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ABSTRACT

This dissertation proposes a methodology for traffic flow pattern analysis, its val-

idation, and forecasting. The shape of the daily traffic flows are directly related to the

commuter’s traffic behavior which merit analysis based on their shape characteristics. As a

departure from the traditional approaches, this research proposed a methodology based on

shape for traffic flow analysis. Specifically, Granulometric Size Distributions (GSDs) were

used to achieve classification of daily traffic flow patterns. A mathematical morphology

method was used that allows the clustering of shapes. The proposed methodology leads to

discovery of interesting daily traffic phenomena such as five normal daily traffic shapes be-

side abnormal shapes representing accidents, congestion behavior, peak time fluctuations,

and malfunctioning sensors.

To ascertain the significance of shape in traffic analysis, the proposed methodology

was validated through a comparative classification analysis of the original data and GSD

transformed data using the Back Prorogation Neural Network (BPNN). Results demon-

strated that through shape based clustering more appropriate grouping can be accomplished

that can result in better estimates of model parameters.

Lastly, a functional time series approach was proposed to forecast traffic flow for

short and medium-term horizons. It is based on functional principal components decom-

position to forecast three different traffic scenarios. Real-time forecast scenarios of par-

tially observed traffic profiles through Penalized Least squares (PLS) technique were also

demonstrated. Functional methods outperform the conventional ARIMA model in both

short and medium-term forecast horizons. In addition, performance of functional methods

in forecasting beyond one hour was also found to be robust and consistent.
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1. INTRODUCTION, MOTIVATIONS, AND LITERATURE REVIEW

Traffic flow modeling is an essential component of any traffic control, monitoring,

and management system. It forms the basis for ITS technologies, like Advanced Trav-

eler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) as

examples, which attempt to deal with the traffic congestion, accidents and travel time re-

liability problems. The overall objective of these systems is to increase the operational

efficiency and capacity of the transportation network. This objective of achieving efficient

transportation systems is only possible through sound traffic analysis based on traffic flow

theory. Traffic flow is influenced by travel’s behavior as well as abrupt disturbances be-

cause of various unexpected events (e.g., accidents, weather-induced disruption) that may

change the underlying dynamics and the stability of the data generation process. It im-

plies that daily traffic flow profiles exhibits unique shapes that can be grouped into definite

patterns. To explore these patterns, clustering is considered a well established technique

already employed in traffic domain. The patterns obtained through clustering can assist in

understanding traffic dynamics and then help in simulation and forecasting etc. The shape

of the traffic profiles also suggest that traffic data is functional in nature and therefore suit-

able for application of function data analysis techniques for forecasting.

Traffic flow theory provides the basis for traffic analysis. It helps to understand the

traffic dynamics as well as to develop mathematical relationships among the primary el-

ements of the traffic stream: flow, density, and speed. Among these traffic parameters,

as suggested by the name “Traffic Flow Theory”, flow is the primary element which best

describes the traveller’s behavior. It is therefore the focus of modern Intelligent Transporta-

tion Systems research and practice. Traffic flow can be considered as both a temporal and a

spatial phenomenon. Its conceptual as well as practical dependence on time and space has

been well established in the traffic forecasting literature.

Traffic flow analysis is done at three different levels or through models namely :

microscopic, macroscopic, and mesoscopic (Boxil et al, 2005). Microscopic models pre-

dict the individual following behavior of cars (change in speed and position) as a function

of the behavior of the leading vehicle. Wiedemann model, Intelligent driver model and

Gipps’ model are all examples of car following models (microscopic models). Macro-
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scopic traffic flow theory relates to traffic flow, running speed, and density. Analogizing

traffic to a stream has principally been developed for limited access roadways (i.e express-

ways) (Leutzbach, 1988). The most widely used model is the Greenshields model, which

demonstrates that the relationships between speed and density is linear (Erlingsson et al,

2006). Finally, Mesoscopic (kinetic) models are those that combine characteristics of both

the microscopic and macroscopic levels. Macroscopic properties like flow and density are

the product of individual (microscopic) decisions. Yet those microscopic decision-makers

are affected by the environment around them, (e.g. the macroscopic properties of traffic).

Hence, macroscopic level is appropriate for traffic analysis where the focus is on the traffic

stream rather than on individual vehicles.

Daily traffic flow is a function of time and defines the functional behavior of com-

muters over time. The basic traffic stream modeling relationship relates flow (q) to the

product of density (k) and space mean speed (v) as q = kv. However, this daily traffic

flow not only varies within a day but also differs within the weekdays. Figure 1.1 illus-

trates three time series curves of traffic flow. This figure illustrates that there is significant

changes in daily traffic flow profile shapes throughout the week, which are influenced by a

variety of factors. Refer Figure 1.1, the Wednesday traffic profile shape represents a typical

bi-modal (typical morning and afternoon peak) working day behavior. Sunday represents

a uni-modal shape which is typical non-working day behavior. While the Saturday profile

illustrated is a non-working day, depicts a very unique traffic pattern, which was highly in-

fluenced by a major weather event (e.g. a blizzard). The figure also indicates the presence

of some patterning in the flow by time of day and day-to-day. However, simple visualiza-

tion of the data is often not satisfactory in determining if there is similarity or dissimilarity

from one day to another. Hence, a more analytical approach to determine the qualitative

characteristics of the data is to undertake clustering analysis as it is helpful in identifying,

or recognizing patterns of interest within a historical data set.

Clustering enables to derive traffic patterns systematically using matching criteria

contrary to the practice of predefined days into classes. It result in obtaining site specific

adaptive sets of traffic patterns. The traffic Monitoring Guide (TMG) (FHWA2001) iden-

tifies this necessity and also acknowledges clustering analysis as appropriate technique for

this purpose.
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Figure 1.1. Daily traffic flow time series for Sunday-11/7/10, Wednesday- 11/10/10 and
Saturday-12/11/10.

Traffic flow patterns have numerous uses. The most important use could be as a

planning tool, where they lay the basis for setting management scenarios (e.g in plan-

ning, one might wish to estimate the annual traffic volume over the planned horizon for

proposed infrastructure alternatives). The annual volume is then used for estimating the

expected saving in travel time for economic feasibility studies. Similarly for design pur-

poses, hourly traffic volume is often required to determine the facilities capacity. Thus,

accurately predicting the hourly flow variations would become essential to avoid an over-

design or under-design of new facilities. By exploring spatiotemporal traffic patterns, more

insightful information may provide us an understanding of freeway traffic that can be used

for effective traffic management, traffic control, organization, and other engineering ap-

plications, which should increase freeway capacity, improve traffic safety, and result in

high-quality mobility. In particular, surveying the congested traffic patterns could give us

necessary information for efficient collective management strategies, including such well-

know methods as ramp metering and traffic assignment (Lan et al, 2008). (Varaiya, 2005)

argues that effective management on highway congestion through investigation of traffic

patterns can significantly reduce congestion.

Traffic patterns can be also be used as input for macroscopic traffic simulators to

assess the expected performance of future infrastructure modifications and take pro-active

measures in advance. Another use of the obtained patterns is reconstruction of traffic data

in the case of sensors malfunctioning or as a valuable reference in incident detection algo-

rithms (Weil et al, 1998). From prediction perspective, the clustering results can be used to
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obtain medium and long-term traffic patterns (i.e one day to one year in advance), as these

demand patterns are a synthesis of the recurrent behavior of travel demand on a specific

infrastructure based on historical data (Soriguera, 2012).

In the traffic classification domain, previous studies used non-shape based classifica-

tion to analyze traffic patterns such as the works/research of (Rakha and Van, 1995), (Wild,

1997) and (Chung, 2003). In (Rakha and Van, 1995), two groups were determined which

are {Tuesdays, Wednesdays, Thursdays} and {Mondays, Fridays, Saturdays, Sundays}.

Furthermore, (Wild, 1997) classified week days into six groups. The results of these stud-

ies vary and thus literature lacks consistency regarding classification of days into a clear set

or number of groups. (Weijermars et al, 2007) was the first to suggest the need for study the

shape of the traffic flow profiles. The study concluded that shape of the daily flow profiles

may differ between different type of days and motivates the need to such an analysis of

traffic patterns based on their inherent shape characteristics.

In Chung et al. (2001), agglomerative hierarchal clustering was performed on traffic

flow to develop a short-term prediction model, where clustering was used to develop a more

precise model. However, he concludes, that his model which uses a historical average can

capture the shape of the historical traffic pattern, but the model is highly sensitive to the

presence of outliers within the data, which are a result of significant weather events and

other external factors commonly found in real-world data. This emphasizes the importance

of shape as anomalies in the historical data can cause the models to deviate or become

ineffective which is quite common (Rakha and Van (1995)). Examples of such models

are the numerous time series based models, which under perform in predicting the time

horizon, refer to (Hogberg, 1976; Ahmed and Cook, 1979; Ahmed, 1983; Okutani and

Stephanedes, 1984; Stephanedes et al, 1990).

Traffic flow forecasting is an essential part of transportation planning, traffic control,

and intelligent transportation systems (Tan et al, 2009). Most of the research effort is de-

voted to the short-term traffic forecasting (5 - 30 minutes) due to its usefulness in real time

applications. However, medium and long-term (several hours to days and weeks) forecast-

ing is also significant in terms of its utility towards planning purposes. (Jiang et al, 2005)

highlighted that for long-term forecasting, it should be understood that traffic flow is highly
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complex and not amenable to accurate mathematical modeling. Therefore, nonparametric

methods and adaptive algorithms are required to learn and recognize patterns in an effective

manner.

The literature on traffic forecasting reveals that mainly three approaches are used for

predictive traffic analysis: neural networks (NNs); neighbor nonparametric regression and

autoregressive integrated moving average (ARIMA) time series models. The first two ap-

proaches are non parametric in nature while ARIMA is a parametric technique. However,

keeping the functional nature of data, a non parametric technique seems more appropriate

for traffic analysis. The literature further emphasizes that out of these tools neural networks

is a convenient and effective tool for developing relationships between streams of input and

output data, not only for pattern recognition to which they are usually associated, but also

for a wide range of modeling situations (Kirby et al, 1997). Kirby et al 1997 used a BPNN

to carry out a comparative study on NN and statistical models such as regression. Neural

Networks have performed better than contemporary statistical techniques like discrimi-

nant analysis, negative binomial regression, stepwise logistic regression and other classical

techniques used in incident detection methodological development (Ivan and Sethi, 1998),

(Khan and Ritchie, 1998), gap acceptance modeling (Pant and Balakrishnan, 1994), and

safety modeling (Hashemi et al, 1995) , (Chang, 2005), (Sommer et al., 2008).

In contrast to classical statistics where the focus is on a sample of data points or vec-

tors, functional data analysis focuses on a sample of functional observations (Ramsey and

Silverman, 2005), like curves and images. Functional data usually reflects the influence

of certain smooth functions that are assumed to underlie and to generate the observations.

Classical multivariate statistical methods may be applied to such data, but they cannot take

advantage of the additional information implied by the smoothness of the underlying func-

tions. Functional data analysis can often extract additional information contained in the

functions and their derivatives, not usually available through traditional methods (Daniel

et al., 2007). In-spite of its usefulness, however, this emerging field mostly remains unex-

plored in the traffic domain.

In traffic studies, daily traffic profiles or curves are treated as multivariate data as they

are given as a finite discrete time series. This traditional multivariate approach completely

ignores vital information about the smooth functional behavior of the generating process

that defines the data (Green and Silverman, 1994). The basic idea behind functional shape
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analysis is to express discrete time series observations in the form of a function that repre-

sents the entire measured function as a single observation or datum. Later, modeling and/or

prediction information is drawn from a collection of functional data by applying statistical

concepts from multivariate data analysis.

The technological developments in traffic data collection evolved over recent decades,

that has allowed more dense sampling of observations over time and space. Although

presently classical multivariate statistical techniques are applied to such traffic data, they

do not take advantage of additional information that could be gained by the smoothness

of underlying functions. In particular, functional data analysis can often extract additional

information contained in the function and its derivatives that is not normally available from

the application of traditional statistical methods. Because the approach essentially treats the

whole traffic profile (curve) as a single datum, there are correlations only between curves

rather than between repeated measurements. This represents a change in philosophy to-

wards the handling of traffic time series data and provides a motivation to consider shape

and functional approaches for traffic analysis.

This research seeks to fill the gaps prevailing in the literature by introducing a shape

based clustering technique, which does not require any pre-classification of existing pat-

terns in the data. The advantage of the proposed methodology eliminates bias of heuristic

preprocessing such as those found in (Wild, 1997) . In addition, the proposed methodol-

ogy reduces data dimensions, reduces the computational cost (due to smaller number of

observations required to describe a daily profile) and is also robust to fluctuations in flows

where shape is preserved. It is effective in capturing outliers into separate groups, which

provides a strong basis for precise prediction modeling and relevant research effort within

traffic contexts. Above all, traffic profiles are clustered based solely on their shapes and

therefore making trivial the requirement of analyzing different flow characteristics: total

flow, peak flow, peak period and off peak time separately.

Understanding the benefits of shape analysis in the traffic domain, the literature

search for an effective shape analysis methodology, led to Mathematical Morphology,

which is regarded as an efficient technique for shape analysis in image processing. The

technique was originally developed by Matheron and Serra (Serra, 1982) at the Ecole des

Mines in Paris. Mathematical morphology mostly deals with the mathematical theory of

describing shapes using set theory. It provides a number of useful tools for image anal-
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ysis, which is based on the assumption that an image consists of structures that may be

handled by set theory. Conventional image processing methods for analysis of shapes of

objects requires a binary image and a subsequent calculation of factors roundness, shape,

and area (Gonzlez and Woods, 1996). The central idea of these techniques is to examine

the geometric structures in an image overlaying them with small patterns called structur-

ing elements. Of all mathematical morphology analysis techniques, the most appropriate

tool for discriminating shapes is the Granulometric Size Distribution (GSD) (Ballarin and

Valentinuzzi, 2001) and (Vincent and Dougherty., 1994).

The GSD method can be naturally applied to the analysis of signals. In Gaston-

Romeo et al (2011), GSD is applied to signals in an effort to analyze daily solar radiation

time series curves. Similarly, in Guardiola and Mallor (2013), unintended electromagnetic

emissions from wireless communication devices are also analyzed using GSD. In both

previously mentioned works curves are identified by their subgraph and are considered to be

bi-dimensional images on which morphological operators are applied to gain information

regarding their shape.

