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ABSTRACT 

  

A very carefully planned Missouri-wide field exploration and laboratory 

investigation program, with a focus on fine-grained soils, was executed with the aim of 

characterizing the variability of geotechnical parameters statistically with a view to 

increasing the use of reliability-based design (RBD) among geotechnical engineers. 

Geotechnical parameters were characterized in terms of both their first and second 

statistical moments and their coefficient of variation (COV). Their probability 

distributions and their scale of fluctuation, θ, were also determined. Correlations between 

difficult-to-obtain parameters and more easily-obtained parameters were developed and 

the degree of fit of study data to published empirical correlations was investigated.  

Results of the analyses show that: COV and probability distribution of parameters 

are dependent upon the soil classification type and in-situ state; Field data, like CPTu 

data, which provide sufficient data to establish a well-defined parameter profile, are the 

best for determining θ;  The Semivariogram Function (SVF) is better suited than the 

Autocorrelation Function (ACF) for the determination of θ from widely-spaced, non-

continuous, irregular data obtained from laboratory tests; Considering the fewer number 

of data points from a dataset required (half that of SVF) for analysis with the ACF, the 

SVF is better for the determination of θ.  

A framework which incorporates the spatial averaging effect of parameters based 

on the scale of fluctuation and variance reduction factor that are computed from widely-

spaced irregular and non-continuous data was proposed. The application of this 

framework to RBD was also illustrated with examples.  
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1. INTRODUCTION 

 

1.1. OVERVIEW  

The technical superiority of reliability-based design (RBD) methods over the 

deterministic methods of design of geotechnical structures has been firmly established in 

literature (Smith, 1986; Harr, 1987; Haldar and Mahadevan, 2000; Baecher and Christian, 

2003; Fenton and Griffiths, 2007). Notwithstanding this technical superiority, there has 

been a rather slow uptake of RBD in the geotechnical community. This has been 

attributed variously to the unfamiliarity of geotechnical engineers to statistics and the 

general perception that RBD requires more data (hence more testing, implying increased 

cost), more time (which translates to cost) and generally more effort than the 

deterministic design methods currently in use. Whatever the extra costs attributable to 

RBD, its advantages appears to outweigh those disadvantages. The advantages of RBD 

include: the higher level of certainty in the determination of design risk; higher level of 

certainty in terms of the safety of the overall design; and presentation of the safety of a 

design in terms (probability of failure instead of factor of safety) easily understood by the 

public. 

Principal to the deployment of RBD is the determination of the statistics of 

geotechnical parameters and the probabilistic analysis of these parameters. The primary 

statistics required to take the maximum advantage of RBD are the mean, variance, and 

scale of fluctuation, θ. These statistics have been found to be not only site-specific but 

also dataset-specific. When data is available, the mean and variance are fairly easy to 

compute. Computing the scale of fluctuation is a bit complex, requiring more data and a 
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well-defined soil profile. A number of these statistics are published in the literature. 

However, owing to the provenance of data (sourced from far and wide) from which they 

were computed, the range in the properties is quite wide.  

A considerable amount of data, more than required for deterministic design, is 

required to establish a well-defined soil profile and compute the scale of fluctuation. 

Field tests like the cone penetration test (CPT) provide sufficient data to establish a well-

defined profile but do not enjoy widespread use. The more prevalent standard penetration 

test (SPT), in which undisturbed samples for laboratory testing are not available, does not 

provide sufficient data to establish a well-defined profile required for the computation of 

the scale of fluctuation.  

Another method of soil exploration, the continuous Shelby tube sampling method, 

has the potential of providing sufficient data to establish a well-defined profile required 

for the computation of the scale of fluctuation. With this method, tests can be assigned at 

a closer spacing (closer than SPT) and direct measurements of geotechnical parameters 

can be carried out. It should be noted that for soil types where Shelby tube sampling is 

neither feasible nor possible, field tests like the SPT can be specified at closer intervals to 

obtain sufficient data to establish a well-defined profile required for the computation of 

the scale of fluctuation. 

 

1.2. OBJECTIVES 

This study is primarily focused on the collation and analysis of geotechnical data 

to develop parameters and statistics required for RBD, and to demonstrate the application 
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of these parameters and statistics in the analysis and design of geotechnical engineering 

structures. 

Based on data obtained from laboratory tests on fine-grained soil samples 

obtained from the continuous Shelby tube sampling method and field CPTu investigation 

program in Missouri, the study reported herein is aimed at increasing the use of RBD 

among geotechnical engineers.  The main objectives of this study are as follows: 

 Characterize fine-grained soils in Missouri for reliability analyses;  

 Develop an RBD framework incorporating the spatial variability of geotechnical 

parameters based on widely-spaced, non-continuous, irregular data obtained from 

laboratory tests on specimens obtained by the continuous sampling borehole 

exploration method; and  

 Demonstrate the application of the proposed framework. 

 

1.3. DISSERTATION ORGANIZATION 

This dissertation is organized into seven sections. An introduction to the research 

topic is presented in Section 1. A comprehensive literature review is presented in Section 

2. Section 3 presents a description of the methods used in acquiring data for the study. 

The methodologies employed and results of analyses in terms of second moment 

statistics, probability distribution, correlation of parameters, and spatial variability are 

given in Section 4. The results of the analyses are discussed in Section 5. Section 6 

describes a framework that incorporates the spatial variability of geotechnical parameters 

in RBD and examples of its application.  Finally, conclusions and recommendations are 

presented in Section 7.  
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2. LITERATURE REVIEW 

 

2.1. INTRODUCTION  

All natural soils are highly variable in their properties and rarely homogeneous. 

These properties vary inherently from point to point in the ground due to several reasons 

including the depositional environment, the degree of weathering, and the physical 

environment (Lumb, 1974; Elkateb et al., 2003a; Jones et al., 2002).  

Variability is a major contributor to uncertainty in geotechnical engineering 

analyses. Uncertainty pervades many aspects of geotechnical engineering particularly in 

the characterization of soil properties. Uncertainty in geotechnical properties can be 

formally grouped into aleatory and epistemic uncertainty (Lacasse and Nadim, 1996; 

Whitman, 1996; DNV, 2007). Aleatory uncertainty represents the natural randomness of 

a property and, as such, is a function of the spatial variability of the soil property. 

Epistemic uncertainty results from lack of information and shortcomings in measurement 

and/or calculation; for example, the systematic error resulting from factors such as the 

methods of property measurement, quantity of available data and modeling errors. 

Human error would be considered a third source of uncertainty; however, it is not usually 

considered in uncertainty analyses because it is difficult to isolate and its effects on 

probability are usually included in compilations of statistics on aleatory uncertainty 

(Jones, et al., 2002). A schematic of the sources of uncertainty in geotechnical soil 

properties is shown in Figure 2.1. 

The conventional tools for dealing with soil heterogeneity in the field of 

geotechnical engineering have been relying upon high factor of safety and local 
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experience. This is an inconsistent measure of performance, which has led to a broad 

acceptance of a need to develop more reliable tools to incorporate soil heterogeneity in a 

rather quantitative scheme amenable to engineering design. 

Since the performance of geotechnical structure depends on local extremes of the 

properties within a subsurface profile, it is important to characterize the soil profile 

probabilistically (Vanmarcke, 1977). The probabilistic characterization of soil profiles 

provides a format for quantifying geotechnical information regarding the subsurface 

conditions at a particular site, a basis for predicting the performance of a geotechnical 

engineering structure and for quantifying the probability of failure, and enables a 

geotechnical engineer to assess critically and compare various site investigation and 

testing programs and to evaluate their effectiveness (Jaksa, et al., 2000). 

 

 

 

 

 

 

 

 

 

Figure 2.1: Sources of Uncertainty in Geotechnical Soil Properties (Adapted from 

Whitman, 1996) 
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2.2. SECOND MOMENT STATISTICS: MEAN, STANDARD DEVIATION, AND 

COEFFICIENT OF VARIATION (COV) 

The most prevalent techniques for investigating uncertainty/material variability 

involve the combined use of probability and statistics (Lumb, 1974; Rethati, 1988; Phoon 

et al., 1995; Lacasse and Nadim, 1996; Phoon and Kulhawy, 1999a, 1999b; Duncan, 

2000; Baecher and Christian, 2003; Ang and Tang, 2007; DNV, 2007; Uzielli et al., 

2007; Fenton and Griffiths, 2008). In these techniques, the parameters are modeled as 

random variables. A random (or independent) variable is a quantity that is not known due 

to its random nature. The procedure generally involves defining the material properties 

by their statistics (principally their first and second moments):  the mean,   , and the 

variance, s
2
, which define the probability density function and the coefficient of variation, 

COV. The mean of a data set is the sum of the data points in the data set divided by the 

total number of data points in the data set. The variance of a random variable is the mean 

value of the square of the deviation of that variable from its expected value or mean. The 

mean is the most common measure for the center of a data set. The variance is a measure 

of dispersion about the mean value of a data set. High values of dispersion mean higher 

uncertainty. Conversely, low values of dispersion mean low uncertainty. 

Second moment statistics of geotechnical engineering parameters have been 

published by Kulhawy (1992), Cherubini and Giasi, (1993), Phoon et al., (1995), Lacasse 

and Nadim (1996), Phoon and Kulhawy (1999a), Duncan (2000), Jones, et al., (2002), 

Christian and Baecher (2003), Uzielli et al., (2007), among others. These published 

second moment statistics are useful for reference purposes. They are largely generic (due 

to widely sourced data) with a wide range of dispersion and hence may not represent the 

most economical or cost effective case. They should not be used uncritically for design 
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for the following reasons (Uzielli et al., 2007): (a) The statistics of most geotechnical 

engineering parameters are dependent on in-situ state (which is not usually stated in the 

published statistics); (b) In most published statistics, the testing methods and/or 

procedures used in measuring parameters are not stated. It is possible to measure the 

same parameter using different methods and/or procedures resulting in different 

measured values as measurement occur in a different way; and (c) It is not possible to 

ascertain how homogeneous the soil is from which the statistics are calculated. 

Knowledge of this is required for these statistics to be applied correctly in other cases. 

 

2.3. PROBABILITY DISTRIBUTION  

Probability distributions, expectation, and moments are the basic statistical 

descriptors of a random variable. These descriptors can be used to estimate the variability 

of geotechnical soil probability density function (PDF) for a continuous random variable 

describing its probability distribution. There are a great number of distribution types used 

in mathematics and statistics. However, only a few are used in geotechnical engineering 

including normal, lognormal, exponential, gamma, uniform, and beta (Rethati, 1988; 

Christian and Baecher, 2003; Ang and Tan, 2007; Fenton and Griffiths, 2008). 

Knowledge of the form of the probability distribution is not always necessary in 

the application of second-moment statistics to RBD; however, it may be necessary to plot 

the distribution to check the assumptions made about the distribution and check the 

reasonableness of the estimates (Jones et al., 2003; Stephenson 2009). The process of 

selecting and fitting a probability distribution that approximates a dataset best can be 

accomplished using many approaches and techniques. Two techniques commonly used 
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are plotting a histogram of the data and choosing a distribution that appears to best-fit the 

data (histogram) and the Pearson’s moment-based system (Harr, 1987; Rethati, 1988; 

Christian and Baecher, 2003).  

The Pearson’s moment-based system is an efficient system for the identification 

of suitable probability distribution based on third- and fourth-moment statistics, i.e. 

skewness, Cs and kurtosis, Ck, of the dataset. Skewness, Cs is a measure of the degree of 

asymmetry of a distribution around its mean. Positive skewness indicates a distribution 

with an asymmetric tail extending toward more positive values. Negative skewness 

indicates a distribution with an asymmetric tail extending toward more negative values. 

Kurtosis, Ck is a measure of the relative “peakedness” or flatness of a distribution 

compared with the normal distribution. Positive kurtosis indicates a relatively peaked 

distribution. Negative kurtosis indicates a relatively flat distribution. The Pearson’s 

distribution space is presented in Figure 2.2 and the Pearson family types and the 

distributions included in them are presented in Table 2.1.  

The goodness-of-fit of a chosen and fitted probability distribution to available 

data is tested by means of a number of approaches. These include visual inspections, the 

chi-squared (Χ
2
) test, the Kolmogorov-Smirnov goodness-of-fit test and the normality 

test (Rethati, 1988; Christian and Baecher, 2003; Ang and Tan, 2007; Fenton and 

Griffiths, 2008).  

Laboratory test results indicate that most soils can be considered as random 

variables having a normal or lognormal distribution (Lumb, 1966; Tan et al., 1993; 

Christian and Baecher, 2003; Elkateb et al., 2003a). Other distributions like the beta 

distribution have been used by other researchers (Ejezie and Harrop-Williams, 1984; 
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Rethati, 1988; Christian and Baecher, 2003; Elkateb et al., 2003a). However, best-fit 

probability distributions for geotechnical parameters are known to be primarily dataset-

dependent, largely dependent on soil type and in-situ state. Owing to the fact that 

probability distributions are both parameter- and site-specific, it is impossible to select 

best-fit distributions for soil parameters in advance. For the forgoing reasons, published 

best-fit probability distributions, such as Corotis et al., (1975), Lacasse and Nadim 

(1996), and Nadim (2007) should not be accepted uncritically. 

 

 

 

Figure 2.2: Space of Pearson’s Probability Distributions (Adapted from Harr, 1987) 
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Table 2.1: The Pearson Family and the Equivalent Distributions 

Pearson Family Distribution 

Type I Beta  

Type VI Beta prime  

Type IV Cauchy  

Type III Chi-square  

Limit of Type I Continuous uniform  

Type III Exponential  

Type III Gamma  

Type VI F-distribution 

Type V Inverse-chi-square 

Type V Inverse-gamma 

Limit of Type I, III, IV, V, or VI Normal 

Type VI Lognormal 

Type VII (=  non-skewed subtype of type IV) Student's t 

 

 

The goodness-of-fit of a chosen and fitted probability distribution to available 

data is tested by means of a number of approaches. These include visual inspections, the 

chi-squared (Χ
2
) test, the Kolmogorov-Smirnov goodness-of-fit test and the normality 

test (Rethati, 1988; Christian and Baecher, 2003; Ang and Tan, 2007; Fenton and 

Griffiths, 2008).  

Laboratory test results indicate that most soils can be considered as random 

variables having a normal or lognormal distribution (Lumb, 1966; Tan et al., 1993; 

Christian and Baecher, 2003; Elkateb et al., 2003a). Other distributions like the beta 

distribution have been used by other researchers (Ejezie and Harrop-Williams, 1984; 

Rethati, 1988; Christian and Baecher, 2003; Elkateb et al., 2003a). However, best-fit 

probability distributions for geotechnical parameters are known to be primarily dataset-

dependent, largely dependent on soil type and in-situ state. Owing to the fact that 
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probability distributions are both parameter- and site-specific, it is impossible to select 

best-fit distributions for soil parameters in advance. For the forgoing reasons, published 

best-fit probability distributions, such as Corotis et al., (1975), Lacasse and Nadim 

(1996), and Nadim (2007) should not be accepted uncritically. 

 

2.4. CORRELATION IN SOIL PROPERTIES 

In geotechnical engineering practice, the use of correlations and empirical 

relationships provides a fast, cost-effective means of predicting the value of some 

parameter based on the value of some other (possibly more easily determined) parameters 

provided the appropriate correlations are employed. In probabilistic analysis, the 

quantification of the correlation between two or more soil properties provides a more 

realistic assessment of uncertainty in design parameters and an indication of the degree of 

independence between the parameters (Rethati, 1988; DeGroot, 1996; Uzielli et al., 

2007). 

The correlation between two or more soil properties has been found to be 

dependent in varying degrees on soil type, testing method used to obtain the numerical 

value of the parameter itself, and the homogeneity of the soil (Uzielli et al., 2007). A lot 

of correlations among soil properties have been published. A publication by Kulhawy and 

Mayne (1990) presents over 50 of such correlations. Considering the forgoing, published 

correlation models, most of which are site-specific, are most likely not appropriate for 

Missouri.  

From the foregoing review of second-moment statistics (mean, standard 

deviation, coefficient of variation (COV); probability distribution) and correlation in soil 
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properties, it can be concluded that second-moment statistics are largely dataset-

dependent with data distribution largely dependent on soil type and in-situ state. 

Published values, with their wide range in values, most times do not sufficiently represent 

the local situation and, as such, may not result in efficient, cost-effective outcomes. 

Consequently, there is a need to develop site-specific second-moment statistics.  

 

2.5. SPATIAL VARIABILITY ANALYSIS 

The second moment-based techniques for the characterization of uncertainty in 

geotechnical parameters discussed above do not take into account the spatial variability 

of the parameters. Geotechnical parameters are known to show dependence both laterally 

and with depth.  They vary spatially with a greater tendency to be similar in value at 

closely neighboring points than at widely spaced points. This is the reason second 

moment statistics alone are not enough to characterize uncertainty in geotechnical 

parameters (Lacasse and Nadim, 1996; Jones, et al., 2002; Uzielli, et al., 2007). Figure 

2.3 illustrates why second moment statistics alone are not enough to characterize 

uncertainty in geotechnical parameters. In Figure 2.3, spatial data, simulated by Monte 

Carlo Simulation, is shown to have similar distributions (top and bottom left) but 

different magnitudes of spatial correlation: weak correlation (top right) and strong 

correlation (bottom right). 

It is possible to model the spatial variability of a soil deposit in all directions in 

detail. However, this will require an extraordinarily high number of measurements so that 

it is impossible to achieve in practice. To bridge this gap in knowledge, the hypothesis of 

the randomness in the variation of soil properties is usually adopted (Baecher, 1982). 
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Figure 2.3: Spatial Data with Similar Distributions (Top and Bottom Left) but Different 

Magnitudes of Spatial Correlation (Adapted from El-Ramly et al., 2002) 

 

 

Soil properties do not vary randomly in space. They vary gradually and follow a 

pattern that can be quantified using spatial correlation structures, where soil properties 

are treated as random variables (Elkateb, et al., 2003). The knowledge of spatial behavior 

of soil properties is often paramount in geotechnical analysis and design for the following 

reasons (Cherubini and Vessia, 2007; Uzielli, et al., 2007): (a) geotechnical design is 

based on site characterization, whose objective is to describe the spatial variation of 

compositional and mechanical parameters of soil; (b) the values of the parameters 

themselves very often depend on the in-situ factors (e.g. stress level, OCR, etc) which are 

related to spatial location; and (c) for large scale engineering endeavors such as dams and 
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roads, it is generally expected that heterogeneous site characteristics will be revealed by 

investigations at spatially distant locations.  

Geotechnical performance is often governed by spatial average soil properties, 

such as average shear strength along a pile shaft, or the average compressibility of a 

volume of soil beneath a footing in settlement calculation. The variability of soil 

properties averaged over a domain is less than that of their inherent variability or point 

properties (Vanmarcke, 1977; Phoon and Kulhawy, 1999a and 1999b). This is known as 

the averaging effect in spatial variability. The spatial averaging effect results in a 

reduction in the variance used in reliability-based geotechnical design (RBD). Neglecting 

this spatial averaging effect will lead to an overestimate of variability and lead to a very 

conservative design. Hence, knowledge of the spatial average of a soil parameter over an 

appropriate domain will be of primary interest. 

The spatial variability of a parameter can be described statistically by the mean, 

variance, and the scale of fluctuation, θ (Vanmarcke, 1977). The scale of fluctuation 

defines the distances over which there is a significant correlation of material property 

values (Vanmarcke, 1977). Analysis of spatial variability of geotechnical parameters has 

normally involved the use of (a) random field theory and time series analysis (Lumb, 

1974; Vanmarcke, 1977); or (b) geostatistics, as proposed by Matheron (1963). In both 

approaches, the spatial variability of the parameter is estimated from samples obtained 

from a population. 

In both approaches, there is the requirement of the stationarity of data. Data are 

stationary if satisfying the following: (a) The mean is constant with distance (that is, no 

trend exists in the data); (b) The variance is constant with distance (homoscedastic); (c) 
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There are no seasonal variations; and (d) There are no irregular fluctuations. The 

requirement of the stationarity is more stringent for time series analysis than in 

geostatistics. In both random field theory and geostatistics, it is common practice to 

transform a nonstationary dataset into a stationary one by removing a low-order 

polynomial trend, usually no higher than a quadratic, using the method of Ordinary Least 

Squares, OLS (Jaksa et al., 2002; Uzielli et al., 2007). Stationarity is generally assessed 

by inspection of a scatter-plot of the data, the sample autocorrelation function, the 

experimental semivariogram, and/or the Kendal’s τ test (Jaksa et al., 2000). 

In random field theory and time series analysis, the principal tool for modeling 

spatial variability of geotechnical parameters and estimating of the scale of fluctuation, θ 

is the autocovariance, ck or the autocorrelation, ρk , at lag, k. These are defined as: 

 

                           
 
           

 
                

 
               (1) 

 

    
  

  
                                                                                                                                (2) 

 

where Xi is the value of the property X at location, i; µx is the mean of property, X; E[…] 

is the expected value; c0 is the autocovariance at lag 0; ck is equal to c-k; and ρk is equal to 

ρ-k. 

Since ck and ρk can only be estimated from samples obtained from a population, 

the sample autocovariance at lag k, ck* and sample autocorrelation at lag k,k
*
, are 

generally evaluated. The sample autocovariance function is the plot of ck* for lags, k = 0, 

1, 2, … k, while the sample autocorrelation function, ACF, is the graph ofk
*
 for the 
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lags, k = 0, 1, 2, … k; where k is the maximum number of lags available. Generally, k = 

N/4 (Box and Jenkins, 1970; Anderson, 1976; Jaksa et al., 2000; Kelkar and Perez, 

2002); where N is the total number of data points. Also, the sampling interval is constant 

(Box and Jenkins, 1970; Anderson, 1976; Box et al., 1994; Kelkar and Perez, 2002; 

NIST, 2010). 

The sample ACF is generally evaluated using: 

 

    
                    

   

          
   

                                                                                                    (3) 

 

The ACF has been the predominant method used in the investigation of the spatial 

variability of geotechnical parameters. It has been used by numerous investigators 

(Asaoka and A-Grivas, 1982; Vanmarcke, 1983; Baecher, 1986; Keavney et al., 1989; 

DeGroot and Baecher, 1993; White, 1993; Wickremesinghe and Campanella, 1993; 

DeGroot, 1996; Phoon and Kulhawy, 1996, 1999a, 1999b; Jaksa et al., 1997, 2000; 

Fenton, 1999; Cafaro and Cherubini, 2002; Baecher and Christian, 2003; Cherubini et al., 

2007; Srivastava and Babu, 2009). In almost all cases the ACF was used in connection 

with continuous (in terms of how data was obtained, not mathematically continuous) data 

at close, regular and fixed intervals, using mainly CPT data.  

The ACF is used to determine the correlation distance, which is the distance over 

which a property exhibits a strong correlation, and the separation distance at which the 

covariance function decays to a value of (1/e), where e is the base of the natural 

logarithm. In time series analysis, the most commonly used technique for determining the 

correlation distance is known as the Bartlett’s limit (lB), which corresponds to two 
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standard errors of the estimates. The Bartlett’s limit (lB) is defined as (Jaksa et al., 2000; 

Uzielli et al., 2007): 

   

     
    

  
                                                                                                                            (4) 

 

where N is the total number of data points.   

The scale of fluctuation, θ is determined by fitting of a number of models to the 

sample ACF.  The correlation distance corresponding to the Bartlett’s limit (lB) is equal 

to the scale of fluctuation, θ (Jaksa et al., 2000; Uzielli et al., 2007). Various models have 

been used in literature (Tang, 1984; DeGroot and Baecher, 1993; Lacasse and Nadim, 

1996; Rackwitz, 2000; Phoon et al., 2003; Uzielli et al., 2005). Some of the models used 

include the single exponential, cosine exponential, second-order Markov and squared 

exponential. The relationship between correlation length and scale of fluctuation for each 

model is presented in Table 2.2. 

Geostatistics is based on regionalized variables having properties that are partly 

random and partly spatial and that have continuity from point to point (Clark, 1979). One 

of the basic statistical measures of geostatistics is the semivariogram, which is used to 

quantify the degree of spatial dependence between samples along a specific orientation 

and to presents the degree of continuity of the property in question.  

Even though a regionalized variable is spatially continuous, its values can only be 

determined from samples taken from a population. Thus, in practice, the experimental 

semivariogram, γ*, is estimated from the available data using standard relationships. The 

experimental semivariogram    is defined by (Clark, 1979): 
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                                                                         (5) 

 

where g stands for the value of the parameter, x denotes the position of one sample in the 

pair and x + h the position of the other, and n is the number of pairs. 

 

 

Table 2.2: Relationship Between Correlation Length, R and Scale of Fluctuation, θ 

(Adapted from Uzielli et al., 2007, Jaksa et al., 1999) 

Model Mathematical Function 
Scale of 

Fluctuation (θ) 

Triangular 
Δz = 1 - (|Δz|/a)         for |Δz| ≤ a 

      = 0                        for |Δz|  a 
a 

Single Exponential (SNX) Δz = exp(-|Δz|/b) 2b 

Cosine Exponential (CSX) Δz = exp(-|Δz|/c)cos(Δz/c) c 

Second-order Markov (SMK) Δz = exp(-|Δz|/d)(1+(|Δz|/d)) 4d 

Squared Exponential (SQX) Δz = exp(-(|Δz|/e)
2
) 

0.5
e 

Notes: a, b, c, d, e = correlation length associated with model; Δz = lag length 

 

 

For an efficient experimental variogram, Kelkar and Perez (2002) suggest a 

maximum lag of half the maximum possible distance, and a minimum of 10 pairs for 

each lag within a region of stationarity.  

In cases where the data are not distributed at regular intervals; therefore, a 

sufficient number of pairs for a precise interval cannot be obtained the equation for the 

experimental semivariogram    is modified to include a lag tolerance,     Hence to 

estimate the variogram at a lag distance, h, all the pairs within        are collected. The 

modified equation for the experimental semivariogram    is presented following (Kelkar 

and Perez, 2002; Clark and Harper, 2000). 
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                                                     (6) 

 

The variogram has been used extensively in the investigation of the spatial 

variability of geotechnical parameters. It has been used by numerous investigators 

(Kelkar and Perez, 2002; Clark, 1979; Soulie, 1984; Clark and Harper, 2000; Jaksa et al., 

1993; Soulie et al., 1990; Chiasson et al., 1995; Baecher, 1984; Matheron, 1963; Elkateb 

et al., 2003a, 2003b; Meek, 2001; Nobre and Sykes, 1992; Jaksa et al., 1997, 2000; 

McBratney and Webster, 1986; Pinnaduwa et al., 2003; Phoon et al., 2004; Unlu et al., 

1990). In all cases, the variogram was used in connection with continuous data at close, 

regular and fixed intervals, mainly CPT data.  

In the determination of the scale of fluctuation, a continuous theoretical 

semivariogram model is fitted to the experimental semivariogram (Clark, 1979). There 

are many theoretical semivariogram models available. These include the nugget effect, 

spherical, exponential, Gaussian, and hole effect models (Meek, 2001; Baecher and 

Christian, 2003; Kelkar and Perez, 2002; Deutsch, 2002; Isaaks and Srivastava, 1989). 

However, the most common of these is the spherical models (Kelkar and Perez, 2002; 

Meek, 2001). The relationship between range of influence and scale of fluctuation for 

each model is presented in Table 2.3. The experimental semivariogram is characterized 

by three parameters (Jaksa et al., 1997; Clark, 1979; Kelkar and Perez, 2002, Deutsch, 

2002; Isaaks and Srivastava, 1989): (a) the nugget effect, Co, which is due to 

microvariabilities of the mineralization, and measurement errors; (b) the sill, C + Co, 

which measures, on the average, the squared difference between data pairs; and (c) the 
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range of influence, a, which is the distance at which samples become independent of one 

another. A typical theoretical semivariogram is presented in Figure 2.4. 

