
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

2014

M-Grid : A distributed framework for multidimensional indexing M-Grid : A distributed framework for multidimensional indexing

and querying of location based big data and querying of location based big data

Shashank Kumar

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Kumar, Shashank, "M-Grid : A distributed framework for multidimensional indexing and querying of
location based big data" (2014). Masters Theses. 7536.
https://scholarsmine.mst.edu/masters_theses/7536

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7536&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7536?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

M-GRID : A DISTRIBUTED FRAMEWORK FOR MULTIDIMENSIONAL

INDEXING AND QUERYING OF LOCATION BASED BIG DATA

by

SHASHANK KUMAR

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Ful�llment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2014

Approved by

Dr. Sanjay Madria, Advisor

Dr. Sriram Chelappan

Dr. Dan Lin

iii

ABSTRACT

The widespread use of mobile devices and the real time availability of user-

location information is facilitating the development of new personalized, location-

based applications and services (LBSs). Such applications require multi-attribute

query processing, handling of high access scalability, support for millions of users,

real time querying capability and analysis of large volumes of data. Cloud computing

aided a new generation of distributed databases commonly known as key-value stores.

Key-value stores were designed to extract value from very large volumes of data

while being highly available, fault-tolerant and scalable, hence providing much needed

features to support LBSs. However complex queries on multidimensional data cannot

be processed e�ciently as they do not provide means to access multiple attributes.

In this thesis we present MGrid, a unifying indexing framework which enables

key-value stores to support multidimensional queries. We organize a set of nodes in a

P-Grid overlay network which provides fault-tolerance and e�cient query processing.

We use Hilbert Space Filling Curve based linearization technique which preserves

the data locality to e�ciently manage multi-dimensional data in a key-value store.

We propose algorithms to dynamically process range and k nearest neighbor (kNN)

queries on linearized values. This removes the overhead of maintaining a separate in-

dex table. Our approach is completely independent from the underlying storage layer

and can be implemented on any cloud infrastructure. Experiments on Amazon EC2

iv

show that MGrid achieves a performance improvement of three orders of magnitude

in comparison to MapReduce and four times to that of MDHBase scheme.

v

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude and appreci-

ation towards my advisor Dr. Sanjay Madria for his continuous support of my M.S.

study and research. I have greatly bene�ted from his, knowledge, advice and guid-

ance, which was instrumental in the completion of this thesis. I am thankful to him

for allowing some extra time to �nish my experimental work.

I would also like to thank the members of my dissertation committee, Dr.

Sriram Chellappan and Dr. Dan Lin, for their constructive comments and feedback.

I would like to acknowledge the contributions of the current and former mem-

bers of the research group especially, Dr. Vimal Kumar, Brijesh Kashyap Chejerla,

Amartaya Sen and Dr. Roy Cabaniss, with whom I spent countless hours in the lab

and engaged in numerous fruitful discussions. I am thankful to my k nearest friends

especially Sahil Parikh, Abhinav Saxena, Aditi Sharma, Manish Sharma and Anand

Kishore, without them I would have graduated one year earlier.

I would also like to thank Daniel@uzaygezen and Deependra,John@Eucalyptus

for helping me in various stages of the project.

Finally, I dedicate this thesis to my father Himmat Singh, mother Manorama,

sister Ekta and brother Ashish for their constant support and encouragement in all

my professional endeavors. I hope this would make them proud.

vi

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

SECTION

1 INTRODUCTION . 1

1.1 TRADITIONAL ARCHITECTURE OF LOCATION BASED APPLI-
CATIONS . 2

1.2 DEPLOYING LOCATION BASED APPLICATIONS IN THE CLOUD 4

1.3 MOTIVATION AND CHALLENGES 5

1.4 RESEARCH GOAL AND SCOPE 9

1.5 SOLUTIONS OVERVIEW . 10

1.6 OUTLINE OF THESIS . 11

2 BACKGROUND . 12

2.1 LINEARIZATION USING SPACE FILLING CURVE 12

2.2 OVERLAY NETWORKS . 14

2.3 PREFIX-GRID (PGRID) OVERLAY NETWORK 15

2.3.1 Searching in P-Grid . 16

2.3.2 Comparison between P-Grid and Other Overlay Networks . . 17

3 RELATED WORK. 18

vii

3.1 SYSTEMARCHITECTURE: MASTER-SLAVE VERSUS P2P BASED
SYSTEM DESIGN . 19

3.2 COMPARISON MATRIX . 24

4 THE MGRID INDEX FRAMEWORK . 26

4.1 OVERVIEW . 26

4.2 DATA STORAGE LAYER . 27

4.2.1 Apache HBase . 28

4.3 STORAGE MODELS . 29

4.3.1 Table per Node (TPN) Model 29

4.3.2 Table Share (TS) Model . 29

5 QUERY PROCESSING . 30

5.1 DATA INSERT & POINT QUERY 30

5.2 RANGE QUERY PROCESSING . 31

5.3 kNN QUERY PROCESSING . 39

6 EXPERIMENTAL EVALUATION . 41

6.1 PERFORMANCE OF INSERT . 42

6.2 PERFORMANCE OF POINT & RANGE QUERY 42

6.3 PERFORMANCE OF kNN QUERY 46

7 CONCLUSIONS . 50

BIBLIOGRAPHY. 51

VITA . 56

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Traditional 3-Tier architecture of Location Based Applications 3

1.2 Location Based Application architecture in cloud environment 6

1.3 RDBMs versus Key-Value stores . 9

2.1 A 2-d space and its equivalent First order Hilbert Curve 13

2.2 A tree representation of the second order Hilbert Curve in 2 dimension 13

2.3 Illustration of second order Hilbert, Z-Order and Grey-Order Curve for
2 dimensions . 14

2.4 An example P-Grid trie . 16

3.1 EMINC index structure consists of a R-tree in master nodes and one
KD-tree on each slave node [39] . 20

3.2 MD-HBase uses linearization technique to support multidimensional
queries [43] . 21

4.1 MGrid's System Architecture . 28

5.1 Example of a Range Query on points mapped to the Second Order
Hilbert Curve in 2 dimensions . 33

6.1 Performance of Insert Throughput as a Function of Load on the System 43

6.2 Performance of Point Query (D=3) 44

6.3 Performance of Range Query (Nodes=4, D=2) 45

6.4 Performance of Range Query (Selectivity=10%, D=2) 45

6.5 Performance of Range Query (Nodes=4, D=3) 46

6.6 Performance of Range Query (Selectivity=10%, D=3) 46

6.7 Performance of kNN Query (Nodes=4, D=2) 47

6.8 Performance of kNN Query (k=10K, D=2) 48

6.9 Performance of kNN Query (Nodes=4, D=3) 49

6.10 Performance of kNN Query (k=10K, D=3) 49

ix

LIST OF TABLES

Table Page

2.1 Comparison between P-Grid and other p2p networks 17

3.1 A Review of Presented Indexing Schemes 25

1. INTRODUCTION

Cloud computing is a model for enabling ubiquitous, on-demand, utility based

access to shared computing resources (hardware and software) where such resources

are delivered as a utility based service. The Cloud has provided the IT industry a

paradigm shift in the way services are delivered. According to NIST [1] the essen-

tial characteristics of this service oriented model includes on demand self-service i.e.

the ability to obtain, con�gure and deploy services without the assistance of service

provider; broad network access which provide device and location independent access

to the users; resource pooling which enables service provider to pool their resources to

serve multiple users at once; scalability and rapid elasticity for adding new resources

as per the need of the user and a measured pay-per-use model based service. The

cloud's service model provides three levels of abstraction. The lowest level we have

Infrastructure as a Service (IaaS) where cloud vendors provide physical resources

like servers, storage and networking components. Platform as a Service (Paas) is the

middle level of abstraction which provides an application deployment framework. Ap-

plications need to be modeled after the PaaS provider's framework and the provider

deploys and scales the application. Software as a Service (Saas) is the highest level of

abstraction where the SaaS provider install and operate domain speci�c (like supply

chain management) application in the cloud. As cloud computing is becoming increas-

ingly popular and useful, our industry is gradually shifting from in-house hosting to

cloud hosting and platforms including cloud data storage platforms.

In this chapter, we �rst start with an introduction of how location based ser-

vices can bene�t from cloud computing model and analyze the challenges of deploying

such applications in cloud. Next, we discuss the motivation of our research which aims

to provide advance features missing from current cloud data serving systems. Then,

2

we present speci�c goals and scope of our research and �nally, we give an overview of

our solution with a summary of our main contributions of this thesis.

1.1. TRADITIONAL ARCHITECTURE OF LOCATION BASED AP-
PLICATIONS

The increasing need for mobility and recent advances in wireless technology

have created one of the most promising value added services which are commonly

known as Location Based Services (LBS). LBS are provided to mobile users accord-

ing to their proximity. Such services use the ability to dynamically determine and

transmit the location of users by the means of their communication device within a

mobile network [2]. These services provide means to search for information about

users, physical locations, �nding routes to speci�ed destinations, analyze real time

tra�c etc.

Currently, a wide range of LBS are available for mobile users [3] which includes:

• Mapping applications, providing mapping directions to a vehicle driver

• City guides, providing information for travelers about a given area

• Mobile yellow pages, assisting mobile users to locate the services they need

• Location-aware marketing, triggering advertisements based on proximity to an

area

Figure 1.1 shows the 3-tier architecture for location based services which con-

sists of a client tier, a middle tier and a database tier. Client Tier : In this tier, the

user interacts with the system. User on their mobile devices visualizes web pages

which contain spatial information. These web pages display interactive maps, search

�elds etc. and tracks actions performed by the user. For example, a user can issue

a query to �nd nearby places to its current geographic location. Such queries are

3

Figure 1.1 Traditional 3-Tier architecture of Location Based Applications

then routed to the LBS. In a typical scenario a web page displays a dynamic map

served by the map renderer and other information from the LBS which is situated in

the middle tier. Middle Tier : This tier provides the core services and functionalities

of the system. A web application hosts the Web Server Pages which constitute the

access point to the system for the users and the LBS, in which several web services are

deployed and exposed on the Internet. This LBS tracks the user sessions, handles the

user pro�les, logs all of the relevant actions performed by the clients and keeps track

of the user location when available. The LBS application server handles user request,

process/analyze them and provides the result or services to the user. Database Tier :

The main function of this tier is to provide the other tiers with spatial information

through LBS information server. It consists of a spatial DBMS, which stores spatial

datasets (e.g. longitude and latitude points) and data related to the user pro�les.

