ������#�$ � � �
4L

+!=���,�=����� &'(#�$ (8) 

Q&mnoQ� � � ������#�$ � � �
4L

+!=���,�=����� &'(#�$ (9) 

3.4 Ozone deposition velocity on drywall in 8.2 m3 chamber 

In the presence of ozone alone, the background deposition velocity of the painted 

drywall was quantified by applying a mass balance on ozone as shown in Equation (10). 

%&'(,)* � ��,!"�+&'(,���  %&'(,��� (10) 

where the ��,!"� is the background ozone deposition velocity (m s-1), and the + is the surface 

area of the painted drywall in the chamber (24.40 m2). % is the volumetric flow rate through 
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the chamber (m3 h-1). &'(,)* and &'(,��� are ozone inlet and outlet concentration, measured at 

the supply and the center of the chamber respectively. 

In the presence of both ozone and dihydromyrcenol, the mass balance equation on 

ozone results in Equation (11). 

%&'(,)* � /q��,!"�  ��,mnor+  %  ����&mno,���,6 &'(,��� (11) 

where the ���� is the ozone-dihydromyrcenol gas phase reaction rate constant, which is 2 

×10-18 cm3 s-1 molecule-1 (Forester, Ham, and Wells 2006), , is the volume of chamber (8.2 

m3), ��,mno is the ozone deposition velocity associated with dihydromyrcenol adsorbed on 

drywall. In developing Equation (11), it is assumed that the fractional coverage, f, of 

dihydromyrcenol is small, and that ��,!"� is not significantly reduced by adsorption of 

dihydromyrcenol that obscures surface sites. Thus, any observed change in ozone uptake by 

surfaces is due to reactions with adsorbed dihydromyrcenol. We evaluate this assumption in the 

Results and Discussion section. 

4.  Results and discussion  

4.1  Dihydromyrcenol adsorption 

The dihydromyrcenol adsorption isotherms are shown in Figures 4 a, b and c along 

with Freundlich parameters (in Equation 2).  

Glass and paint adsorb approximately ten times more dihydromyrcenol than PVC 

under the same conditions. The relative humidity influences dihydromyrcenol adsorption on 

glass more than on PVC or paint. As the relative humidity increases, much less 
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dihydromyrcenol will adsorb to the glass surface. These trends are consistent with the results of 

α-terpineol adsorption on these surfaces (Shu and Morrison, in preparation). This may be due 

to competition between water and dihydromyrcenol for adsorption sites on glass. On PVC, 

dihydromyrcenol does not appear to compete with water under these conditions.  

4.2  Area-specific, second-order reaction rate constant 

Figure 5 shows the results for the area-specific, second-order reaction rate constant, k2, 

for all surfaces and conditions. The value of k2 ranges from approximately (0.5 - 7.0) × 10-15 

cm4 s-1 molecule-1. This relatively small range is surprising given the very different surface 

concentrations of dihydromyrcenol on the three materials, and for the very different impact on 

surface concentration due to differences in humidity. Considering the medium concentration 

and 50% RH condition, the range of k2 on glass surface (0.5 - 2.5 ×10-15 cm4 s-1 molecule-1) 

coincides closely with the range of k2 on PVC surface ( 0.5 - 5.0 ×10-15 cm4 s-1 molecule-1). 

However, the adsorbed mass is nearly 5 times higher (per unit area) on glass than on PVC. 

Even though RH can strongly influence the adsorptive capacity significantly on glass and paint, 

there is little impact on k2. It appears that k2 is only weakly influenced by the adsorbed mass, 

but instead is more strongly linked to the gas-phase concentration of dihydromyrcenol. This 

phenomenon was also observed for α-terpineol (reference) and suggests that the ozone 

reactivity is dependent on the interfacial activity of dihydromyrcenol, rather than the mass 

adsorbed. 

The assumption that reactant flux is first order in dihydromyrcenol appears to be poor for 
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range of gas-phase concentrations studied. By comparing the resulting flux and k2 with 

concentration at each humidity, the reaction order of dihydromyrcenol ranges from -1 to 0.5. 

However, the k2 values can be used to estimate the magnitude of surface the surface reaction 

and compare with other loss mechanisms for indoor conditions similar to those in these 

experiments. To develop a more accurate reaction order, the concentration of both species 

should be expanded to include several orders of magnitude.  

4.3  Minimum reaction probability 

Figure 6 shows the results for the minimum ozone/dihydromyrcenol reaction 

probability, �'(,mno. Also shown for comparison is the gas-phase reaction probability (2.5 × 

10-6) based on the reported gas phase reaction rate constant in dry air (Forester, Ham, and Wells 

2006). All measured values are higher than the gas-phase value. The highest (PVC, 50% RH) is 

about 25 times greater than that for the gas-phase reaction. The large of values are consistent 

with the observation that adsorption characteristics vary widely, but the surface reactivity 

(characterized by k2) does not.  

Again, these values represent the minimum measurable value, not an absolute reaction 

probability. The model used to calculate the ozone dihydromyrcenol reaction probability on 

surfaces was based on the assumption that the dihydromyrcenol molecules form no more than a 

monolayer. This assumption may be valid when the fractional coverage is very small. However, 

at the “indoor relevant” concentrations used here, the adsorbed dihydromyrcenol molecules 

would cover ~3% to ~30% of the surface area. Thus, multi-layer “islands” of dihydromyrcenol 
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may form, and not all dihydromyrcenol molecules will be equally available for reaction with 

ozone. Physical barriers to reaction, such as adsorption deep within pores, further reduce the 

reported reaction probability. Consistent with this mechanism, the highest reaction probability 

occurs for the lowest coverage (PVC).   

