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ABSTRACT 

 

The effect of torsional loads could be significant along with axial and flexural 

loads on bridge columns during earthquake excitations. The present study presents the 

torsional behavior of hollow-core steel-concrete-steel columns (HC-SCS) and hollow-

core fiber reinforced polymer-concrete-steel columns (HC-FCS). The HC-SCS comprises 

of sandwiched concrete shell between two steel tubes whereas in HC-FCS column, the 

outer steel tube of HC-SCS column was replaced by the FRP tube. Both columns have 

stay-in place permanent form-work to the concrete shell in the form of outer and inner 

tubes. The steel tubes serve as longitudinal and shear reinforcement to the column. Finite 

element models of HC-SCS columns were developed using LS-Dyna and the analysis 

results were validated with an average error of 4.8% against the experimental results in 

predicting the HC-SCS column’s torsional capacity. An extensive parametric study was 

conducted with seven parameters to better understand the column’s torsional behavior. A 

simplified analytical model was developed to predict the column’s torsional capacity with 

an accuracy of 90%. A large-scale HC-FCS column was constructed and tested under 

constant axial load and cyclic torsion loading. The column outer diameter was 24 inch 

with an aspect ratio of 4. The FRP tube was placed on the surface of the footing while the 

steel tube was embedded into the footing to a length of 1.8 times the diameter of the steel 

tube. The experimental investigation revealed that the torsional capacity of the HC-FCS 

column significantly depends on the friction exerted between the steel tube and concrete 

shell and concrete footing. Furthermore, the HC-FCS column had undergone higher 

rotational drift compared to the corresponding reinforced concrete column. 
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1. INTRODUCTION 

 

1.1. BACKGROUND 

A significant amount of research has focused on developing seismic resistant 

structures and accelerating construction in a cost-effective manner that reduces on-site 

construction time, improves work-zone safety, and reduces traffic disruptions. Pre-

fabricated bridge systems and bridge moment technique have recently been used to 

achieve accelerated construction in bridges.  

The current research presents innovative hollow-core composite columns namely 

Hollow-Core Steel-Concrete-Steel (HC-SCS) (Figure. 1.1a) and Hollow-Core Fiber 

Reinforced Polymer-Concrete-Steel (HC-FCS) (Figure. 1.1b). The HC-SCS column 

consists of sandwiched concrete shell between the two steel tubes. However for the HC-

FCS column, outer steel tube was replaced by the FRP tube. Both columns have 

numerous advantages over conventional reinforced concrete columns. The new columns 

were lighter in weight due to reduction in amount of concrete core around 60% to 75%. 

The HC-SCS and HC-FCS columns generate ease in pre-cast construction which 

accelerates construction. No additional reinforcements were provided to the columns. 

Steel tube acts as both longitudinal and transverse reinforcement to the column. Both the 

inner and outer tubes act as permanent form-work and provide confinement to the 

concrete. The concrete shell was continuously protected from hast environments due the 

presence of the outer tube. The inner steel tube was protected from corrosion by the 

concrete shell and outer tube in both HC-SCS and HC-FCS column. The current research 

investigates the torsion behavior of HC-SCS and HC-FCS column. 
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(a) (b) 

Figure 1.1. Cross-section (a) HC-SCS column, (b) HC-FCS column 

 

 

 

1.2. OBJECTIVES 

This research study was conducted in an attempt to understand the behavior of 

HC-SCS and HC-FCS columns under pure torsion loads. The research on pure torsional 

behavior of HC-SCS column was limited. Moreover, no previous research was focused 

on pure torsional behavior of HC-FCS column. The research was divided into two parts.  

For the first part, FE models will be developed for HC-SCS column using LS-

Dyna and simulated under pure torsion loading. The behavior of FE results will be 

validated with the experimental results of Huang et al. 2013. Parametric analysis will be 

performed to better understand the influence of each parameter affecting the HC-SCS 

column’s torsion behavior. Simplified equations will be developed to predict the columns 

torque capacity. 

For the second part, a large scale HC-FCS column was to be constructed and 

investigated under constant axial load and cyclic pure torsional load. The design criteria 

and experimental detailing will be proposed. The surface interactions between the steel 

tube, concrete shell, and FRP tube will be studied. 

Steel tube

Steel tube

Concrete shell

Steel tube

FRP tube

Concrete shell
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1.3. THESIS ORGANIZATION 

This thesis was organized into three sections. In section 1, the background of 

composite columns and previous studies were discussed. It also includes the objective of 

the thesis. 

 In section 2, a journal paper on torsion behavior of hollow-core steel-concrete-

steel (HC-SCS) columns was discussed. A FE model was developed using LS-Dyna and 

simulated under torsion loads. The FE results were validated with the experimental 

results of Huang et al. (2013). Parametric analysis was performed by varying strengths of 

steel tubes and concrete shell, diameter-to-thickness ratio of the steel tubes, concrete shell 

thickness, and aspect ratio of the column to better understand the torsion behavior of the 

HC-SCS column. A simplified equation was proposed to predict the column’s torque 

capacity. 

 In section 3, a journal paper on the torsion behavior of hollow-core FRP-concrete-

steel (HC-FCS) column was discussed. The column description and design criteria were 

discussed. The test setup and loading criteria were discussed. The experimental results 

were detailed and the comparison was made with the conventional reinforced concrete 

column in terms of ductility. 
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2. LITERATURE REVIEW 

 

2.1. CONCRETE-FILLED TUBE COLUMNS 

The transformation of the reinforced concrete column to a composite column 

starts with concrete-filled tubes. The concrete-filled tubes consisted of concrete encased 

either in a steel tube or a FRP tube. However, the weight of the structure was not 

decreased compared to the reinforced concrete columns, but the reinforcement detailing 

was minimized. 

2.1.1. Concrete-Filled Steel Tubes. The transformation of reinforced concrete 

columns to composite columns starts with concrete-filled steel tubes. The steel tube acts 

as a permanent formwork and provides longitudinal and transverse reinforcement to the 

column. The column’s cross-section shape depends on the applied loads and aesthetics. 

The circular sections perform better than square section under seismic loads. The 

confinement provided by the circular section is better than the square section (Xiao and 

Zhang (2008)). The columns have been widely used in high-raised structures and multi-

storey buildings. 

The steel tube buckling behavior was either avoided or delayed due to the lateral 

stability provided by the concrete core. The spalling of the concrete core was avoided and 

performance was enhanced due to the confinement provided by the steel tube. In 

concrete-filled steel tubes, the concrete core performs better under axial loads while the 

steel tube performs better under bending loads. The combination of a steel tube and 

concrete core enhances the strength and ductility of the column. The concrete-filled steel 

tubular column exhibits poor fire resistance and corrosion resistance.  
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2.1.2. Concrete-Filled FRP Tubes. The corrosion of the steel reinforcement in 

reinforced concrete columns and the steel tube in concrete-filled steel tube was the main 

reason for the weakening of the columns. An alternate of using fiber reinforced polymer 

(FRP) in place of steel had gained importance. A new column concrete-filled FRP tube 

(Mirmiran and Shahawy (1996)) had gained importance. The proximity of fiber direction 

close to the hoop direction enhanced the confinement to the concrete core, especially 

under axial loadings. The improved confinement enhanced the strength and ductility of 

the column. Thus the combination of two brittle members (FRP, steel) provides a ductile 

member. The use of fiber in place of steel decreases the weight of the column. 

Several researchers (Mirmiran and Shahawy 1996; Zhang et al. 2000; Rousakis 

2001; Fam and Rizkalla 2001; Lam and Teng 2004; Xiao 2004; Shao et al. 2006; 

Ozbakkaloglu and Oehlers 2008; Yu and Teng 2010; Abbasnia et al. 2013; Bai et al. 

2013) had investigated the static and cyclic behavior of the concrete-filled FRP tube 

under axial and/or bending loads. The studies show the significant improvement in the 

concrete core’s confinement and the increase in strength and ductility. 

 

2.2. HOLLOW-CORE COLUMNS 

The lateral stiffness was the governing factor in designing bridge columns in 

seismic regions. The core of the column doesn’t govern in the lateral stiffness. The 

hollow-core columns possess several benefits over solid columns. The inertial forces 

produced during seismic excitations are reduced by decreasing the self-weight of the 

column. The required amount of longitudinal reinforcement can be significantly 

decreased for hollow-core column. The investigation of hollow-core reinforced columns 
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starts with the two layers of longitudinal and transverse reinforcement located at in and 

out faces of the column with cross ties placed in the concrete shell thickness (Mander et 

al. 1983). Zahn et al. (1990) investigated the seismic behavior of hollow-core reinforced 

concrete column with one layer of longitudinal and transverse reinforcement located near 

the outer face of the column. The investigation revealed that the ductility levels are 

relatively low compared to two layers of reinforcement.  

2.2.1. Hollow-Core Steel-Concrete-Steel Columns. Montage et al. (1978) 

developed a hollow-core composite column by using concrete shell and steel tube. The 

HC-SCS consists of concrete shell sandwiched between the two steel tubes. The HC-SCS 

columns possess excellent benefits over concrete filled tubular columns. The HC-SCS 

columns were lighter in weight, high stability in local buckling and good cyclic 

performance.  

Several researchers (Wei et al. 1995; Lin and Tsai 2002; Zhao et al. 2002; Tao et 

al. 2004; Tao and Han 2006; Zhao and Han 2006; Lu et al. 2010; Dong et al. 2012; 

Hassanein et al. 2013; Li et al. 2014) had investigated the HC-SCS columns under 

static/cyclic axial and/or bending loads. Under static loadings, the behavior of outer steel 

tube in HC-SCS was similar to the steel tube in concrete-filled steel tube. The large 

increase in ductility and energy absorption was observed in HC-SCS columns compared 

to concrete-filled steel tubes. The difference in Poisson’s ratio of steel and concrete had 

significantly influenced the structural behavior of the HC-SCS column under axial 

loading. The influence of inner steel tube on the column behavior increases with the 

diameter of the steel tube. The confined concrete had same behavior in HC-SCS and 

concrete-filled steel tubes if the ratio of diameter of inner steel tube to concrete shell 
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outer diameter does not exceed 0.8. No slip was observed between steel tubes and 

concrete shell. 

The HC-SCS columns under contact axial load and cyclic flexure load showed 

significant increase in strength, ductility, and energy dissipation. The investigator 

reported that the outer steel tube with circular shape exhibits good ductility and energy 

dissipation compared to square shape. The design equations proposed by Han et al. 

(2009) to calculation of HC-SCS columns flexural capacity were good in correlation with 

the experimental results. The deformation of HC-SCS was relatively faster that concrete-

filled steel tubes for a certain time under long-term loading. The ultimate strength of the 

HC-SCS column decreases with the long term loading and effects were similar to 

concrete-filled steel tubes. 

2.2.2. Hollow-Core FRP-Concrete-Steel Columns. The outer steel tube of HC-

SCS column was replaced by FRP tube known as HC-FCS proposed by Teng et al. 2004. 

The inner steel tube was may be located concentrically center for columns or at an 

eccentricity (e) for the beams (Figure. 2.1). The corrosive resistance was improved by 

using FRP in place of steel since; the inner steel tube was protected by the FRP tube and 

concrete shell. Due to excellent corrosion resistance, the HC-FCS columns were suitable 

for costal and marine structures which were likely to be exposed under harsh 

environment. The hoop direction of fiber endeavors the shear capacity of the column and 

increases the strength and ductility. 
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Figure 2.1. Column Cross-section with Different Shape and Eccentricity 

 

 

 

Yu et al. (2007), (2010), (2012); Teng et al. (2007); Qian and Liu (2008); Zhang 

et al. (2011); Ozabakkaloglu et al. (2013); and Abdelkarim and ElGawady (2014a) have 

studied the behavior of small scale HC-FCS column under monotonic/cyclic axial loads. 

The investigations revealed that the confinement to the concrete core was improved by 

the FRP tube and steel tube. The local buckling of steel tube was delayed or avoided by 

lateral stability provided by the concrete core. The presence of inner steel tube with void 

decreases the beneficiaries of the outer FRP tube however the loss in confinement to the 

concrete core from outer FRP tube was compensated by the inner steel tube. Xie et al. 