The relevant spatial datasets can be imported from an external data provider (e.g.

4

OpenStreetMap, web crawlers etc.) which can be stored in the spatial DBMS and

updated on a regular basis.

1.2. DEPLOYING LOCATION BASED APPLICATIONS IN THE CLOUD

The architecture described in section 1.1 though provides much needed �ex-

ibility in terms of application development, it still su�ers from many drawbacks.

First, LBS requires to handle millions of data insert and update requests per second,

concurrently. Traditional single master server architecture therefore can become a

bottleneck especially database servers and hence provide poor fault tolerance to the

system. Next, in order to serve high query throughput and to provide low latency,

LBS requires massive parallel processing of requests. Although traditional systems

backed by Relational Database Management Systems (RDBMs) do provide a level

of parallelism at the lowest level (query, bulk insert and update), it is still insu�cient

as the load on the system increases. Not just that, the increase in the load as the

number of user increases presents many threatening problems to the shared database

architecture. The biggest problem it faces is of scaling. In traditional systems, there

are two ways to achieve scalability either by scale-up or by scale-out. Scale-up is

achieved by using larger and more powerful servers which simply have more process-

ing cores, memory and faster storage disks. However it has to be noted that in a

master-slave architecture, we need to scale-up both master and slave servers other-

wise the slaves will fail to keep up with masters update rate and the reverse is also

true. Scale-up incurs almost twice or sometimes thrice the cost of initial hardware

setup cost and therefore it is not a viable option. Scale-out is achieved by increasing

the overall capacity of the system by adding more secondary servers. This method

also does not provide a feasible solution because scaling the database layer while

preserving the strong consistency and referential integrity is not viable [4]. Another

problem with scale-out is that Location Based Applications typically handle more

5

read queries than write queries which adds further CPU and I/O load on the sys-

tem. Apart from scale-up or scale-out, other solutions to provide scalability and load

balancing includes caching and sharding. Caching can reduce the load to a level as

the system can now serve requests by keeping data and objects in-memory. However

maintaining consistency across the servers now becomes a problem as the cache has

to be invalidated and refreshed periodically. Sharding refers to the process of logi-

cally separating the data into horizontal partitions across database servers. It is a

very costly operation as the whole process has to be meticulously planned and the

storage layout has to be rewritten. The characteristics of cloud computing model

in which clusters of commodity servers are used to perform computing tasks with a

utility based pay-per-use model, has now became a feasible and an acceptable solu-

tion to all the above mentioned problems of the traditional application development

architecture. Figure 1.2, shows the best design practice for LBS in a cloud environ-

ment. The single master/slave architecture can now be easily elastically scaled-out

by leasing virtual machines from cloud vendors as per the need. The low cost, ease

of application setup and elastic scalability provided by cloud computing has paved

way to a numerous cloud based applications like Facebook, Foursquare, and NetFlix

etc. and cloud vendors like Amazon Web Services, Rackspace, HP Cloud Services

and Oracle Cloud Services etc.

1.3. MOTIVATION AND CHALLENGES

One of the crucial characteristic which LBS exhibit is the ability to handle

massive data generated by millions of service subscribers at once. For example,

Foursquare has a user base of 30 million people around the world, Yelp has more

than 100 million subscriber with 86 million monthly unique visitors etc. Irrespective

of the cloud's abstraction, data forms the central and critical part of LBS.

6

Figure 1.2 Location Based Application architecture in cloud environment

Data processing in cloud can be divided into two categories which are Online

Transaction Processing (OLTP) and Online Analytical Processing (OLAP). OLTP

database is modeled for business transactional data processing applications which are

mission-critical in nature for example an online banking application. Such applica-

tions require real time processing of transactions where data is changing at the same

time and to provide low latency and high throughput. The OLAP databases, on the

other hand, are modeled to provide business insights like decision making and plan-

ning through data mining. Such databases forms the part of an organizations massive

data warehouses. Databases in data mining applications require to handle more com-

plex and longer running queries and also are more read oriented than write oriented.

As LBS require to process queries in real time with short latency and high query

throughput, our research will be focused on OLTP databases designed for elastically

scalable could computing infrastructure.

7

Relational Database Management Systems (RDBMs) were invented by E. F.

Codd of IBM research labs in 1970 [5] to handle the transactional workload of OLTP

applications. The key characteristics which RDBMs provides includes, a relational

data model which represents data in terms of tuples and declarative schemas, concur-

rency controls by providing guarantee for Atomicity i.e. either all of the transactions

will commit or none will, Consistency i.e. data only validated by pre-de�ned rules

will be saved, Isolation i.e. multiple transactions should not interfere with each other,

Durability i.e. transactions will not be reversed upon their completion (ACID), sup-

port for normalization of data for removing data duplicity and a powerful and rich

query and data manipulation language. Today there are number of RDMBs available

which includes both commercial (Oracle SQL, IBM DB2 and Microsoft SQL) and

open source (MySQL and PostGres).

Although RDBMs have been proved highly successful for traditional transac-

tional based systems, they are ine�cient for cloud infrastructures. One of the biggest

problems of RDBMs is scaling. The relational architecture does not allow to scale-out

the database to many nodes as the requirement of an application to handle tra�c

increases. Scaling-out RDBMs while providing ACID guarantee is expensive due to

distributed synchronization among database server. This can also be well explained

by CAP theorem [6] which states that it is impossible for a distributed system to

provide consistency, availability and partition tolerance simultaneously. Partition

tolerance is essential for LBS built on cloud infrastructure as network partitions are

inevitable. Choosing between availability and consistency, consistency is neglected as

the LBS is expected to be remain online at all the times [7]. Apart from that, LBS

need to handle Big Data which is a term to denote data sets which grows so rapidly

in a small period of time, that it cannot be managed on a single system because

of storage, CPU cycles and memory constraints. Other LBS characteristics which

makes RDMS a poor design choice are, LBS queries are more read oriented than

8

write oriented and LBS queries are attribute focused rather than entity focused. In

summary, data management system of LBS should be able to scale out on demand,

should provide high availability and fault-tolerance and should be easy to administer.

Recent years saw the emergence of key-value stores (also referred as NOSQL

stores) which are modeled to scale-out and provide all the essential features necessary

for cloud based applications. Examples of such key-value stores includes Google's

BigTable [8], Yahoo's PNUTS [9] and Amazon's Dynamo [10] and their various open

source counterparts such as Apache's HBase [11], Facebook's Cassandra [12] etc.

Figure 1.3 shows the di�erence between the traditional RDBMs and the Key-Value

stores. Di�erent key-value stores provide di�erent data models for example, HBase is

designed to provide availability and partition tolerance whereas Cassandra is designed

to provide Consistency and partition tolerance. Irrespective of the data model, the

property which is common in all these key-value stores is the key-value abstraction

in which data is viewed and stored as independent key-value pairs and the access is

supported only at the granularity of single keys. Such abstraction naturally allows

e�cient horizontal data partition and elastic scalability. This abstraction though

satisfy the needs of many present applications, a large number of current web ap-

plications need more than a single atomic key access pattern like LBS. The data in

LBS is inherently multidimensional which mainly compromises of longitude, latitude,

time, user id etc. and therefore it requires a multi-key access.

In key-value stores, data can only be queried based on the key, so a speci�c

keyword or value must be known to perform a search. LBS require to handle mainly

three types of queries - point, range and k nearest neighbor (kNN). These queries

cannot be implemented e�ciently because RDBMs like additional indexes are not

available and any such query on a particular key-value store would require scanning

of all the keys at a minimum to produce results, essentially making this approach not

feasible. Without proper indexing method, even for a simple point query, we need to

9

Consistency Availability

Partition Tolerance

RDBMs

Key-Value
Stores

Figure 1.3 RDBMs versus Key-Value stores

scan the whole data set repeatedly and produce the necessary second indexes in an

o�-line batch manner. Problems with this approach are that the secondary index is

not up-to-date and newly inserted data cannot be queried until they are indexed.

Our research goal is motivated by the fact that LBS requires multidimensional

indexing capabilities to support its rich real-time querying functionality and scalabil-

ity which no cloud data serving system supports currently.

1.4. RESEARCH GOAL AND SCOPE

Our ultimate research goal is to build an e�cient multidimensional index struc-

ture that can be built on an underlying key-value store to provide advance query

capabilities for location based applications on cloud infrastructure.

We have also aimed to provide our indexing structure the ability to support

skewed data set, a robust mechanism for fault tolerance, replication and consistency

management and dynamic provisioning. The thesis focuses on the following lines:

• Distributed Indexing: the design of an e�cient multidimensional index structure

for location based applications on cloud friendly key-value store.

• Load Balancing: the capability of e�ciently handling skewed data.

10

• Rich Query Functionality: the ability to e�ciently process point, range and

kNN queries.

• Elastic Scalability: the capability to extend the index structure in the presence

of dynamic workload.

1.5. SOLUTIONS OVERVIEW

In this paper, we propose MGrid, a novel distributed multidimensional index-

ing framework to support LBSs on cloud platform. Because of the characteristics of

key-value stores which includes availability, horizontal scalability and a distributed ar-

chitecture, it became a natural choice for us to use them as MGrid's storage back-end.

However, the key challenges in developing an index framework on top of a key-value

store are, e�cient modeling of multidimensional data and providing it the ability to

process complex multidimensional queries. MGrid solves the former by using Hilbert

Curve[13] based linearization technique and later by integrating PGrid overlay net-

work. Hilbert Curve maps multidimensional attributes onto single dimensional while

preserving its data locality. On the other hand, PGrid arranges the nodes in a virtual

binary trie and partitions the multidimensional search space into subspaces. MGrid

then processes complex queries by distributing them across the cluster according to

P-Grid's pre�x based routing mechanism.

In summary, this thesis makes the following contributions:

1. We propose a new multidimensional indexing framework, MGrid, which can ef-

�ciently process point, range and kNN queries. MGrid integrates PGrid overlay

network and a range partitioned key-value store.

2. We leverage Hilbert Space Filling Curve based linearization technique to convert

multidimensional data to a single dimension while preserving its data locality.

11

3. We propose algorithms which can dynamically process queries on linearized val-

ues using PGrid's pre�x based routing mechanisms. This removes the overhead

of creating and maintaining a separate index table,

4. We performed extensive experimental evaluations on Amazon EC2 to show the

e�ectiveness and e�ciency of our framework.

1.6. OUTLINE OF THESIS

• Section 2 given background information that forms the basis of our research

• Section 3 presents literature review on previously done related work

• Section 4 describes the design of our proposed distributed multidimensional

indexing framework.

