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ABSTRACT 

Concrete is the most consumed man-made material in the world. Unfortunately, 

due to the production of cement, concrete has a large carbon footprint. Replacement of 

cement with fly ash, an industrial waste product, offers a sustainable alternative. The goal 

of this research was to explore the feasibility of using high-volume fly ash (HVFA) 

concrete for structural applications by testing the material‟s reinforcement bond 

properties. 

A series of pull-out tests and beam splice tests were performed on specimens with 

a 70 percent fly ash replacement of cement and then compared to identical tests 

performed on control specimens cast from a 100 percent portland cement mix. The pull-

out tests were performed on specimens with either No. 4 or No. 6 bars, while the beam 

splice tests were performed on specimens with No. 6 bars with and without confinement 

(transverse reinforcement) along the splice zone.    

The data recorded from the pull-out tests supports the effectiveness of HVFA 

concrete in terms of bond integrity.  Since the pull-out test is a comparative test, this 

conclusion can be drawn based on the fact that the HVFA specimens demonstrated 

similar bond strengths to the control specimens (based on maximum modified applied 

load).  The only drawback from testing was that once the concrete began to crush around 

the reinforcing bar, slip occurred at a higher rate for the HVFA specimens. 

 The load data collected from the splice tests, once modified for the respective 

specimen compressive strengths, indicates that the HVFA concrete specimens were able 

to support more load than the control specimens before the splice failed.  These findings, 

along with the findings from the pull-out tests, indicate that the use of high volumes of 

fly ash as a cement substitute is not only feasible in terms of bond, but also superior in 

some cases. 

.  
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1. INTRODUCTION 

 

1.1. BACKGROUND 

 1.1.1. General. Fly ash is a mineral waste product of the coal burning process 

used in many power plants around the world.  Currently, only about 25 to 30 percent of 

this material is recycled and used as a mineral admixture in concrete and in other 

applications, such as soil stabilization.  The rest, about 70 to 75 percent is typically buried 

in landfills (Coal Fly Ash – Material Description, 2010).  The two most common classes 

of fly ash used in concrete are Class C and Class F.  Both classes are pozzolanic, meaning 

they react with excess calcium hydroxide (CH) in concrete, formed from cement 

hydration, to form calcium silicate hydrate (CSH), but the Class C also contains higher 

levels of calcium.  This calcium content gives the Class C fly ash a self-setting quality 

when it comes in contact with water (Coal Fly Ash – Material Description, 2010). 

1.1.2. Benefits of Fly Ash in Concrete.  Research shows that adding fly ash to 

concrete, as a partial replacement of cement (less than 35 percent), will benefit both the 

fresh and hardened states.  While in the fresh state, the fly ash improves workability.  

This is due to the smooth, spherical shape of the fly ash particle.  The tiny spheres act as 

a form of ball bearing that aids the flow of the concrete (Morotta, 2005).  This improved 

workability allows for lower water-to-cement ratios, which later leads to higher 

compressive strengths (Mindess, et al., 2003).  In the hardened state, fly ash contributes 

in a number of ways, including strength and durability.  While fly ash tends to increase 

the setting time of the concrete, the 28 day strengths tend to be higher than those of 

conventional concretes.  This is due to the pozzolanic reaction removing the excess 

calcium hydroxide, produced by the cement reaction, and forming a harder CSH 
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(Headwaters Resources, Fly Ash for Concrete).  Another improved hardened state 

property is bond strength.  The inclusion of fly ash in concrete causes most pastes to 

become denser due to increased amounts of CSH as well as lower water to cement ratios.  

This increase in paste volume allows the paste to fill in more of the gaps around the 

reinforcing bars, increasing the surface are of the bond, and leading to higher bond 

strengths (ACI Committee 232, 2003). In addition, the denser paste produced from fly 

ash improves permeability by filling in voids, making the concrete more durable.  A 

benefit of lower permeability is that chlorides are prevented from diffusing into the 

concrete and corroding the rebar (Headwaters Resources, Fly Ash for Concrete).   

1.1.3. High-Volume Fly Ash Concrete. Substituting higher amounts of portland 

cement with fly ash allows for more fly ash to be recycled instead of buried in a landfill.  

The current ACI recommendation for fly ash substitution in concrete is 15-35 percent 

(ACI Committee 232, 2003).  High-volume fly ash (HVFA) concrete is defined by ACI 

as having a fly ash substitution of 50 percent or more (ACI Committee 232, 2003).  Using 

this excess fly ash for concrete benefits the environment and possibly concrete integrity. 

 1.1.3.1. Environmental benefits.  According to a study done in 2009, seven 

percent of green house emissions in 2004 were due to the manufacture of cement (Berry, 

et al., 2009). These emissions are due to the carbon dioxide produced from machinery 

mining virgin material, transporting the material to cement plants, and from the kiln used 

to burn these materials in order to make the actual cement (Hanle et al., 2004).  

According to Bargaheiser and Butalia, one ton of carbon dioxide gas is emitted per one 

ton of portland cement manufactured (Bargaheiser and Bualia, n.d.). Since fly ash is a 

byproduct of burning coal, a necessary process that will continue for years to come, and 
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cement is a carbon dioxide emitting process involving virgin materials, using larger 

amounts of fly ash in concrete could possibly decrease the amount of green house gasses 

emitted from cement production by half as the demand for cement decreases.   

1.1.3.2. Setbacks.  The main setback with using high-volume fly ash concrete in 

construction is the increased setting time.  Retarded set time delays form removal, which 

increases time of construction (Morotta, 2005).   Since labor is the primary cost 

contributing factor in construction, the setting time of high-volume fly ash concrete must 

be accelerated.  One method of acceleration is adding lime (calcium hydroxide) to the 

mix.  The addition of lime supplies the fly ash with the calcium hydroxide necessary for 

the pozzolanic reaction to start earlier.  Research performed at the National Institute of 

Standards and Technology indicates that the addition of CH to high-volume fly ash 

concrete provides a significant boost to setting time (Bentz and Ferraris, 2009)   

 

1.2. OBJECTIVE AND SCOPE OF WORK 

 Currently, high-volume fly ash (HVFA) concrete is used mostly for 

ornamentation and various non load bearing applications.  Few structures have been built 

utilizing this less proven material.  The objective of this study was to explore the effects 

of substituting large amounts of fly ash on the concrete to reinforcement bond strength, 

which, ultimately, along with other strength and durability tests, examined the feasibility 

of using HVFA concrete for the sustained construction of structures. 

 As a means of testing the bond strength of HVFA concrete, the following scope of 

work was developed and followed: 

 Perform a literature review; 
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 Develop mix designs for both control and HVFA concrete; 

 Design and construct test fixtures; 

 Design and construct pull-out and splice specimens; 

 Test specimens to failure; 

 Record and analyze data from tests; and 

 Develop conclusions and recommendations. 

 

1.3. RESEARCH PLAN 

 In order to carry out the scope of work for this project, a set of tasks, or 

benchmarks, was established.  These tasks are as follows: 

 Task 1:  Perform a literature review.  The goal of the literature review is to 

become familiarized with testing methods and results from previous research.  This 

knowledge can be used to better understand the behavior of the specimens, avoid 

mistakes, as well as provide a source with which to compare test results to support 

plausibility.  

 Task 2:  Develop experimental and control mix designs.  In order to achieve the 

desired early strengths for HVFA concrete, a mix design utilizing the optimal percentage 

of fly ash, calcium hydroxide (CH), and gypsum must be designed.    Also important will 

be to design a similar 100 percent portland cement control mix with which to test against 

the HVFA concrete mix design.  Both mixes will be decided upon by a series of mortar 

cube and concrete cylinder compressive strength tests.  The compression tests will be 

performed at 1, 2, 14, and 28 days for all cube and cylinder types. 
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 Task 3:  Perform tensile tests on 3/4-inch-diameter (19 mm) reinforcing bar.  The 

test specimens for this task will be the same type of reinforcement used in the splice test.  

Relevant data from these tests will indicate the strain present in the bars when yielding 

occurs.  The recorded yield strains will then be used to confirm the failure mode based on 

the measured strains in the bars within the splice tests. 

 Task 4:  Develop formwork and test fixtures.  In order to mold the concrete to the 

shape and dimensions needed for both the pull-out and splice specimens, a series of 

forms must be constructed to accommodate the necessary steel and concrete.  Also 

important are the fixtures that will be applying the loads necessary to test the specimens. 

 Task 5:  Analyze recorded test data.  After testing the specimens constructed as a 

part of Task 4, the data will need to be organized in such a way that conclusions can be 

drawn.  Hence, a series of tables and plots will be formed to meet this goal. 

 

1.4. OUTLINE 

 This thesis is comprised of six sections, as well as three appendices.  Information 

regarding the sections and appendices can be found below. 

 Section 1 acts as an introduction to the thesis.  This introduction contains a brief 

background of fly ash as a material, fly ash as an additive to concrete, and the 

environmental concerns regarding cement production.  Also available is the scope of 

work as well as an order of operations for the tasks required for this study. 

 Section 2 is the literature review portion of this study.   Information regarding 

past research on bond testing of HVFA as well as bond testing in general can be found in 

this section. 
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 Chapter 3 contains a report regarding the preliminary material testing and results 

necessary to design a mix suitable for testing. Also available in this section are the results 

for the steel tensile testing. 

 Section 4 includes the specimen fabrication, test procedure, results, and 

discussion for the pull-out tests performed as a part of this study. 

 Section 5 includes the specimen fabrication, test procedure, results, and 

discussion for the beam splice tests performed as a part of this study. 

 Section 6 contains a summary of the conclusions drawn from this study as well as 

suggestions for future research. 

 There are three appendices.  Appendix A contains data tables from the pull-out 

and beam splice tests, Appendix B contains plots from the pull-out and beam splice tests, 

and Appendix C contains tables and plots related to the mix development stage of this 

study. Appendix D contains a statistical analysis (t-test) of the averaged data for both the 

pull-out tests and the beam splice tests. 
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2. LITERATURE REVIEW 

 

2.1. CONCRETE BOND 

Concrete, on its own, is strong in compression but weak in tension.  As a matter 

of fact, the compressive strength of concrete is about ten times greater than its tensile 

strength.  This negative trait is remedied by placing steel reinforcing bars into the 

concrete to form reinforced concrete (RC).  This approach allows a material with much 

higher tensile strength, such as steel, to take on the tensile load that the concrete cannot 

support.  In order for this relationship to work, however, the concrete and the reinforcing 

steel must have a sufficient bond between them so the tensile load can be transferred 

effectively to the steel.  There are three different aspects that contribute to bond strength: 

chemical adhesion, friction, and mechanical interlock.  The chemical adhesion is a bond 

between the concrete and the steel, the friction is caused by the bar deformations, or ribs, 

slipping along the concrete, and the mechanical interlock is a bearing force caused by the 

ribs bearing against the concrete (Swenty, 2003). 

 In order to insure an adequate bond, ACI 318 (2008) regulates how long a bar 

must be imbedded into the concrete based on factors such as concrete type, concrete 

strength, bar diameter, and bar type. This regulated factor is called the development 

length of the bar, and prevents a bond failure from being the controlling failure mode of a 

structure.   

 Bond failure usually occurs in two different ways.  In structures, the most 

common is known as a splitting failure.  A splitting failure occurs when a small clear 

cover or small spacing between reinforcing bars exists.  The small amount of concrete 
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around the bars can crack or split, exposing the reinforcement and ultimately leading to 

bond failure.  Also contributing to a splitting failure are the mechanical properties of the 

surrounding concrete such as concrete tensile strength, bar geometry, and the presence of 

transverse reinforcement such as stirrups (ACI Committee 408, 2003).  This result tends 

to be the more catastrophic of the bond failure modes (Swenty, 2003).  Another common 

bond failure type is pull-out.  This mode occurs when the reinforcing bar slips, and as a 

result, the concrete between the bar deformations is crushed, leading to a simple pulling 

out of the bar.  Usually pull-out controls when there is a larger concrete clear cover and 

spacing between the reinforcing bars making splitting less likely.  A less common bond 

failure is known as a conical failure.  This occurs when the concrete cracks propagate 

outward from the ribs on a reinforcing bar, and the bar ultimately pulls out along with a 

“cone” of concrete upon failure.  

 

2.2. BOND TESTING 

Testing for bond strength is carried out in a variety of ways.   The most common 

and traditional method is the standard pull-out test.  One issue with the pull-out test is 

that a compressive stress is induced on the bond that normally does not exist in an actual 

structure.  To remedy this, ACI 408R-03 outlines several other methods such as the beam 

anchorage, beam end, and splice tests that place the bond in situations that are more 

similar to those present in the field (ACI Committee 408, 2003). Note that the following 

ACI bond tests do not have specimen dimensions. This is because ACI does not specify 

specific dimensions.    
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The pull-out test is popular due to its ease of construction and testing.  ASTM 

C234 was developed to standardize the testing method, but was later disbanded due to the 

high level of inconsistency that the test yields.  RILEM, however, has provided a set of 

recommendations for the test in order to provide some form of uniformity and minimize 

some of the inconsistencies. The RILEM test recommends casting a single reinforcing 

bar into a concrete cube with only half of the bar inside the specimen actually bonded to 

the concrete, as shown in Figure 2.1 (RILEM 7-II-28, 1994).  This approach is to prevent 

a conical bond failure at the bottom and is achieved using a bond breaker of some type.  

The bar is fed through a metal plate and a pulling force is applied to the bar while the 

metal plate pushes up on the concrete block until a bond failure occurs. Usually a device 

is installed on the unloaded end of the reinforcing bar in order to measure slip. While this 

test has been modified by RILEM, it is still not accepted as an accurate way of 

determining development lengths for reinforcement (ACI Committee 408, 2003).  