2011 experimentally investigated the large scale HC-FCS columns under monotonic axial 

loads and confirmed the ductile response of the column. The investigations also revealed 

Steel tube Steel tube

Steel tube

e

Steel tube

e

Steel tube

e
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that the concrete shell with outer FRP tube as circular section was better confined than 

the square section. 

Qian and Liu (2008), Han et al. (2010), and Ozabakkaloglu and Idris (2014) had 

investigated the flexural behavior of HC-FCS columns along with constant axial load. 

The investigations revealed that the fiber orientation in hoop direction possess high 

strength compared to the multi-direction. The HC-FCS columns with high strength 

concrete possess good ductility and seismic response. The increase in FRP layers 

increases the moment capacity and ductility of the column. The plastic hinge of the 

column was located at the end of the column within the diameter range of the column. 

The influence of axial load level has significant effect on the moment capacity and 

ductility of the column. Addelkarim and ElGawady (2014b) developed a Finite Element 

model that was in good correlation with the experimental results. Recently Abdelkarim et 

al. 2015 tested a large scale under constant axial load with cyclic lateral load and 

concluded the HC-FCS column possess high stiffness and undergo high lateral drift 

compared to the reinforced concrete columns. 

2.2.3. Torsion Significance in Columns and Previous Studies on Composite 

Columns. During seismic excitations, the bridge columns undergo significant torsion 

loads along with axial and flexure loads (Figure 2.2). The torsion loads would be 

significant in skewed or curved bridges, bridges with unequal spans, bridges with 

outrigger beams, and spandrel beams. In skewed bridges, the collision between bridge 

deck and abutment cause in-plane rotation of the structure resulting in torsion loads 

(Tirasit and Kawashima (2005)). The bridges with outrigger bends may undergo torsion 

loads due to eccentricity of load action. The topography conditions and soil conditions 
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result in unavoidable construction of such bridges. There is no practical existence of pure 

torsion loads on the structures. However, the study on pure torsion helps to better 

understand the column under combined loads including torsion. The detailed 

investigation of pure torsion studies on composite columns were explained below. 

Beck et al. 2003 was first to experimentally investigate the pure torsional 

behavior of concrete-filled steel tubes. The investigation includes a total of eight columns 

including concrete column, steel columns, and concrete-filled steel tubes. The post peak 

response of concrete-filled steel tubes exhibited good ductility and twist compared to 

steel columns. The concrete column failed abruptly soon it reaches the capacity. The steel 

columns failed due to local buckling whereas it was avoided in the concrete-filled steel 

tubes. The crack pattern on the concrete shows 45° with the longitudinal axis. A finite 

element model was developed using SOLVIA to understand the torsion behavior. A 

theoretical model was developed with simple equations and predicted the column’s 

ultimate torque. 

Han et al. 2007 developed a FE model to investigate the torsion behavior of 

concrete-filled steel tubes with different cross-sections (circular, square). The 

investigation revealed the confinement to the concrete core was better provided from 

circular steel tube than the square steel tube. The concrete core plays an important role in 

the torsional resistance to the column by providing lateral stability to the steel tubes. The 

FE model simulations were good in correlation with the experimental results of Beck et 

al. 2003. The theoretical model developed predicted columns ultimate torque with greater 

accuracy. 
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Figure 2.2. Torsion Failure on Columns 

 

 

 

Lee et al. 2009 developed a constitutive equation to predict the torsion behavior of 

the concrete-filled steel tube with confinement effect. The steel tube after yielding 

exhibited significant plastic deformation without strength deterioration because local 

bucking of steel tube was avoided by concrete core. The concrete core starts to crack at 

45° after the shear strength of concrete reaches its ultimate tensile strength.   

Several researchers (Lee et al. 1991; Xu et al. 1991; Nie et al. 2012) investigated 

the torsional behavior of concrete-filled steel tubes under static/cyclic combined loads. 

The test results from Lee et al. (1991) revealed the torsional resistance of the concrete-

filled steel tubes increases with the applied axial load. However, in contrast, Xu et al. 

(1991) test results reported that the torsional resistance decreases with the applied axial 

Foothills Freeway Overpass, San 

Fernando Earthquake, USA, 

1971 
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load. The researcher also reported that the column height with 20 times the column 

diameter undergoes higher twist compared to column height with 7 times diameter of the 

column. The FE models developed by Han et al. (2007) good behavior with the 

experimental results of Lee et al. 1991, Xu et al. (1991) and lead to development of 

design equations to predict the columns ultimate torque. Nie et al 2012, 2013 studied the 

cyclic torsion behavior of concrete-filled steel tubes under combined loadings. The 

investigator reported that the column’s ultimate torque increases with low axial 

compression and decreases with high axial compression. The stiffness degradation was 

gradual and exhibited good ductility. 

Huang et al. 2013 was first to experimentally investigate the pure torsional 

behavior of HC-SCS columns. The investigation includes a total of 12 columns with 

outer steel tube in circular and square shape. The infill of concrete shell between the steel 

tubes endeavors 20% of the column’s ultimate torque. The increase in column’s ultimate 

torque with infill of concrete shell was higher for circular section than square section. 

The rotational twist of the circular sections was higher than the square sections. No 

sliding occurred between the concrete shell and the steel tubes. The cracks were occurred 

at 45° at the middle height of the concrete shell. Design equations were proposed based 

on the FE model results to predict the column’s ultimate torque. Both the FE and 

designed equation results were good in correlation with the experimental results. 
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I. BEHAVIOR OF HOLLOW-CORE STEEL-CONCRETE-STEEL 

COLUMNS SUBJECTED TO TORSION LOADING 

Sujith Anumolu1, S.M. ASCE; Omar I. Abdelkarim2, S.M. ASCE; Mohamed A. 

ElGawady3§, PhD, M. ASCE 

 

Abstract 

This paper presents the torsional behavior of hollow-core steel-concrete-steel (HC-SCS) 

columns using finite element (FE) and analytical approaches. HC-SCS column consists of 

a concrete shell sandwiched between two steel tubes. Ls-Dyna software was used to 

develop a three-dimensional HC-SCS model and simulated under torsional loading. FE 

results were validated against the experimental results collected from six HC-SCS 

columns tested under pure torsion. The average error from FE analysis was 4.8% 

compared to experimental results, when predicting the column’s torsion strength. The 

study revealed that the interaction between the steel tube’s stiffness and concrete shell’s 

thickness controls the behavior of the column. A parametric study was conducted for 

further analysis of each parameter that was affecting the column’s torsion behavior. The 

parametric analysis concluded the torsional behavior of the column mainly depends on 

the outer steel tube’s properties and thickness of the concrete shell. A simplified equation 

was developed to predict the torsion strength of the member using direct method of stress 
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analysis. The proposed equation predicted the members’ torsional strength with accuracy 

more than 90%. 

 

Introduction 

Researchers have recently focused on developing new cost-effective design and 

construction methods for accelerating bridge construction (ABC) which leads to 

improved site constructability and work zone safety as well as reduction in traffic 

disruptions and life-cycle costs (Dawood et al. 2012; Abdelkarim et al. 2015a). One 

approach to accelerate bridge columns and shafts construction, while obtaining higher 

seismic performance is to use concrete-filled steel tubular (CFST) columns in which 

concrete core is encased in steel tube.  

CFST members possess several benefits over reinforced concrete (RC) or steel 

members. The steel tube in CFST acts as stay-in-place formwork, longitudinal and shear 

reinforcements to the member, and continuous confinement to the concrete core. 

Furthermore, the concrete core in CFST acts as bracing to the steel tube providing lateral 

stability which delays steel tube local buckling. Hence, CFST displayed superior 

performance under earthquake ground motions (Bi et al. 2013).    

A typical bridge column would sustain 5% to 10% of its ultimate axial load capacity 

due to service axial loads (Mondal and Prakash 2015a). Design of bridge columns in 

seismic regions are typically controlled by bridge lateral stiffness demand. Hence, 

researchers developed hollow-core CFST system. The system consisted of an inner steel 

tube and outer steel tube and concrete filled between the two tubes (Wei et al. 1995; Lin 

and Tsai 2001; Zhao et al. 2002; Tao and Han 2006). The main advantage of hollow-core 
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steel-concrete-steel (HC-SCS) columns is the high strength to weight ratio compared to 

columns having solid cross sections. Lighter weight is crucial for precast construction to 

reduce freight cost. Furthermore, reducing the columns weight will reduce the seismic 

inertial forces in the case of long columns. 

A number of investigators recently studied the behavior of HC-SCS columns under 

different type of loading conditions (Yagishita et al. 2000; Zhao et al. 2010; Elchalakani 

et al. 2002; Tao et al. 2004; Han et al. 2006; Lu et al. 2010; Dong and Ho 2012; 

Hassanein et al. 2013; Li et al. 2014). Most of the studies were limited to axial and 

flexural loadings with different cross-sections. These studies depicted that the action of 

confinement was active after the concrete shell cracks and dilates. In addition, they 

reported that the buckling of the steel tubes was significantly delayed due to the lateral 

support from concrete. Also, they found that the influence of concrete shell thickness on 

the ductility of the column was small.  

Bridge columns are subjected to torsional loads in curved and skewed bridges during 

the earthquakes. Typically, torsion exists in a combination with axial and flexural loads. 

However, since torsional behavior is complicated, most of researchers investigated the 

performance of bridge columns under pure torsional loads to better understand columns 

behavior (Beck and Kiyomiya 1996; Han et al. 2007; Lee et al. 2009; Nie et al. 2012; 

Huang et al. 2013). Other researchers investigated the behavior of bridge columns under 

combined torsional, flexural, and/or axial loads (Lee et al. 1991; Xu et al. 1991; Belarbi 

et al. 2008; Prakash and Belarbi 2009; Mullapudi and Ayoub 2012; Ruili et al. 2014; 

Mondal and Prakash 2015a,b). Most of these torsional studies were on conventional 

reinforced concrete columns or CFSTs. However, very few researches were conducted to 
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study the torsional behavior of HC-SCS columns. Under pure torsion, the RC columns 

failed due to spalling of concrete and rupture of transverse reinforcement at the middle 

height of the column. However, the concrete spalling was avoided due to confinement of 

steel tubes in HC-SCS columns. The confinement of steel tubes endeavors the torsional 

load carried by the concrete shell.  

Huang et al. (2013) was the first to experimentally investigate the pure torsional 

behavior of HC-SCS columns. The investigation of HC-SCS columns has shown 

significant strength, ductility, and energy absorption. The investigation revealed the 

presence of concrete shell enhanced 20% of the column’s torsion capacity. The 

researchers reported that the concrete shell cracks at 45 º to the axis and maintained its 

shape. The concrete shell was well bonded with the outer steel tube as no sliding was 

observed.  They reported that the outer steel tube’s strength and thickness were important 

parameters affecting the torsion behavior..  

This study investigates the torsional behavior of HC-SCS columns using 3D finite 

element (FE) analysis. The FE models were validated with experimental results of six 

HC-SCS columns recently tested by Huang et al. (2013). The validated FE models were 

used to analyze and better understand the behavior of HC-SCS columns under pure 

torsion. An extensive parametric study was conducted to investigate important 

parameters affect the torsional behavior of the HC-SCS columns. The parametric study 

included wider ranges of diameter-to-thickness ratios of both steel tubes, yield strength of 

the outer and inner steel tubes, the cylindrical unconfined compressive strength of the 

concrete (𝑓𝑐
′), existence of concrete shell or inner steel tube, height-to-diameter ratio of 



   17 

 

 

the column, and concrete shell thickness. Furthermore, this paper proposes simple design 

equations to calculate the torsional strength of HC-SCS column.   

 

FE Modeling  

Geometry 

A total of six columns, namely CO111, CO112, CO211, CO212, CO311, and CO312 

were tested by Huang et al. (2013). Each column had a height (H) of 550 mm (21.6 in.) 

and an outer steel tube’s diameter (D) of 165 mm (6.5 in.) (Figs. 1 and 2). The thickness 

of the outer steel tube (to) varied from 3.0 mm to 4.6 mm (0.12 in. to 0.18 in). The inner 

steel tube’s diameter (d) was either 42 mm (1.7 in.) or 75 mm (2.9 in.) with thickness (ti) 

varied from 3.0 mm to 5.0 mm (0.12 in. to 0.20 in.). Hence, the concrete shell thickness 

ranged from 40.4 mm to 58.5 mm (1.60 in. to 2.30 in.). Two steel plates having 

dimensions of 235 mm x 235 mm x 25 mm (9.25 in. x 9.25 in. x 0.98 in.) were attached 

to the column’s top and bottom surfaces. The bottom steel plate of each column was fixed 

to the column from one side and to the ground from the other side. The top plate was 

connected to the column from one surface and to a loading plate from the other surface. 