• Section 5 presents the results of our experimental evaluation

12

2. BACKGROUND

In this chapter, we present background information for our research. We

present the idea of linearization using space �lling curves and present Hilbert Space

Filling Curve in detail. We also discuss basic techniques for replication management

and review peer-to-peer (P2P) overlay networks that are commonly used to facili-

tate distributed search. We �nish this chapter by presenting the overview of P-Grid

overlay network which we use to e�ciently route queries in order to process complex

multidimensional queries.

2.1. LINEARIZATION USING SPACE FILLING CURVE

Linearization is a dimensional reduction method which maps multi-dimensional

attributes onto single dimensional space. Space-�lling curve is a linearization tech-

nique in which a continuous curve is constructed visiting every point in a n-dimensional

hypercube without overlapping itself. The bene�ts of using them is that, after map-

ping, neighboring points in n-dimensional space remains close in one dimensional

space also. Therefore, space-�lling curves are widely used in applications like im-

age processing [14], scienti�c computing [15] and geographic information systems [16]

which require sequential access to datasets. In MGrid, we use Hilbert space-�lling

curve [13] to index multidimensional points in the underlying uni-dimensional key-

value store to promote query e�ciency.

The Hilbert Curve is a continuous space �lling curve which induces a sequen-

tial ordering on multi-dimensional points. Formally, Hilbert Curve is a one-to-one

function:

H:[0, 2mn-1]→[0, 2m-1]n

where n is the number of dimensions in a 2mx2m space and n≥2, m>1. This function

13

0 1

0

1

0 1

0

1

00 10 00 11

01 11 01 10

Figure 2.1 A 2-d space and its equivalent First order Hilbert Curve

determines the Hilbert value (H-value) of each point in the original coordinate space

where H-value ∈[0, 2mn-1]. Fig. 2.1 illustrates the coordinates in a 2-dimensional

space and its equivalent Hilbert Curve of �rst order. A curve of order i>1 is con-

structed in a recursive manner where each vertex of the �rst order curve is replaced

by the curve of order i-1, after appropriately rotating and/or re�ecting it to �t the

new curve [17]. This recursive construction process can also be expressed as a tree

structure (Fig. 2.3) to show the correspondence between the coordinate points (n-

points) and their H-values in binary notation [18]. The depth of the tree is equal

to the order of the curve and the root node corresponds to the �rst order curve of

Fig. 2.1. Also, a collection of nodes at any tree level, i, describes a curve of order

i. Generating H-value of a point using a tree structure requires the cardinality of

each attribute to be equal. However in LBSs, the cardinality of the attributes can be

unequal. Hence in MGrid, we compute the H-value using the algorithm presented in

[19] which uses logical operations to e�ciently compute direct and inverse mapping

of a point having unequal attributes on the Hilbert Curve.

Tree Level 1

Tree Level 2

00 01 10 11

00 01 11 10

00 01 10 11

00 01 11 10

00 01 10 11

00 01 11 10

00 01 10 11

00 10 11 01

00 01 10 11

11 01 00 10

H-values

n-points (coordinate values)

Figure 2.2 A tree representation of the second order Hilbert Curve in 2 dimension

14

Beside Hilbert Curve, several space-�lling curves such as Z-Order Curve [20]

and Gray Order Curve [21] are proposed. Fig. 2.3 shows the illustration of second

order Hilbert, Z-Order and Gray Curves for 2 dimensional space. We chose Hilbert

Curve to index multidimensional points in MGrid as it has superior clustering and

strong locality preserving properties as compared to other space-�lling curves [22] [23]

[24]. These properties help MGrid to achieve e�cient clustering of the location points

in the database resulting in low query latency.

0000 0001 1110 1111

1100

1011

1010

1101

1000

1001

0010

0111

0110

0011

0100

0101

00 01 10 11

00

n-points
(binary)

H-value of a
point (binary)

01

10

11

0000 0010 1000 1010

1011
1110

1111

1001

1100

1101

0011

0110

0111

0001

0100

0101

00 01 10 11

00

01

10

11

0000 0011 1100 1111

1110

1001

1000

1101

1010

1011

0010

0101

0100

0001

0110

0111

00 01 10 11

00

01

10

11

Figure 2.3 Illustration of second order Hilbert, Z-Order and Grey-Order Curve for 2
dimensions

2.2. OVERLAY NETWORKS

Peer-to-Peer (P2P) overlay networks o�er a new paradigm for providing scal-

ability, fault tolerance and robustness to distributed systems. In P2P networks, all

nodes are considered as equal and have symmetrical roles. Each node can either act

as a client or a server. The nodes can join or leave the network independently and

they share their resources with other participating nodes. P2P networks are suitable

for large scale distributed applications due to their cooperative nature and �exible

network architecture.

Based upon the search mechanisms used to identify indexed data, P2P net-

works can be classi�ed as either unstructured and structured. Unstructured P2P

networks such as Freenet [25] distributes the data randomly on nodes and uses ei-

ther a centralized index server or �ooding mechanisms for searching. Such searching

15

mechanisms incurs high query latency and therefore are not suited for large scale

data oriented applications such as LBSs. Structured P2P networks such as CHORD

[26], BATON [27], CAN [28], PASTRY [29], P-Grid [30] and P-ring [31] uses a dis-

tributed and scalable access structure to e�ciently distribute and search data items.

Chord and Pastry only supports exact match queries. CAN supports multidimen-

sional queries but it has a high routing cost for low dimensional data. Baton, P-Grid

and P-ring supports one dimensional range queries. However, except P-Grid, none

of the other P2P networks have a truly decentralized architecture. Also, P-Grid

supports pre�x based routing which is integral to our querying algorithms.

2.3. PREFIX-GRID (PGRID) OVERLAY NETWORK

P-Grid is a scalable, self-organized structured P2P overlay network based on a

distributed hash table (DHT). Its access structure is based upon a virtual distributed

binary trie. The canonical trie structure is used to implement pre�x based routing

strategy for exact match and range queries. PGrid assigns each node n a binary bit

string which represents its position in the overall trie and is called path(n) of the node.

This path contains the sequence from leaf to the root. An illustration of P-Grid trie

can be seen in Fig. 2.4. To store a data item, PGrid uses a locality preserving hash

function to convert the data item's identi�er to a binary key κ, where κ ∈ [0, 1[. The

data item is then routed to the node whose path has the longest common pre�x with

κ . For example, the path of node 2 in Fig. 2.4 is 10, therefore it stores all the data

items whose keys begin with 10.

P-Grid employs a completely decentralized, parallel and distributed construc-

tion algorithm which can construct the overlay network with short latency. The

construction process is strictly based on local peer interactions which is done by ini-

tiating random walks on pre-existing unstructured overlay network. Each node in

P-Grid maintains a routing table which stores the information about the paths of

16

other nodes in the network. Speci�cally, for each bit position, it maintains the ad-

dress of atleast one node that has a path with the opposite bit at that position. This

information is stored in the routing table in the form of [path(n), FQDN(n)] where

FQDN(n) is the fully quali�ed domain name of the node. Details of the construction

algorithm can be found in [32].

2.3.1. Searching in P-Grid. P-Grid utilizes a simple but e�cient strategy

to process exact match and range queries [33]. For executing an exact match query,

the query is mapped to a key and routed to the responsible node whose path is in a

pre�x relationship with the key. For example, in Fig. 2.4, a query for 1111 is issued

to node 2 which is responsible for storing the keys starting with 01. As Node 2 cannot

satisfy the query request, it searches its routing table and forwards the query to node

4, which has the longest common pre�x of 1 with the query. Node 4, upon getting

the request, searches its local storage to �nd the data item associated with the key

1111. If the key exists, node 4 sends an acknowledgement message to node 6 which

can then request the data. The complexity of the exact match process is O(logΠ),

where Π is the number of messages exchanged and is independent of how the P-Grid

is structured.

Subtrie
 0

Virtual Binary
Search Trie

00* 10* 11*

1 : 3
01 : 2

Routing Table : route keys with pre�x P to peer XP : X

Stores
data with

pre�x
00

1 : 4
00 : 1
Stores

data with
pre�x

01

0 : 1
11 : 4
Stores

data with
pre�x

10

0 : 2
10 : 3
Stores

data with
pre�x

11

1 2 3 4

Subtrie 1

Subtrie 01

Figure 2.4 An example P-Grid trie

P-Grid processes a range query in a parallel and concurrent manner. The

intuition behind the query processing strategy is to divide the P-Grid trie in subtries

17

and selectively forwarding the query to only those nodes of the subtries whose paths

intersects with the query. For example, in Fig 2.4, node 1 issues a range query, having

1000 as the lower bound and 1101 as the upper bound. Node 1 splits the P-Grid trie

in 2 subtries i.e. 01 and 1. Node 1 forwards the query for subtrie 1 to node 3. The

subtrie 01 of node 2 does not intersect with the query and therefore ignored. Node

3, after getting the request, repeats the same process and forwards the query to node

4. The search cost of the range query process is independent of the size of range of

the query but depends on the number of data items in the result set.

2.3.2. Comparison between P-Grid and Other Overlay Networks.

Table shows the comparison between P-Grid and other popular overlay networks

CHORD and CAN.

Table 2.1 Comparison between P-Grid and other p2p networks

Min Routing Search Method Search Cost
Chord Binary Tree Equality O(logn)
CAN Grid Equality O(n1/d)
P-Grid Binary Trie Pre�x O(logn)

18

3. RELATED WORK

Query processing on large data volume has been the center of research in the

computer science community since the evolution of cloud computing. This �eld is

predominantly dominated by two classes of scalable data processing systems. The

�rst class uses underlying key-value store to manage structured data, for example,

Google's Bigtable [34], Apache HBase [11], Apache Cassandra [12], Amazon's Dy-

namo [10] and Yahoo's PNUTS [9]. These systems while being fault tolerant, highly

scalable and available, can e�ciently process simple keyword based queries. However,

these systems do not provide multi-attribute access as they lack additional secondary

indexing capabilities. The second class uses a distributed storage system such as

Google's GFS [35] and Apache's HDFS [36] to manage unstructured data. Both the

systems relies on scanning the entire dataset using parallel processing approaches (for

e.g. Mapreduce [8]) in order to process complex queries such as range and kNN on

multidimensional data which incurs high query latency.