Therefore, this test is commonly used as a means of comparison between a control 

specimen of known development requirements and an experimental specimen.  Data for 

this test is often compiled into force vs. slip and stress vs. slip plots. 

The beam anchorage test, a large scale test, involves casting a beam with two 

points of exposed rebar located on the bottom of the beam, to either side of the center, as 

shown in Figure 2.2.  These two points represent flexural cracks in the beam.  Knowing 

the bonded length of the reinforcement is also important.  Once cast and cured, the beam 

is then subjected to a four-point loading until failure occurs (ACI Committee 408, 2003). 
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4.5 db

5 db

5 db

 

Figure 2.1 – Typical pull-out specimen (db = bar diameter) 

 

 

  

 

Figure 2.2 – Beam anchorage specimen (ACI 408R-03) 

 

 

 

 The beam end test was also developed to provide a more accurate means of 

testing bond strength.  This test is very similar to the pull-out test, except the reactions, or 

supports, are set up in a way that does not cause compression around the single 

reinforcing bar.  In this case, the reinforcing bar is cast near the top of the concrete block, 
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also with a bond breaker, and a pulling force is applied to the bar (ACI Committee 408, 

2003).  Figure 2.3 outlines the support setup as well as the general specimen setup.  

 

 

Figure 2.3 – Beam end specimen (ACI 408R-03) 

 

 

 

 Another form of large scale bond testing is the splice test.  The splice test involves 

casting spliced reinforcing bars into a beam and applying a four-point loading, as shown 

in Figure 2.4.  The splice test can be run with or without transverse reinforcement along 

the spliced area.  This test, due to a more accurate representation of structural conditions, 

was used to gather the majority of the data that was used in the formulation of the 

development length and splice length equations in the ACI 318 code (ACI Committee 

408, 2003).    

 

 

Figure 2.4 – Splice specimen (ACI 408R-03) 
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 In 2000, two researchers, Zuo and Darwin, ran multiple splice tests on specimens 

composed of normal strength concrete and high strength concrete.  The beams had a 

height of either 15.5 (394 mm) or 16 in. (406 mm), a width of either 12 (305 mm) or 18 

in. (457 mm), and a length of 16 feet (4877 mm).  Each beam contained either two or 

three splices which ranged in length from 16 (406 mm) to 40 in. (1016 mm). These 

splices were cast into the upper region of the beam with a 2 in. (51 mm) concrete cover. 

Also varied in this experiment was the presence of transverse reinforcement along the 

splices.  The beams were supported 3 feet to either side of the center and were tested in a 

cantilever manner at each end.  Several observations were made after the failure of each 

beam.  First, it was observed that each beam failed due to a splitting failure caused by the 

failure of the splice itself.  Second, the high strength concrete failed at a higher load, 

which supports the theory that higher concrete compressive strengths positively affect 

bond strength.  Finally, the concrete without the transverse reinforcement along the splice 

failed more suddenly than the beams containing the transverse reinforcement (Zuo and 

Darwin, 2000).   

Splice testing was also performed by Russell and Ramirez (2008) to examine the 

effects of high strength concrete on bond.  The specimens were similar to the full size 

beams used by Zuo and Darwin (2000), except strain gages were installed on either side 

of the splices as well as 9 in. (229 mm) to either side of each splice.  The strain gages 

were utilized to observe the strain behavior of the steel as the specimen was loaded.  

Other factors tested were the effects of bar size (testing Nos. 6, 8, and 10 bars (19, 25, 

and 32 mm bars) and confinement.  All beams contained three spliced bars that were cast 

into the upper portion of each concrete beam (with at least 12 in. (305 mm) of concrete 
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cast below the splice).   The beams had a length of 13 ft. (3962 mm) and a cross section 

(width x height) of 9 x 18 in. (229 x 457 mm), 12 x 18 in. (305 x 457 mm), and 18 x 18 

in. (457 x 457 mm) for the Nos. 6, 8, and 10 bars (19, 25, and 32 mm bars), respectively. 

The minimum concrete compressive strength for this experiment was 15 ksi (103 MPa). 

The specimens were supported 2 ft. (610 mm) to either side of the center and were tested 

in a cantilever manner at each end. Each beam, when tested, failed at the splice.  The 

results from this study show that both the larger bar sizes and confinement add to the 

bond strength of concrete (Russell and Ramirez, 2008). 

 

2.3. HIGH-VOLUME FLY ASH BOND RESEARCH 

While the concept of replacing a large percentage of portland cement with fly ash 

is a fairly new idea, several research programs have explored the bond between high-

volume fly ash concrete and the reinforcing steel.  These programs commonly used a 

standard pull-out test with varying percentages of fly ash. 

 Researchers at Montana State University ran a series of pull-out tests on high-

volume fly ash specimens utilizing one hundred percent replacement of portland cement.  

This high percentage replacement was possible due to the highly reactive nature of the 

Class C fly ash used.  The specimen design involved a No. 4 (No. 13) bar embedded into 

a concrete cylinder with a diameter of 6 in. (152 mm) and a height of 12.3 in. (312 mm).  

The embedment depth was varied so that three bars were embedded 8 in. (203 mm) and 

three others to 12 in. (305 mm) for each material.  No bond breaker was used nor was any 

rebar exposed on the unloaded end for the measuring of slip.  Six control specimens made 

from normal portland cement concrete were tested at the two different embedment depths 
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(three at 8 in. (203 mm) and three at 12 in. (305 mm)) along with six high-volume fly ash 

specimens with the same two embedment depths.  The results were then recorded and 

compared.  The results were very similar between the normal concrete and the high-

volume fly ash concrete, with all specimens failing due to splitting (Cross, et al., n.d.).  

This type of bond failure might have been due to a small clear cover coupled with the 

large bar size.   

  Researchers at the University of Wisconsin-Milwaukee performed pull-out tests 

on specimens with fly ash replacements of 10, 20, and 30 percent. Also varied with the 

fly ash content was the temperature at which the specimens were cured.  These tests were 

run on typical pull-out specimens as suggested by RILEM and ACI.  For each specimen, 

a single piece of reinforcing bar was set vertically into a concrete cylinder with a radius 

of six in. and a height of six in.  A specimen was made for each temperature condition 

and percentage of specimen. The bar was then pulled out of the cylinder at a rate of 0.081 

in. (2 mm) per minute.  Once the data was recorded and analyzed, a trend became 

apparent.  At normal temperature, the bond strength improved with the increase in fly 

ash, up until a point.  At this point, about 20 percent fly ash, the bond strengths began to 

decrease (Naik, et al., 1989).  While none of these specimens can be classified as a high-

volume fly ash concrete specimen, according to ACI‟s definition (50 percent 

replacement), these series of tests at varying fly ash percentages give insight to how bond 

strength is affected at different intervals.  This result could lead to an understanding of 

how bond behaves in high-volume fly ash concrete.   

 Pull-out specimens were also tested at the Structural Engineering Research Centre 

in India to determine the effects on bond strength using a 50 percent fly ash replacement 
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of cement.  A typical specimen was composed of a single, 0.79 inch (20 mm) steel 

reinforcement rod embedded into a 5.9 inch (150 mm) concrete cube.  Specimens tested 

at 28 days yielded similar results between the high-volume fly ash concrete and the 

control concrete, with the control concrete having a slight edge.  The high-volume fly ash 

concrete, however, surpassed the control specimens in bond strength at 90 days (S. 

Gopalakrishnan, 2005).  

 

2.4. INDICATORS FOR FLY ASH EFFECTS ON BOND 

 The effects of fly ash on concrete bond strength can be seen through 

experimentation, but there are also several properties that contribute to the bond strength 

of normal concrete that could provide insight to how high-volume fly ash concrete might 

behave in relation to bond.  These properties can be used as predictors, one of which is 

the tensile strength of concrete, obtained by the split cylinder test.  According to ACI 

408R, bond is directly affected by concrete tensile strength (ACI Committee 408, 2003).  

This would explain why a splitting failure is the most common bond failure in structures 

(ACI Committee 408, 2003).  Therefore, if the high-volume fly ash concrete‟s results are 

lower for the split cylinder test, the bond could possibly be adversely affected as well.  

The same trend may apply to compressive strength of the concrete as well.  If the high-

volume fly ash concrete has a lower compressive strength, then according to trends, it 

will also have lower bond strength.  ACI 232.2R (2003) theorizes that if a high-volume 

fly ash concrete has a similar compressive strength to that of a normal concrete, then the  
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two should have the same reinforcement development length.  Also, due to the tendency 

of fly ash to increase paste volume, the contact area between the paste and the 

reinforcement tends to increase, improving bond strength (ACI Committee 232, 2003).  
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3. MIX DESIGN 

 

3.1. INTRODUCTION 

 This section describes the process that was carried out to develop a concrete mix 

design using a high volume of cement replacement with fly ash. The objective of this 

process was to maximize the percentage of fly ash in the mix, yet still fulfill the strength 

and workability requirements. A target strength of 5,000 psi at 28 days was selected to 

perform the mix development based on the ACI 211.1, Standard Practice for Selecting 

Proportions for Normal, Heavyweight and Mass Concrete (ACI 211.1, 1991) document. 

Class C fly ash donated by Ameren UE was used as replacement of the portland cement 

due to its high level of calcium. This part of the study used mortar and paste mixes to 

arrive at the optimum combinations and percentages of several powder additions to 

maximize the amount of fly ash. The primary criteria to select such percentages were the 

set time and the rate of strength gain. The main goal was to develop a mix that could 

fulfill a minimum strength requirement of 1,000 psi at 1 day in addition to the requisite 

5,000 psi at 28 days. Attainment of this goal would prove that the use of HVFA concrete 

in construction is viable. Rheological composition of the fly ash, mix design 

development, and compressive strength results are contained in the following sections.  

 

3.2. FLY ASH CHEMICAL COMPOSITION 

 Fly ashes are subdivided into two main classes, C and F, which reflect the 

composition of the inorganic fractions. Class F fly ashes are produced from either 

anthracite bituminous or sub-bituminous coals. Class C fly ashes are derived from sub-
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bituminous or lignitic coals. In other words, the two classes of fly ash are distinguished 

by the silica oxide and calcium contents of the type of coal burned. Fly ash can be 

cementitious, pozzolanic, or both. Class F fly ash is pozzolanic while Class C fly ash is 

often cementitious and pozzolanic. Cementitious fly ash hardens when wetted while 

pozzolanic fly ash requires a reaction with lime before hardening. Both classes of fly ash 

are used as a cement replacement in concrete. 

The fly ash used in this study was an ASTM Class C fly ash produced in the coal-

fired electrical generating plant of Ameren UE located in Labadie, Missouri. The 

chemical composition of the fly ash is given below in Table 3.1. Four samples of fly ash 

were tested for chemical composition. The amount of each oxide represents the range of 

the four samples expressed as a percent by weight. Table 3.2 shows the typical ranges of 

the chemical composition of a Class C fly ash. The chemical oxide quantities reported in 

Table 3.1 coincide with those listed in Table 3.2. All requirements are also in accordance 

with ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural 

Pozzolan for Use in Concrete (ASTM C618, 2007). 

 

3.3. ACTIVATORS 

 Although certain fly ashes exhibit some cementitious properties, the main 

contribution to the hardened concrete properties results from the pozzolanic reaction of 

the fly ash with the calcium hydroxide released by the portland cement. The pozzolanic 

reaction typically occurs more slowly than cement hydration reactions and consequently 

concrete containing fly ash requires more curing during early ages. Previous research has 

shown that fly ash has very little immediate chemical reaction when it is only mixed with 
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water.  There are enough oxides and aluminates within the portland cement to provide 

sufficient reaction in the process of hydration, whereas, fly ash requires the addition of 

activators to initiate the hydration process.  The activators used in the HVFA concrete for 

this study were calcium hydroxide and gypsum, selected based on previous research.  

Appropriate proportions were determined to ensure a proper hydration process.  

Insufficient amounts of activators may generate a delay in reaching adequate early-age 

strengths.  Excess amounts of activators may generate a rapid set or false set that may not 

develop the required densification of the microstructure, also affecting the concrete 

strength. 

 

 

 

Table 3.1 – In-house chemical analysis of Ameren UE fly ash 

 

Oxide % 

Silicon Oxide (SiO2) 30.45 – 36.42 

Aluminum Oxide (Al2O3) 16.4 – 20.79 

Iron Oxide (Fe2O3) 6.78 – 7.73 

Calcium Oxide (CaO) 24.29 – 26.10 

Magnesium Oxide (MgO) 4.87 – 5.53 

Sulfur (SO3) 2.18 – 6.36 

Sodium Oxide (Na2O) 1.54 – 1.98 

Potassium Oxide (K2O) 0.38 – 0.57 

Titanium Oxide (TiO2) 1.42 – 1.56 

Phosphorus Oxide (P2O5) 1.01 – 1.93 

Manganese Oxide (MnO) 0.028 – 0.036 

Strontium Oxide (SrO) 0.40 – 0.44 

Barium Oxide (BaO) 0.68 – 0.99 

LOI 0.24 – 1.15 

 

 

 

 

 

 

 



20 

 

Table 3.2 – Fly ash chemical differences expressed as percent by weight 

(ASTM C618-07) 

 

Component Bituminous Sub-bituminous Lignite 

SiO2 20 – 60  40 – 60  15 – 45  

Al2O3 5 – 35 20 – 30  10 – 25  

Fe2O3 10 – 40 4 – 10  4 – 15  

CaO 1 – 12  5 – 30   15 – 40  

MgO 0 – 5  1 – 6  3 – 10  

SO3 0 – 4  0 – 2  0 – 10  

Na2O 0 – 4  0 – 2  0 – 6  

K2O 0 – 3  0 – 4  0 – 4  

LOI 0 – 15  0 – 3  0 – 5  

 

 

 

 3.3.1. Gypsum.  Calcium sulfate dihydrate (gypsum) is added to portland cement 

to limit the vigorous initial reaction of the tricalcium aluminate (C3A) with water, which 

can lead to a flash set. However, fly ash has a slower initial setting time. When fly ash is 

used in large amounts, such as in a HVFA concrete consisting of 70 percent fly ash 

replacement, additional gypsum may be required to prevent sulfate depletion and promote 

the immediate start of the hydration process.  