In the background of above, the research is organized as follows. The section 2

“ON TRAFFIC FLOW PATTERN SHAPE CLASSIFICATION AND ANALYSIS”, demon-

strates use of Mathematical Morphology (MM) tools to identify functional shapes, which

is achieved through classification of daily traffic profiles. Specifically, the use of the Gran-

ulometric Size Distribution (GSD) is emphasized for exploring traffic patterns. Through

the employment of MM, the development of an analysis of shape is carried out in an effort

to generate interpretable classification of historical daily traffic patterns. The develop-

ment of unique granulometries for each day are contracted and are used to cluster days

into distinct groups. The section 3 “A HYBRID OF COMPUTATIONAL INTELLIGENCE

TECHNIQUES FOR SHAPE ANALYSIS OF TRAFFIC FLOW CURVES” highlights and

validates the use of shape analysis using Mathematical Morphology tools as a means to

develop meaningful clustering of historical data. A comparative classification analysis of

original data and GSD transformed data is carried out. The section 4 “A FUNCTIONAL

TIME SERIES APPROACH FOR TRAFFIC FORECASTING” adopts a functional time

series approach to forecast traffic flow for short and medium-term horizons. A technique

based on functional principal components is used to forecast different traffic scenarios. Al-

though the technique is capable of forecasting a complete day, the research focus remain on
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Figure 1.2. Research overview.

forecast one hour ahead. In addition, forecast scenarios for partially observed traffic profiles

through Penalized Least squares (PLS) technique is also demonstrated. Results obtained

are compared with a traditional benchmark, Auto Regressive Integrated Moving Average

(ARIMA) model. Functional methods outperform the conventional ARIMA model in both

short and medium-term forecast horizons. In addition, performance of functional methods

in forecasting beyond one hour is also found to be consistent. Figure 1.2 illustrates the

research overview.
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2. ON TRAFFIC FLOW PATTERN SHAPE CLASSIFICATION AND ANALYSIS

2.1. INTRODUCTION

The advancement in data acquisition has resulted in better insights into traffic dy-

namics. Traffic researchers have been using techniques from contemporary fields to extract

meaningful information from available data. One such technique known as clustering. The

primary objective of clustering is to identify relatively mutually exclusive, homogenous

groups within a sample of entities based on the similarities present between the individual

entities. The application of clustering techniques is therefore a natural one, when there is

an interest in determining the presence of, identifying, or recognizing patterns of interest

within a historical traffic dataset. Furthermore, clustering is often an exploratory step prior

to the development of any model. Specifically, data analysis / mining is done prior to the

development of any traffic related paradigm.

In the literature a variety of approaches to analyze traffic patterns for different traffic

dimensions: congestion recognition, traffic accident recognition and general traffic pattern

recognition have been presented. Specifically, in Zhu and Barth (2006), a study of vehicle

activity patterns to classify different congestion levels through wavelet analysis combined

with principal component analysis is presented. Similarly, Lozano (2009) present a study

of congestion levels at intersections and classifies congestion through the application of

K-means clustering. In addition, a new framework toward a real-time automated recogni-

tion of traffic accident based on Histogram of Flow Gradient (HFG) and statistical logistic

regression is presented in Sadek et al (2010).

Due to the insight gained through clustering and pattern analysis of historical traffic

data, numerous studies have been undertaken where the proper grouping of data is the pri-

mary goal. For example, Rakha and Van (1995) studied flow and speed variations between

days and ascertained on the basis of an Analysis of Variance (ANOVA) that traffic flows

on a freeway vary significantly within a week between two groups, in which {Tuesdays,

Wednesdays,Thursdays} define a group and {Mondays, Fridays, Saturdays, Sundays} de-

fine another distinct group. However, the days were predefined into core week and weekend

days prior to analysis. In Wild (1997), daily traffic is classified into six distinct groups, in

which days are discriminately placed into groups based on daily flow characteristics. In
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the clustering of traffic patterns there is a lack of consistency regarding the classification

of days into a clear set or number of groups. In an effort to clearly classify traffic patterns,

Chung (2003) classified daily travel time curves from the Tokyo Metropolitan Express-

way and concluded that AM and PM periods result in distinct groups. Specifically, Chung

(2003) states that grouping of the AM period consisted of weekdays, Saturdays and holi-

days (including Sundays). He continues, by stating that the PM period, however, should

be treated separately and implies that the grouping of PM period through regular clustering

methods yields weak grouping. The results of both of these studies are difficult to interpret

and summarize. This difficulty is due in part to the customized clustering techniques used,

which Soriguera (2012) suggests are not suitable for traffic patterns due to the stochastic

nature of travel time data. In Chung (2001), agglomerative hierarchal clustering of daily

traffic flow data was completed in an effort to develop an effective short-term prediction

model. The authors conclude that their model seeks to capture the distinctive shape of the

traffic flow profile through the use of a historical average, however, the authors state that the

model is highly sensitive to outliers in the data. Outliers can be caused by a malfunction-

ing sensor, weather or other external factors. Perhaps the importance of proper clustering

is best stated by Rakha and Van (1995), which states that anomalies in the historical data

can cause models to deviate or become ineffective. Examples of such models, numerous

time series based models, which under perform in predicting the time horizon, refer to

Nicholson and Swann (1974); Hogberg (1976); Ahmed and Cook (1979); Ahmed (1983);

Okutani and Stephanedes (1984); Stephanedes et al (1990). The model performance results

from the historical dataset that was used to parameterize the model. Hence, through proper

grouping/ clustering better models can be parametrized for specific situations of interest.

Research suggests that pre-definition is necessary and there appears to be a consensus that

daily traffic patterns can be defined into four basic groups namely the Monday through

Thursday, Fridays and Days prior to holidays, Saturdays except holidays and Sundays with

Holidays groups. Recently, Soriguera (2012) proposed a hierarchical multi-step clustering

technique for traffic pattern classification. The multi-step clustering procedure consists of

separating standard from non-standard days in its first step. The second step consists of sea-

sonal classification. The third step seeks to separate days, which were not grouped in the
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previous two steps. All these works suggest that shape is important, yet none of them focus

on the development of classification based on shape or include shape based methodologies

in their classification techniques.

A common convention of all previously mentioned research efforts is the lack of

classification of traffic patterns solely based on their shape characteristics, or more specif-

ically, exploit the information in the shape of the traffic pattern to the fullest, which to the

best knowledge of the author has not been fully carried out with a high degree of detail or

through the allocation of shaped based methodologies. To this end, the research presented

herein seeks to perform an analysis of classification of daily traffic profiles into distinct

groups based on their inherent shape. The shape characteristics of a daily profile is a direct

result of traffic behavior. An example of this is the bi-modal shape found on a common

weekday caused by the AM and PM peak periods, which are commonly known as morn-

ing and evening rush hours respectively. Other behaviors are sharp dips observed during a

peak as it is often related to the occurrence of an accident as the flow reduces to a crawl or

suggest that congestion has reached high enough levels to be considered a ”traffic jam.”

This study seeks to fill the gaps prevailing in the literature by introducing a shape

based clustering technique, which does not require any pre-classification of existing pat-

terns in the data. The advantage of the proposed methodology eliminates bias of heuris-

tic preprocessing such as those found in Wild (1997); Chrobok (2004) . In addition, the

methodology proposed reduces the computational cost (due to smaller number of obser-

vations required to describe a daily profile) and it is robust to fluctuations in flows where

shape is preserved. It is effective in capturing outliers into separate groups, which provides

a strong basis for precise prediction modeling and relevant research effort within traffic

contexts. Above all, traffic profiles are clustered based solely on their shapes and therefore

making trivial the requirement of analyzing different flow characteristics: total flow, peak

flow, peak period and off peak time separately.

In Weijermars and Van Berkum (2005); Weijermars et al (2007) clustering is em-

ployed to analyze traffic flow patterns. The study concluded that shape of the daily flow

profiles may differ between different types of days and motivates the need for such an

analysis of traffic pattern shape characteristics. Through proper classification of historical

traffic data the performance of such models can be improved as proper classification leads

to better parameterizations of models. In this study, we merely present a classification
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Figure 2.1. Two daily traffic flow profiles for Thursdays Jan. 1, 2004 (bold) and Jan. 22,
2004 (dashed) are given, which demonstrate unique shapes. Time is in 15 minute interval.

technique based on shape. To illustrate this point, consider Figure 2.1, which illustrates

two Thursdays in the same month, however, their shapes differ greatly. In this case Jan. 1,

2004, which is a common holiday, differs greatly to the other Thursday that inhibits regular

expected shape characteristics where two peaks are observed corresponding to morning and

evening rush hours. Hence, classification of these days according to traditional clustering

methods would classify these two days into different groups. To this end, this research

seeks to determine if shape can result in groups of similar daily behavior.

The contribution of the research presented herein is the use of Mathematical Mor-

phology (MM) tools to achieve proper classification of daily traffic profiles. Specifically,

in this study the use of the Granulometric Size Distribution (GSD) is emphasized. The

GSD is developed by employing commonly used MM tools for image processing. Refer

to Serra (1982) for a seminal book on the topic. Through the employment of such tools

the development of an analysis of shape is carried out in an effort to generate interpretable

classification of historical daily traffic profiles. An additional advantage of these tools is

that it considers the entire daily profile as a single datum. Hence, the development of

unique granulometries for each day are contracted and are used to cluster days into distinct

groups. The use of Partition Around Medoids (PAM) algorithm or otherwise referred to as

the K-Medoids algorithm is employed to carry out the classification of daily profiles.
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The remainder of this study is organized as follows. In Section Mathematical Mor-

phology, the MM tools used are detailed regarding their employment to the analysis of

signals rather than images. This is followed by the description of the methodology un-

dertaken to cluster historical daily profiles based on their shape characteristics in Section

Methodology. A brief description of the data used to validate this new proposed application

of MM tools is given in Section Data Details. Lastly, the results/discussion and conclusion

are given in Sections Results and Conclusions respectively.

2.2. MATHEMATICAL MORPHOLOGY

Mathematical Morphology is a theory that provides a number of useful tools for im-

age analysis, which is based on the assumption that images consists of structures that may

be handled by set theory. In addition, the tools and methods that MM provides can be

naturally applied to the analysis of signals. In Gaston-Romeo et al (2011), MM tools were

applied to signals in an effort to analyze daily solar radiation time series curves. Similarly,

in Guardiola and Mallor (2013) unintended electromagnetic emissions from wireless com-

munication devices are analyzed in the frequency domain. In both previously mentioned

works, curves are considered to be bi-dimensional images on which morphological opera-

tors are applied to gain information regarding the inherent shape of the two phenomenons.

2.2.1. Opening, Erosion, and Dilation Operators. In this study, three MM op-

erators are used to study the shape of the daily traffic flow profile. Specifically, Dilation,

Erosion and Opening operators. These operators are used to construct a daily traffic pro-

file’s Granulometric Size Distribution (GSD). Consider an entire daily time series traffic

flow profile represented by function f(t) which it takes only positive values (e.g. there can

be no negative traffic), f(t) ≥ 0. The MM operators extract the shape of the structure by

probing it by a known shape called a Structuring Element (SE). Theoretically, a subgraph

of the original function, f(t) is defined as SG(f(t)) = {(t, y) : 0 ≤ y ≤ f(t)}. For better

assimilation, a vector with small flow values is used.

1: Erosion of a function– f(t) by a SE B[−1, 1] is the function τB defined as [τBf(t)] =

minb∈B f(t+ b).

2: Dilation of a function– f(t) by a SE B[−1, 1] is the function µB defined as [µBf(t)] =

maxb∈B f(t+ b).
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3: Opening of a function– The combination of erosion and dilation operation is called

opening. The erosion firstly shrinks the image followed by dilation which expands

it thus combine together to explain opening operation. Mathematically expressed as

γBf(t)= µB̆{τBf(t)}= µB̆τBf(t). Where B̆ = {−b : b ∈ B} is the symmetric set

with respect to the origin of B. In the case of a symmetric structuring element, B,

then B̆ = B. In our case structuring element is a unit square.

Figures 2.2a, 2.2b, and 2.2c illustrate the MM operators of Dilation, Erosion and

Opening respectively applied to the Jan. 22, 2004 daily flow profile. The construc-

tion of the corresponding GSD function is the successive application of the Opening

operator with an SE increasing in size.

4: Granulometric Size Distribution– The GSD, Ff(t)(β) can be defined as

Ff(t)(β) = 1− A(β)

A(0)
. (1)

Where, A(β) =
∫
S
γB(f)(t)dt, which defines the area of the curve under the opening

of the function. Hence, A(β) is the area under the opening of the function when the

structuring element, SE, is of size β and A(0) is the area of the original traffic

profile. The GSD is constructed through the successive application of Equation 1

while increasing the size of the SE. Consider Figure 2.3a, where a set of SE =

{2, 15, 25, 30} is applied to the Jan. 22, 2004 daily traffic profile and is depicted

as layers. In Figure 2.3b the corresponding GSD for Jan. 22, 2004 is presented

by applying SE = {0, 1, 2, . . . 96}. Note that 96 is a result of taking the 1,440

minutes in a day in 15 minute intervals resulting in 96 total intervals. Thus, the SE

is increased from 0 to 96 in order to determine the shape of the traffic profile curve.

Through the use of the GSD, difference in shape is emphasized. Thus, a comparison

of the two Thursdays’ (e.g. January 1 and 22 of 2004) GSDs depicted in Figure 2.4.

This illustrates that the two profiles have distinct GSDs.
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Figure 2.2. The application of the MM operators on the Jan 22, 2004 daily flow profile
using an SE of size β = 5.
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(a) Successive application of the opening.
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(b) Corresponding GSD for Jan. 22, 2004.

Figure 2.3. Construction of the GSD of traffic flow profiles.
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Figure 2.4. Comparison of GSD of daily profiles illustrated in Figure 2.1.
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2.3. METHODOLOGY

Following analyses is carried out to highlight the use of mathematical morphology.

First, a robust study is carried out to demonstrate that the proposed use of the GSD function

can effectively deal with various data situations. Secondly, a classification study is carried

out and analyzed for the large data set spanning from 2004 through 2008.

2.3.1. Analysis of Robustness. In this study the GSD’s flexibility is highlighted.

Specifically, we use a single daily profile of January 22th, 2004 to highlight how the GSD

function behaves when a daily profile is scaled and shifted.

First, scaling the daily traffic profile is accomplished by multiplying the daily profile

with a set scalars. Specifically, the set Γi = {1
4
, 1
2
, 3
4
, 1, 2, 3, 4} for i = 1, 2, . . . 7, which

generates seven unique curves that have the same shape. Let f(t) denote the daily profile

then scaling it by a scalar Γi can be denoted as Γif(t). Each of the scaled profiles is used to

generate their respective GSD functions. Figure 2.6a illustrates these unique set of curves

with the profile 4 being the original profile as it is scaled by 1. An SE of size six is used to

generate the corresponding GSD curves for each these profiles. Hence, the set of SE(β),

where β = {6, 12, 18, . . . , 96} is used. The aim is to demonstrate that simple scaling of the

daily traffic behavior will result in the same GSD function. Hence, if traffic behaves the

same throughout a given day the corresponding GSD function will not be influenced as the

resultant analysis of the profile’s behavior (e.g. shape) has remain unchanged.