The fact that ozone dihydromyrcenol reaction probabilities on surfaces are larger than 

that in gas phase is consistent with observation from other studies.  For example, Springs and 

Morrison determined the ozone reaction probability of surface-bound ∆-carene ranged from 

3.0 × 10-6 to 2.5 × 10-5, which is 10 to 80 times higher as the reaction probability in gas phase 

(Springs and Morrison 2007; Springs and Morrison 2008). Voges et al. also found that the a 

terpene-functionalized glass surface has ozone reaction probability of ~ 10-5, which is as 20 

times high as the gas phase reaction probability (Voges et al. 2007b). Although the 

enhancement of reaction probability is obvious, the reason behind this enhancement of reaction 

probability is not clear yet. One possible explanation for this higher ozone reactivity with 

adsorbed species is that when dihydromyrcenol molecules adsorbed on surfaces, the 

carbon-carbon double bonds became more available to the ozone, due to spontaneous 

polarization (Derjaguin and Shulepov 1979; GY Stokes et al. 2009) of dihydromyrcenol 

molecules. Further research is needed to investigate the surface chemistry at molecule level. 

4.4 Ozone deposition on drywall in chamber 

Figure 7 shows the ozone deposition velocity measured in the room-sized chamber 

experiments. The background ozone deposition velocity and reaction probability ranged from 
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0.072 to 0.077 m h-1 and (0.22 - 0.24) × 10-6 respectively. These values are in the low range of 

other reported values (Wang and Morrison 2006; Wang and Morrison 2010; Klenø et al. 2001), 

perhaps because the drywall surface was maintained in a clean laboratory chamber with little 

possibility of being coated with oils and other reactive compounds typical of occupied indoor 

environments. As the steady-state dihydromyrcenol mixing ratio was increased, the ozone 

deposition velocity associated with dihydromyrcenol adsorbed on drywall, ��,mno, increased 

accordingly (by Equation 12). For a dihydromyrcenol mixing ratio of ~ 170 ppb, ��,mno is 

approximately equal to ��,!"�. 

An effective surface rate coefficient can be gleaned from these data and compared with 

those from the PFR experiment for painted beads. The combined parameter ��,���C&mno in 

Equation 3 and as measured in the PFR experiments most closely corresponds to ��,mno in the 

8.2 m3 chamber experiments. Thus the chamber based ��,���C values range from (0.42 - 1.6) × 

10-15 cm4 molecule-1 s-1. For painted beads at low humidity, ��,���C ranged from (1.5 - 2.5) × 

10-15 cm4 molecule-1 s-1. On average, the values from either system are within a factor of 2 of 

one another. PFR experimental results over all conditions and surfaces ranged over a factor of 

10 and include the low end of the large chamber values. Some differences between the PFR and 

chamber results could be due to differences in materials and conditions: 1) the drywall could 

not be cleaned and oven dried, 2) the composition of paint film on drywall and beads were not 

identical since they are of a different brand, color, and age, 3) the humidity and temperature in 
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the chamber were not identical to that in the PFR. In spite of these differences, the results 

between experimental systems are in good agreement.   

4.5 Implications for indoor air quality 

When multiplied with the surface to volume ratio (cm-1), ��,���C, can be used just as 

the gas phase bimolecular second-order reaction rate coefficient to define removal rates of 

ozone or dihydromyrcenol in mass-balance models of indoor air. Thus, they can be compared 

directly when considering the relative conversion rates taking place in the gas-phase and on 

surfaces. For a typical indoor surface to volume ratio of 0.03 cm-1(Hodgson, Ming, and Singer 

2004), the effective bimolecular rate coefficient due to surface reactions is (0.4 - 2) ×10-16 cm3 

s-1molecule-1. This is 20 - 100 times greater than the gas phase bimolecular rate coefficient (2 

×10-18 cm3 s-1 molecule-1 (Forester, Ham, and Wells 2006). Thus the ozonation rate of 

dihydromyrcenol in buildings is overwhelmingly dominated by surface chemistry, not 

gas-phase chemistry.  

It is not yet possible to extrapolate these and other recent findings to predict the 

reactivity and behavior of all alkenes in buildings. Some generalizations may be appropriate, 

however. Low volatility compounds will sorb more strongly than more volatile compounds, 

and thus are likely to have more influence over the area-averaged reactivity of indoor surfaces. 

Stokes et al. (Stokes et al. 2009) showed that the reaction probabilities for surface-linked 

compounds do not correlate with the type of alkene attached to the surface or its corresponding 

gas-phase reaction rates. In fact 1) there was an anti-correlation with gas-phase reaction 
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probabilities, 2) surface reaction probabilities are much larger than their gas-phase 

counterparts, and 3) there appears to be a “flattening” of reactivity. For gas-phase reaction 

probabilities that span 3 orders of magnitude, the corresponding surface-specific reaction 

probabilities only span 2 orders of magnitude. We also observe this flattening with the 

α-terpineol (Shu and Morrison, in preparation) and dihydromyrcenol reaction probabilities. 

Surface-specific reaction probabilities for alkenes measured to date tend to be > 10-5. The 

highest “minimum” value from this research for dihydromyrcenol was ~ 8 × 10-5, which is 

likely to be closer to the “real” reaction probabilities for this sorbed compound. Intriguingly, 

the area-averaged reaction probability in buildings tends to be ~ 10-5 (Cano-Ruiz et al. 1993) 

even though measurements of individual surfaces can range from 10-8 (clean glass) to >10-4 for 

brick. Nazaroff et al. (William W. Nazaroff, Gadgil, and Charles J. Weschler 1993) suggested 

that surface soiling/coatings may be responsible for the narrow range of area-averaged ozone 

deposition velocities observed in buildings. Similarly, reactivity flattening, and substantial 

surface reaction probabilities (even for otherwise low-reactivity compounds in the gas phase) 

suggest that adsorbed volatile and semi-volatile alkenes may be responsible for much of the 

ozone uptake in buildings. 
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Table 1. Parameters of PVC, glass, and painted beads 

Beads Diameter (mm) Porosity when packed 
Geometric surface area normalized 

by density (cm2 g-1) 

PVC 1.6 (0.008) 0.37 25.90 (1.3) 

Glass 0.9 (0.1) 0.40 27.18 (3.0) 

Painted 2.3 (0.4) 0.40 7.58 (1.3) 

 

  



Figure 1.  