The gypsum used in this study was obtained from the company USA Gypsum 

located in Reinholds, PA, where it is produced from recycled gypsum boards. Gypsum 

board, otherwise known as dry wall, is regularly used as a building interior lining and 

partitioning where structural requirements are low. The panels of dry wall are made of 

gypsum plaster pressed between two thick sheets of paper. The gypsum used in this study 

was ground to an ultra-fine consistency with a 96% pure content of calcium sulfate 

(CaSO4). Figure 3.1 shows the packaging and gypsum material used in this study. 
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Figure 3.1 – Gypsum material sample 

 

 

 

 

The mixture proportion for gypsum was determined from a previous study carried 

out by Bentz [2010]. Bentz studied a 50:50 ratio of portland cement to fly ash, and found 

that at least 2 percent additional gypsum by mass of total cementitious materials was 

required for a proper hydration. Having a higher fly ash content would likely require 

more than two percent of gypsum, so it was decided to use a 4 percent replacement of the 

fly ash with gypsum. This amount proved to be effective in testing of paste and mortar 

cubes, the results of which will be discussed later in this section.   

 3.3.2. Calcium Hydroxide.  In conventional concrete, the tricalcium silicate 

(C3S) and dicalcium silicate (C2S) react individually with water to produce the principal 

hydration product of calcium silicate hydrate (C-S-H) and calcium hydroxide (CH) in 

varying amounts. This reaction will be repeated over time producing an excess of CH. 

The fly ash will then consume the excess CH and continue to hydrate, forming additional 

C-S-H, and gaining additional strength over time. In a HVFA concrete, additional 
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calcium hydroxide is required to ensure a more complete hydration process for the fly 

ash. 

The hydrated lime (calcium hydroxide) used in this study was purchased from the 

Mississippi Lime company located in Sainte Genevieve, MO.  A standard hydrated lime 

material of 96% purity was added to the HVFA mixture. Figure 3.2 shows the packaging 

and calcium hydroxide material.   

 

 

 

  
 

 Figure 3.2 – Calcium hydroxide material sample 

 

 

 

 

The same method used for the selection of the amount of gypsum was repeated to 

determine the proportions for calcium hydroxide. Bentz found that at least 5 percent of 

calcium hydroxide by weight of cementitious material was sufficient for early and later 

strength gain in cement pastes containing a 50:50 ratio of portland cement to fly ash. 

Having higher fly ash content would likely require more than 5 percent calcium 

hydroxide, so it was decided to use a 10 percent replacement of fly ash with calcium 
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hydroxide. A higher amount of calcium hydroxide (15 percent) was also tested and initial 

results showed an increase in the compressive strength compared to the paste containing 

only 10 percent calcium hydroxide. However, results of compressive strength at later 

ages showed no advantageous increase, concluding that a 10 percent replacement with 

calcium hydroxide was sufficient for this particular fly ash. 

  

3.4. PASTE AND MORTAR CUBES 

 3.4.1. General.  The purpose of testing paste and mortar cubes was to optimize 

the constituent percentages for a control and experimental HVFA mix using a specimen 

that is smaller and more cost-effective to construct before advancing to larger specimen 

tests.  Cubes made from paste (water, cementitious materials, and activators only) were 

used to determine what percentages of fly ash substitution, gypsum, and calcium 

hydroxide were optimal to achieve practical early-age compressive strengths.  Mortar 

cubes, including sand supplied by Capital Sand in Jefferson City, were used to determine 

a plausible water to cement ratio that would allow for a sufficient balance between 

workability and compressive strength. 

 3.4.2. Paste Cubes Procedure.  Each specimen was constructed and tested 

following the guidelines set forth in ASTM C109-08 using 2 in. (50 mm) cube 

specimens. The specimens were moist cured until the day of testing.  The paste cubes, 

with a 0.40 w/cm, were tested at 1, 3, and 7 days in order to determine the early strengths 

of the mix, since early form removal is a concern when using HVFA concrete for 

construction.  The 0.40 w/cm was selected based on previous research and the desired 

objectives of this stage of the research as mentioned previously. Several modifications 
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were made to the ASTM C109-08 procedure in order to account for the low paste 

viscosity and the addition of activators in the mixing phase.  These modifications were as 

follows: 

 To ensure that no paste would leak through the joints in the cube molds, the molds 

were caulked with silicon on the outside (Figure 3.3) 

 A 5 gallon (19 L) bucket with lid was modified to accommodate a drill-driven 

paddle by cutting a hole in the lid (Figure 3.4) 

 One half of the required mixing water was added to the bucket 

 Cementitious materials were then added to the bucket (first the fly ash, then the 

cement) while stirring the mixture 

 The activators (CH and gypsum) were mixed with the remaining half of the 

required water in a separate container to form a light slurry 

 The activator slurry was then added to the cementitious mixture and mixed with 

the drill paddle for 5 minutes 

 After mixing, the sides and lid of the bucket were checked for excess and 

unmixed material 

 The mix was then transferred to a pitcher with a pouring spout for ease of 

placement into the cube molds 

 The paste was then poured into the molds in one lift via the pitcher 

 The molds were then vibrated with a rubber mallet for consolidation purposes and 

the excess paste was struck off with a polypropylene straight edge 

 The molds were then placed in a moist cure chamber  
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 The cubes were de-molded at 1 day with the exception of the 100 percent fly ash 

specimens which had not set 

 The  de-molded cubes were placed back in the moist cure room until the test dates 

 

Every specimen was tested on a 600,000 lb. (2,670 kN) capacity Forney compression 

machine until failure.  The test matrix for this phase of the study is shown below in Table 

3.3. 

 

 

 

 
 

Figure 3.3 – Caulked cube molds 

 

 

 

 

 
 

Figure 3.4 – 5 gallon bucket and mixer set-up 
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Table 3.3 – Test matrix for paste cubes 

 

 
% of Cementitious Material 

Specimen Set * 
Cement 

 

Fly Ash 

 

Gypsum 

 

Calcium 

Hydroxide 

Control 100 0 - - 

50/50 50 50 - - 

40/60 40 60 - - 

25/75 25 75 - - 

100% FA 0 100 - - 

50/50-G 50 50 4 - 

40/60-G 40 60 4 - 

25/75-G 25 75 4 - 

100% FA-G 0 100 4 - 

50/50-G-10CH 50 50 4 10 

40/60-G-10CH 40 60 4 10 

25/75-G-10CH 25 75 4 10 

100% FA-G-10CH 0 100 4 10 

50/50-G-15CH 50 50 4 15 

40/60-G-15CH 40 60 4 15 

25/75-G-15CH 25 75 4 15 

100% FA-G-15CH 0 100 4 15 

 

 

3.4.3. Mortar Cubes Procedure.  The mortar cubes, with w/cm values of 0.30 

and 0.40, were tested at 3, 7, and 28 days (moist cured until test date) to predict the 

effects that the w/cm would have on the mix from the early strengths up until the design 

strength of 28 days. The mortar cube fabrication process more closely followed the 

ASTM C109-08 standard.  Due to a more manageable mix viscosity, actual mixing was 

performed using a Hobart mixer. The activators were added, as they were for the paste 

cubes, as part of the second water addition, and the sand-to-cementitious material ratio 

used was 0.33.    The sand gradation is shown in Table 3.4 
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Table 3.4 – Sand gradation performed at Missouri S&T 

Sieve Size ⅜" #4 #8 #16 #30 #50 #100 #200 

Total % Passing 100 99 92 79 48 9 1 0.2 

 

 

Every specimen was tested on a 600,000 lb. (2,670 kN) capacity Forney 

compression machine until failure.  The test matrix for this experiment is shown below in 

Table 3.5. 

 

 

 

Table 3.5 – Test matrix for mortar cubes 

 

  
% of Cementitious Material 

Specimen Set * w/cm Cement Fly Ash 

Control-0.40 

0.4 

100 0 

50/50-0.40 50 50 

25/75-0.40 25 75 

100% FA-0.40 0 100 

Control-0.30 

0.3 

100 0 

50/50-0.30 50 50 

25/75-0.30 25 75 

100% FA-0.30 0 100 

 

 

3.4.4. Results.  The results recorded from the mortar and paste cube tests were 

organized into Tables 3.6 and 3.7.  Each value in the tables represents the average of 

three replicate specimens. 
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Table 3.6 – Compressive strengths for mortar cubes 

 

  
Compressive Strength (psi) 

Specimen Set w/cm Day 3 Day 7 Day 28 

Control-0.40 

0.40 

3440 5280 5510 

50/50-0.40 2730 4080 5370 

25/75-0.40 1000 1910 2910 

100% FA-0.40 74.0 313 520 

Control-0.30 

0.30 

2905 4700 5110 

50/50-0.30 2110 2180 3930 

25/75-0.30 1430 1820 2380 

100% FA-0.30 218 468 881 

(1 psi = 6.89 kPa) 

 

 

 

 

Table 3.7 – Compressive strengths for paste cubes 

 

 
Compressive Strength 

(psi) 

Specimen Set Day 1 Day 3 Day 7 

Control 1750 3920 5260 

50/50 558 1920 3590 

40/60 439 1570 2140 

25/75 0 740 1270 

100% FA 0 35 53 

50/50-G 981 2500 3540 

40/60-G 793 1700 2470 

25/75-G 339 1270 1650 

100% FA-G 0 0 71 

50/50-G-10CH 1060 2530 2940 

40/60-G-10CH 953 2240 2710 

25/75-G-10CH 554 1220 1310 

100% FA-G-10CH 671 670 748 

50/50-G-15CH 1710 2650 3800 

40/60-G-15CH 890 2390 3700 

25/75-G-15CH 980 1080 1550 

100% FA-G-15CH 624 616 580 

(1 psi = 6.89 kPa) 
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3.4.5. Analysis and Conclusions.  The test results from the mortar cubes suggest 

that using a w/cm of 0.30 can increase the specimen strength in some cases, such as with 

the 25/75 mix, but the loss of workability outweighs the minimal strength gain. This is 

evident with the 0.30 w/cm control specimens, which yielded lower results due to 

compaction problems caused by the lack of water. Therefore, a w/cm of at least 0.40 was 

selected for further testing.  A graphical representation of this tests data is shown in 

Figures 3.5 and 3.6. 

 

 

 

 

 
 

 Figure 3.5 – Mortar cube compressive strengths on test days (w/cm = 0.40) 

 

 

 

 

(1 psi = 6.89 kPa) 
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 Figure 3.6 - Mortar cube compressive strengths on test days (w/cm = 0.30) 

  

 

 

 

A number of conclusions can be drawn from the paste cube test data (Figures 3.7 

to 3.10). The data shows that adding 15 percent calcium hydroxide and 4 percent gypsum 

(by weight of cementitious material) results in the highest compressive strengths for the 

HVFA mixes.  The two best performing HVFA mixes were the 50 percent and 60 percent 

fly ash mixes with nearly identical 7 day strengths.  The 75 percent fly ash mix did not 

perform as well as the 50 percent and 60 percent mixes, but exhibited sufficient strength 

at 7 days.  The poorest performing mix was the 100 percent fly ash mix.  Since the 

objective of this study was to push the bounds of fly ash substitution in concrete, the 75 

percent fly ash mix was selected for further testing.  The 75 percent fly ash mix including 

10 percent calcium hydroxide was used since there was little difference in the results 

between this mix and the mix including 15 percent calcium hydroxide.   

 

 

 

(1 psi = 6.89 kPa) 
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Figure 3.7 – Paste cubes with no admixtures 

 

 

 

 

 
 

Figure 3.8 – Paste cubes with 4 percent gypsum 

 

 

 

 

(1psi = 6.89 kPa) 

 
 

(1 psi = 6.89 kPa) 
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 Figure 3.9 – Paste cubes with 4 percent gypsum and 10 percent calcium hydroxide 

 

 

 

 

 
 

Figure 3.10 – Paste cubes with 4 percent gypsum and 15 percent calcium hydroxide 

 

 

 

 

3.5. CONCRETE MIX DESIGN 

 The HVFA concrete mix design was developed using the procedure outlined in 

Section 6 of the ACI 211.1-91 document.  The procedure for selection of mix proportions 

given in this document is applicable to normal weight concrete. Estimating the required 

(1 psi = 6.89 kPa) 

 
 

(1psi = 6.89 kPa) 
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batch weights for the concrete involves a sequence of logical, straightforward steps to fit 

the characteristics of the materials into a mixture suitable for a specific application. An 

expected 28-day target strength of 5,000 psi (34.5 MPa) was considered. The solution 

approach used during the mix development is summarized below. 

 3.5.1. Choice of Slump.  If slump is not specified, a value appropriate for the 

work can be selected from Table 3.8. These slump ranges shown apply when vibration is 

used to consolidate the concrete. 

 

 

 

Table 3.8 – Recommended slump for various types of construction (ACI 211.1-91) 

 

Types of construction Slump (in.) 

Maximum Minimum 

Reinforced foundation, walls, and footings 3 1 

Plain footings, caissons, and substructure walls 3 1 

Beams and reinforced walls 4 1 

Building columns 4 1 

Pavements and slabs 3 1 

Mass concrete 2 1 

(1 in = 25.4 mm) 

 

 

 

 

The slump may be increased when chemical admixtures are used, provided that 

the admixture-treated concrete has the same or lower water-to-cement or water-to-

cementitious materials ratio and does not exhibit segregation potential or excessive 

bleeding. For this research, a slump of 4 in. (102 mm) was selected. 