With the theoretical semivariogram model was fitted to the data, the parameters of 

the variogram are determined and used in computing the scale of fluctuation, θ. The scale 

of fluctuation, θ is defined by Cressie (1993): 

  

          
 

 
                                                                                                               (7a) 

 

where 

 

                                                                            (7b) 

 

                                                                                    (7c) 

 

 

Table 2.3: Relationship between Range of Influence and Scale of Fluctuation 

Model Mathematical Function 

Scale of 

Fluctuation 

(θ) 

Gaussian h = C (1 –  
   

   
) + Co 

0.5
a 

Exponential h = C (1 –  
  

  ) + Co 2a 

Spherical 
h = C  

  

  
  

  

     + Co;          h ≤ a 

h = C + Co;                              h  a 
3a/4 

Circular 
h = C (1 – (2/)(cos

-1
(h/a) – (h/a)(1 – (h/a)2)

1/2
)) + Co;  0 < h ≤ a 

h = C + Co;                                                                             h > a 
8a/ 

Notes: a = range of influence; h = lag length 
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Figure 2.4: Typical Experimental and Theoretical Variogram 

 

 

The determination of the scale of fluctuation, θ, is important in RBD. In time 

series (autocorrelation), and geostatistics analysis (semivariogram), the scale of 

fluctuation, θ is also evaluated by means of various models that relate the correlation 

distance and the range of influence, respectively to the scale of fluctuation, θ. For time 

series analysis, some of the autocorrelation models used include the single exponential, 

cosine exponential, second-order Markov and squared exponential models (Vanmarcke, 

1983; Baecher and Christian, 2003, Uzelli et al., 2005; Fenton and Griffiths, 2008; 

Keaveny et al., 1989; Jones, et al., 2002). While for geostatistics analysis, some of the 

semivariogram models used include the nugget, linear, spherical, exponential, Gaussian, 

power, and hole effect models (Meek, 2001; McBratney and Webster, 1986; Elkateb et 

al., 2003a; Jones, et al., 2002; Kelkar and Perez, 2002, Deutsch, 2002; Isaaks and 

Srivastava, 1989).  
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2.6. VOLUME – VARIANCE RELATIONSHIPS 

Volume – Variance relationships are analytical expressions used to obtain the 

variance of spatial averages of field data over certain volumes of interest. These spatial 

averages usually have a narrower probability distribution function than those usually 

associated with field data (Vanmarcke, 1977) and consequently a smaller variance. The 

scale of fluctuation is used in the spatial averaging of geotechnical properties to reduce 

their point variance.  

Vanmarcke (1977) defined a variance reduction factor, Г
2
(L) as the ratio of the 

point variance, σi
2
 and the variance of the spatially averaged property, σL

2
. 

  

Г      
σ 
 

σ 
                                                                                                                             (8) 

 

The variance reduction factor depends on the averaging volume, type of 

correlation structure, and the limit of spatial correlation between field data. Analytical 

expressions for the variance reduction factor for exponential and Gaussian correlation 

structures were introduced by Vanmarcke (1983) while Elkateb, et al., (2003a) introduced 

an expression for circular correlation structures.  

The expressions for the variance reduction factor for the exponential, Gaussian, 

and circular correlation structures are presented in Equations 9, 10, and 11, respectively. 

  
        

 
          

  
                                                                                   (9) 

 

  
        

 
                      –      

  
                                                 (10) 
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                                                                                                (11) 

 

where   
  = one dimensional variance reduction factor; R = autocorrelation distance; T = 

size of the averaging volume;        = error function which varies from 0 to 1 as T 

increases from 0 to infinity; and a = spatial range. 

Vanmarcke (1983) also suggested an approximation of the variance reduction 

function defined solely in terms of scale of fluctuation, θ and the averaging distance (that 

is, the distance over which a geotechnical property is averaged). This approximation is 

presented as follows: 

 

Г       
 

 
   

 

  
  

 

 
                                                                                 (12a) 

 

Г                                                                                                              (12b) 

 

Once the variance of the geotechnical property is updated, accounting for its 

spatial variation as stated above, the reduced property variance from Equations 12a and 

12b is used in the limit state function under consideration, alongside the associated mean 

value and the values of any other probabilistic and/or deterministic parameters.  
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3. DATA ACQUISITION 

 

3.1. INTRODUCTION 

Data for this study were obtained principally from the Missouri Department of 

Transportation (MoDOT)/Missouri Transportation Institute (MTI) Transportation 

Geotechnics Research Program (MoDOT/MTI-TGRP), hereinafter referred to as TGRP, 

jointly executed by MoDOT, the Geotechnical Engineering programs of the Department 

of Civil and Environmental Engineering at the University of Missouri-Columbia (MU) 

and the Department of Civil, Architectural and Environmental Engineering at the 

Missouri University of Science and Technology (S&T) and the Geological Enginnering 

program of the Department of Geological Sciences and Engineering at the Missouri 

University of Science and Technology (S&T). Other sources of data include MoDOT 

tests (on samples from sister boreholes) carried out as part of the TGRP and MoDOT’s 

geotechnical database. Sister boreholes are boreholes drilled a few feet from the Research 

(MU and S&T) holes by MoDOT. 

 

3.2. FIELD EXPLORATION 

Pursuant to the execution of the TGRP, a very carefully planned field exploration 

and laboratory investigation program was executed. Field exploration for soil samples 

and cone penetrometer (with porewater pressure measurements) (CPTu) soundings were 

carried out in three out of the four (except Ozark Highlands) geological zones in the state 

of Missouri (see Figure 3.1) at the following locations (Saville and Davis, 1962):  

 Warrensburg (Johnson County) – Western Plains;  

 New Florence (Montgomery County) – Glaciated Plains;  



25 

 St. Charles (St. Charles County) – Glaciated Plains; and  

 Hayti (Pemiscot County) – South Eastern Lowlands.  

 

 

 

Figure 3.1: Major Geologic Regions of the State of Missouri (Adapted from Saville and 

Davis, 1962) 

 

 

The soils in Warrensburg are located in the Central Lowland physiographic 

province. They are generally composed of sandy clayey residuum, one to three meters, 

derived from the in-place weathering of Pennsylvanian age shales and sandstone beds of 

Pemiscot (Hayti) 

St. Charles 
Warrensburg 

New Florence 

 = Location  
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the Weldon River-Warrensburg-Moberly channel sandstone (Whitfield, 1982; 

Middendorf, 2003; MODGLS, 2007).  This channel fill runs northward, towards the 

Missouri River, and was incised in older shales and sandstone beds of the Cherokee 

Group, also of Pennsylvania age. 

 The St. Charles County site near Wentzville is located in the Central Lowland 

physiographic province.  It is underlain by Holocene alluvium and glacial outwash 

deposits up to 35 m thick.  This heterogeneous assemblage includes mixtures of 

overconsolidated clay, silt, sand, and gravel deposited by glacial outwash, lying upon the 

Mississippian age St. Louis Limestone, which is intensely karstified. Many of the 

surficial clays are highly plastic and are often removed by excavation before development 

to obviate their tendency to shrink and swell noticeably.  These surficial “pockets” of 

clay are believed to be associated with the last glacial advance, which reached and 

dammed the mouth of the Missouri River. 

The New Florence site in Montgomery County is located in the Central Lowland 

physiographic province.  It is underlain by cherty clay, developed as residuum, one to 12 

m thick, on the underlying Mississippian age Keokuk and Burlington Limestones, which 

containing abundant chert horizons. Drainages in the area floor in the older limestones, 

while the cultivated uplands are underlain by the younger, Pennsylvanian age shale and 

sandstone beds of the Cherokee Group.  Soils derived from the shales in the Cherokee 

Group can be of moderate to high plasticity, and thereby, prone to seasonal shrink and 

swell behavior.      

The Pemiscot County site lies within the Coastal Plain Province of the Upper 

Mississippi Embayment (Fenneman, 1938), near Caruthersville, MO.  The area is 
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underlain by point bar deposits (or meander scrolls) of the modern Mississippi River, 

classified by Saucier (1994) as Meander Belt 1, the youngest of six recognized belt 

systems along the modern Mississippi River flood plain.  These Holocene age sediments 

are about 30 m thick, underlain by Pleistocene gravels and braid-bar deposits.  The upper 

10 m of this alluvium is typically underconsolidated, consisting mainly of overbank silts, 

which becomes increasingly sandy with depth.     

Considering the different characteristics of the four sites, particularly that of the 

Pemiscot site which due to the high compressibility of the soils in the area is considered 

an outlier in the state, geotechnical parameters from each site was analyzed separately. 

A special protocol, which largely followed best practice in geotechnical 

exploration and testing (Ladd and Lamb, 1963; Arman and McManis, 1976; Hight, 2001; 

Ladd and DeGroot, 2003; Stephenson, 2009a), was implemented to reduce disturbance to 

the samples/specimens at all stages: exploration and sampling; transportation and storage; 

extrusion and trimming; and testing. A summary of the field exploration conducted 

pertinent to this study is presented in Table 3.1. Table 3.1 presents on the bases of 

location, the number of exploratory boreholes, the depth range, the number of Shelby 

tubes obtained and the number of CPTu soundings and their depth range. Also presented 

in Table 3.1 is the total number of exploratory boreholes, the total number of Shelby 

tubes obtained, and the total the number of CPTu soundings statewide. 

A description of the special protocol implemented to reduce sample disturbance to 

a minimum during field exploration, transportation, storage and testing as well as the 

testing protocols adopted for the TGRP are presented in Appendix A. Field exploration to 

obtain laboratory test specimens and field testing at each location was conducted within a 
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two-week interval and hence are considered time invariant as suggested by Rethati 

(1988). 

 

 

Table 3.1: Summary of the Field Exploration Conducted Pertinent to this Study 

Location 

Boreholes* CPTu Soundings 

Number 
Depth 

Range (ft) 

No. of 

Tubes 
Number 

Depth 

Range (ft) 

Warrensburg 4 35 – 47.5 29 3 38.9 – 52.3 

St. Charles 6 35 – 37.5 49 4 43.8 – 50.0 

New Florence 9 7.5 – 35.1 65 5 16.9 – 36.1 

Pemiscot 4 50 – 62.5 54 5 49.5 – 79.2 

Total 23  197 17  

Notes: * = Includes Sister Holes, Boreholes drilled a few feet from the 

Research (MU and S&T) Holes 

 

 

3.3. FIELD TESTING 

Field testing for this study was carried out by the Field Testing team of the TRGP 

led by Dr. Norbert Maerz. 

The CPTu soundings were conducted using a Hogentogler all-terrain cone 

penetration rig using continuous, hollow-stemmed push rods to advance the seismic 

piezocone tip. The piezocone data collection equipment consists of a 60° cone, with 10 

cm
2
 base area, and a 150 cm

2
 friction sleeve located above the cone (Maerz and Magner, 

2010). The position of the porous filter for measurement of pore pressure (u2) was behind 

the cone. Continuous data collection and sampling was performed by the Hogentogler 
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EFCS4 computer system as the cone tip was advanced at a rate of 20 mm/s ± 5 mm/s 

(rate is set by equipment) (Maerz and Magner, 2010). 

Further analysis of the data from the Hogentogler EFCS4 computer system to 

derive geotechnical parameters was carried out with the CPTu data analysis and 

interpretation software, CPeT-IT version 1.6 (Geologismiki, 2011) (Maerz and Magner, 

2010). The CPeT-IT software is the product of the collaboration between Geologismiki, 

Gregg Drilling, Inc, and the research group lead by Dr. Peter K. Robertson (Lunne, et al., 

1997) (Geologismiki, 2011). CPeT-IT takes CPT data and performs basic interpretation 

in terms of normalized soil behavior type (SBTn) and various geotechnical soil and 

design parameters using current published correlations based on the comprehensive 

review by Lunne et al., (1997), as well as recent updates by Dr. Robertson (Geologismiki, 

2011). Additional details on CPeT-IT software and its use in this study can be found 

elsewhere in Geologismiki (2011) and Maerz and Magner (2010), respectively. Some 

pertinent data and the correlations used in the determination of parameter values 

excerpted from the CPeT-IT software manual are presented in Appendix B. 

 

3.4. LABORATORY TESTING 

Laboratory testing was conducted according to the provisions of the appropriate 

and applicable American Society for Testing and Materials (ASTM) standards. The 

laboratory testing program included the following: 

 Natural water content 

 Atterberg limits 

 Hydrometer analysis 
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 Consolidation (both Constant Rate of Strain, CRS and Incremental Loading, IL) 

 Unconsolidated Undrained triaxial shear strength  

 Consolidated Undrained triaxial shear strength  

Natural moisture content determinations were according to the provisions of 

ASTM D2216 (2005): Standard Test Methods for Laboratory Determination of Water 

(Moisture) Content of Soil and Rock by Mass. Trimmings from the preparation of test 

specimens for the consolidation and strength tests were used in the natural moisture 

content determinations.  

Atterberg limits determinations were generally according to the provisions of the 

following ASTM standards: (a) Liquid Limit: Section 11 (Multipoint Liquid Limit – 

Method A) of ASTM D4318 (2005): Standard Test Methods for Liquid Limit, Plastic 

Limit, and Plasticity Index of Soils; (b) Plastic Limit: Section 15 (Hand Method) of 

ASTM D4318 (2005): Standard Test Methods for Liquid Limit, Plastic Limit, and 

Plasticity index of Soils; (c) Plasticity Index: ASTM D4318 (2005): Standard Test 

Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; (d) Moisture 

Content: ASTM D2216 (2005): Standard Test Methods for Laboratory Determination of 

Water (Moisture) Content of Soil and Rock by Mass. However, in this study, to ensure 

moisture equilibrium within the specimen, instead of the recommended dry specimens 

Atterberg limits tests were started with fully-saturated specimens. The Atterberg limits 

specimen was derived from the combined trimmings from each Shelby tube sample. 

Hydrometer analyses were conducted according to the provisions of ASTM D422 (2007): 

Standard Test Method for Particle-Size Analysis of Soils on the combined trimmings 

from some Shelby tube samples.  
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Two types of consolidation tests, the Incremental Loading (IL) test and the 

Constant Rate of Strain (CRS) test, were conducted as part of the TGRP. The IL test was 

carried out at S&T while the CRS test was carried out at MU. The IL consolidation tests 

were conducted according to the provisions of ASTM D2435 (2004): Standard Test 

Method for One-Dimensional Consolidation Properties of Soils while the CRS 

consolidation tests were conducted according to the provisions of ASTM D4186 (2006): 

Standard Test Method for One-Dimensional Consolidation Properties of Saturated 

Cohesive Soils Using Controlled-Strain Loading. The tests were carried at the rate of 

about one test per Shelby tube sample.  

The unconsolidated undrained shear strength (UU) test and the consolidated 

undrained shear strength (CU) test were conducted according to the provisions of ASTM 

D2850 (2007): Standard Test Method for Unconsolidated-Undrained Triaxial 

Compression test on Cohesive Soils and ASTM D4767 (2004): Standard Test Method for 

Consolidated Undrained Triaxial Compression test for Cohesive Soils, respectively.  Both 

UU and CU tests were conducted on 1.4-inch diameter, 2.8-inch high specimens. The 

tests were carried at the rate of about two and three tests per Shelby tube sample for the 

UU and the CU tests, respectively. Detailed descriptions of the testing protocols adopted 

are presented in Appendix A.  

A summary of the number of laboratory tests conducted presented in Table 3.2. 

Table 3.2 presents a summary of the number of laboratory tests conducted by MU/S&T 

and MoDOT pursuant to the execution of the TGRP and the number of the same tests 

obtained from MoDOT’s database. The tests of interest are natural water content, 
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Atterberg limits, consolidation, unconfined compressive strength (UCS), UU, CU, and 

direct shear (DS).  

The number of natural water content, Atterberg limits, and consolidation tests 

conducted by MU/S&T (Research) and MoDOT (Sister holes) and the number of these 

tests from the MoDOT’s database are presented. For the consolidation tests, S&T and 

MoDOT conducted the IL test while MU conducted the CRS test. Additionally, the 

number of UU and CU tests and the number of UCS and DS tests conducted are presented. 

MU/S&T conducted UU and CU tests while MoDOT conducted UCS and DS tests.  

 

 

Table 3.2: Summary of the Laboratory Tests Conducted in the TGRP 

Lab/Test 

Natural 

Water 

Content 

Atterberg 

Limits 
Consolidation UCS UU CU DS 

MU/S&T 

MU/S&T 646 464 78
CRS

+54
IL

  323 179 - 

MoDOT (Sister Boreholes) 

MoDOT 312 276 29
IL

 72 - - 35 

MoDOT (Database) 

MoDOT 624 483 140
IL

 70 6 24 80 

Notes: UCS = Unconfined Compressive Strength; DS = Direct Shear; IL = Incremental 

Loading; CRS = Constant Rate of Strain; UU = Unconsolidated Undrained Shear 

Strength; CU = Unconsolidated Undrained Shear Strength 

 

 

3.5. MoDOT’s DATABASE 

More data was obtained from MoDOT’s geotechnical database. Geotechnical data 

from the four sites described in §3.2 above and KCiCON site in North Kansas City, 

Missouri were obtained from MoDOT’s Database. The data from MoDOT’s Database 
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covers the time period from 1978 to 2006. Hence, it includes the effect of seasonal 

variations on the soil parameters. A summary of data from MoDOT’s geotechnical 

database are also presented in Table 3.2.  
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4. DATA ANALYSIS 

 

4.1. INTRODUCTION  

Analyses of data to obtain the statistics and parameters required for RBD is 

performed in this section. The methodologies employed in these analyses and their results 

are presented in this section. 

This section is divided into four parts: (a) Second Moment Statistics – in which 

the mean, variance and the COV of parameters under various conditions are determined; 

(b) Probability Distribution – in which the probability distribution type of parameters 

under various conditions are determined and the effect of in-situ state on the probability 

distribution type of parameters are evaluated; (c) Correlation of Soil Properties – in 

which correlation matrices of parameters are developed, empirical correlations between 

parameters are developed, and the validity of published empirical relationships between 

parameters as they relate to this study are assessed; and (d) Spatial Variability – in which 

the scale of fluctuation, θ, of parameters are determined, the range of influence computed 

using laboratory data and CPTu data are compared, and the scale of fluctuation using the 

autocorrelation function and the semivariogram functions are compared. 

 

4.2. SECOND MOMENT STATISTICS: MEAN, VARIANCE, AND 

COEFFICIENT OF VARIATION (COV) 

The descriptive statistical analysis for this study was carried out using Microsoft 

Excel 2007 add-in for data analysis. Since it is not possible to exhaustively determine all 

the realizations of a random variable in a population, statistical moments are usually 

determined from a sample of the population. The first (mean) and second statistical 



35 

moments (variance) were determined using Equations 13 and 14, respectively for both 

laboratory test and field test data. Equation 15 was used to determine the COV of the 

various parameters. 

 

                
   

 
   

 
                                                                                                (13) 

 

                     
           

   

   
                                                                              (14) 

 

Where n is the total number of data points in a sample, and xi = is each data point. 

 

                               
   

  
                                                                            (15) 

  

In cases where there are few data, the second moment statistics were determined 

following the method in Snedecor and Cochran (1964) as described by Lacasse and 

Nadim (1996). Snedecor and Cochran (1964) gave weighting factors, presented in Table 

4.1, for computing the second moment statistics for datasets having up to and including 

20 data points. Notionally, this could mean that statistics computed with data equal to less 

than or equal to 20 could be deemed defective. In this case, the standard deviation, s (= 

square root of variance) is determined from: 

 

                                                                                        (16) 
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Table 4.1: Short-Cut Estimates for Limited Dataset (Snedecor and Cochran, 1964) [from 

Lacasse and Nadim, 1996] 

# 

Points 

Weighting 

Factor 

# 

Points 

Weighting 

Factor 

# 

Points 

Weighting 

Factor 

# 

Points 

Weighting 

Factor 

1 - 6 0.395 11 0.315 16 0.283 

2 0.886 7 0.370 12 0.307 17 0.279 

3 0.591 8 0.351 13 0.300 18 0.275 

4 0.486 9 0.337 14 0.294 19 0.271 

5 0.430 10 0.325 15 0.288 20 0.268 

 

 

Studies were led to determine the second moment statistics of geotechnical 

parameters and investigate the effect of in-situ state (above ground water level, and below 

ground water level) and soil classification (USCS) type on second moment statistics. The 

following steps were taken to determine the second moment statistics: 

 Data (laboratory and CPT) was collated and validated. Data validation involved 

the identification and verification of suspected outliers.  

 Validated data was used to determine the second moment statistics of 

geotechnical parameters at both the location and state levels. 

 Validated data was grouped according to their in-situ state (above ground water 

level, and below ground water level) and the second moment statistics of 

geotechnical parameters was determined at both the location and state levels. 

 Validated data grouped according to their in-situ state was grouped further 

according to their soil classification (USCS) type and the second moment 

statistics of geotechnical parameters was determined at both the location and state 

levels. 
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This procedure follows the method of data analysis applied to geotechnical data by 

Rethati (1987) and is thought to represent best practice in the statistical characterization 

of geotechnical parameters (Uzielli, et al., 2007). 

The geotechnical parameters of interest in the case of the laboratory data include 

natural moisture content, Atterberg limits (PL, LL, PI, LI), unit weight (bulk, and dry), 

undrained shear strength (unconsolidated, undrained), Su (UU), undrained shear strength 

(consolidated, undrained), Su (CU), compression index, Cc, preconsolidation pressure, 

p’c, and friction angle, υ’ (single test Su (CU) test, and direct shear test). For the field 

(CPT) data, the geotechnical parameters of interest include the measured cone tip 

resistance, qc, total (corrected) cone resistance, qt, undrained shear strength, Su, 

constrained modulus, compression index, Cc, preconsolidation pressure, pc’, friction 

angle, φ’, and normalized (with respect to effective overburden pressure) total (corrected) 

cone resistance,   σ 
  . 

The undrained shear strength, Su from the field (CPTu) data was derived by 

calibrating the CPTu data the laboratory test data, following one of the methods in Lunne 

et al., (1997), so that both results are comparable. The calibration of CPTu data against 

laboratory test data for this study was executed by Dr Norbert Maerz and Kerry Magner 

both of the Field Testing team of the TGRP. The calibration procedure, which principally 

aims at obtaining the appropriate cone factor, Nkt, for the CPTu data, is presented 

following.  

 Validate both laboratory Su (UU) data and CPTu data 

 Develop both laboratory Su (UU) profile and CPTu profile 

 Fit a model to the laboratory Su (UU) profile 
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 On the basis of the fitted model determine laboratory Su (UU) values at the same 

spacing as the CPTu data, Su (Model).  

 Using the equation that relates undrained shear strength to corrected cone 

resistance (Lunne et al., 1997): 

 

   
         

   
                                                                                                        (17) 

 

where qt = corrected cone resistance; σvo = total in-situ overburden stress; and Nkt 

= variable cone factor. 

 Rearranging Equation (17): 

 

    
         

  
                                                                                                      (18) 

 

 Plot a graph of (qt – σvo) versus Su (Model), and plot the best-fit linear relationship 

between (qt – σvo) versus Su (Model). 

 The reciprocal of the slope of best-fit line is the Nkt value for the profile to be 

used in Equation 17 to obtain calibrated Su values from the CPTu profile.   

The bearing factor, Nkt, values for soundings at each location are presented in 

Table 4.2.  

The results of the second moment statistics analysis are presented in Tables 4.3 to 

4.9. The results presented in Tables 4.3 to 4.9 are the second moment statistics for 

parameters in Warrensburg that have a data count of five and above. In the 

aforementioned tables, the terms classified and unclassified are used in two contexts: (a) 
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classification according to in-situ state as either above ground water level (AGWL) or 

below ground water level (BGWL); and (b) classification of soil types according to the 

Unified Soil Classification System (USCS). Whereas classification in terms of in-situ 

state is usually specified in terms of stress history, classification in terms of ground water 

level was adopted in this study for simplicity and also to investigate the effect of location 

relative to the ground water level on the statistical properties of geotechnical parameters. 

The comprehensive results including the results for various locations are presented in 

Appendices C and D for Laboratory and field data, respectively.  

 

 

Table 4.2: Bearing Factor, Nkt, Values 

Location 
CPTu Sounding (B) 

1 2 3 4 5 6 7 

Warrensburg (W) 6 13 - - - - - 

St. Charles (SC) 20 24 20 15 - - - 

New Florence (NF) 20 24 20 15 - - - 

Pemiscot (P) 15 16 14 15 15 14 16 

Notes: W-B1 = Warrensburg Sounding #1; P-B7 = Pemiscot Sounding #7 

 

 

The second moment statistics based on the laboratory test data are presented in 

Tables 4.3 and 4.8. The second moment statistics for Warrensburg: unclassified, 

unclassified – AGWL, and unclassified – BGWL are presented in Tables 4.3, 4.4, and 

4.5, respectively. Similarly, the second moment statistics for Warrensburg: classified, 

classified – AGWL, and classified – BGWL are presented in Tables 4.6, 4.7, and 4.8, 

respectively. Tables 4.3 to 4.8 are divided into four subsets: a, b, c, and d. a presents the 
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second moment statistics of moisture content and unit weight, while b, c, and d present 

the statistics for Atterberg limits, strength parameters and consolidation parameters, 

respectively. 

The second moment statistics based on the field data are presented in Table 4.9. 

Table 4.9 has three subsets: a, b, and c. a, b, and c presents the second moment statistics 

of parameters for Warrensburg: classified, classified – AGWL, classified – BGWL, 

respectively. 

The second moment statistics based on both laboratory and field testing are 

compared to published data, principally data from Uzielli et al., (2007), Corotis et al., 

(1975) and Loehr et al., (2005) as presented in Tables 4.3 to 4.9. It should be noted that 

data presented in Uzielli et al., (2007) is a summary of data from other sources like Phoon 

et al., (1995), Kulhawy and Trautmann (1996), Lacasse and Nadim (1996), Phoon and 

Kulhawy (1999a), and Jones et al., (2002).  