Secondly, the shift of the daily profile by a scalar is accomplished in a similar fash-

ion to scaling of the profile, however, the daily profile f(t) is shifted upward and can be

denoted as f(t) + Φ, where Φ is a simple increase of the profile’s base area. The scaled

set is accomplished by shifting the daily profile of Jan. 22th, 2004 by a set of scalars Φi.

Specifically, the set Φi = {0, 1, 2, 3, 4}, for i = 1, 2, 3, 4 is used. Thus, each profile will

be shifted by applying the following equation, f(t) + Φi ∗ 500, which for example when

Φi = 2 will result in a shift of 1000. This results in the shift of the daily traffic profile,

which is illustrated in Figure 2.7a where trace 1 is the original profile as a shift of 0 is

applied. The resulting set of shifted profiles are used to generate their respective GSD

function. Similarly, to the scaling study an SE of size six is used to generate the corre-

sponding GSD functions of the shifted profiles. Hence, the set β is again applied. The goal

of the this study is to demonstrate that the GSD is an analysis of the shape through area.

Hence, a shift of this type results in a baseline flow area underneath the entire daily flow
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profile curve. The GSD will increase as the shift is increased which allows for the detection

in growth of traffic volume. As there is a large area that is common to the entire profile

the shift should be more easily detectable when the SE size is large. Thus, the shift should

result in large increase in the corresponding GSD values for whose size, β, is largest.

Through both of these studies we highlight that the GSD is robust to change of traffic

behavior that results in unique shapes. The scaled study aims to demonstrate that the am-

plification of the shape results in the same GSD, while the shift corresponds to an analysis

of the growth in volume. The results and discussions of this study are highlighted in section

GSD Robustness.

2.3.2. Classification Study. This study aims to highlight the use of the morpholog-

ical tools and methods as means to classify traffic behavior based on shape characteristics.

First, a daily traffic flow profile is converted to their corresponding GSD curve. This is

done for all 1,827 days within the chosen data set. The data details are given in Section

4.4.1. Secondly, clustering is conducted on the GSD curves. Specifically, clustering is done

through the use of the Partition Around Medoids (PAM) or K-Medoids method. Specifics

regarding this clustering algorithm are summarized in Appendix 6. The clustering involves

the use of the Correlation Distance, which is defined as the distance,

Dc(u, v) = 1− (u− ū).(v − v̄)

(|u− ū|.|v − v̄|)
,

and gives the correlation coefficient distance between vectors u and v. Where ū and v̄

are the mean of the vectors respectively. Gap statistics is used as method of optimization

for clustering. The ”Gap” test compares dispersion of the clusters generated from the

data derived from a sample of null hypothesis sets. The null hypothesis sets are uniformly

randomly distributed data in the box defined by the principal components of the data. This

distance is chosen as we want to assure that the traffic profiles are clustered according to

their relationship with one another based on the GSD curve generated from their shape. In

this way similar patterns are grouped together, where patterns with low relationship to other

curves are clustered together. In this manner, curves that inhibit similar characteristics will

dictate a group. In addition, a low tolerance value is chosen to be 2. Typically, the larger

values of tolerance favors fewer clusters and it is common to use values within the range

of 1-5. The tolerance sets the sensitivity. Lastly, hierarchal clustering is performed on
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groups that are loose (e.g. exhibit large variety). In this step, loose groups are further

analyzed. For this step, a hierarchal agglomerate method is used in combination with the

previously mentioned application of the PAM with the ”gap” statistic. The reason behind

the application of two different clustering methods is to assure consistency as well as to get

more insight into looseness of cluster. Furthermore, the agglomerate method is preferred

over other clustering techniques is due to feature of dendrogram, which is a illustration of

connections of lines that represent the fusion of clusters, and lengths represent the degree of

dissimilarity between clusters. This allows to gain insight into within cluster organization

e.g which curves within the clusters are closer to each other. This analysis is performed

on groups of high looseness to determine type of shapes contained by the cluster. In the

traffic context, this could be curves that are misclassified in previous analysis or have some

sort of abnormal shape. Through the employment of this methodology a new clustering of

traffic curves is accomplished. The results of this methodology are explained in detail in

the proceeding section of this study. Specifically, refer to section Cluster Analysis for the

primary clustering of all 1,827 days. Section Analysis of Group 7 contain the results of the

exploratory hierarchical clustering of groups with loose clustering.

2.3.3. Shape Change Analysis . The goal of this study is to highlight GSDs ca-

pability to cluster sub shapes correctly. The GSD is directly associated to the shape of the

profile and not time. Hence, it is highly sensitive to changes in the shape of the daily profile

regardless of when those changes occur in time. In other words, a profile and its mirror im-

age with respect to time will generate the same GSD. In an effort to investigate the GSD’s

capability to analyze changes in the overall shape by analyzing sub shapes present in a

profile. Consider that each daily profile is segmented into two segments (e.g. am and pm),

where one segment is between 12 am (midnight) and 11:59 am and the other between 12

noon and 11:59 pm, creating two sub shapes. Next, two GSDs are constructed for each am

and pm segment respectively. These two GSD vectors are then combined and clustering

is performed. However, for a random set of the combined vectors the am period GSD is

switched with the pm period and added to the the data set. This study uses all Tuesdays for

the year 2004 from January 1, 2004 to December 31, 2004. This results in 52 original pro-

files where a random set of 6 were chosen to have their am and pm period GSD switched.

They are then clustered with the same days with un-switched patterns. Clustering is per-

formed with 52+6=58 profiles by invoking the FindClusters function in Mathematica c⃝9
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for the PAM algorithm with the optimization of groups through the ”gap” statistic and a cor-

relation distance. The same clustering as described in the preceding section Classification

Study. The results of this study is highlighted in section Switched Subshapes.

2.4. DATA DETAILS

Sensor

Location

Figure 2.5. Map of Minneapolis MN U.S.A Highway and Freeway system. Arrow indicates
position of sensors on I-94.

The study herein is based on traffic data collected from the I-94 within the Twin

Cities Metro area, Minnesota. Data is obtained at station S110 I-94 East Bound/T.H. 65

which has 3 loop detectors D497 94/TH65E1, D498 94/TH65E2 and D499 94/TH65E3.

I-94 has 3 lanes in each direction and the station provides composite detector data from

three detectors in the eastbound direction (Refer to Figure 2.5). The analysis period is from

1st January 2004 to 31st of December 2008. The detectors measured and logged the flow

for each of the three lanes at 30 seconds intervals. For this study, data is aggregated over

15 minute intervals (96 points per day). Weijermars and Van Berkum (2005) found that 15

minutes data produce better results as the fine grain variations removed. At the selected

location, traffic data of 5 years translate into 1,827 days and 175,392 observations. Simply,

there are 261 of each of the week within the data set for all 5 years.
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2.5. RESULTS

In this section the results pertaining to the proposed analysis detailed in Section

Methodology are presented. The implementation of the analysis is performed within the

Mathematica c⃝9 software package using the built in functions of Mathematical Mor-

phology. Specifically, the GSD is constructed using the Opening function. Clustering is

achieved through the implementation of the FindClusters function. Both of these functions

are well tested and documented.

2.5.1. GSD Robustness. The results in this section highlight the robustness of GSD

function with regards to shape scaling and shifting. First, the scaling of a traffic profile

occurs in the traffic context when traffic behavior remains the same but the magnitude of

the flow is increased or decreased. The Jan. 22th, 2004 day is a Thursday and contains

characteristics common to a weekday traffic profile. These characteristics are two peaks,

which correspond to the morning and evening rush hour behavior. The goal of this study

is to demonstrate that the GSD, which is derived through the morphological operators,

analyzes the shape not the magnitude of the shape. Figure 2.6a illustrates the scaling of the

Jan. 22th, 2004 profile. The GSDs for each of the scaled versions of the daily traffic profile

are illustrated in Figure 2.6b. It is easy to notice that the corresponding GSDs for each of

the scaled profiles results in an identical GSD. For example, when the SE size is 36, the

GSD value is GSD(36) = 0.373648 is identical to all 7 modified profiles. The importance

of this simple analysis is that the proposed method seeks to classify traffic based on their

shape pattern that in turn describes specific traffic behavior. The GSD is highly robust

to scaling effects and therefore its use as a means to classify days based on similarity of

pattern is natural and appropriate.

Next, we analyze the shift of the traffic profile, which are illustrated in Figure 2.7a.

The Jan. 22th, 2004 profile is shifted upward with an ever increasing baseline traffic.

This baseline is the area underneath the entire function (see Figure2.8). This results in a

GSD that will have larger values for larger SE sizes. This is due to a large percentage of

the shape of the profile is now dictated by this baseline or shift of the traffic profile. In

Figure 2.7b, this is clearly illustrated as the shift is increased, the GSD’s value at larger

SE sizes creates a more predominant difference between each corresponding GSD. This

highlights GSD sensitivity , as days with similar baseline traffic will be clustered together

in combination with profiles that have similar shapes. This will occurs due to the distance
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Figure 2.7. Robustness of the GSD function shifts.

measure increasing between shapes of similar patterns but larger shifted flows. Thus, the

GSD method results in the classification based on behavior, which is dictated by the shape,

and volume as the GSD is sensitive to both. That is to say that daily profiles that have

similar shape and volume will be grouped together as the baseline area underneath the

traffic profile will increase the dissimilarity among profiles, but daily profiles that have

similar shapes except for an upward or downward shift due to the addition of a constant

value to daily traffic flow will be less likely to be grouped together.

2.5.2. Cluster Analysis. In this section the results pertaining to the cluster analysis

detailed in section Classification Sudy is presented. The daily traffic flow profiles broadly

exhibit a variety of shapes. The dominant shapes are the well known unimodal and bimodal
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Figure 2.8. Shifted profile with opening performed with an SE size of 42.

shapes. The unimodal shape corresponds to the single peak relating to the maximum flow

intensity and is typically referred as non-working day behavior. The bimodal flow shape

corresponds to morning and evening peaks, which is commonly referred to as working day

behavior. However, we find that while most of the days fit into these two dominant shapes,

some cluster groups inhibit a variety of different shapes.

In Figure 2.9, the medians of each group’s GSD (Figure 2.9a) and original traffic

flow profile (Figure 2.9b) illustrate that the clusters have small but detectable differences

in shape. Specifically, it easy to observe that the medians of groups two, four, five, and

six have similar shapes, however, the four groups appears to have small variation in the

width and magnitude of the two peaks. Conversely, groups one and three seem to have the

unimodal shape with major differences in the location of the peak, as well as differences in

its magnitude and duration. Lastly, group seven illustrates that this group contains highly

variable shapes that differ from the commonly accepted norm. This can be seen as the

group’s median both in the GSD and original traffic flow profile contains many peaks and

valleys.

The composition of the seven groups are provided in Table 2.1 as the percentage of

type of day. Three types commonly used are defined, which are business days, holidays

and weekend days. A business day is defined to be a regular working week day excluding

holidays. Similarly, weekend days are regular weekend excluding holidays. It can be seen

that that groups two, four, five and six are comprised primarily of business days. Groups
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Figure 2.9. Corresponding median GSD (2.9a) and corresponding traffic flow profile me-
dians (2.9b) for each of the seven groups.

Table 2.1. Group composition

Group Business Days Holidays Weekends Total Days
1 5.5% 8.12% 86.4% 308
2 99.6% 0.4% 0.0% 251
3 2.0% 2.0% 95.9% 245
4 97.1% 2.2% 0.7% 547
5 98.2% 0.23% 1.6% 385
6 89.3% 6.7% 4% 75
7 50% 0.0% 50% 16

one and three are primarily comprised of Weekend days. Lastly, group seven contains

equally business days and weekends. This is interesting as there must be a shape that

drives the composition of that group.

In an effort to visualize the inherent differences as well as the tightness of the groups

the 95% Confidence Interval (CI) is plotted around the mean curve of each group. It is

important to note that since clustering is used to create these groups, the standard deviation

here refer to the looseness of a cluster at a given time rather than the variance of a pop-

ulation. The variation of the population should be computed by all clusters. By the very

nature they were created, their standard deviations are going to be small and the confidence

intervals will not overlap. Specifically, the CI is calculated as the ¯xi(t) ± 1.96σi(t)√
ni

, where
¯xi(t) is the mean of group i at time t, σi(t) is the standard deviation at that time and ni
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Figure 2.10. Group 95% confidence intervals

is the number of curves in group i. These mean curves and their corresponding CIs are

illustrated in Figure 3.4. It can be seen that the 95% CIs of group one, two, three, four and

five are very tight. Hence, this validates that the grouping is effective and tight as simi-

lar shapes and behavior have been clustered together. For example, Table 2.1 shows that

99.6% of group two is comprised of regular business days. These results illustrate that the

combination of groups two, four, five and six is possible as they inhibit similar shapes and

flow volume characteristics. However, Figures 2.10f and 2.10g display that these groups

have looser grouping than the other groups. Thus, by invoking hierarchal clustering within

these two groups more insight into the composition of these two groups is possible. This

analysis is carried out in the preceding sections of this study (refer to section Investigating

Missing data and Special days).
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The regular patterns mainly working days (bimodal) and non working days (uni-

modal) are well documented in literature. However, the shape analysis has resulted in the

creation of groups that inhibit small differences in the peak characteristics and late evening

and early morning period behavior. The focus of the remaining study will be on the groups

having non regular shapes.

2.5.3. Investigating Missing Data and Special Days. Groups six and seven contain

different shapes from the routine traffic patterns observed in other groups. In addition, these

group’s standard deviations shows that the grouping is looser than the other groups. This

motivates further analysis into these groups. Possible reasons for the shapes observed in

these two groups are but not limited to: incidents, missing data from malfunctioning of

detectors, weather conditions, congested traffic conditions due to bottle necks and various

social events could result in unique shapes.

Each of these types have different characteristics and impacts. For example, inci-

dents produce different conditions depending on the location of the incident; upstream or

downstream Karim and Adeli ((2002)). Different patterns can be formed on the upstream

or the down stream side of capacity-reducing incidents. This can be observed as a valley in

the traffic flow profile during peak periods as traffic speed and flow decrease due to partial

lanes closure, which create bottleneck conditions. On the other hand, flow pattern changes

are more pronounced in the case of upstream sensor location to an incident. The malfunc-

tioning of the loop detector is a common issue (e.g giving zero values) and have impact

on data mining techniques. Extreme weather conditions like snowfall and low visibility

reduces speed, which can be observed as decrease in magnitude in flow profiles. As the

freeway in question is an urban freeway, a social event in the near vicinity is likely to effect

the flow patterns as well.