 

Figure 1.  Dihydromyrcenol (2.6-Dimethyl-7-octen
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octen-2-ol). 
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Figure 2. Plug flow reactor apparatus used to measure the area-specific rate of 

ozone reactions with dihydromyrcenol on bead surfaces. 
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Figure 3. Room-sized chamber used to measure the ozone deposition velocity 

associated with dihydromyrcenol adsorbed on drywall.  
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Figure 4.  Freundlich isotherms of dihydromyrcenol adsorption on (a) PVC, (b) 

glass and (c) paint.  
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Figure 5. Area-specific, second-order surface reaction rate constant, k2, of 

dihydromyrcenol on glass, PVC and paint. *The series were horizontally set off 

slightly to avoid overlapping symbols.  
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Figure 6. Ozone dihydromyrcenol reaction probability on PVC, glass and painted 

surfaces under different relative humidity conditions. *The series were 

horizontally set off slightly to avoid overlapping symbols. 
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Figure 7. Ozone deposition velocity associated with dihydromyrcenol adsorbed on 

drywall, quantified by room-sized chamber experiments. 

 

 

 

 

 

  



113 

IV. Gaseous and surface products of the heterogeneous reaction of ozone with 

dihydromyrcenol and α-terpineol on glass 

(to be submitted to Indoor Air) 

 

SHI SHU AND GLENN C. MORRISON* 

Department of Civil, Agriculture, and Environmental Engineering, Missouri University of 

Science and Technology, Rolla, MO, 65401 USA 

Email : ssfdb@mst.edu , gcm@mst.edu 

*Corresponding author, phone: (573)-341-7192, email: gcm@mst.edu, fax: (573)-341-4729 

 

Abstract 

To better understand the effects of ozone/terpene surface reactions on indoor 

environmental quality, the products of ozone reactions with surface-bound α-terpineol and 

dihydromyrcenol were investigated. The positively identified surface ozone/dihydromyrcenol 

reaction products from surface extraction samples include glyoxal while the identified product 

in gas phase is formaldehyde. For surface ozone/α-terpineol reaction, positively identified 

products from surface extraction sample are glyoxal and methylglyoxal. These have been 

identified as being irritants with the potential to cause occupational asthma. Large aggregates, 

0.5 - 10 µm in diameter, also formed on the glass surface. These aggregates are likely formed 

by polymerization reactions initiated by hydroxyl or other radicals generated by the 

ozone-terpenoid reaction. Therefore, some fraction of the ozonated terpenoids are converted to 
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very-low volatility species which remain on the surface and may change the chemical 

characteristics of that surface over time.  

Keywords 

ozone, surface reaction, α-terpineol, dihydromyrcenol, carbonyl 

Introduction 

The terpene is a category of hydrocarbons built up from isoprene sub-units. They are 

naturally emitted from flowers and plants and usually can be found in essential oils and resins 

(Kesselmeier and Staudt 1999). Strictly speaking, terpenoid is a modified terpene, wherein 

methyl groups are moved or removed, or oxygen functionality is added (IUPAC 1978). 

However, as is common practice, the terms terpene and terpenoid are used interchangeably 

throughout this paper. Terpenes are emitted in large quantities into the atmosphere (Isidorov, 

Zenkevich, and Ioffe 1985) and participate in atmospheric chemistry. For example, these 

emissions from trees result in higher secondary organic aerosol concentrations above forests 

(Tunved et al. 2006). Many terpenes contain carbon-carbon double bonds which react readily 

with ozone. These important atmospheric reactions have been studied for many years (Yu et al. 

1999; Atkinson and Arey 2003). 

Large quantity of terpenes is produced by chemical synthesis each year. For 

d-limonene alone, the worldwide annual production was ~ 70 million kg in 2009 (Kerton 2009). 

Because many terpenes have a pleasant odor, they have been extensively used as fragrance 

compounds in household products, including but not limited to perfume, soap, shampoo, 
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detergents, air fresheners, candles, and cosmetics. As a result, indoor terpene concentrations 

tend to be much higher than outdoors and can be the dominant components of indoor VOCs 

(Singer et al. 2006; Nazaroff and Weschler 2004). Many individual terpenes and terpene 

alcohols, such as α-pinene, ∆-carene, citronellal, citronellol, α-terpineol, dihydromyrcenol, 

limonene, linalool, have been identified in indoor air. However, the variety is likely to be much 

greater given the 100’s to 1000’s of kinds of terpenes included in fragrances. Some terpenes 

that dominate indoor measurements include limonene and α-pinene (Nazaroff and Weschler 

2004) . These are used as “top-notes” and are the first compounds to evaporate and develop the 

fragrance desired by the manufacturer (McDaniel and McDaniel 2010). Others emit somewhat 

more slowly and provide a longer-lasting experience. For example, α-terpineol is a major 

component of pine oil (Nazaroff and Weschler 2004), and has been found in liquid 

cleaner/disinfectant, liquid floor detergent (Colombo et al. 1991) and air fresheners 

(Salthammer and Uhde 2009). Dihydromyrcenol is one of the principal components of 

lavender (Nazaroff and Weschler 2004) and has been found in liquid floor detergent (Colombo 

et al. 1991).  

The gas phase rates and products of the reaction between ozone and many terpenes 

have been studied. Important volatile terpenes such as limonene and α-pinene have been 

studied intensively (Wainman et al. 2000; Fan et al. 2003; Sack et al. 1992; Clausen et al. 2001). 