 3.5.2. Choice of Maximum Aggregate Size.  The maximum aggregate size was 

determined based on the gradation of the materials available locally. A gradation of the 

coarse aggregate is shown in Table 3.9.  Generally, the nominal maximum aggregate size 
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should be the largest that is economically available and consistent with the dimensions of 

the structure. Large nominal maximum sizes of well graded aggregates have fewer voids 

than smaller sizes. For this research, a coarse aggregate having a nominal maximum size 

of ¾ in. (19 mm) was considered. 

 

 

 

Table 3.9 – Coarse aggregate gradation performed at Missouri S&T 

Sieve Size 1” ¾” ½” ⅜” #4 #8 #30 #100 #200 

Total % Passing 100 89 59 47 16 7 4 4 3 

 

 

 3.5.3. Estimation of the Mixing Water and Air Content. The quantity of water 

per unit volume of concrete required to produce a given slump is dependent on: the 

nominal maximum size, particle shape, and gradation of the aggregates; the concrete 

temperature; the amount of entrained air; and the use of chemical admixtures. Slump is 

not significantly affected by the quantity of cement or cementitious materials within 

normal levels. The selection of the required mixing water was made based on Table 3.10. 

Slump values of more than 7 in. (178 mm) are only obtained through the use of 

water-reducing chemical admixtures. For this research, a value of 340 lb/yd
3
 (1978 N/m

3
) 

of water was obtained from this table. This value was defined as the optimum value for 

this mix design. However, for concrete ordered from the local ready mix supplier, 

approximately 8 gallons per yd
3
 (40 L/m

3
) of water was held in abeyance for subsequent 

slump adjustment at the lab prior to placement. Water was then added at the lab until the 

desired slump was reached, but never exceeding the amount of water held back initially.  
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This approach also helped to adjust the overall mixing water content based on the actual 

water content of the aggregate for each particular placement. 

 

 

Table 3.10 – Approximate mixing water and air content requirements for different 

slumps and nominal maximum sizes of aggregates (ACI 211.1-91) 

 

Water (lb/yd
3
) of concrete for indicated nominal maximum sizes of aggregate 

Slump (in.) ⅜ in. ½ in. ¾ in. 1 in. 1½ in 2 in. 3 in. 6 in. 

Non-air-entrained concrete 

1 to 2 350 335 315 300 275 260 220 190 

3 to 4 385 365 340 325 300 285 245 210 

6 to 7 410 385 360 340 315 300 270 - 

More than 7 - - - - - - - - 

Approximate amount of 

entrapped air in non-air-

entrained concrete (%) 

3.0 2.5 2.0 1.5 1.0 0.5 0.3 0.2 

Air-entrained concrete 

1 to 2 305 295 280 270 250 240 205 180 

3 to 4 340 325 305 295 275 265 225 200 

6 to 7 365 345 325 310 290 280 260 - 

More than 7 - - - - - - - - 

Recommended averages total air content, percent for level of exposure 

Mild exposure 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 

Moderate exposure 6.0 5.5 5.0 4.5 4.5 4.0 3.5 3.0 

Severe exposure 7.5 7.0 6.0 6.0 5.5 5.0 4.5 4.0 

(1 in = 25.4 mm) 

 

 

 

 

 Slump values of more than 7 in. (178 mm) are only obtained through the use of 

water-reducing chemical admixtures. For this research, a value of 340 lb/yd
3
 (1978 N/m

3
) 

of water was obtained from this table. This value was defined as the optimum value for 

this mix design. However, for concrete ordered from the local ready mix supplier, 

approximately 8 gallons per yd
3
 (40 L/m

3
) of water was held in abeyance for subsequent 

slump adjustment at the lab prior to placement. Water was then added at the lab until the 
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desired slump was reached, but never exceeding the amount of water held back initially.  

This approach also helped to adjust the overall mixing water content based on the actual 

water content of the aggregate for each particular placement. 

 3.5.4. Selection of the Water-to-cementitious Materials Ratio. The w/cm is 

determined not only by strength requirements, but also by factors such as durability. In 

the absence of data to develop a relationship between strength and this ratio for the 

materials to be used, a set of approximate and relatively conservative values for concrete 

containing Type I portland cement can be taken from Table 3.11. 

 

 

 

Table 3.11 – Relationship between water-to-cement or water-to-cementitious 

materials ratio and compressive strength of the concrete (ACI 211.1-91) 

 

Compressive strength 

at 28 days (psi) 

Water-to-cement ratio by weight 

Non-air-entrained concrete Air-entrained concrete 

6,000 0.41 - 

5,000 0.48 0.40 

4,000 0.57 0.48 

3,000 0.68 0.59 

2,000 0.82 0.74 

(1 psi = 68.9 kPa) 

  

 

 

 

These values are estimated average strengths for concrete containing no more 

than 2 percent air for non-air-entrained concrete and 6 percent total air content for air-

entrained concrete. Strength is based on 6 × 12 in. (152 mm x 305 mm) cylinders moist-

cured for 28 days. The relationship in Table 3.11 assumes a nominal maximum aggregate 

size of about ¾ (19 mm) to 1 inch (25 mm). For this research, two water-to-cement ratios 

were used. A water-to-cement ratio (w/c) of 0.45 was selected for the conventional mix, 
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and a water-to-cementitious materials ratio (w/cm) of 0.40 was selected for the HVFA 

mix. This difference in these ratios is due to reports of previous research showing that 

when fly ash is incorporated into the mix, the water demand is lower for the same level of 

workability.  

 3.5.5. Calculation of the Cement Content. The amount of cement per unit 

volume of concrete is fixed by the determinations made in Section 3.5.3 and 3.5.4 above. 

The required cement is equal to the estimated mixing-water content divided by the water-

to-cement ratio. Equation 3-1 shows how to calculate the amount of cement. 

 

 (3-1) 

 

 3.5.6. Estimation of the Coarse Aggregate Content. Aggregates of essentially 

the same nominal maximum size and gradation will produce concrete of satisfactory 

workability when a given volume of coarse aggregate is used per unit volume of 

concrete. Appropriate values for this aggregate volume are given in Table 3.12. The 

volume of coarse aggregate in a unit volume of concrete is dependent only on its nominal 

maximum size and the fineness modulus of the fine aggregate. The fineness modulus of 

the fine aggregate available from the local supplier was 2.60. 

Volumes are based on aggregates in oven-dry-rodded conditions. These volumes 

are selected from empirical relationships to produce concrete with a degree of workability 

suitable for usual construction. 

For this research, the available coarse aggregate had a unit weight of 101.5 lb/ft
3
 

(591 N/m
3
). The amount of coarse aggregate is calculated from the value obtained in 
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Table 3.12 multiplied by 27 and the unit weight. Equation 3-2 shows how to calculate the 

amount of coarse aggregate. 

 

 

 

Table 3.12 – Volume of coarse aggregate per unit of volume of concrete 

(ACI 211.1-91) 

 

Nominal 

maximum size 

of aggregate 

(in.) 

Volume of oven-dry-rodded 

coarse aggregate per unit 

volume of concrete for 

different fineness moduli of 

fine aggregate 

2.40 2.60 2.80 3.00 

⅜ 0.50 0.48 0.46 0.44 

½ 0.59 0.57 0.55 0.53 

¾ 0.66 0.64 0.62 0.60 

1 0.71 0.69 0.67 0.65 

1½ 0.75 0.73 0.71 0.69 

2 0.78 0.76 0.74 0.72 

3 0.82 0.80 0.78 0.76 

6 0.87 0.85 0.83 0.81 

(1 in = 25.4 mm) 

 

  

 

  (3-2) 

 

3.5.7. Estimation of the Fine Aggregate Content. After the completion of the 

previous step, all ingredients of the concrete have been estimated except for the fine 

aggregate. Either of two procedures may be employed to estimate the fine aggregate 

content, the weight method or the absolute volume method. For this research, the weight 

method was used. 
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The required weight of the fine aggregate is simply the difference between the 

weight of fresh concrete calculated using Table 3.13 and the total weight of the other 

ingredients. Equation 3-3 shows how to calculate the amount of fine aggregate. 

 

 

 

Table 3.13 – First estimate of weight of fresh concrete (ACI 211.1-91) 

 

Nominal 

maximum size 

of aggregate 

(in.) 

First estimate of weight of fresh 

concrete (lb/yd
3
) 

Non-air-entrained 

concrete 

Air-entrained 

concrete 

⅜ 3840 3710 

½ 3890 3760 

¾ 3960 3840 

1 4010 3850 

1½ 4070 3910 

2 4120 3950 

3 4200 4040 

6 4260 4110 

(1 in = 25.4 mm, lb/ft
3 

= 157 N/m
3
)
 

 

 

 

 

 

  (3-3) 

 

3.5.8. Adjustments for Aggregate Moisture. The aggregate quantities to be 

weighed out for the concrete must allow for moisture in the aggregates. Generally, the 

aggregates will be moist and their dry weights should be increased by the percentage of 

water they contain, both absorbed and surface. The mixing water added to the batch must 

be reduced by an amount equal to the free moisture contributed by the aggregate. 

During the casting of the beams, periodic measurements of moisture content and 

percentage of absorption were carried out on the coarse and fine aggregates to maintain 
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the same conditions for all castings. The moisture content was measured following the 

standard described in ASTM C566, Standard Test Method for Total Evaporable Moisture 

Content of Aggregate by Drying (ASTM C 566, 1997). The percentage of absorption was 

measured following the standards described in ASTM C127, Standard Test Method for 

Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate 

(ASTM C127, 2007) for the coarse aggregate and ASTM C128, Standard Test Method 

for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate 

(ASTM C128, 2007) for the fine aggregate. Equations 3-4 through 3-6 show how to 

adjust the amount of water due to moisture contents. As an example, data measured in the 

first and second castings of the control specimens will be used, the moisture contents for 

the coarse aggregate and fine aggregate measured 2.3 percent and 1.7 percent, 

respectively. The percentages of absorption were found to be 0.5% and 0.9% for the 

coarse and fine aggregate, respectively. Absorbed water does not become part of the 

mixing water, therefore, it is excluded from the adjustment in the water as shown below. 

 

  (3-4) 

 

  (3-5) 

 

  (3-6) 

 

3.5.9. Estimation of the Amount of Fly Ash, Calcium Hydroxide, and 

Gypsum. This step does not apply to the control specimens that were cast using a 

conventional mix. The purpose of this research was to evaluate the effectiveness of a 

concrete containing a high amount of fly ash. After some batching and testing of different 
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mixes using cubes and cylinders, a 70 percent replacement of portland cement with fly 

ash was selected as the target. Additional powder activators to improve the early strength 

were also considered in the mix design. Calcium hydroxide and gypsum were selected for 

their favorable contribution to the development of early strength in a high-volume fly ash 

concrete mix. A 10 percent replacement with calcium hydroxide and a 4 percent 

replacement with gypsum were incorporated to the mix design. The amount of these 

activators was based on the amount of fly ash, but it was deducted from the total amount 

of the cementitious materials to maintain the ratio between the fly ash and portland 

cement (70/30). Equations 3-7 through 3-11 show how to calculate the weight of these 

admixtures. From equation 3-1, a total amount of cement equal to 850 lb/ft
3
 (13660 kg/ 

ft
3
) was determined for the base (control) mix design. 

 

  (3-7) 

 

  (3-8) 

 

  (3-9) 

 

  (3-10) 

 

  (3-11) 

 

 3.5.10. Summary of the Mix Designs. Tables 3.14 and 3.15 present a summary 

of the final amount of each ingredient for the mixes used in this research. Table 3.14 

presents the final design of a conventional mix used in the control specimens with a w/c 
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equal to 0.45. Table 3.15 presents the final design of the HVFA concrete mix used in this 

research with a w/cm equal to 0.40. The values contained in these tables are given in 

saturated surface dry (SSD) conditions.  

 

 

 

Table 3.14– Conventional mix description 

 

Ingredient Amount (lb/ft
3
) 

Water  340 

Portland cement 756 

Coarse aggregate 1750 

Fine aggregate 1110 

w/c 0.45 

(lb/ft
3 

= 16 kg/m
3
)
 

 

 

 

 

Table 3.15 – HVFA mix description 

 

Ingredient Amount (lb/ft
3
) 

Water  340 

Cementitious 

materials 

Portland cement 230 

Fly ash 537 

Calcium hydroxide 59.5 

Gypsum 23.8 

Coarse aggregate 1750 

Fine aggregate 1110 

w/cm 0.40 

(lb/ft
3 

= 16 kg/m
3
)
 

 

 

 

3.6. CYLINDER COMPRESSION TESTING 

 3.6.1. General. Cylinder compression tests were used to test the strengths of the 

mixes utilizing the proportions from the compression cube tests in conjunction with the 

other concrete constituents, such as coarse and fine aggregate.  A mix with a fly ash 
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replacement value of 70 percent was selected for testing based on the success of the 75 

percent fly ash paste cube specimens. This design allows the mix to have a fly ash 

percentage closer to that of the top performing HVFA paste cube specimens as well as a 

fly ash content twice the ACI recommended maximum of 35 percent (ACI Committee 

232, 2003).  Four other sets of cylinders were constructed using fly ash replacement 

contents of 0, 50, 60, and 75 percent for comparison purposes.   