In order to gain an insight into the identification of such events through their corre-

sponding daily traffic profile shape. Hierarchical clustering was conducted on group six and

seven GSD’s to gain insight into the composition of these loose groups. Sub clustering is

performed to further decompose possible data or traffic behaviors. Specifically, clustering

within group six and seven was carried out using two techniques, which were Agglomerate

and the PAM, using the same correlation distance. The only difference is the Agglomerate
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technique requires the identification of linkage, which is defined as Unweighted Pair Group

Method with Arithmetic Mean (UPGMA), UPGMA = 1
|F ||E|

∑
f∈F

∑
e∈E d(f, e), where

d is distance and UPGMA is the average linkage between two set of observations F and E.

2.5.4. Analysis of Group 6. Clustering is performed on the original Group 6

through both the PAM and Agglomerative methods. The results are interesting as both

methods resulted in two subgroups. However, the composition of both groups differ. Table

2.2 contains information about the composition of the subgroups. First, it is interesting that

through the agglomerative clustering one dominant group is found containing the majority

of the observations whilst the other only contains 8 observations of the total 75 (refer to

Figure 2.11). The subgroup containing 8 has a very interesting pattern as all the profile

have a major fluctuations where the flow decreased to a relative low level for an extended

period of time. This behavior can be related to incidents or construction/maintenance ac-

tivities where the traffic was reduced to a bottleneck and flow resumed but at low levels.

The other subgroup contains a variety of observations, however, upon close inspection of

this group it is determined that this group consists of profiles that have major fluctuations

through the day. Specifically, this group contains large fluctuations in their profiles with

immediate recovery (e.g. the profiles contain dips in their profiles during peak time pe-

riods). In addition, apart from a single observation no zero entries are observed in this

subgroup. It suggests that any major change located in tail region of the profile may not

have a significant impact on classification. The methodology proved effective in clearly

differentiating between abnormal days from incident days within the group. The PAM

method similarly clustered the groups, however, more evenly between its two subgroups

(refer to Figure 2.12). The PAM method mixed both long-term fluctuations with low flow

level days. It is more difficult to present a similar argument for the PAM method results.

However, some common characteristics is that one subgroup again is primarily dominated

with days which contain fluctuations, while the other subgroup contain low peaks, low flow

levels, and small fluctuations that have quick recovery spanning 15-30 minutes.

Different types of non recurrent patterns can be seen in Figure 2.12b. Three patterns:

abnormally high sustained evening peak and high late night peak representing some social

activities and abnormal sustained low flow representing extreme weather conditions. The

change in flow patterns due to incidents are identified with respect to incident location in

Figure 2.12b.
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Table 2.2. Subgroup composition within Group 6.

Method PAM Agglomerative
Group 1 Group 2 Group 1 Group 2

Number of Days 22 53 67 8
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(a) Traffic profiles of subgroup 1 with 67 enti-
ties.
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(b) Traffic profiles of subgroup with 8 entities.

Figure 2.11. Two subgroups through the agglomerative clustering

2.5.5. Analysis of Group 7. Group seven inhibits a great deal of information.

The results of further analysis into this group yields motivation for shape based analysis of

traffic profiles. First, similarly to the study performed on Group six both the Agglomerative

and PAM methods are performed on Group seven. The PAM results in six subgroups where

the Agglomerative method results in four subgroups. Due to the large number of subgroups

for the sake of clarity the subgroups will be referred to as 7i, which is the subgroup i for

i = 1, 2, . . . 6 of the original group seven. The six subgroups contain 7i = {2, 3, 6, 1, 2, 2},

which is the number of traffic profiles within each subgroup. Thus, 71 contains only two

observations. The interesting result is that the last three groups (e.g. 74, 75 and 76) are

identical under both methods. These three subgroups contain the exact same observations

and are illustrated in Figures 2.13d, 2.13e, and 2.13f. Similarly, the first three subgroups of
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(b) Traffic profiles of subgroup with 8 entities.

Figure 2.12. Two subgroups through the PAM clustering
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(f) Traffic profiles in 76

Figure 2.13. PAM subgroups of Group Seven, 7i, for i = 1, 2, . . . 6.

PAM (e.g. 71, 72 and 74) correspond to the first group of the agglomerative method. Hence,

the union of these three subgroups is the corresponding observations found in subgroup 1

of the agglomerative method.

In terms of traffic this decomposition is the most interesting found. It clearly demon-

strates the GSD’s capability to analyze shapes. Specifically, 71 contains two observations

where the general shape is conserved, yet, they both have an incident type characteristic re-

lated to congestion. Conversely, 72, 73 and 75 appear to have characteristics that have been
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noted in literature as behavior relating or caused due to a road closure, maintenance activity

or malfunctioning detectors. Each of these three subgroups contain profiles where there is

a significant span where the detector has collected no data. Furthermore, each group differs

in the amount of time. The interesting aspect is that there is traffic prior and after the 0s.

In 74 there is only one observation and it must be caused due to a detector malfunction as

after a certain time there is no flow for the remainder of the day. Similarly, 76 the detector

seems to be turning on and off throughout the day only collecting for small segments of

time.

The ability of the proposed methodology is in part the capability to differentiate be-

tween shapes. Specifically, the capability of the GSD detecting the abnormal, missing

and/or non-realistic loop detector data. This analysis illustrates the GSD’s ability to dif-

ferentiate between daily traffic profiles of days having downed or malfunctioning sensor

from days with normal flow values. However, an interesting aspect is that all anomalies

clustered according to their GSDs consist of traffic profiles with zero values during high

activity periods. Furthermore, zeros occurring during low activity periods are ignored for

this group. This shows that the GSDs are sensitive to fluctuations in the traffic profiles.

2.5.6. Switched Subshapes. The results pertaining to the proposed methodology

as a means to classify sub-shapes is promising. Specifically, in this section the results of

the proposed study that is detailed and explained in Section Methodoly are given. Hence,

the Tuesdays of 2004 (52 profiles) are separated into two periods am and pm and are il-

lustrated in Figures 2.14a and 2.14b. Figures 2.14c and 2.14d illustrate the joined GSD

functions for each set of am and pm periods and an example set of switched GSDs respec-

tively. The ultimate conclusion is that the switched profiles were always clustered into one

unique group. In this analysis a variety of clustering methods were used. Specifically, the

PAM, Agglomerative and K-Means were used. In addition, each method was tested with a

set of distance measures. These measures were Euclidean, Squared Euclidean, Manhattan

and Correlation distances. The results were consistent across all the methods, in which all

methods under all distances separated the switched GSDs into a unique group, that only

contained the switched joined GSD vectors. The methods did differ slightly in their group-

ing of the original 52 profiles. Simply, the methods were 100% successful in classifying

the switched profiles into their own unique group. The interesting aspect of this is that al-

though the switched traces were combined and then clustered highlights that unique GSDs
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Figure 2.14. The sub shape analysis data

can be created for periods of interest and grouped with days that have similar shapes or

behavior. This capability is important in traffic modeling as models could be tailored for

specific phenomena or behavior of interest based on period of time or characteristics.

2.6. CONCLUSION

The proposed methodology yields some significant results regarding the classification

and clustering of daily traffic flow profiles. The methodology through the employment of

Mathematical Morphological operators allows for significant clusters that are stable, tight

and statistically significant. Moreover, the proposed methodology is effective in cluster-

ing groups with abnormalities into distinct groups. This proves to be extremely useful as

data with missing or malfunctioning sensors can be removed prior to the use of the data to

parameterize a prediction temporal model as performance of earlier models are found sus-

ceptible to outliers. The study amply demonstrate robustness of methodology as inflation
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in flow profiles does not change the clustering in a significant manner. Its robustness to

scaling and shifting also allows for data to be classified not only on shape but also in terms

of volume.

In the backdrop of the fact that clustering does not provide perfect answers. The

clustering performed herein based on shape shows that besides working days, Sundays and

holidays, Saturdays, special days and anomalies have unique shape characteristics and can

be grouped distinctively. The results obtained after single step clustering are encouraging

in comparison to the past studies where any meaningful interpretation is possible after mul-

tistage clustering. The methodology is unique as special emphasis is kept on the clustering

design, an aspect missing in earlier studies. The demonstrated capability of GSD function

in detecting anomalies alongside classifying separately the days with influence of weather

and social events is promising as well as worth exploring. The ability of the SE to decrease

computational effort by reducing a single day from 1440 unique observations to 96 without

sacrificing the interpretation are clear strengths of the methodology, which can have diver-

gent applications in the traffic domain. The proposed methodology simplifies the pattern

analysis as shape covers all features comprehensively. For example, total flows, peak flows,

time of the peak flows and off-peak flows are not required to be analyzed separately.

Investigating daily traffic patterns with regard to unique weather shape variations and

methodology’s potential of detecting missing /erroneous data are likely future extensions.

It will lay down a sound foundation for work on a functional prediction model based on

groups found through analysis of shape characteristics. In addition, another extension of

this work would be to compare prediction models that are parameterized based on shape

versus models that use regular clustering. In broader sense, the methodology exploits the

interdisciplinary nature of mathematical morphology which is important as clustering of

large data sets is an ongoing area of research. For traffic researchers, proposed methodology

provides multiple advantages : reduction in computational effort; robustness; detecting

sensor malfunctioning and efficient clustering etc all of which are essentially required to

solve complex traffic challenges.
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3. A HYBRID OF COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR

SHAPE ANALYSIS OF TRAFFIC FLOW CURVES

3.1. INTRODUCTION

The ability to accurately analyze traffic flows in an operational setting has been identi-

fied as a critical need for Intelligent Transportation Systems (ITS). Previous attempts to ac-

curately analyze traffic flows e.g volume forecasting models etc have been restricted mainly

to non-functional approaches and methodologies. Daily traffic profiles display functional

characteristics (unimodal and bi-modal curves) and can be more appropriate for functional

analysis rather than traditional non-functional approaches. One of the major advantages of

functional analysis is that each daily traffic profile is considered as a single datum, which

makes it possible to predict on a much longer term or larger horizon with reasonable ac-

curacy. In the traffic classification domain, previous studies used non-functional classifi-

cation to analyze traffic patterns (Rakha and Van, 1995), (Wild, 1997) and (Chung, 2003).

In (Rakha and Van, 1995), two groups were determined which are {Tuesdays, Wednes-

days, Thursdays} and {Mondays, Fridays, Saturdays, Sundays}. Furthermore, Wild 1997

classified week days into six groups. The results vary and thus literature lacks consistency

regarding classification of days into a clear set or number of groups. Weijermars et al 2007

was the first to suggest the need for studying the shape of the traffic flow profiles. The

study concluded that shape of the daily flow profiles may differ between different type of

days and motivates the need for such an analysis of traffic patterns shape characteristics.

To illustrate this point, consider Figure 3.1, which illustrates two successive Mondays of

the same month; however, their shapes differ greatly. In this case Sep. 1, 2004, which

is a common holiday (Labor day) in the United States, differs greatly to the other Mon-

day that exhibits the expected bimodal shape characteristics where two peaks are observed

corresponding to morning and evening rush hours. To this end, shape based methodology

showed that shapes differ within similar days and also has direct interpretation.

The historical literature shows that mainly three approaches are used for traffic anal-

ysis: neural networks(NNs); neighbor nonparametric regression and autoregressive inte-

grated moving average (ARIMA) time series models. However, out of these tools neural

network is found to be a convenient tool for developing relationships between streams of
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Figure 3.1. Two daily traffic flow profiles for Mondays Sep. 1, 2008 (red) and Sep. 8
(Labor Day), 2008 (blue) are given, which demonstrate unique shapes. Time is in 15
minute interval.

input and output data, not only for pattern recognition to which they are usually associated,

but also for a wide range of modeling situations (Kirby et al, 1997). Kirby et al 1997 used

a BPNN to carry out a comparative study on NN and statistical models. Neural Networks

have performed better than contemporary statistical techniques like discriminant analysis,

negative binomial regression, stepwise logistic regression and other classical techniques

used in incident detection methodological development (Ivan and Sethi, 1998), (Khan and

Ritchie, 1998), gap acceptance modeling (Pant and Balakrishnan, 1994) and safety model-

ing (Hashemi et al, 1995) , (Chang, 2005), (Sommer et al., 2008). (Hashemi et al, 1995).

Comparing NN with discriminant analysis, highlighted that modeling with NNs places no

requirements for a specifying a functional relationship and/or indicates their ability to deal

with missing data.

As the functional relationship within a neural network is non-linear, it can model

undefined, intricate nonlinear surfaces comprehensively, in comparison to many traditional

linear statistical models. NNs can effectively analyze the patterns from historical data.

Other statistical and mathematical models although proficient in calculation, but are often

not effective in predictive analysis as they can not adapt to the irregular varying patterns that

can not be written in form of a function. In the field of pattern recognition, NNs classify the

patterns from training data and recognizes if the testing data holds the pattern of interest

(Patra et al., 2010). In addition, NNs are more responsive to dynamic conditions and do
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not experience the lag and over-prediction characteristics of time-series models. Owing to

the nature of the task at hand, the NN’s are considered an appropriate tool for the analysis

described herein.

This study conducts a comparative classification analysis of original historical traf-

fic flow data with and without clustering along with GSD transformed data using a back

propagation neural network (BPNN) as a baseline. Clustering was done using the Partition

Around Medoids (PAM) method with a Gap Statistic as the significance test to optimize

the stability of the clusters. PAM is a well established clustering technique which operates

on the dissimilarity matrix of input data and minimizes the sum of dissimilarities instead

of a sum of squared Euclidean distances. The “Gap” test (Gap statistics) compares the

dispersion of clusters generated from the data to that derived from a sample of null hypoth-

esis tests. The null hypothesis test sets are uniformly randomly distributed data in the box

defined by the principal components of the input data. GSD transformed data implies the

clustering of unique Granulometric Size Distributions generated from each original traffic

profile. BPNN is used for training the data’s separately and their performance is evaluated

by comparing actual and predicted testing targets.

3.2. MATHEMATICAL MORPHOLOGY

Mathematical Morphology is a theory that provides a number of useful tools for im-

age analysis, which is based on the assumption that images consists of structures that can

be handled by set theory. In addition, the tools and methods that MM provides can be

naturally applied to the analysis of signals. In Gaston-Romeo et al (2011), MM tools were

applied to signals in an effort to analyze daily solar radiation time series curves. Similarly,

in Guardiola and Mallor (2013) unintended electromagnetic emissions from wireless com-

munication devices are analyzed in the frequency domain. In both previously mentioned

works, curves are considered to be bi-dimensional images on which morphological opera-

tors are applied to gain information regarding the inherent shape of the two phenomenons.