To address this problem, authors in [37] presents a general framework for e�-

cient processing of multidimensional data on cloud systems. In their index framework,

processing nodes are arranged in a BATON overlay network and each node builds a

local B+-tree or hash index on its data. To speed up query processing and data access,

a portion of local index is selected and published in the overlay network which forms

its global index. Based upon the similar two level index architecture three more

indexing schemes are proposed. Authors in [38] proposes RTCAN, which builds a

global index by publishing selective local R-tree indexes on C2 overlay network. EM-

INC [39] is an indexing framework in which individual slave nodes builds a KD-tree

[40] on its local data and a global R-tree index is build on a master node. QT-Chord

[41] is an indexing framework which builds IMX-CIF Quad-tree on local data and

19

distributes the hashed codes to the Chord overlay network. Lastly, the work in [42]

proposes an in-memory indexing framework PASTIS which uses compressed bitmaps

to construct partial temporal indexes. All the aforementioned schemes provides e�-

cient algorithms to process queries. However, such solutions either lack stability in

terms of handling data size as the local and global indexes have to be stored in main

memory, or are expensive to implement.

In MGrid, we combine the best of both the systems by arranging the nodes

in a overlay network and using a range partitioned key-value store to manage data

without the overhead of maintaining a separate index table. This allows it to scale

linearly as the data size grows while sustaining high insert and update rates. Further-

more, MGrid can also e�ciently process point, range and kNN queries on secondary

attributes which is a key requirement for LBSs.

In this chapter, we survey the various proposed solutions in this area. Our goal

is to critically examine the current state-of-the art and propose our advancements.

We end this chapter by providing a comprehensive list of pros and cons of the current

proposed solutions in a tabular form. .

3.1. SYSTEMARCHITECTURE: MASTER-SLAVE VERSUS P2P BASED
SYSTEM DESIGN

The current proposed solutions can be broadly classi�ed into two categories

based on the design of system architecture they employ. The �rst category is of

approaches which employ master-slave architecture. In 2009, Xiangyu Zhang et al.

proposed an indexing framework called EMINC [39] for cloud data processing. The

global multi-dimensional index of this platform is built by �rst building local indices

on each individual slave nodes using KD tree and then selectively publishing the set of

KD tree nodes on the master nodes and maintaining them as R tree. Query processing

can be done by choosing all the nodes in the cluster as candidates of the query as

20

knowledge about data distribution on each slave node is not maintained 3.2. In the

record retrieving phase, each node utilizes the local KD-tree index to get records on

that node.

Figure 3.1 EMINC index structure consists of a R-tree in master nodes and one
KD-tree on each slave node [39]

Distributing local indices on slave nodes without maintaining any meta-data

leads to ine�ciency of query processing which can be improved by maintaining bound-

ing information of each dimension on each node and prune irrelevant nodes during

query processing. To prune irrelevant nodes, node cube for each slave node is con-

structed. A node cube is a sequence of value intervals and each interval represents

the value range of one indexed attribute on this node. After building a cube for each

slave node, the cubes on master nodes is maintained as an R-tree. With EMINC,

the authors uses bounding technique to �lter unnecessary queries but it has some

limitations and could be further extended using Extended EMINC (EEMINC). In

EEMINC data records on one slave node will be represented by multiple node cubes.

As the slave node accumulates more and more data update operations, node

cubes may need to be updated (reshaping) since the data distribution within a node

cube may be sparse or uneven again. The reshaping process is similar to the process

of cutting the original single cube into several small cubes by using the techniques like

21

Random cutting, Equal cutting and Clustered based cutting. To decide when to do

the reshaping, a Cost Estimation based update strategy is employed. Experimental

evaluations demonstrated that such a framework can execute point and range query

e�ciently. However, the framework has some limitations as the distribution of data

records on slave nodes depends on the method used for cutting the original single

node cube. If the method is not chosen properly, data records on a slave node will be

represented by several node cubes and hence the performance of the framework will

deteriorate.

Based on the similar system architecture, Shoji Nishimura et al. in 2011

proposed MD-HBase indexing scheme [43]. This approach uses the z-order space

�lling linearization technique to convert multi-dimensional space into a linear space.

The key for the key/value data store is the z-value of the multi-dimensional data point.

A global index is created of the linearized multi-dimensional data points. The design

of multi-dimensional index layer is as follows. The indexing layer assumes that the

underlying data storage layer stores the items sorted by their key and range-partitions

the key space. The keys correspond to the z-value of the dimensions being indexed;

for instance the location, user-id and timestamp. The author uses the trie-based

Figure 3.2 MD-HBase uses linearization technique to support multidimensional
queries [43]

approach (splits the space at the mid-point of a dimension, resulting in equal size

splits) for space splitting. The index partitions the space into conceptual subspaces

that are in-turn mapped to a physical storage abstraction called bucket. The authors

proposed a novel naming scheme for subspaces to simulate a trie-based KD-tree and

22

a Quad-tree, called as longest common pre�x naming. In this naming scheme, keys

which share the longest common pre�x with other keys are stored in the same bucket.

To execute a point query, the key is �rst searched in the global index of sorted

subspaces. The search for the subspace �nds the entry that has the maximum pre�x

matched with the z-value of the query point; this entry corresponds to the highest

value smaller that the z-value of the query point. After �nding the corresponding

bucket-id, data item is searched locally in that bucket.

For range query, the z-value of the lower bound determines the �rst subspace

to scan. The search is continued until the subspace which corresponds to the upper

bound is identi�ed. All the subspaces which are between the lower and the upper

bound are potential candidate subspaces and should be searched to get the points

which satisfy the query. However, this technique has a drawback. As the number of

data points increases the number of false positives also increases. Thus pruning those

irrelevant subspaces incur delay in query processing.

The process of �nding nearest neighbor is based upon the best �rst algorithm

which consists of two steps, subspace search expansion and subspace scan. During

subspace search expansion, the search region is incrementally expanded and then the

subspaces are sorted in the region in order of the minimum distance from the queried

point. The next step scans the nearest subspace that has not already been scanned

and sorts points in order of the distance from the queried point.

The maximum numbers of points which can be stored in a bucket is determined

by the bucket size of the underlying storage layer. Since the index layer is decoupled

from the data storage layer, a subspace split when an over�ow occurs in the data

storage layer is handled separately. A split in the index layer relies on the �rst

property of the pre�x naming scheme which guarantees that the subspace name is

a pre�x of the names of any enclosed subspace. A subspace split in the index layer

therefore corresponds to replacing the row corresponding to the old subspace's name

23

with the names of the new subspaces. Experimental evaluations were conducted using

open source key-value store called HBase and shows that this method is e�ective even

while handing skewed datasets.

Both these frameworks though provides e�cient query processing su�ers from

a major drawback. As the number of users subscribed to LBS increases, the number

of concurrent requests and the amount of data to be processed increases exponentially.

As the size of the global index depends on the size of the data stored locally, the master

server proves to be a single point of failure and thus the master-slave architecture is

ine�cient for handing LBS.

To overcome the aforementioned drawbacks of a master-slave architecture, the

next category of indexing frameworks employs overlay routing protocols to arrange

nodes in a cluster. In 2010, Sai Wu et al. improved their previous work done in [37]

and proposed CG-Index (Cloud-Global Index) [38]. In this approach, on a shared-

nothing cluster, data is �rst partitioned along the primary key and then the partitions

are distributed to nodes in the cluster which are organized in a Baton overlay struc-

ture. Each node builds a B+ tree index on its local data which facilitates search for

a secondary key.

However, due to the absence of any centralized coordinator, to perform any

query, the query has to be �ooded on all nodes where the local search can be performed

in parallel. This naive strategy is very costly and also not scalable. To overcome this

drawback, the authors proposed to build a global primary index over the local B+

tree. As shown in �gure 4.3, some of the B+ tree nodes (shown in red) are �rst

published and then indexed on the cluster nodes based upon the Baton's default

routing mechanism.

To process a query, the B+ tree nodes which overlaps the query are �rst

identi�ed in the CG-Index and then the query is processed locally on those B+ -

tree nodes in parallel. The provide eventual consistency and to handle updates, the

24

authors proposed lazy update strategy in which after a prede�ned time threshold, all

updates are committed together on the corresponding nodes. Also, to guarantee the

robustness of their index structure, replicas of both the CG-Index and B+ tree nodes

are maintained in the cluster. This technique though e�cient has several drawbacks.

The proposed CG-Index can just index single column and thus cannot support queries

referring to multiple attributes. Another problem is that B+ tree based index cannot

support KNN queries due to irregular sub space shape.

In our research, we architect an indexing framework which combines the best

of both these system model. Our proposed indexing framework M-Grid arranges the

serving nodes in P-Grid overlay structure so that the system can be scaled to handle

millions of user requests simultaneously and avoid the risk of being a bottleneck. To

support queries on multiple attributes, we used h-curve based linearization technique

which has the best clustering property. Furthermore, we use H-Base key-value store

to demonstrate the e�ectiveness of our scheme.

3.2. COMPARISON MATRIX

The table 3.1 compares the three papers reviewed in the earlier section.

25

Table 3.1 A Review of Presented Indexing Schemes

Categories CG-Index EMINC MDHBase
Supports multi-
dimensional
queries

No Yes Yes

Data Storage
Layer Impacted
by Approach

No No yes

Uses structured
overlay

Yes No No

Users master
nodes

No Yes No

Base indexing
approach

CG-Index
Global B+ -tree
index for all the
compute nodes
in the network

local K-d tree
index for each
slave node

Global Index
Quad or kd in-
dex of linearized
data points

Scalability increases with
the increase
in number of
processing node

linear with the
number of nodes

table per bucket
and table shar-
ing designs
showed low
scalability

High Through-
put

No No Yes

26

4. THE MGRID INDEX FRAMEWORK

The MGrid indexing framework constitutes a federation of shared-nothing clus-

ter of nodes leased from the cloud. Our primary goal in designing MGrid is to support

LBSs by having a truly decentralized and a distributed architecture which can be

scaled according to the need of the application. MGrid achieves this by adopting a

simple two tiered architecture. The upper tier is based on the P-Grid overlay network

which is responsible for routing queries and assigning sub-spaces to the computing

nodes. Whereas, the lower tier utilizes the underlying key-value store (HBase in our

implementation) to maintain data, depending on the type of data model being used

(section 4.3).

4.1. OVERVIEW

Our architecture splits the query processing in two phases. In the �rst phase,

the node responsible for storing the subspace is identi�ed by searching the routing

table. The routing table holds the references of all the other nodes which are at an

exponential distance from its own position in the search space. This is achieved by

arranging the node in a virtual binary trie structure. In the second phase, the query

is forwarded to the responsible nodes which processes it locally. Although P-Grid

e�ciently divides the search space in a self-organizing manner, the cost associated

with its maintenance protocol is very high. P-Grid dynamically assigns new sub-

spaces to the nodes by extending their paths for distributing load in the network.