 3.6.2. Procedure.  Each cylinder specimen was constructed in accordance with 

ASTM C192, Standard Practice for Making and Curing Concrete Test Specimens in the 

Laboratory (ASTM C192, 2007). Mixing was performed in a 4 cubic foot (0.11 cubic 

meter) drum mixer (Figure 3.11). The fly ash was added with the cement at the ASTM 

designated time for addition of cementious material and the activators were added using 

the second specified water addition as a vehicle. The concrete was then mixed, poured, 

and cured as per ASTM C192 (2007).  The specimens were moist cured for 1, 3, 7, or 28 

days, depending on the designated test day for each specimen, before they were tested 

until failure using a 600,000 lb. (2,670 kN) capacity Forney compression machine in 

accordance with ASTM C39-09.  The test matrix for the cylinder tests is shown in Table 

3.16. 

3.6.3. Results.  The results from the cylinder compressive strength tests are 

shown in Table 3.17. As with the compression cube tests, each specimen set consists of 

the average of three replicate specimens. 

3.6.4. Analysis and Conclusions.  The test results, as shown in Figure 3.12, 

suggest that the highest strength HVFA concrete mixes are the 50 and 60 percent fly ash 

proportions with nearly identical results.  The 70 percent fly ash mix, however, yielded a 
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reasonable 1-day compressive strength of over 1100 psi (7.58 MPa), a 3-day compressive 

strength of nearly 2000 psi (13.8 MPa), and 28-day strength of nearly 4500 psi (31 MPa).  

Since these values are acceptable when designing concrete for normal construction, the 

final HVFA concrete mix chosen for this study was the 70 percent fly ash mix with 4 

percent gypsum and 10 percent calcium hydroxide. 

 

 

 

 
 

Figure 3.11 – Large drum mixer 

 

 

 

 

Table 3.16 – Test matrix for cylinder compression tests 

 

  
Cementitious Materials (%) 

Specimen Set * w/cm Fly Ash Cement Gypsum CH 

Control 0.45 0 100 4 10 

HVFA (50%) 0.40 50 50 4 10 

HVFA (60%) 0.40 60 40 4 10 

HVFA (70%) 0.40 70 30 4 10 

HVFA (75%) 0.40 75 25 4 10 
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Table 3.17 – Test results from cylinder compression tests 

 

  
Compressive Strength (psi) 

Specimen Set * w/c Day 1 Day 3 Day 7 Day 28 

Control 0.45 3090 4540 5180 6190 

HVFA (50%) 0.40 1190 2460 3980 5360 

HVFA (60%) 0.40 1240 2670 3990 5480 

HVFA (70%) 0.40 1120 1850 2880 4430 

HVFA (75%) 0.40 660 1230 2000 3020 

*Each set is comprised of the average of three specimens 

  (1 psi = 6.89 kPa) 

 

 

  

 

 
 

 Figure 3.12 – Compressive strength vs. test day plot for all cylinder mixes 

 

 

 

3.7. FINAL MIX DESIGN AND MIXING DETAILS 

 Concrete for this study was provided by a ready mix plant, Rolla Ready Mix, in 

order to emulate field construction practices.  The mix design provided to Rolla Ready 

Mix was decided upon based on the results described in Sections 3.4 and 3.6, only 

(1psi = 6.89 kPa) 
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batched at a higher quantity, but using the same constituent proportions.  The control mix 

was a 100 percent portland cement mix that was completely batched at the ready mix 

plant.  The high-volume fly ash concrete mix featured a 70 percent replacement of 

cement with fly ash. The quantities used for each pour are shown in Tables 3.13 and 3.14 

with only a difference in the amount of water that was adjusted based on the moisture 

content and percentage of absorption measured in both fine and coarse aggregates. While 

the fly ash was added at the ready mix plant, the required amounts of gypsum and 

calcium hydroxide, as per Section 3.4, were added directly to the truck upon arrival to the 

lab.  Once mixed thoroughly for a minimum of 5 minutes at high speed, the concrete 

placement commenced.   During each placement, a slump tests was performed to ensure 

the workability of the concrete.  A 6-inch (152 mm) slump was the typical target value.  

Also, as a part of the concrete placement, cylinders were cast in order to test the 

compressive strength at 28 days and on the day of testing of the full-scale specimens. 

Figure 3.13 presents a summary of images showing the construction process followed 

during each casting. 
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(a) Adding gypsum 

 

(b) Adding calcium hydroxide 

 

  
 

(c) Concrete placement 

 

 Figure 3.13 – HVFA concrete procedures 
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4. PULL-OUT TEST 

 

4.1. INTRODUCTION 

The goal of the experimental program was to perform comparative bond tests on 

high-volume fly ash concrete and conventional (control) concrete.  The first test 

performed was the pull-out test.  Although there are a variety of bond and development 

length testing protocols available, a direct pull-out test offers several advantages, 

including test specimens that are easy to construct and a testing method that is relatively 

simple to perform. The downside is a lack of direct comparison with actual structures and 

the development of compressive and confinement stresses generated due to the reaction 

plate.  However, modifications suggested in RILEM 7-II-128 (1994) reduce some of 

these problems and result in a simplified test that offers relative comparisons between 

concrete or reinforcement types.  Bond between the reinforcing bar and the concrete only 

occurs in the upper half of the concrete block, significantly reducing the effect of any 

confinement pressure generated as a result of friction between the specimen and the 

reaction plate.   

The following section describes in detail the form development, specimen 

construction, test process, results, and conclusions for the pull-out tests. 

 

4.2. SPECIMEN DESIGN AND FABRICATION 

4.2.1. Pull-out Specimen Parameters.  The pull-out specimens were designed 

using RILEM7-II-128 (1994) as a guide. The bars were embedded 10 times the bar 

diameter into the concrete specimen based on preliminary testing, with half of the length 
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debonded using PVC.  RILEM also recommends casting the bars into concrete cubes that 

provide a clear cover of 4.5 times the bar diameter from the bar to the center of each side 

of the horizontal cross section.  The specimens designed for this experiment exceeded the 

RILEM requirement on clear cover and featured a 12-inch-diameter (305 mm) concrete 

cylinder to eliminate the potential for splitting and ensure that all of the specimens failed 

in the same manner (pull-out).  Specimen dimensions for each bar size tested – No. 4 

(No. 13) and No. 6 (No. 19) – are shown in Figures 4.1 and 4.2.    

 

 

12.0 in. dia.

 2.5 in. (bonded area)

 2.5 in. (unbonded area)

 
 

Figure 4.1 – Dimensions for pull-out specimen testing No. 4 bar 



50 

 

 3.75 in. (unbonded area)

 3.75 in. (bonded area)

12.0 in. dia.

 
 

Figure 4.2 – Dimensions for pull-out specimen testing No. 6 bar  

 

 

 

 

4.2.2. Pull-out Specimen Fabrication.  Pull-out tests were performed on both the 

control and the high-volume fly ash concrete mixes using No. 4 and No. 6 bars.  The 

variance in bars was included in order to observe the bond behavior of different size bars.  

The test matrix is shown in Table 4.1. 

Each form was constructed using two 14 x 14-inch-squares (356 mm) of 1/2-inch-

thick (13 mm) plywood, PVC pipe, ASTM A615-09 Grade 60 reinforcing bar, and 

prefabricated cardboard tubes (Quik-Tube).  First, a hole, slightly larger than the bar 

cross-section, was drilled into each plywood square. Next, the Quik-Tube was cut to the 

height required for the specimen and glued to the first plywood square (centered).  Each 

reinforcing bar was cut to a length of 40 in. (1016 mm) and fitted with a section of PVC 
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using tape and cardboard spacers.  The PVC was half of the height of the specimen and 

taped to the rebar so that the top of the PVC was flush with the top of the form when the 

bar was placed in the hole in the base.  Concrete was then placed into the form, rodded, 

and tamped.  The second piece of plywood was then guided down the rebar and placed on 

the top of the Quik-Tube (Figure 4.3).  Magnetic levels were used to ensure that the bar 

was perfectly centered and vertical.  Finally, the specimens were covered with wet burlap 

and plastic, and then allowed to cure (Figure 4.4). 

 

 

Table 4.1 – Pull-out test matrix 

 

Specimen Name Mix Type 

Bar Diameter 

(in) 

CPO_4-1 Control 0.5 

CPO_4-2 Control 0.5 

CPO_4-3 Control 0.5 

FAPO_4-1 HVFA 0.5 

FAPO_4-2 HVFA 0.5 

FAPO_4-3 HVFA 0.5 

CPO_6-1 Control 0.75 

CPO_6-2 Control 0.75 

CPO_6-3 Control 0.75 

FAPO_6-1 HVFA 0.75 

FAPO_6-2 HVFA 0.75 

FAPO_6-3 HVFA 0.75 

(1 in = 25.4 mm) 

 

 

 

4.3 TEST SETUP AND PROCEDURE 

 4.3.1. Pull-out Test Setup. The pull-out specimens were loaded into a 200,000- 

pound-capacity (890 kN) Tinius Olson machine by rotating the specimen 180°, bar side 
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down, and threading the bar through a thin piece of rubber and the head of the machine 

until the specimen rested evenly on the rubber.  The free end of the bar was clamped into 

a lower component of the Tinius Olson machine (Figure 4.5).  A magnetic arm holding a 

DCDT was then placed on top of the specimen.  The DCDT was placed directly on the 

1/2 inch (13 mm) of exposed rebar on the back end of the specimen to record slip (Figure 

4.6). 

 

 

 

 
 

Figure 4.3 – Pull-out formwork 

 

 

 

 

 
 

Figure 4.4 – Pull-out specimens 
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Figure 4.5 – Pull-out test setup with specimen loaded 

 

 

 

 

 
 

Figure 4.6 – DCDT setup 

DCDT 

Rebar 

Specimen 

Exposed 

Rebar 

DCTV 
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 4.3.2. Pull-out Test Procedure.  The Tinius Olson was set to pull on the rebar at 

a rate of 0.1 in. (2.5 mm) per minute to avoid any dynamic effect and in order to insure a 

sufficient number of data points before failure.  The load was recorded on a data 

acquisition computer linked to the test machine.  The DCDT was also monitored to 

record the slip as a function of load.  The specimens were tested until a maximum load 

was reached.  A photograph of a typical failed specimen is shown in Figure 4.7.  All 

specimens failed without splitting of the concrete.   

 

 

 

 
 

Figure 4.7 – Failed pull-out specimen 

 

 

4.4. TEST RESULTS 

 The data recorded from the pull-out tests involved load and corresponding slip of 

the bar.  This data was then organized in two different ways.  First, the load vs. slip was 

plotted for each specimen, with a typical graph shown in Figure 4.8.  All specimens 
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exhibited a similar plot for these variables in regard to the shape of the data points.  The 

only major variance was the magnitude of the values.  Table 4.2 contains the maximum 

values for the pull-out load of each specimen as taken from the load vs. slip data and 

includes the average and coefficient of variation (COV) for each group of specimens. A t-

test performed on this data at an alpha value of 0.05 and the results are available in 

Appendix D.  According to the t-test, the data averages for the No. 6 bars (No. 19 bars) 

are statistically identical.  The analysis for the No. 4 bar (No. 13 bar) specimens indicates 

that the averages are slightly different, but this could be due to the small sample size. 

 

 

 

 
 

Figure 4.8 – Typical load vs. slip plot 

 

 

 

 

Table 4.3 contains the compressive strength test data for each concrete pour and 

includes the average and COV for each group of specimens. 

 

 

 

1 lb = 4.45 N 
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Table 4.2 – Pull-out test results 

 

 

(1 lb = 4.45 N) 

 

 

 

Table 4.3 – Compressive strength test data 

 

 
Test Day Strength (psi) 

  Cylinder 1 Cylinder 2 Cylinder 3 Average COV (%) 

All FAPO 4390 4140 4750 4420 7.0 

All CPO 5660 5900 5720 5760 2.2 

(1 psi = 6.89 kPa) 

 

 

 

 The maximum load for each individual test is plotted in Figures 4.9 (control) and 

4.10 (HVFA concrete).  As shown in the plots, the test results were very similar from 

specimen to specimen with the same parameters.  Therefore, the results for these tests  

Specimen 

 

Peak Load 

(lb) 

Average Load 

(lb) 

COV 

(%) 

CPO_4-1 11994 

11817 2.6 CPO_4-2 11989 

CPO_4-3 11469 

FAPO_4-1 10830 

11079 2.0 FAPO_4-2 11183 

FAPO_4-3 11225 

CPO_6-1 32099 

32624 1.4 CPO_6-2 32854 

CPO_6-3 32920 

FAPO_6-1 28471 

27248 4.3 FAPO_6-2 27154 

FAPO_6-3 26119 
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were extremely consistent.  For instance, for the control specimens with the 1/2-inch-

diameter (13 mm) bars, the range of data varied by only 525 pounds (2335 N) for an 

average bond strength of 11,820 pounds (52,562 N). 

 

 

 

 
 

Figure 4.9 – Control peak load vs. specimen bar chart 

 

 

 

 

 
 

Figure 4.10 - HVFA peak load vs. specimen bar chart 

 

 

 

1 lb = 4.45 N 

1 lb = 4.45 N 
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4.5. DATA ANALYSIS AND INTERPRETATION 

  

The results for the pull-out tests at first seemed to favor the control mix in terms 

of bond strength.  However, since the compressive strength of the concrete mix is a 

significant contributing factor to bond strength, and each mix had a different compressive 

strength, a modification was made to the results.  Each failure load was divided by the 

square root of the mix‟s test day compressive strength (√f‟c) because of the relationship 

between bond strength and √f‟c developed in Equation 12-1 of ACI 318 (2008). 

(Equation 4.1). A report by the Transportation Research Board (Ramirez and Russell, 

2008) also describes extensive research performed on this method of equalization.  

According to the research, dividing the bond strength by √f‟c is an acceptable method of 

modifying specimen results for a more direct comparison.  Therefore, the loads recorded 

for the pull-out tests were divided by √f‟c to negate the effect of differing compressive 

strengths.  The results are shown in Table 4.4. Complete results for each test can be 

found in Appendices A and B. 