Thus, a time-series curve is considered as a bi-dimensional image. In this study three MM

operators are used to study the shape of the daily traffic flow profile. Specifically, Dila-

tion, Erosion and Opening operators. These operators are used to construct a daily traffic

profile’s Granulometric Size Distribution (GSD). The rest of details including mathemat-

ical explanation as well as process of obtaining GSDs from original data are detailed in

(Guardiola, Wasim and Samaranayke, 2014).
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3.3. STUDY DESIGN

3.3.1. Data Details. The study is based on traffic data collected from the I-94

within the Twin Cities Metro area, Minnesota. Data is obtained at station S110 I-94 East

Bound/T.H. 65 which has 3 loop detectors D497 94/TH65E1, D498 94/TH65E2 and D499

94/TH65E3. I-94 has 3 lanes in each direction and the station provides composite detec-

tor data from three detectors in the eastbound direction. The analysis period is from 1st

January 2004 to the 31st of December 2013. However, due to non availability of data due

to insensitive detectors, the entire 2009 year data is excluded from the study. Partial data

is available for years 2011, 2012 and 2013. The detectors measured and logged the flow

for each of the three lanes at 30 seconds intervals. For this study, data is aggregated over

15 minute intervals (96 points per day). Weijermars and Van Berkum 2005 found that 15

minutes data produce better results as the fine grain variations are removed. Unlike past

traffic classification studies Rakha and Van (1995), Weijermars and Van Berkum (2005),

and Chung (2003) where data consist of 75 days, 118 days and 2 years respectively, this

study utilized traffic data of approximately 9 years translating into 2,992 days and 287,232

unique traffic flow value observations at the selected location.

3.3.2. Design of Experiment. The study is designed to ascertain the significance

of shape in traffic analysis. The concept is simple, that is, if days are better defined by

shape and the shape vary irrespective of the week days than shape based classification and

its onward predictive analysis should be better than methods where shape characteristics

are not considered. To this end, the initial assumption is made that every day of the week

has unique characteristics e.g every Monday of the year is same irrespective of the month

and same is true for rest of the weekdays. With this assumption in mind, a simple target

of {Mon=1, Tues=2, Wed=3, Thu=4, Fri=5, Sat=6, Sun=7} is created for the entire 2,992

traffic profiles, refer hereafter as the subjective target. The next step is to cluster the orig-

inal 2,992 traffic flow profiles using PAM with Gap Statistic as the significance test. The

resultant 7 clusters become the target representing clustered data and will be referred to as

the original target. Lastly, the entire daily traffic flow profiles are converted to their corre-

sponding GSD curves. Clustering is conducted on the GSD curves. The resultant 7 clusters

representing unique shapes become the target representing GSD clustered data and here-

after will be referred to as the GSD target. The original 2,992 traffic profiles has three set of

targets: subjective target based on initial assumption of every single week day has similar
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characteristics , original target based on simple clustering results and GSD target obtained

by generating the corresponding GSDs of 2,992 traffic profiles followed by clustering. Fig-

ure 3.2 explains a simple example with 2004 data used for the supervised BPNN learning

(training). The 366 original traffic profiles are selected as input and the subjective target

{1,2,3, . . . ,7} for 2004 is selected as output. Similarly 2005 data is employed for testing.

The trained network is tested for 2005 data and predicted 2005 subjective target values

are compared with actual 2005 subjective testing target. The performance is evaluated by

percentage of correct classifying target values. Same process is employed for original and

GSD cases by training the data’s against respective original and GSD targets followed by

their subsequent testing. The performance is evaluated similarly by percentage of correct

values of predicted target (output) with actual target.

To gain a better insight into the classifying ability of the three cases, a sliding year

window methodology is adopted. It implies that the window initially uses one year for

training and next year as testing. Subsequently two years are used for training and pro-

ceeding year as testing. The process continues until all eight years data is used as training

and last year’s data (e.g. 2013) is taken as testing. Figure 3.3 depicts the moving year pro-

cess. The brackets indicate bracketing the years from 1-8, the right side decreasing blocks

shows the matching predictions (i.e 1 indicates matching prediction of a year basing on 1

year training data and so on).

Training Data 

(2004)

Target

(2004)

Testing Data

(2005)

Target

(2005)

Predicted Target values 

of Testing Data (2005)

BPNN (Training the data 

over target) 

BPNN (Trained network is 

tested over testing data) 

Training 

Testing 

Output

Figure 3.2. Diagrammatic layout of BPNN process.
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Figure 3.3. Schematic layout of moving year window process.

3.3.3. Clustering Results - Five Basic Shapes . The entire daily traffic flow profiles

for 2,992 days are converted to their corresponding GSD curves. Clustering is conducted

on the GSD curves using the same method, algorithms and measures. Recall that it is

the PAM Algorithm using the gap test statistic method, with a dissimilarity measure of

silhouette width to determine the most stable clusters. Out of seven groups obtained, Shape

1 represents Sundays and holidays with typical unimodal shape with peak traffic around

2pm. Shape 3 represents Saturdays, second type of unimodal shape with less significant

peak and sustain high traffic around noon to 7 pm. Shapes 4 and 5 represent early and

mid week working days behaviors with bimodal shapes. A slight difference exist between

the morning and evening peaks of these two shapes. The Shape 2 reflects typical Friday

behavior. Although, bimodal in shape yet differs from group 4 and 5 immediately after

the morning peak. Figures 3.4a, 3.4b, 3.4c, 3.4d,3.4e represents 95 % confidence interval

plotted on five clustered groups. The red thick line shows the mean and therefore define the

five distinct shapes obtained through shape analysis of entire dataset of daily traffic flow

profiles. The last two groups/shapes representing abnormal behavior (insensitive detector

or incidents etc) are not shown as there is no dominant shape.

3.3.4. Back Propagation Neural Network Methodology. Back propagation train-

ing algorithm when applied to a feed forward multi-layer neural network is known as Back

prorogation neural network. Among back propagation algorithms, Lavenberg Marquardt

(LM) is one of the second order methods which overcomes the slow convergence problem

and is widely accepted as most efficient in the sense of realization accuracy (Patra et al.,

2010). The learning rate is automatically adjusted at each iteration which is termed as the
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Figure 3.4. Five distinct shapes representing entire 2992 traffic profiles.

adaptive learning rate. During training, the algorithm takes only 60 percent of the input

data for training while 20 percent is used for validation and testing respectively. For every

attempt of training, the algorithm selects the data randomly from the whole set and not a

fixed set of data. Hence, each time the NN is trained results will differ depending on which

60 percent of the input data is selected for training. As the traffic data is non-linear in na-

ture, sigmoid transfer function is considered more appropriate. Mathematical and further

details are not covered as the algorithm is well known among practitioners (refer to (Goh,

1995)).

3.4. RESULTS AND DISCUSSION

3.4.1. Network Architecture. Back propagation neural network is used for com-

paring predictive classification ability of three approaches. A number of studies analyzing

traffic data have used a single hidden layer as it produces satisfactory results. One should

refer (Kirby et al, 1997) and (Wei et al, 2007) for examples of applications. Heaton 2008

concluded that problems that require two hidden layers are rarely encountered, but an NN

with two hidden layers can represent functions with a multitude of characteristics. How-

ever, there is currently no substantial reason to use NN with more than two hidden layers.

In the traffic domain, two hidden layers have been used to achieve better results (Ysadi et

al., 1999). The literature does not reveal the best approach in determining the number of
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Table 3.1. Details of selected NN architecture with single and two hidden layers.

Years 2005 2006 2007 2008 2010 2011 2012 2013 Mean
Single Layer

Hiddden layer 1 1 1 1 1 1 1 1 1
Hidden neurons 12 12 12 12 12 12 12 12 12

Iterations 20 20 20 20 20 20 20 20 20
Correct class % 77.4 75.9 67.5 67.9 68.4 80.0 66.5 63.3 70.375

Two Layer
Hiddden layer 2 2 2 2 2 2 2 2 2

Hidden neurons 20-5 20-5 20-5 20-5 20-5 20-5 20-5 20-5 20-5
Iterations 20 20 20 20 20 20 20 20 20

Correct class % 84.2 80.9 77.5 76.4 74.9 81.8 73.7 70.7 76.875

neurons within the hidden layers. However, the number of neurons should be determined

in such a way that it results in neither under-fitting or over fitting. A typical value for the

number of neurons is 30, which is well supported in the literature as a general rule of thumb

(Kirby et al, 1997)and (Wei et al, 2007). Therefore, a range of 5-30 neurons for single as

well as two layer architectures is used to search for the optimal number of neurons. The

maximum of correct classifying percentage is taken as the criteria to determine the most

appropriate network.

A MATLAB code employing the newff function is executed to select the optimal

number of neurons using same training data-set. For the single layer architecture, the best

performance was found to be one with 12 neurons in the hidden layer with an average

correct classifying percentage of 70.375%. In order to get the best two layer architecture,

all possible combinations of neurons in two hidden layers ranging from 5 − 30 neurons

are tested. The best performance is found with the combination of 20 and 5 neurons in

two layers. The mean correct classification percentage improved significantly to 76.875%.

Therefore, the selected Multilayer Perceptron (MLP) architecture is two hidden layers with

20 and 5 neurons respectively. Table 3.1 demonstrates the relative performance of the two

architectures (e.g. single and double hidden layers MLPs architecture).

3.4.2. Comparing Subjective and GSD Output. Firstly, the question of whether

every day of the week has a unique shape or days differ in shape owing to the functional

and behavioral characteristics is addressed. If shape of every day of the week is unique and

remain as such, then subjective target should have better classification performance. If the

assumption made above is not correct and shape does change, then the GSD output which

is solely based on shape of the traffic profiles should perform much better than the original

output.
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Table 3.2. Comparison of subjective and GSD based on mean correct classifying percent-
age

Years/ 2005 2006 2007 2008 2010 2011 2012 2013
Training period % % % % % % % %

1 year 61(76) 62(78) 56(66) 58(70) 9(66) 61(72) 12(64) 54(65)
2 year 66(80) 61(70) 61(75) 10(68) 34(74) 10(70) 27(72)
3 year 65(73) 65(78) 10(72) 22(79) 21(67) 21(71)
4 year 64(76) 10(72) 18(78) 29(69) 32(73)
5 year 9(73) 18(77) 35(73) 40(72)
6 year 18(78) 39(74) 46(75)
7 year 39(73) 45(75)
8 year 45(76)
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Figure 3.5. Classification performance of original and GSD.

A comparison is performed between subjective and GSD output for whole 9 years

data with moving year sliding window and 30 training iterations. The input consists of 96

rows and 2,992 columns matrix of traffic data while the output consists of 96 rows of 1 col-

umn matrix. The training data is trained and tested initially with the subjective target and

later with the GSD target. The result indicates that GSD classification performance is supe-

rior to the subjective output. Table 3.2 demonstrates the relative classification performance

of subjective and GSD outputs (in brackets) respectively. Figures 3.5a and 3.5b illustrate

the relative classification performance for 2012 and 2013 respectively. It is interesting that

GSD maintain a steady classification performance throughout all the years and improved

with the increase in the amount of training data. Furthermore, a maximum correct classi-

fication of 73% with 8 years training input is achieved. It implies that with more training

data, the NN results are improved to a certain level as it gets more training experience with

shape profiles and recognizes better. It demonstrates that shape is not a static phenomenon

rather its dynamic and varies within days of the week.
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Table 3.3. Comparison of original clustered and GSD clustered targets, based on mean
correct classifying percentage.

Years/ 2005 2006 2007 2008 2010 2011 2012 2013
Training period % % % % % % % %

1 year 80(82) 78(76) 72(70) 77(74) 73(73) 80(84) 73(68) 70(70)
2 year 85(85) 77(78) 79(85) 76(80) 80(89) 80(82) 76(80)
3 year 80(85) 82(85) 81(84) 84(91) 80(88) 81(87)
4 year 84(87) 81(86) 87(91) 85(89) 78(90)
5 year 83(89) 88(93) 82(88) 84(91)
6 year 88(93) 86(90) 85(91)
7 year 86(91) 85(92)
8 year 86(92)

3.4.3. Comparison of Original and GSD Output. In the preceding section 3.4.2,

the significance of shape is further validated. In this section, the output of original target

trained on original data with the corresponding GSD output trained on GSDs of same origi-

nal training data are compared. The comparative analysis is of practical form, as clustering

is a common procedure employed when developing traffic prediction or incident detec-

tion models. If GSD is better in classification performance than the original output, then

it should demonstrate that shape can contribute significantly in improving traffic analysis

results and thus suggests that functional approaches are a better option than the prevailing

non-functional approaches.

The input consists of 96 rows and 2,992 columns matrix of data for original target

and same size matrix of corresponding GSDs for training with GSD target. The training

data is trained and tested initially with the original target and later with the GSD target. The

results indicate that GSD classification prediction is superior to the original. It shows that

days differ in shapes and functional characteristics can not be ignored in traffic analysis.

Table 3.3 and Figures 3.5a and 3.5b demonstrate and illustrate the relative classification

prediction performance of original and GSD outputs(in brackets) respectively. In case of

2012, initially the performance of original target is better than GSD, however with the

increase in the amount of available training data the GSD has better classification prediction

performance. In the second case, initially both performances are equal but with increase

in training data the GSD again gets better results. Another aspect is the initial rise in GSD

performance which becomes stable after being trained for 2 years in 2012 and for 4 years

in 2013. It demonstrates that 2− 4 years training data is sufficient to train the NN on traffic

flow profiles and any further data will not significantly improve the BPNN results.
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(a) Classification performance - 2012.
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(b) Classification performance - 2013.

Figure 3.6. Classification performance of original clustered and GSD clustered.

3.4.4. Analyzing Misclassifications. A confusion matrix is a visual performance

assessment of a classification algorithm. To this end, confusion matrices are computed

to analyze miss-classified days by the BPNN based on results obtained in section 3.4.3.

Classification prediction of 2013 is carried out based on 8 years worth of training data from

(2004-2012) after satisfactory BPNN training. The best outputs of ten training iterations is

selected for the original and GSD ensuring that the mean correct classification percentage

is in close proximity of mean values already obtained (refer Table 3.2). The resultant

two confusion matrices with mean correct classification percentage of 85.43% for original

groups represented by ‘G’ and 92.23% for GSD shapes represented by ‘S’ are depicted

in Table 3.4. The total number of misclassifications observed are 24 for GSD and 45

for original. The balanced confusion matrices also suggest that the BPNN architecture is

satisfactory. This finding that shape is important is valuable in the analysis of traffic.

Cases of misclassifications are discussed to explain the relative performance of shape

analysis over traditional besides explaining the glaring instances of BPNN failure. Figure

3.7a represent traffic profile of 16 January 2013, which was a working day and defined

with conventional morning and evening peaks. However as evident from the figure it has

a single insensitive detector reading at interval 68. Owing to this abnormal shape GSD

has classified it along abnormal/insensitive detector shapes while the traditional clustering

placed it along non working days (Sundays). BPNN classified it along working days not

taking into account a major shape deformation. Similarly, the traffic profile of 21 February

depicts a working day profile with the exception of dip which might be due to incident or

an insensitive detector, The GSD method classified it along abnormal behavior/insensitive

profiles, while traditional classified it as non working days (Sunday) and BPNN misclas-
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Table 3.4. Confusion matrices - original clustered and GSD.