However, only recently has the chemistry of indoor-relevant terpenes such as citronellal, 

dihydromyrcenol, α-terpineol, geraniol, ionone, benzyl alcohol, and linalyl acetate been 
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studied (Fick et al. 2002; Forester, Ham, and Wells 2006; Forester, Ham, and Wells 2007; Ham, 

Proper, and Wells 2006; Harrison, Ham, and Wells 2007; Wells 2005; Harrison and Wells 

2009).  

Even less is known about the reactions that take place on surfaces. Products were 

identified for the reaction of ozone with α-terpineol and dihydromyrcenol that had been 

directly applied to glass and vinyl tiles in a methanol solution ( Ham and Wells 2008; Ham and 

Wells 2009). It was found that some products generated on the surface were different from 

those identified gas phase reaction products. In addition to residue from activities such as 

cleaning (direct application), volatilized compounds will also adsorb and accumulate on all 

other indoor surfaces. In recent kinetic studies, adsorbed terpenes can significantly enhance the 

ozone reactivity of surfaces, and overall terpene conversion indoors may be dominated by 

surface instead of gas-phase reactions (Shu and Morrison, in preparation). Thus, the 

redistribution of terpenes to all surfaces in a building influences the chemistry in several ways: 

increasing surface area for reaction to take place, enhancing rates via heterogeneous 

mechanisms and altering the product yield compared with the gas-phase reaction. 

In this research we identify the products resulting from ozone reactions with adsorbed 

terpenes at indoor-relevant concentrations. There are several major differences between 

directly applied terpenes and those that naturally adsorb to indoor surfaces. In (9,10), the 

spraying method resulted in surface concentrations of α-terpineol and dihydromyrcenol on the 

order of tens of ug cm-2. Adsorption isotherms of these same species (Shu and Morrison, in 
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preparation ), indicate that for a relatively high gas phase concentration (100 ppb), the resulting 

surface concentrations of these two species on glass are at least 3 orders of magnitude lower 

(tens of ng cm-2). When the surface concentration is on the order of tens of ug cm-2, the terpene 

molecules will be in close association or even form a relatively thick coating. At low 

concentrations, the terpenoids are more likely to be isolated on widely separated surface sites. 

Even for equivalent surface concentrations, the deposition of terpene molecules onto the 

surfaces in a solution may alter the surface itself such that terpene-site interactions differ from 

those resulting from gas-phase adsorption. To better understand the reaction products resulting 

from ozone reactions with adsorbed terpenes, we used a plug flow reactor packed with glass 

beads. Ozone was allowed to react with terpenes that had adsorbed to the glass surface. 

Gas-phase and surface products were identified. 

Experiments 

Materials 

The terpenes used in this research were α-terpineol (96% pure) and dihydromyrcenol 

(99% pure), which were obtained from Sigma Aldrich (St. Louis, MO). Glass beads with 0.9 ± 

0.1 mm diameter were purchased from MO-SCI Specialty Products (Rolla, MO). To more 

reliably assign chromatographic peaks, several pure standards of possible products, as 

suggested by the MS library search results and previous studies, were also purchased from 

Sigma Aldrich (St. Louis, MO). These were derivatized through the impinge sample train and 
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analyzed as described below. The standard compounds included 2-butanone, 2-pentanone, 

formaldehyde, acetone, glyoxal, glycolaldehyde, and methyl glyoxal.  

For analysis of surface aggregates, pre-cleaned glass microscope slides and petri dishes 

were purchased from Fisher Scientific (Pittsburg, PA). The detergent, liqui -Nox, was 

purchased from ALCONOX (White Plains, NY). Other organic solvents, optima grade hexane 

and the reagent grade methanol, were purchased from Sigma Aldrich (St. Louis, MO).  

Flow reactor 

A plug flow reactor (PFR) system, which has been described in detail elsewhere (Shu 

and G. Morrison, 2009), was used in this experiment. Briefly, a 25 cm long × 1.1 cm inner 

diameter glass tube was packed with glass beads. Clean air was directed to the reactor flowing 

at 2.0 L min-1. Water, ozone and the terpenoid were added to the stream to achieve 50% relative 

humidity (RH), ~ 150 ppb ozone and ~ 55 ppb α-terpineol (or ~ 70 ppb dihydromyrcenol) at the 

inlet of the reactor. 

Multiple negative control experiments were performed to ensure that the products 

identified were from reactions taking place on the glass, not other sources. The experimental 

design and the samples taken are shown in Table 1. All the experiments took place at 50% RH 

and 25°C. 

Analysis of reactants 

Ozone was measured at the inlet and outlet of the PFR using a photometric ozone 

analyzer (Dasibi, Glendale, CA). The concentrations of terpenes were verified using a 
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solid-phase microextraction technique described in detail elsewhere (Shu and Morrison 2010). 

This method was specifically designed to quantify reactive terpenes in the presence of ozone. 

Analysis of gas phase products 

Based on previous studies (Forester, Ham, and Wells 2006; Ham and Wells 2008), we 

anticipated that a large fraction of volatile gas-phase products would be carbonyl and 

dicarbonyl compounds and specifically sought to identify these species. A 22 mL threaded 

midget impinger filled with 15 mL mixture of 25% MilliQ water in optima grade methanol 

(Sigma Aldrich, St. Louis, MO) was used to collect gas from the outlet of the PFR. The gas 

flow to the impinger was 1.3 L min-1. To prevent ozone reacting with terpenes in the impinge 

solution, a clean Supelco LpDNPH ozone scrubber was used to remove ozone between the 

PFR outlet and the impinger inlet. Separate control experiments were performed to verify that 

product formation that may take place within the ozone scrubber itself did not interfere with the 

measurement.  However, the scrubber could remove some of the products by adsorption. The 

total sampling time was 6 hours and the volume of solvent remaining in the impinger was ~ 4 

mL. After sampling, the solvent was transferred to an amber glass vial and 250 µL 23mM 

O-(2,3,4,5,6-pentalfluorobenzyl) hydroxylamine (PFBHA) water solution was added and 

allowed to react (derivatize) for 24 hours. Derivatized compounds were concentrated directly 

from solution for 2 hours onto a Supelco StableFlexTM solid phase microextraction (SPME) 

fiber (65 µm PDMS-DVB coating, manual holder). The SPME fiber was injected into the inlet 

of an Agilent 6890 Gas Chromatography system coupled with Agilent 5793 Mass Selective 
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Detector. The carrier gas, helium, was set at a constant flow rate of 0.7 mL/min through an 

Agilent HP 5MS capillary column (0.25 mm × 30 m × 0.25µm). The oven was set to 40°C 

initially, held for 6 min, and then increased at a rate of 10°C to 260°C, and held for 3 min. The 

total run time was 31 min.  