 

                                             (4.1) 

where: 

  = development length   

  = specified yield strength of reinforcement 

  = light weight concrete modification factor  

  = specified compressive strength of concrete 
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  = reinforcement location modification factor 

  = reinforcement coating modification factor 

  = reinforcement size modification factor 

 = the smaller of: the distance from the centroid of a bar to the nearest concrete 

 surface and the center to center spacing of bars being developed. 

  = transverse reinforcement index 

  = bar diameter 

 

 

 

Table 4.4 – Pull-out test results with modified loads 

 

Specimen 

 

 

Max Load 

(lb) 

 

Concrete 

Compressive 

Strength (psi) 

Modified Load 

(lb/√(psi) 

 

 Average Modified 

Load 

(lb/√(psi) 

COV  

(%) 

 

CPO_4-1 11994 

5762 

158 

156 2.6 CPO_4-2 11989 158 

CPO_4-3 11469 151 

FAPO_4-1 10830 

4424 

163 

167 2.0 FAPO_4-2 11183 168 

FAPO_4-3 11225 169 

CPO_6-1 32099 

5762 

423 

430 1.4 CPO_6-2 32854 433 

CPO_6-3 32920 434 

FAPO_6-1 28471 

4424 

428 

410 4.3 FAPO_6-2 27154 408 

FAPO_6-3 26119 393 

(1 lb = 4.45 N, 1 psi = 6.89 kPa, 1 lb/√(psi) = 8.36 N/√(Pa)) 

 

 

 

4.5.1. Load Analysis. Based solely on the modified peak load, the results for the 

pull-out tests were very similar and are shown in Figure 4.11. The HVFA concrete 

specimens failed at loads slightly higher for the 1/2-inch-diameter (13 mm) bar [167 
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lb/√psi ( 9.0 N/√Pa) vs. 156 lb/√psi (8.4 N/√Pa)], but the control specimen results were 

slightly higher for the 3/4-inch-diameter (19 mm) bar [430 lb/√psi (23 N/√Pa) vs. 410 

lb/√psi (22 N/√Pa)].  The difference between the results is well within the accuracy of the 

test method and indicates nearly identical results between the two concrete types. 

 

 

 

 
 

Figure 4.11 – Average specimen load comparison bar chart 

 

 

 

 

4.5.2. Slip Analysis.  Bar slip became evident at about the same modified load for 

each specimen, HVFA and control.  Because the failure mode was pull-out for every 

specimen without any splitting, the similar slip behavior indicates that the concrete 

around the rebar ribs crushed at about the same load for each compared specimen.  

Figure 4.12 shows a typical load vs. slip comparison between the two mixes using a 1/2-

inch-diameter (13mm.) bar.  One characteristic to note from this graph is that the control 

specimens appeared to maintain a higher load as the bar slipped out of the cylinders.   
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Figure 4.12 – Pull-out load vs. slip plot 

 

 

 

4.6. CONCLUSIONS 

 The data recorded from the pull-out tests supports the effectiveness of HVFA 

concrete in terms of bond integrity.  Since the pull-out test is a comparative test, this 

conclusion can be drawn based on the fact that the HVFA specimens demonstrated 

similar bond strengths to the control specimens (based on maximum modified load 

applied).  The only drawback from testing was that once the concrete began to crush 

around the reinforcing bar, slip occurred at a higher rate for the HVFA specimens.    
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5. BEAM SPLICE TEST 

 

5.1. INTRODUCTION 

One downside to the pull-out test, as mentioned in Section 2, is that it alters the 

bond behavior due to factors that are not present in the field, making the pull-out test 

more useful for comparisons than for actual bond behavior.  Therefore, the beam splice 

test was also performed to counter some of the inaccuracies of the pull-out test.  As noted 

in Section 2, the beam splice test is generally regarded as the most realistic test method, 

and the current ACI 318 (2008) design provisions for development length and splice 

length are based primarily on data from this type of test setup (ACI Committee 408, 

2003; Ramirez and Russell, 2008). 

The following section describes in detail the form development, specimen 

construction, test process, results, and conclusions for the beam splice tests. 

 

5.2. TENSILE TESTS 

Tensile tests were performed to investigate material properties such as yield stress 

and strain for the No. 6 (No. 19) reinforcing bars used in the beam splice tests.  The 

testing was performed using a 200,000 pound (890 kN) capacity Tinius-Olson universal 

compression/tension machine in accordance with ASTM E8-09, Standard Test Methods 

for Tension Testing of Metallic Materials (ASTM E8, 2009), and the results are shown in 

Table 5.1.  The yield strains found from this test were later used to determine whether or 
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not the reinforcement in the beam splice tests yielded before bond failure, while the yield 

strengths were used to predict the failure loads for the beams. 

Table 5.1 - Tensile test results 

 

Specimen 

 

Peak Load 

(kips) 

Yield Strength 

(ksi) 

Yield Strain 

(in/in) 

1 41402 72 0.0026 

2 42157 78 0.0024 

3 41983 77 0.0026 

4 47228 68 0.0020 

5 46891 68 0.0020 

6 47106 68 0.0020 

Averages 44461 72 0.0023 

(1 kip = 4.45 kN, 1 ksi = 6.89 MPa, 1 in = 25.4 mm) 

 

 

 

5.3. SPECIMEN DESIGN AND FABRICATION 

5.3.1. Splice Specimen Design.  The beams for the splice test were modeled after 

provisions in ACI 408R (2003) using dimensions and bar spacings similar to splice tests 

performed in previous research (Russell and Ramirez, 2008).  The beams measured 14 

feet (4267 mm) long with a 12 x 18 inch (305 mm x 457 mm) rectangular cross-section.  

The cage was comprised of six No. 6 bars, lap spliced in the center and hooked at the 

ends to form three total longitudinal reinforcing bars.  The splice length was determined 

using Equation 12-1 from the ACI 318 code (2008).  The equation was solved using the 

specifications for this specimen, multiplied by 1.3 for a Class B splice, and then divided 

by two to obtain a splice length of 16.55 in. (420 mm).  The reason that the ACI required 

splice length was divided by two was to ensure that the specimens failed due to bond and 

not yielding of the steel. The cages without confinement contained No. 3 bars for shear 
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reinforcement up until the splice on either side.  Stirrups were installed across the splice 

on the confinement specimens.  Shear reinforcement was designed to guarantee that the 

specimen failed due to the splice.  Cage dimensions along with stirrup spacing and strain 

gage locations are detailed in Figures 5.1 and 5.2.  

 

 

 

4.5 in.
51.75 in. 7 in.

2 in.

154 in.

14 ft.

12 in.

16.55 in.

9.25 in.

Strain Gage #3

Strain Gage #2
Strain Gage #4

Strain Gage #5

Strain Gage #1

Strain Gage #6

No. 6 bar (flexural)

No. 3 bar (stirrups)

 

 

Figure 5.1 – Splice cage with no confinement (from above) 
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Figure 5.2 – Splice cage with confinement (from above) 
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5.3.2. Splice Specimen Fabrication.  The splice tests were split into two groups.  

Half of the splice specimens included confinement along the splice length for both mixes, 

and the other half did not.  The splices‟ reaction to confinement was tested due to ACI‟s 

inclusion of a confinement variable in the development equation (Equation 12-1 from 

ACI 318-08).  The test matrix is shown in Table 5.2. 

 

 

 

Table 5.2 – Splice test matrix 

 

Specimen Name Mix Type Confinement 

CONT_NC-1 Control No 

CONT_NC-2 Control No 

CONT_NC-3 Control No 

FA_NC-1 HVFA No 

FA_NC-2 HVFA No 

FA_NC-3 HVFA No 

CONT_C-1 Control Yes 

CONT_C-2 Control Yes 

CONT_C-3 Control Yes 

FA_C-1 HVFA Yes 

FA_C-2 HVFA Yes 

FA_C-3 HVFA Yes 

 

 

A combination of steel and wooden formwork was constructed to the required 

beam dimensions.  The formwork consisted of a set of three beams, such that all three 

specimens from a particular group of variables (see Table 5.2) would be constructed 

from the same batch of concrete.  Next, the stirrups and longitudinal bars were cut and 

bent to the required dimensions, and the rebar cages were tied together to the 

specifications shown in the previous section.  Strain gages were installed at both ends of 
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each splice to monitor the strain in the rebar during testing (Figure 5.3). The cage was 

then lowered into the forms, using one in. chairs to ensure an adequate clear cover 

(Figure 5.4).   

 
 

(a) Finished cage viewed from the side 

 

 
 

(b) Close up of splice region 

 

Figure 5.3 – Finished cage and close up of spliced bars 

 

 

 

 

No. 6 Bars Splice Region 

Strain gage #1 

Strain gage #2 

 

Strain gage #3 

Strain gage #4 

Strain gage #5 

Strain gage #6 

No. 4 Bars 
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Figure 5.4 – Cages in the formwork 

 

 

 

 

Both the control concrete and HVFA concrete were batched from the local ready-

mix producer to the specifications detailed in Section 3.  For the HVFA concrete, the 

required amounts of gypsum and calcium hydroxide were added to the ready-mix truck 

once it arrived at the High-Bay Structures Laboratory (Figure 5.5).  Once the slump was 

adjusted to the specified amount through the addition of supplemental water, the concrete 

was then added to the forms.  (Note that approximately 8 to 10 gallons (30 to 38 L) of 

water was held in abeyance from the ready-mix supplier for this express purpose).  A 

bucket was used to transfer the concrete from the truck to the forms (Figure 5.6).  

Consolidation was achieved using a vibrator, and the tops of the beams were finished 

with floats and trowels (Figure 5.7).  Finally, two hours after finishing, the beams were 

covered with wet burlap and plastic and allowed to cure before being stripped of the 

forms (three days for the control concrete, one week for the high-volume fly ash 

concrete).  All compressive strength test cylinders were maintained in the exact same 

curing condition as the beams they represented. 
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Figure 5.5 – Adding CH and Gypsum to the ready mix truck 

 

 

 

 

 
 

Figure 5.6 – Transferring concrete from the truck to the forms using a bucket 
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Figure 5.7 – Finishing the specimens 

 

 

 

 

5.4. TEST SETUP AND PROCEDURE 

5.4.1. Splice Test Setup.  A load frame was assembled and equipped with two 

hydraulic actuators intended to apply the two point loads to the specimens (Figure 5.8).  

The splice specimens were placed on two roller supports, a foot from each end of the 

beam, creating a four point loading situation with the two actuators and spreader beam 

(Figure 5.9).  The four point loading results in a uniform moment in the splice region, 

and thus uniform stress, within the splice region.  A LVDT was used to measure the 

deflection of the center of the beam.  The strain gages from the beam as well as the 

LVDT were wired to a data acquisition system where the deflections, strains, and loads 

were recorded. 
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Figure 5.8 – Splice test setup with specimen loaded 
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Figure 5.9 – Location of load points on specimen 
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5.4.2. Splice Test Procedure.  The two loads were applied to the beam specimens 

using an actuator deflection of 0.2 in. (5 mm) per loading cycle, to ensure that a 

minimum of 10 data points were acquired and to allow periodic surveying of the beam 

during the test.  During the testing, any cracks that formed on the surface of the beam 

were marked, and the deformation and strains were monitored until the beam failed 

(Figure 5.10).   

 

 

 

 
 

Figure 5.10 – Failed splice specimen 

 

 

 

 

5.5. RESULTS 

 

Three parameters were recorded for each splice test specimen.  These values 

included applied load (P), rebar strain, and displacement of the beam at the midpoint.  

Table 5.3 contains the maximum applied load (P) for each splice specimen and includes 

the average and coefficient of variation (COV) for each group of specimens.  The 

Horizontal Splitting 

Failure in the Splice Zone 
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theoretical maximum applied load for each splice specimen assuming yielding of the bars 

instead of a bond failure is also shown in the table, which indicates that all of the splice 

specimens experienced a premature bond failure – the intended result. A statistical 

analysis of the test data is available in Appendix D. According to the t-test, the data 

averages for both specimen types are statistically identical.  Figures 5.11 through 5.14 

are photographs of the failed test specimens within the splice region.  Each specimen 

displays horizontal cracking consistent with a bond failure. 

 

 

 

Table 5.3 – Beam splice test results 

 

Specimen 

 

 

Max 

Theoretical P 

(kips) 

Max Applied P 

(kips) 

 

Average Applied P 

(kips) 

 

COV 

(%) 

 

Cont-NC-1  

31 
26.67 

27.38 2.4 Cont-NC-2 28.00 

Cont-NC-3 27.47 

FA-NC-1  

31 
23.63 

24.44 4.6 FA-NC-2 23.96 

FA-NC-3 25.72 

Cont-C-1  

30 
28.11 

28.54 5.5 Cont-C-2 27.21 

Cont-C-3 30.29 

FA-C-1  

30 
27.49 

25.75 5.9 FA-C-2 24.69 

FA-C-3 25.08 

(1 kip = 4.45 kN) 
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Figure 5.11 – Failed control specimen with no confinement 

 

 

 

 

 
 

Figure 5.12 – Failed control specimen with confinement 
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Figure 5.13 – Failed fly ash specimen with no confinement 
 
 
 
 

 
 

Figure 5.14 – Failed fly ash specimen with confinement 
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Table 5.4 contains the compressive strength test data for each concrete pour and 

includes the average and COV for each group of specimens. 