The loading plate was 94 mm x 324 mm x 25 mm (3.7 in. x 12.76 in. x 0.98 in.; Fig. 1). 

Hence, the specimens examined in this study were tested as cantilever columns under 

pure torsion with fixation of columns to their footings. All of the columns were 

symmetric around the X and Y axes and the rotational displacement was applied using 

the loading plate around the Z-axis. Table 1 summarizes the columns’ variables.  

A sensitivity analysis was performed to identify the elements’ dimensions that result 

in a good balance between accuracy of the solution and solution time. Each column’s 
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concrete core, steel top and bottom plates, and loading plate were modeled using 8-node 

brick solid elements. The concrete element’s size had an average size of 8.75 mm x 15 

mm x 10 mm (0.3 in. x 0.6 in. x 0.4 in.). The element’s size of steel plates and loading 

plate had an average size of 23.5 mm x 23.5 mm x 12.5 mm (0.9 in. x 0.9 in. x 0.5 in.). 

Steel tubes were simulated using 4-node shell elements. A typical element’s size of the 

outer steel tube was 21.6 mm x 10 mm (0.8 in. x 0.4 in.). The typical element’s size of an 

inner steel tube was 7.8 mm x 10 mm (0.3 in. x 0.4 in.). Each FE model had 11,072 

elements and 13,047 nodes. 

To reduce the analysis time, all the solid elements of the column were modelled with 

constant stress and one-point quadrature integration. An Hourglass control was used to 

avoid spurious singular modes of the elements. The hourglass value for all of the models 

was considered as the default value of 0.10 (Abdelkarim and ElGawady 2014(b)). 

 

Material Models 

Concrete 

Various material models are available in Ls-Dyna to simulate the concrete material. The 

Karagozian and Case Concrete Damage Model Release 3 (K&C model) was used in the 

current study since it was used by several researchers for similar applications and resulted 

in good predictions of the performance of the investigated elements (e.g. Abdelkarim and 

ElGawady 2014b and 2015b, Ryu et al. 2014, Youssf et al. 2014). The model is built on 

the theory of plasticity with three shear failure surfaces: yield, maximum, and residual 

(Malvar et al. 1997).  

 The concrete cylindrical compressive strength 𝑓𝑐
′ was 42 MPa (6,090 psi) for all of 

the columns. In K&C model, the yield and failure surfaces’ parameters are automatically 
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generated with the input of 𝑓𝑐
′. A default value of 0.5 was used for fractional dilation 

parameter (ω) that considers the volumetric change in concrete. The compressive 

behavior of the concrete shell under tri-axial stresses was controlled by equation of state 

(EOS) that was automatically generated using the Eq. (1) (Noble et al. 2005, Crawford 

and Malvar 2006). The tri-axial stress state for the concrete shell was achieved only at the 

contact surfaces between the concrete shell and steel tube. The micro cracking of the 

concrete shell was delayed due to the confinement provided from the steel tubes 

K =
E𝑐

3(1 − 2υ)
 (1) 

where υ  is Poisson’s ratio,  and  Ec is the elastic modulus, taken as 0.2 and 57000 √𝑓𝑐
′ 

(ACI-318 (2014)) in this study,  respectively. 

Under the axial tension, the concrete cracks were distributed throughout the height of 

the HC-SCS column rather than brittle failure for a plain concrete at the middle height of 

the column. Moreover, the crack with in the HC-SCS column was limited due to the bond 

stress developed between the steel tubes and the concrete shell (Lee et al. 2014). 

Steel Tube 

An elasto-plastic material model “003-plastic_kinematic” was used to describe the steel 

tube’s stress-strain curve. The main parameters that were needed to describe this material 

model are the yield stress (fy), elastic modulus (E), and Poisson’s ratio (). For all of the 

models in this manuscript, fy varied from 260 MPa (37,710 psi) to 365.4 MPa (52,997 

psi), E was taken as 200 GPa (29,000, ksi),  was taken 0.3. The steel tubes ultimate 

strain was considered as 0.04 (Abdelkarim and ElGawady 2014a). Once a steel element 

ruptured either in shear or axial tension, it was removed from the model using erosion 
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feature in Ls-Dyna to ensure the mode of failure. Under torsion loadings shear forces 

were exerted. The shear forces were in diagonal direction and resolved into resultant 

force in horizontal and vertical direction. The vertical force induces axial tension in the 

column. So add erosion parameter was studied to ensure the failure mode. 

Steel Plates and Loading Plate 

During the experimental work, no damage was observed in any of the top, bottom, and 

loading plates; hence, all three plates were models using linear elastic material model. 

This material model was defined using a value of 200 GPa (29,000 ksi) for the steel 

elastic modulus (E) and 0.3 for the Poisson’s ratio.  

 

Concrete-Steel Interfaces 

The steel tube and concrete shell surfaces are interfaced by surface-to-surface contact 

element simulation which allows slip and separation between the two materials. The 

friction coefficient between the steel tubes and the concrete shell was considered as 0.6 

(Rabbat and Russel 1985; Abdelkarim and ElGawady 2014b).  The steel tubes were fixed 

to the top and bottom steel plates during the experimental work. Hence, tied node-to-

surface contact elements were used to bond the top and bottom steel plates to the 

column’s top and bottom surfaces to simulate the full fixation during the experimental 

work. For the same reason, the loading plate was fully contacted to the top surface of the 

top steel plate using tied surface-to-surface contact elements. The concrete shell and steel 

plates were contacted by node-to-surface contact. Based on the sensitive analysis and 

from the previous studies, the friction coefficient of 0.6 (Abdelkarim and ElGawady 

2014b) was assumed between the contacts. Since the concrete was enclosed between two 
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steel tubes which resist the loss of moisture from the concrete. The shrinkage affects were 

minimal and can be neglected. 

 

Loading and Boundary Conditions  

The displacements and rotations degrees of freedom were restrained at the bottom of the 

steel plate to simulate fixation similar to what was used during the experimental work. 

The top of the loading plate was directionally restrained in the Z-direction to simulate the 

restraint from the hydraulic jacks used during the experiment. During the experimental 

work, the torque was applied through applied at two equal magnitude displacements in 

opposite directions at the ends of the top loading plate with an arm length of 278 mm (2.3 

in.) as shown in Fig.1. The torque was applied to the column until the jack reached its 

maximum travel stroke. The experimental work was truncated before the failure of the 

columns due to limit in rotational limit of the jacks. Similar loading procedure was used 

during the finite element. However, the columns in FE were subjected to the torque until 

the columns failed in the form of either steel tube rupture or concrete shell failure. 

 

Results and Discussion 

Huang et al. (2013) defined the torque corresponding to a maximum shear strain in the 

outer steel tube of 0.01 (os,0.01) as the torsional strength (TFE, 0.01) of the investigated 

columns. Beyond that shear strain, the increase in the torsion moment is quite small and 

can be ignored for practical applications (Huang et al. 2013). Table 2 summarizes the 

experimental torsional strength (Tue) reported by Huang et al. (2013). The torsion 

strength obtained using the FE at os,0.01 (TFE, 0.01) is also presented in Table 2. 
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Furthermore, Fig. 3 shows the torque - twist relation of all of the columns for the 

experimental and FE results. The twist was calculated at the top of the column. 

As shown in the table and figure the values of Tue and TFE,0.01 were in a good 

agreement with the FE. The FE over-predicted the strength of four columns while under-

predicted the strength of two columns. The error values ranged from 1.3% to 10.2% 

where the error values were calculated as the absolute value of the difference between the 

experimental and the FE results divided by the experimental results. Furthermore, the 

model was able to predict the twist at os,0.01 in within an average error of 10%.



General Behavior of the Columns 

As shown in Fig. 3, all the columns behaved very similar with elasto-plastic behavior. 

This section will detailed the performance of column CO111 and then briefly report the 

results of the other columns. Before yielding of the outer steel tube which occurred at a 

twist of approximately 1º, the relationship between the torque and twist displayed slight 

gradual stiffness degradation and the relationship can be considered approximately linear. 

The stiffness degradation occurred when some of the concrete shell elements went 

beyond their ultimate tensile capacity leading to gradual stiffness degradation in the 

models.  

Typical shear stress - shear strain relation of two concrete elements at the middle 

height section where failure occurred is shown in Fig. 4. The diagonal cracks occurred in 

the concrete shell induces compressive strain on the concrete elements along the crack 

and the surrounding region experiences tensile strains. In the Fig. 4, one of the concrete 

elements was subjected to tensile strains and the other concrete element was subjected to 

compressive strains. As shown in the Fig.4 once the outer steel tube yielded, more shear 
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strain demand imposed on the concrete shell leading to excessive principle tensile 

stresses. Beyond shear strain value of 0.002 corresponding to a twist of 0.75° the concrete 

element reached to zero stiffness.  

Column CO111 reached TFE,0.01 of 26.0 kN.m (19.2 kip.ft.) during the FE analysis and 

24.6 kN.m (18.1 kip.ft.) during the experimental work (Fig. 3a). The FE over-estimated 

the strength of the column by 5.4%. The twist of the column at 0.01 shear strain in steel 

was 2.7° for both the experimental work and FE analysis (Fig. 3a). 

While the experimental work terminated when at os,0.01, the FE analysis was able to 

continue beyond this strain value. Fig. 6 shows the backbone curves for this set of 

columns until failure occurred. As shown in the figure, beyond os,0.01, the twist at the top 

of the column increased considerably with limited increase in the torsion capacity. The 

increase in the torsion capacity ranged from 17% to 28% compared to the TFE, 0.01 while 

the twist increased by approximately 9.0 to 15.0 times the twist at 0.01 shear strain in 

steel. . Beyond os,0.01, the FE models showed that the concrete shell displayed significant 

cracking and expansion in volume. The yielding of outer steel tube resulted in loss of 

confinement to the concrete shell from outer direction. However, the existence of the 

inner steel tube constrains the concrete from expanding its volume in inner direction and 

decrease damage in the concrete shell.  The expansion in volume of concrete shell was 

not effective in inner direction compared to outer direction resulted small increase in 

damaged concrete strength.  The concrete starts to crack after it reaches poisson’s ratio of 

0.2 and starts to expand its volume. The volume expansion of concrete was countered by 

the steel tubes from both inner and outer direction. Fig. 4(a) shows the increase in the 

concrete compressive strength beyond  of 0.014. Table 3 summarizes the shear stress of 
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the outer steel tube at rupture and torsion capacity carried by the FE columns. The shear 

stress at failure was considered from the outer steel tube because it failed first.       

By increasing the applied torque beyond the yielding of the outer steel tube, 

significant stiffness softening occurred leading to significant increase in the twist with 

minimal increase in the applied torque. This led to yielding of the inner steel tube at a 

twist ranged from 2º to 3º. 

Fig. 5 shows a typical relationship between the shear stress versus shear strain, and 

shear stress versus twist for elements of the concrete, inner steel tube, and outer steel tube 

at the point of failure of the column CO111. As shown in the figure, before yielding of 

the outer steel tube, the outer steel tube’s shear stress was more than triple that of the 

inner steel tube’s shear stress indicting that the torsion strength is mainly provided by the 

outer steel tube. Furthermore, the inner steel tube’s shear stress increased significantly 

after yielding took place in the outer tube. It should be noted that the inner steel tube 

yielded at higher stress compared to the outer steel tube since both tubes have a slightly 

different material characteristics as show in Table 1 and reported by Huang et al. 2013. 

Once yielded, each tube displayed strain hardening until failure. After the rupture of outer 

steel tube, the torsion resistance of the column reduced by about 70%. No vertical slip 

occurred between the concrete shell and steel tubes throughout the column’s height due 

to the constraint imposed by the test setup.   

Fig. 7 shows the column’s failure mode obtained using the FE model. All of the six 

columns failed in a similar manner. The failure was triggered by rupture in the outer steel 

tube in the helical direction at the mid-height of each column. Failure of an element in 

Ls-Dyna is indicated by removing the element using the erosion option as explained 
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earlier in this paper. Rupture occurred in several elements at the outer steel tube resulted 

in loss of confinement for concrete in outward direction; this resulted in an increase of 

concrete shell’s volume in outward direction which caused the failure of concrete shell. 