This operation is very costly for LBSs as they manage large volumes of data, and,

dynamically changing the assignment will lead to moving of data from one node to

another. Furthermore, P-Grid is a probabilistic data structure which uses best-e�ort

strategy for processing queries. Thus, after issuing a query, it is not possible for a

27

node to calculate the exact number for response messages it has to expect for getting

the complete result. However, MGrid processes kNN queries by iteratively perform-

ing range searches and with each iteration, the system has to wait until it receives all

the results for further processing which is not viable in P-Grid. MGrid solves these

problems by making the following changes in the original architecture of P-Grid:

(i) It creates a balanced network by associating only one node with each leaf of the

virtual trie. This assigns each node to a unique subspace.

(ii) It provides the ability to start a P-Grid network from a prede�ned pre�x to

handle data skewness.

(iii) It modi�es the maintenance protocol so that, after network stabilization, nodes

do not extend their paths.

(iv) For e�cient query processing, each node stores the information about all the

other nodes in the network. Consequently, the cost of routing queries in terms

of messages is reduces from O(logΠ) to 3 in the worst case scenario.

The resultant high-level overview of our architecture is shown in Fig. 4.1. We

construct MGrid using the bottom-up approach in which, nodes are �rst arranged in

an HBase cluster and then joins the overlay network. The construction is done in an

o�-line procedure and has a small one time set-up cost. Data insertion can be done at

any node. To insert the data, we �rst calculate the H-value of the multi-dimensional

point and insert it according to the data models presented in section 4.3.

4.2. DATA STORAGE LAYER

MGrid is a storage platform independent framework which allows us to use

any key-value store as per the need of the application. We use Apache HBase [11] to

store the H-value of a multidimensional point which we use as the unique rowkey. In

28

Local Data Local Data Local Data Local Data

Application
Client

Query Request

Query Response

HBase

00*

0* 1*

01* 10* 11*

Storage Layer

Overlay Layer

Data Insert

Routing Table
of node 1

01 : 2

10 : 3

11 : 4

1 2 3 4

1 2 3 4

Figure 4.1 MGrid's System Architecture

this section, we describe the overview of HBase and the two data models, Table per

Node and Table Share, we used to store data in MGrid.

4.2.1. Apache HBase. Apache HBase is a distributed, non-relational key-

value datastore modeled after Google's BigTable [34] and built on top of HDFS [36].

It is designed to provide high scalability, partition tolerance and row-level consistency

which makes it suitable for big data applications such as LBSs. A table in HBase is

composed of multiple rows and columns. Each row is identi�ed by a unique primary

rowkey. The columns are grouped into column families where each column family

is identi�ed by a pair of pre�x:quali�er. The column pre�x is static and needs to

be de�ned while creating the table whereas the quali�ers can be added dynamically

while inserting the data. Thus, we need to specify atleast two attributes in order to

get a value from a table which are the rowkey and the column family identi�er.

The physical architecture of HBase consists of a master server and a collection of

slaves called region servers. Each region server contains multiple regions and each

region stores a sorted continuous range of rowkeys which belong to a table. HBase

provides auto-sharding, which means that when the size of a region exceeds a pre-

de�ned threshold, it dynamically splits the region into two sub regions. This allows

HBase to achieve horizontal scalability as the volume of data grows. Despite having

29

a Master/Slave architecture, the role of a master server is limited to handle adminis-

trative operations like monitoring the cluster, assigning regions to region servers and

creating, modifying or deleting a table. The read and write operations are provided

directly from the region servers even if the master server fails.

4.3. STORAGE MODELS

4.3.1. Table per Node (TPN) Model. In this model, each node is re-

sponsible for maintaining their own separate table. When a node joins MGrid, it

creates a table in HBase by the name of its own FQDN. The nodes stores the rowkeys

locally according to the subspace they are responsible for. For example, in Fig. 2.4,

node 3 which has a path '10' will store all the rowkeys which has a '10' pre�x. This

model e�ciently maps the key space to the responsible node allowing parallel and

independent query operations. As the rowkeys are stored locally, this model provides

low access latency. However, the insert operation is expensive since the pre�x of a

rowkey needs to be checked for �nding the responsible node before its insertion.

4.3.2. Table Share (TS) Model. In this model, all the nodes share a single

table to manage data rowkeys. This model allow us to e�ciently insert keys directly

in the table without checking their pre�xes. Thus this model can sustain high insert

throughput. However, as each table is distributed across the server, this model has

high access latency. An important observation to note here is that when we employ

TPN, the overlay layer is used for both data partitioning and routing the queries

where as in the case of TS model, the overlay layer is used just for the purpose of

routing queries.

30

5. QUERY PROCESSING

In this section, we present how MGrid inserts data in the network and it

executes multi-dimensional point, range and kNN query processing.

5.1. DATA INSERT & POINT QUERY

Data insert and point query can be executed by using the P-Grid's search

mechanism to forward the insert or query request to the responsible node but it

involves additional routing cost. Our algorithm (Algorithm 1 & 2) e�ciently insert

the data and process the point query respectively, by leveraging the key-value store's

ability to provide direct data access. We modify the data insert point query algorithm

with respect to two storage model described in section (4.3). In Algorithm 1, to insert

a point, we �rst compute the binary H-value(rowkey) of the point (line 1). Next, for

Table per Node model, insert operation is split into two phases. In the �rst phase,

we search the routing table ρ, to �nd the name (FQDN) of the node whose path has

the longest common pre�x with the rowkey (line 2). This model stores the data in

a table whose name is set to the name of the node, hence this step is su�cient to

�nd the name of the table responsible for storing the point. In the second phase, we

insert rowkey by the standard insert operation on that table (line 3). For Table Share

model, we can easily insert rowkey in the prede�ned shared table (line 5). The steps

for inserting a point p are shown below:

Given a d-dimensional point p = (p1, ..., pd), our point query strategy tries to

identify the value v associated with p. To process the query, we �rst compute the

H-value of the point to calculate the rowkey (line 1). Next, similar to our insert

algorithm, for Table per Node model, the query processing is split into two phases.

In the �rst phase, we search the routing table ρ, to �nd the name (FQDN) of the

31

Algorithm 1 Data Insert (point p)
1: rowkey ← computeH-value(p)

// Table per Node //
2: n.Table = Pre�xMatchingBinarySearch(ρ, rowkey)
3: n.Table.insert(rowkey)
4: return true

// Table Share //
5: sharedTable.insert(rowkey)
6: return true

node whose path has the longest common pre�x with the rowkey (line 2). In the

second phase, we retrieve v by the key-lookup operation on that table. For Table

Share model, we can easily retrieve v by simple key-lookup operation on shared table.

Algorithm 2 Point Query Processing(p)
Input query point p
Output value v associated with p

1: rowkey ← computeH-value(p)
// Table per Node //

2: n.Table = Pre�xMatchingBinarySearch(ρ, rowkey)
3: return (v ← lookup(key,n.Table))

// Table Share //
4: return (v ← lookup(key, sharedTable))

5.2. RANGE QUERY PROCESSING

A range query is a hyper-rectangular region formed by lower and upper bound

coordinates, (l1, l2, .., ln) and (u1,u2, ..,un) with mini ≤ li ≤ ui ≤ maxi. P-Grid's trie

based partitioning divides the linearized space into equal size subspaces and assigns

subspaces to the nodes according to their paths. The range query region intersects

with one or more subspaces. A naïve range query strategy will try to retrieve all the

points contained in the query region by searching between the subspaces which the

query lower and upper bound intersects. This querying strategy works with other

32

space-�lling curves such as Z-order which loosely preserves the data locality but not

in Hilbert Curve as in each curve, the orientation of subspaces is di�erent(Fig. 2.3).

For example, consider the range query Q1 as shown in Fig. 5.1. Its lower bound

and upper bound coordinates are A (01, 01) and F (11, 10). The equivalent H-value

range of this query is 〈0010, 1011〉. A level two binary trie partitions the space into

equal size four quadrants namely 00, 01, 10 and 11. The �rst subspace to be searched

is determined by the H-value of the lower bound which is 00. All the subsequent

subspaces which lies between the lower and upper subspaces needs to be searched in

order to get the points which are contained in the range query. In this example, the

naïve querying strategy will search the 00, 01 and 10 subspaces. The subspace 11

though intersects with the query will be skipped.

Our range query algorithm (Algorithm 3) is based upon the method described

in [44] and [45]. The intuition behind the algorithm is to �nd the boundaries of only

those subspaces which the query region intersects. Thus the original query range

is divided into many smaller sub-ranges. Our algorithm divides the range query

processing in two phases as described below:

(i) In the �rst phase, we divide the original range query into smaller sub-queries,

one for each subspace which the query region intersects (line 5). We perform

this by calculating the lowest H-value of the point in each subspace lying within

the query region. We call that point as the next-match and the function which

calculates it as the calculate-next-match().

(ii) In the second phase, we process each sub-query according to P-Grid's search

mechanism which forwards the sub-query to all the nodes whose path intersects

with the upper and the lower bound of the sub-query.

33

00 01 10 11

00

01

10

11

00*

01* 10*

11*

A

B

C D

E

F

G
Q1

Q2

query lower
point

query upper
point

Figure 5.1 Example of a Range Query on points mapped to the Second Order
Hilbert Curve in 2 dimensions

Subspaces can be viewed as logically ordered by the lowest H-value of a point

in a subspace and we call it as the subspace-key. For example, the subspace-key

of subspace 11 in Fig. 5.1 is 1100. In general terms, a subspace-key is also the

point where the Hilbert Curve enters in a subspace. Subspaces which intersects

with the query region are iteratively identi�ed in ascending subspace-key order by

calculate-next-match() function. In the �rst iteration, the calculate-next-match()

tries to identify the lowest H-value of any point lying within the query region. The

�rst subspace in which the next-match lies is identi�ed by giving the value of 0 as

the input. In the second iteration, the calculate-next-match() tries to �nd the lowest

H-value of a point which is equal or minimally greater than the subspace-key of the

successor to the subspace searched in the previous iteration. The process is e�ected

by a variable current-subspace-key which stores the current value of subspace-key in

each iteration. For �nding the intersecting subspaces, calculate-next-match iteratively

performs a binary search on the node which will be explained later. To illustrate the

operation of calculating sub-ranges using calculate-next-match() function, consider

an example range query Q2 as shown in Fig. 5.1.