 

 

 

Table 5.4 – Compressive strength test data 

 

 
Test Day Strength (psi) 

  Cylinder 1 Cylinder 2 Cylinder 3 Average COV 

Cont-NC 6560 7435 7790 7262 8.7% 

Cont-C 7127 6735 7074 6979 3.1% 

FA- NC 4841 4682 4968 4830 3.0% 

FA- C 4386 4137 4748 4424 7.0% 

(1 psi = 6.89 kPa) 

 

 

 

The data was also organized into plots of load vs. displacement and load vs. 

strain.  An example plot of load vs. displacement is shown in Figure 5.15 for Specimen 

FA-NC-1, which corresponds to a  specimen constructed with fly ash concrete (FA) with 

no confinement (NC) steel within the splice region.  As shown in the plot, there are two 

distinct linear portions of the response.  The first occurs from a load of 0 to a load of 

approximately 4 kips (18 kN).  The second occurs from a load of approximately 4 kips 

(18 kN) until failure at 23.64 kips (105 kN).  The shift in slope at around 4 kips (18 kN) 

is likely due to cracking of the concrete in tension.  More importantly, the linear portion 

of the load-deflection plot up until failure is also indicative of a premature bond failure – 

the intended result. 
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Figure 5.15 – Displacement vs. load plot for specimen FA_NC-1 

 

 

 

An example plot of load vs. strain is shown in Figure 5.16 for Specimen FA-NC-

1, which is the same specimen as plotted in Figure 5.15.  As shown in the plot, there are 

also two distinct linear portions of the response.  The first occurs from a load of 0 to a 

load of approximately 4 kips (18 kN).  The second occurs from a load of approximately 4 

kips (18 kN) until failure at 23.64 kips (105 kN).  The shift in slope likely occurs due to 

flexural cracking.  Again, more importantly, the linear portion of the load-strain plot up 

until failure is also indicative of a premature bond failure – the intended result. 

Similar plots for all of the bond test specimens follow the same general patterns.  

The complete data for each individual test is included in Appendix A (Table A.2). 

 

5.6. DATA ANALYSIS AND INTERPRETATION 

 5.6.1. Failure Load Analysis.  Figure 5.17 is a plot of the average failure load 

for each specimen group and includes an error bar representing one standard deviation 

above and below the average value.  As shown in the figure, and in Table 5.2, the test 

1 kip = 4.45 kN 
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results were extremely consistent, with a typical COV of only 5 percent.  Also note that 

the results for the confined splice are slightly higher in all instances, which was to be 

expected. 

 

 

 

 
 

Figure 5.16 – Load vs. strain plot for specimen FA_NC-1 

 

 

 

 

 
 

Figure 5.17 – Average failure load for each specimen type 

 

 

 

1 kip = 4.45 kN 

1 kip = 4.45 kN 
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However, when comparing the test data of the HVFA concrete with the control 

concrete, it is necessary to adjust the results to reflect the different compressive strengths 

of the specimens.  As mentioned previously, the development length equation in ACI 318 

(2008), repeated below, is a function of a number of variables that represent the specific 

characteristics of a given situation.  However, for the splice test specimens, all of these 

variables were identical except for concrete strength.  Therefore, to normalize the data for 

comparison, the failure loads were divided by the square root of compressive strength 

(Table 5.5) and replotted in Figure 5.18.  These results indicate that the HVFA beam 

specimens were able to support a higher modified applied load than the control beams 

before the splice failed, therefore exhibiting a stronger bond between the HVFA concrete 

and the reinforcing bars. 

 

        (5.1) 

where: 

  = development length   

  = specified yield strength of reinforcement 

  = light weight concrete modification factor  

  = specified compressive strength of concrete 

  = reinforcement location modification factor 

  = reinforcement coating modification factor 

  = reinforcement size modification factor 

 = the smaller of: the distance from the centroid of a bar to the nearest concrete 
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 surface and the center to center spacing of bars being developed. 

  = transverse reinforcement index 

  = bar diameter 

 

 

 

Table 5.5 - Pull-out test results with modified loads 

 

Specimen 

Max Applied 

P 

(kip) 

Concrete 

Compressive 

Strength (ksi) 

Modified P 

(lb/√psi) 

 

Average 

Modified P 

(lb/√psi) 

COV 

(%) 

Cont-NC-1 26.67 

7262 

312.97 

321.3 2.4 Cont-NC-2 28.00 328.58 

Cont-NC-3 27.47 322.36 

FA-NC-1 23.63 

4830 

340.00 

351.6 4.6 FA-NC-2 23.96 344.75 

FA-NC-3 25.72 370.07 

Cont-C-1 28.11 

6979 

336.49 

341.6 5.5 Cont-C-2 27.21 325.72 

Cont-C-3 30.29 362.59 

FA-C-1 27.49 

4424 

413.32 

387.2 5.9 FA-C-2 24.69 371.22 

FA-C-3 25.08 377.08 

(1 kip = 4.45 kN, 1 ksi = 6.89 MPa, 1 lb/√psi = 8.36 N/√Pa)  

 

 

 

 
1 lb/√psi = 8.36 N/√Pa 
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Figure 5.18 – Splice specimen load comparisons (average) 

 5.6.2. Strain Analysis.  The majority of the strain data collected from each beam 

was graphed in a load vs. strain format.  These results were then compared to strain data 

acquired from rebar tensile specimens described in Section 5.2.  According to this data, 

each splice specimen failed before the maximum experimental strain (determined from 

the tensile tests) was reached in the rebar.  This result indicates that each specimen 

ultimately failed due to the bond around the splices failing and not from the rebar itself.  

A typical modified load vs. strain relationship was plotted for both a control specimen 

and a HVFA specimen (both with confinement) and presented side by side in Figure 

5.19. According to the plot, both specimens displayed very similar behavior during 

testing.  The only difference is the number of times the control specimen experienced a 

slope change where as the plot for the HVFA specimen was smoother throughout the 

course of testing.  This behavior for the control specimen, as mentioned above, can be 

attributed to flexure cracking during the different phases of testing.   

 

 

 

 
 

Figure 5.19 – Load vs. strain plot 

1 kip/√psi = 8.36 kN/√Pa 
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5.7. CONCLUSIONS 

 The load data collected from the splice tests, once modified for the specimen 

compressive strengths, indicates that the high-volume fly ash concrete specimens were 

able to support more load before the splice failed than the control specimens.  These 

findings, along with the findings from the pull-out tests, indicate that the use of high 

volumes of fly ash as a cement substitute is not only feasible in terms of bond, but also 

superior in some cases. 
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6. FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 

 

Currently, high-volume fly ash (HVFA) concrete is used mostly for 

ornamentation and various non load bearing applications.  Few structures have been built 

utilizing this less proven material.  The objective of this study was to explore the effects 

of substituting large amounts of fly ash on the concrete to reinforcement bond strength, 

which, ultimately, along with other strength and durability tests (Marlay, 2011) examined 

the feasibility of using HVFA concrete for the sustained construction of structures. 

This section contains the findings from the mix development, pull-out tests, and 

beam splice tests.  Next, the conclusions based on these findings are presented along with 

recommendations for future research.  

 

6.1. FINDINGS 

 The findings from the mix development as well as the pull-out testing and beam 

splice testing were recorded and divided into the following sections. 

 6.1.1. Mix Development. The mix development phase of this study was used to 

find a plausible HVFA concrete mix and control mix for the pull-out testing and beam 

splice testing. Listed below are the findings that led to the mixes chosen for this study: 

 A lower water-to-cementitious ratio of 0.40 can be used for a HVFA mix 

 The use of activators such as calcium hydroxide and gypsum increased the 

early compressive strengths for HVFA concrete mixes 
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 Mix designs using 50, 60, and 70 percent cement replacement with fly ash, 

and added calcium hydroxide and gypsum , yielded early age compressive 

strengths as well as 28 day strengths acceptable for construction. 

 The 70 percent fly ash mix (with 4 percent gypsum and 10 percent calcium 

hydroxide) was the highest percent fly ash mix to still have sufficient 

compressive strengths. 

6.1.2. Pull-out Testing. The pull-out tests were performed on 6 specimens of 

each mix, 3 per mix using a No. 4 bar and the other 3 per mix using a No. 6 bar.  Each 

specimen was tested until failure and the findings from these tests are listed below: 

 All specimens failed due to pull-out (localized concrete crushing) 

 HVFA concrete specimens failed at loads similar to those of the control 

specimens once adjusted for the respective compressive strengths 

 Slip initially occurred at similar loads for both the HVFA concrete and control 

specimens 

 Once initial slip occurred for both concrete mixes, the load fell much faster for 

the HVFA concrete specimens than for the control specimens 

6.1.3. Beam Splice Testing.  The beam splice tests were performed on a series of 

beams with confinement present in the splice zone as well as no confinement present in 

the splice zone for both mix types.  The findings from the beam splice tests are listed 

below: 

 All specimens failed at the splice 

 Steel reinforcement did not yield for any test 
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 Behavior at failure was more violent for specimens with no splice 

confinement (consistent with past research) 

 Once the load (P) was modified for concrete strength, the HVFA concrete 

specimens outperformed the control specimens 

 

6.2 CONCLUSIONS 

 Based on the previously listed findings for each test performed for this study, the 

following conclusions were drawn that support the validity of bond strength for HVFA 

concrete mixes. 

 6.2.1. Mix Development.  Based on the findings from the compression cube and 

compression cylinder testing performed as a part of the mix development phase of 

research, the optimal mix designs for the HVFA and control specimens were determined 

based on the reactivity of the provided fly ash.  The mix selected for the experimental 

HVFA concrete specimens was the 70 percent fly ash mix (w/cm = 0.40), with 4 percent 

gypsum, and 10 percent calcium hydroxide. 

 6.2.2. Pull-out Testing. The data recorded from the pull-out tests supports the 

effectiveness of HVFA concrete in terms of bond integrity.  Since the pull-out test is a 

comparative test, this conclusion can be drawn based on the fact that the HVFA 

specimens demonstrated similar bond strengths to the control specimens (based on 

maximum modified load applied).  The only drawback for the HVFA concrete was that 

once the concrete began to crush around the reinforcing bar, slip occurred at a higher rate 

for the HVFA specimens. 
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 6.2.3. Beam Splice Testing. The load data collected from the splice tests, once 

modified for the specimen compressive strengths, indicates that the high-volume fly ash 

concrete specimens were able to support more load before the splice failed than the 

control specimens.  These findings, along with the findings from the pull-out tests, 

indicate that the use of high volumes of fly ash as a cement substitute is not only feasible 

in terms of bond, but also superior in some cases. 

 

6.3. RECOMMENDATIONS 

 Future research opportunities are available for the bond behavior of HVFA 

concrete simply because it is a topic that has seldom been researched in the past.  Much 

more research must be performed in order to build up a data base of results that can 

eventually be used for comparison as well as for future ACI design codes.  Also 

important for design would be to explore whether or not certain ACI code distinctions, 

such as confinement or bar size factors, for classic concrete designs also apply to HVFA 

concrete, or if they need to be tailored specifically to HVFA concrete.  Below is a list of 

recommendations for testable variables related to this topic: 

 Perform tests with a larger variation of bar sizes based on ACI 318 code 

distinctions for bar size effect on development length 

 Through design, induce different failure modes such as splitting for pull-out 

tests 

 Cast beam splice specimens upside down to test the top bar effect (  from 

the ACI 318 code) 

 



86 

 

 Perform tests with fly ash from different sources 

 Perform tests with aggregates from different sources 

 Perform bond tests on more specimen types mentioned in ACI 408R-03. 
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APPENDIX A 

 

PULL-OUT AND SPLICE TEST DATA TABLES 
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Table A.1 – Test day compressive strengths for pull-out specimens 

 

 
Test Day Strength (psi) 

 
Cylinder 1 Cylinder 2 Cylinder 3 Average COV (%) 

All FAPO 4386 4137 4748 4424 0.07 

All CPO 5662 5905 5718 5762 0.02 

(1 psi = 6.89 kPa) 

 

 

 

 

Table A.2 – Pull-out test results 
 

Specimen 

 

 

Max Applied 

Load 

(lb) 

Concrete 

Compressive 

Strength (psi) 

Modified 

Load 

(lb/√(f’c) 

Average 

Modified Load 

(lb/√(f’c) 

CV 

(Modified Load) 

(%) 

CPO_4-1 11994 

5762 

158 

156 2.6 CPO_4-2 11989 158 

CPO_4-3 11469 151 

FAPO_4-1 10830 

4424 

163 

167 2.0 FAPO_4-2 11183 168 

FAPO_4-3 11225 169 

CPO_6-1 32099 

5762 

423 

430 1.4 CPO_6-2 32854 433 

CPO_6-3 32920 434 

FAPO_6-1 28471 

4424 

428 

410 4.3 FAPO_6-2 27154 408 

FAPO_6-3 26119 393 

(1 lb = 4.45 N, 1 psi = 6.89 kPa, 1 lb/√(psi) = 8.36 N/√(Pa)) 8
8
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Table A.3 – Test day compressive strengths for beam splice specimens 
 

 
Test Day Strength (psi) 

 
Cylinder 1 Cylinder 2 Cylinder 3 Average COV (%) 

Cont-NC 6560 7435 7790 7262 8.7 

Cont-C 7127 6735 7074 6979 3.1 

FA-NC 4841 4682 4968 4830 3.0 

FA-C 4386 4137 4748 4424 7.0 

(1 psi = 6.89 kPa) 
 

 

 

 

Table A.4 – Beams splice test results 

 

Specimen 

 

 

Max Applied P 

(kip) 

Concrete 

Compressive 

Strength (ksi) 

 Modified P 

(lb/√psi) 

 

 Average 

Modified P 

(lb/√psi) 

COV 

(Modified P) 

(%) 

Cont-NC-1 26.67 

7262 

312.97 

321.30 2.4 Cont-NC-2 28.00 328.58 

Cont-NC-3 27.47 322.36 

FA-NC-1 23.63 

4830 

340.00 

351.60 4.6 FA-NC-2 23.96 344.75 

FA-NC-3 25.72 370.07 

Cont-C-1 28.11 

6979 

336.49 

341.60 5.5 Cont-C-2 27.21 325.72 

Cont-C-3 30.29 362.59 

FA-C-1 27.49 

4424 

413.32 

387.21 5.9 FA-C-2 24.69 371.22 

FA-C-3 25.08 377.08 

(1 lb = 4.45 N, 1 psi = 6.89 kPa, 1 lb/√(psi) = 8.36 N/√(Pa)) 