Finally, the inner steel tube alone carried the applied torque for a small imposed rotation 

after the concrete shell failed leading to abrupt rupture of the inner steel tube. The failure 

of inner steel tube was abrupt due to absence of concrete shell that provided lateral 

stability. The outer steel tube ruptured in the helical direction at 390 mm (15.4 in) from 

the column’s bottom. The shear stress of the outer steel tube of the column CO111 at the 

failure was 191 MPa (27,702 psi).  The concrete’s maximum shear stress was considered 

when the initial small portion of concrete elements failed prior to failure of column. The 

torsion capacity (TFE, u) carried by the column CO111 before the failure was 33.3 kN.m 

(24.9 kip.ft.) and has ultimate twist of 43.8°. 

The torsion strength and twist of the columns at 0.01 shear strains in the steel during 

the finite element study was summarized in Table 2 and displayed in Fig. 3. The torsion 

capacity (TFE, u) for the columns during the finite element study was summarized in Fig. 

6. Fig. 8 shows the typical contribution of steel tubes and concrete shell towards the 

torsion moment and effect of confinement. The columns CO112, CO211, CO212, 

CO311, and CO312 reached FE torsion strength (T0.01) at 34.5 kN.m (25.5 kip.ft), 35.6 

kN.m (26.2 kip.ft), 44.3 kN.m (32.6 kip.ft), 47.5 kN.m (35.1 kip.ft), and 53.6 kN.m 

(39.50 kip.ft) compared to experimental value of 33.2 kN.m (24.5 kip.ft), 32.3 kN.m 

(23.8 kip.ft), 42.1 kN.m (31.05 kip.ft), 48.8 kN.m (36.00 kip.ft), and 54.3 kN.m (40.0 

kip.ft). The torsion capacity (TFE, u) of the FE columns (CO112, CO211, CO212, CO311, 
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and CO312) was between 41.7 kN.m (30.8 kip.ft) and 63.9 kN.m (47.1 kip.ft). The 

ultimate twists of these columns were shown in Fig. 6. 

 

Parametric Study 

Parametric study was conducted to study the influence of the main parameters of the 

column including the concrete’s strength (𝑓𝑐
′), the outer steel tube’s strength (fyo), the 

inner steel tube’s strength (fyi), the outer steel tube diameter-to-thickness ratio (D/to), 

concrete shell thickness (tc), inner steel tube diameter-to-thickness ratio (d/ti), and the 

aspect ratio (H/D) on the torsional performance of HC-SCS columns.   

The column CO112 was used as the reference column for this study with both steel 

tubes chosen to have identical yield strength. Table 4 summarizes the parametric study 

variables and results. The modes of failure of the investigated columns were similar to 

those described before. Fig. 9 illustrates the torque-twist relation of all of the investigated 

columns of the parametric study. Fig. 10 illustrates the percentage change in the torsion 

capacity of the HC-SCS column with respect to the change in parameters. 

 

Yield Strength of Outer Steel Tube (Fyo) 

The outer steel tube’s yield strength ranged from 310 MPa to 586 MPa and ultimate 

strain was maintained constant for all columns. Expectedly, the column’s torsion capacity 

linearly increased (Fig. 10a) as the outer steel tube’s yield strength increased, since 

failures of these columns were triggered by rupture of the outer steel tube (Fig. 9a). The 

torsion capacity increased by 45% when the yield strength of the outer steel tube 

increased by 86%. However, the ultimate twist of the column decreased by 13%.  



   27 

 

 

Expectedly, the yield strength of outer steel tube affects the behavior of the inner steel 

tube. As the yield strength of the outer steel tube increased, the contribution of the inner 

steel tube to the torsional resistance before the yielding of the outer tube decreased. 

However, the overall shear stress imposed on the inner steel tube before the failure of the 

column remained equal for different strengths of the outer steel tube. It indicated the 

change in torsional strength was significant before the yielding of outer steel tube with 

change in its yield strength. However, all of the columns behaved in a similar manner 

after the outer steel tube yielded.  

 

Yield Strength and Role of Inner Steel Tube (Fyi)  

The inner steel tube’s strength was varied between 310 and 586 MPa and ultimate strain 

was maintained constant for all columns (Fig. 9b). The inner steel tube yield strength had 

small effect on the column’s torsion capacity. The column’s torsion capacity linearly 

increased by 16.5% when the inner steel tube’s strength increased by 86% (Fig. 10b). The 

removal of inner steel tube resulted in 13% decrease in column’s torsion capacity (Fig. 

9b). It indicated that the inner steel tube’s existence had moderate effect on the column’s 

torsional behavior. With increase in inner steel tube’s strength, the ultimate twist was 

increased by 3.5%. Before yielding of the outer tube, the stress concentration on outer 

steel tube was same for all the columns. Beyond yielding of the outer tube, the column 

with higher inner steel tube’s yield strength (ie. 586 MPa) displayed higher stiffness. 

Since, post yielding of outer steel tube, most the torsional load was carried by inner steel 

tube. The stress concentration on the concrete shell was almost same for all the columns. 

This resulted in no change in behavior of the concrete shell with respect to change in 

inner steel tube’s strength. 
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Strength (𝒇𝒄
′ ) and Role of Concrete  

The concrete strength was varied between 10 MPa and 100 MPa. While the 10 MPa 

concrete may not be qualified as a candidate for structural applications in many codes and 

standards, it was used in this parametric study to investigate a wider range of parametric 

study.   

The torsion capacity increased by 18% and the corresponding ultimate twist increased 

by 4% when the concrete strength increased by 90%. The torque- twist backbone curve 

was illustrated in Fig. 9c. The backbone curves depicts that the concrete strength had less 

impact over the torsion capacity compared to ultimate twist. All of the outer steel tubes 

yielded at the same strain value confirming the individual behavior of steel tubes and 

concrete shell before yielding of the outer steel tube.  

Before yielding of the outer steel tube, there was a significant increase in the stiffness 

of the column with the increase in concrete strength. It was observed that the increase in 

torsion capacity was due to initial stiffness of the concrete shell and the lateral stability 

provided by the concrete shell to the steel tubes. The concrete shell was removed in an 

additional column to observe the behavior of the column and the contribution of concrete 

shell in the capacity of the column (Fig. 9c). The column’s torsion capacity decreased by 

35% (with respect to f’c = 40 MPA) without the presence of concrete shell. This 

reduction in torsion capacity occurred because the outer and inner steel tubes were not 

braced laterally which was the concrete effect. Therefore, the failure was warping in 

outer steel tube with wall buckling as shown in Fig. 11. As the concrete was brittle in 

nature, the increase of its strength increased the brittle character of the column as 

observed in the form of low twist with increase in concrete strength 
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D/to of Outer Steel Tube 

The D/to of the outer steel tube was varied between 15 and 250 in order to study the 

stiffness and buckling behavior of the outer steel tube. The change in the D/to was 

achieved by changing the thickness of outer steel tube from 0.66 mm (0.03 in.) to 11mm 

(0.43 in.). As shown in Fig. 9d, the outer steel tube’s D/to was one of the most influential 

parameters. The column’s torsion capacity decreased 5.7 times and ultimate twist 

increased 1.32 times when the outer steel tube’s D/to increased from 15 to 250 (Fig. 9d). 

The effects of the change in the stiffness of the outer steel tube due to changing the D/to 

ratio was more prominent before yielding of the outer steel tube as observed in the torque 

versus twist curve (Fig. 9d). As explained earlier, after yielding in the outer steel tube, 

strain hardening occurs in the outer steel tube and most of the torsional load was carried 

mainly by the inner steel tube. Hence, the effect of changing D/to after the yielding of the 

outer tube diminished. It is worth noting that the AISC manual defines the critical local 

buckling of the empty steel tube was at diameter-to-thickness value of 0.07 (
𝐸

𝑓𝑦
). This 

local buckling critical d/t for the investigated column was calculated as 36.8. The FE 

analyses showed no local buckling in the steel tubes even at a D/to value of 250. This was 

because of the lateral stability provided by the concrete shell to the steel tube.  

The shear stress capacity of the concrete shell at failure of the outer steel tube was 

decreased for the higher D/to ratio. This was due to the decrease in confinement to the 

concrete shell provided by the outer steel tube. However, since the contribution of the 

concrete shell to the torsion capacity of the columns is relatively limited, this change in 

the confinement effect did not significantly change the strength of the columns. As 

mentioned before, local buckling was not observed in any case. Hence, the shear stress 
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carried by the inner and outer steel tubes at failure remained constant for different D/to 

ratios. 

 

d/ti of Inner Steel Tube 

The d/ti of the inner steel tube was varied between 15 and 250 in order to study the 

stiffness and buckling behavior of the inner steel tube. The change in the d/ti was 

achieved by changing the thickness of inner steel tube from 0.3 mm (0.01 in.) to 5 mm 

(0.2 in.). The inner steel tube d/ti had a little influence on the column’s torsion capacity. 

The column’s torsion capacity decreased by 20% and ultimate twist decreased by 7% 

when d/ti of the inner steel tube increased 15.6 times (Fig. 9e). Based on the above 

parametric study, the geometric term associated with the torsion capacity was section 

modulus. For small diameters of the inner steel tube with respect to the diameter of outer 

steel tube, the section modulus of inner steel tube was not much varied with alter in d/ti 

ratio. It resulted in small change in column’s torsion capacity for smaller diameters of 

inner steel tube.  As expected, the stiffness of the column was decreased with the increase 

in inner steel tube’s d/ti ratio. The behavior of the outer steel tube and the concrete shell 

were not altered with the inner steel tube’s d/ti ratio. The ultimate twist of the column was 

not significantly influenced, since the behavior of the column was mainly associated with 

the outer steel tube. The ultimate twist decreased with increase in inner steel tube’s d/ti 

ratio. The increase in thickness of the inner steel tube increases the section modulus 

resulting in increase of torsional rigidity of the columns. The high torsional rigidity 

imposes low twist on the column. 
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Concrete Shell Thickness (tc) 

The concrete shell thickness had major contribution to the torsion capacity of the column. 

The concrete shell thickness was varied from 15 mm (0.6 in) to 60 mm (2.4 in.) 

representing 9.1% to 36.4% of the column’s outer diameter. To maintain constant 

diameter-to-thickness ratio of the inner steel tube, the thickness of the inner steel tube 

was varied with change in concrete shell thickness. While the lower end in the 

investigated parameter may not reflect practical application it was used to obtain a 

thorough understanding of the effects of the concrete shell on the performance of HC-

SCS columns. The column’s torsion capacity and ultimate twist decreased by 56% and 

12%, respectively with 300% increase in the concrete shell’s thickness (Fig. 9f). The 

significance of inner steel tube towards the torsional load became prominent with change 

in concrete shell’s thickness. The contribution of inner steel tube to the column’s torsion 

capacity decreased with the increase of concrete shell thickness, since the section 

modulus of inner steel tube was decreased.  

At the point of yielding in steel tube, the steel tubes reached yielding almost at the 

same time for 15 mm (0.6 in) concrete shell thickness whereas, yield strength of inner 

steel tube was almost half of the yield strength of outer steel tube for 60 mm (2.4 in.) 

concrete shell’s thickness..  It indicated that the increase in concrete shell’s thickness 

delays the yielding of the inner steel tube. This was due to decrease in stress 

concentration on the inner steel tube with increase in concrete shell’s thickness. 

Moreover, the contribution of inner steel tube towards torsion capacity reduces with 

increase in concrete shell thickness. Both the steel tubes failed at the same time for 

smaller concrete shell’s thickness (ie. 15 mm (0.125 in.)) while the inner steel tube’s 
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failure was delayed for larger concrete shell’s thickness (ie. 60 mm (2.4 in.)). As the 

concrete was brittle in nature, increase in its thickness resulted in decrease of the ultimate 

twist as observed in Fig. 9f.  