(i) The range query Q2, is de�ned by providing the lower and upper bound coordi-

nates C (01,10) and E (10,11) respectively. The H-value equivalent of this range

query is 〈0111, 1001〉

34

(ii) The current-subspace-key is initially set to the subspace-key of subspace 00, ie

to 0000

(iii) The calculate_next_match() function is called and it determines that the H-

value of point C is the �rst next-match to the query, i.e. 0111.

(iv) The current-subspace-key is set to the subspace-key of the successor subspace,

ie subspace 10. Its subspace-key is the H-value of point D, i.e. 1000.

(v) The calculate_next_match() is called and it determines that the next-match to

the current-subspace-key to be the H-value of point D, ie the current-subspace-

key is its own next-match.

(vi) The current-subspace-key is set to the subspace-key of the successor subspace,

ie subspace 11. Its subspace-key is the H-value of point G, i.e. 1100.

(vii) The calculate_next_match() is called and it determines that there is no higher

next-match to the current-subspace-key. The query process therefore termi-

nates.

To �nd the next-match, we determine the lowest sub-space which intersects

with the current query region by using the binary search algorithm. This algorithm

iteratively determines the lowest sub-space which intersects with the current query

region at any node of the tree (where a node of a tree represents a collection of

sub-spaces ordered by their H-values). In each iteration we will discard half of the

sub-spaces and descends down the correct branch of the tree until we �nd the next-

match at the leaf level. Also, this descent is an iterative process where with each

iteration, we restrict the user de�ned search space with the bounds of the subspace

being searched. The new bounds are collectively called at current-query-region which

is initially set as the original query region. We start with computing the lower and

upper n-points by concatenating the bits at position k (k is the level of tree) of the

35

lower and upper bounds of the current query region. Once we have these n-points,

we determine whether the query regions intersects with the lower half or (and) upper

half of the sub-spaces. To do so we use a function, h_to_c(). Solving this function

using the H-values of a sub-space will give us its n-points. If the H-values of a sub-set

of sub-spaces are in the following range:

[lowest,..., max-lower, min-higher,...,highest]

then all sub-spaces whose H-values are in the lower sub-range [lowest,...,max-lower]

have same value (either 0 or 1), for their coordinates in one speci�c dimension, i.

Whereas sub-spaces having their H-values in the higher sub-range have the opposite

value in the same dimension, i. To �nd the value of i, we compute a n-point variable

called partitioning dimension (pd) by performing the operation:

pd : h_to_c(max-lower) ⊕ h_to_c(min-higher)

In order to �nd the exact value of this dimension i (0 or 1) we calculate a variable j

as:

j: pd ∧ h_to_c(max-lower)

If 'j' evaluates to '00', it indicates that the value at the ith dimension is 0, otherwise 1.

We then compare the value of 'j' with that of the previously obtained lower n-point

and upper n-point of the current-query-region. If the values (0 or 1) at dimension i,

of lower and/or upper n-points is the same as that of the value at the ith dimension

of j, then the current query region intersects with the nodes.

We extend our previous example to show how two next-matches, i.e. 0111 and

1100, are calculated for the query region Q2 with the help of the tree representation

of the Hilbert Curve as shown in Fig 2.2

Step 1: Tree Level 1 (root): The current-subspace-key is initialized as the

subspace-key of subspace 00, i.e. to 0000. Since we are at root level, the lower and

upper bounds of current-query-region are same as original query region, i.e. (01,10)

and (10,11). The n-points enclosing the current-query-region at this level are formed

36

from the top bits taken from its coordinates. Thus the lower n-point is 01 and the

upper n-point is 11. In order to �nd the lowest subspace intersecting with the current-

query-region at root, the binary search proceeds as follows:

Step 1.1: The �rst iteration of binary search determines whether the query

region intersects with the lower subspaces (00 and 01) in the following manner. First,

pd is calculated as h_to_c(01) ⊕ h_to_c(10) which evaluates to 01 ⊕ 11, i.e 10.

This implies that lower subspaces 00 and 01 have the same coordinate value at x

dimension and higher subspaces 10 and 11 have the opposite coordinate value at the

same x dimension. Secondly, j is calculated as h_to_c(01) ∧ pd which evaluates to 01

∧ 10, i.e. 0. This implies that lower subspaces have the value of 0 for their coordinate

in the x dimension and higher subspaces have the value of 1 for their coordinate at

x dimension. This is also con�rmed by Fig. 2. Since the lower n-point also has

the value of 0 for its x coordinate, the current-query-region must intersect with the

lower subspaces. We also note that, since the upper n-point has the value of 1 for its

x coordinate, the higher subspaces 10 and 11 also intersect with the current-query-

region and if the next-match is not found in lower subspaces, it will be found in one

of higher subspaces.

Step 1.2: The second iteration of binary search now determines the lowest

subspace, among 00 and 01 subspaces, intersecting with current-query-region. First,

pd is calculated as h_to_c(00) ⊕ h_to_c(01) which evaluates to 00 ⊕ 01, i.e 01.

Secondly, j is calculated as h_to_c(01) ∧ 00, i.e. 0. This implies that subspace

00 has a value of 0 and subspace 01 has a value of 1 for their y coordinate. Since

the lower and upper n-point have a value of 1 for its y coordinate, subspace 01 is

the lowest among the lower subspaces (00 and 01) which intersects with the current-

query-region.Binary search at root node shows that subspace 01 is the lowest subspace

which intersect with the current-query-region. The next-match is modi�ed to 01.

37

Step 2: Tree Level 2: The search for next-match now descends one level

down to level 2 following the subspace 01 in the root node. The current-query-region

is restricted to subspace 01 which has the lower and upper bound coordinates of

(00,00) and (01,01). The current-query-region is then calculated as the intersection

of original query bounds with the 01 subspace bounds ((01,10) ∩ (00,10) and (10,11)

∩ (01,11)). Query lower bound coordinates which are less than the restricted search

space equivalents are increased and upper bound coordinates which are greater than

the restricted search space equivalents are decreased. The current-query-region is

then bounded by the points (01,10) and (01,11). Similar to the previous steps, the

�rst iteration of binary search �nds that the current-query-region intersects only with

the higher subspaces. The second iteration of binary search �nds that the subspace 10

is the lowest subspace intersecting with the current-query-region. The next-match is

modi�ed to 0110. Since there are no more levels to descend, calculate_next_match()

terminates and the search for the next-match is now complete.

Step 3: Tree Level 1:In the next step, current-subspace-key is set to the

subspace-key of the subspace following the one just searched, i.e 1000. A binary

search of root node �nds that subspace 10 is the lowest subspace intersecting with

the current-query-region, i.e. (01,10) and (10,11). The next-match is modi�ed to 10.

Step 4: Tree Level 2: The search for next-match now descends one level

down to level 2 following the subspace 10 in the root node. The current-query-region

is then restricted to bounds (10,10) and (10,11). The binary search determines that

00 is the lowest subspace intersecting with the query region. The next-match to the

current-subspace-key is determined to be the H-value of point D (10,10), i.e. 1000,

current-subspace-key is its own match. As we are the leaf level, the search for next-

match is now complete. After getting the required next-matches, we calculate the

sub-ranges in the following manner. The lower bound of a sub-query is set as the

next-match. The upper bound is set as the subspace-key of the successor subspace

38

minus one, if its not the last logical subspace. If the subspace is the last logical

subspace, then the upper bound is set as the H-value of the last point on the curve.

Thus for the previous example, we get the sub-ranges as (0110, 0111) and (1000-

1011). After calculating the required sub-ranges, we use P-Grid's search mechanism

to forward the sub-queries to the responsible node (line 7). For example, in Fig. 4.1,

the sub-query (0110,0111) will be forwarded to node 1 and sub-query (1000-1011) will

be forwarded to node 2. Upon getting the request, each node will search their local

storage and return only those points which intersect with the sub-query to the node

which has issued the query.

The complexity of the range query algorithm depends on two factors, the

order of the curve which determined by the number of bits in the coordinate value

of each dimension and the number of dimensions. Also, of the operations performed

during each iteration, none has a complexity which exceeds O(n). Thus the overall

complexity of the range querying algorithm is as O(kn) where k is the number of

iterations.

Algorithm 3 Range Query Processing (ql, qh)

Input: query lower point ql, query higher point qh
Output: result set Rq

1: Rq ← φ
2: Sr ← φ
3: Hl ← computeH-value(ql)
4: Hh ← computeH-value(qh)
5: Sr ← calculateSubRanges(Hl,Hh)
6: for each s ∈ Sr do
7: Rq ← PGrid.Search(s)
8: end for each
9: return Rq

39

5.3. KNN QUERY PROCESSING

Given a set of points N in a d-dimensional space S and a query point q ∈ S,

our query processing algorithm returns a set of k ∈ N points which are closer to q

according to some distance function. It is challenging to execute kNN query e�ciently

in overlay networks as we do not have any prior knowledge of data distribution among

the nodes. Recent solutions proposed in [46] [47] [48] uses di�erent distributed data

structures built on decentralized P2P systems but such solutions are not scalable.

[49] and [50] proposed solutions based on MapReduce framework to process k nearest

neighbor query on large volumes of data. However, such methods incur high query

latency.

To alleviate these problems, we present a simple query processing strategy. Our kNN

query processing algorithm iteratively performs range search with an incrementally

enlarged search region until k points are retrieved. Algorithm 3 illustrates the steps

of our algorithm. In line 2, we �rst construct a range r, centered at the query point

q and with initial radius δ = Dk/k, where Dk is the estimated distance between the

query point q and its kth nearest neighbor. Dk can be estimated by using the equation

[51]:

Dk ≈
2 d

√
Γ(d

2
+ 1)

√
π

(1−

√
1− d

√
k

N
) (5.1)

where Γ(x+ 1) = xΓ(x), Γ(1) = 1 and Γ(1
2
) = π

2
, d is the dimensionality and N is the

cardinality.

After getting the required lower (ql) and upper (qu) bounds of the range query

in line 5 and 6, we perform a parallel range search is in line 7 to get desired k points

in the result set. If k points are not retrieved for the �rst time, we increase the range

(line 11) and repeat the process from line 5 to 12. The complexity of our algorithm

depends on two factors, the data distribution among the nodes and the value of k.