 

 

Table 4.3: Lab Data, Second Moment Statistics for Warrensburg (Unclassified) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

wn (%) 26.3 14.8 15 326 8-30/1; 47/2 

γb (pcf) 119.4 40.7 5 231 <10/1; 15/2 

γd (pcf) 94.3 41.7 7 231 <10/1; 15/2 

(b) ATTERBERG LIMITS 

LL (%) 36.1 74.2 23 291 6-30/1; 34/2 

PL (%)  19.2 16.3 21 290 6-30/1; 29/2 

PI (%)  17.8 58.3 43 290 48/2 

LI 0.49 0.07 54 186 34/2 
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Table 4.3 Cont’d: Lab Data, Second Moment Statistics for Warrensburg (Unclassified) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

(c) STRENGTH PARAMETERS  

Su [UU] (psf)  1534.6 2.1E+06 95 68 10-30/1 

Qu/2 (psf)  1157.5 5.8E+05 66 20 20-55/1 

Sup [CU] (psf) 2960.3 3.7E+06 65 42 20-40/1 

υp [CU] (deg) 26.3 61.5 30 42 5-15/1 

υ [DS] (deg) 29 19.6 15 21 
 

υC=0 [DS] (deg) 31 11.4 11 21 
 

Cu [DS] (psf)  203.9 13020.3 56 21 
 

(d) CONSOLIDATION PARAMETERS 

e0 [IL+CRS] 0.8 0.01 15 231 7-30/1; 41.5/2 

Cc [IL+CRS] 0.231 0.029 74 53 10-37/1; 73/2 

Cr [IL+CRS] 0.037 0.002 114 52 
 

p'c-T (psf) [IL+CRS] 2186.1 1.5E+07 57 28 10-35/1; 62/2 

p'c-C (psf) [IL+CRS] 2488.4 1.6E+07 51 52 10-35/1; 62/2 

p'c-SE (psf) [IL+CRS] 2708.4 1.6E+07 46 29 10-35/1; 62/2 

Notes: 1= Uzielli et al., (2007); 2 = Corotis et al., (1975); wn = natural water content; 

γb = bulk unit weight; γd = dry unit weight; LL = liquid limit; PL = plastic limit; PI = 

plasticity index; LI = liquidity index; Su (UU) = undrained shear strength 

(unconsolidated, undrained); Qu/2 = unconfined compressive strength; Sup (CU) = 

peak undrained shear strength (consolidated, undrained); υP = friction angle (peak); 

υ [DS] = friction angle [Direct Shear]; υC=0 [DS] = friction angle @ Cu = 0 [Direct 

Shear]; Cu = cohesion; e0 = initial void ratio; Cc = compression index; Cr = 

recompression index; p’c-T = preconsolidation pressure (Tangent); p’c-C = 

preconsolidation pressure (Casagrande); p’c-SE = preconsolidation pressure (Strain 

Energy) 

 

 

Table 4.4: Lab Data, Second Moment Statistics for Warrensburg (Unclassified, In-Situ 

State: AGWL)  

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

wn (%) 23.3 19.6 19 64 8-30/1 

γb  (pcf) 120.9 53.2 6 30 <10/1 

γd (pcf) 96.1 52.8 8 30 <10/1; 15/3 
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Table 4.4 Cont’d: Lab Data, Second Moment Statistics for Warrensburg (Unclassified, 

In-Situ State: AGWL) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

(b) ATTERBERG LIMITS 

LL (%) 40.1 66.1 20 53 6-30/1; 34/2 

PL (%) 20.5 11.3 16 53 6-30/1; 29/2 

PI (%) 19.6 80.1 46 53 48/2 

LI 0.32 0.062 78 19 34/2 

(c) STRENGTH PARAMETERS 

Qu/2 (psf) 1545.3 601188.2 50 10 20-55/1 

υ [DS] (deg) 26.7 23.9 18 7 
 

υC=0 [DS] (deg) 29.0 16.5 14 7 
 

Cu [DS] (psf) 244.6 14808.9 50 7 
 

(d) CONSOLIDATION PARAMETERS 

e0 [IL+CRS] 0.8 0.02 18 30 7-30/1; 41.5/2 

Cc [IL+CRS] 53 0.2 0.001 16 10-37/1; 73/2 

Cr [IL+CRS] 52 0.04 0.0002 34 
 

p'c-C (psf) [IL+CRS] 52 2063.3 1.4E+06 57 10-35/1; 62/2 

Notes: 1= Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005); wn = 

natural water content; γb = bulk unit weight; γd = dry unit weight; LL = liquid limit; PL = 

plastic limit; PI = plasticity index; LI = liquidity index; Qu/2 = unconfined compressive 

strength; υ [DS] = friction angle [Direct Shear]; υC=0 [DS] = friction angle @ C = 0 

[Direct Shear]; Cu = Cohesion; e0 = initial void ratio; Cc = compression index; Cr = 

recompression index; p’c-C = preconsolidation pressure (Casagrande) 

 

 

Table 4.5: Lab Data, Second Moment Statistics for Warrensburg (Unclassified, In-Situ 

State: BGWL)  

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

wn (%) 27.3 9.4 11 248 8-30/1 

γb(pcf) 119.0 38.8 5 185 <10/1 

γd (pcf) 93.4 33.9 6 185 <10/1; 15/3 

(b) ATTERBERG LIMITS 

LL (%) 34.7 35.2 17 224 6-30/1; 34/2 

PL (%) 18.5 13.2 20 223 6-30/1; 29/2 
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Table 4.5 Cont’d: Lab Data, Second Moment Statistics for Warrensburg (Unclassified, 

In-Situ State: BGWL) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

PI (%) 16.3 29.2 33 223 48/2 

LI 0.52 0.06 49 161 34/2 

(c) STRENGTH PARAMETERS 

Su [UU] (psf) 1310.1 8.5E+05 70 51 10-30/1 

Qu/2 (psf) 769.6 2.9E+05 70 10 20-55/1 

Sup [CU] (psf) 2958.6 3.8E+06 66 41 20-40/1 

υp [CU] (deg) 26.4 62.4 30 41 5-15/1 

(d) CONSOLIDATION PARAMETERS 

e0 [IL+CRS] 0.8 0.01 14 185 7-30/1; 41.5/2 

Cc [IL+CRS] 0.236 0.032 76 48 10-37/1; 73/2 

Cr [IL+CRS] 0.037 0.002 119 47 
 

p'c-T (psf) [IL+CRS] 2227.4 1.5E+06 56 27 10-35/1; 62/2 

p'c-C (psf) [IL+CRS] 2523.8 1.7E+06 51 47 10-35/1; 62/2 

p'c-SE (psf) [IL+CRS] 2745.0 1.6E+06 46 28 10-35/1; 62/2 

Notes: 1 = Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005); wn = 

natural water content; γb = bulk unit weight; γd = dry unit weight; LL = liquid limit; PL = 

plastic limit; PI = plasticity index; LI = liquidity index; Su (UU) = undrained shear 

strength (unconsolidated, undrained); Qu/2 = unconfined compressive strength; Sup (CU) 

= peak undrained shear strength (consolidated, undrained); υP = friction angle (peak); e0 

= initial void ratio; Cc = compression index; Cr = recompression index; p’c-T = 

preconsolidation pressure (Tangent); p’c-C = preconsolidation pressure (Casagrande); p’c-

SE = preconsolidation pressure (Strain Energy) 

 

 

Table 4.6: Lab Data, Second Moment Statistics for Warrensburg (Classified) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV  

(%) / Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

Natural Moisture Content, wn (%) 

CL 26.7 13.4 14 297 8-30/1; 22/3 

CH 21.7 24.5 23 8 8-30/1; 49/3 

Bulk Unit Weight, γb (pcf) 

CL 119.2 41.2 5 207 <10/1; 3/3 

CH 124.2 7.1 2 5 <10/1; 3/3 
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Table 4.6 Cont’d: Lab Data, Second Moment Statistics for Warrensburg (Classified) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV  

(%) / Reference 

Dry Unit Weight, γd(pcf) 

CL 93.7 37.6 7 207 <10/1; 15/3 

CH 98.4 12.5 4 5 <10/1; 15/3 

(b) ATTERBERG LIMITS 

Liquid Limit, LL (%) 

CL 35.4 32.6 16 258 6-30/1; 34/2 

CH 54.7 0.5 1 9 6-30/1; 34/2 

Plastic Limit, PL (%) 

CL 18.6 12.1 19 257 6-30/1; 29/2 

CH 22.3 9.2 14 9 6-30/1; 29/2 

Plasticity Index, PI (%) 

CL 16.9 27.9 31 257 48/2; 33/3 

CH 32.3 5.6 7 9 48/2; 19/3 

Liquidity Index, LI 

CL 0.50 0.07 51 178 34/2 

(c) STRENGTH PARAMETERS 

Undrained Shear Strength, Su [UU] (psf) 

CL 1310.1 8.5E+05 70 51 10-30/1 

Unconfined Compressive Strength, Qu/2 (psf) 

CL 1050.4 6.8E+05 79 16 20-55/1; 80/3 

Undrained Shear Strength (peak), Sup [CU] (psf) 

CL   2960.3 3.7E+06 65 42 20-40/1 

Friction Angle (peak), υp [CU] (deg) 

CL 26.3 61.5 30 42 5-15/1 

Friction Angle, υ [DS] (deg) 

CL 28.7 20.7 16 19 19/3 

Friction Angle (@ Cu = 0), υC=0 [DS] (deg) 

CL 30.8 12.2 11 19 16/3 

Cohesion, Cu [DS] (psf) 

CL 199.2 10382.8 51 19 76/3 

(d) CONSOLIDATION PARAMETERS 

Initial Void Ratio, e0 

CL 0.8 0.014 14 207 7-30/1; 41.5/2 

CH 0.8 0.004 8 5 7-30/1; 41.5/2 
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Table 4.6 Cont’d: Lab Data, Second Moment Statistics for Warrensburg (Classified) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV  

(%) / Reference 

Compression Index, Cc 

CL 0.232 0.030 75 52 10-37/1; 73/2 

Recompression Index, Cr 

CL 0.038 0.002 114 51 
 

Preconsolidation Pressure (Tangent) p'c-T (psf) 

CL 2186.1 1530115.5 57 28 10-35/1; 62/2 

Preconsolidation Pressure (Casagrande) p'c-C (psf) 

CL 2507.8 1646730.1 51 51 10-35/1; 62/2 

Preconsolidation Pressure (Strain Energy) p'c-SE (psf) 

CL 2708.4 1580306.2 46 29 10-35/1; 62/2 

Notes: 1 = Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005)  

 

 

Table 4.7: Lab Data, Second Moment Statistics for Warrensburg (Classified, In-Situ 

State: AGWL)  

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV  

(%) / Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

Natural Moisture Content, wn (%) 

CL 23.5 20.0 19 52 8-30/1; 22/3 

CH 21.7 24.5 23 8 8-30/1; 49/3 

Bulk Unit Weight, γb (pcf) 

CL 120.9 59.3 6 23 <10/1; 3/3 

CH 124.2 7.1 2 5 <10/1; 3/3 

Dry Unit Weight, γd(pcf) 

CL 96.1 62.7 8 23 <10/1; 15/3 

CH 98.4 12.5 4 5 <10/1; 15/3 

(b) ATTERBERG LIMITS 

Liquid Limit, LL (%) 

CL 38.8 22.3 12 39 6-30/1; 34/2 

CH 54.8 0.5 1 8 6-30/1; 34/2 
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Table 4.7 Cont’d: Lab Data, Second Moment Statistics for Warrensburg (Classified, In-

Situ State: AGWL) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV  

(%) / Reference 

Plastic Limit, PL (%) 

CL 19.2 3.8 10 39 6-30/1; 29/2 

CH 22.6 10.0 14 8 6-30/1; 29/2 

Plasticity Index, PI (%) 

CL 19.6 31.0 28 39 48/2; 33/3 

CH 32.1 6.0 8 8 48/2; 19/3 

Liquidity Index, LI 

CL 0.35 0.066 74 17 34/2 

(c) STRENGTH PARAMETERS 

Unconfined Compressive Strength, Qu/2 (psf) 

CL 1373.6 909848.9 69 7 20-55/1; 80/3 

Friction Angle, υ [DS] (deg) 

CL 25.0 21.2 18 5 19/3 

Friction Angle (@ Cu = 0), υC=0 [DS] (deg) 

CL 27.4 13.7 14 5 16/3 

Cohesion, Cu [DS] (psf) 

CL 243.2 16641.0 53 5 76/3 

(d) CONSOLIDATION PARAMETERS 

Initial Void Ratio, e0 

CL 0.18 0.001 16 23 7-30/1; 41.5/2 

CH 0.8 0.004 8 5 7-30/1; 41.5/2 

Compression Index, Cc 

CL 0.175 0.001 16 5 10-37/1; 73/2 

Recompression Index, Cr 

CL 0.037 0.0002 41 5 
 

Preconsolidation Pressure (Casagrande) p'c-C (psf) 

CL 2256.0 1.8E+06 59 5 10-35/1; 62/2 

Notes: 1= Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005); UU = 

Unconsolidated, Undrained shear strength; CU = Consolidated, Undrained shear strength; 

DS = Direct Shear 
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Table 4.8: Lab Data, Second Moment Statistics for Warrensburg (Classified, In-Situ 

State: BGWL) 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

Natural Moisture Content, wn (%) 

CL 27.3 9.4 11 248 8-30/1; 22/3 

Bulk Unit Weight, γb (pcf) 

CL 119.0 38.8 5 185 <10/1; 3/3 

Dry Unit Weight, γd (pcf) 

CL 93.4 33.9 6 185 <10/1; 15/3 

(b) ATTERBERG LIMITS 

Liquidity Index, LL (%) 

CL 34.7 35.2 17 224 6-30/1; 34/2 

Plastic Limit, PL (%) 

CL 18.5 13.2 20 223 6-30/1; 29/2 

Plasticity Index, PI (%) 

CL 16.3 29.2 33 223 48/2; 33/3 

Liquidity Index, LI 

CL 0.52 0.07 49 156 34/2 

(c) STRENGTH PARAMETERS 

Undrained Shear Strength, Su [UU] (psf) 

CL 1310.1 8.5E+05 70 51 10-30/1 

Unconfined Compressive Strength, Qu/2 (psf) 

CL 769.6 2.1E+05 59 10 20-55/1; 80/3 

Undrained Shear Strength (peak), Sup [CU] (psf) 

CL 2958.6 3.8E+06 66 41 20-40/1 

Friction Angle (peak), υp [CU] (deg) 

CL 26.4 62.4 30 41 5-15/1 

Friction Angle, υ [DS] (deg) 

CL 30.1 13.5 12 14 19/3 

Friction Angle (@ Cu = 0), υC = 0 [DS] (deg) 

CL 32.0 5.5 7 14 16/3 

Cohesion, Cu [DS] (psf) 

CL 183.5 11452.4 58 14 76/3 

(d) CONSOLIDATION PARAMETERS 

Initial Void Ratio, e0 

CL 0.8 0.01 14 185 7-30/1; 41.5/2 
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Table 4.8 Cont’d: Lab Data, Second Moment Statistics for Warrensburg (Classified, In-

Situ State: BGWL 

Parameter / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

Compression Index, Cc 

CL 0.037 0.002 119 47 10-37/1; 73/2 

Recompression Index, Cr 

CL 0.236 0.032 76 48 
 

Preconsolidation Pressure p'c-T (psf) 

CL 2227.4 1.5E+06 56 27 10-35/1; 62/2 

Preconsolidation Pressure p'c-C (psf) 

CL 2523.8 1.7E+06 51 47 10-35/1; 62/2 

Preconsolidation Pressure p'c-SE (psf) 

CL 2745.0 1.6E+06 46 28 10-35/1; 62/2 

Notes: 1= Uzielli et al., (2007); 3 = Loehr et al., (2005); UU = Unconsolidated, 

Undrained shear strength; CU = Consolidated, Undrained shear strength; DS = Direct 

Shear;  

 

 

Table 4.9: CPTu Data, Second Moment Statistics for Warrensburg (Classified) 

Soil Property / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV 

(%) / Reference 

(a) CLASSIFIED 

Cone Resistance, qc  (tsf) 

1. Sensitive Fine-Grained 4.2 0.1 6.0 6 
 

2. Organic Soil 3.6 3.5 52.2 58 
 

3. Clay 7.6 15.1 51.0 629 20-40/1 

4. Clay & Silty Clay 27.6 352.4 68.1 44 
 

5. Silty Sand & Sandy Silt 64.7 2115.6 71.1 36 
 

9. Very Dense/Stiff Soil
+
 9.5 22.4 49.6 22 

 
Side Friction, fs  (tsf) 

1. Sensitive Fine-Grained 0.015 0.0001 52.7 6 
 

2. Organic Soil 0.3 0.03 61.4 58 
 

3. Clay 0.4 0.1 73.0 629 
 

4. Clay & Silty Clay 0.6 0.5 107.8 44 
 

5. Silty Sand & Sandy Silt 1.2 1.9 118.8 36 
 

9. Very Dense/Stiff Soil
+
 0.6 0.1 51.4 22 
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Table 4.9 Cont’d: CPTu Data, Second Moment Statistics for Warrensburg (Classified) 

Corrected Cone Resistance, qt  (tsf) 

1. Sensitive Fine-Grained 4.7 0.1 5.8 6 
 

2. Organic Soil 3.8 3.8 51.5 58 
 

3. Clay 7.9 14.6 48.5 629 < 20/1 

4. Clay & Silty Clay 27.5 332.1 66.3 44 
 

5. Silty Sand & Sandy Silt 64.3 2099.6 71.2 36 
 

9. Very Dense/Stiff Soil
+
 9.5 22.2 49.5 22 

 
Undrained Shear Strength, Su (psf) 

1. Sensitive Fine-Grained 3.81E+02 1.81E+03 11.2 6 
 

2. Organic Soil 5.03E+02 1.56E+05 78.6 33 
 

3. Clay 1.67E+03 2.02E+06 84.9 493 
 

4. Clay & Silty Clay 6.90E+03 3.03E+07 79.8 37 
 

9. Very Dense/Stiff Soil
+
 3.25E+03 1.88E+06 42.28 18 

 
Normalized Corrected Cone Resistance, qt/σ'vo 

1. Sensitive Fine-Grained 5.03E+03 3.06E+05 11.0 6 
 

2. Organic Soil 4.71E+03 4.20E+06 43.5 33 
 

3. Clay 1.27E+04 5.89E+07 60.6 493 
 

4. Clay & Silty Clay 5.27E+04 1.32E+09 68.9 37 
 

5. Silty Sand & Sandy Silt 1.21E+05 6.23E+09 65.2 36 
 

9. Very Dense/Stiff Soil
+
 2.14E+04 4.48E+07 31.3 18 

 
(b) CLASSIFIED, IN-SITU STATE: AGWL 

Cone Resistance, qc  (tsf) 

2. Organic Soil 1.8 0.6 43.8 14 20-40/1 

3. Clay  5.0 7.4 54.0 90 
 

9. Very Dense/Stiff Soil
+
 9.5 22.4 49.6 22 

 
Side Friction, fs  (tsf) 

2. Organic Soil 0.2 0.005 32.9 14 
 

3. Clay  0.4 0.1 64.0 90 
 

9. Very Dense/Stiff Soil
+
 0.6 0.1 51.4 22 

 
Corrected Cone Resistance, qt  (tsf) 

2. Organic Soil 1.8 0.5 40.0 14 < 20/1 

3. Clay  5.1 7.1 52.6 90 
 

9. Very Dense/Stiff Soil
+
 9.5 22.2 49.5 22 

 
Undrained Shear Strength, Su (psf) 

2. Organic Soil 5.69E+02 2.25E+04 26.4 8 
 

3. Clay  1.08E+03 2.92E+05 49.9 67 
 

9. Very Dense/Stiff Soil
+
 3.25E+03 1.88E+06 42.3 18 

 
Normalized Corrected Cone Resistance, qt/σ'vo 

2. Organic Soil 4.42E+03 5.03E+05 16.1 8 
 

3. Clay  1.04E+04 3.32E+07 55.4 67 
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Table 4.9 Cont’d: CPTu Data, Second Moment Statistics for Warrensburg (Classified) 

Soil Property / Soil Type Mean Variance 
COV        

(%) 
Count 

Reported COV  

(%) / Reference 

9. Very Dense/Stiff Soil
+
 2.14E+04 4.48E+07 31.3 18 

 
(c) CLASSIFIED, IN-SITU STATE: BGWL 

Cone Resistance, qc  (tsf) 

1. Sensitive Fine-Grained 4.2 0.1 6.0 6 
 

2. Organic Soil 4.2 3.0 41.6 44 
 

3. Clay 8.8 42.4 74.1 551 20-40/1 

4. Clay & Silty Clay 27.6 352.4 68.1 44 
 

5. Silty Sand & Sandy Silt 64.7 2115.6 71.1 36 
 

Side Friction, fs  (tsf) 

1. Sensitive Fine-Grained 0.015 0.0001 52.7 6 
 

2. Organic Soil 0.3 0.0 63.9 44 
 

3. Clay 0.4 0.1 74.7 551 
 

4. Clay & Silty Clay 0.4 0.1 74.7 551 
 

5. Silty Sand & Sandy Silt 1.2 1.9 118.8 36 
 

Corrected Cone Resistance, qt  (tsf) 

1. Sensitive Fine-Grained 4.7 0.1 5.8 6 
 

2. Organic Soil 4.4 3.1 40.1 44 
 

3. Clay 9.1 41.3 70.8 551 < 20/1 

4. Clay & Silty Clay 27.5 332.1 66.3 44 
 

5. Silty Sand & Sandy Silt 64.3 2099.6 71.2 36 20-40/1 

Undrained Shear Strength, Su (psf) 

1. Sensitive Fine-Grained 3.81E+02 1.81E+03 11.2 6 
 

2. Organic Soil 4.82E+02 1.98E+05 92.2 25 
 

3. Clay 1.92E+03 3.74E+06 100.8 438 
 

4. Clay & Silty Clay 6.90E+03 3.03E+07 79.8 37 
 

Normalized Corrected Cone Resistance, qt/σ'vo 

1. Sensitive Fine-Grained 5.03E+03 3.06E+05 11.0 6 
 

2. Organic Soil 4.80E+03 5.44E+06 48.6 25 
 

3. Clay 1.48E+04 1.83E+08 91.6 438 
 

4. Clay & Silty Clay 5.27E+04 1.32E+09 68.9 37 
 

5. Silty Sand & Sandy Silt 1.21E+05 6.23E+09 65.2 36 
 

Notes: 1= Uzielli et al., (2007); σ'vo = effective overburden pressure); σ'vo = effective 

overburden pressure 
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4.3. PROBABILITY DISTRIBUTION 

In this study, the Pearson’s moment-based technique was adopted for the selection 

of the probability distribution type that best approximates a dataset. In the Pearson’s 

moment-based technique a suitable probability distribution is identified on the Pearson 

space based on third- and fourth-moment statistics, i.e. skewness, Cs and kurtosis, Ck of 

the dataset. Cs and Ck are respectively computed using Equations 19 and 20 below.  

         

             
            

   

                                                                                                      (19) 

 

             
            

   

                                                                                                  (20) 

 

Where n is the total number of data points in a sample, xi is each data point, s is the 

standard deviation of the dataset, and    is mean of the dataset. 

The abscissa and ordinate of the Pearson’s distribution space are given by Rethati 

(1988) as: 

 

       
                                                                                                                               (21) 

 

                                                                                                                               (22) 

 

With β1 and β2 determined, the appropriate probability distribution for a parameter is 

chosen from the Pearson space.  
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Following from §4.2 (Second Moment Statistics), studies were led to determine 

the probability distribution of geotechnical parameters and investigate the effect of in-situ 

state (above Ground Water Level, and below Ground Water Level) and soil classification 

(USCS) type on probability distribution. In each case, the analysis for the second moment 

statistics (§4.2) was extended by using the mean and variance to compute Cs and Ck. Cs 

and Ck were used to determine β1 and β2, respectively. A probability distribution is then 

chosen on the basis of the location of β1 and β2 on the Pearson space.  

A sample data for the determination of the probability distribution of undrained 

strength (UU) and corrected tip resistance for Statewide (data from all locations) 

[unclassified] condition is presented in Table 4.10 while the location of the data on the 

Pearson space is presented in Figure 4.1. It should be noted that the abscissa and the 

ordinate of the Pearson space can be extended to the hundreds. Extended versions of the 

Pearson space, adapted from (Pearson, 1956; Pearson and Hartley, 1976; Pearson and 

Hartley, 1972), with abscissa and ordinate up to 250 are presented in Appendix E. 

4.3.1. Results. The results of the probability distribution analyses are presented in 

Tables 4.11 to 4.17. The results presented in Tables 4.11 to 4.17 are the probability 

distribution for parameters in Warrensburg that have a data count of five and above. In 

the aforementioned tables, the terms classified and unclassified are used in two contexts: 

(a) classification according to in-situ state as either above ground water level (AGWL) or 

below ground water level (BGWL); and (b) classification of soil types according to the 

Unified Soil Classification System (USCS). The comprehensive results including the 

results for various locations are presented in Appendices F and G for laboratory and field 

data, respectively.  
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Table 4.10: Sample Data for the Determination of Probability Distribution of Undrained 

Shear Strength (UU) and Corrected Tip Resistance, qt, for Statewide (Unclassified) 

Condition 

Identifier Count β1 β2 
Pearson 

Type 

Laboratory 

Su (UU) 329 6.2 15.7 VI 

Su (UU) / AGWL 104 0.1 2.3 I() 

Su (UU) / BGWL 207 2.6 5.8 I(J) 

CPTu - Clay 

qt 4304 6.4 11.3 I(J) 

qt  / AGWL 323 0.4 4.4 IV 

qt  / BGWL 3993 7.3 13.1 I(J) 

Notes: AGWL = above groundwater level; BGWL = below ground water 

level 

 

 

 

 

Figure 4.1: Location of Su (UU) and qt (for Clay) on the Pearson Space for the 

Unclassified, AGWL and BGWL Conditions 
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The probability distribution based on the validated laboratory test data are 

presented in Tables 4.11 and 4.16. The probability distribution for Warrensburg: 

unclassified, unclassified – AGWL, and unclassified – BGWL are presented in Tables 

4.11, 4.12, and 4.13, respectively. Similarly, the probability distribution for Warrensburg: 

classified, classified – AGWL, and classified – BGWL are presented in Tables 4.14, 4.15, 

and 4.16, respectively. Tables 4.11  to 4.16 are divided into four subsets: a, b, c, and d. a 

presents the second moment statistics of moisture content and unit weight, while b, c, and 

d present the statistics for Atterberg limits, strength parameters and consolidation 

parameters, respectively. 

The probability distribution based on the field data are presented in Table 4.17. 

Table 4.17 has three subsets: a, b, and c. a, b, and c presents the second moment statistics 

of parameters for Warrensburg: classified, classified – AGWL, classified – BGWL, 

respectively. 