 

Aspect Ratio of Column (H/D) 

The H/D ratio has very small influence on the column’s torsion capacity but has high 

influence on the ultimate twist. The H/D ratio was varied between 2.1 and 5.7. The 

column’s torsion capacity increased by 10% and ultimate twist increased by 210% when 

the column’s aspect ratio increased by 170% (Fig. 9g). From the Fig. 9g, the torsion 

capacity of the columns remained approximately constant for different H/D ratios since 

the torsion capacity depends mainly on the material and cross sectional characteristics of 

the columns. However, after yielding of the outer tubes, the column with higher H/D ratio 

displayed significant stiffness softening resulting in significant increase of the ultimate 

twist at failure (Fig. 9g). The column’s mode of failure was outer steel tube rupture as in 

previous parameters. The increase in aspect ratio results in slenderness of the column and 

becomes less susceptible towards the applied torsional load.  

 

Analytical Model 

In this section, a simple analytical model to calculate the torsion capacity of HC-SCS 

columns is developed and presented. The analytical torsion capacity (Ta) of the HC-SCS 

columns can be calculated as the sum of three components: capacity of outer steel tube 

(Tos), concrete shell (Tc), and inner steel tube (Tis) as per equation (2). The change in 

diameter-to-thickness ratio and the yield strength of the inner steel tube doesn’t endeavor 
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the column’s torsion capacity significantly. Therefore, confinement to the concrete shell 

was considered only from the outer steel tube whereas neglected from the inner steel 

tube.  

 

𝑇𝑎 = 𝑇𝑜𝑠 + 𝑇𝑐 + 𝑇𝑖𝑠                                      (2) 

 

For calculating the torsion strength of the concrete shell, a segment with an area 

(dA) located at a radial distance of ‘a’ was selected on the top surface of the concrete 

shell (Fig. 12). The inner and outer radii of concrete shell are ‘r’, and ‘R’. The height of 

the column is ‘H’. The applied torque resulted in a twist of ‘θ’ and shear strain of ‘’. 

 

The rotated arc length,  𝑑𝑙 = 𝑎 ∗ θ = H ∗                                        (3)    

  

                                                               

From Eq. 3,  =
a∗θ

H
                             (4)    

 

The Hooke’s law states  = 𝐺 ∗                                                     (5) 

             

From the Eq. 5, the Eq. 4 transforms to  𝑥 =
𝐺∗a∗θ

H
                               (6)    

 

Where G is the shear modulus, 𝜏𝑥 is the shear stress of the elementary concrete segment 

From the Eq. 6, the shear stress has linear relation with the radius of the column 

(Fig. 12). The elementary shear force (dF) over the segmental area (dA) was calculated 

as: 

 

𝑑𝐹 = τ𝑥𝑑𝐴                                                               (7) 
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The torque capacity of the concrete shell (Tc) was obtained by integrating the 

elementary shear force (dF) multiplied by lever-arm (a) over the entire cross-sectional 

area (A) of the concrete shell. 

 

 𝑇𝑐 = ∫ 𝑑𝐹 ∗ 𝑎
𝑅

𝑟
= ∫ (τ𝑥𝑑𝐴)𝑎

𝑅

𝑟
                                            (8) 

 

The application of similar triangle rule for the Fig. 12c based on Eq. 6 

 
𝑎

𝑅
= τ𝑥/τ𝑚𝑎𝑥                                                           (9) 

 

Upon substituting the Eq. 6 in the Eq. 5 and over integration,  

 

𝑇𝑐 =
𝑚𝑎𝑥

R
𝐽𝑝𝑐                                                          (10) 

  

Where was sectional modulus of concrete shell, 𝐽𝑝𝑐 =
𝛱(𝑅4−𝑟4)

2
                                    (11) 

 

From the manual ACI-318 (2014), the cracking shear strength (𝜏𝑚𝑎𝑥) of the concrete  

 

τ𝑚𝑎𝑥 = 4√𝑓𝑐𝑐
′                                                          (12) 

The presence of steel tubes provides confinement to the concrete shell that enhances 

the compressive strength known as confined compressive strength of concrete (𝑓𝑐𝑐
′ ) was 

calculated from previous studies (Lee et al. 2009). 

Similarly, the torsion strengths of the steel tubes (Tos and Tis) as below: 

 

Torsion strength of outer steel tube (𝑇𝑜𝑠) = τ𝑦𝑜
𝐽𝑝𝑜

𝑅𝑜
                                          (13) 
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Where, yo and Jpo are shear stress and polar moment of inertia of outer steel tube 

respectively. Ro was the outer radius of the outer steel tube 

 

Torsion strength of inner steel tube (𝑇𝑖𝑠) = τ𝑦𝑖
𝐽𝑝𝑖

𝑅𝑖
                                           (14) 

 

Where, yi and Jpi are shear stress and sectional modulus of inner steel tube, 

respectively. Ri was the outer radius of the inner steel tube. The relation between the 

shear strength and yield strength of steel tube was obtained from Tabor (2000).           

 

Shear strength of outer steel tube ( 𝑦𝑜) =
 f 𝑦𝑜

√3
                                        (15)      

          

Shear strength of inner steel tube ( 𝑦𝑖) =
 f 𝑦𝑖

√3
                                                             (16) 

 

The applied torque resulted in a twist (θ: Fig. 12), where θ can be calculated using 

Eq. 17 based on Eq. 6. 

 

𝜃 =
(𝑇𝑎∗𝐻)

(G∗J)
                                                      (17)   

 

The analytical model’s results were compared to the experimental results in Table 2 

and Fig. 3. The analytical model had an average error of 9.4% with the experimental 

value in predicting column’s torsion strength. The parametric results of FE and the 

analytical model are good in agreement (Table 4). The torsion capacity of the inner steel 

tube will become effective with increase in its section modulus. 
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Summary and Conclusions 

The Ls-Dyna software was used to conduct a finite element analysis of hollow-core steel-

concrete-steel columns (HC-SCSs). The HC-SCS consisted of a concrete wall that was 

sandwiched between steel tubes. The finite element analysis results were validated 

against experimental results available in the literature. The proposed model was able to 

predict the behavior of HC-SCS columns under pure torsion. The Karagozian and Case 

Concrete Damage Model Release 3 (K&C model), with automatically generated 

parameters, produced good results for concrete modelling, including the modelling of 

high strength concrete. Parametric analysis was conducted by assuming the parameters 

and observing their influence on the T-θ curves. Six parameters influenced the column’s 

torsion capacity. The outer steel tube’s D/to ratio was the governing parameter that 

controlled the column’s torsion capacity followed by concrete shell thickness and then 

the strength of the outer steel tube. The aspect ratio (H/D) of the column and inner steel 

tube’s strength had low influence on the column’s torsion capacity. All of the six 

columns had similar failure sequence. The only change in failure was change along the 

height of the column. The simplified analytical model developed based on parametric 

study was good in agreement with the experimental results.  

 

Notation 

The following symbols are used in this paper 

D Outer diameter of inner steel tube 

D Outer diameter of outer steel tube  

fcu Characteristic 28-day concrete cube strength 

f’c Unconfined compressive strength of concrete 
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fyi Yield strength of inner steel tube 

fyo Yield strength of outer steel tube 

Jpo Polar moment of inertia of outer steel tube 

Jpc Polar moment of inertia of concrete 

Jpi Polar moment of inertia of inner steel tube 

to Thickness of outer steel tube 

ti Thickness of inner steel tube 

Tue  Experimental torsion strength (Huang et at., 2013) 

TFE, 0.01 Torsion strength predicted by FEA model 

TFE, u Torsion capacity at failure of FE column 

Ta Torsion strength predicted by simplified analytical model 

τyo  Shear stress of outer steel tube 

τc Shear stress of concrete 

τyi Shear stress of inner steel tube 

θ Twist 
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 Table 1. Summary of Columns Variables (reproduced after Huang et al. 2013) 

Specimen 

label 

Outer tube Inner tube 

fyo, MPa (psi) fyi, MPa (psi) 
fcu, MPa 

(psi) D, mm 

(in.) 

to, mm 

(in.) 

d, mm 

(in.) 

ti, mm 

(in.) 

CO111 

165 

(6.5) 

3.0 

(0.12) 

42 

(1.65) 

3.0 

(0.12) 
260.0 (37,700) 

326.6 

(47,357) 

50 (7,250) 

CO112 
3.0 

(0.12) 

75 

(2.95) 

5.0 

(0.20) 
260.0 (37,700) 

355.4 

(51,533) 

CO211 
4.0 

(0.16) 

42 

(1.65) 

3.0 

(0.12) 
286.4 (41,528) 

326.6 

(47,357) 

CO212 
4.0 

(0.16) 

75 

(2.95) 

5.0 

(0.20) 
286.4 (41,528) 

355.4 

(51,533) 

CO311 
4.6 

(0.18) 

42 

(1.65) 

3.0 

(0.12) 
365.6 (53,012) 

326.6 

(47,357) 

CO312 
4.6 

(0.18) 

75 

(2.95) 

5.0 

(0.20) 
365.6 (53,012) 

355.4 

(51,533) 
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Table 2. Summary of Experimental Results, FE, and Analytical Results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column 

Tue, 

kN.m 

(k.ft.) 

TFE,0.01, 

kN.m 

(k.ft.) 

Ta, 

kN.m 

(k.ft.) 

% error 

in 

TFE,0.01
* 

% error 

in Ta
* 

θ, 

experimental 

(°) 

θ, FE 

(°) 

% 

error 

in ‘θ’ 

CO111 
24.6 

(18.1) 

26.0 

(19.2) 

22.8 

(16.8) 
5.4 7.3 2.7 2.7 

0 

 

CO112 
33.2 

(24.5) 

34.5 

(25.4) 

28.8 

(21.2) 
3.9 13.2 2.7 3.2 18 

CO211 
32.3 

(23.8) 

35.6 

(26.3) 

29.2 

(22.9) 
10.2 3.7 3.1 3.0 3 

CO212 
42.1 

(31.1) 

44.3 

(32.7) 

37.1 

(27.4) 
5.2 11.8 3.4 4.3 26 

CO311 
48.8 

(36.0) 

47.5 

(35.0) 

43.4 

(32) 
2.6 11.0 3.8 3.7 3 

CO312 
54.3 

(40.0) 

53.6 

(39.5) 

49.3 

(36.4) 
1.3 9.2 3.5 3.5 0 

* The percentage of the absolute value of the difference between the experimental and the 

FE/Analytical torsion strengths divided by the experimental torsion strength 
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Table 3. Outer Steel Tube Shear Stress and the Torsion Capacity at Failure  

Column 
Failure shear stress at outer steel tube, 

MPa (psi) 
Torsion capacity, kN.m (kip.ft) 

CO111 191 (27,702) 33.3 (24.5) 

CO112 190 (27,557) 41.7 (30.7) 

CO211 202 (29,297) 44.3 (32.6) 

CO212 205 (29,732) 51.9 (38.2) 

CO311 249 (36,114) 56.5 (41.6) 

CO312 248 (35,969) 64.4 (47.5) 
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Table 4. Summary of Parametric and Analytical Results 

Parameter Parametric value FE, TFE Analytical, Ta 

KN.m k-ft KN.m k-ft 

fyo 

310 MPa (45 ksi) 38.7 28.5 32.9 24.3 

380 MPa (55 ksi) 44.4 32.5 38.0 28.0 

448 MPa (65ksi) 47.2 34.8 42.2 31.1 

586 MPa (85 ksi) 53.7 39.6 53.0 39.1 

fyi 

310 MPa (45 ksi) 42.4 31.2 36.4 26.8 

380 MPa (55 ksi) 44.4 32.7 38.0 28.0 

448 MPa (65ksi) 44.6 32.9 39.2 28.9 

586 MPa (85 ksi) 44.7 32.9 42.1 31.1 

f’c 

10 MPa (1.5 ksi) 39.6 29.2 37.4 27.6 

40 MPa (5.8 ksi) 44.4 32.7 38.0 28.0 

70 MPa (10.2 ksi) 44.5 32.8 38.5 28.4 

100 MPa (14.5 ksi) 44.7 32.9 39.0 28.7 

tc 

15 mm (0.6 in.) 61.3 45.2 58.9 43.4 

30 mm (1.2 in.) 49.7 36.6 48.3 35.6 

45 mm (1.8 in.) 44.4 32.7 38.0 28.0 

100 mm (2.9 in.) 35.3 26.0 35.0 25.8 

D/to 

15 107.0 79.0 111.5 82.3 

60 34.6 25.5 33.0 24.3 

120 26.4 19.5 22.9 16.9 

200 18.3 13.5 17.9 13.2 

250 16.9 12.5 16.3 12.1 

d/ti 

15 44.4 32.7 38.0 28.0 

60 36.3 26.7 32.2 23.7 

120 35.0 25.8 31.1 22.9 

200 34.3 25.3 30.6 22.6 

250 33.9 25.0 30.5 22.5 
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(a)                                                                  (b) ) 