40

Algorithm 4 k Nearest Neighbors (q, k)

Input: query point q, number of nearest neighbors k
Output: k nearest neighbors

1: Qresult ← φ
2: δ ← estimateRadius(k)
3: r ← δ
4: while true do
5: ql ← q − r
6: qh ← q + r
7: Qresult ← RangeSearch(ql, qh)
8: if |Qresult| ≥ k then
9: return top k results of Qresult

10: else
11: r ← r + δ
12: end if
13: end while

41

6. EXPERIMENTAL EVALUATION

We implemented MGrid on Amazon EC2 with a cluster size of 4, 8, and 16

nodes. Each of these nodes is a medium instance of EC2 consisting of 4 virtual cores,

15.7 GB memory, 1.6 TB HDD con�gured as a RAID-0 array and Centos 6.4 OS. The

nodes are connected via a 1 GB network link. The data storage layer was implemented

using Hadoop 1.2.1 and HBase 0.94.10. Experiments for point, range and kNN queries

were carried out on a synthetic dataset containing 400 million points. This dataset

was generated using a network based generator of moving objects [52] which simulated

the movement of 40,000 objects on the road map of San Francisco bay area. Each

object moved 10,000 steps and reported its location (longitude, latitude) at successive

timestamps. The dataset follows a skewed distribution since the generator uses a real

world road network. We ran a simple MapReduce (MR) job to compute the minimum

and maximum values of points in the dataset and set the path of the nodes according

to the common pre�x of those values. This helped us to e�ciently distribute the

dataset among the nodes. We also kept the precision on longitude and latitude values

as 1 meter by 1 meter.

We performed extensive experimentations on 2-d and 3-d datasets to show

the e�ectiveness of MGrid's TPN and TS data models. Index layer using Hilbert

Curve (H-order) without the overlay layer was implemented as the baseline. We

also evaluated MGrid's performance against MDHBase [43] indexing scheme's Table

per Bucket (MDH-TPB) and Table Share (MDH-TS) data model∗. Furthermore, we

compared the performance of range queries with MapReduce.

∗We could not evaluate the performance of MDHBase for all the experiments as the authors

have only published results for 3-d dataset on a 4 nodes cluster size except for insert throughput

experiment.

42

6.1. PERFORMANCE OF INSERT

The growing trend in LBSs are characterized by their need for scalability. We

evaluated MGrid's scalability using YCSB [53] benchmarking tool. Fig. 6.1 depicts

the performance of insert throughput as a function of load on the system on a cluster

having 4, 8 and 16 nodes. We varied the number of workload generators from 2

to 96 where each workload generated 10,000 inserts per second based on Zip�an

distribution. We ran the workload generator simultaneously on di�erent nodes and

aggregated the results. For TS model, the insert throughput scales almost linearly as

the number of workload generators increases in accordance to the horizontal scalability

provided by HBase. However, TPN model's insert throughput �rst increases and then

decreases as a result of the insertion trend; for less number of workload generator,

TPN model e�ciently uses a systems's resources to insert the data simultaneously in

di�erent tables. For a location update interval of 60 seconds, the TS model achieved

a peak throughput of approximately 840K inserts per second and can handle around

48-52 (840x60) million users. Whereas, the TPN model achieved a peak throughput

of approximately 660K inserts per second and can handle around 38-42 (660x60)

million users. Moreover, the performance of both designs exceeds MDHBase by over

4 times and the gap becomes larger as the number of nodes increases. The reason

behind MHDBase's low scalability is the cost associated with splitting the index layer

which blocks other operations until its completion. In MGrid, there is no splitting

cost associated with insert operation as the TPB design stores all the data on the

responsible node and the TS design allow us to pre-split the table before insertion.

6.2. PERFORMANCE OF POINT & RANGE QUERY

Multidimensional point and range queries are the most frequent queries in

LBSs. MGrid processes the point query by directly querying the HBase table. On

43

0 20 40 60 80
0

2

4

6

8

10

Number of Workload Generators

Th
ro

ug
hp

ut
(in

se
rt

s/
se

c)
x
1
0
5

4 Nodes

0 20 40 60 80
0

2

4

6

8

10

Number of Workload Generators

Th
ro

ug
hp

ut
(in

se
rt

s/
se

c)
x
1
0
5

8 Nodes

0 20 40 60 80
0

2

4

6

8

10

Number of Workload Generators

Th
ro

ug
hp

ut
(in

se
rt

s/
se

c)
x
1
0
5

16 Nodes

TS

TPN

MDHBase TPB/KD

MDHBase TS/KD

MDHBase RPB/KD

Figure 6.1 Performance of Insert Throughput as a Function of Load on the System

the other hand, range queries are processed by �rst dividing it into multiple sub-

queries and then simultaneously forwarding each sub-query to the responsible node

by using the overlay layer. Fig. 6.2 shows the e�ect of varying the number of nodes

on the performance of 3-d point queries for TPN, TS and H-order models. When we

increase the number of nodes, the average response times increases for all the models

except for TPN model. The TS and H-order models have the same response time as

they both use the same querying strategy. However, the response time of the TPN

model is longer than the other models because of the cost associated with searching

the routing table to �nd the relevant node. We also found that the response time

for processing 2-d point queries is approximately equal to the processing of 3-d point

queries.

44

4 8 16
0

20

40

60

80

100

Number of Nodes

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-order

Figure 6.2 Performance of Point Query (D=3)

Fig. 6.3 and 6.4 shows the performance of 2-d range queries for TPN, TS,

H-order, and MR models with di�erent selectivity and node size respectively. The

query response time of TPN, TS and H-order models increases almost linearly as we

increase the number of nodes (Fig. 6.3). On the contrary, the response time of MR

remains constant as it performs a full scan of the dataset to execute the query and

thus its response time is independent of the selectivity. The performance of TS and

TPN model exceeds that of other models, especially for queries with larger selectivity.

Since range queries with larger search area will intersect with more subspaces resulting

in several sub-queries. However, the increase is not exponential since sub-queries are

executed in parallel. The results are corroborated from Fig. 6.8, which depicts the

e�ect on average range query response time by increasing the number of nodes and

keeping selectivity as 10%. The average query response time decreases as we increase

the number of nodes since an increase in the number of nodes results in e�cient

distribution of data.

Furthermore, the performance of TPN model is superior than that of TS model

because TPN model stores all the data locally on the nodes whereas TS model dis-

tributes the data across the clusters. In Fig. 6.3 and 6.4 we perform the set of

experiments done for 2-d dataset on a 3-d dataset. Fig. 6.4 shows the performance

45

.01 .1 1 10
10−1

100

101

102

Selectivity (%)

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-order MR

Figure 6.3 Performance of Range Query (Nodes=4, D=2)

4 8 16

101

102

Number of Nodes

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-order MR

Figure 6.4 Performance of Range Query (Selectivity=10%, D=2)

of 3-d range query as a function of selectivity on a 4 node cluster. When we increase

the selectivity, the average query response time of our models increases. In this ex-

periment, we also compared the results of our models with MDHBase's TPB and

TS data model in addition to H-order and MR models. The results of our models

shows better performance even for larger selectivity. This is because, in MDHBase

uses additional index layer for pruning result sets whereas in our schemes there is no

such overhead. Also, both of our designs show three order of magnitude improvement

over MapReduce model. The results obtained from 2-d datasets are much better than

that of 3-d dataset, since the complexity of our range processing algorithm depends

46

on the number of dimensions and on the order of the curve, i.e. the number of bits

in each dimension.

.01 .1 1 10

100

101

102

Selectivity (%)

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-order MDH-TPB MDH-TS MR

Figure 6.5 Performance of Range Query (Nodes=4, D=3)

4 8 16

101

102

103

Number of Nodes

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-order MR

Figure 6.6 Performance of Range Query (Selectivity=10%, D=3)

6.3. PERFORMANCE OF KNN QUERY

MGrid processes the k nearest neighbor (kNN) query iteratively. We �rst

estimate the distance between the query point and its kth nearest neighbor using

(5.1), which becomes the initial search radius. Then, we perform a range search to

retrieve k results. If the k results are not returned, we increase the search space

and perform the range search again. Thus the performance of kNN computation

is directly correlated to the performance of our range search. Fig. 6.7 shows the

47

performance of kNN queries for TPN, TS and H-order models on a 2-d dataset by

varying the value of k from 1 to 10K on a 4 node cluster. The average response time

of kNN query increases for all the models when the value of k increases, since the

query space increases as we increase k. However, this increase in average response

time is not exponential because range queries with larger search space is processed

using more nodes. Our obtained results are validated in Fig. 6.8, where we set the

value of k to 10K but increase the number of nodes from 4 to 16. The results of this

experiment shows that the average query response time decreases as the number of

nodes in the cluster increase because larger range queries will intersect more subspaces

and thus more nodes will be involved. However, the decrease is again not exponential

because after issuing a range query, the system waits until it receives results from

all of the nodes involved. In both the experiments, the TPN and TS models show a

performance improvement of 4 to 5 times as compared to H-order design. In Fig.

1 10 100 1K 10K
0

5

10

15

Number of Neighbors

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-Order

Figure 6.7 Performance of kNN Query (Nodes=4, D=2)

6.9 and 6.10 we performed the set of experiments of 2-d dataset on a 3-d dataset.

We show the e�ect of varying the parameter k on a 4 node cluster and compare the

results with MDHBase and H-order designs in Fig 6.9. The average response time

of our models increase with the increase in value of parameter k, which validates the

results depicted in Fig. 6.7. However, 3-d kNN queries take more time to process

as compared to 2-d since the complexity of performing range queries increases with

48

4 8 16
0

5

10

15

Number of Nodes

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-order

Figure 6.8 Performance of kNN Query (k=10K, D=2)

number of dimensions. For k=1, the TPN and TS models gives superior performance

with an average response time of approximately 500ms and 700ms respectively, in

contrast to H-order, MDHBase TPB and TS models being approximately 800ms,

2000ms amd 3000ms respectively. In our experiments, we also observed that for

k<100, the search space does not expand large enough to intersect more than two

subspaces. For k>100, the kNN query processing results in range searches with larger

radius which intersects with more than two subspaces. Thus, the performance of H-

order model degrades for k>100 while that of TPN and TS models continue to show

better performance. In Fig. 6.10, we compare the e�ect of varying the number of

nodes on the performance of 3-d kNN queries by setting the value of k as 10K. The

results for this experiment are consistent with those of the experiments performed for

2-d dataset (�g 6.8). We expect the performance of our designs for kNN processing

to be better on uniform dataset as the equation 5.1 provides more accurate estimation

of initial search range for uniform dataset. Thus, the kNN processing will require less

number of range search iterations to retrieve k results.