After impinger sampling, the glass beads (25 cm3) were transferred to a 40 mL glass 

vial and 10 mL of solvent (the same water methanol mixture used in impinger) was added. 10 

mL solvent is the minimum volume required to just immerse the glass beads. The vial was 

ultra-sonicated for 10 min at room temperature to allow the solvent to extract the compounds 

adsorbed on the glass beads. 4 mL of the solution was transferred to an amber glass vial and 

250 µL of the 23mM PFBHA water solution was added for 24 hour derivatization. The same 

SPME sampling method and GC/MS method used for gas phase carbonyl identification were 

used to analyze the surface extract samples.  

Surface aggregates  

To identify the formation of aggregates on glass, slides were exposed to the 

ozone/terpene mixture and imaged in a scanning electron microscope (SEM). The microscope 

slides were first cut into about 2 cm × 3 cm pieces and further cleaned as follows: 1) sonicated 

in ultra high purity water with a few drops of Liqui-Nox for 15 minutes, and rinsed with MilliQ 

water thoroughly, 2) sonicated in optimal grade hexane for 15 minutes and rinsed with hexane, 

3) sonicated in reagent grade methanol for 15 minutes and rinsed with hexane. After these steps, 
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the slides were dried in a sealed 10L stainless steel chamber, through which 0.2 L min-1 high 

purity N2 flowed.  

Slides were exposed to a mixture of ozone and terpene (α-terpineol or 

dihydromyrcenol) in a 250 mL glass flask acting as a flow through reactor. The ozone and 

α-terpineol mixing ratios were 86 ± 4 ppb and 50 ± 2 ppb respectively, measured at the outlet. 

For the dihydromyrcenol experiment, the mixing ratios were 108 ± 5 ppb ozone and 123 ± 3 

ppb dihydromyrcenol. Experimental conditions were 50% RH and 25°C. After 20 hours of 

exposure, the slides were immediately transported to the SEM in sealed petri dishes. Cut pieces 

of cleaned slides were used as controls. 

Prior to SEM analysis, the slides were coated with Au/Pd for 1 minute. After coating, 

images of each slide were taken using a Hitachi s 4700 field emission scanning electron 

microscopy (FESEM). 

Results and discussion 

Products in outlet gas 

Ozone/dihydromyrcenol  Only formaldehyde, with an o-xime retention time 

of 12.68 min, was observed as product in the outlet gas. The peak area of the formaldehyde 

oxime from the surface reaction sample (Exp. # 8) was about twice that from the gas phase 

reaction control sample (Exp. #6).  



122 

Ozone/α-terpineol  From the outlet flow sample, only one peak (23.01 min) was 

determined to be associated with the surface ozone α-terpineol reaction. Major EI ions 

associated with this compound include 196 (100), 181(87), 167 (50), and 99 (44). This peak is 

not positively identified. 

Products extracted from glass surface 

 Ozone/dihydromyrcenol  PFBHA oxime derivatives positively identified with 

pure standards were observed at 16.58 min, 16.62 min, 17.70 min, 24.74 min, and 24.85 min 

residence times. Based on a MS library search and comparison with retention times from 

derivatized standards, the 16.58 min and 16.62 min oxime were assigned to 2-butanone, the 

17.70 min o-xime was assigned to 2-pentanone, and the 24.74 min and 24.85 min peak were 

assigned to glyoxal. Two peaks for each derivative are consistent with two stereo-isomers 

produced by the derivatization reaction; a second peak for the 2-pentanone oxime overlapped 

with major peak at 17.57 min. Small peaks were observed at these retention times in the blank 

samples, but the peak areas from samples were at least 5 times larger. The glyoxal is an 

expected product because it has been observed in both gas phase and surface ozone 

dihydromyrcenol reactions (Forester, Ham, and Wells 2006; Ham and Wells 2009). The two 

ketones are not anticipated products of this chemistry nor have they been observed by other 

researchers. 

PFBHA oxime derivatives that were not positively identified by pure standards include 

peaks at 15.40 min, 17.23 min, 17.57 min and 21.12 min. The peak at 15. 4 min was not 
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identified. The 17.23 min o-xime peak is suggested by the MS library to be 

trimethylacetaldehyde (86% match) or 3-methyl-2-butanone (67% match). Based on the EI 

pattern reported by Ham and Wells (Ham and Wells 2009) and the observed retention time, the 

peak at 17.57 min may be 2-methyl butanal. The peak at 21.12 min has not yet been identified. 

Ozone/α-terpineol  PFBHA oxime derivatives positively identified with pure  

standards were observed at 24.74 min (glyoxal) and 24.90 min (methylglyoxal) residence times. 

The glyoxal peak from ozone α-terpineol surface reaction (Exp. #7) was ~ 7 times larger than 

those observed in blank samples. These differences indicate that the presence of glass surface 

enhanced the formation of glyoxal and methylglyoxal significantly. Interestingly, only 

methylglyoxal was reported as a product of gas phase ozone α-terpineol reaction (Wells 2005), 

but not observed in a surface ozone/α-terpineol reaction (Ham and Wells 2008). This difference 

might be due to the much smaller surface concentration of the terpenoid used in the present 

study.   