Fig. 1. (a) FE Model of HC-SCS Column, (b) Cross-section View of HC-SCS Column 
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             (a)               (b)    (c) 

Fig. 2. FE Model Components: (a) Outer steel tube, (b) Concrete Shell, (c) Inner Steel 

Tube 
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(a) (b) 

(c) (d) 

(e) (f) 

Yielding in outer steel tube                               Yielding in inner steel tube   

                                  

Fig. 3. Experimental (Huang et al. 2013) vs. FE Backbone Curves for Specimens: (a) 

CO111, (b) CO112, (c) CO211, (d) CO212, (e) CO311, and (f) CO312 
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(a) (b) 

Yielding in outer steel tube                                      yielding in inner steel tube         

0.01 shear strain in outer steel tube     

         

Fig. 4. (a) Typical Shear Stress- Shear Strain Relation of Two Concrete Elements, (b) 

Confined Concrete Shear Stress at the Initial Shear Crack for Column CO211 in GPa 
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(a) (b) 

Yielding in outer steel tube                                    Yielding in inner steel tube                                    

Fig. 5. Behavior of Steel Tubes and Concrete Shell at 550 mm (21.65 in.) Height of 

Column CO211 (a) Shear Stress versus Twist; (b) Shear Stress versus Shear Strain 
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    Yielding of outer steel tube                                      Torque capacity of FE column                    

     Ultimate torsion moment of FE column 

 

Fig. 6. FE Backbone Cure for Torque vs. Torsional Angle till the Failure 
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         (a)                       (b)   (c) 

Fig. 7. Typical Mode of Failure of FE Columns (a) Outer Steel Tube, (b) Concrete Shell, 

and (c) Inner Steel Tube 
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Fig. 8. Typical Contribution of Steel Tubes and Concrete Shell towards Torque Capacity 

for the Column CO112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   54 

 

 

(a) (b) 

(c) (d)* 

(e) (f) 

Yielding in outer steel tube                                  Yielding in inner steel tube       

 X        Compressive strength of concrete                        Confined compressive strength of 

* The scale of the curve is different  

Fig. 9. Effect of Parameters on the Torsional Behavior of HC-SCS Column  
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                                                          (g) 

Yielding in outer steel tube                                  Yielding in inner steel tube       

 X        Compressive strength of concrete                        Confined compressive strength of 

* The scale of the curve is different  

Fig. 9. Effect of Parameters on the Torsional Behavior of HC-SCS Column 

(CONTINUED) 
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(a) (b) 

(c) (d)* 

(e) (f) 

* The scale of the curve is different  

Fig. 10. Percentage Change in Ultimate Torsion Moment of HC-SCS Column due to 

Change: (a) fyo, (b) fyi, (c) f’c, (d) D/to, (e) d/ti, (f) tc, and (g) H/D  
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                                                                          (g) 

Fig. 10. Percentage Change in Ultimate Torsion Moment of HC-SCS Column due to 

Change: (a) fyo, (b) fyi, (c) f’c, (d) D/to, (e) d/ti, (f) tc, and (g) H/D (CONTINUED) 
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Fig. 11. Warping in Outer Steel Tube 
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(b) 

 

 

 

 

 

 

 

 

 

(c) 

 

Fig. 12. Torsional Terms on Concrete Shell (a) Isometric View, (b) Cross-Section View, 

and (c) Shear Stress Variation along the Radius 
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II. Torsional Behavior of Hollow-Core FRP-Concrete-Steel Columns  

Sujith Anumolu1, S.M. ASCE; Omar I. Abdelkarim2 S.M. ASCE; Mohanad Abdulazeez3 

S.M. ASCE; Ahmed Gheni4 S.M. ASCE; Mohamed ElGawady5$, PhD, M. ASCE 

 

Abstract 

This paper presents the behavior of hollow-core fiber reinforced polymer-concrete-steel 

(HC-FCS) column under pure torsion with constant axial load. The HC-FCS consists of 

outer FRP tube and inner steel tube with concrete shell sandwiched between the two 

tubes. The FRP tube was stopped at the surface of the footing and provides confinement 

to the concrete shell from outer direction.  The steel tube was embedded into the footing 

to a length of 1.8 times to the diameter of the steel tube. The longitudinal and transversal 

reinforcements of the column were provided by the steel tube only. A large-scale HC-

FCS column was investigated for this study. The study revealed that the torsional 

behavior of HC-FCS column mainly depends on the stiffness of the steel tube and the 

surface interactions (ie., cohesion, friction) occurred between the steel tube and the 

concrete. The contribution of FRP tube towards torsional capacity was small and 

negligible. A brief comparison was made between the reinforced concrete column and 

HC-FCS column in terms of stiffness and ductility. The HC-FCS column performed 
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better than the reinforced concrete column in terms of ductility but similar in terms of 

stiffness. 

Keywords: Hollow-core; Torsion loading; Composite column; FRP 

 

Introduction 

Usually bridge columns are subjected to flexural and shear loading during earthquakes. 

However, the columns in bridges with curved or skewed superstructures are subjected to 

torsional loading as well. Developing of new type of bridge system had been focused by 

several researchers to reduce the seismic effects along with achieving construction 

acceleration. Accelerated bridge construction technology has been developed in cost 

effective manner to decrease the on-site construction time and enhance work-zone safety 

(Dawood et al. 2012; Abdelkarim and ElGawady 2015a).  

Concrete-filled steel tubes are developed as an initiative to accelerating bridge 

construction in 1960s. This system significantly decreases the reinforcement detailing 

and workmanship for the construction. The presence of steel tube surrounding the 

concrete acts as permanent formwork, longitudinal and transversal reinforcement, and 

improves confinement to concrete core. The concrete core acts as bracing to the steel tube 

and provide lateral stability that delays or prevent local buckling in steel tube. The 

combination of two materials, steel tube and concrete enhances strength and ductility of 

the column. The material costs of concrete-filled steel tubes was slightly higher compared 

to reinforced concrete columns and lower compared to steel columns. The practical 

application of concrete-filled steel tube were used as bridge columns in Europe, China 
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and Japan and extended to the US. as piles. However, due to lack of design provision, the 

use of concrete filled steel tubes was limited (Moon et al. 2013).  

The fiber reinforced polymer (FRP) with high strength was used in place of steel and 

a new system was developed known as concrete-filled fiber tubes were developed by 

Mirmiran and Shahawy 1996 had gained importance. The orientation of fiber in multi-

direction exploits the use of FRP as longitudinal and transverse reinforcement to the 

column, improves the energy dissipation and decreases the reinforcement detailing. The 

corrosion resistance and confinement to the concrete core were improved by using fiber 

in place of steel. Several researchers had investigated the concrete-filled FRP tube 

different loadings (ElGawady et al. 2010; Dawood and ElGawady 2013; Fam et al. 2003; 

Ozbakkaloglu 2012; Mirmiran et al. 2001; Lam and Teng 2004; Zhu et al. 2005; Dai et 

al. 2011). The study reveals concrete-filled FRP exhibited high strength and ductility 

compared to reinforced concrete columns under seismic loadings. 

The lateral stiffness of a bridge is the controlling factor in seismic design since the 

typical bridge column would sustain 5% to 10% of its axial load capacity. Montague et 

al. (1978) has advanced the concrete filled steel tube by making hollow in the center of 

the column known as hollow-core steel-concrete-steel columns. The hollow-core steel-

concrete-steel columns consist of concrete shell sandwiched between two steel tubes. The 

self-weight and section modulus of the column were decreased and the stiffness of the 

column was increased which were important parameters in achieving cost-effective pre-

cast construction. Furthermore, the inertial forces will be reduced with column weight in 

long columns. Teng et al. (2004) developed a new system of hollow-core FRP-concrete-

steel columns (HC-FCS) by exploiting the advantage of using three materials FRP, 
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concrete, and steel. Fiber tube was used as outer tube in the HC-FCS column. The HC-

FCS column stiffness and ductility were enhanced by combination of FRP and steel, 

respectively. The orientation of fiber close to the hoop direction prevents the local 

bucking of outer tube. The HC-FCS column under monotonic axial load showed the 

improvement in confinement to concrete shell and delay of local buckling in steel tube. 

The HC-FCS column’s fire resistance was improved compared to concrete-filled tubes. 

The FRP tube and concrete core prevents the corrosion of inside steel tube. Several 

researchers had investigated the HC-FCS column under different loadings (Teng et al. 

2007; Abdelkarim and ElGawady 2014a,b; Yu et al. 2006; Wong et al. 2008; 

Ozbakkaloglu and Akin 2001; Zhang et al. 2015). The HC-FCS columns exhibited high 

levels of energy dissipation before the rupture of FRP tube. Recently, large-scale HC-

FCS columns were tested by Abdelkarim et al. (2015b) under combined axial and 

flexural loads. They reported that the HC-FCS columns reached to a high lateral drift 

compared to reinforced concrete column. 

The torsional loads are significant during earthquakes for skewed and curved bridges 

in addition to the asymmetric structures with different eccentric load action. However, 

there was no practical existence of pure torsion as it combines with axial and/or flexural 

loads. The pure torsional studies were necessary to assess the column behavior under 

combined loadings. Ostuska et al. (2004) and Prakash et al. (2009) had investigated the 

reinforced concrete column under pure torsion and reported that the locking and 

unlocking of spiral reinforcement in reinforced concrete had significantly affected 

column’s torsional behavior under cyclic loading. Moreover, the spalling of concrete was 

higher during unlocking of spiral compared to locking of spiral. 



64 

 

 

For concrete-filled steel tubes, during torsional loading the concrete core resists 

compression force while the steel tube resists tension force forming a truss action. Beck 

and Kiyomiya (2003) had investigated the pure torsional behavior of concrete-filled steel 

tubes and reported that the buckling of steel tube was avoided due to the concrete core 

and the column maintained high stiffness and ductility compared to steel and reinforced 

concrete columns. Han et al. (2007a) investigated the torsional behavior of concrete-filled 

steel tube and reported that the concrete core has significant effect on the column’s 

torsional resistance and developed a theoretical model to calculate the column’s torque. 

Other researchers (Gong 1989; Lee et al. 1991; Xu et al. 1991; Han et al. 2007(b) and Nie 

et al. 2012) had investigated torsion behavior of concrete-filled steel tubes under static 

cyclic combined axial and/or bending loads including torsion.  

Recently, Huang et al. (2013) investigated the hollow-core steel-concrete-steel 

columns under pure torsion and reported good energy dissipation of column along with 

strength and ductility. Based on the influential parameters affecting the torsional behavior 

of hollow-core steel-concrete-steel columns, Huang et al. (2013) proposed design formula 

for calculating the torsional capacity. A conclusion from above reviewed literature, 

concrete-filled steel tubes and hollow-core steel-concrete-steel columns exhibited good 

strength and ductility compared to reinforced concrete and steel columns. 

The current study introduces the behavior of HC-FCS column under combined cyclic 

torsional loading and constant axial load. A large scale HC-FCS column was built and 

investigated for this study. The study on effects of friction between the steel tube and 

concrete was studied. The general torsional behavior of the reinforced concrete column 

and HC-FCS column were compared.  
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Experimental Program 

Test Specimen 

A large-scale HC-FCS column was constructed and tested under combined cyclic 

torsional loading and constant axial load. The column dimensions and cross-sectional 

details were shown in Fig. 1. The column’s actual height between the surfaces of the 

footing and the loading head was 80 in. (2032 mm). The column’s effective height from 

the surface of the footing to the center line of applied torsional load was 96 in. (2438 

mm) representing an aspect ratio of 4. The outer FRP tube (D) and inner steel tube (d) 

diameters of the column were 24 in. (610 mm) and 14 in. (355 mm), respectively. The 

thickness (to) of the FRP tube was 0.446 in. (11 mm). The thickness (ti) of the steel tube 

was 0.25 in (6.35 mm) representing diameter-to-thickness (d/ti) ratio of 56. The 

percentage area of steel reinforcement in both longitudinal and transverse for the column 

in form of steel tube was 3.5%. The embedded length of the steel tube into the footing 

was 1.8 times the diameter of the steel tube. The FRP tube was stopped between the 

surfaces of the footing and the loading head. Table 1 summarizes the variables of the 

column. 