The probability distribution based on both laboratory and field testing are 

compared to published data, principally data from Uzielli et al., (2007), Corotis et al., 

(1975) and Loehr et al., (2005) as presented in Tables 4.11 to 4.17. It should be noted that 

data presented in Uzielli et al., (2007) is a summary of data from other sources like Phoon 

et al., (1995), Kulhawy and Trautmann (1996), Lacasse and Nadim (1996), Phoon and 

Kulhawy (1999a), and Jones et al., (2002). Also, in Tables 4.10 to 4.16, with respect to 

Reported Distribution, N means Normal while LN means Lognormal. 
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Table 4.11: Lab Data, Probability Distribution for Warrensburg (Unclassified)  

Parameter Count β1 β2 
Pearson 

Type 

Reported 

Distribution / 

References 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

wn (%) 326 0.1 4.2 IV Beta/2 

γb (pcf) 231 0.2 3.4 IV N/1 

γd (pcf) 231 0.0 3.2 VII N/1 

(b) ATTERBERG LIMITS 

LL (%) 291 3.0 8.5 VI N/1,2 

PL (%) 290 0.2 6.2 IV N/1;LN/2 

PI (%) 290 1.4 6.4 IV 
 

LI 186 0.05 2.03 I() 
 

(c) STRENGTH PARAMETERS 

Su [UU] (psf) 68 19.5 30.8 I(J) N,LN/1 

Qu/2 (psf) 20 0.8 3.9 I() 
 

Sup [CU] (psf) 42 0.6 2.7 I(J) N,LN/1 

υp [CU] (deg) 42 0.3 2.4 I() 
 

υ [DS] (deg) 21 0.3 2.9 I() 
 

υC=0 [DS] (deg) 21 0.6 3.4 I() 
 

C u [DS] (psf) 21 0.1 2.2 I() 
 

(d) CONSOLIDATION PARAMETERS 

e0 231 0.2 3.5 IV N/1; LN/2 

Cc 53 41.2 47.6 I (J) Gamma/2 

Cr 52 35.9 43.3 I (J) 
 

p'c-T (psf) 28 0.01 2.1 I() LN/1 

p'c-C (psf) 52 0.6 3.7 IV LN/1 

p'c-SE (psf) 29 0.06 3.0 IV LN/1 

Notes: 1 = Uzielli et al., (2007); 2 = Corotis et al., (1975) ); 3 = Loehr et al., 

(2005); wn = natural water content; γb = bulk unit weight; γd = dry unit weight; LL 

= liquid limit; PL = plastic limit; PI = plasticity index; LI = liquidity index; Su 

(UU) = undrained shear strength (unconsolidated, undrained); Qu/2 = unconfined 

compressive strength; Sup (CU) = peak undrained shear strength (consolidated, 

undrained); υP = friction angle (peak); υ [DS] = friction angle [Direct Shear]; υC=0 

[DS] = friction angle @ Cu = 0 [Direct Shear]; Cu = Cohesion;e0 = initial Void 

Ratio; Cc = compression index; Cr = recompression index; p’c-T = preconsolidation 

pressure (Tangent); p’c-C = preconsolidation pressure (Casagrande); p’c-SE = 

preconsolidation pressure (Strain Energy) 
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Table 4.12: Lab Data, Probability Distribution for Warrensburg (Unclassified, In-Situ 

State: AGWL) 

Parameter Count β1 β2 
Pearson 

Type 

Reported Distribution 

/ Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

wn  (%) 64 0.04 4.0 IV Beta/2 

γb  (pcf) 30 1.4 4.1 I(J) N/1 

γd (pcf) 30 0.6 3.9 III N/1 

(b) ATTERBERG LIMITS 

LL (%) 53 0.2 2.6 I() N/1,2 

PL (%) 53 0.8 3.7 I() N/1;LN/2 

PI (%) 53 0.1 2.6 I() 
 

LI 19 1.09 4.02 I() 
 

(c) STRENGTH PARAMETERS 

Qu/2 (psf) 10 1.3 4.1 I() 
 

υ [DS] (deg) 7 0.6 1.9 U
 

υC=0 [DS] (deg) 7 0.2 1.9 U
 

Cu [DS] (psf) 7 0.02 1.8 (J)
 

(d) CONSOLIDATION PARAMETERS 

e0 30 1.7 5.1  N/1; LN/2 

Cc 16 0.3 2.7  Gamma/2 

Cr 34 0.6 4.1 VI 
 

p'c-C (psf) 57 3.4 6.8 J LN/1 

Notes: 1 = Uzielli et al., (2007);  2 = Corotis et al., (1975) ); wn = natural water 

content; γb = bulk unit weight; γd = dry unit weight; LL = liquid limit; PL = plastic 

limit; PI = plasticity index; LI = liquidity index; Qu/2 = unconfined compressive 

strength; υ [DS] = friction angle [Direct Shear]; υC=0 [DS] = friction angle @ Cu = 0 

[Direct Shear]; Cu = Cohesion; e0 = initial void ratio; Cc = compression index; Cr = 

recompression index; p’c-T = preconsolidation pressure (Tangent); p’c-C = 

preconsolidation pressure (Casagrande); p’c-SE = preconsolidation pressure (Strain 

Energy) 

 

 

Table 4.13: Lab Data, Probability Distribution for Warrensburg (Unclassified, In-Situ 

State: BGWL) 

Parameter Count β1 β2 
Pearson 

Type 

Reported Distribution 

/ Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

wn (%) 248 0.1 4.5 IV Beta/2 
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Table 4.13 Cont’d: Lab Data, Probability Distribution for Warrensburg  

Parameter Count β1 β2 
Pearson 

Type 

Reported Distribution 

/ Reference 

γb (pcf) 185 0.2 3.3 III N/1 

γd (pcf) 185 0.03 3.3 IV N/1 

(b) ATTERBERG LIMITS 

LL (%) 224 0.3 4.0 IV N/1,2 

PL (%) 223 2.2 7.0 VI N/1; LN/2 

PI (%) 223 0.2 4.0 IV 
 

LI 161 0.03 2.00 
 

(c) STRENGTH PARAMETERS 

Su [UU] (psf) 51 0.7 2.8 I(J) N,LN/1 

Qu/2 (psf) 10 0.3 1.6 I (U) 
 

Sup [CU] (psf) 41 0.6 2.7 I(J) N,LN/1 

υp [CU] (deg) 41 0.3 2.4 I() 
 

(d) CONSOLIDATION PARAMETERS 

e0 185 0.1 3.2 V N/1; LN/2 

Cc 48 37.8 43.8 I(J) Gamma/2 

Cr 47 33.4 40.0 I(J) 
 

p'c-T (psf) 27 0.0 2.2 II LN/1 

p'c-C (psf) 47 0.5 3.8 IV LN/1 

p'c-SE (psf) 28 0.04 3.0 I() LN/1 

Notes: 1 = Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005); 

wn = natural water content; γb = bulk unit weight; γd = dry unit weight; LL = liquid 

limit; PL = plastic limit; PI = plasticity index; LI = liquidity index; Su (UU) = 

undrained shear strength (unconsolidated, undrained); Sup (CU) = peak undrained 

shear strength (consolidated, undrained); υP = friction angle (peak); υ [DS] = 

friction angle [Direct Shear]; υC=0 [DS] = friction angle @ Cu = 0 [Direct Shear]; 

Cu = Cohesion; e0 = initial void ratio; Cc = compression index; Cr = recompression 

index; p’c-T = preconsolidation pressure (Tangent); p’c-C = preconsolidation 

pressure (Casagrande); p’c-SE = preconsolidation pressure (Strain Energy) 

 

 

Table 4.14: Lab Data, Probability Distribution for Warrensburg (Classified)  

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported 

Distribution / 

Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

Natural Water Content, wn (%) 
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Table 4.14 Cont’d: Lab Data, Probability Distribution for Warrensburg (Classified) 

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported 

Distribution / 

Reference 

CL 297 0.04 4.4 IV Beta/2 

CH 8 0.9 3.0 I (J) Beta/2 

Bulk Unit Weight, γb(pcf) 

CL 207 0.3 3.3  N/3 

CH 5 1.3 3.7 J N/3 

Dry Unit Weight, γd (pcf) 

CL 207 0.01 3.2 IV N/3 

(b) ATTERBERG LIMITS 

Liquid Limit, LL (%) 

CL 258 0.1 3.6 IV N/1,2 

CH 9 4.5 7.0 I (J) N/1,2 

Plastic Limit, PL (%) 

CL 257 2.3 7.5 VI N/1;LN/2 

CH 9 0.7 2.4 I (U) N/1;LN/2 

Plasticity Index, PI (%) 

CL 257 0.1 3.4 IV 
 

CH 9 0.3 1.3 I (U) 
 

Liquidity Index, LI 

CL 178 0.04 2.04 
 

(c) STRENGTH PARAMETERS 

Undrained Shear Strength, Su [UU] (psf) 

CL 51 0.7 2.8 I (J) N, LN/1 

Unconfined Compressive Strength, Qu/2 (psf) 

CL 16 2.0 6.2 VI LN/3 

Undrained Shear Strength (peak), Sup [CU] (psf) 

CL 42 0.6 2.7 I (J) N, LN/1 

Friction Angle (peak), υp [CU] (deg) 

CL 42 0.3 2.4 I() 
 

Friction Angle, υ [DS] (deg) 

CL 19 0.2 2.7 I() LN/3 

Friction Angle (@ cohesion = 0), υC=0 [DS] (deg) 

CL 19 0.4 3.2 I() N/3 

Cohesion, Cu [DS] (psf) 

CL 19 0.2 2.1 I (J) 
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Table 4.14 Cont’d: Lab Data, Probability Distribution for Warrensburg (Classified) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.15: Lab Data, Probability Distribution for Warrensburg (Classified, In-Situ State: 

AGWL)  

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported 

Distribution / 

Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

Natural Water Content, wn (%) 

CL 52 0.1 4.0 IV Beta/2 

CH 8 0.9 3.0 I (J) Beta/2 

Bulk Unit Weight, γb (pcf) 

CL 23 1.6 4.4 I (J) N/3 

CH 5 1.3 3.7 I (J) N/3 

Dry Unit Weight, γd (pcf) 

CL 23 0.6 3.7  N/3 

(b) ATTERBERG LIMITS 

 

 

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported 

Distribution / 

Reference 

(d) CONSOLIDATION PARAMETERS 

Initial Void Ratio, e0 

CL 207 0.2 3.5 IV N/1; LN/2 

Compression Index, Cc 

CL 52 40.5 46.8 I (U) Gamma/2 

Recompression Index, Cr 

CL 51 35.1 42.4 I (J) 
 

Preconsolidation Pressure (Tangent), p'c-T (psf) 

CL 8 0.01 2.1 I() LN/1 

Preconsolidation Pressure (Casagrande), p'c-C (psf) 

CL 51 0.6 3.7 IV LN/1 

Preconsolidation Pressure (Strain Energy), p'c-SE (psf) 

CL 29 0.06 3.0 IV LN/1 

Notes: 1 = Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005) 
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Table 4.15 Cont’d: Lab Data, Probability Distribution for Warrensburg (Classified, In-

Situ State: AGWL) 

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported 

Distribution / 

Reference 

Liquid Limit, LL (%) 

CL 39 0.004 2.7 II N/1, 2 

CH 8 8.0 11.0 I (J) N/1, 2 

Plastic Limit, PL (%) 

CL 39 0.2 3.4 V   N/1; LN/2 

CH 8 1.3 3.1 I (J) N/1; LN/2 

Plasticity Index, PI (%) 

CL 39 0.03 2.2 
 

Liquidity Index, LI 

CL 7 0.89 3.97 
 

(c) STRENGTH PARAMETERS 

Unconfined Compressive Strength, Qu/2 (psf) 

CL 7 3.0 6.5 I (J) LN/3 

(d) CONSOLIDATION PARAMETERS 

Initial Void Ratio, e0 

CL 23 1.7 4.6 I (J) N/1; LN/2 

Compression Index, Cc 

CL 5 0.4 2.9 I() Gamma/2 

Recompression Index, Cr 

CL 5 1.1 4.4 I() 
 

Preconsolidation Pressure (Casagrande), σ'p-C (psf) 

CL 5 3.2 6.6 I (J) LN/1 

Notes: 1 = Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005) 

 

 

Table 4.16: Lab Data, Probability Distribution for Warrensburg (Classified, In-Situ State: 

BGWL)  

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported Distribution 

/ Reference 

(a) MOISTURE CONTENT AND UNIT WEIGHT 

Natural Water Content, wn (%) 

CL 248 0.1 4.5 IV Beta/2 

Bulk Unit Weight, γb(pcf) 
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Table 4.16 Cont’d: Lab Data, Probability Distribution for Warrensburg (Classified, In-

Situ State: BGWL) 

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported Distribution 

/ Reference 

CL 185 0.2 3.3 III N/3 

Dry Unit Weight, γd (pcf) 

CL 185 0.03 3.3 IV N/3 

(b) ATTERBERG LIMITS 

Liquid Limit, LL (%) 

CL 224 0.3 4.0 IV N/1, 2 

Plastic Limit, PL (%) 

CL 223 2.2 7.0 VI N/1; LN/2 

Plasticity Index, PI (%) 

CL 223 0.2 4.0 IV 
 

Liquidity Index, LI 

CL 156 0.03 1.99 
 

(c) STRENGTH PARAMETERS 

Undrained Shear Strength, Su [UU] (psf) 

CL 51 0.7 2.8 I (J) N,LN/1 

Unconfined Compressive Strength, Qu/2 (psf) 

CL 10 0.3 1.6 I (U) LN/3 

Undrained Shear Strength (peak), Sup [CU] (psf) 

CL 41 0.6 2.7 I (J) N,LN/1 

Friction Angle (peak), υp [CU] (deg) 

CL 41 0.3 2.4 I()  

Friction Angle, υ [DS] (deg) 

CL 14 0.02 1.9 I()  

Friction Angle (@ C = 0), υC = 0 [DS] (deg) 

CL 14 0.003 1.7 I (U) LN/3 

Cohesion, Cu [DS] (psf) 

CL 14 0.2 2.6 I() N/3 

(d) CONSOLIDATION PARAMETERS 

Initial Void Ratio, e0 

CL 185 0.1 3.2 V N/1; LN/2 

Compression Index, Cc 

CL 47 37.8 43.8 I (J) Gamma/2 

Recompression Index, Cr 

CL 48 33.4 40.0 I (J)  

 



62 

Table 4.16 Cont’d: Lab Data, Probability Distribution for Warrensburg (Classified, In-

Situ State: BGWL) 

Parameter 

/ Soil Type 
Count β1 β2 

Pearson 

Type 

Reported Distribution 

/ Reference 

Preconsolidation Pressure (Tangent), p'c-T (psf) 

CL 27 0.0 2.2 II LN/1 

Preconsolidation Pressure (Casagrande), p'c-C (psf) 

CL 47 0.5 3.8 IV LN/1 

Preconsolidation Pressure (Strain Energy), p'c-SE (psf) 

CL 28 0.04 3.0 I() LN/1 

Notes: 1 = Uzielli et al., (2007); 2 = Corotis et al., (1975); 3 = Loehr et al., (2005) 

 

 

Table 4.17: CPTu Data, Probability Distribution for Warrensburg (Classified) 

Soil Property / Soil Type Count β1 β2 
Pearson 

Type 

Reported 

Distribution 

/ Reference 

(a) CLASSIFIED 

Cone Resistance, qc  (tsf) 

1. Sensitive Fine-Grained 6 0.1 1.5 I (U) 
 

2. Organic Soil 58 0.3 2.6 
 

3. Clay 629 0.9 3.6  N, LN/1 

4. Clay & Silty Clay 44 4.8 9.7 I (J) 
 

5. Silty Sand & Sandy Silt 36 7.9 11.8 I (J) 
 

9. Very Dense/Stiff Soil
+
 22 0.3 2.1 I (J) 

 
Side Friction, fs  (tsf) 

1. Sensitive Fine-Grained 6 2.4 4.4 I (J) 
 

2. Organic Soil 58 1.3 4.2 I (J) 
 

3. Clay 629 0.8 3.2 I (J) 
 

4. Clay & Silty Clay 44 7.4 11.6 I (J) 
 

5. Silty Sand & Sandy Silt 36 4.0 6.0 I (U) 
 

9. Very Dense/Stiff Soil
+
 22 0.1 1.8 I (U) 

 
Corrected Cone Resistance, qt  (tsf) 

1. Sensitive Fine-Grained 6 3.5 6.8 I (J) 
 

2. Organic Soil 58 0.2 2.5 
 

3. Clay 629 0.7 3.4 I (J) N, LN/1 

4. Clay & Silty Clay 44 5.0 9.8 I (J) 
 



63 

Table 4.17 Cont’d: CPTu Data, Probability Distribution for Warrensburg (Classified) 

Soil Property / Soil Type Count β1 β2 
Pearson 

Type 

Reported 

Distribution 

/ Reference 

5. Silty Sand & Sandy Silt 36 8.1 12.0 I (J) 
 

9. Very Dense/Stiff Soil
+
 22 0.3 2.2 I (J) 

 
Undrained Shear Strength, Su (psf) 

1. Sensitive Fine-Grained 6 3.1 6.6 I (J) 
 

2. Organic Soil 33 7.0 10.6 I (J) 
 

3. Clay 493 2.0 4.2 I (U) 
 

4. Clay & Silty Clay 37 3.2 8.5 VI 
 

9. Very Dense/Stiff Soil
+
 18 0.02 1.8 I (J) 

 
Normalized Corrected Cone Resistance, qt/σ'vo 

1. Sensitive Fine-Grained 6 3.7 7.1 I (J) 
 

2. Organic Soil 33 3.3 7.8 
 

3. Clay 493 1.6 4.2 I (J) 
 

4. Clay & Silty Clay 37 5.5 9.8 I (J) 
 

5. Silty Sand & Sandy Silt 36 4.4 7.4 I (J) 
 

9. Very Dense/Stiff Soil
+
 18 0.1 2.0 I (J) 

 
(b) CLASSIFIED, IN-SITU STATE: AGWL 

Cone Resistance, qc  (tsf) 

2. Organic Soil 14 0.1 1.8 I (U) N, LN/1 

3. Clay  90 1.0 3.0 I (J) 
 

9. Very Dense/Stiff Soil
+
 22 0.3 2.1 I (J) 

 
Side Friction, fs  (tsf) 

2. Organic Soil 14 0.02 1.8 I (J) 
 

3. Clay  90 1.2 3.2 I (J) 
 

9. Very Dense/Stiff Soil
+
 22 0.1 1.8 I (U) 

 
Corrected Cone Resistance, qt  (tsf) 

2. Organic Soil 14 0.1 1.5  N, LN/1 

3. Clay  90 1.0 3.0 I (J) 
 

9. Very Dense/Stiff Soil
+
 22 0.3 2.2 I (J) 

 
Undrained Shear Strength, Su (psf) 

3. Clay  67 0.5 2.7 
 

9. Very Dense/Stiff Soil
+
 18 0.016 1.8 I (J) 
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Table 4.17 Cont’d: CPTu Data, Probability Distribution for Warrensburg (Classified) 

Soil Property / Soil Type Count β1 β2 
Pearson 

Type 

Reported 

Distribution 

/ Reference 

Normalized Corrected Cone Resistance, qt/σ'vo 

2. Organic Soil 8 1.7 4.7 I (J) 
 

3. Clay  67 0.7 2.3 I (U) 
 

9. Very Dense/Stiff Soil
+
 18 0.1 2.0 I (J) 

 
(c) CLASSIFIED, IN-SITU STATE: BGWL 

Cone Resistance, qc  (tsf) 

1. Sensitive Fine-Grained 6 0.1 1.5 I (U) 
 

2. Organic Soil 44 0.2 2.3 
 

3. Clay 551 18.2 31.0 VI N, LN/1 

4. Clay & Silty Clay 44 4.8 9.7 I (J) 
 

5. Silty Sand & Sandy Silt 36 7.9 11.8 I (J) 
 

Side Friction, fs  (tsf) 

1. Sensitive Fine-Grained 6 2.4 4.4 I (J) 
 

2. Organic Soil 44 0.8 3.4 
 

3. Clay 551 0.8 3.1 I (J) 
 

4. Clay & Silty Clay 44 7.4 11.6 I (J) 
 

5. Silty Sand & Sandy Silt 36 4.0 6.0 I (U) 
 

Corrected Cone Resistance, qt  (tsf) 

1. Sensitive Fine-Grained 6 3.5 6.8 I (J) 
 

2. Organic Soil 44 0.2 2.4 
 

3. Clay 551 18.8 31.9 VI N, LN/1 

4. Clay & Silty Clay 44 5.0 9.8 I (J) 
 

5. Silty Sand & Sandy Silt 36 8.1 12.0 I (J) LN/1 

Undrained Shear Strength, Su (psf) 

1. Sensitive Fine-Grained 6 3.1 6.6 I (J) 
 

2. Organic Soil 44 7.1 9.8 I (J) 
 

3. Clay 551 5.8 11.1 I (J) 
 

4. Clay & Silty Clay 37 3.2 8.5 VI 
 

Normalized Corrected Cone Resistance, qt/σ'vo 

1. Sensitive Fine-Grained 6 3.7 7.1 I (J) 
 

2. Organic Soil 25 2.4 6.1 
 

3. Clay 438 14.3 22.6 I (J) 
 

4. Clay & Silty Clay 37 5.5 9.8 I (J) 
 

5. Silty Sand & Sandy Silt 36 4.4 7.4 I (J) 
 

Notes: 1 = Uzielli et al., (2007); σ'vo = effective overburden pressure 
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4.3.2. Effect of In-Situ State on Probability Distribution. The effect of in-situ 

state on the probability distribution function/type for parameters was evaluated by 

determining the probability distribution with both unclassified and classified data. 

Classification in this case is according to in-situ state – above GWL and below GWL. 

The investigation was carried out because the soil behavior is known to be affected by in-

situ state (Uzielli et al., 2007) – saturated and unsaturated soil behaviors are known to 

differ. The investigation was carried out with both the research (S&T, and MU) data and 

all the study data for Su (UU) and all the study data for all the parameters considered. 

The results of the investigation/analyses with the research data for Su (UU) are 

presented in Figure 4.2 and Table 4.18. Based on research data, Figure 4.2 presents the 

location of Su (UU) on the Pearson space as a result of in-situ state based on data of 

locations. 

 

 

Table 4.18: Effect of In-Situ State on Pearson Types for Su (UU) – Research Data Only 

ID Description Pearson’s Type 

W-BGWL-CL Warrensburg - Below GWL - CL I(J):  J-Shaped 

SC-BGWL-CH St. Charles - Below GWL - CH III 

P-BGWL-CH Pemiscot - Below GWL - CH II 

W-CL Warrensburg - CL I(J): J-Shaped 

SC-CH St. Charles - CH III 

P-CH Pemiscot - CH II 

 

 

The results of the investigation/analyses with the data for Warrensburg are 

presented in Table 4.10 and Figure 4.1, and Tables 4.11 to 4.17. The results of the 
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investigation/analyses with the data from all the locations are presented in Appendices C 

and D. An excerpt from Tables 4.11 to 4.17 showing the effect of in-situ state on the 

probability distribution of some randomly chosen parameters is presented in Table 4.19. 

 

 

Figure 4.2: Pearson’s Distribution Space for Su (UU) – Locations 

 

 

Table 4.19: Effect of In-Situ State on Pearson Types for Some Parameters – Warrensburg 

Parameter / 

Classification 

NONE AGWL BGWL 

Count Pearson Type Count Pearson Type Count Pearson Type 

γb (pcf) 231 IV 30 IV 185 III 

LL (%) 291 VI 53 I() 224 IV 

Su [UU] (psf) 68 I(J) * * 51 I(J) 

p'c-C (psf) 52 IV 57 I (J) 47 IV 

wn - CL 297 IV 52 IV 248 IV 

PL - CL 257 I() 39 V 223 VI 
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Table 4.19 Cont’d: Effect of In-Situ State on Pearson Types for some Parameters – 

Warrensburg 

Parameter / 

Classification 

NONE AGWL BGWL 

Count Pearson Type Count Pearson Type Count Pearson Type 

qt - Clay 629 I(J) 90 I(J) 551 I(J) 

υp [CU] - CL 42 I() * * 41 I() 

e0 231 IV 30 I() 185 V 

qc - Clay 629 I(J) 90 I(J) 551 VI 

fs - Clay 629 I(J) 90 I(J) 551 VI 

Note: γb = bulk unit weight; LL = liquid limit; PL = plastic limit; Su (UU) = undrained 

shear strength (unconsolidated, undrained); υP = friction angle (peak); e0 = initial void ratio; 

p’c-C = preconsolidation pressure (Casagrande) 

 

 

4.4. CORRELATION OF SOIL PROPERTIES 

 4.4.1. General. In geotechnical engineering practice, the use of correlations and 

empirical relationships may provide a fast, cost-effective means of predicting parameters 

provided the appropriate correlations are employed. They are particularly useful in 

preliminary studies, or when, due to time and/or financial constraints, a thorough 

geotechnical investigation cannot to be conducted. In this section, investigations are led 

to develop correlation matrices showing the correlation between parameters, developing 

correlations between parameters, and examine the validity of published empirical 

relationships. 

4.4.2. Correlation Matrix. An analysis, based on the research (S&T and MU) 

data of TRGP, was led to develop a correlation matrix showing the correlation between 

parameters. The parameters investigated are Atterberg limits (PL, LL, PI, LI), natural 

moisture content, wn,  initial void ratio, e0,  unit weight (bulk, b, and dry, d), undrained 

shear strength (unconsolidated, undrained), Su (UU), undrained shear strength 
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(consolidated, undrained), Sup (CU), compression index, Cc, recompression index, Cr, 

peak friction angle [from single Su (CU) test], φp, preconsolidation pressure 

(Casagrande),     
 .  

The correlation matrix analysis for this study was carried out using the Microsoft 

Excel 2007 add-in for data analysis. Knowledge of the degree of correlation between 

parameters is required in higher level RBD implementations.  

The correlation matrix showing the correlation between parameters based on the 

Research data of TRGP is presented in Tables 4.20 to 4.23 for Warrensburg, St. Charles, 

New Florence, and Pemiscot, respectively. The data count for Warrensburg, St. Charles, 

New Florence, and Pemiscot was 48, 41, 38, and 89, respectively. The comprehensive 

results including the results for various locations are presented in Appendix H.  

 

 

Table 4.20: Correlation Matrix for Warrensburg (Data Count = 48) 
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Table 4.21: Correlation Matrix for St. Charles (Data Count = 41) 

 

 

 

 

Table 4.22: Correlation Matrix for New Florence (Data Count = 38) 
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Table 4.23: Correlation Matrix for Pemiscot (Data Count = 89) 

 

 

 

4.4.3. Development of Correlations Between Parameters. The use of simply-

obtained parameters, like Atterberg limits, to predict the value of complexly-obtained 

parameters, like undrained shear strength, Su, if applied under appropriate conditions is 

acceptable in geotechnical engineering practice if applied under appropriate conditions. 

An analysis, based on the research (S&T and MU) data of TRGP, was led to develop 

correlation models between Atterberg limits (Plasticity Index, PI) the normalized (with 

respect to effective overburden pressure) undrained shear strength, (Su/σ’). This analysis 

was carried out in two steps: first, with unclassified (with respect to soil classification 

type) data; and then with classified data. This analysis was carried out using Microsoft 

Excel 2007 in which curves are fitted using the method of Ordinary Least Square (OLS). 

The results of the investigation into the development of correlation models for 

Atterberg limits (Plasticity Index, PI) and normalized (with respect to effective 
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overburden pressure) undrained shear strength, (Su/σ’) are presented in Figures 4.3 to 4.6, 

Figures 4.7 to 4.9, and Table 4.24.  

The correlation models developed for the PI and (Su/σ’) irrespective of soil 

classification type is presented in Figures 4.3 to 4.6 for the Warrensburg, St. Charles, 

New Florence and Pemiscot, respectively. The correlation models developed for the PI 

and (Su/σ’) with respect to soil classification type is presented in Figures 4.7 to 4.9 for the 

CL, CH, and MH, respectively. The correlation models developed for the PI and (Su/σ’) 

with respect to soil classification types including their respective coefficient of 

determination are presented in Table 4.24. 

 

 

 

Figure 4.3: Correlations Model for Unclassified (in Terms of Both In-Situ State and Soil 

Classification Type) PI and (Su/σ’) – Warrensburg 
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Figure 4.4: Correlations Model for Unclassified (in Terms of Both In-Situ State and Soil 

Classification Type) PI and (Su/σ’) - St. Charles 

 

 

 

Figure 4.5: Correlations Model for Unclassified (in Terms of Both In-Situ State and Soil 

Classification Type) PI and (Su/σ’) - New Florence 
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Figure 4.6: Correlations Model for Unclassified (in Terms of Both In-Situ State and Soil 

Classification Type) PI and (Su/σ’) – Pemiscot 

 

 

 

Figure 4.7: Correlations Model for Classified (in Terms of Soil Classification Type Only) 

PI and (Su/σ’) – CL 
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Figure 4.8: Correlations Model for Classified (in Terms of Soil Classification Type Only) 

PI and (Su/σ’) – CH 

 

 

 

Figure 4.9: Correlations Model for Classified (in Terms of Soil Classification Type Only) 

PI and (Su/σ’) - MH 
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Table 4.24: Correlation Models for the PI and (Su/σ’) Based on Soil Classification Type 

Soil Type Correlation Equation 
Correlation 

Coefficient, R
2
 

CL Su/σ’ = 0.0106 PI
 2

 - 0.5197 PI + 6.5662 0.48 

CH Su/σ’ = -0.0074 PI + 0.7575 0.37 

MH Su/σ’= 0.0001 PI
 2

 - 0.0112 PI + 0.4398 0.39 

 

 

4.4.4. Assessment of the Validity of Published Empirical Relationships 

Between Parameters. Analyses, based on all data – TRGP and MoDOT historical data, 

were led to assess the validity of published empirical relationships between parameters. 