Groups G1 G2 G3 G4 G5 G6 G7 Shapes S1 S2 S3 S4 S5 S6 S7
G1 9 3 0 0 0 0 0 S1 73 1 0 1 3 1 0
G2 0 0 0 0 0 2 0 S2 0 36 1 0 3 1 0
G3 6 1 64 0 0 7 4 S3 0 0 11 0 0 0 0
G4 0 1 0 50 0 2 0 S4 0 0 0 51 0 1 1
G5 0 0 0 1 45 0 0 S5 5 0 0 1 69 1 1
G6 1 3 5 0 0 75 1 S6 0 0 0 1 0 42 0
G7 3 0 1 0 0 4 21 S7 0 0 2 0 0 0 3
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(a) Misclassification - 16 January.
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(b) Misclassification - 21 February.
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(c) Misclassification - 7 March.

Figure 3.7. Misclassification examples - 2013

sified it as working day. Figure 3.7c illustrates the traffic profile for the 7th of March (a

working day), however, the shape does not reflect common working day behavior rather

represents a non-working day shape along with a dip near the end of the day. Due to shape

exhibiting non working day behavior, GSD classified it as non-working day while BPNN

predicts it as working day.

The analysis of misclassified cases shows that shape of traffic profiles really change

and not constant for every day. The shape based GSD is quick in identifying an abnormality

in shape where traditional methods fail. It also depicts that BPNN although performed

reasonably well in evaluating normal shapes; however, its performance is questionable in

cases where shape exhibits deviated behavior from standard shapes (abnormal shapes due

to incident and insensitive detectors).



44

1 2 3 4 5 6 7 8
65

70

75

80

85

90

Training period (years)

M
e
a
n
 
c
o
r
r
e
c
t
 
c
l
a
s
s
i
f
i
c
a
t
i
o
n
 
%

 

 

original

GSD

Figure 3.8. Comparative performance of original and GSD for same original training data.

3.4.5. Performance of Original and GSD Targets Trained on Original Traffic

Profiles. Another comparison is performed by training GSD target on original data rather

on GSDs and comparing it with results of original target trained on same data already

obtained in (refer section 3.4.3). The classification prediction performance of clustered is

found better in almost all types of yearly training. The performance gap is narrow initially

but becomes wider with an increase in training data with the exception of 4 years worth

of training data (refer to Figure 3.8). One understandable reason for GSD having a lower

performance is that GSD targets are obtained by clustering GSD profiles and not original

profiles. It shows that if shape based MM methodology is to be employed then traffic data

has to be dealt in terms of GSDs and not original traffic flow time series curves.

3.4.6. Validating Clustering Prior to Prediction. Clustering explains the hidden

structure within the data and provides a simple but meaningful description of data distri-

bution. Irrespective of the prediction algorithm used, the prediction accuracy would be

affected if data is not fully understood and processed. This study validates clustering is

a necessity as well as its quality prior to prediction. In section 3.4.2 data with subjective

target of arbitrary values {1,2,.....,7} is analyzed. Although no actual clustering is carried

out but yet some partition within the data basing on arbitrary values is considered. The

predicted output of data with subjective target (arbitrary target values) is far below the pre-

dicted output of original target refer figures 3.9a , and 3.9b. It is observed that partition

of the data and minimizing the distances between the data points with respect to the center

point obtained through clustering helps in better classification and prediction. Apart from
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Figure 3.9. Classification prediction performance of clustering vs non clustering

minimizing the distances within data-set, clustering also contributes towards complexity

reduction in the NN due to high similarity all the data and this contribute in enhancing

predictive accuracy.

3.5. CONCLUSION

This study concludes that shaped based analysis, clustering and prediction are all

substantially increased in performance through the employment of shaped based classifica-

tion. The study highlights the significance of functional over presently used non functional

approaches in analyzing traffic data. The comparison between original data (clustered and

non clustered) and GSD transformed traffic profiles demonstrate efficacy of shape in clas-

sification and prediction. The results show that MM provides a more stable shape based

clustering that classifies the existing shape patterns from the training data and recognizes it

efficiently during testing.

A major contribution is that shaped based classification has the potential of the method-

ology to improve the existing traffic prediction models performance by employing shape

based clustering prior to the development of a prediction model. Apart from emphasizing

the significance of shape, the study also highlighted the necessity of clustering prior to

traffic analysis. The performance of BPNN remain satisfactory especially in the context of

data used in this study. It is found that 2− 4 years of training data is sufficient for training

and any further addition does not improve results significantly. MM tools such as the GSD

is one of the techniques in practice for shape analysis, however, other contemporary tech-

niques are also required to be explored. Investigating the functional model to predict traffic

profiles is a likely future extension of this study.
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4. A FUNCTIONAL TIME SERIES APPROACH FOR TRAFFIC FORECASTING

4.1. INTRODUCTION

Traffic flow forecasting has been regarded as a major concern for many of the cur-

rent Intelligent Transportation Systems (ITS). In addition, efficient traffic flow forecast-

ing assists in the development of management strategies in Advance Traffic Management

Systems (ATMS) and Advance Travelers Information Systems (ATISs). Furthermore, it

supports future decision making regarding expansion of traffic facilities, modification to

roadway networks, and other key decisions related to increasing the quality of service to

its users. In Zheng et al. (2006), it is argued that the ability to make continuous predictions

of traffic flows and link travel times for even a few minutes into the future, using real-time

traffic data, is the primary requirement for providing dynamic traffic control and guidance.

As noted in Dia (2001), predictive information can be divided into two distinct categories:

strategic and short-term. Short-term traffic flow prediction is useful to effectively deal with

the dynamic traffic situations arising from congestion, accidents, and weather related prob-

lems. The strategic or long-term flow prediction contribute only marginally to the control

and management arising from fluid traffic problems; however, it contributes in the plan-

ning of potential growth in traffic volume, which arises from urban sprawl or changes in

infrastructure.

The technological developments in traffic data collection and storage techniques in

recent decades, have allowed more dense sampling of observations over time and space.

These data collection and storage techniques allow researchers to observe and record real-

life processes in great detail, unlike any time in the past Kidzinski (2015). Examples of this

growth in data expands across all traditional disciplinary boundaries and fields of study.

Specifically, the propagation of very large data sets due to the availability of sophisticated

data gathering and storage techniques has led to term ”big data,” which can be found in

financial transaction data, satellite photography, pollution levels and distribution in time

and so on. In traffic, this large data can be found along with the proliferation of censoring

and monitoring of traffic systems, which collect video, count data, and weather conditions
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to name a few. Due to the amounts of data and its high dimensionality, classical statistical

tools become inadequate and inefficient Donoho et al. (2000). One of the prominent new

technique that overcomes this inadequacy is Functional Data Analysis (FDA).

In analyzing traffic data, the functional approach can be interpreted as reflecting the

influence of certain smooth functions that are assumed to underlie and to generate the ob-

servations. The traditional multivariate statistical approach ignores vital information about

the smooth functional behavior of the generating process that defines the data Green and

Silverman (1994). In particular, functional data analysis can often extract additional infor-

mation contained in the function and its derivatives that is not normally available to tradi-

tional statistical methods. The functional approach treats the whole traffic flow profile over

a given day (curve) as a single datum. The basic idea behind functional data analysis is to

express discrete time series observations in the form of a function that represents the entire

measured function as a single observation or datum. This represents a change in philoso-

phy towards the handling of traffic time series data and provides a motivation to consider

functional time series approach for traffic forecasting. In Kargin, Vladislav and Onatski

(2008), a thorough explanation of the underlying theoretical concepts of functional data

analysis undertaken herein. Furthermore, Kargin, Vladislav and Onatski (2008) proposes

the use of predictive factor technique that aims to forecast curves through the employment

of functional autoregression.

Traffic flow forecasting has been extensively investigated for more than two decades.

Numerous techniques have been employed in the context of traffic flow forecasting, de-

pending upon type of data and the potential end use of the forecast. These techniques in-

clude but not limited to: time series models William et al. (1998), Lee and Fambro (1999),

Williams (2003) and Stathopoulos and Karlaftis (2003), neural network based models Chen

and Grant (2001), local linear regression methods Sun at al (2003), Kalman filtering tech-

niques Zheng et al. (2006), Xie, Zhang and Ye (2007) and Cetiner et al. (2010) and fuzzy

neural models and fuzzy logic system methods Yin, Wong, Xu, and Wong (2002) and

Zhang and Ye (2008), parametric regime switching space-time model Kamarianakis (2012),

visco-elastic models Zhu and Chun (2013), and multiple kernel learning and vector support

machine Yu and Lam (2014). Recently, Chiou et al. (2012) adopted functional approach

and proposed a stochastic functional mixture model for predicting traffic flow. In Guardi-



48

ola, Wasim and Samaranayke (2014), FDA is used to analyze patterns of daily traffic flow

curves as a means to develop traffic flow monitoring and control mechanisms; however, no

study of prediction is developed.

In the literature, no clear durations are defined for traffic prediction horizons and

generally the prediction horizon for short-term is limited to 30 minutes while long-term

predicts days, weeks, and months ahead. In between the short and long-term horizons,

medium-term prediction horizon is introduced in this study, which is defined as forecast

horizon of more than 30 minutes and for this study one hour ahead is considered. Cur-

rently, there is no feature to obtain driving directions based on traffic considerations at a

specific future date and time embedded within the most popular GPS navigation systems

and devices such as Google Maps, TomTom, or Smart phone software applications. These

devices and application supply driving directions mostly with algorithms that seek to mini-

mize travel distance and supply notification of current driving conditions but can not supply

directions in future time with conditions in the future incorporated in the way they optimize

a user’s route.

The contribution of this research presented herein is the use of functional time series

approach in forecasting traffic flow in short and medium-term horizons using real-world

data from loop detectors. The functional time series formulation we employ is introduced

in Shang (2013) and is a simpler variation of the more general functional time series dis-

cussed in Horvath and Kokoszka (2012). This functional concept is simple but innovative

as in-spite of using data points individually, each traffic profile over a given day is consid-

ered as a single datum. Future functions are forecasted based on the principal component

scores. The one-step ahead forecast produced by this method yields a complete next day

forecast, which provides a predicted traffic profile for the entire day. Similarly, incase of

partially observed traffic profiles, the functional context implies forecast for the remainder

day. However, in this study, only one hour ahead or four forecast points from the complete

day or remainder day are considered. The remainder of this study is organized as follows.

In Section Functional Time Series Model, the underlying model is explained. A brief de-

scription of the data used to validate the proposed application of functional time series is

given in Section Data Details. Lastly, the results/discussion and conclusion are given in

Sections Results and Conclusions respectively.
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4.2. FUNCTIONAL TIME SERIES MODEL

Functional time series treats observations as realizations of a function observed at

discrete points in time. Models that incorporate this structure of a continuous functional

form from which the data is generated can lead to more precise and meaningful findings as

the error brought about from interpolation is reduced. Functional time series analysis has

begun to appear as an efficient means of analyzing time series as seen in works such as Ho-

vath, Huskova and Kokoszka (2010), Hormann and Kokoszka (2010), and Hyndman and

Shang (2010) but this trend has begun very recently in-spite of the fact that Aguilera et al.

(1999) proposed functional principal components regression (FPCR) to model and forecast

functional time series two decades ago. The concept of FPCA is successfully demon-

strated in different fields of applications, such as electricity demand forecasting Antoch J.

(2008), breast cancer mortality rate modeling and forecasting Erbas et al. (2007), call vol-

ume forecasting Shen and Huang (2008), climate forecasting Shang and Hyndman (2011),

and demographical modeling and forecasting Hyndman and Shang (2009). However, the

approach has remained relatively unexplored within the traffic domain.

The functional time series formulation employed in this research is based on the

methodology explicitly described in Shang (2013) and is dependent on the use of Func-

tional Principal Components (FPC). There are more general ways of modeling functional

time series Kargin, Vladislav and Onatski (2008), but the approach employed in this study

is relatively easy to implement in the sense that the time dependence between successive

functions is modeled using traditional univariate time series methods. A major aim of this

research is to develop a methodology for predicting the 24 − hour traffic flow curve (pro-

file) of a future day, based on the flow curves observed on n successive past days. It is

assumed that there is a smooth function ft that describe this profile for a given day for

t = {1, 2, . . . , n}. The set of functions {f1, f2, ..., fn} forms the observed portion of a

functional time series. Following a formulation very similar to that in Shang (2013), it is

assumed that the functional values ft(x), t = {1, 2, ..., n} are not directly observed but

instead the quantities zt(xi) are observed, where zt(xi) equals the total flow over the short

time interval (x−∆x), x denotes a time point on a day t and ∆x signifies the span of the

interval over which the traffic flow is measured. In this study the value of ∆x was set to

15 minutes and the traffic flow profiles were observed over 84 days, but only data from the

first 83 days were used for estimating the predictive model (n = 83). The zt(xi) values are



50

employed to obtain smoothed functions ft using the relationship

zt(xi) = ft(xi) + σt(xi)εt,i (2)

where, εt,i are independent identically distributed (iid) random variables with zero

mean and unit variance, and the xi denote time points 15 minutes apart given by xi = 15i,

for i = {1, 2, ...., 96}. Note that the σt(xi) are multiplicative factors that enable the noise

components σt(xi)εt,i to have different variances across t and i. The goal is to forecast the

values zn+h(xi), over i = {1, 2, ..., 96} for a future 24-hour period h days ahead of the last

observed day n.

Given a realization f of a random function defined over a compact domain [0, τ ], we

can write

f = µ+ Σ∞
k=1λkυk (3)

where, µ is the population mean function, λk is the kth principal component score,

and υk is the kth population functional principal component Shang (2013). The functional

principal components are the normalized eigenfunctions of the population covariance oper-

ator associated with the underlying random function Horvath and Kokoszka (2012). In this

context, the smoothed daily traffic flow curves ft obtained from the relationship expressed

in Equation 2 can be written as,

ft(x) = f̄(x) +
K∑
k=1

λ̂t,kυ̂k(x) + ηt(x), (4)

where, f̄(x) = n−1[
∑n

t=1 ft(x)] is the sample mean of the functions f1, f2, ..., fn

evaluated at the time point x, υ̂k is the kth orthonormal eigenfunction of the empirical

covariance operator and λ̂t,k is the kth principal component score associated with the traffic

flow function of that day t. The value of K is chosen using a scree plot and represents

the optimal number of principal components that can adequately describe the behavior

of the underlying functions. The term ηt represents the error in approximating ft(xi) by

f̄x +
∑K

k=1 λ̂t,kυ̂k(x)

Let i(x) denote the set {f1(x), f2(x), ...., fn(x)} of smooth functions extracted us-

ing Equation 2 and let
∧

denote the set {υ̂1, υ̂2, ..., υ̂n} of eigenfunctions estimated from

the empirical covariance operator. For each k, the principal component scores λ̂t,k, t =
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1, 2, ..., n can be treated as a univariate series. Standard time series techniques can be em-

ployed to obtain predicted future values λ̂n+h,k|n. It is worth noting that vector time series

methods are not needed because λ̂t,k is uncorrelated to λ̂t,s for all k ̸= s, for all values of t.