The dimension of the footing was 60 in. (1524 mm) in length, 48 in. (1219 mm) in 

width, and 34 in. (863 mm) in depth. The reinforcing detail of the column was shown in 

Fig. 1. A total of 6 #7 steel rebars as top reinforcement, 7 #7 steel rebars as bottom 

reinforcement, and 20 #4 steel rebars as shear reinforcement was provided to the footing. 

A steel stand with height 9 in. (228 mm) was constructed to place the steel tube inside the 

footing and to provide embedded length (25 in. (635 mm)) for the steel tube. The 

dimension of the loading head was 30 in.  (762 mm) in length, 30 in. (762 mm) in width, 
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and 34 in. (863 mm) in depth. A clear cover of 1 in. (25.4mm) spacing was maintained on 

all sides of the footing and the loading head. 

 

Material Tests and Properties 

The FRP tube was manufactured by carbon fiber using epoxy as resin. The fiber 

orientation was ±55° to the hoop direction of the tube. Tensile tests were carried out on 

the FRP coupons to ensure the manufacturer properties. The coupons were cut along the 

longitudinal length of the FRP tube. Two strain gauges were attached to at the middle 

height of the coupon to measure strain in the readings (Fig. 2). The coupon tests on FRP 

were carried out based on the guidelines provided from ASTM D3039. The loading rate 

for the test was maintained at 0.05 in./min (1.27 mm/min). The coupons failed around the 

middle region along the fiber orientation (55°). The coupon test results were different 

from the manufacturer’s data due to de-bonding between the fiber layers and insufficient 

width of the coupons that terminate the fiber in radial direction. Table 2 summarizes the 

mechanical properties of FRP tube provided from manufacturer’s data sheet. 

The concrete mixed proportions were designed based on the required strengths. The 

coarse aggregate used only for the column’s concrete shell was pea gravel with maximum 

aggregate size of 3/8 in. (9 mm). The water-cement (w/c) ratio was maintained at 0.5 for 

all the concrete members. The workability of the concrete shell was increased by the 

usage of High Range Water Reducers (HRWR). The mixed proportions of concrete were 

summarized in Table 3. The concrete cylinders of the concrete shell and the footing were 

tested at 28 days and date of test to measure the unconfined compressive strength. The 

summary of test results was in Table 4. 
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Tension tests were conducted on the steel coupons obtained from the longitudinal 

direction of the steel tube. The tests were carried on universal testing machine with 0.05 

in./min (1.27 mm/min) constant loading rate (Fig. 2). The properties of steel tube 

provided from the coupon test results was shown in Table 5. The steel coupon tests were 

carried based on the ASTM A370 guidelines. The summary of test results was shown in 

Table 5. The steel coupons failed by necking after yielding. 

 

Experimental Setup and Instrumentation 

Two servo-controlled hydraulic horizontal actuators from north direction were used to 

apply cyclic torsional load (Fig. 3). The axial load was applied on the loading head 

through automatic hydraulic jacks to keep the axial load constant during applying the 

torsional loading (Fig 3). The load cells were placed between the loading head and 

hydraulic jacks to monitor the applied axial load. The axial load was transferred from 

hydraulic jack to the column through six un-bonded high strength pre-stressed strands. 

Fig. 3 illustrates the test setup. 

A total of 48 strain gauges were attached on the FRP tube at six levels with spacing of 

5 in. (127 mm) started from the surface level of footing to 25 in. (635 mm) along the 

height of the column. At each level, total of 8 strain gauges with 4 on hoop direction and 

4 on vertical direction were attached on east, west, north and south directions, 

respectively. A total of 56 strain gauges were attached on the steel tube at seven levels 

with spacing of 5 in. (127 mm) started from 15 in. (381 mm) bottom of the steel tube to 

45 in. (635 mm) from bottom of the steel tube along the height of the column. At each 

level, total of 8 strain gauges with 4 on hoop direction and 4 on vertical direction were 

attached on east, west, north and south directions, respectively. Two Strain rosettes were 
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attached on the steel tube at the surface level of the footing and 5 in. (127 mm) above it 

on north direction. Each strain rosette measures shear strain along with longitudinal strain 

and hoop strain. The buckling behavior of steel tube and slip of steel tube over concrete 

were monitored using cameras fixed inside the steel tube. Total of three cameras were 

fixed inside the steel tube along with light bulbs to provide illumination. The cameras 

were positioned at the top and bottom of the steel tube and at the surface level of the 

footing. The twist of the column which was measured at the load point on the loading 

head and twist of the FRP tube were measured using string potentiometers. Total of 6 

string potentiometers were attached at different location over the column height. LVDTs 

were used to measure rocking, sliding of footing and slip of FRP tube over the loading 

head. The detailed instrumentation of the column was shown in Fig. 4  

 

Rotation Measurement 

Rotation of FRP Tube by String Potentiometer 

A string of length ‘L’ from the string potentiometer was attached to the column (Fig. 5a). 

The application of torsional load rotates column to a twist angle of ‘θ’. The length of the 

string from string potentiometer changes to ‘L′’. The radius of the column was assumed 

to be ‘R’.  

 

According to cosine rule, 𝐶𝑜𝑠 θ =
(𝐿+𝑅)2+𝑅2−𝐿′2

2∗𝐿∗𝑅
                                 (1) 

 

From Eq. 1, θ = 𝐶𝑜𝑠−1(
(𝐿+𝑅)2+𝑅2−𝐿′2

2∗𝐿∗𝑅
)                                        (2) 

 

 



69 

 

 

Twist Angle of the Column by LVDT 

From the Fig. 5(b), the distance between the two LVDTs on the loading head was ‘a’. 

The column was rotated to a twist angle of ‘θ’ and ‘Δ1’ and ‘Δ2’ are the respective 

displacements of LVDTs. 

 

The twist angle of the column, θ = 𝑇𝑎𝑛−1(
Δ1+Δ2

𝑎
)                          (3) 

 

Loading Protocol 

The axial load of 55 kips (245 kN) was applied on each hydraulic jack with a total axial 

force of 110 kips (490 kN) that represents 5% axial capacity of the reinforced concrete 

column with same outer diameter and 1% longitudinal reinforcement. The axial load was 

maintained constant throughout the test and was monitored by load cells.  

The torsional load was applied through two servo-controlled hydraulic horizontal 

actuators from north direction. Displacement control was adopted to apply the torsional 

load on the column. The displacements of the two actuators were maintained at equal and 

opposite direction. The loading regime of the actuators was based on the FEMA 2007 

recommendations in which the displacement amplitude of the each actuator was 1.4 times 

the previous displacement. Each of the displacement amplitude comprises of two cycles 

and frequency of each displacement cycle was set to 50 Hz. The displacement rate of the 

each actuator was varied between 0.01 in./sec (0.25 mm/sec) to 0.04 in./sec (1.00 

mm/sec). The loading regime used for cyclic torsional loading was shown in Fig. 6. 
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Results and Discussion 

General Behavior 

The torque – twist hysteretic curve of the HC-FCS column was shown in Fig. 7. The 

torque of the column was calculated by the summation of forces obtained from each 

actuator through load cells multiplied by half of the distance between the actuators which 

was 18 in. (457 mm). The actual twist of the column was obtained by subtracting the 

sliding effects of the footing during the test from the twist of the column. The twist of the 

FRP tube was calculated along the height of the column. The column’s torque of the 

hysteresis curve showed abnormal deviation after 7° column’s twist due to additional 

force provided from the actuator (Fig. 7). The additional force was due to the rotational 

constrained of the actuator arm. The column reached torque of 128 kip-ft (173.5 kN.m) in 

positive cycle and 135 kip-ft (185 kN-m) in negative cycle at 7° twist. A curve with 

dotted lines was graphed in Fig. 7 to show an ideal behavior of column after removing 

the additional force provided from the actuator. Through the ideal curve shown in Fig. 7, 

the ultimate torque carried by the column was extended to 146 kip-ft (198 kN-m) at 13.3° 

twist in the column.   

The column gained early stiffness and reached 70% of the column’s ultimate torque 

at 0.5° twist in the column. The cohesion loss occurred between the loading head and 

concrete shell at 0.5° twist resulted slight degradation in the torque-twist curve, however 

the drop was very low (Fig. 8). After the loss of cohesion, the torque carried by the 

column was mainly depended on the stiffness of the steel tube and frictional force exerted 

between the concrete elements (footing, concrete shell, and loading head) and steel tube. 

The torque of the column continued to increase at smaller increments with the column’s 
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twist after the loss of cohesion due to the stiffness of the steel tube and existed frictional 

force between steel tube and concrete shell. Since there was no firm fixation of FRP tube 

in axial direction, the contribution of FRP tube towards torsional resistance was 

negligible. The presence of confinement and rigidity of FRP tube itself allows the 

rotation of FRP tube along with the concrete shell. The rigid rotation of FRP tube with 

concrete shell was observed during the experimentation.  

Since the column lost cohesion at 0.5° twist, the drop in the curve  at 3.5° column’s 

twist in negative cycle was due to sudden sliding of steel tube over the footing (Fig. 8). 

The sudden sliding was noticed by the cameras fixed inside the steel tube at negative 3.5° 

twist. The sudden sliding started at higher rotational cycles of the actuator. However, the 

torque continued to increase due to gain in frictional force between the steel tube and the 

concrete. The gain in friction force was due to small deformations in the steel explained 

later in the manuscript. At higher rotational levels, the column’s torque mainly depends 

on the friction exerted between the concrete and the steel tube. 

The FRP tube was removed to observe the cracks on the concrete shell. The cracks 

were propagated throughout the height of the column at an angle of 45° (Fig. 9). The 

maximum crack width on the concrete shell was 0.8 in. (2 mm) which occurred at the top 

region of the column. Significant amount of cracks were observed at the bottom of the 

column compared to top of the column.  The frictional force exerted between the footing 

and concrete shell was higher compared to concrete shell and loading head. The 

additional axial force on the footing in the form of column’s self-weight endeavors high 

friction between the concrete shell and the footing. The high friction between the footing 

and the concrete shell constrain rotation of concrete shell over footing whereas, low 
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friction between concrete shell and loading head allows rotation of loading head over 

concrete shell. The contact surfaces of the loading head and the concrete shell became 

smooth at the end of the test. The loading action in both directions grinded the concrete 

surfaces and made smooth shown in Fig. 10. The contact surfaces of the footing and the 

concrete column were still rough confirming the high friction exerted between the 

contact. The steel tube was still in intact with the concrete surfaces. No visual 

deformations were observed on the steel tube. 

 

FRP and Steel Tube Sliding over the Concrete Shell 

The elevation view of the tested HC-FCS column under torsion loading at 9° twist was 

shown in Fig. 11a. The twist between the FRP tube with concrete shell and loading head 

was relative (Fig. 11b, Fig. 12). The relative sliding between the steel tube - concrete 

shell, and concrete shell - loading head caused relative twist between the FRP tube with 

concrete shell and loading head. The relative twist between the FRP tube with concrete 

shell and loading head had been noticed from the small twists of the column. 

Since, lack of rigid fixation of FRP tube at both the ends, the rotation along FRP tube 

height remains constant (Fig. 12). In Fig. 12, the twist of FRP tube was almost half of the 

twist of the column at higher degrees of rotation. The relative twist was calculated 

between the column which was measured at the load point and the FRP tube. The relative 

twist was ratio of difference in twist of the column and FRP tube to twist of the column 

provided in the equation 4.  

 

Relative twist (%) =
𝐶𝑜𝑙𝑢𝑚𝑛 𝑡𝑤𝑖𝑠𝑡 −𝐹𝑅𝑃 𝑡𝑢𝑏𝑒 𝑡𝑤𝑖𝑠𝑡

𝐶𝑜𝑙𝑢𝑚𝑛 𝑡𝑤𝑖𝑠𝑡 
 ×  100                          (4) 
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For column’s smaller twists (ie. 0.1° to 0.3°), the relative twist (Fig. 13) was below 

20%. The drop in curve at 0.5° twist in Fig. 12 confirmed the cohesion loss between the 

concrete shell and loading head since FRP tube and concrete shell were in intact with 

each other during the test. The relative twist reached 40% at 1° twist in the column and 

continued till 55% at 13.3° twist.  