To simplify the investigation, published empirical relationships were grouped into two: 

those relating strength parameters to simply obtained parameters; and those relating 

consolidation parameters to simply obtained parameters. The empirical relationships 

relating strength parameters to simply obtained parameters were investigated in terms of 

both Su (UU) and Su (CU). The empirical relationships assessed for validity are presented 

in Tables 4.25 and 4.26 for the strength and consolidation parameters, respectively. 

Empirical relationship #10 in Table 4.25 was assessed for Su (CU) only. For the purposes 

of these analyses, the empirical relationships were reconstituted to yield a straight line 

when plotted.  

For correlations with strength parameters, the validity of nine (Equations 1 to 9, 

Table 4.25) empirical relationships was assessed for Su (UU), while the validity of ten 

(see Table 4.25) empirical relationships was assessed for Su (CU).  For the correlations 

with consolidation parameters (see Table 4.26), the validity of six empirical relationships 

was assessed for Cc while the validity of five empirical relationships was assessed for Cr. 
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Table 4.25: Strength Parameters – Published Empirical Correlations Evaluated 

# Equation Reference Remarks 

1 Su/p’o = 0.45(IP)
1/2

 Bjerrum and Simons (1960) NC, IP > 0.5, (decimal) 

2 Su/p’o = 0.18(IL)
1/2

 Bjerrum and Simons (1960) NC, IL > 0.5, (decimal) 

3 Su/p’o = 0.11 + 0.0037IP Skempton and Henkel (1953) NC, IP (percent) 

4 Su/p’o = 0.5wL Karlsson and Viberg (1967) NC, wL > 0.2, (decimal) 

5 (Su/σ’z)nc = 0.11 + 0.0037PI Skempton (1957) NC 

6 Su/p’o = 0.129 + 0.00435PI Worth and Houlsby (1985) NC 

7 Su/σ’z = (0.23 ± 0.04)OCR
0.8

 Jamiolkowski et al., (1985) OC 

8 Su/σ’zc = 0.11 + 0.0037PI Skempton (1957) OC 

9 Su/σ’zc = 0.22 Mesri  (1975) All clays 

10 υ’ versus PI Bowles (1997) Plot 

Notes: NC,  nc = normally consolidated clay; OC = overconsolidated clay; OCR = 

overconsolidation ratio; σ’zc = preconsolidation pressure; σ’z, p’o = effective overburden 

pressure; IP, PI = plasticity index; IL = liquidity index; wL = liquid limit; n = data count 

 

 

 

 

Table 4.26: Consolidation Parameters – Published Empirical Correlations Evaluated 

# Equation Reference Remarks 

1 Cc = 0.009(LL - 10) Skempton (1944) Remolded clays 

2 Cc = 0.40(eo - 0.25) Azzouz et al., (1976)  

3 Cc = 0.01(wn - 5) Azzouz et al., (1976) All clays 

4 Cc = 0.37(eo + 0.003LL – 0.34) Azzouz et al., (1976)  

5 Cc = 0.5Gs(PI/100) ≈ PI/74 Wood and Worth (1978)  

6 Cc = 0.00234 LLGs Nagaraj and Murthy (1986) All clays 

7 Cr = 0.15(eo + 0.25) Azzouz et al., (1976) All clays 

8 Cr = 0.003(wn + 10) Azzouz et al., (1976) All clays 

9 Cr = 0.126(eo + 0.003LL – 0.06) Azzouz et al., (1976) All clays 

10 Cr = 0.00463 LLGs Nagaraj and Murthy (1985) All clays 

11 Cr = Cc 1/5*Cc to 1/10*Cc Budhu (2008)  

Notes: e0 = initial void ratio; wn = natural water content; PI = plasticity index; LL = liquid 

limit; Gs = specific gravity of solids; Cc = compression index; Cr = recompression index 
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The results of the investigation led to assess the validity of published empirical 

relationships between simply-obtained parameters and strength and consolidation 

parameters, as they relate to the data used in this study, are presented in Tables 4.27 to 

4.29 and Figures 4.10 to 4.35. For easy comparison, in Tables 4.27 to 4.29 each empirical 

relationship being validated is stated while the relationship developed in this study is 

stated below it. In Figures 4.10 to 4.35 the plots of empirical relationship being validated 

and the plot developed in this study are shown side by side for easy comparison also.   

The results of the validation of empirical relationships relating strength and 

consolidation parameters to simply obtained parameters are presented in Table 4.27 and 

Figures 4.10 to 4.16 for Su (UU), Table 4.28 and Figures 4.17 to 4.24 for Su (CU), and 

Table 4.29 and Figures 4.25 to 4.35 for Cc and Cr.  

Figures 4.10 to 4.15 presents the relationship between normalized (with respect to 

effective overburden pressure) undrained shear strength (UU) Su/σ’z and PI by Bjerrum 

and Simmons (1960), Su/σ’z and LI by Bjerrum and Simmons (1960), Su/σ’z and PI by 

Skempton and Henkel (1953), Skempton (1957), Worth and Houlsby (1985), Su/σ’z and 

LL by Karlsson and Viberg (1967), and Su/σ’z and OCR by Jamiolkowski et al., (1985), 

respectively. Figures 4.15 and 4.16 presents the relationship between normalized (with 

respect to preconsolidation pressure) undrained shear strength (UU) Su/σ’zc and PI by 

Skempton (1957), and undrained shear strength (UU) Su and preconsolidation pressure by 

Mesri (1975), respectively. The foregoing applies to the Figures 4.17 to 4.23 presented 

for the relationships between undrained shear strength (CU) and other simply-obtained 

parameters. The difference in this case is the extra relationship between υ and PI by 

Bowles (1998) presented in Figure 4.24. Figures 4.25 to 4.30 presents the relationship 
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between Cc and LL by Skempton (1944), Cc and e0 by Azzouz et al., (1976), Cc and wn 

by Azzouz et al., (1976), Cc and (e0 + LL) by Azzouz et al., (1976), Cc  and Gs*PI by 

Wood and Worth (1978) and Cc and LL*GS by Nagaraj and Murthy (1986), respectively. 

Figures 4.31 to 4.35 presents the relationship between Cr and e0 by Azzouz et al., (1976), 

Cr and wn by Azzouz et al., (1976), Cc and (e0 + LL) by Azzouz et al., (1976), Cr and 

LL*GS by Nagaraj and Murthy (1986), and Cr  and Cc by Budhu (2008), respectively. 

 

 

 

Table 4.27: Strength Parameters – Su (UU); Published Empirical Correlations and 

Correlations Developed in this Study 

# Equation Reference Remarks 

1 
Su/p’o = 0.45(IP)

1/2
 

Su/p’o = -1.9385(IP)
1/2

 + 2.286 

Bjerrum and Simons (1960) 

Present Study 

NC, IP > 0.5, (decimal) 

R
2
 = 0.0879; n = 60 

2 
Su/p’o = 0.18(IL)

1/2
 

Su/p’o = -0.5118(IL)
1/2

 + 0.9838 

Bjerrum and Simons (1960) 

Present Study 

NC, IL > 0.5, (decimal) 

R
2
 = 0.0277; n = 56 

3 
Su/p’o = 0.11 + 0.0037IP 

Su/p’o = = 0.9744 - 0.0022PI 

Skempton and Henkel (1953) 

Present Study 

NC, IP (percent) 

R
2
 = 0.0058; n = 16 

4 
Su/p’o = 0.5wL 

Su/p’o = -0.373wL + 1.1281 

Karlsson and Viberg (1967) 

Present Study 

NC, wL > 0.2, (decimal) 

R
2
 = 0.0375; n = 193 

5 
(Su/σ’z)nc = 0.11 + 0.0037PI 

(Su/σ’z)nc = 0.9744 - 0.0022PI 

Skempton (1957) 

Present Study 

NC 

R
2
 = 0.0058; n = 16 

6 
Su/p’o = 0.129 + 0.00435PI 

Su/p’o = 0.9744 - 0.0022PI 

Worth and Houlsby (1985) 

Present Study 

NC 

R
2
 = 0.0058; n = 16 

7 
Su/σ’z = (0.23 ± 0.04)OCR

0.8
 

Su/σ’z = (0.0707)OCR
0.8

+ 0.785 

Jamiolkowski et al., (1985) 

Present Study 

OC 

R
2
 = 0.1613; n = 132 

8 
Su/σ’zc = 0.11 + 0.0037PI 

Su/σ’zc = 0.953 - 0.0078PI 

Skempton (1957) 

Present Study 

OC 

R
2
 = 0.1363; n = 154 

9 
Su = 0.22*σ’zc 

Su = 0.1363*σ’zc + 944.97 

Mesri  (1975) 

Present Study 

All clays 

R
2
 = 0.0405; n = 212 

Notes: NC,  nc = normally consolidated clay; OC = overconsolidated clay; OCR = 

overconsolidation ratio; σ’zc = preconsolidation pressure; σ’z, p’o = effective overburden 

pressure; IP, PI = plasticity index; IL = liquidity index; wL = liquid limit; n = data count 
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Figure 4.10: SU (UU), Correlation Between Su/σ’z and (PI/100)
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Figure 4.11: SU (UU), Correlation Between Su/σ’z and (LI)
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Bjerrum and Simons 
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Figure 4.12: SU (UU), Correlation Between Su/σ’z and PI -
 
Skempton and Henkel (1953), 

Skempton (1957), Worth and Houlsby (1985) - #3, #5, #6 

 

 

 

 

Figure 4.13: SU (UU), Correlation Between Su/σ’z and LL -
 
Karlsson and Viberg (1967) - 

#4 
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Figure 4.14: SU (UU), Correlation Between Su/σ’z and OCR
0.8

 -
 
Jamiolkowski et al., 

(1985) - #7 

 

 

 

 

 

 

Figure 4.15: SU (UU), Correlation Between Su/σ’zc and PI -
 
Skempton (1957) - #8 
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Figure 4.16: SU (UU), Correlation Between Su and σ’zc –
 
Mesri (1975) - #9 

 

  

 

 

Table 4.28: Strength Parameters – Su (CU); Published Empirical Correlations and 

Correlations Developed in this Study 

# Equation Reference Remarks 

1 
Su/p’o = 0.45(IP)

1/2
 

Su/p’o = -3.135(IP)
1/2

 + 3.8627 

Bjerrum and Simons (1960) 

Present Study 

NC, IP > 0.5, (decimal) 

R
2
 = 0.06595; n = 13 

2 
Su/p’o = 0.18(IL)

1/2
 

Su/p’o = -2.3664(IL)
1/2

 + 3.6434 

Bjerrum and Simons (1960) 

Present Study 

NC, IL > 0.5, (decimal) 

R
2
 = 0.035; n = 45 

3 

 

Su/p’o = 0.11 + 0.0037IP 

Su/p’o = 1.5415 + 0.0003IP 

Skempton and Henkel 

(1953) 

Present Study 

NC, IP (percent) 

R
2
 = 3E-05; n = 65 

4 
Su/p’o = 0.5wL 

Su/p’o = -2.6186wL + 3.6434 

Karlsson and Viberg (1967) 

Present Study 

NC, wL> 0.2, (decimal) 

R
2
 = 0.0311; n = 78 

5 
(Su/σ’z)nc = 0.11 + 0.0037PI 

(Su/σ’z)nc = = 1.5415 + 0.0003IP 

Skempton (1957) 

Present Study 

NC 

R
2
 = 3E-05; n = 65 

6 
Su/p’o = 0.129 + 0.00435PI 

Su/p’o = = 1.5415 + 0.0003IP 

Worth and Houlsby (1985) 

Present Study 

NC 

R
2
 = 3E-05; n = 65 

 

y = 0.1363x + 944.97 

R² = 0.0405;  n = 212 
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Table 4.28 Cont’d: Strength Parameters – Su (CU) - Published Empirical Correlations and 

Correlations Developed in this Study 

# Equation Reference Remarks 

7 
Su/σ’z = (0.23 ± 0.04)OCR

0.8
 

Su/σ’z = (0.1259)OCR
0.8

 +1.0599 

Jamiolkowski et al., (1985) 

Present Study 

OC 

R
2
 = 0.0325; n = 101 

8 
Su/σ’zc = 0.11 + 0.0037PI 

Su/σ’zc = 0.4004 - 0.0038PI 

Skempton (1957) 

Present Study 

OC 

R
2
 = 0.2654; n = 88 

9 
Su = 0.22*σ’zc 

Su = 0.1132*σ’zc + 1426.8 

Mesri  (1975) 

Present Study 

All clays 

R
2
 = 0.0999; n = 171 

10 υ’ versus PI Bowles (1997) Plot 

Notes: NC,  nc = normally consolidated clay; OC = overconsolidated clay; OCR = 

overconsolidation ratio; σ’zc = preconsolidation pressure; σ’z, p’o = effective overburden 

pressure; IP, PI = plasticity index; IL = liquidity index; wL = liquid limit; n = data count 

 

 

 

 

 

 

 

Figure 4.17: Su (CU), Correlation Between Su/σ’z and (PI/100)
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Figure 4.18: Su (CU), Correlation Between Su/σ’z and (LI)
1/2 

-
 
Bjerrum and Simons (1960) 

- #2 

 

 

 

 

Figure 4.19: Su (CU), Correlation Between Su/σ’z and PI -
 
Skempton and Henkel (1953), 

Skempton (1957), Worth and Houlsby (1985) - #3, #5, #6 
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Figure 4.20: Su (CU), Correlation Between Su/σ’z and LL -
 
Karlsson and Viberg (1967) - 

#4 

 

 

 

 

 

Figure 4.21: Su (CU), Correlation Between Su/σ’z and OCR
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Figure 4.22: Su (CU), Correlation Between Su/σ’zc and PI -
 
Skempton (1957) - #8 

 

 

 

 

 

Figure 4.23: Su (CU), Correlation Between Su and σ’zc –
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Figure 4.24: Su (CU), Correlation Between υ’p, υ’r and PI –
 
Bowles (1997) - #10 

 

 

 

 

Table 4.29: Consolidation Parameters – Cc and Cr - Published Empirical Correlations 

and Correlations Developed in this Study 

# Equation Reference Remarks 

1 
Cc = 0.009(LL - 10) 

Cc = 0.0066(LL - 10) + 0.0411 

Skempton (1944) 

Present Study 

R
2
 = 0.506; 

n = 234 

2 
Cc = 0.40(eo - 0.25) 

Cc = 0.4592(eo - 0.25) – 0.0217 

Azzouz et al., (1976) 

Present Study 

R
2
 = 0.7307; 

n = 256 

3 
Cc = 0.01(wn - 5) 

Cc = 0.0133(wn - 5) – 0.0679 

Azzouz et al., (1976) 

Present Study 

R
2
 = 0.7633; 

n = 288 

4 
Cc = 0.37(eo + 0.003LL – 0.34) 

Cc = 0.4121(eo + 0.003LL – 0.34) – 0.0093 

Azzouz et al., (1976) 

Present Study 

R
2
 = 0.7564; 

n = 230 

5 
Cc = 0.5Gs(PI/100) ≈ PI/74 

Cc = 0.2803Gs(PI/100) + 0.0967 

Wood and Worth (1978) 

Present Study 

R
2
 = 0.4383; 

n = 231 

6 
Cc = 0.00234 LLGs 

Cc = 0.0024 LLGs + 0.0254 

Nagaraj and Murthy (1986) 

Present Study 

R
2
 = 0.506; 

n = 233 

7 
Cr = 0.15(eo + 0.25) 

Cr = 0.0262(eo + 0.007) + 0.0209 

Azzouz et al., (1976) 

Present Study 

R
2
 = 0.1168; 

n = 199 

 

PHIp: y = -0.0006x + 22.962 

R² = 5E-06; n = 94 
PHIr: y = -0.0397x + 21.933 

R² = 0.0196; n = 94 

0 

5 

10 

15 

20 

25 

30 

35 

40 

0 20 40 60 80 100 

φ
' p

, 
φ

' r
 (
⁰)

 

PI (%) 

PHIp PHIr 
Bowles (1997) PHIp 
PHIr 



88 

Table 4.29 Cont’d: Consolidation Parameters – Cc and Cr - Published Empirical 

Correlations and Correlations Developed in this Study 

# Equation Reference Remarks 

8 
Cr = 0.003(wn + 10) 

Cr = 0.0007(wn + 7) + 0.0198 

Azzouz et al., (1976) 

Present Study 

R
2
 = 0.0991; 

n = 201 

9 
Cr = 0.126(eo + 0.003LL – 0.06) 

Cr = 0.0239(eo + 0.003LL – 0.06) + 0.0216 

Azzouz et al., (1976) 

Present Study 

R
2
 = 0.1276; 

n = 199 

10 
Cr = 0.00463 LLGs 

Cr = 0.0001 LLGs + 0.0303 

Nagaraj and Murthy (1985) 

Present Study 

R
2
 = 0.0788; 

n = 165 

11 
Cr = Cc 1/5*Cc to 1/10*Cc 

Cr / Cc = 1/21.88* Cc 

Budhu (2008) 

Present Study 

R
2
 = 0.0744; 

n = 197 

Notes: e0 = initial void ratio; wn = natural water content; PI = plasticity index; LL = liquid 

limit; Gs = specific gravity of solids; Cc = compression index; Cr = recompression index 

 

 

 

 

 

 

 

Figure 4.25: Consolidation, Correlation Between Cc and [LL - 10] -
 
Skempton (1944) - 
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Figure 4.26: Consolidation, Correlation Between Cc and (e0 - 0.25) -
 
Azzouz et al., 

(1976) - #2 

 

 

 

 

 

Figure 4.27: Consolidation, Correlation Between Cc and (wn - 5) -
 
Azzouz et al., (1976) - 

#3 

y = 0.4592x - 0.0217 

R² = 0.5898; n= 256 
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Figure 4.28: Consolidation, Correlation Between Cc and [e0 + 0.003LL – 0.34] -
 
Azzouz 

et al., (1976) - #4 

 

 

 

 

 

Figure 4.29: Consolidation, Correlation Between Cc and Gs*(PI/100) -
 
Wood and Worth 

(1978) - #5 
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Figure 4.30: Consolidation, Correlation Between Cc and LL*Gs -
 
Nagaraj and Murthy 

(1986) - #6 

 

 

 

 

 

Figure 4.31: Consolidation, Correlation Between Cr and [e0 - 0.007] -
 
Azzouz et al., 

(1976) - #7 
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Figure 4.32: Consolidation, Correlation Between Cr and [wn - 7] -
 
Azzouz et al., (1976) - 

#8 

 

 

 

 

 

Figure 4.33: Consolidation, Correlation Between Cr and [e0 + 0.003LL – 0.06] -
 
Azzouz 

et al., (1976) - #9 
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Figure 4.34: Consolidation, Correlation Between Cr and LL*Gs -
 
Nagaraj and Murthy 

(1986) - #10 

 

 

 

 

 

 

Figure 4.35: Consolidation, Correlation Between Cr and Cc -
 
Budhu (2008) - #11 
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4.5. SPATIAL VARIABILITY OF PARAMETERS  

 4.5.1. General. In this study, the spatial variability of geotechnical parameters 

was primarily determined in terms of the scale of fluctuation, θ, using the semivariogram 

function (SVF). The scale of fluctuation defines the distances over which there is 

significant correlation of material property values. It is the third parameter required for 

the full characterization of the spatial variability of a geotechnical parameter; the first and 

second being the mean and the variance, respectively.  

In this section, the scale of fluctuation of geotechnical parameters based on the 

research (S&T and MU) data were determined, the range of influence computed using 

Laboratory data and CPTu data was evaluated, and the scale of fluctuation determined 

using both the SVF and autocorrelation factor (ACF) were evaluated – in this case, the 

closely-, and uniformly-spaced CPTu data was used in this analysis. The ACF was 

described in § 2.2. In all cases, the spatial variability of the geotechnical parameters in the 

vertical direction was investigated.  

4.5.2. Spatial Variability of Parameters. The SVF was adopted in this study 

because, compared to the ACF, the SVF has properties that makes it best suited for the 

spatial variability analysis of non-uniformly spaced data e.g. laboratory test data. It can 

also be used for the spatial variability analysis of closely-, and uniformly-spaced data. 

Unlike the ACF, the SVF does not require that data be spaced or obtained at equal 

intervals and the maximum number of lags allowable, K = N/2 (Kelkar and Perez, 2002), 

where N is the total number of data points. Hence with the SVF, a tolerance can be 

applied to the lag lengths to ensure that all the data points within the allowable range 

contribute to the analysis. Also, twice the number of data points in a dataset is used in the 
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analysis compared to the ACF. With ACF, K = N/4 (Box and Jenkins, 1970; Anderson, 

1976; Box et al., 1994; NIST, 2010). 

The three most prevalent soil profile conditions encountered in the spatial 

variability analysis of geotechnical parameters in the vertical direction are the single-

layer soil profile, the multi-layered soil profile, and the profile where there is a 

predominant soil layer and the other soil layers are not of interest. These conditions 

require the deployment of different measures for the spatial variability analysis to be 

successful. Following is a description of measures deployed in the spatial variability 

analyses of geotechnical parameters in these soil profile conditions:  

 In the case of single-layer soil profile in the vertical direction, the scale of 

fluctuation of the parameter for the soil profile is evaluated using the 

autocorrelation function (ACF) or the semivariogram function (SVF).  

 In the case of a multi-layered soil profile in the vertical direction, the scale of 

fluctuation of the parameter for each layer in the soil profile is evaluated using the 

autocorrelation function (ACF) or the semivariogram function (SVF). The 

average of the individual scales of fluctuation is reported as the scale of 

fluctuation of the parameter for the soil profile. The procedure was applied by 

Cherubini et al., (2007) in the characterization of some Italian soils for reliability 

analysis.  

 In a soil profile where there is a predominant soil layer and the other soil layers 

are not of interest, the data from the other layers are not used in the determination 

of the scale of fluctuation of the parameter for that layer of the soil profile. This 
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method was adopted by Jaksa et al., (1997) in the modeling of the undrained shear 

strength of a stiff, overconsolidated clay (Keswick Clay) in Australia. 

The procedure for the determination of the scale of fluctuation using the SVF 

is as follows: 

1. Develop the profile for the parameter. 

2. Validate the profile – check out for outliers 

3. Develop the profile for the parameter. 

4. Check the profile for the presence of any trend 

a. If a trend is present (dataset is nonstationary), it to a stationary one by 

removing a low-order polynomial trend, usually no higher than a 

quadratic, using the method of Ordinary Least Squares, OLS. 

b. Check stationarity by visual inspection of a scatter-plot of the data, and or 

the Kendal’s τ test. 

5. Compute and plot the experimental semivariogram using the lag as the distance 

(usually fixed) at which data is acquired. Use the original data in the computation 

if there is no trend present. Alternatively, if there is trend present use the residuals 

from the detrending process. 

a. For continuously acquired data at close, and regular intervals, use the 

Equation 23 below to compute the experimental variogram: 

 

        
 

     
                     

                                           (23) 

 

b. For non-continuously acquired data at wide, and irregular intervals, use 

the Equation 24 below to compute the experimental variogram: 
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                        (24) 

 

6. Select a best-fit theoretical semivariogram model and fit it to the experimental 

semivariogram. 

7. Determine the properties (the nugget effect, Co; the sill, C + Co; and the range of 

influence, a) of the fitted semivariogram model. 

8. Select the relationship for the scale of fluctuation corresponding to the theoretical 

semivariogram model selected in (6). 

9. Compute the scale of fluctuation using the relationship selected in (8). 

The geostatistics software VESPER version 1.62 (Minasny et al., 2005), 

hereinafter referred to only as VESPER, was used in this study. VESPER is a PC-

Windows program developed by the Australian Centre for Precision Agriculture (ACPA) 

at the University of Sydney, Australia, for spatial prediction that is capable of performing 

kriging with local variograms. The local variogram is modeled in the program by fitting a 

variogram model automatically through the nonlinear least-squares method. Several 

variogram models are available in the program, namely spherical, exponential, Gaussian 

and linear with sill.  The characteristic parameters of the fitted variogram model are 

obtained and the range of influence, a, is used to determine the scale of fluctuation using 

the appropriate relationship (see Table 2.3 for some relationships). A sample screen shot 

and a plot showing the both the experimental variogram and the fitted theoretical 

(spherical) variogram from VESPER are presented in Figures 4.36 and 4.37, respectively. 

More detailed information on VESPER is presented elsewhere in VESPER (2010). 
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Figure 4.36: Sample Screen Shot from VESPER  

 

 

For this analysis, the lag distance and the tolerance for the laboratory test data and 

the CPTu data were 1ft and 100%, and 0.16 ft and 25%, respectively. The lag distance for 

computing the experimental variogram is the distance interval at which data were 

acquired. The lag distance is approximately 1ft for the laboratory test data and 0.16 ft for 

CPTu data. The lag tolerance (percentage of lags) represents the percentage of the lag 

distance considered in the determination of the semivariogram. For example, 50% lag 

tolerance on a lag distance of 10 feet has a tolerance of 5 - 15 feet. A lag tolerance of 
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50% was applied to the irregularly-spaced laboratory data so as to take every data point 

into account in the determination of the semivariogram, while for the regular CPTu data, 

a smaller the lag tolerance of 25% was applied. 

 

 

 

 

Figure 4.37: Experimental and the Fitted Theoretical (Spherical) Variogram (P-B7 PL) 

 

 

The results of the spatial variability analyses are presented in Tables 4.30 and 

4.31. Table 4.30a to 4.30d presents the scale of fluctuation values for some laboratory-

tested properties for Warrensburg, St. Charles, New Florence, and Pemiscot, respectively. 

Table 4.31a to 4.31d presents the Scale of fluctuation values for some CPTu-tested 
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properties for Warrensburg, St. Charles, New Florence, and Pemiscot, respectively. The 

laboratory-tested properties presented in Table 4.30a to 4.30d include compression index, 

Cc, initial void ratio, e0, bulk unit weight, γb, liquid limit, LL, preconsolidation pressure, 

p’c, friction angle, υ, plastic limit, PL, undrained shear strength (consolidated, 

undrained), Su (CU), undrained shear strength (unconsolidated, undrained), Su (UU), and 

natural water content, wn. The CPTu-tested properties presented in Tables 4.31a to 4.31d 

include compression index, Cc, preconsolidation pressure, p’c, undrained shear strength, 

Su, cone resistance, qc, and corrected cone resistance, qt. 

Tables 4.30 and 4.31 present the parameters of interest, the predominant soil 

classification type, the range and average value of the scale of fluctuation at each 

location. Also presented on Tables 4.30 and 4.31 are the values the range and average 

value of the scale of fluctuation from published references. The primary references are 

Jones et al., (2004) and Uzielli et al., (2007).  

It should be noted that data presented in Uzielli et al., (2007) is a summary of data 

from other sources like Phoon et al., (1995), Kulhawy and Trautmann (1996), Lacasse 

and Nadim (1996), Phoon and Kulhawy (1999a), and Jones et al., (2002).  