PFBHA oxime derivatives that were not positively identified by pure standards include 

peaks at 23.56 min, 24.69 min, 24.98 and 25.02 min. The peaks at 23.56 min and 24.69 min 

have not yet been identified. The peaks at 24.97 and 25.02 have major EI ions as follows: 181 

(100), 195 (67-91), 167 (40), 117 (32), and 99 (34).The EI pattern and the maximum m/z 

observed = 364, suggests 3-(1-hydroxy-1-methylethyl ) -6-methylcyclohex- 2-en-1-one), or an 

isomer very similar to that proposed by Ham and Wells et al. (Ham and Wells 2009), is formed.  
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Aggregates on glass surface 

On the slides exposed to ozone and terpenes, aggregates of 0.5 to 10 µm in at least one 

dimension were observed, for both α-terpineol and dihydromyrcenol experiments. SEM 

images of select aggregates are shown in Figure 1. Most of the aggregates have a diameter of 1 

- 2 µm, for both α-terpineol and dihydromyrcenol exposed slides. On the ~ 6 cm2 area of a slide, 

approximately 10 aggregates > 1 µm were observed for both compounds. The unexposed glass 

slide (control) is free of particles larger than 0.1 µm in any dimension.  

The shape, size, and morphology appear to be very similar to the aggregates been 

observed by McIntire et al. (McIntire et al. 2005) resulting from ozone reactions with 

vinyl-terminated 3- and 8-carbon self-assembled monolayers. Besides those particle-like 

aggregates, some aggregates of film-like shape as shown in Figure 1 (a) were also observed.  

The formation of these aggregates is likely due to polymerization of heterogeneous 

surface reaction products. Ozone-alkene reactions produce a primary ozonide, which can then 

decompose to an aldehyde / ketone and a Criegee Intermediate (CI) (Criegee 1975). The CI can 

react with an aldehyde to produce a semi-stable secondary ozonide or decompose to generate 

hydroxyl or other radicals, which can initiate polymerization (Odian 2004). As McIntire et al. 

pointed out in the vinyl-terminated SAMs study (McIntire et al. 2005), many studies support 

the hypothesis that CI will react with adjacent unreacted C=C double bonds (Katrib et al. 2004; 

Hearn and Smith 2004; Hearn and Smith 2005; Tobias et al. 2000; Docherty et al. 2005; 

Ziemann 2003). In present experiment, the orientation, local density, and arrangement of the 
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molecules are not known, but it is possible that unsaturations are adjacent. According to the 

adsorption isotherm of α-terpineol and dihydromyrcenol on glass (Shu and Morrison, in 

preparation), the surface coverage of α-terpineol and dihydromyrcenol under the present 

experimental conditions were 143% and 16%, respectively. Therefore, islands or multiple 

layers of terpenoids may develop and radical reactions with adjacent unsaturated molecules are 

possible. Differences in the number, shape, size and microstructure, might be explained by 

differences in terpenoid structure and/or the fact that α-terpineol was present at a much higher 

surface concentration. For example, larger aggregates appeared to form during the terpineol 

reactions. However a larger number of smaller aggregates were observed for dihydromyrcenol 

which may suggest that a larger number of “islands” formed at the lower surface density. In the 

future, surface composition analysis methods, such as Auger Electron Spectroscopy (AES) and 

time-of-flight secondary ion mass spectrometry (TOF-SIMS), could be applied to better 

understand the composition of aggregates.  

Implications for indoor air quality 

The surface ozone/terpene reactions produced products similar to that of gas phase 

reactions, including irritants and sensitizers such as glyoxal and methylglyoxal (Anderson et al. 

2007). Formaldehyde, which is a carcinogen, was also found in the gas phase as a product of 

the surface reaction. While the yield of these products was not determined, surface ozonation 

rates of terpenes are predicted to dominate gas-phase conversion rates in buildings (Shu and 
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Morrison, 2009). Thus, the surface reactions may contribute substantially to indoor 

concentrations of observed dicarbonyls.  

Due to the prevalence of ozone and terpenoids in buildings, this research suggests that 

indoor surfaces are likely to be covered with polymeric aggregates. These can affect pollutant 

and water uptake at surfaces and influence the polarity and surface tension of indoor surfaces.  
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Table 1. Experiments 

# Experiment Gas 

Beads 

in 

reactor 

Purpose 

Samples 

gas beads 

1 air blank air only Yes 

air and 

beads 

background 

Yes Yes 

2 ozone blank air, ozone Yes 
ozone 

background 
Yes Yes 

3 α-terpineol blank air, α-Terpineol Yes 

check 

impurity of 

α-terpineol 

Yes Yes 

4 
Dihydromyrcenol 

blank 

air, 

dihydromyrcenol 
Yes 

check 

impurity in 

DHM,  

Yes Yes 

5 
ozone/α-terpineol  

control 

air, α-terpineol, 

ozone 
No 

gas phase 

reaction 

control 

Yes No 

6 
ozone/dihydromyrcenol 

control 

air, 

dihydromyrcenol, 

ozone 

No 

gas phase 

reaction 

control 

Yes No 

7 
ozone/α-terpineol  

surface reaction 

air, α-terpineol, 

ozone 
Yes 

surface 

reaction 
Yes Yes 

8 
Ozone/dihydromyrcenol 

surface reaction 

air, 

dihydromyrcenol, 

ozone 

Yes 
surface 

reaction 
Yes Yes 
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Figure 1. Aggregates found under SEM on glass slides exposed to α-terpineol (a, b, 

c) and dihydromyrcenol (d, e, f). 
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SECTION 

4. CONCLUSIONS 

The primary results of this work are presented in three manuscripts for publication in 

peer-reviewed journals. Conclusions from this work have been reported in each paper, 

respectively, and are reported here as they relate to the objectives. 