 

Strain Profile 

The vertical and hoop strain along the height of the FRP and steel tubes were shown in 

Fig. 14. The FRP tube had experienced compression observed from the vertical strain 

gauge readings in Fig. 14a. The compression force was induced more on FRP tube at 

surface level of footing due to the diagonal cracks in the concrete. Since the concrete 

shell and FRP tube rotated as a rigid system, the diagonal cracks on the concrete shell 

induces stress on the FRP tube. The stress resultant in vertical direction provided 

compression. This results a vertical strain of 950 on compression side at the surface 

level of footing whereas 380 on tension side at 20 in. (508 mm). At higher twists in the 

column, the confinement effect on the concrete shell was evident through the hoop strain 

readings on the FRP tube shown in Fig. 14b. The confinement effect decreased with away 

movement from the surface of the footing along the height. The variation in confinement 

was not significant with 480 hoop strain on FRP at 25 in. (635 mm) location and 1120 

hoop strain on FRP at surface of the footing. Since, the diagonal cracks on concrete shell 

are not significantly developed resulted in small hoop strain on FRP tube. 

At 13.3° twist in the column, the vertical strain gauge located at surface level of the 

footing showed yielding in the steel tube (Fig. 14c). The yielding was not uniform on all 

sides of the steel tube. The non-uniformity in readings of vertical steel strain gauges were 
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due to local deformations in the steel tube and the component of applied torque in vertical 

direction. However, the vertical steel strain at 20 in. (508 mm) from the surface of the 

footing was almost zero indicating the friction was low compared to footing surface level. 

At 13.3° twist in the column, the hoop strain reached 50% of the yield strain of the steel 

tube at surface level of the footing (Fig. 14d). The higher steel hoop strain value at the 

surface of the footing on the steel tube indicates friction was exerted between the steel 

tube and concrete and steel tube was experiencing some fixation at the bottom of the 

footing against the torsion loading. The strain profile on the cross-section at 13.3° 

column’s twist located at the surface level of the footing was shown in Fig. 15. It was 

evident that the small deformed shape in the steel tube caused friction inequalities during 

the test. 

The shear strain on the steel tube at heights of 5 in. (127 mm) and 10 in. (254 mm) 

from the surface of the footing were shown in the Fig. 16. The shear strain on steel tube 

at surface level of the footing was 800 which was far below the yield shear strain of 

2800 calculated using on yield stress, yield strain, and Young’s modulus (Gere and 

Timoshenko 1997). 

 

Comparison of Torsion Behavior with RC Column from Previous Studies  

Prakash (2009) had investigated the reinforced concrete columns with diameter of 24 in. 

(610 mm) representing height-to-diameter ratio of 6. The transverse (spiral and hoop) 

reinforcement ratio of 0.73% with 2.75 in. (70 mm) spacing was investigated. The 

comparison showed both the HC-FCS and RC columns gained early stiffness. However, 

the reinforced concrete columns with both spiral and hoop reinforcement started strength 

reduction at 3° twist in the column whereas the HC-FCS column maintained strength till 
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13.3° twist in the column. The reinforced concrete columns lost 50% of its ultimate 

torque at 12° twist of the column whereas the HC-FCS column has 95% of the ultimate 

torque at 12° twist in the column (Fig. 17).  

 

Summary and Conclusions 

The torsional behavior of hollow-core FRP-concrete-steel (HC-FCS) column had been 

investigated in the current paper. The HC-FCS column consists of 24 in. (610 mm) outer 

diameter with an aspect ratio of 4. The HC-FCS column consists of concrete shell 

sandwiched between outer FRP tube and inner steel tube. The FRP tube was placed on 

the surface of the footing and steel tube was embedded to a length of 1.8 times the 

diameter of the steel tube. The HC-FCS column’s longitudinal and transverse 

reinforcement was provided in the form of steel tube.  

1. The torsional behavior of the HC-FCS column depends on the steel tube’s 

stiffness and the friction existed between the steel tube and concrete.  

2. The stiffness of the HC-FCS column maintained even at larger rotations and 

exhibited good ductility.  The FRP tube contribution towards the torque was 

negligible and confinement to the concrete core was small.  

3. The HC-FCS column showcased higher ductility and reached 13.3° rotation 

without loose in strength compared to reinforced concrete column with loss of 

50% in strength at 12.5° rotation with same cross-section. 
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Table 1. Summary of Column Variables 

Parameter Dimension, in. (mm) 

Outer diameter of column, D 24 (610.0) 

Inner diameter of column, d 14 (355.0) 

Thickness of FRP tube, to 0.45 (11.4) 

Thickness of steel tube, ti 0.25 (6.3) 

Embedded length of steel tube, Le 25 (635.0) 
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Table 2. Mechanical Proportions of FRP Tube 

Material Axial Compression 

Elastic Modulus, ksi      

(GPa) 

Ultimate axial 

Stress, psi 

(MPa) 

Hoop Elastic Modulus, 

ksi (GPa) 

Hoop rupture 

stress, psi (MPa) 

FRP Tube  677 (4.6) 12,150 (83.7) 3,020 (20.8) 40,150 (276.8) 
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Table 3. Concrete Mixed Proportions 

Cement, 

(lb/yd3) 

Fly Ash, 

(lb/yd3) 

Fine Aggregate, 

(lb/yd3) 

Coarse Aggregate, 

(lb/yd3) 

Water, 

(lb/yd3) 

w/c ratio HRWR, 

(lb/yd3) 

590 170 1,430 1,430 380 0.5 1.9 
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Table 4. Un-confined Cylindrical Strengths of Concrete 

Property Footing Column 

f’c, psi (MPa) - 28 days  9,500 (65.5) 5,158 (35.5) 

f’c, psi (MPa) - date of test 9,700 (66.9) 6,910 (51.0) 
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Table 5. Mechanical Proportions of Steel Tube and Steel Rebar 

Property Yield Stress, 

psi (MPa) 

Elastic Modulus, 

ksi (GPa) 

Ultimate stress, psi 

(MPa) 

Rupture strain 

Steel Tube  55,000 (379) 29,000 (200) 68,000 (469) 0.25 

Steel Rebar 60,000 (414) 29,000 (200) 90,000 (620) 0.08 
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                  Section A-A               

                         (b) 

 

 

                               (c) 

Fig. 1. HC-FCS column (a) Elevation, (b) Cross-section, (c) Plan of Loading Head 
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               (a) 

 

                (b) 

Fig. 2. Tensile Tests on Coupons (a) Steel, (b) FRP 
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                                                          (a) 

 

 

                                                           (b) 

Fig. 3. Experimental Test Setup (a) Elevation, (b) Plan 
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       (b) 

Note: All dimensions are in inches; H- horizontal Strain Gauge; V- vertical strain gauge 

 

Fig. 4. (a) Location of Strain Gauges, LVDT’s, and String Potentiometers on the 

Column; (b) Cross-section of the Column 
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                           (b) 

Fig. 5. Measurement Plan (a) String Potentiometer, (b) LVDT 
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Fig. 6. Loading Regime for Cyclic Torsion Load 
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Fig. 7. Torque-Twist Angle of HC-FCS Column under Pure Torsion 
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Fig. 8. Friction and Cohesion Effects on Torque-Twist Angle Curve of HC-FCS Column 
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(a) (b) (c) 

Fig. 9. Cracks on Concrete Shell (a) North side, (b) South side; (c) Maximum Crack 

Width on Concrete Shell 
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(a) 

 

 

 

 

(b) 

Fig. 10. Grinding of Concrete Surfaces (a) Loading Head, (b) Concrete Shell 
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                       (b) 

 

Fig. 11.Torsional Investigation of HC-FCS Column (a) Elevation View, (b) Slip of 

Loading Head over FRP Tube at 9° Column Rotation 
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Fig. 12. Variation of Twist Angle along the Column Height 
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Fig. 13. Relative Twist Angle across Different Twist Angles 
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(a) (b) 

(c) (d) 

Fig. 14. Strain Gauge Profile along the Height of the Column: (a) FRP Vertical (b) FRP 

Hoop, (c) Steel Vertical, and (d) Steel Hoop 
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Fig. 15. Hoop Micro Strain Profile on Steel Tube Circumference at 13.3° Column Twist 
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Fig. 16. Shear Strain Profile on the Steel Tube from the Surface of the Footing 
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Fig. 17. Comparison of HC-FCS Column and Reinforced Concrete Column from 

Shanmughan et al. 2009 
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3. SUMMARY, FINDINGS AND RECOMMENDATIONS FOR FUTURE WORK 

 

3.1. SUMMARY AND FINDINGS 

 The growth of composite construction over reinforced concrete construction had 

gained importance especially in seismic region. The dissertation presented the torsional 

behavior of two types of composite columns namely Hollow-Core Steel-Concrete-Steel 

(HC-SCS) Columns and Hollow-Core Fiber Reinforced Polymer-Concrete-Steel (HC-

FCS) Columns, respectively.  

The Ls-Dyna software was used to develop a finite element model for HC-SCS. 

The HC-SCS consisted of a concrete wall that was sandwiched between steel tubes. The 

finite element analysis results were validated against experimental results. The proposed 

model was able to predict the behavior of HC-SCS columns under pure torsion. The 

Karagozian and Case Concrete Damage Model Release 3 (K&C model), with 

automatically generated parameters, produced good results for concrete modelling, 

including the modelling of high strength concrete. Parametric analysis was conducted by 

assuming the parameters and observing their influence on the T-θ curves. Seven 

parameters namely strength of steel tubes, strength of concrete shell, diameter-to-

thickness ratio of steel tubes, concrete shell thickness, and aspect ratio of the column 

were studied. The outer steel tube’s D/to ratio was the governing parameter that 

controlled the column’s torque capacity followed by concrete shell thickness and then the 

strength of the outer steel tube. The aspect ratio (H/D) of the column and inner steel 

tube’s strength had low influence on the column’s torque capacity. All of the six columns 

had similar failure sequence. The only change in failure was change along the height of 
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the column. The simplified analytical model developed based on parametric study was 

good in agreement with the experimental results. The study concluded the following 

notes. 

1. The geometrical and mechanical properties of the outer steel tube significantly 

influence the torsional behavior of the column. 

2. The combination of materials enhances 20% of the column’s torsion capacity 

compared to the individual contribution due to the effect of confinement to the 

concrete shell and stability to the steel tubes. 

3. The inner steel tube’s contribution to the column’s torsion capacity 

significantly increased with decrease in concrete shell thickness.  

A large-scale HC-FCS column was constructed and experimented under the constant 

axial and cyclic torsion load. The column’s outer diameter was 24 in. (610 mm) with an 

effective height of 96 in. (2438 mm) from surface of the footing to center point of loading 

representing an aspect ratio of 4. The FRP tube was stopped at the surface of the footing 

while the steel tube was embedded into the footing to a length of 1.8 times the diameter 

of the steel tube. The HC-FCS column’s longitudinal and transverse reinforcement was 

provided in the form of steel tube.  

1. The torsional behavior of the HC-FCS column depends on the steel tube’s 

stiffness and the friction existed between the steel tube and concrete.  

2. The stiffness of the HC-FCS column maintained even at larger rotations and 

exhibited good ductility.  The FRP tube contribution towards the torque was 

negligible and confinement to the concrete core was small.  
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3. The HC-FCS column showcased higher ductility and reached 13.3° rotation 

with loose in strength compared to reinforced concrete column with loss of 

50% in strength at 12.5° rotation at same cross-section. 

 

3.2. RECOMMENDATION FOR FUTURE WORK 

The typical torsional behavior of both the HC-SCS and HC-FCS columns were 

investigated through finite element analysis and experimentation. However, a few further 

investigations were needed to investigate before the practical use. 

1. The significance of shear connecters on HC-FCS needs to be investigated to 

understand the influence of friction between the contacts. 

2. The behavior of HC-FCS column under combined loadings with flexure need 

to be investigated. 

3. Finite element studies on HC-FCS column need to be conducted to study in-

detailed behavior. 

4. Parametric variation including concrete shell thickness, steel tube thickness, 

concrete shell thickness, and aspect ratio of the HC-FCS column need to be 

investigated. 

5. The infill concrete in the steel tube of HC-FCS needs to be investigated. 

6. A large scale investigation on HC-SCS was necessary with different 

parameters to study the torsion behavior. 
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