 

 

Table 4.30: Scale of Fluctuation Values for Some Laboratory-Tested Properties  

Property 
Soil 

Type 
Range (ft) 

Scale of 

Fluctuation 

[θ] (ft) 

Published Values / Reference 

Range (m) 

Scale of 

Fluctuation  

[θ] (m) 

(a) Warrensburg 

Cc CL 2.5 - 3.3 2.9 
  

e0 CL 1.6 - 2.0 1.8 
 

3.0
+
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Table 4.30 Cont’d: Scale of Fluctuation Values for Some Laboratory-Tested Properties 

Property 
Soil 

Type 
Range (ft) 

Scale of 

Fluctuation 

[θ] (ft) 

Published Values / Reference 

Range (m) 

Scale of 

Fluctuation  

[θ] (m) 

    
 

  
b (pcf) CL 1.9 - 2.3 2.1 2.4 - 7.9

* 
/ 1; 0.8 - 8.6

#
 / 2 5.2

*
 / 1 

LL (%) CL 3.0 - 3.2 3.1 1.6 - 8.7
*
 / 1 5.2

*
 / 1 

p’c (psf) CL 4.4 - 4.7 4.6 
 

0.6
+
 

υ (⁰) CL 1.1 - 1.1 1.1 
  

PL (%) CL 1.8 - 1.9 1.9 
  

Su [CU] (psf) CL 1.8 - 1.8 1.8 0.8 - 6.1
#
 / 1; 0.8 - 8.6

#
 / 2 2.5

#
 / 1 

Su [UU] (psf) CL 2.5 - 2.9 2.7 0.8 - 6.1
#
 / 1; 0.8 - 8.6

#
 / 2 2.5

#
 / 1 

wn (%) CL 2.3 - 4.3 3.3 1.6 - 12.7
*
 / 1 5.7

*
 / 1 

(b) St. Charles 

Cc CH - - 
  

e0 CH 1.2 - 2.7 2.0 
 

3.0
+
 

b (pcf) CH 2.2 - 5.1 3.7 2.4 - 7.9
*
 / 1 5.2

*
 / 1 

LL (%) CH 2.0 - 3.2 2.6 1.6 - 8.7
*
 / 1 5.2

*
 / 1 

p’c (psf) CH - - 
  

υ (⁰) CH 1.1 - 6.4 3.8 
  

PL (%) CH 1.8 - 2.7 2.3 
  

Su [CU] (psf) CH 1.8 - 3.2 2.5 0.8 - 6.1
#
 / 1; 0.8 - 8.6

#
 / 2 2.5

#
 / 1 

Su [UU] (psf) CH 2.2 - 8.6 4.0 0.8 - 6.1
#
 / 1; 0.8 - 8.6

#
 / 2 2.5

#
 / 1 

wn (%) CH 1.2 - 4.7 3.0 1.6 - 12.7
*
 / 1 5.7

*
 / 1 

(c) New Florence 

Cc CL - - 
  

e0 CL 2.3 - 3.1 3.4 
 

3.0
+
 

b (pcf) CL 1.5 - 2.3 1.9 2.4 - 7.9
*
 / 1 5.2

*
 / 1 

LL (%) CL 1.8 - 1.8 1.8 1.6 - 8.7
*
 / 1 5.2

*
 / 1 

p’c (psf) CH - - 
  

υ (⁰) CL 6.6 - 6.6 6.6 
  

PL (%) CL 1.8 - 1.8 1.8 
  

Su [CU] (psf) CL 3.6 - 3.6 6.3 0.8 - 6.1
#
 / 1; 0.8 - 8.6

#
 / 2 2.5

#
 / 1 

Su [UU] (psf) CL 2.1 - 6.4 4.0 0.8 - 6.1
#
 / 1; 0.8 - 8.6

#
 / 2 2.5

#
 / 1 

wn (%) CL 2.5 - 12.0 5.7 1.6 - 12.7
*
 / 1 5.7

*
 / 1 
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Table 4.31: Scale of Fluctuation Values for Some CPTu-Tested Properties 

Property 
Soil 

Type 
Range (ft) 

Scale of 

Fluctuation 

[θ] (ft) 

Published Values / Reference 

Range (m) 
Scale of 

Fluctuation  (m) 

(a) Warrensburg 

Cc 

Clay / 

Silty 

Clay 

1.3 - 4.5 2.9 
  

p’c 2.6 - 7.8 5.2 
  

qc 2.0 - 8.4 5.2 0.1 - 2.2
a
 / 1 0.9

a 
/ 1 

qt 2.2 - 8.0 5.1 0.2 - 0.5
b
 / 1 0.3

b
 / 1 

Su 2.4 - 5.4 3.9 
  

(b) St. Charles 

Cc 

Clay / 

Silty 

Clay 

1.1 - 7.1 5.1 
  

p’c 2.4 - 4.4 3.3 
  

qc 1.9 - 4.0 2.8 0.1 - 2.2
a
 / 1 0.9

a 
/ 1 

qt 2.3 - 3.9 3.0 0.2 - 0.5
b
 / 1 0.3

b
 / 1 

Su 2.2 - 3.9 3.0 
  

qc 
Sand 

0.8 - 1.8 1.3 
 

1.3 / 2 

qt 0.9 - 1.5 1.3 
  

(c) New Florence 

Cc 

Clay / 

Silty 

Clay 

1.0 - 2.8 4.8 
  

p’c 3.8 - 7.8 5.5 
  

qc 3.8 - 19.9 8.6 0.1 - 2.2
a
 / 1 0.9

a 
/ 1 

qt 3.7 - 19.3 8.0 0.2 - 0.5
b
 / 1 0.3

b
 / 1 

Su 3.8 - 18.6 7.9 
  

(d) Pemiscot 

Cc 

Clay / 

Silty 

Clay 

12.7 - 21.9 17.3 
  

p’c 22.5 - 35.4 29.0 
  

qc 7.7 - 32.5 20.1 0.1 - 2.2
^
 / 1 0.9

^ 
/ 1 

qt 6.0 - 26.3 16.2 0.2 - 0.5
#
 / 1 0.3

#
 / 1 

Su 23.5 - 41.1 32.3 
  

Notes: 1 = Jones et al., (2004); 2 = Uzielli et al., (2007); 
a
 = Sand, Clay; 

b
 = Clay; 

Cc = compression index; p’c = preconsolidation pressure; Su = undrained shear 

strength; qc = cone resistance; qt = corrected cone resistance; 1ft = 0.3048m 

 

 

4.5.3. Range of Influence - Laboratory Data Versus CPTu Data. 

Investigations were led to compare of the range of influence, a, determined from 
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continuous and regularly spaced CPTu data and the non-continuous and irregularly 

spaced laboratory test data from tests on Shelby tube sampling. The aim of these 

investigations was to identify the presence of any consistent relationship between the 

ranges of influence computed using both laboratory and CPTu data. The range of 

influence, a, is directly related to the scale of fluctuation, θ. Models exist that relate the 

range of influence to the scale of fluctuation, θ (Clark, 1979; Meek, 2001; Uzielli et al., 

2007). The scale of fluctuation, θ, can also be determined analytically using equations 

stated in Cressie (1993). 

The undrained shear strength profiles at four different locations (Warrensburg, St. 

Charles, New Florence, and Pemiscot) in Missouri were used for this analysis. The 

undrained shear strength, Su (UU) determined from the unconsolidated undrained triaxial 

test (UU) on each specimen taken from Warrensburg, St. Charles, New Florence, and 

Pemiscot sites. The corresponding undrained shear strength from CPTu soundings taken 

at the immediate vicinity (about 2 to 3 feet) of each of the borehole locations was 

analyzed. Exploration at each location was completed within the two-week time frame 

suggested by Rethati (1988) for sampling (obtaining Shelby tube samples) and testing 

(CPTu) to be considered time-invariant.  

The CPTu data were calibrated against laboratory test data, following one of the 

methods in Lunne et al., (1997), so that both results are comparable. The calibration of 

CPTu data against laboratory test data for this study was executed by Dr. Norbert Maerz 

and Kerry Magner both of the Field Testing Team of the TGRP. The calibration 

procedure, which principally aims at obtaining the appropriate cone factor, Nkt, for the 

CPTu data, was described previously in §4.2.  
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The bearing factor, Nkt values for the Warrensburg, St. Charles, New Florence, 

and Pemiscot sites were 6, 19, 15 and 15, respectively. The undrained shear strength 

profiles for both the laboratory and CPTu testing are presented in Figures 4.38a to 4.38d 

for the Warrensburg, St. Charles, New Florence, and Pemiscot locations, respectively.  

Original data was used in the variogram analysis for Warrensburg, New Florence 

and Pemiscot while residuals from the removal of a linear trend were used for St. 

Charles. The removal of the best-fit linear trend from Warrensburg, New Florence and 

Pemiscot data resulted in residuals with stronger trend present. The lag distance for 

computing the experimental variogram is the distance interval at which data were 

acquired. Hence, for the laboratory data, the lag distance was 2 feet while for the CPTu 

data, the lag distance was 0.16 feet. Also for the CPTu data, for the purposes of 

comparing the two datasets and evaluating the effect of lag distance on range of 

influence, two more determinations at lag distances of 1- and 2-feet were implemented. 

The lag tolerance (percentage of lags) represents the percentage of the lag distance 

considered in the determination of the semivariogram. For example, 50% lag tolerance on 

a lag distance of 10 feet has a tolerance of 5 – 15 feet. A lag tolerance of 50% was 

applied to the irregularly-spaced laboratory data so as to take every data point into 

account in the determination of the semivariogram, while for the regular CPTu data, a 

smaller lag tolerance of 25% was applied. Also for the CPTu data, for the purposes of 

comparing the two datasets and evaluating the effect of lag tolerance on range of 

influence, two more determinations at lag tolerances of 50% and 0% were implemented. 

These variogram computation parameters are presented in Table 4.32. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.38: Su (UU) Profile (a) Warrensburg (b) St. Charles (c) New Florence (d) 
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Table 4.32: Variogram Computation Parameters 

Variable Laboratory Field (CPTu) 

Lag Distance (ft) 2 0.16 1 1 2 2 

Tolerance (%) 50 25 50 0 50 0 

 

 

The results of the variogram analysis for the Warrensburg, St. Charles, New 

Florence, and Pemiscot sites are presented in Figure 4.39 and Table 4.33. The laboratory 

data and field data for (lag = 0.16 ft, tolerance = 25%), and (lag = 2 ft, tolerance = 50%) 

in Figures 4.39a to 4.39d, and 4.39e to 4.39g, respectively. The variograms for other field 

data were omitted for purposes of clarity as they plotted very close to those for the field 

data in Figures 4.39e – 4.39g. A summary of parameters of the variograms are presented 

in Table 4.33. Comparisons of the effect of lag length and lag tolerance on the range of 

influence are presented in Figures 4.40a and 4.40b, respectively. The variograms were 

fitted on the basis of the lowest root-mean-square error. In Figure 4.39, variograms for 

the laboratory and the field data are denoted by borehole identifiers W-BH-, SC-BH-, 

NF-BH-, P-BH- and W-B-, SC-B-, NF-B-, P-B- for the Warrensburg, St. Charles, New 

Florence and Pemiscot sites, respectively. For the field data, the borehole identifiers are 

followed by the lag distance. In both cases, the letter, V, stands for the theoretical 

variogram. Hence, W-B2-0.16-V means theoretical variogram for Warrensburg, Boring 

2, 0.16 feet lag distance. In Table 4.33, the letter, z, after the lag distance stands for 0% 

tolerance.  
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(a) 

 
(e) 

 
(b) 

 
(f) 

 
(c) 

 
(g) 

 

Figure 4.39: Semivariogram of Laboratory Data and CPTu Data 
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(d) 

 
(h) 

 

Figure 4.39 Cont’d: Semivariogram of Laboratory Data and CPTu Data 

 

 

Table 4.33: Variogram Parameters 
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(a) 

 
(b) 

 

Figure 4.40: Variogram Parameters (a) Comparison of Lag Lengths, and (b) Comparison 

of Lag Tolerance  

 

 

4.5.4. Scale of Fluctuation - Autocorrelation Function Versus Semivariogram 

Function. Investigations were led to compare of the scale of fluctuation, θ, determined 

using autocorrelation function and semivariogram function from continuous and regularly 

spaced CPTu data. The aim of these investigations was to identify the presence of any 

consistent relationship between the scales of fluctuation computed using both the 

autocorrelation and the semivariogram functions.With the autocorrelation function, the 

correlation length is determined while the range of influence, a, is determined with the 

semivariogram function. Both the correlation length and the range of influence are directly 

related to the scale of fluctuation. Models exist that relate the correlation length 

(Vanmarcke, 1983; Jaksa et al., 2000; Uzielli et al., 2007) and the range of influence 

(Clark, 1979; Meek, 2001; Uzielli et al., 2007) to the scale of fluctuation, θ. 
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The corrected cone resistance, qt from seven soundings (P-B1 to P-B7) at the 

Pemiscot location was used for this analysis. The geostatistics software VESPER 

(Minasny et al., 2005) was used to determine the range of influence while Correlogram 

(Web-Reg, 2011), a Microsoft Excel add-in was used to determine the correlation length. 

The corrected cone resistance, qt, profiles for P-B1, P-B2, P-B3, P-B4, P-B5, P-

B6 and P-B7 are presented in Figures 4.41a to 4.41g, respectively. In Figures 4.41a to 

4.41g, the qt profile for each sounding is divided in two parts: an upper part (A) and a 

lower part (B). The division in two parts was by a trial-and-error method. For the 

purposes of trend removal, best-fit trend lines (linear and quadratic) were fitted to 

selected sections of a profile, and the trend line which gave the highest coefficient of 

determination, determined by the Ordinary Least Squares method, for the section was 

selected for that section. The parts of the profiles which had high coefficients of 

determination, R
2
, were detrended while the parts with low R

2
 were not detrended. Both 

linear and quadratic trend lines were fitted. The trend lines fitted to each part of the 

profiles and their equations are presented in Table 4.34. 

The residuals from the detrending process were used in both the autocorrelation 

and semivariogram analyses except for the upper parts of P-B1, P-B2, and the lower parts 

of P-B4, and P-B6, respectively where the original data were used. The lag distance used 

for both the autocorrelation and semivariogram analyses is the distance interval at which 

data were acquired. Hence, for the CPTu data, the lag distance was 0.16 feet. As the 

difference in spacing between data points is very small, the spacing was modified to 

multiples of 0.16 feet. Hence, a tolerance of 0% was applied.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.41: qt Profiles (a) P-B1 (b) P-B2 (c) P-B3 (d) P-B4  
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(f) 

 
(g) 

 
(h) 

 

Figure 4.41 Cont’d: qt Profiles (c) P-B3 (d) P-B4 (e) P-B5 (f) P-B6 (g) P-B7 (h) P-B8 
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Table 4.34: Soundings and Equation of Best-Fit Lines 

Sounding Part Equation: Best-fit line R
2
 Detrended 

P-B1 
A y = 0.6717x + 5.178 0.0186 N 

B y = -0.9298x
2
 + 24.909x - 97.866 0.8015 Y 

P-B2 
A y = -0.1794x + 16.435 0.0009 N 

B y = -0.9975x
2
 + 20.866x - 59.594 0.9020 Y 

P-B3 
A y = 0.0217x

2
 - 0.6724x + 5.3308 0.9473 Y 

B y = -0.7126x
2
 + 21.579x - 86.709 0.8195 Y 

P-B4 
A y = -0.668x + 7.1668 0.7413 Y 

B y = 4.02x - 1.5799 0.1309 N 

P-B5 
A y = 3.5041x - 13.324 0.6132 Y 

B y = 9.4984x - 32.926 0.8544 Y 

P-B6 
A y = 731.46x

-2.412
 0.6785 Y 

B y = 1.9234x
2
 - 18.993x + 66.866 0.4031 N 

P-B7 
A y = 750.6x

-2.345
 0.6172 Y 

B y = 2.427x
1.259

 0.6509 Y 

Notes: N = No; Y = Yes 

 

 

To determine the scale of fluctuation using the semivariogram function, the 

experimental variogram was plotted and a best-fit model was fitted and the parameters of 

the model were determined. One of the model parameters, the range of influence, a, was 

then used to evaluate the scale of fluctuation using the appropriate expression from Table 

2.3 as described previously in §2 (Literature Review). A sample of the semivariogram 

showing the experimental and the theoretical model fitted is presented in Figure 4.42.  

For this study, the scale of fluctuation in the case of the autocorrelation function 

was determined as the point at which the autocorrelation curve crosses the Bartlett limits. 

The Bartlett limits method was adopted because of its simplicity. Other methods of 

determining the scale of fluctuation exist. One method which is similar to the method 

used for the semivariogram function involves selecting a best-fit model for the 
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autocorrelation plot, obtaining the model parameters and using the correlation length (one 

of the model parameters) to compute the scale of fluctuation using the appropriate 

expression Table 2.4. A sample of the autocorrelation plot is presented in Figure 4.43. In 

Figure 4.43 the parallel dotted lines bestriding the horizontal axis indicates the Bartlett 

limits. The Bartlett limit was described in §2 (Literature Review). 

 

 

 

 

Figure 4.42: Sample Semivariogram Plot (P-B6A) 
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for both the autocorrelation function and the semivariogram function. Also presented in 

Table 4.35 are theoretical models deployed in the semivariogram analyses. The average 

scale of fluctuation for the respective CPTu soundings computed using the 

autocorrelation function and the semivariogram function are presented in Figure 4.44. 

 

 

 

Figure 4.43: Sample Autocorrelation Plot (P-B6A) 

 

 

Table 4.35: Range of Influence, Correlation Length, and Average Scale of Fluctuation of 

qt 

CPT 

Sounding 
Part 

ACF SVF 

θ (ft) 
Ave θ 

(ft) 
Model θ (ft) 

Ave θ 

(ft) 

P-B1 
A 1.35 

4.28 
S 1.96 

7.29 
B 7.2 S 12.63 

P-B2 
A 1.5 

2 
E 6.07 

5.37 
B 2.5 E 4.68 

P-B3 
A 0.16 

4.58 
S 0.95 

4.76 
B 9 E 8.57 
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Table 4.35 Cont’d: Range of Influence, Correlation Length, and Average Scale of 

Fluctuation of qt 

CPT 

Sounding 
Part 

ACF SVF 

θ (ft) 
Ave θ 

(ft) 
Model θ (ft) 

Ave θ 

(ft) 

P-B4 
A 0.84 

2.12 
S 2.42 

2.99 
B 3.4 S 3.57 

P-B5 
A 1.8 

5.1 
S 1.19 

6.47 
B 8.4 S 11.75 

P-B6 
A 0.75 

2.08 
S 1.34 

4.35 
B 3.4 E 7.35 

P-B7 
A 0.8 

3.5 
E 2.84 

5.96 
B 6.2 E 9.08 

Notes: Ave = average; θ = scale of fluctuation; S  = spherical; E = 

exponential; ACF = autocorrelation function; SVF = semivariogram 

function 

 

 

 

Figure 4.44: Average Scale of Fluctuation Computed Using the Autocorrelation Function 

and the Semivariogram Function 
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5. DISCUSSION 

 

5.1. INTRODUCTION 

The discussions of the results presented in Section 4 are presented in this section. 

The discussion of the result of the second moment statistics of geotechnical parameters, 

their probability distribution of geotechnical parameters, correlation between 

geotechnical parameters and the spatial variability of geotechnical parameters are 

presented below.  

 

5.2. SECOND MOMENT STATISTICS: MEAN, VARIANCE, AND 

COEFFICIENT OF VARIATION (COV) 

The COV of laboratory-determined parameters for Warrensburg, unclassified 

(both in terms of USCS soil type and in-situ state), and Warrensburg, classified (in terms 

of in-situ state only) and the COV of CPTu parameters for Warrensburg, classified (only 

in terms of soil type), and Warrensburg, classified (both in terms of soil type and in-situ 

state) were presented in Tables 4.3 to 4.8 and Tables 4.9a to 4.9c, respectively. A 

complete result of the second moment statistics is presented in Appendices C and D for 

laboratory-determined parameters and CPTu parameters, respectively. 

From Tables 4.3 to 4.8 on laboratory-determined parameters, the COV are 

generally within the range published for the respective parameters with a few exceptions 

where the COV is much higher than the published values. The exceptional parameters are 

liquidity index, undrained shear strength, and preconsolidation pressure (combined CRS 

and IL).  
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There is a paucity of published data on the COV of parameters classified both in 

terms of USCS soil type and, or, in-situ state. Loehr et al., (2005) provides the only 

published data classified in terms of USCS soil type found. Parameters in Loehr et al., 

(2005) relevant to this study are unconfined compressive strength, plasticity index, 

natural moisture content, saturated unit weight, and direct shear strength parameters (υ, 

υc=0, and c’). Loehr et al., (2005) is main reference in Tables 4.6 to 4.8. The other two 

references are provided as a guide as they based on unclassified parameters. 

The high COV values for liquidity index may be as a result of the higher operator 

bias in the determination of the Atterberg limits from which it is determined. Liquidity 

index values typically have a range of zero to one. However, for heavily overconsolidated 

soils which may have natural moisture content less than the plastic limit, a LI less than 

zero may be obtained. For sensitive clays which may have natural moisture content less 

than the liquid limit, a LI greater than one may be obtained (Das, 1998). Liquidity index 

values in the range between zero and one were used in the analyses. A very wide range of 

values of undrained shear strength was observed during laboratory testing. This must 

have resulted in the high COV values for undrained shear strength. The COV for 

preconsolidation pressure is due to the combination of values from both the Incremental 

Loading (IL) and the Constant Rate of Strain (CRS) tests. The CRS preconsolidation 

pressure values were sometimes found to be higher than the IL preconsolidation pressure. 

This may have contributed to the high COV values for preconsolidation pressure. The 

COV for consolidation parameters for each test type presented in Table 5.1 show these 

changes in the COV values.  
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In Table 5.1, the analysis of consolidation test data by test type show that 

compared to the CRS, IL yielded a higher COV for all parameter in Warrensburg and 

Pemiscot. For St. Charles, IL had a higher COV for Cc and Cr and a lower COV for 

preconsolidation pressure. While for New Florence, there was generally no difference in 

COV. 

 

  

Table 5.1: COV (%) for Consolidation Parameters (Locations) - Constant Rate of Strain 

(CRS), Incremental Loading (IL), and (ALL = CRS+IL) Tests 

Type Location Cc Cr p'p-T p'p-C p'p-SE 

ALL 

Warrensburg 

74 114 57 51 46 

CRS 16* 30* 53* 59* 47* 

IL 91 129 57* 52 48* 

ALL 

St Charles 

44 332 50 37 47 

CRS 20 39 54 50 44 

IL 54 266* 29* 27 24* 

ALL 
New 

Florence 

45 55 132 115 106 

CRS 40* 54* 61* 59* 41* 

IL 35 51 60* 39 47* 

ALL 

Pemiscot 

49 53 40 46 37 

CRS 39 51 25 25 22 

IL 53 53 67 49 36 

ALL 

KCiCON 

48 62 - 42 - 

CRS - - - - - 

IL 48 62 - 42 - 

Reported COV (%) / 

Reference 

10-37/1; 

73/2  

10-35/1; 

62/2 

10-35/1; 

62/2 

10-35/1; 

62/2 

Notes: * = data count less than 20; Cc = compression index; Cr = recompression index; p’c-

T = preconsolidation pressure (Tangent); p’c-C = preconsolidation pressure (Casagrande); 

p’c-SE = preconsolidation pressure (Strain Energy); CRS = constant rate of strain; IL = 

incremental loading; 1= Uzielli et al., (2007); 2 = Corotis et al., (1975) 

 

 

The classification of parameters in terms of both USCS soil type and in-situ state 

resulted variously in a reduction in the COV for most soil classification types or in-situ 
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states and an increase the COV for a few others. This is shown in Tables 5.2 and 5.3 for 

some parameters. Tables 5.2 and 5.3 present the COV (Locations) for parameters both 

unclassified (ALL) and USCS-classified and both unclassified (ALL) and in-situ state-

classified, respectively. For the USCS-classified, only data on the more preponderant CL 

and CH soil types are presented. In most cases, other USCS soil types were present but in 

fewer numbers.  

This change in COV as a result of further refinement by way of classification in 

terms of either or both of USCS soil type and in-situ state followed no particular pattern. 

The change will be as a result of the interplay of factors including the number and values 

of the parameter in each group. 

CPTu data are presented according to soil type. Therefore, only the effect of in-

situ state on the second moment statistics was investigated. There is a paucity of 

published data on the COV of both measured and estimated CPTu parameters. No 

published data was found on estimated CPTu parameters; this is expected as estimated 

CPTu values are dependent on the empirical relationships used in their determination. qc 

and qt for clay and sand were compared to published COV data. The COV for qc was, in 

all cases, within the range of published values while that for qt was above published 

values by about 10 to 20 percentage points. 

Further refinement, by way of classification in terms of in-situ state, of CPTu data 

resulted in change in the COV of parameters similar to that observed with the laboratory 

data. Further classification in terms of in-situ state resulted variously in a reduction in the 

COV of parameters for most in-situ states and an increase the COV for a few others. This 

change is shown in Table 5.4 for some parameters. 
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COV like other second moment statistics of geotechnical engineering parameters 

is largely dataset-dependent, which data distribution is largely dependent on soil type and 

in-situ state. Hence there is a need to include both soil type and in-situ state when 

reporting COV values for geotechnical engineering parameters. 