Objective 1: to develop a reliable analytical method to quantify ozone reactive 

terpenes, for single compound and also terpene mixtures, in the samples where ozone is 

present. 

This objective is met and the results are shown in paper I. The results can be concluded 

as following: 

1. Solid Phase Microextraction (SPME) sampling in a dynamic sampler is 

demonstrated to be an accurate analytical method which can minimize the interference from 

ozone reacting with the analytes, both for single terpenes sample and for terpene mixture 

sample. 

2. This method works even better when there are multiple reactive compounds in the 

sample, because reactive compounds can compete with each other for ozone and, potentially, 

improve recovery for individual compounds by spreading out reactive losses across all 

adsorbed species. 
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3. For the eight compounds studied in the presence of ozone, the MDL ranged from 1.6 

– 5.8 ppb for a 5 minute sampling time, and the presence of 30 or 100 ppb ozone does not affect 

the MDL significantly.  

Objective 2: to quantify the adsorption, surface reaction rates, and surface reaction 

probability of ozone with terpenes (α-terpineol and dihydromyrcenol) adsorbed on different 

indoor materials, under different relative humidity conditions. 

This objective is met and the results are shown in paper II and paper III. The conclusion 

can be summarized as following: 

1. Much more α-terpineol and dihydromyrcenol adsorbs to glass than to PVC or latex 

paint. The relative humidity affects adsorption on glass more than on PVC or paint. Adsorbed 

mass decreases as the relative humidity increases, potentially because of the competition for 

adsorption sites between water and terpene molecules. 

2. All of the surfaces, when loaded with α-terpineol or dihydromyrcenol, consume 

ozone at a higher rate than without terpenes. 

3. The quantified second-order surface reaction rate coefficients are not affected by the 

relative humidity. 

Objective 3: to compare the surface bound reaction probability with reported values of 

the gas-phase reaction probability; 

This objective is met and the results are shown in paper II and paper III. The conclusion 

can be summarized as following: 
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1. For both α-terpineol and dihydromyrcenol, all values of measured surface ozone 

reaction probability are greater than their gas phase ozone reaction probability, which are 

calculated based on reported gas phase bimolecular rate constant. 

Objective 4: to investigate to what extent the ozone surface reaction alters the 

concentration of indoor VOCs, ozone, and their reaction products, 

This objective is met and the results are shown in paper II and paper III. The conclusion 

can be summarized as following: 

1. By extrapolating the measured second-order surface reaction rate to indoor 

environments at typical conditions, for α-terpineol, the surface conversion occurs at rates that 

are ~ 1 – 5 times the gas phase reaction rate.  

2. By extrapolating the measured second-order surface reaction rate to indoor 

environments of typical conditions, for dihydromyrcenol, the surface conversion occurs at 

rates that are ~ 20 – 100 times the gas phase reaction. 

Objective 5: to identify some of the heterogeneous reaction products. 

This objective is met and the results are shown in paper IV. The conclusion can be 

summarized as following: 

1. In outlet gas samples, formaldehyde was the only identified product of surface 

ozone/dihydromyrcenol reaction, while no product was identified for surface 

ozone/α-terpineol reaction. 



135 

2. In surface extraction samples, 2-butanone, 2-pentanone, and glyoxal were identified 

as products of surface ozone/dihydromyrcenol reaction, while glyoxal and methylglyoxal were 

identified as products of surface ozone/α-terpineol reaction  

3. Aggregates of 0.5 to 10 µm in at least one dimension were formed on glass as the 

result of surface ozone reactions with both dihydromyrcenol and α-terpineol. 
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5. SIGNIFICANCE AND IMPACTS 

In the atmospheric chemistry field, most ozone surface chemistry studies have focused 

on the ozone reaction with self-assembled monolayers of vinyl-terminated carbon compounds 

on silicon or carbon substrates. These surfaces mimic atmospheric aerosols. Ozone reactions 

can affect the hydrophobicity of these particles and thus modify the potential of these particles 

to act as cloud and ice nuclei. These studies have mostly been performed under strictly 

controlled laboratory conditions. Ozone-surface chemistry is also of interest for indoor air 

quality studies, but the specific surfaces and compounds of interest are quite different. Few 

studies have investigated the role of surface chemistry on controlling the composition of indoor 

air. This research is the first to quantify the surface reaction kinetics of ozone and terpenes. The 

results allow us to qualitatively and quantitatively evaluate the relative importance of surface 

and gas-phase reactions. Methods developed in this research can be extended to quantify 

surface reaction kinetics of reactants other than those studied in this research (other terpenoids, 

other oxidants such as nitrogen oxides, etc.). Further, the results directly improve our 

understanding of aerosol chemistry, even in “ambient” air. The central result of this research, 

that heterogeneous terpenoid chemistry is as, or more, important than homogeneous chemistry, 

demonstrates that existing models of indoor air are missing this important mechanism. This 

appears to be especially important when the compounds involved are not very reactive in gas 

phase.  
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6. FUTURE RESEARCH 

In this work, two terpene alcohols and three indoor surface materials have been studied. 

To draw more comprehensive conclusions, a greater number of compounds, including alcohols, 

carboxylic acids and other organic compounds, of higher and lower volatility, should be 

evaluated, individually and in mixtures, on a wider variety of surface materials. Temperature 

effects on the ozone/terpene surface reaction kinetics also need to be investigated. 

To begin to understand this chemistry and extrapolate to the vast number of compounds 

present in buildings, the mechanism of the ozone terpene surface reaction should be studied at 

the molecular level. Certain surface chemistry analysis methods, such as Fourier Transform 

Infrared Spectrometry (FTIR), Sum-frequency Generation (SFG), ellipsometry, and so on, can 

be used to investigate the molecular orientation when species are adsorbed on surfaces and to 

track the reaction.  