Following Shang (2013) it can be shown that the h step ahead predictor of zn+h(x) based

on i(x) and
∧

is given by the conditional expectation

ẑn+h|n(x) = E[zn+h(x)|i(x),
∧

] = f̄(x) +
K∑
k=1

λ̂n+h,k|nυ̂k(x), (5)

where, λ̂n+h,k are the predicted values from the univariate time series of λt,k time series.

4.3. STUDY DESIGN

4.3.1. Data Details. The data used in this research consists of traffic flow profiles

collected from the I-94 passing through the Twin Cities Metro area, Minnesota. Data is

collected at station S110 I-94 East Bound/T.H. 65, which has 3 loop detectors named D497

94/TH65E1, D498 94/TH65E2 and D499 94/TH65E3. The I-94 is an urban freeway, which

has 3 lanes in each direction and the station provides composite detector data from three

detectors in the eastbound direction (Refer to Figure 4.1). The analysis period is from the

1st of January to the 24th of March 2004, thus totaling 12 weeks of data. The twelve weeks

data is comprised of 84 days in total, out of which 83 days are used for analysis while the

84th day is utilized for forecasting. The detectors measured and logged the flow for each

of the three lanes at 30 seconds intervals. For this study, data is aggregated to 15 minutes

intervals (96 points per day). Previous research has found that 15 minutes data produce

better results as the fine grain variations are removed refer to Weijermars and Van Berkum

(2005).

4.3.2. Methodology. To highlight the functional time series approach in the traffic

domain, two types of functional approaches are employed. First, a simple functional time

series model based on Functional Principle Component decomposition is developed to fore-

cast a complete day’s traffic profile. In the second method, the same model is employed;

however, a Penalized Least Square (PLS) method is used to dynamically update a partially

observed traffic profile. To compare the performance of the functional time series ap-

proaches, the results obtained are directly compared to the commonly employed approach

of using traditional autoregressive moving average (ARMA) for forecasting traffic flow.

To ascertain the relative performance of the methods for different flow conditions, three
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conditions are selected representing the flow observed during late night, morning peak,

and evening peak periods. Although a complete day ahead forecast is obtained through

the functional methods, for comparative analysis purposes, only four steps ahead forecast

horizon is considered (a step corresponding to 15-minutes). This translates into a total of

one hour ahead forecast. For the purposes of clarity, it should be noted that all functional

methods provide a full daily profile ahead; however, traditional ARMA methods can only

do a few points ahead. Thus, a comparison of the ARMA results to the Functional methods

employed would be deemed unfair if the horizon is too far into the future. This is due to the

prediction intervals increasing as the prediction horizon is increased for ARMA methods.

It is well known in previous stated literature herein that ARMA methods perform well in

a horizon of 1 hour. Hence, it is the goal of the study to compare ARMA methods in a

horizon where they have been shown to outperform other methodologies (these works are

highlighted in the latter ”Forecasting through ARIMA” section) . A relative comparison

is based on four performance measures namely the root mean square error (RMSE), mean

absolute error (MAE), mean absolute deviation (MAD), and mean absolute prediction error

(MAPE) respectively.

Detector Location

Figure 4.1. Map of Minneapolis MN U.S.A Highway and Freeway system. Arrow indicates
position of detectors on I-94.
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4.4. RESULTS

4.4.1. Forecasting Through Functional Time Series Model. When all traffic pro-

files are complete, FPCA allows a decomposition of the data into a number of functional

principal components and their uncorrelated scores. The functional principal components

explains where the largest variation lies within the data while the corresponding coefficients

of functional principal components, which are termed as scores, describe the magnitude of

the variation. The main idea is to take into account the continuous feature of the data. The

task of converting the functional data into corresponding smooth functions can be accom-

plished either through interpolation or smoothing of the data. Data is collected at 30 sec-

onds intervals and then aggregated at a higher interval of 15 minutes, which automatically

removes the fine grained variation within the data. This aggregation therefore produces a

sufficiently smooth curve on which no additional smoothing procedures are needed. The

first step is therefore to find the amount of variation explained by the functional principal

components (FPCs) apart from the mean function. A scree plot is commonly used to deter-

mine the appropriate number of FPCs to be retained in in the model. Figure 4.2 shows that

first three FPCs explain a substantial portion of variation within data. Table 4.1 shows that

the first three FPCs aggregate to 93.5% of the total variation and hence are retained for the

model. It is common to keep the number of FPCs that explain at least 90% of the variation.

Thus, retaining only the first three FPCs for further model building satisfies this condition.

Table 4.1. Variance proportion explained by FPCs

FPCs 1 2 3 4 5
Variance proportion 79.8615% 11.755% 1.8623% 1.164% 0.67

Figure 4.3 and 4.4 illustrate the selected three functional principal components and

their associated PCA scores. The top left graph in the Figure 4.3 illustrates the mean

function, while the remaining figures illustrate the three functional principal components.

The first FPC which explains 79.86% of variation represents two peak flows or rush hours

with high-volume periods from 7-10 AM and 3-7 PM. An analysis of first FPC shows
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Figure 4.2. Scree plot.

that the high peak in the morning suggests that maximum variation is observed within the

morning peak or in other words the flows in the morning peak fluctuates more than the other

parts of the day. The second FPC which explains 11.75% of variation appears to be related

with low flow periods after the PM peak and traffic flow between morning and evening

peaks. This variation is related to typical traveller’s behavior on non working days due to a

shift in the conventional morning peak from 7-9 AM to 11 AM-3 PM. Similarly, the traffic

flow after PM peak also differs from normal working days. The third FPC explains only

1.8623% of the total variation and represents the low volume abnormal behavior during the

day time besides some high-volumes observed at the late night period. Figure 4.4 plots the

forecasted principal components scores. The associated scores defines the magnitude of

variation. The interpretation of the three FPCs above is reinforced by their corresponding

FPCs scores as in first case the cyclic behavior reflects that magnitude of variation is more

in case on working days as higher scores are related to working days. In the second case, the

higher scores are related to the non-working or weekend days and is represented by peaks

occurring after successive intervals. The peaks represent high score on weekends with in

between low scores assigned to the normal working days. While in last case the higher

scores are related to days with abnormal behavior of low flows. Figures 4.5a and 4.5b

illustrate the one step ahead prediction and its 80% confidence intervals. In the functional
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context, one step ahead forecast implies predicting the complete next day’s traffic profile.

In Figure 4.5a, the red traffic profile predicts the the next day’s (i.e. 24th of March (a

Wednesday)) traffic profile while the black traffic profiles in the background depict the data

from which that prediction was obtained by training the model.

Figure 4.3. First three Functional Principal Components (FPCs).

In traffic domain it is equally important to forecast the partially observed traffic profile

by updating the point forecast. In fact, every daily segment of a traffic profile can be treated

as a univariate time series. To improve the forecast accuracy, it is desirable to dynamically

update the point forecast for the rest of the most recently observed traffic profile, in other



56

Figure 4.4. Associated principal component scores of the three FPCs.

words, near real-time traffic prediction. This is significant in the cases where a partially

observed traffic profile has influence on the remaining part of that profile (e.g. the first half

of the traffic profile has influence on the remaining day’s profile or the AM peak has an

impact on the PM peak). For dynamic point and interval updating, a regression based on

Penalized Least Square (PLS) is used for dynamic updating, when partial data in the most

recent curve is observed and the requirement is to forecast some intervals ahead or the

remaining part of the observed daily traffic profile. The technique is adequately explained

by Shang (2013) and details are omitted. In the PLS method the updating is carried out

by using a regression based approach in which regression coefficients are estimated by

minimizing a penalized sum of squares. Penalized least squares estimates provide a way

to balance fitting the data closely and avoiding excessive roughness. The results obtained

by applying this technique on our data with last day 24th of March, which was sliced

into equally divided halves with one representing the traffic profile from midnight to noon

(AM part) and other from noon to midnight (PM peak) and are illustrated in Figure 4.6.

The AM peak remained while the PM peak is removed from the data and is forecasted
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Figure 4.5. Functional one step ahead forecast (24th March, Wed) with 80% confidence
intervals.

using the PLS method. An analysis of Figure 4.6 shows that the PLS forecast provides

a satisfactory approximation of the true partial traffic profile. That is, the PM period is

predicted and closely resembles the original PM period that was removed. It can be seen

that the confidence intervals are wide from 3–6 PM, while confidence intervals narrowed

after 6 PM. This reflects the model performance in forecasting traffic between 3–6 PM

is less reliable due to more variability in the observed traffic as compared to forecasting

traffic past 6 PM, which is quite predictable. Hence, the forecasting methodology produces

a curve that closely resembles the original data.

4.4.2. Forecasting Through ARIMA. From the traditional time series perspective,

ARIMA is the most widely used time series analysis method, which aims to determine the

regression type relationship between the historical data and the future data. In AR mod-

els the regression type relationship is exploited. In ARIMA, its more complicated as we

exploit the linear relationship which is an infinite AR. That is to say that ARMA models

assume constant variance, where ARIMA models have infinite variance. ARIMA as well as

its derivatives has been widely applied to model many types of time series, including traf-

fic flow series and they have become indispensable tools for short-time prediction Ahmed
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and Cook (1979), Nihan and Holmesland (1980) and Lee and Fambro (1999). ARIMA

Models with its underlying linear model has outperformed many of the complex or non-

linear proposed models in the application of traffic flow prediction. Examples of this can

be found in SETAR (Self Excited Threshold Autoregressive) model has shown low traffic

prediction accuracy compared to ARIMA Van Hinsbergen (2007). Similarly, in Sun and

Liu (2011) a non-linear LSTAR (Logistic Smooth Transition Autoregressive) model to pre-

dict traffic flows is presented and found that ARIMA is more robust at forecasting a single

step ahead. LSTAR (Logistic Smooth Transition Autoregressive) is superior in forecasting

periods of low traffic, which is often not of great interest for traffic practitioners. In Chen

et al. (2011), ordinary traffic flow prediction ARIMA is sufficient and outperformed the

GARCH-ARIMA model. Examples of ARIMA being employed as a benchmark model

can be found in Kamarianakis and Prastacos (2003), Smith et al. (2002) and Hamed and
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Al-Masaeid (1995). ARIMA is therefore considered more appropriate for comparison anal-

ysis as it is a well established and researched model. In this study the details of the ARIMA

model are omitted, the reader should refer to Brockwell and Davis (2002), which is a sem-

inal book on traditional time series methodologies. In this study, it is being used as a

benchmark for comparing the forecasting performance.

ARIMA Models can be non stationary; ARMA Models are stationary. Firstly, time

series data is checked for stationarity. Autocorrelation function and partial autocorrelation

function plots for the traffic flow data are shown in Figure 4.7a and 4.7b. Figure 4.7a clearly

shows a relatively slow decay of correlation while Figure 4.7b indicates possibility of a unit

root. First order difference is carried out and resultant results are illustrated in Figure 4.7c

and 4.7d. The results depicts that first difference results in a stationary time series as the

autocorrelation decay rapidly and is almost zero at a lag of 9, while a lag of 4 is found to

be significant. In case of partial autocorrelation plot, again the fast decaying is clear and a

lag of 4 appears to be significant. The purpose of differencing is to make time series data

stationary, as the level of the series and the covariances stays roughly constant over time.

However, to ensure that time series data does not have a unit root and is stationary after

first difference , it is further cross checked by formally testing through series of tests (Aug-

mented Dickey Fuller(adf ), Kwiatkowski, Phillips, Schmidt, and Shin (kpss) and Phillips

Perron (pp)) test at 95% confidence level. The “tseries” package in “R” is used to perform

these tests. The “adf ”, and “pp” test are used to check the null hypothesis that differenced

data set has a unit root against a stationary root alternative. Similarly “kpss” test is used

with the null hypothesis that difference dataset has a stationary root against a unit-root al-

ternative. The p-values of 0.01 in case of adf and pp test suggest to reject null hypothesis

in favor of alternative hypothesis of stationarity at α = 0.05. In case of kpss test the high

p-value of 0.09997 suggest that we failed to reject the null hypothesis of stationarity with

confidence level of α = 0.05. The tests details are summarized in Table 4.2. As time series

is stationary after first difference, the next step is to select the appropriate ARMA model,

which means finding the most appropriate values of p and q for an ARMA(p, q) model.

The package “forecast” in “R” is used to find the appropriate ARMA model for the time

series basing on Akaike Information Criteria (AIC). An ARMA (4, 4) is found appropriate,

which corresponds to a model of fourth order, p = 4, and a moving average of 4, q = 4.

One of the inherent limitations of ARIMA and other time series models, is essentially that
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Table 4.2. Summary - Testing for stationarity of differenced data

Test H0 α P-value Result
ADF(adf ) unit root 0.05 0.01 Reject H0

PP(pp) unit root 0.05 0.01 Reject H0

KPSS(kpss) stationarity 0.05 0.09997 Fail to Reject H0
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Figure 4.7. Autocorrelation and partial autocorrelation function plot of original and differ-
ence data.

they are “backward looking.” Meaning the long-term forecast eventually converges to the

sample mean. As the forecast horizon increases, the prediction interval gets wider and thus

render any forecast greater than few steps practically meaningless. For this reason, only

one hour forecast is made through ARIMA and compared with the first four forecast values

of the complete 24 hours forecast resulting from the functional model.



61

4.4.3. Performance Comparison. The one step ahead forecast produced by func-

tional method means complete next day forecast. Similarly, incase of partially observed

traffic profiles, the functional context implies forecast for the remaining part of the day.

However, only one hour ahead or four forecast points from the complete day or remain-

der day is considered in this study due to the reason that non functional methods such as

ARIMA, when used in the context of traffic flow forecasting, is usable only for a short

forecast horizon.

Results obtained from functional along with its dynamic updating variants and ARIMA

are compared for 15-minutes interval data. The traffic flow profile fluctuates during a given

day with extremely high peaks during morning and evening rush hours. The late night or

early morning traffic periods exhibits very low traffic flows which is expected behavior of

travelers. In order to fully evaluate the performance of the competing methods, three one

hour periods are considered representing low-flow period, which occurs after midnight e.g.