 

 

 

Table 5.2: COV (%) for Some Laboratory Parameters (Locations) – Unclassified (ALL) 

and USCS-Classified 

Soil 

Type 
Location wn e0 PL b Su (UU) Sup (CU) υ’r 

ALL 

Warrensburg 

15 15 21 5 95 65 28 

CL 14 14 19 5 70 65 28 

CH 23* 8* 14* 2* - - - 

ALL 

St Charles 

22 22 23 8 49 56 25 

CL 19 24 16 7 12* 27* 25* 

CH 21 20 19 7 70* 30* 27 

ALL 
New 

Florence 

21 24 17 9 50 70 30 

CL 21 24 17 7 50 66 30 

CH 17 21 15 6 - 74* 29* 

ALL 

Pemiscot 

27 26 22 11 22 27 29 

CL 17 22 10 6 32* 9 6* 

CH 26 23 21 11 22 25 26 

ALL 

KCiCON 

28 25 31 10 23 90 17* 

CL 28 24 17 9 - 82 8* 

CH 13 9 36 5 29 28* 23* 

Reported COV (%) / 

Reference 
8-30/1 

7-30/1; 

41.5/2 

6-30/1; 

29/2 
<10/1 10-30/1 20-40/1 5-15/1 

Notes: * = data count less than 20; 1= Uzielli et al., (2007); 2 = Corotis et al., (1975); wn = 

natural water content; e0 = initial void ratio; γb = bulk unit weight; PL = plastic limit; Su (UU) 

= undrained shear strength (unconsolidated, undrained); Sup (CU) = peak undrained shear 

strength (consolidated, undrained); υ’r = effective friction angle (residual)  

 

 

 

 



122 

Table 5.3: COV (%) for Some Laboratory Parameters (Locations) – Unclassified (ALL) 

and In-Situ State-Classified 

In-Situ 

State 
Location wn e0 PL b Su (UU) Sup (CU) Φ’r 

ALL 

Warrensburg 

15 15 21 5 95 65 28 

AGWL 19 18 16 6 - - - 

BGWL 11 14 20 5 70 66 28 

ALL 

St Charles 

22 23 23 8 49 56 25 

AGWL 23 13 18 6 99 7* 1 

BGWL 20 22 24 7 47 58 25 

ALL 
New 

Florence 

21 24 17 9 50 70 30 

AGWL 20 23 16 9 50 70 30 

BGWL 17* 8* 24 4* - - - 

ALL 

Pemiscot 

27 26 22 11 22 27 29 

AGWL 16* - 14 - - - - 

BGWL 27 26 22 11 22 27 29 

ALL 

KCiCON 

28 25 31 10 28 90 17 

AGWL 28 25 34 10 26 90 17 

BGWL 25 16 10 7* 31* - - 

Reported COV (%) / 

Reference 
8-30/1 

7-30/1; 

41.5/2 

6-30/1; 

29/2 
<10/1 10-30/1 20-40/1 5-15/1 

Notes: * = data count less than 20; 1= Uzielli et al., (2007); 2 = Corotis et al., (1975); wn = 

natural water content; e0 = initial void ratio; γb = bulk unit weight; PL = plastic limit; Su (UU) 

= undrained shear strength (unconsolidated, undrained); Sup (CU) = peak undrained shear 

strength (consolidated, undrained); υ’r = friction angle (residual) 

 

 

 

Table 5.4: COV (%) for Some CPTu Parameters (Locations) – Unclassified (ALL) and 

In-Situ State-Classified 

Location Soil Type 
In-Situ 

State 
qc fs qt Su σ'vo  qt/σ'vo 

Warrensburg 

Clay 

ALL 51 73 48.5 84.9 41.3 6.6 60.6 

AGWL 54 64 52.6 49.9 42.3 5.3 55.4 

BGWL 74.1 74.7 70.8 100.8 29.7 6.9 91.6 

Clay+Silty 

Clay 

ALL 68.1 107.8 66.3 79.8 15.9 7.8 68.9 

AGWL - - - - - - - 

BGWL 68.1 107.8 66.3 79.8 15.9 7.8 68.9 

St Charles Clay 

ALL 31.3 40.5 31.1 27.7 49.5 4.2 127.2 

AGWL 11 21 9.2 10.1 26.1 3.6 135.5 

BGWL 30.4 42.3 30 26.3 40.8 4.2 125.6 
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Table 5.4 Cont’d: COV (%) for Some CPTu Parameters (Locations) – Unclassified 

(ALL) and In-Situ State-Classified 

Location Soil Type 
In-Situ 

State 
qc fs qt Su σ'vo  qt/σ'vo 

St Charles 
Clay+Silty 

Clay 

ALL 48.2 47 35.5 31.7 38.5 4.7 146.1 

AGWL 36.2 24.1 23.5 24.1 29.2 4.6 4.9 

BGWL 45.4 48.9 32 27.6 24 4.3 136.1 

New 

Florence 

Clay 

ALL 43.4 38.1 42.1 43.1 55 3.6 33.2 

AGWL 69.9 58.4 64.9 82.5 46.1 7.1 7.5 

BGWL 38.1 35 36.7 37.1 48.2 2.8 29.7 

Clay+Silty 

Clay 

ALL 34.5 39.5 34.5 38.4 45.9 4.5 26.5 

AGWL 39.7 56.4 39.4 46.8 24.1 7.2 6.7 

BGWL 26.9 33.6 26.8 33.8 35.2 3.4 22.3 

Pemiscot 

Clay 

ALL 23.7 32.3 24.3 23.8 47.6 2.2 37.3 

AGWL 25.7 24.1 26 25.5 25.9 2.1 - 

BGWL 23.4 30.4 24 23.6 43.4 2.1 37.5 

Clay+Silty 

Clay 

ALL 46.4 65.9 60.7 66.8 38.9 6.6 120.5 

AGWL - - - - - - - 

BGWL 46.4 65.9 60.7 66.8 38.9 6.6 120.5 

Notes: qc = Cone Resistance; fs = Side Friction; qt = Corrected Cone Resistance; Su = 

Undrained Shear Strength; σ'vo = effective overburden pressure;  = unit weight; qt/σ'vo = 

Normalized Corrected Cone Resistance  

 

 

5.3. PROBABILITY DISTRIBUTION 

5.3.1. Probability Distribution Types. The probability distribution of laboratory-

determined parameters for Warrensburg, unclassified (both in terms of USCS soil type 

and in-situ state), and Warrensburg, classified (in terms of in-situ state only) and the 

probability distribution of CPTu parameters for Warrensburg, classified (only in terms of 

soil type), and Warrensburg, classified (both in terms of soil type and in-situ state) were 

presented in Tables 4.11 to 4.16 and Tables 4.17a to 4.17c, respectively. A complete 

result of the second moment statistics is presented in Appendices F and G for laboratory-

determined parameters and CPTu parameters, respectively. 
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From Tables 4.11 to 4.17 on the probability distribution of both laboratory- and 

CPTu-determined parameters, there are cases where the fitted Pearson’s type and the 

published distributions are in agreement. There was no agreement between fitted and 

published distribution in most cases. Instances of cases where both the fitted and 

published distributions are in agreement for the unclassified laboratory data include wn, 

PL, Su (UU), and e0 among others. Similar cases where both fitted and published 

distributions are in agreement are also present in the classified laboratory data and 

classified CPTu data.  

The results from the probability distribution analysis indicate that several other 

types of distributions other than the most prevalent three: normal, lognormal, and beta 

can be employed with geotechnical parameters. This was found to be the case in with 

both lab test data (with few data points) and the CPTU data (with many data points). It 

should be noted that the equivalent of the three most used distributions in geotechnical 

engineering literature; normal, lognormal, and beta on the Pearson’s space are normal 

[(β1,β2) = (0,3)], Type VI, and Type I, respectively. Other Pearson’s types that have the 

shape of the normal distribution are the Type I() and Type IV while for the lognormal 

distribution it is Type I().  

5.3.2. Effect of Soil Classification Type and In-Situ State on Probability 

Distribution. Further refinement of data by grouping according to USCS soil type and 

in-situ state for the laboratory test data and in-situ state for the CPTu data resulted in 

change in the distribution type similar to that observed with COV in §5.2. The change in 

COV as a result of further refinement of data by way of classification in terms of either or 

both of USCS soil type and in-situ state followed no particular pattern. This change in 
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distribution type due to data refinements is presented in Tables 5.5 and 5.6. The changes 

in distribution types are also present in Table 4.10 and Figure 4.1 for qt and Su (UU) and 

in Tables 4.18 and 4.19 and Figure 4.2 for Su (UU).  

 

Table 5.5: Distribution Types for Some Laboratory Parameters (Locations) – 

Unclassified (ALL) and USCS-Classified 

Location 
Soil 

Type 
PI LI e0 

Su 

(UU) 
Sup Cc Cr 

Warrensburg 

ALL IV I() IV I(J) I(J) I() I(J) 

CL IV I() IV I(J) I(J) I() I(J) 

CH I(U) - - - - - - 

St Charles 

ALL I() I(J) I() III VI III I() 

CL I() I() VI I() I() I(J) - 

CH I() I(J) I() VI I(J) III I(J) 

New Florence 

ALL II I(J) IV I() I(J) I(J) I(J) 

CL I() I(J) IV I() I(J) III I(J) 

CH I() I() I() - - I(J) I(J) 

Pemiscot 

ALL I() I() I() I() I() I() I() 

CL I(J) I(U) I(J) I() I(J) I(J) - 

CH N I() I() I() I() I() I(J) 

KCiCON 

ALL I(J) I() I(U) I() I(J) I() I() 

CL I() I(U) I(J) - I(J) I(J) I(J) 

CH I() I() I() I() I(U) IV IV 

Notes: PI = plasticity index; LI = liquidity index; e0 = initial void ratio; Su (UU) = 

undrained shear strength (unconsolidated, undrained); Sup (CU) = peak undrained 

shear strength (consolidated, undrained); Cc = compression index; Cr = 

recompression index 

 

 

Table 5.6: Distribution Types for Some CPTu Parameters (Locations) – Unclassified 

(ALL) and In-Situ State-Classified 

Location 
In-Situ 

State 
qc fs qt Su σ'vo  qt/σ'vo 

Warrensburg 

NONE I() I(J) I(J) I(U) I() I() I(J) 

AGWL I(J) I(J) I(J) I() I(J) I() I(U) 

BGWL VI I(J) VI I(J) I(U) I() I(J) 
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Table 5.6 Cont’d: Distribution Types for Some CPTu Parameters (Locations) – 

Unclassified (ALL) and In-Situ State-Classified 

Location 
In-Situ 

State 
qc fs qt Su σ'vo  qt/σ'vo 

St Charles 

NONE I() I() I() I() I(U) IV I(U) 

AGWL IV IV IV II I() I(U) - 

BGWL I() I() I() I() I(U) I() I(U) 

New Florence 

NONE IV IV IV IV I(U) VI I(U) 

AGWL I(J) I(U) I(U) I(J) I(J) I(U) I() 

BGWL IV IV IV VI I(U) IV I(U) 

Pemiscot 

NONE IV VI IV VI I() IV I(J) 

AGWL IV IV IV IV I() IV - 

BGWL VI VI IV IV I() IV I(J) 

Notes: qc = Cone Resistance; fs = Side Friction; qt = Corrected Cone Resistance; Su 

= Undrained Shear Strength; σ'vo = effective overburden pressure;  = unit weight; 

qt/σ'vo = Normalized Corrected Cone Resistance 

 

 

5.4. CORRELATION OF PARAMETERS 

The results of the Correlation of Parameters are discussed hereinafter under the 

following headings: Correlation Matrix; Correlation between Normalized Undrained 

Shear Strength and PI; and Comparison of Study Data to Existing Empirical 

Relationships. 

5.4.1. Correlation Matrix. The results of studies, based on the research (MU and 

S&T) data, into the development of correlations matrices between parameters were 

presented in Tables 4.20 to 4.23.  

Correlation matrices are largely dataset-dependent and therefore cannot really be 

compared to other published correlation matrices. Within the context of RBD, the 

coefficients of correlation between parameters is required by those design approaches 
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that takes into account both the uncertainty of the parameters and their correlation 

structure like that proposed by Low (2005). 

It is also important to point out the effect of the coefficients of correlation of 

certain parameters as they relate to the development of empirical correlations between 

simply-obtained and complexly-obtained parameters, and the assessment of the validity 

of existing empirical correlations carried out in this study. For the location data (Tables 

4.20 to 4.23), the following trends can be identified: 

 The weak correlation between Atterberg limits with Su (UU) and Su (CU). The 

effect of this is the low quality empirical correlations developed between (PI) 

overburden stress normalized undrained shear strength (Su/σ’) and plasticity index 

in §5.4.3.1. 

In this case, the coefficients of correlation between these parameters gave an 

indication of the quality of empirical correlations developed between them.  

5.4.2. Correlation Between Normalized Undrained Shear Strength and PI. 

The results of studies, based on the research (MU and S&T) data, into the development of 

correlations between overburden stress-normalized undrained shear strength (Su/σ’) and 

plasticity index (PI) were presented in Figures 4.3 to 4.4, and Table 4.24.  

Initial analysis based on unclassified data for each site (see Figures 4.3 to 4.6) 

shows that for the Warrensburg and Pemiscot sites data had a wide scatter; hence a wide 

degree of variability. The best fit curve for the correlation model was linear for 

Warrensburg and quadratic for Pemiscot. In each case the quality of the correlation model 

was low with coefficient of determination less than 0.2. For the New Florence and St. 

Charles sites, the best fit curve for the correlation model was quadratic for Pemiscot 
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polynomial correlations were achieved with mid-range coefficients of determination of 

0.68 and 0.47, respectively. Back calculating for Su using equations from Skempton 

(1957), Worth and Houlsby (1985) and Jamiolkowski et al., (1985) consistently resulted 

in smaller values of Su in each case suggesting that these previous empirical correlations 

are a little bit conservative compared to this study.  

Further analyses, based on data pooled together from all four locations and 

grouped according their USCS soil types, were carried out with the aim of obtaining 

better correlation models for each soil type. These analyses produced a linear correlation 

model for CH soils and quadratic models for both CL, and ML soils. However, like in the 

unclassified, site-based analyses, the coefficients of determination of these correlation 

models were low: 0.48, 0.37, and 0.39 for CL, CH, and MH, respectively.  

Results from this study show the relationship between Su/σ’ and PI to be largely 

nonlinear. They have been found to be largely quadratic in this case. This finding is in 

contradistinction to most published correlations between Su/σ’ and PI (Skempton and 

Henkel, 1953; Skempton, 1957; Karlsson and Viberg, 1967; Worth and Houlsby, 1985; 

Chandler, 1988) which are largely linear.  This is an indication of how imprecise 

estimates made uncritically on the basis of published correlations can be and makes the 

case for the deployment of only appropriate correlations in estimations. Also, the low 

coefficients of determination of the correlation models developed in this study is 

indicative of the difficulty in predicting with any high level of certainty Su on the basis of 

only Atterberg limits. Factors that influence Su include clay content, sample disturbance, 

elevation of ground water table, geological condition, chemical and mechanical 

degradation (Matsuo and Shogaki, 1988;  Yin, 1999; Trauner et al., 2005). Other soil 
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properties that have significant effect on Su and hence will be very helpful in its 

prediction include the effective overburden pressure (considered in this study), the unit 

weight, and the OCR.  

5.4.3. Assessment of the Validity of Published Empirical Relationships 

Between Parameters. The discussions on the results of the Assessment of the validity of 

published empirical relationships between parameters are presented following. For 

purposes of clarity, the results are discussed in terms of strength correlations, and 

consolidation correlations. 

5.4.3.1. Strength correlations. The results of the analyses to assess the validity 

of published empirical correlations relating strength parameters to simply-obtained 

parameters were presented in Figures 4.10 to 4.24 and Tables 4.27 to 4.28. 

For the correlations with Su (UU), the validity of nine correlations was assessed. 

Of the nine correlations assessed, only in one case (Su/σ’zc = 0.22 – Mesri, 1975) was a 

similar (to the correlation being assessed) slope obtained. However, the intercept in this 

one case was higher. Of the other eight correlations, only in one case [Su/σ’z = (0.23 ± 

0.04)*OCR
0.8

 – Jamiolkowski et al., 1985] was the direction of the slope of the best-fit 

line from this study and slope of the correlation being assessed the same; positive in this 

case. In the other seven cases, both slopes were in the opposite directions with the slope 

of the correlation being assessed negative. The coefficient of determination in all cases 

was exceptionally low; less than 0.15. 

For the correlations with Su (CU), the validity of 10 correlations was assessed. Of 

the 10 correlations assessed, in five cases [Su/p’o = 0.11 + 0.0037IP – Skempton and 

Henkel (1953), Skempton (1957); Su/p’o = 0.129 + 0.00435PI – Worth and Houlsby 



130 

(1985); Su/σ’z = (0.23 ± 0.04)*OCR
0.8

 – Jamiolkowski et al., 1985; Su/σ’zc = 0.22 – 

Mesri, 1975] a similar (to the correlation being assessed) slope but with higher intercept 

was obtained. For the other five correlations, the direction of the slope of the best-fit line 

from this study and slope of the correlation being assessed were in the opposite directions 

with the slope of the correlation being assessed negative. The coefficient of determination 

in all cases was exceptionally low; less than 0.1 with one exception (Su/σ’zc = 0.11 + 

0.0037PI – Skempton, 1957) which had a coefficient of determination of 0.2654.  

On the basis of the plots and the coefficient of determination of the fitted models, 

it can generally be concluded that the published empirical strength correlations assessed 

are not valid for the data in this study. This conclusion applies to both the overburden 

stress normalized undrained shear strength (Su/σ’) and preconsolidation stress normalized 

undrained shear strength (Su/σ’zc) relationships These empirical strength correlations 

primarily relate Atterberg limits to normalized Su. As discussed in §5.4.2 it can be 

difficult to predict Su on the basis of Atterberg limits alone since a number of other 

factors influence Su. Also, some of these correlations were developed from tests on soils 

which are not similar to the soils encountered in this study. For instance, Worth and 

Houlsby (1985) was based on tests on offshore soils from the North Sea and the Gulf of 

Mexico, Skempton and Henkel (1953) was based on postglacial estuary clays in London, 

Karlsson and Viberg was based on Swedish clays, and Bjerrum and Simons (1960) and 

Skempton (1957) were based on widely sourced data from England, Norway, New 

Zealand, and Sweden. In some other cases, a different type of test was employed. The 

correlation in Mesri (1975) is based on vane shear tests.   
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5.4.3.2. Consolidation correlations. The results of the analyses to assess the 

validity of published empirical correlations relating consolidation parameters to simply-

obtained parameters were presented in Figures 4.25 to 4.35, and Table 4.29. 

For the correlations with Cc, the validity of six correlations was assessed. Of the 

six correlations assessed, only in one case (Cc = 0.5Gs*(PI/100) – Wood and Worth, 1978) 

was the slope of the correlation obtained not close to the slope of the correlation being 

assessed. The other five correlations plotted quite closely to the correlation being 

assessed and the coefficients of determination of the correlations were high; in the range 

0.43 to 0.65. 

For the correlations with Cr, the validity of five correlations was assessed. In each 

case the best-fit line from this study had a positive slope similar to that of the correlation 

being assessed. However for all cases, the slope from this study was steeper than that of 

correlation being assessed. The correlations developed from this study were of a low 

quality with coefficients of determination of the correlations in the range 0.07 to 0.13. 

The lack of fit of the study data to the Cr correlations may be due to the changes 

in the structure of the soil as a result of the application of compressive forces during 

consolidation testing. This change in the structure of the soil may affect how the soil 

rebounds thereby introducing a high degree of variability in Cr. This in turn could 

possibly have contributed to the lack of fit of study data to Cr correlations. 

 

5.5. SPATIAL VARIABILITY 

The results of Spatial Variability are discussed hereinafter under the following 

headings: Scale of Fluctuation; Comparison of Scale of Fluctuation computed with 
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different Data Types (Laboratory, and Field - CPTu); and Comparison of Scale of 

Fluctuation Computed Following the Time Series/Random Field Theory and the 

Geostatistics Approach. 

5.5.1. Scale of Fluctuation. The results of the analyses to determine the scale of 

fluctuation were presented in Tables 4.30 and 4.31. 

The scale of fluctuation of parameters computed from laboratory testing data was 

generally within the range (at the lower end) of published values where they are 

available. There is a paucity of published data on the scale of fluctuation of parameters 

computed from laboratory testing data. For the parameters computed from CPTu data, the 

scale of fluctuation was greater than published values in all cases. Published values are 

available for measured parameters (qt, and qc in this case) only. There are no published 

values to compare the scale of fluctuation of estimated parameters to as they are 

dependent on the empirical correlation used in their determination and hence subject to 

change.    

The scale of fluctuation determined here were for parameters in the predominant 

soil classification types (CH, CL). For the other less frequently occurring soil types like 

(CL-ML and CH-MH) where, due to paucity of data, scale of fluctuation determinations 

cannot be carried out, a combination of expert opinion and engineering judgment will be 

required to determine suitable values. 

The scale of fluctuation of geotechnical engineering parameters is largely dataset-

dependent hence these values determined here should not be applied uncritically to other 

situations. 
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5.5.2. Range of Influence - Laboratory Data Versus CPTu Data. The results of 

the variogram analyses to study the scale of fluctuation computed with different data 

types – laboratory data and field (CPTu) data were presented in Table 4.33 and Figure 

4.40.  

In all cases, the sill (= variance) of the variograms of the field data plotted below 

that of the laboratory data. This can be attributed to the much larger number of field data 

which must have led to a reduced variance. For the exponential model (fitted to the 

Warrensburg data), the smaller slope at the origin for the field data resulted in higher 

values of range than that for the laboratory data. While for the spherical model (fitted to 

the St. Charles, the New Florence, and Pemiscot data), the smaller slope at the origin for 

the field data can result in higher or lower values of range depending on the distance at 

which the sill is reached. In this case, the values of the range are generally lower for the 

field data. The increase of the value of the range for Warrensburg field data and the 

Pemiscot field data are in the region of 200 to 300% and 10 to 15% of the laboratory data 

value, respectively. The decrease in the value of the range for the St. Charles and the 

New Florence field data are in the region of 30 to 40% and 5 to 30%, respectively. 

Comparing the range of influence for both datasets at 50% tolerance and 2-foot 

lag distance, the range of influence for the field data was higher for Warrensburg (about 

300%) and Pemiscot (10%) and lower for St. Charles (about 30%), and the New Florence 

(about 20%) sites. The removal of tolerance (50% to 0%) from the field data led to a 

decrease in range for Warrensburg, St. Charles and Pemiscot, and an increase for New 

Florence. The magnitude of the change in range both cases were small.   
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There are differences in the range of influence computed using the two different 

datasets of interest. These differences, in terms of increase or decrease, follow no 

particular pattern but may be dependent on the type of variogram model employed. For 

the exponential model in which the semivariogram reaches the sill asymptotically and the 

range of influence is the lag distance where the semivariogram reaches the 95% of the sill 

value, the combination of a lower slope at origin and lower sill resulted in a higher range 

of influence for the field test data. For the spherical model in which the semivariogram 

reaches the sill value at lag distance of a, which is the range of influence, the combination 

of a lower slope at origin and lower sill resulted in a lower range of influence for the field 

test data. 

It is not possible to draw broad conclusions on the basis of the limited studies 

reported herein. Considering both number of data and the quality of profile obtained, the 

range of influence (hence the scale of fluctuation) is best determined using CPTu data. 

However the use of CPTu is not prevalent in industry. Hence, it is important that that the 

relationship between the range of influence from CPTu data and the range of influence 

from other more prevalent sampling and testing methods as amended is determined. The 

development of this relationship will be of particular importance to practitioners who do 

not have other types of data (not CPTu) and want to employ the spatial averaging effect 

in reliability-based design. Hence, further studies on this subject involving more 

boreholes and more semivariogram models are recommended. 

5.5.3. Scale of Fluctuation - Autocorrelation Function Versus Semivariogram 

Function. The results of the comparison of scale of fluctuation using autocorrelation 

function and semivariogram function were presented in Table 4.35 and Figure 4.44. 
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For the constituent parts of each sounding, the scale of fluctuation, θ, computed 

using the SVF was mostly higher than that computed using the ACF. The scale of 

fluctuation computed using the ACF was higher than that computed using the SVF only 

in two out of 14 cases. For each sounding, the average scale of fluctuation computed 

using the SVF was higher than that computed using the ACF. The magnitude of this 

difference ranged from 4 to 270%.  

While the method employed in the determination of scale of fluctuation with the 

ACF is not dependent on the model fitted, the method employed in the determination of 

scale of fluctuation with the SVF can be model-dependent. For the ACF, the Bartlett’s 

limit method (Jaksa et al., 2000; Uzielli et al., 2007) where the scale of fluctuation is 

taken as the distance at which the autocorrelation curve cuts the Bartlett’s limit was 

employed. In the case of the SVF, the range of influence, and hence the scale of 

fluctuation was determined with the aid of the best-fit model which is selected on the 

basis of the lowest root-mean-square-error (VESPAR, 2011). This method of 

determination of scale of fluctuation by SVF was employed in this study to ensure 

consistency. 

The variability of soil properties averaged over a domain is less than that of their 

point properties (Vanmarcke, 1977). This is known as the averaging effect in spatial 

variability. The spatial averaging effect results in a reduction in the variance used in 

RBD. To take advantage of the spatial averaging effect, the scale of fluctuation has to be 

determined. The scale of fluctuation is then used to compute the variance reduction factor 

(VRF) which is the factor by which the point property of a parameter is reduced. With the 
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scale of fluctuation constant, the VRF depend on the averaging length: the longer the 

averaging length, the lower the VRF. 

For a given averaging length, an increase in the scale of fluctuation leads to a 

reduction in the VRF and hence a greater reduction in the point value of a parameter. In 

the context of this analysis, this means that scale of fluctuation computed with the SVF 

will always lead to a greater reduction in the point value of a parameter. It should be 

noted that both approaches to the determination of the scale of fluctuation in the context 

of the VRF will either lead to no reduction in the point variance, in which case the VRF 

is one, or lead to a reduction in the point variance, in which case the VRF will be less 

than one. 

Since both approaches can either deliver no reduction or some reduction in the 

point variance, the decision as to the approach to adopt should be based on the 

restrictions/conditionalities associated with the use of each approach. In this case the SVF 

approach will be adopted for reasons discussed elsewhere in §4.2.6 particularly the 

number of data required for analysis by each approach: N/4 for the ACF and N/2 for the 

SWF, where N is the total number of data points. I think the higher the number of data 

that goes into an analysis the better. 

This analysis is based on seven soundings and therefore is by no means 

exhaustive. Further studies involving many more soundings are required to come to firm 

conclusions on this subject. 
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6. PROPOSED FRAMEWORK AND ITS APPLICATION 

 

6.1. INTRODUCTION 

A framework is proposed in this section, which incorporates the spatial averaging 

effect of parameters based on the scale of fluctuation and variance reduction factor that 

are computed from widely-spaced irregular and non-continuous data. Also presented in 

this section are illustrations of the application of the framework to RBD. 

 

6.2. PROPOSED FRAMEWORK 

The deployment of RBD requires that geotechnical parameters are characterized 

and analyzed statistically. In order to characterize geotechnical parameters fully, 

knowledge of their mean, variance, and scale of fluctuation is required (Vanmarcke, 

1977). While the mean and variance are simply-obtained statistics, obtaining the scale of 

fluctuation is somewhat complex. This is particularly true in the case of widely-spaced, 

non-continuous, irregular data which does not yield a well-defined profile. The 

determination of the scale of fluctuation requires a well-defined profile. Most published 

literature on scale of fluctuation is based on continuous data at close and regular intervals 

(field data from cone penetrometer soundings) which does not yield a well-defined 

profile.  

A framework that incorporates the spatial averaging effect resulting from the 

scale of fluctuation determined from relatively closely-spaced data (relative to CPT data) 

into RBD is proposed herein. The steps involved in the framework are presented as 

follows: 
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 Determine the scale of fluctuation from irregularly-spaced data obtained from 

laboratory tests on samples obtained from the continuous Shelby tube sampling 

using the semivariogram function from geostatistics (Matheron, 1963). 

Geostatistical methods have been used extensively in other branches of civil 

engineering like environmental engineering, and hydraulics/hydrology. It should 

be noted that while this study is based on data from laboratory tests on samples 

obtained from the continuous Shelby tube sampling, the principles applied here 

are applicable to data from other kinds of test, for example the CPT where the 

sounding data is normally collected at close intervals.  

 Use the scale of fluctuation to develop a plot of variance reduction factor against 

averaging length. This is done with a view to taking advantage of the spatial 

averaging effect in spatial variability analyses. This spatial averaging effect is the 

statistical scale effect whereby the variability of geotechnical parameters 

decreases as the size of the domain where it is defined increase. Hence, spatially 

averaged values of geotechnical parameters are usually smaller than their point 

values. The variance reduction factor, Г
2
(L), is defined as the ratio of the point 

variance, σi
2
 and the variance of the spatially averaged property, σL

2
 (Vanmarcke, 

1977).  

 Obtain the variance reduction factor for the averaging distance, and then reducing 

the point variance of the parameters needed for design by the variance reduction 

factor. 

 Update the variance of the geotechnical parameters to account for its spatial 

variation as stated above, and then using the updated variance in the limit state 
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function under consideration, alongside the associated mean value, and the values 

of any other probabilistic and, or deterministic parameters required for design. 

The step-by-step procedure for this framework which incorporates the procedure for 

the determination of the scale of fluctuation using the semivariogram function (presented 

in Section 4) is presented below. A flowchart of the framework is presented in Figure 6.1. 

1. Develop the profile of the parameter. 

2. Validate the profile – check for outliers 

3. Update the profile of the parameter. 

4. Check the profile for the presence of any trend 

a. If a trend is present (dataset is nonstationary), make it stationary by 

removing a low-order polynomial trend, usually no higher than a 

quadratic, using the method of Ordinary Least Squares, OLS. 

b. Check stationarity by visual inspection of a scatter-plot of the data, and or 

tests like the Runs test, and the Kendal’s τ test. 