The products of heterogeneous ozone-terpene reactions need to be studied more 

completely as well. The reactions produce reaction products that are unstable and therefore 

difficult to identify and quantify.
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The mass transfer of ozone to the beads surface was limited by the surface uptake rate 

(or reaction rate), not the mass transfer from gas phase to the beads surface. This can be 

verified by determining the Sherwood number in the PFR. The Sherwood number (Sh) is 

correlated with Reynolds number (Re) and Schmidt number (Sc), as expressed in Equation 

(A.1)(Wakao and Kagei 1982). 

tu � 2  1.1tKN(x:y.z (A.1) 

Reynolds number (Re) and Schmidt number (Sc) can be calculated by Equation (A.2) 

and (A.3). 

x: � 
 � {O| }  (A.2) 

tK � |

 { (A.3) 

where ρ is density of air (1.18×10-6 kg cm-3), µ is dynamic viscosity of air (1.983×10-7 kg cm-1 

s-1), v is superficial velocity (41.7 cm s-1), which equals to the flow rate divided by the 

cross-sectional area of the reactor, ε is porosity of packed bed (unitless), Dp is the diameter of 

spherical particles (cm), and D is the diffusivity of ozone in air, which is 0.14 cm2 s-1. 

The transport limited deposition velocity, vt, can be calculated from Sherwood number, 

by using Equation (A.4). 

�� � tu ~ {
{O  (A.4) 
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The deposition of ozone is a two-steps process, so that the deposition velocity, vd, could 

be either transport limited or reaction limited, as shown in Equation (A.5). 

�� � � 1
��  4

������ � � ��;N
 (A.5) 

If 
N

01

  >>  4

�HIHGJ���
 , the ozone deposition on surface is transport limited, and if 

N

01

  <<  

4

�HIHGJ���
 , then it is reaction limited process.  

The values of these parameters and the calculated dimensionless numbers are shown in 

Table A.1. The Sherwood numbers showed that under the operation conditions, the mass 

transfer by convection is at least 15 times high as the mass transfer diffusion. The Sherwood 

number is sufficiently large, and the dominant resistance is the surface uptake by reaction. The 

values of  
N

01

 are in the range of (4.1 - 6.6) ×10-2 s cm-1. The experiment data showed that the 

total reaction probability of terpene loaded surface,�
HIHGJ

, is no more than 10-5, which means 

that the minimum of 
�

�1�1���0�
 is no less than 11 s cm-1. Based on aforementioned criteria, 

conclusion can be drawn that the ozone mass transfer in PFR at operation conditions is a 

reaction limited process. 

Table A.1 Parameters and dimensionless numbers of PFR at operation conditions 

 DP ε Re Sc Sh vt 

 cm - - - - cm/s 

PVC 0.16 0.40 100 1.20 20.45 17.89 

Glass 0.09 0.37 61 1.20 15.69 24.41 

Painted 0.23 0.40 143 1.20 24.94 15.18 
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For bare surface, the background ozone reaction probability is calculated from the inlet 

and outlet ozone concentration, by using Equation (B.1). 

�!��"����*� � 4%,�=�����W +����� 
+!=��� � � � #�JE &���&)* $ (B.1) 

where Q is flow rate through PFR (cm3s-1), Vreactor is the volume of PFR (cm3), L is length of 

PFR (cm), Across is the cross-sectional area of PFR (cm2), ρ is the porosity of packed bed 

(unitless), <v>  is the Boltzmann velocity, which is 3.60×104 cm s-1 for ozone at 293k.  

The surface ozone terpene reaction probability is calculated by Equation (B.2) to (B.4). 

��=�O � ������ � �!��"����*�#1 � ��=�O $��=�O � ������� � �!��"����*���=�O �  �!��"����*� (B.2) 

Q&'(Q� � � ������#�$ � � �
4L

+���C��=,�=����� &'(#�$ (B.3) 

Q&mnoQ� � � ������#�$ � � �
4L

+���C��=,�=����� &'(#�$ (B.4) 

For a specific kind of bead, the BET surface area can be expressed is proportional to 

their geometrical surface, which as shown in Equation (B.5). 

+���C��=95� � K+���C��= (B.5) 

where c is a constant, estimated to be in the range from 1.5 to 10 for PVC, glass, and painted 

beads.  

So, when BET surface area was used in the calculation of reaction probability, the new 

results can be expressed as: 
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�!��"����*�95� � 1
K �!��"����*� (B.6) 

������95� � 1
K ������ (B.7) 

��=�O95� � 1
K ��=�O (B.8) 

So we can get: 

��=�O95� � ������95� � �!��"����*�95� #1 � ��=�O95�$
��=�O95� �

1K ������ � 1K �!��"����*�#1 � 1K ��=�O $
1K ��=�O

� ������� � �!��"����*���=�O �  1
K �!��"����*� 

(B.9) 

If we compare Equation (B.9) to Equation (B.2), we will see that the ��=�O95�will be very 

close to ��=�O, because the �!��"����*� (in the order of 10-7) is very small compared to the 

������, which is in the order of 10-5. This is why the ozone terpene reaction probability results 

would be almost the same not matter if BET surface area or geometric surface area was used in 

the calculation. 
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1. INTRODUCTION 

Included with this dissertation is a CD-ROM, which contains the MATLAB CODES 

(.m files) to numerically solve the plug flow reactor models, in order to calculate the 

second-order surface reaction rate coefficients and the surface ozone-terpene reaction 

probabilities. All the MATLAB CODES have been developed using MATLAB R2008a. 

 

2. CONTENTS 

DHMProbabilityCalGlass.m 

DHMProbabilityCalPVC.m 

DHMrateCalGlass.m 

DHMrateCalPVC.m 

TerpProbabilityCalGlass.m 

TerpProbabilityCalPVC.m 

TerprateCalGlass.m 

TerprateCalPVC.m 
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