2-3 AM, morning peak period from 7-8 AM and evening peak period from 4:30-5:30 PM

is taken for the evening peak period. The results for the low flow period (2 − 3 AM) are

summarized in Tables 4.3 and 4.4. Performance indicators shows the superiority of func-

tional approach over ARIMA modeling in forecasting the period associated with low flow.

In fact, functional method here implies complete forecast of next day rather updating the

partially observed traffic profile through the PLS method. Functional method is followed

by the functional (PLS) method in predictive accuracy. Although ARIMA method does not

perform well overall, it is found to be better in predicting one step ahead flow values. With

increase in forecast steps as well as sharp decrease in traffic flows, ARIMA’s performance

deteriorated and fails to forecast reasonably for the remaining steps ahead. In case of the

high flow period for the morning (7-8 AM), in overall context, the functional method along

with functional (PLS) again perform better than ARIMA, refer Tables 4.5 and 4.6. The

functional method performs better in all the four steps ahead forecasting. In comparison

to performance during low flow period, the performance of functional method improves

with respect to functional (PLS) as MAPE gap increases with functional method achieving

a MAPE of 1.530 in comparison with 4.268 for functional(PLS). The observed morning

peak data increases sharply from step 1, 5276 vph to 5992 vph in step 2, which is very

effectively and closely captured by functional method with the forecast value of 5896 vph.

This reflects the method’s ability in response to sharp increase in flow changes.
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Figure 4.8. Partially observed profile forecast for low and high flow periods with 80%
prediction intervals

The third part of result relates with the evening peak hour from 4:30-5:30 PM. Over-

all, functional (PLS) method performed slightly better than functional method with a MAPE

of 2.136 in comparison with 2.172 achieved by functional method, for results refer Tables

4.7 and 4.8. For first and third steps ahead forecast, functional(PLS) methods achieves the



63

Table 4.3. Comparison four steps ahead prediction (Low Volume period, 2-3 AM)

Models 1 Step ahead 2 Step ahead 3 Step ahead 4 Step ahead
Actual 520 376 276 372

Functional 400 410 304 294
Functional(PLS) 434 438 326 320

ARIMA 500 528 521 506

Table 4.4. Performance measures four steps ahead prediction (Low Volume period, 2-3
AM)

Performance measures RMSE MAE MAD MAPE
Functional 74.914 65.148 83.337 15.865

Functional(PLS) 64.538 63.001 86.282 16.402
ARIMA 159.388 137.382 211.861 42.291

Table 4.5. Comparison four steps ahead prediction (High flow period,7-8 AM)

Models 1 Step ahead 2 Step ahead 3 Step ahead 4 Step ahead
Actual 5276 5992 6324 6188

Functional 5323 5896 6287 6377
Functional(PLS) 5528 6129 6526 6610

ARIMA 5692 6280 6723 6786

best results, while for the remaining two steps functional methods performs better. Again

ARIMA performs the worst. The significant increase of flow from 5428 in step 1 to 5716

in step 2 is closely forecasted by functional(PLS) method. Figure 8 shows the forecast per-

formance of all methods. It is important to note that forecast of partially observed profiles

forecast is complete forecast for the remaining portion of the day, however only first four

values are considered for comparison in all the three cases.

Results clearly indicates the superior forecasting performance of the functional ap-

proach over standard time series benchmark of ARIMA model. ARIMA only performs

better in case of one step ahead forecast for low flow period. In all the remaining cases, its

performance remain behind the functional and functional(PLS) method. The first perfor-
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Table 4.6. Performance measures four steps ahead prediction (High flow period,7-8 AM)

Performance measures RMSE MAE MAD MAPE
Functional 109.877 92.090 105.552 1.530

Functional(PLS) 274.424 253.244 336.166 4.268
ARIMA 439.60 425.335 604.431 17.681

Table 4.7. Comparison four steps ahead prediction (High flow period, 4:30-5:30 PM)

Models 1 Step ahead 2 Step ahead 3 Step ahead 4 Step ahead
Actual 5548 5428 5716 5468

Functional 5389 5478 5460 5491
Functional(PLS) 5440 5534 5515 5530

ARIMA 5308 5228 5249 5249

Table 4.8. Performance measure four steps ahead prediction (High flow period, 4:30-5:30
PM)

Performance measures RMSE MAE MAD MAPE
Functional 153.080 122.024 154.94 2.172

Functional(PLS) 129.636 119.222 158.538 2.136
ARIMA 301.457 281.50 340.557 5.046

mance measure Root Mean Square Error(RMSE) represents the sample standard deviation

of the differences between predicted values and observed values. ARIMA has highest

RMSE value for PM peak period. The second performance measure Mean absolute Er-

ror(MAE) mean absolute error is an average of the absolute errors, mathematically, ex-

pressed as ei = |fi − yi|, where fi and yi are forecasted and true values respectively. It

evaluates forecast performance disregard of the direction of over-or under-prediction. It is

interesting, that for low flow period, although functional method has lowest MAPE but has

higher MAE value compared to functional (PLS) method. It implies that functional (PLS)

has less error in absolute terms as compare to functional method for low flow period. The

third performance measure Mean absolute Deviation (MAD) averages the absolute devia-

tions and thus give less weight to the larger deviations. The MAD results are in line with



65

the other two measures explained. The last measure Mean Absolute Percent Error (MAPE)

also reflects the better performance of the functional and functional (PLS) methods. In

overall context, functional method exhibits more accurate forecasts. This finding is signif-

icant for the short-term as well as medium-term traffic forecasting. It implies that, one can

have a reasonably accurate forecast for the complete next day in advance under normal op-

erating conditions. In traffic domain, the prime importance is method’s ability to forecast

the morning and evening peaks, where functional approach shows significantly accurate

results as well as demonstrated its ability to forecast the sharp increase and decrease in the

traffic flows.

4.5. CONCLUSION

This study is an effort to demonstrate the ability of functional approach in addressing

a perpetual problem of traffic engineering “consistent and accurate traffic flow forecasting

model”. The functional model based on decomposition of functional principal components

is proposed for short and medium-term traffic flow forecasting. The results demonstrate

that functional model as well as its variant (PLS) method for dynamic updating forecast

offer significantly improved forecasting performance in comparison to conventional time

series approach, represented herein by ARIMA. For this purpose, one hour ahead forecast

comparison was made of all the competing models. The empirical results demonstrate

that functional and functional(PLS) methods accurately estimates the low volume or free

flow as well as high flow periods. It demonstrates that the functional approach has the

ability to characterize cyclical dynamics of short-term traffic forecast and thus provide

better forecast performance than an ARIMA model. In addition, the ability of functional

method to forecast complete day ahead with consistency is significant.

A major problem in traffic management to forecast in real time is addressed by em-

ploying PLS technique to dynamically update the partially observed traffic profile. How-

ever, its interesting that results show that functional method seems to be slightly better than

dynamic updating (PLS) method. The four steps (15 minutes each) out of one day ahead

forecast obtained through functional method is accurate as well as consistent in forecasting

the traffic flows for this empirical study. The consistent and accurate traffic flow forecast

encourages to apply the functional approach in forecasting the other variables of traffic

parameters like speed and travel times.
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The functional approaches provide a useful means to produce not only short-term

but also medium-term forecasts. That is, the functional approach results in a full day’s

traffic profile. Whether it is complete day ahead or predicting the rest of the day given a

partial profile. The implications of such models would do well to serve as useful for the

short-term management of traffic as well as providing information for planning of routes

for users. Furthermore, functional methods provide useful information for ITS, ATIS, and

ATM systems.

The future direction of this work is aimed towards the development of a routing

methodology, which makes use of the daily traffic prediction to develop user routes in a

given traffic network that takes into account traffic at the time of travel for short or medium

time horizons.
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5. CONCLUSIONS

This dissertation presents three different methodologies with a focus on improving

the existing methods available for traffic pattern analysis and forecasting. All the previous

research efforts for traffic flow pattern analysis are aimed at developing a forecast model.

Which, requires a thorough understanding of traffic behavior often derived from analyzing

historical data. This research also focussed on the same goal but adopted consistent and

robust methods in exploring the traffic data as well as proposing an accurate forecasting

model. The dissertation investigates how a shape based classification provides insights into

traveler’s behavior demonstrated through daily traffic flow profiles observed on freeways.

It also discusses the advantages gained by using a shape based classification technique. The

dissertation used an artificial intelligent technique (BPNN) to validate the results obtained

from shape classification. The final goal of an accurate and consistent forecasting model is

achieved by proposing a functional model based on FPC’s decomposition.

In the first study, a data exploration is carried out by studying the traffic flow over

a period of 5 years. This research effort is the first attempt to classify the traffic flow

profiles solely based on their shape characteristics. All previous efforts on traffic flow

pattern analysis have employed techniques that are non-shape based. These efforts also

used less robust clustering methods while some employed techniques from contemporary

fields that are often customized for some other purpose. The proposed methodology ad-

dressed the prevailing adhocism on the subject. It provides practitioners a logical and

consistent method to explore and classify the traffic flow profiles by incorporating their

shape features. The proposed methodology simplifies the pattern analysis as shape covers

all features comprehensively. Hence, features like total flows, peak flows, time of the peak

flows and off-peak flows are not required to be analyzed separately as shape incorporates

all of these key characteristics. Similarly, no pre-classification is required in the proposed

methodology, a departure from some existing methodologies where two step clustering is

performed. The use of partition around mediods (PAM) algorithm is another feature that

gives added strength to the methodology. As a result tight, stable, and statistically signif-

icant clusters are obtained. The demonstrated capability of the GSD function in detecting

anomalies alongside classifying separately the days with influence of weather and social
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events is also found promising. However, it is also observed that once translating the traffic

flow profiles into their respective GSDs, a shape based cumulative distribution is obtained

but in the process the corresponding time domain is lost. This limitation of the research

is significant in case the obtained results are required to be translated back to generate the

simulated profiles e.g. simulation etc.

In order to validate the shape based classification, a methodology based on Back

Propagation Neural Network (BPNN) was employed in second study. This was an impor-

tant step before moving to the ultimate goal of developing a forecasting model. A compar-

ative classification analysis of original and GSD transformed data reveals that shape based

classification is significantly more stable and consistent in comparison to non-shaped based

classification, techniques, and processes. In fact, these results demonstrate the necessity of

considering functional shape in traffic flow analysis. In addition, the results reinforce the

need for clustering prior to prediction. It is also determined that a span of two through

four years of traffic data is found sufficient for training to produce satisfactory BPNN per-

formance. This provides a fair guideline about data usage for the employment of Neural

Network (NN) in traffic research. The BPNN methodology provides a simple method to

compare the classification results obtained through different approaches and can be applied

for future classifications comparisons in traffic domain.

The contribution of the third study is using functional data analysis techniques ap-

plied to the traffic domain. This brings a change in philosophy towards the handling of

traffic time series data and provides a motivation to develop functional time series for traf-

fic forecasting. The proposed functional approach provides a useful means to produce not

only short-term but also medium-term forecasts. That is, the functional approach results in

a full day’s traffic profile. Whether it is complete day ahead or predicting the rest of the

day from given a partially observed profile. It demonstrates that the functional approach

has the ability to characterize cyclical dynamics of short-term traffic forecast. Thus, this

method provides better forecast performance than the well established ARIMA model. The

implications of such models would serve useful for the short-term traffic management as

well as providing information for planning of routes for users. Furthermore, functional

methods provide useful information for ITS, ATIS, and ATM systems. The consistent and

accurate traffic flow forecast encourages to apply the functional approach in forecasting the

other variables of traffic parameters like speed and travel times.
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6. FUTURE WORK

This dissertation opened a number of avenues for future research. These research

avenues are summarized below:

1: The research has introduced shape based classification that demonstrated promising

results in terms of stable, tight, and statistically significant grouping. However, in

the process the time domain is lost and only cumulative distribution is available de-

scribing the shape features of the daily traffic flow profile. Relating the obtained

cumulative distribution back to time domain (24 hours of a day) is not possible. It

is a drawback for example in case a simulation is required to generate a traffic pro-

file from obtained distribution. This aspect is opened for future research and some

technique i.e. (mapping etc) may be explored to address this issue.

2: Real time traffic forecast is a major component of any ITS System. This research

has addressed this issue by exploring the PLS technique to dynamically update the

partially observed traffic flow profile. There are number of other regression and non

regression based techniques like Ridge Regression (RR) and Block Moving (BM)

being already used in the contemporary fields. These techniques can be employed in

traffic domain and their relative forecast performance be compared with PLS tech-

nique.

3: The proposed methodology is applied only for flow parameter. It will be interesting

to observe its performance once applied to other traffic parameters like speed profiles,

space/time headways, and density/occupancy etc. This application may include both

aspects of exploring the patterns as well as functional forecasting.

4: The proposed research is based on a single location (single detector location) on a

freeway. It implies that at present the demonstrated results are valid for specific traffic

and weather conditions. To observe relative performance, the proposed methodology

may be applied at multiple locations in future.
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5: It is well established in the literature that no single technique is perfect in non-

functional traffic flow forecasting. Researchers in the past experimented by aug-

menting two different techniques from divergent fields like time series model and

NN from Artificial Intelligence (AI), to improve forecast performance. Development

of a hybrid functional model by using BPNN and functional time series model for

improving forecast accuracy can be an interesting future research.

6: Development of a routing methodology based on proposed functional forecasting

model is yet another future research direction. It makes use of the daily traffic pre-

diction to develop user routes in a given traffic network and also takes into account

traffic at the time of travel for short or medium time horizons.
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APPENDIX

PARTITION AROUND MEDIODS (PAM)/K-MEDOIDS ALGORITHM

The goal of the PAM algorithm is to find a sequence of objects called medoids that

are centrally located in clusters. Hence, it can be summarized that the algorithm seeks to

minimize the average dissimilarity of objects to their closest selected object. The algorithm

has two phases Kaufman and Rousseeuw (2009):

i The first phase is referred to as the build, a collection of k objects are selected for an

initial set S.

ii The second phase is called swap, where one tries to improve the quality of the clus-

tering by exchanging selected objects with unselected objects.

The PAM algorithm is a well established and known algorithm. Due to this popularity the

details are omitted in this research. Refer to Kaufman and Rousseeuw (2009) for detailed

description of this algorithm. The following summary of the algorithm is provided to assist

the reader:

1: Select k representative GSD vectors arbitrarily to represent medoids.

2: For each pair of non-selected GSDs h and selected GSD i, calculate the total swap-

ping cost TCih =
∑

iCjih, where Cjih = d(j, h)− d(j, i).

3: For each pair of i and h,

– If TCih < 0, i is replaced by h

– Then assign each non-selected GSD to the most similar representative object.

4: Repeat steps 2 and 3 until the change in clusters is minimal or no change.
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