5. Compute and plot the experimental semivariogram using the lag as the distance 

(usually fixed) at which data is acquired. Use the original data in the computation 

if there is no trend present. Alternatively, if there is trend present use the residuals 

from the detrending process. 

a. For continuously acquired data at close, and regular intervals, use the 

Equation 25a shown below to compute the experimental variogram: 

 

        
 

     
                     

                                       (25a) 
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b. For non-continuously acquired data at wide, and irregular intervals, use 

the Equation 25b shown below to compute the experimental variogram: 

 

             
 

        
                     

                      (25b) 

 

6. Select a best-fit theoretical semivariogram model and fit it to the experimental 

semivariogram. 

7. Determine the properties (the nugget effect, Co; the sill, C + Co; and the range of 

influence, a) of the fitted semivariogram model. 

8. Select the relationship for the scale of fluctuation corresponding to the theoretical 

semivariogram model selected in (6). Some relationships are presented in Table 

2.3. 

9. Compute the scale of fluctuation using the relationship selected in (8). 

10. Assuming hypothetical averaging lengths, compute variance reduction factor 

using the Equations 26a and 26b shown below. 

 

Г       
 

 
   

 

  
  

 

 
                                                      (26a) 

 

Г                                                                                   (26b) 

 

11. Develop relationships (in form of charts) between the variance reduction factor 

and averaging length. 
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12. For a known averaging length, deduce the variance reduction factor and then 

reduce the variance of the parameter by the variance reduction factor. 

13. Use the reduced variance in the RBD computations. 

 

6.3. EXAMPLES OF THE PROPOSED FRAMEWORK 

The application of the framework is illustrated by the design of two foundation 

structures according to the First-Order, Second-Moment (FOSM): 

 A shallow foundation to illustrate the effect of a small averaging length; and  

 A deep foundation, say a pile of substantial length, to illustrate the effect of a 

large averaging length. 

6.3.1. Illustration 1 – Shallow Footing. The effect of considering the spatial 

variability of geotechnical parameters in reliability-based design of a shallow foundation 

is illustrated with the following example. 

In this example a 4’ x 4’ foundation is designed for a Factor of Safety (FS) of 4 

using data from Warrensburg, Borehole 2 (W-BH2). Geotechnical design parameters 

including undrained shear strength Su (UU) and effective friction angle, υ’ are presented 

in Tables 6.1 and 6.2 and Figure 6.2 while the schematic plot for the example is presented 

in Figure 6.3. 

The First Order, Second Moment reliability design method (Duncan, 2000; 

Stephenson, 2009b) is used in this illustration. 
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Figure 6.1: Flowchart of the Proposed Framework 
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(a)  (b) 

Figure 6.2: W-BH2 Profile for (a) Undrained Shear Strength, Su (UU), (b) Effective 

Friction Angle, υ’ 

 

 

 

Figure 6.3: Schematic Plot for the Shallow Footing Design Illustration 
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Table 6.1: Undrained Shear Strength, Su (UU) Data 

W – BH 2 

Depth Su (UU) Depth Su (UU) Depth Su (UU) Depth Su (UU) 

6.3 506.0 16.2 1272.0 26.3 1276.0 26.3 1276.0 

6.7 698.0 16.5 594.0 26.6 1074.0 26.6 1074.0 

8.7 561.6 18.6 1440.0 28.3 907.2 28.3 907.2 

9.0 1008.0 18.9 2059.2 28.6 1094.4 28.6 1094.4 

11.2 444.0 20.9 1035.0 31.3 805.0 31.3 805.0 

11.6 442.0 21.2 606.0 31.7 565.0 31.7 565.0 

13.5 403.2 23.6 2102.4 33.8 1296.0 33.8 1296.0 

13.9 187.2 23.9 2779.2 34.1 1195.2 34.1 1195.2 

Note: Depth = feet; Su = Undrained Shear Strength (psf) 

 

 

Table 6.2: Friction Angle, υ’ Data 

W – BH 2 

Depth υ’ Depth υ’ Depth υ’ Depth υ’ 

8.0 20.3 15.4 24.4 24.4 24.1 30.5 31.2 

8.3 30.9 18.3 14.5 25.6 33.3 31.8 32.1 

9.5 21.2 19.4 23.6 25.3 30.1 32.9 21.0 

10.3 32.1 19.9 21.7 26.8 27.8 33.4 32.2 

10.6 28.8 20.2 30.1 29.8 11.1 34.4 25.0 

11.8 31.2 21.7 28.5 29.4 26.7 38.1 26.2 

12.9 31.9 22.9 19.5 27.9 19.8 38.4 30.9 

13.3 31.9 23.3 28 30.2 32.0 39.6 21.2 

Note: Depth = feet; υ’ = effective friction angle (degree) 

 

  

From the plots of the semivariogram for the Su (UU) and υ’ profiles presented in 

Figures 6.4 and 6.5, the range of influence (a) and the scale of fluctuation (θ) is 3.9 ft, 2.9 

ft and 2.4 ft, 1.8 ft, respectively. With the scale of fluctuation known, the plots of 

variance reduction factor against averaging length for the Su (UU) and υ’ profiles were 

developed by assuming hypothetical averaging lengths and substituting the scale of 

fluctuation, θ, of the Su (UU) and υ’ profiles into the Equation 26. The plots of the 

variance reduction factor against averaging length for Su (UU) and υ’ are presented in 
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Figure 6.6 and 6.7, respectively. The variance reduction factor of Su (UU) and υ’ for 13 

feet averaging length is about 46% and 37%, respectively.  

The bearing capacities are computed using the generalized bearing capacity 

equation (Das, 2007): 

 

                                                                                (27) 

 

where c’ = cohesion, q = effective stress at the level of the bottom of the foundation,  = 

unit weight of soil, B = width of foundation (or diameter for a circular footing), Fcs, Fqs, 

Fs = shape factors, Fcd, Fqd, Fd = depth factors, Fci, Fqi, Fi = load inclination factors, and 

Nc, Nq, N  = bearing capacity factors. 

 

 

 

 

Figure 6.4: Semivariogram for Su (UU) – Type: Spherical; a = 3.9 ft; θ = 2.9 ft 
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Figure 6.5: Semivariogram for υ’ – Type: Spherical; a = 2.4 ft; θ = 1.8 ft 

 

 

 

Figure 6.6: Variance Reduction Factor for Undrained Shear Strength, Su (UU) 
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Figure 6.7: Variance Reduction Factor for Effective Friction Angle, υ’  

 

 

The parameters considered are Su (UU) and υ’ for total stress and effective stress 

analyses, respectively. The unit weight was not considered because the variability is 

usually low (COV = 4.5% in this case). The second moment statistics and the spatially-

averaged values of Su (UU) and υ’ are presented on Table 6.3. 

 

 

Table 6.3: Second Moment Statistics and Spatially-Averaged Values (Footing) 

Statistic υ’ (deg) Su (UU) (psf) Statistic υ’ (deg) Su (UU) (psf) 

Second Moment Spatially Averaged 

Mean 26 1233 Mean 26 1233 

Std. deviation 8 835 Std. deviation 5 528 

Variance 63 696632 Variance 25 278653 
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For the total stress computations, υ’ was zero, and the MLV, MLV plus 1 

standard deviation (Stdev), and MLV minus 1 Stdev values of Su, respectively were used 

to compute qu. For the effective stress computations, Su was zero, and the MLV, MLV 

plus 1 standard deviation (Stdev), and MLV minus 1 Stdev values of υ’, respectively 

were used to compute qu. The MLV, MLV plus 1 standard deviation (Stdev), and MLV 

minus 1 Stdev values for the parameters are presented in Tables 6.4a and 6.5b for the 

second moment and the spatially averaged values, respectively. Tables 6.6a and 6.7b 

present the ultimate bearing capacities for the MLV, MLV plus 1 standard deviation 

(Stdev), and MLV minus 1 Stdev, and the results of the reliability analyses for total stress 

and effective stress analyses, respectively. 

 

Table 6.4: Data for Reliability Computations (Footing) – Second Moment Values 

υ’ (degree) Su (UU) (psf ) 

[-1]Stdev MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev 

18 26 34 398 1233 2067 

 

 

Table 6.5: Data for Reliability Computations (Footing) – Spatially-Averaged Values 

υ’ (degree) Su (UU) (psf) 

[-1]Stdev MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev 

21 26 31 666 1233 1799 

 

 

For the reliability assessment, the ultimate allowable bearing capacity for the 

MLV, Qall(MLV) is assumed to be the applied stress, Qapp. The values in Tables 6.6 and 6.7 

were computed using the following formulas: 
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 #1 - 4: computed using the generalized bearing capacity equation 

 #5: FS = Qult / Qapp 

 #6: ΔFS = FSmax – FSmin 

 #7: σFS = ((ΔFS / 2)
2
)
0.5

; Standard deviation of FS 

 #8: vFS = (σFS / FSMLV); Coefficient of variation of FS 

 Pf : obtained from standard lognormal table [using FSMLV and VFS (%)]  

 

 

Table 6.6: Reliability Computations (Footing) – Total Stress Analysis 

# Property 
MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev [-1]Stdev 

Su – Second Moment  Su – Spatially-Averaged 

1 qult (psf) 9506.43 15936.57 3068.58 9506.43 13870.29 5134.86 

2 qall (psf) 2376.61 3984.14 767.15 2376.61 3467.57 1283.72 

3 Qult (lbs) 152102.9 254985.1 49097.28 152102.9 221924.6 82157.76 

4 Qall (lbs) 38025.72 63746.28 12274.32 38025.72 55481.16 20539.44 

5 FS 4 6.7 1.3 4 5.8 2.2 

Summary 

6 ∆FS 5.4 
  

3.7 
  

7 σFS 2.7072 
  

1.8378 
  

8 vFS 0.6768 67.7% Pf = 2.56% 0.4594 45.9% Pf = 0.16% 

 

 

Using the values of FSMLV (= 4 in this case) and the values vFS, assuming a 

lognormal distribution, the values of the probability of failure, Pf were determined.  The 

values of Pf are presented on Tables 6.6 and 6.7. 

From Table 6.6, it can be seen that taking the spatial variability into consideration 

in the total stress analysis resulted in a reduction of Pf. The reduction was from 2.56% to 

0.16% (about one order of magnitude). Table 6.7 shows that no change in Pf for the 
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effective stress analysis. Both Pf due to second moment and spatially-averaged values 

were zero. 

 

Table 6.7: Reliability Computations (Footing) – Effective Stress Analysis 

# 
Property MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev [-1]Stdev 

 
υ’ – Second Moment υ’ – Spatially-Averaged 

1 qult (psf) 900.66 999.0 832.96 900.66 957.41 855.67 

2 qall (psf) 225.17 249.75 208.24 225.17 239.35 213.92 

3 Qult (lbs) 14410.56 15983.93 13327.44 14410.56 15318.58 13690.74 

4 Qall (lbs) 3602.64 3995.98 3331.86 3602.64 3829.64 3422.68 

5 FS 4 4.4 3.7 4 4.3 3.8 

Summary 

6 ∆FS 0.7 
  

0.5 
  

7 σFS 0.3687 
  

0.2259 
  

8 vFS 0.09218 9.2% Pf = 0% 0.05648 5.6% Pf = 0% 

 

 

6.3.2. Illustration 2 – Deep Foundation. The effect of considering the spatial 

variability of geotechnical parameters in reliability-based design of a deep foundation is 

illustrated with the following example.  

In this example a 40 feet long, 1.5 feet diameter, pile is designed for a Factor of 

Safety (FS) of 3 using data from Warrensburg, Borehole 2 (W-BH2). The Warrensburg, 

Borehole 2 (W-BH2) data for Su (UU) and friction angle, υ’ have been presented 

previously in Tables 6.1 and 6.2 and Figure 6.2. The schematic for this illustration is 

presented in Figure 6.8. 

Like in the illustration for the shallow foundation, the First Order, Second 

Moment reliability design method (Duncan, 2000; Stephenson, 2009b) is used in this 

illustration.  
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From the plots of the semivariogram for the Su (UU) and υ profiles presented in 

Figures 6.4 and 6.5, the range of influence and the scale of fluctuation is 3.9 ft, 2.9 ft and 

2.4 ft, 1.83 ft, respectively. With the scale of fluctuation known, the plots of variance 

reduction factor against averaging length for the Su (UU) and υ’ profiles were developed 

by assuming hypothetical averaging lengths and substituting the scale of fluctuation, θ, of 

the Su (UU) and υ’ profiles into the Equation 26. The plots of the variance reduction 

factor against averaging length for Su (UU) and υ’ were presented in Figure 6.6 and 6.7, 

respectively. The averaging length for the skin friction is 40 feet while the averaging 

length for end bearing is three feet. The variance reduction factor of Su (UU) and υ’ for 

averaging lengths of three feet and 40 feet, respectively is about 21% and 27%.  

 

 

 

Figure 6.8: Schematic Plot for the Deep Foundation Design Illustration 
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The ultimate load capacity, Qult of the pile is determined using the static pile load 

capacity equation (Das 2007; Budhu 2007): 

 

                                                                                                                    (28) 

 

Where: Qf = skin friction; Qb = end bearing; and Wp = weight of pile. 

The parameters considered are Su (UU) and υ’. The unit weight was not 

considered because the variability is usually low (COV = 4.5% in this case). The second 

moment statistics and the spatially averaged values of Su and υ’ are presented on Table 

6.8.  

 

 

Table 6.8: Second Moment Statistics and Spatially-Averaged Values (Pile) 

Statistic υ’ (deg) Su (UU) (psf) υ’
1

 (deg) υ’
2

 (deg) Su (UU)(psf) 

Second Moment Spatially Averaged 

Mean 25.9 1311 25.9 25.9 1311 

Std. deviation 57 863 23.1 6.7 233 

Variance 32.1 745014 4.1 1.2 201153 

Notes:1 = Tip resistance; 2 = Side friction  

 

 

In this illustration, the reliability of the ultimate load capacity for the short-term 

and the long-term loading conditions is determined using the α method and β methods 

(Das, 2007; Budhu, 2007), respectively.  

In the computations, as only one parameter is required in the equation for end 

bearing and side friction, respectively, the parameter values were considered 
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simultaneously; i.e. mean values (or most likely value, MLV) for υ’ and MLV for Su 

(UU) considered for end bearing and side friction simultaneously. The MLV, MLV plus 

1 standard deviation (Stdev), and MLV minus 1 Stdev values for the parameters are 

presented in Tables 6.9 and 6.12 for the second moment and the spatially averaged 

values, respectively. The summary of the result of the ultimate pile load capacity 

computations are presented in Tables 6.10 and 6.13 for the second moment and the 

spatially averaged values, respectively. The reliability analyses of the ultimate pile load 

capacity for the MLV, MLV plus 1 standard deviation (Stdev), and MLV minus 1 Stdev 

are presented in Tables 6.11 and 6.14 for the second moment and the spatially averaged 

values, respectively. 

 

 

Table 6.9: Data for Reliability Computations (Pile) – Second Moment Values 

υ’ (deg) Su (UU) (psf ) 

[-1]Stdev MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev 

20.2 25.9 31.6 446 1311 2173 

 

 

Table 6.10: Pile Capacity Computations – End Bearing and Side Friction, Second 

Moment Values 

Parameter 
Total Stress Analysis Effective Stress Analysis 

[-1]Stdev MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev 

Qb (lbs) 7093.3 20850.6 34560.1 36098.8 74029.2 151814.6 

Qf (lbs) 71425.0 112578.0 193495.4 76070.5 86362.7 92480.2 

Qult (lbs) 78518.4 133428.6 228055.5 112169.4 160392.0 244294.8 
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For the reliability assessment, the ultimate allowable bearing capacity for the 

MLV, Qall(MLV) is assumed to be the applied stress, Qapp. The values in Tables 6.6c and 

6.7c were computed using the following formulas: 

 #1: computed using static pile load capacity equation 

 #2: Qall = Qult / FS 

 #3: FS = Qult / Qapp 

 #4: ΔFS = FSmax – FSmin 

 #5: σFS = ((ΔFS / 2)
2
)
0.5

; Standard deviation of FS 

 #6: vFS = (σFS / FSMLV); Coefficient of variation of FS 

 Pf : obtained from standard lognormal table [using FSMLV and VFS (%)]  

 

 

Table 6.11: Reliability Computations (Pile) – Second Moment Values 

# Property 
MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev [-1]Stdev 

Su (UU) - Total Stress Analysis υ’ - Effective Stress Analysis 

1 Qult (lbs) 133428.6 228055.5 78518.4 160392.0 244294.8 112169.4 

2 Qall (lbs) 44476.2 76018.5 26172.8 53464.0 81431.6 37389.8 

3 FS 3.0 5.1 1.8 3.0 4.6 2.1 

Summary 

4 ∆FS 3.4 
  

2.5 
  

5 σFS 1.6811 
  

1.2356 
  

6 vFS 0.5604 56.04% Pf = 3.282% 0.4119 41.19% Pf = 0.498% 

 

 

Using the values of FSMLV (3 in this case) and the values vFS, assuming a 

lognormal distribution, the values of the probability of failure, Pf were determined.  The 

values of Pf are presented in Tables 6.11 and 6.14. 
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Table 6.12: Data for Reliability Computations (Pile) – Spatially-Averaged Values 

υ’ (degree) - Tip υ’ (degree) - Side Su (UU) (psf ) 

[-1] 

Stdev 
MLV 

[+1] 

Stdev 

[-1] 

Stdev 
MLV 

[+1] 

Stdev 

[-1] 

Stdev 
MLV 

[+1] 

Stdev 

21.8 25.9 30 24.7 25.9 27.1 1077 1311 1543 

 

 

Table 6.13: Pile Capacity Computations – End Bearing and Side Friction, Spatially-

Averaged Values 

Parameter 
Total Stress Analysis Effective Stress Analysis 

[-1]Stdev MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev 

Qb (lbs) 17121.0 20850.6 24534.0 44187.5 74029.2 123438.3 

Qf (lbs) 121424.8 112578.0 151085.6 84543.0 86362.7 87947.0 

Qult (lbs) 138545.8 133428.6 175619.6 128730.5 160392.0 211385.3 

 

 

Table 6.14: Reliability Computations (Pile) – Spatially-Averaged Values 

# Property 
MLV [+1]Stdev [-1]Stdev MLV [+1]Stdev [-1]Stdev 

Su (UU) - Total Stress Analysis υ’ - Effective Stress Analysis 

1 Qult (lbs) 133428.6 175619.6 138545.8 160392.0 211385.3 128730.5 

2 Qall (lbs) 44476.2 58539.9 46181.9 53464.0 70461.8 42910.2 

3 FS 3.0 3.9 3.1 3.0 4.0 2.4 

Summary 

4 ∆FS 0.9 
  

1.5 
  

5 σFS 0.4743 
  

0.7730 
  

6 vFS 0.1581 15.81% Pf = 0% 0.2577 25.77% Pf = 0.001% 

 

 

From Tables 6.11 and 6.14, it can be seen that taking the spatial variability of Su 

(UU) in the total stress analysis (short-term loading condition) and the spatial variability 

of υ’ in the effective stress analysis (long-term loading condition) resulted in a reductions 

in the Pf. For total stress analysis [Su (UU)], the reduction was from 3.282% to 0% (about 
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one order of magnitude) while for effective stress analysis (υ’) the reduction was from 

0.498% to 0.001% (about two orders of magnitude). The reduction for total stress 

analysis was actually from 3.282% to 2.366E-12%. 

The examples above are for the case where there are sufficient data for analyses. 

In the case where there are insufficient data for analysis, a combination of approximate 

methods, expert knowledge, and engineering judgment will have to be applied to 

determine the values of the parameters to be used in design.  

The above illustrations demonstrate that applying the proposed framework in 

design leads to a decrease in the variance of the design parameters due to the spatial 

averaging effect. Spatial averaging in both illustrations resulted in the reduction of the 

probability of failure. Such reductions in the probability of failure, under certain 

circumstances, translate to economic savings. This is particularly true for the case where 

due to a large reduction in the probability of failure, the size (dimensions) of a structure 

can be reduced.  

It is recommended that public transportation agencies, such as MoDOT adopt the 

framework for their designs. To deploy the framework, MoDOT will have to adopt the 

continuous Shelby tube sampling method of soil exploration. With continuous Shelby 

tube sampling, tests can be assigned at about one foot interval or less and hence it is 

possible to obtain sufficient data for semivariogram analysis. A minimum of about 25 

data points will be sufficient for semivariogram analysis. Following from the 

semivariogram analysis, the scale of fluctuation and the variance reduction factor can be 

determined. The parameter variance for design is reduced accordingly variance reduction 

factor.  
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7. CONCLUSION AND RECOMMENDATION 

 

7.1. INTRODUCTION 

Based on data obtained from laboratory tests on samples obtained from the 

continuous Shelby tube sampling method and field (CPTu) investigation program in 

Missouri, the study reported herein is aimed at increasing the use of RBD among 

geotechnical engineers.  The main objectives of this study are as follows: 

 Characterize fine-grained soils in Missouri for reliability analyses;  

 Develop an RBD framework incorporating the spatial variability of geotechnical 

parameters based on widely-spaced, non-continuous, irregular data obtained from 

laboratory tests on specimens obtained by the continuous sampling borehole 

exploration method; and  

 Demonstrate the application of the proposed framework. 

 To achieve the objectives of this study a coordinated and carefully executed 

research program incorporating desk study, laboratory and field investigations, data 

analyses, and the application of the results of data analysis to RBD work was undertaken. 

Also a framework for the application of the results of the data to RBD was proposed and 

illustrations of the use of this framework were also presented. A summary of major 

findings and major conclusions of the research study and recommendations as to future 

research needs and directions are presented in this section. 
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7.2. CONCLUSIONS  

The following conclusions are drawn on the basis of the analyses conducted in 

this study. These conclusions are true for the data used in the various analyses conducted 

in this study.   

 The second moment statistics and the probability distribution of both laboratory-

determined and measured CPTu parameters were found to be dependent on both 

in-situ state and soil classification type. The change in the second moment 

statistics and the probability distribution as result of grouping data into in-situ 

state and, or, soil classification type followed no discernable pattern. 

 For the research data, correlations between Su/σ’ and PI were found to be largely 

non-linear (second degree polynomials) and not linear as found in most published 

empirical relationships. There is low degree correlation between Su/σ’ and PI. 

The coefficients of determination for the empirical relationships developed 

between overburden stress-normalized undrained shear stress (UU) and PI were 

generally low (below 0.70) when considered in terms of location (Warrensburg = 

0.16; St Charles = 0.47; New Florence = 0.68; Pemiscot = 0.19) and also when 

considered in terms of soil classification type (CL = 0.48; CH = 0.37; ML = 0.39). 

 For the empirical correlations with strength parameters, published empirical 

relationships between overburden stress- and preconsolidation stress-normalized 

undrained shear stress (UU and CU) and Atterberg limits and, or, other easily-

obtained geotechnical parameters were found not valid for the data used in this 

study.  
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 For the empirical correlations with consolidation parameters, published empirical 

relationships between compression index and Atterberg limits and, or, other 

easily-obtained geotechnical parameters were found to be valid for the data used 

in this study. The empirical correlations between recompression index and 

Atterberg limits and, or, other easily-obtained geotechnical parameters were 

found not valid for the data used in this study.  

 Scale of fluctuation of geotechnical parameters is dataset-specific. When 

determined using the semivariogram function it depends also on the type of trend 

removed from the data in the detrending process, and the type of model employed 

in the variogram analysis.    

 For laboratory test data, which compared to CPTu data are relatively very widely-

spaced and obtained at irregular space intervals, the scale of fluctuation is best 

obtained using the semivariogram function.  

 Preliminary analyses indicate that there are differences in the scale of fluctuation 

determined using laboratory test data and CPTu data. These differences follow no 

particular pattern but may be dependent on the type of semivariogram model 

employed in the analysis. For instance for CPTu data, semivariogram models 

which reach their asymptotically like the exponential model gave a high range of 

influence while models which reach their sill at the range of influence like the 

spherical model gave a lower range of influence. 

 Preliminary analyses, using CPTu data, indicate that the average scale of 

fluctuation determined using the semivariogram function is higher than that 
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determined using the autocorrelation function. The magnitude of the difference is 

in the range of 4 to 400%. 

 For CPTu data, taking the number of data used in analysis, the scale of fluctuation 

is best obtained using the semivariogram function. The semivariogram function 

uses N/2 while the autocorrelation function uses N/4 for analyses; where N is the 

total number of data points. 

 The framework for RBD proposed and the examples of its application presented 

are based on the case where there are sufficient data. In cases where data is 

insufficient, the combined application of approximate methods, local knowledge, 

and expert knowledge is warranted. 

 Incorporating the spatial averaging effect in RBD leads to either no change or a 

reduction in the variance but never an increase the variance. 

 Incorporating the spatial averaging effect in RBD leads to a reduction in the 

probability of failure of a structure. Reductions in the probability of failure of a 

structure could lead to a reduction in its dimensions and hence lead to cost 

savings. In the examples presented in this study, reductions in probability of 

failure of up to two orders of magnitude were reported. 

 

7.3. RECOMMENDATIONS  

This study has demonstrated the statistical characterization of geotechnical 

parameters and their application to RBD. However, there are some observations arising 

from the study that requires further investigation. These observations are stated 

following. 
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 The determination of the both the second moment statistics and probability 

distribution of geotechnical parameters in terms of both their in-situ state and soil 

classification types.  

 The development of correlation models between overburden stress-normalized 

undrained shear stress (UU and CU) and other easily-obtained geotechnical 

parameters that includes not only the Atterberg limits but the other parameters 

that influence the undrained shear strength like preconsolidation pressure, 

overconsolidation ratio, void ratio, and etc.  

 Further studies, involving more boreholes and more semivariogram models, on 

the relationship between the range of influence from CPTu data and the range of 

influence from other more prevalent sampling and testing methods as amended. 

 Further studies, involving more CPTu soundings, on the relationship between the 

scales of fluctuation computed using the autocorrelation function and the 

semivariogram function. 

 MoDOT adopts the continuous sampling method of soil exploration to provide 

sufficient data points (25 minimum) to take advantage of the reduced parameter 

variance of the proposed framework. The reduced parameter variance leads to 

optimal/economical designs.  
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APPENDIX 

 

FIELD EXPLORATION AND LABORATORY TESTING, CPTu SOFTWARE 

CORRELATIONS, SECOND MOMENT STATISTICS, PEARSON'S SPACE PLOTS, 

DISTRIBUTION TYPE & CORRELATION MATRIX ON CD-ROM 

 

1.  INTRODUCTION 

 Included with this Dissertation is a CD-ROM which contains the eight Appendices 

(Appendices A to H) referred to in this study.  Appendices A and B are Microsoft Word 2007 

document files while Appendices C to H are Microsoft Excel 2007 files.  An outline of the 

contents of the CD-ROM is as follows. 

 

2.  CONTENTS 

 

APPENDIX A: FIELD EXPLORATION AND LABORATORY TESTING 

APPENDIX B: CPeT-IT 

APPENDIX C: SECOND MOMENT STATISTICS – LABORATORY TEST DATA 

APPENDIX D: SECOND MOMENT STATISTICS - CPTu DATA 

APPENDIX E: PEARSON'S SPACE 

APPENDIX F: DISTRIBUTION TYPE - LABORATORY TEST DATA 

APPENDIX G: DISTRIBUTION TYPE - CPTu DATA 

APPENDIX H: CORRELATION MATRIX 
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