8
9
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Table A.5 – 28 day compressive strengths for pull-out specimens 
 

 
28 Day Strength (psi) 

  Cylinder 1 Cylinder 2 Cylinder 3 Average 

All FAPO 4415 4257 4019 4230 

All CPO 6396 5613 4980 5663 

(1 psi = 6.89 kPa) 

 

 

 

 

Table A.6 – 28 day compressive strengths for beam splice specimens 
 

  28 Day Strength (psi) 

  Cylinder 1 Cylinder 2 Cylinder 3 Average 

Cont-NC 6396 5613 4980 5663 

Cont-C 6412 5993 6126 6177 

FA-NC 4905 4652 4869 4809 

FA-C 4415 4257 4019 4230 

(1 psi = 6.89 kPa) 
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APPENDIX B 

 

PULL-OUT AND SPLICE TEST DATA PLOTS 
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Figure B.1 - Pull-out applied load comparisons 

 

 

 

 

 
 

Figure B.2 - Pull-out modified load comparisons 

1 lb = 4.45 N 

1 lb/√psi = 8.36 N/√Pa 
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Figure B.3 – Applied load vs. slip plot for CPO_4 specimens 

 

 

 

 

 
 

Figure B.4 – Applied load vs. slip plot for FAPO_4 specimens 

1 lb = 4.45 N 

1 lb = 4.45 N 
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Figure B.5 – Applied load vs. slip plot for CPO_6 specimens 

 

 

 

 

 
 

Figure B.6 – Applied load vs. slip plot for FAPO_6 specimens 

1 lb = 4.45 N 

1 lb = 4.45 N 
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Figure B.7 – Modified load vs. slip for all pull-out specimens with No. 4 bars 

 

 

 

 

  
 

Figure B.8 – Modified Load vs. slip for all pull-out specimens with No. 6 bars 

1 lb/√psi = 8.36 N/√Pa 

1 lb/√psi = 8.36 N/√Pa 
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Figure B.9- Beam splice applied load comparisons 

 

 

 

 

 
 

Figure B.10- Beam splice modified load comparisons 

1 kip = 4.45 kN 

1 lb/√psi = 8.36 N/√Pa 
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Figure B.11 – Applied P vs. strain (average of all gages per specimen) for Cont_NC 

 

 

 

 

 
 

Figure B.12 – Applied P vs. strain (average of all gages per specimen) for FA_NC 

1 kip = 4.45 kN 

1 kip = 4.45 kN 
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Figure B.13 – Applied P vs. strain (average of all gages per specimen) for Cont_C 
 

 

 

 

 
 

Figure B.14 – Applied P vs. strain (average of all gages per specimen) for FA_C 

1 kip = 4.45 kN 

1 kip = 4.45 kN 
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Figure B.15 – Applied load (P) vs. displacement for Cont_NC 

 

 

 

 

 
 

Figure B.16 – Applied load (P) vs. displacement for FA_NC 

1 kip = 4.45 kN 

1 kip = 4.45 kN 
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Figure B.17 – Applied load (P) vs. displacement for Cont_C 
 

 

 

 

 
 

Figure B.18 – Applied load (P) vs. displacement for FA_C 
 

 

 

 

1 kip = 4.45 kN 

1 kip = 4.45 kN 
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APPENDIX C 

 

MATERIALS TABLES AND PLOTS 
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Table C.1 – Chemical Analysis of Ameren UE fly ash 
 

Oxide % 

Silicon Oxide (SiO2) 30.45 – 36.42 

Aluminum Oxide (Al2O3) 16.4 – 20.79 

Iron Oxide (Fe2O3) 6.78 – 7.73 

Calcium Oxide (CaO) 24.29 – 26.10 

Magnesium Oxide (MgO) 4.87 – 5.53 

Sulfur (SO3) 2.18 – 6.36 

Sodium Oxide (Na2O) 1.54 – 1.98 

Potassium Oxide (K2O) 0.38 – 0.57 

Titanium Oxide (TiO2) 1.42 – 1.56 

Phosphorus Oxide (P2O5) 1.01 – 1.93 

Manganese Oxide (MnO) 0.028 – 0.036 

Strontium Oxide (SrO) 0.40 – 0.44 

Barium Oxide (BaO) 0.68 – 0.99 

LOI 0.24 – 1.15 

 

 

 

 

Table C.2 – Fly ash chemical differences expressed as percent by weight 
 

Component Bituminous Sub-bituminous Lignite 

SiO2 20 – 60  40 – 60  15 – 45  

Al2O3 5 – 35 20 – 30  10 – 25  

Fe2O3 10 – 40 4 – 10  4 – 15  

CaO 1 – 12  5 – 30   15 – 40  

MgO 0 – 5  1 – 6  3 – 10  

SO3 0 – 4  0 – 2  0 – 10  

Na2O 0 – 4  0 – 2  0 – 6  

K2O 0 – 3  0 – 4  0 – 4  

LOI 0 – 15  0 – 3  0 – 5  
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Table C.3 – Test matrix for mortar cubes 
 

  
% of Cementitious Material 

Specimen Set * w/cm Cement Fly Ash 

Control-0.40 

0.4 

100 0 

50/50-0.40 50 50 

25/75-0.40 25 75 

100% FA-0.40 0 100 

Control-0.30 

0.3 

100 0 

50/50-0.30 50 50 

25/75-0.30 25 75 

100% FA-0.30 0 100 

  *Each set is comprised of the average of three specimens 

 

 

 

 

Table C.4 – Test matrix for paste cubes 

 

 
% of Cementitious Material 

Specimen Set * 
Cement 

 

Fly Ash 

 

Gypsum 

 

Calcium 

Hydroxide 

Control 100 0 - - 

50/50 50 50 - - 

40/60 40 60 - - 

25/75 25 75 - - 

100% FA 0 100 - - 

50/50-G 50 50 4 - 

40/60-G 40 60 4 - 

25/75-G 25 75 4 - 

100% FA-G 0 100 4 - 

50/50-G-10CH 50 50 4 10 

40/60-G-10CH 40 60 4 10 

25/75-G-10CH 25 75 4 10 

100% FA-G-10CH 0 100 4 10 

50/50-G-15CH 50 50 4 15 

40/60-G-15CH 40 60 4 15 

25/75-G-15CH 25 75 4 15 

100% FA-G-15CH 0 100 4 15 

         *Each set is comprised of the average of three specimens 
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Table C.5 – Compressive strengths for mortar cubes 

 

  
Compressive Strength (psi) 

Specimen Set w/cm Day 3 Day 7 Day 28 

Control-0.40 

0.40 

3435 5275 5506 

50/50-0.40 2726 4079 5368 

25/75-0.40 1003 1906 2909 

100% FA-0.40 74 313 520 

Control-0.30 

0.30 

2905 4695 5105 

50/50-0.30 2106 2176 3926 

25/75-0.30 1434 1824 2384 

100% FA-0.30 218 468 881 

(1 psi = 6.89 kPa) 

 

 

 

 

 
 

Figure C.1 – Mortar cube compressive strengths on test days (w/cm = 0.40) 
 

 

 

 

(1psi = 6.89 kPa) 
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Figure C.2 - Mortar cube compressive strengths on test days (w/cm = 0.30) 
 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1psi = 6.89 kPa) 
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Table C.6 – Compressive strengths for paste cubes 

 

 
Compressive Strength (psi) 

Specimen Set Day 1 Day 3 Day 7 

Control 1748 3919 5255 

50/50 558 1920 3594 

40/60 439 1571 2136 

25/75 0 740 1266 

100% FA 0 35 53 

50/50-G 981 2500 3540 

40/60-G 793 1701 2469 

25/75-G 339 1271 1646 

100% FA-G 0 0 71 

50/50-G-10CH 1063 2529 2943 

40/60-G-10CH 953 2243 2708 

25/75-G-10CH 554 1219 1314 

100% FA-G-10CH 671 670 748 

50/50-G-15CH 1708 2649 3804 

40/60-G-15CH 890 2390 3701 

25/75-G-15CH 980 1075 1551 

100% FA-G-15CH 624 616 580 

(1 psi = 6.89 kPa) 
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Figure C.3 – Paste cubes with no admixtures 
 

 

 

 

 
 

Figure C.4 – Paste Cubes with 4 percent gypsum 

 

 

  

 

(1psi = 6.89 kPa) 

 
 

(1psi = 6.89 kPa) 
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Figure C.5 – Paste Cubes with 4 percent gypsum and 10 percent calcium hydroxide 
 

 

 

 

 
 

Figure C.6 – Paste Cubes with 4 percent gypsum and 15 percent calcium hydroxide 
 

 

 

 

 

(1psi = 6.89 kPa) 

 
 

(1psi = 6.89 kPa) 
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Table C.7 – Conventional mix description 
 

Ingredient Amount (lb/ft
3
) 

Water (Adjusted) 282.4 
Portland cement 755.6 
Coarse aggregate 1754.0 
Fine aggregate 1110.5 
w/c 0.45 

(lb/ft
3 

= 157 N/m
3
)
 

 

 

 

 

Table C.8 – HVFA mix description 
 

Ingredient Amount (lb/ft
3
) 

Water (Adjusted) 282.4 

Cementitious 

materials 

Portland cement 230.0 

Fly ash 536.7 

Calcium hydroxide 59.5 

Gypsum 23.8 

Coarse aggregate 1754.0 

Fine aggregate 1016.0 

w/cm 0.40 

(lb/ft
3 

= 157 N/m
3
)
 

 

 

 

 

Table C.9 – Test Matrix for cylinder compression tests 
 

  
Cementitious Materials (%) 

Specimen Set * w/cm Fly Ash Cement Gypsum CH 

Control 0.45 0 100 4 10 

HVFA (50%) 0.40 50 50 4 10 

HVFA (60%) 0.40 60 40 4 10 

HVFA (70%) 0.40 70 30 4 10 

HVFA (75%) 0.40 75 25 4 10 

*Each set is comprised of the average of three specimens 
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Table C.10 – Test results from cylinder compression tests 
 

  
Compressive Strength (psi) 

Specimen Set * w/c Day 1 Day 3 Day 7 Day 28 

Control 0.40 3092 4537 5176 6188 

HVFA (50%) 0.40 1189 2464 3982 5360 

HVFA (60%) 0.40 1236 2671 3987 5475 

HVFA (70%) 0.40 1121 1849 2877 4428 

HVFA (75%) 0.40 657 1228 2002 3021 

*Each set is comprised of the average of three specimens 

(1 psi = 6.89 kPa) 

 

 

 

 

 

  

 
 

Figure C.7 – Compressive strength vs. test day plot for all cylinder mixes 
 

 

 

 

 

 

 

 

 

 

 

(1psi = 6.89 kPa) 
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Table C.11 – Tensile Test Data 
 

Specimen Peak Load (kips) Yield Strength (ksi) Yield Strain (in/in) 

1 41402 72 0.0026 

2 42157 78 0.0024 

3 41983 77 0.0026 

4 47228 68 0.0020 

5 46890.8 68 0.0020 

6 47106 68 0.0020 

Average 44461 72 0.0023 

(1 kip = 4.45 kN, 1 ksi = 6.89 MPa, 1 in = 25.4 mm) 
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APPENDIX D 

STATISTICAL ANALYSIS 
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Table D.1 – t-test for CPO_4 and FAPO_4 specimen average comparisons 

  Variable 1 

Variable 

2 

Mean 155.684406 166.5778 

Variance 15.80600925 10.64479 

Observations 3 3 

Pooled Variance 13.22539978 

 Hypothesized Mean Difference 0 

 df 4 

 

t Stat 

-

3.668626474 

 P(T<=t) one-tail 0.010708505 

 t Critical one-tail 2.131846782 

 P(T<=t) two-tail 0.02141701 

 t Critical two-tail 2.776445105   

 

 

Table D.2 – t-test for CPO_6 and FAPO_6 specimen average comparisons 

  Variable 1 Variable 2 

Mean 429.7987919 409.6753977 

Variance 36.15162873 314.0897869 

Observations 3 3 

Pooled Variance 175.1207078 

 Hypothesized Mean Difference 0 

 df 4 

 t Stat 1.862422083 

 P(T<=t) one-tail 0.068009273 

 t Critical one-tail 2.131846782 

 P(T<=t) two-tail 0.136018546 

 t Critical two-tail 2.776445105   
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Table D.3 – t-test for Cont_NC and FA_NC specimen average comparisons 

  Variable 1 Variable 2 

Mean 321.3033762 351.6036816 

Variance 61.73513886 261.355324 

Observations 3 3 

Pooled Variance 161.5452314 

 Hypothesized Mean Difference 0 

 df 4 

 

t Stat 

-

2.919749313 

 P(T<=t) one-tail 0.021627151 

 t Critical one-tail 2.131846782 

 P(T<=t) two-tail 0.043254302 

 t Critical two-tail 2.776445105   

 

 

Table D.4 – t-test for Cont_C and FA_C specimen average comparisons 

  Variable 1 Variable 2 

Mean 341.5993337 387.2061547 

Variance 359.4000764 519.9382111 

Observations 3 3 

Pooled Variance 439.6691438 

 Hypothesized Mean Difference 0 

 df 4 

 

t Stat 

-

2.663866381 

 P(T<=t) one-tail 0.028081794 

 t Critical one-tail 2.131846782 

 P(T<=t) two-tail 0.056163587 

 t Critical two-tail 2.776445105   
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