49

1 10 100 1K 10K
0

5

10

15

Number of Neighbors
A

ve
ra

ge
R

es
po

ns
e

Ti
m

e(
se

c)

TPN TS H-order MDH-TPB MDH-TS

Figure 6.9 Performance of kNN Query (Nodes=4, D=3)

4 8 16
0

5

10

15

Number of Nodes

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e(

se
c)

TPN TS H-order

Figure 6.10 Performance of kNN Query (k=10K, D=3)

50

7. CONCLUSIONS

In this thesis we present and evaluate MGrid, a multidimensional indexing

framework for location aware services on cloud platform. MGrid is a scalable, com-

pletely decentralized and platform independent indexing framework which can e�-

ciently process point, range and nearest neighbor queries. MGrid �rst arranges the

nodes leased from cloud in a P-Grid overlay network which virtually partitions the

whole space in a binary tri-structure. Next, for e�cient storage and retrieval of multi-

dimensional data, we exploit Hilbert Space Filling Curve based linearization technique

to convert multidimensional data into one dimensional binary keys. This technique

allowed us to map the keys to the peers according to their paths while preserving data

locality. We develop algorithms to dynamically process range and nearest neighbor

queries which allowed us to remove the limitation of creating and maintaining a sepa-

rate index table. We conducted extensive experiments using a cluster size of 4, 8 and

16 modest nodes on Amazon EC2. Our results shows that MGrid achieves almost

four times better performance than its previous counterpart. In future we wish to

extend our framework by providing it the ability to create di�erent index structures

on-the-�y based upon users choice and to support wider variety of queries including

skyline and spatial-joins.

51

BIBLIOGRAPHY

[1] Peter M. Mell and Timothy Grance. Sp 800-145. the nist de�nition of cloud
computing. Technical report, Gaithersburg, MD, United States, 2011.

[2] Gavin Mcardle, Andrea Ballatore, Ali Tahir, and Michela Bertolotto. An open-
source web architecture for adaptive location-based services, 2006.

[3] Agnes Voisard Jochen Schiller. Location-Based Services - The Morgan Kaufmann
Series in Data Management Systems. Morgan Kaufmann, 2014.

[4] Lars George. HBase: the de�nitive guide. " O'Reilly Media, Inc.", 2011.

[5] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13:377�387, 1970.

[6] Seth Gilbert and Nancy Lynch. Brewer's conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. SIGACT News, 33:51�59, 2002.

[7] Daniel J. Abadi. Data management in the cloud: Limitation and opportunities.
Technical report, 2009.

[8] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on
large clusters. Commun. ACM, pages 107�113, 2008.

[9] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoo!'s hosted data serving platform. Proc. VLDB Endow.,
pages 1277�1288, 2008.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon's highly available key-value
store. SIGOPS Oper. Syst. Rev., 41:205�220, 2007.

[11] http://hbase.apache.org/. [Last Accessed 2014-08-20].

[12] http://cassandra.apache.org/. [Last Accessed 2014-08-20].

[13] D Hilbert. Ueber stetige abbildung einer linie auf ein �ashenstuck. Mathematishe
annalen, 32:459�460, 1893.

[14] Fei Li, Rongguo Chen, Chenghu Zhou, and Mingbo Zhang. A novel geo-spatial
image storage method based on hilbert space �lling curves. In Geoinformatics,
2010 18th International Conference on, pages 1�4, 2010.

52

[15] M. Pavanakumar and K.N. Kaushik. Revisiting the space-�lling curves for stor-
age, reordering and partitioning mesh based data in scienti�c computing. In High
Performance Computing (HiPC), 2013 20th International Conference on, pages
362�367, 2013.

[16] Chunyang Hu, Yongwang Zhao, Xin Wei, B. Du, Yonggang Huang, Dianfu Ma,
and Xuan Li. Actgis: A web-based collaborative tiled geospatial image map
system. In Computers and Communications (ISCC), 2010 IEEE Symposium on,
pages 521�528, 2010.

[17] A. R. Butz. Alternative algorithm for hilbert's space-�lling curve. IEEE Trans.
Comput., 20:424�426, 1971.

[18] T. Bially. Space-�lling curves: Their generation and their application to band-
width reduction. Information Theory, IEEE Transactions on, 15(6):658�664,
1969.

[19] C.H. Hamilton and A Rau-Chaplin. Compact hilbert indices for multi-
dimensional data. In Complex, Intelligent and Software Intensive Systems, 2007.
CISIS 2007. First International Conference on, pages 139�146, 2007.

[20] G Morton. A computer oriented geodetic data base and a new technique in �le
sequencing. International Business Machines Company, 1966.

[21] F. Gray. Pulse code communication. 1953.

[22] B. Moon, H.V. Jagadish, C. Faloutsos, and J.H. Saltz. Analysis of the clustering
properties of the hilbert space-�lling curve. Knowledge and Data Engineering,
IEEE Transactions on, 13:124�141, Jan 2001.

[23] DAVID J. ABEL and DAVID M. MARK. A comparative analysis of some two-
dimensional orderings. International journal of geographical information systems,
4:21�31, 1990.

[24] Mohamed F. Mokbel, Walid G. Aref, and Ibrahim Kamel. Performance of multi-
dimensional space-�lling curves. In Proceedings of the 10th ACM International
Symposium on Advances in Geographic Information Systems, GIS '02, pages
149�154, 2002.

[25] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
A distributed anonymous information storage and retrieval system. In Interna-
tional Workshop on Designing Privacy Enhancing Technologies: Design Issues
in Anonymity and Unobservability, pages 46�66, 2001.

[26] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, SIGCOMM '01, pages 149�
160, 2001.

53

[27] H. V. Jagadish, Beng Chin Ooi, and Quang Hieu Vu. Baton: A balanced tree
structure for peer-to-peer networks. In Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB '05, pages 661�672, 2005.

[28] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. SIGCOMM Comput. Com-
mun. Rev., 31:161�172, 2001.

[29] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, Middleware '01, pages 329�350, 2001.

[30] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-grid: A self-
organizing structured p2p system. SIGMOD Rec., 32:29�33, 2003.

[31] Adina Crainiceanu, Prakash Linga, Ashwin Machanavajjhala, Johannes Gehrke,
and Jayavel Shanmugasundaram. P-ring: An e�cient and robust p2p range index
structure. In Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, SIGMOD '07, pages 223�234, 2007.

[32] Karl Aberer, Anwitaman Datta, Manfred Hauswirth, and Roman Schmidt. In-
dexing data-oriented overlay networks. In Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB '05, pages 685�696, 2005.

[33] Anwitaman Datta, Manfred Hauswirth, Renault John, Roman Schmidt, and Karl
Aberer. Range queries in trie-structured overlays. In Proceedings of the Fifth
IEEE International Conference on Peer-to-Peer Computing, P2P '05, pages 57�
66, 2005.

[34] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A distributed storage system for structured data. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation
- Volume 7, OSDI '06, pages 15�15, 2006.

[35] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The google �le sys-
tem. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP '03, pages 29�43, 2003.

[36] http://hadoop.apache.org/. [Last Accessed 2014-08-20].

[37] Sai Wu and Kun-Lung Wu. An indexing framework for e�cient retrieval on the
cloud. IEEE Data Eng. Bull., 32(1):75�82, 2009.

[38] Jinbao Wang, Sai Wu, Hong Gao, Jianzhong Li, and Beng Chin Ooi. Indexing
multi-dimensional data in a cloud system. In Proceedings of the 2010 ACM

54

SIGMOD International Conference on Management of Data, SIGMOD '10, pages
591�602, 2010.

[39] Xiangyu Zhang, Jing Ai, Zhongyuan Wang, Jiaheng Lu, and Xiaofeng Meng.
An e�cient multi-dimensional index for cloud data management. In Proceedings
of the First International Workshop on Cloud Data Management, CloudDB '09,
pages 17�24, 2009.

[40] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509�517, 1975.

[41] Linlin Ding, Baiyou Qiao, Guoren Wang, and Chen Chen. An e�cient quad-
tree based index structure for cloud data management. In Web-Age Information
Management, volume 6897 of Lecture Notes in Computer Science, pages 238�250.
2011.

[42] Rolando Blanco Suprio Ray and Anil K. Goel. Supporting location-based services
in a main-memory database. Proceedings of the IEEE International Conference
on Mobile Data Management (MDM), 2014.

[43] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Md-
hbase: A scalable multi-dimensional data infrastructure for location aware ser-
vices. In Proceedings of the 2011 IEEE 12th International Conference on Mobile
Data Management - Volume 01, MDM '11, pages 7�16. IEEE Computer Society,
2011.

[44] J. K. Lawder. Querying multi-dimensional data indexed using the hilbert space-
�lling curve. SIGMOD Record, 30:2001, 2001.

[45] https://code.google.com/p/uzaygezen/. [Last Accessed 2014-08-20].

[46] Yuzhe Tang, Jianliang Xu, Shuigeng Zhou, Wang-Chien Lee, Dingxiong Deng,
and Yue Wang. A lightweight multidimensional index for complex queries over
dhts. IEEE Trans. Parallel Distrib. Syst., 22:2046�2054, 2011.

[47] Egemen Tanin, Deepa Nayar, and Hanan Samet. An e�cient nearest neighbor
algorithm for p2p settings. In Proceedings of the 2005 National Conference on
Digital Government Research, dg.o '05, pages 21�28, 2005.

[48] Jun Gao. E�cient support for similarity searches in dht-based peer-to-peer sys-
tems. In In IEEE International Conference on Communications (ICCâ��07,
2007.

[49] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. E�cient processing of
k nearest neighbor joins using mapreduce. Proc. VLDB Endow., 5:1016�1027,
2012.

[50] Aleksandar Stupar, Sebastian Michel, and Ralf Schenkel. Rankreduce - process-
ing k-nearest neighbor queries on top of mapreduce. In In LSDS-IR, 2010.

55

[51] Yufei Tao, Jun Zhang, Dimitris Papadias, and Nikos Mamoulis. An e�cient cost
model for optimization of nearest neighbor search in low and medium dimensional
spaces. IEEE Trans. on Knowl. and Data Eng., 16:1169�1184, 2004.

[52] Thomas Brinkho�. A framework for generating network-based moving objects.
Geoinformatica, 6:153�180, 2002.

[53] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC '10, pages 143�154, 2010.

56

VITA

Shashank Kumar was born in Moradabad, India in 1986. His initial schooling

took place in four di�erent schools. He earned his bachelorâ��s degree in Computer

Science & Engineering from Uttar Pradesh Technical University at Lucknow in 2009.

After his graduation, he started his own company, Webvity which specialized in web

development and headed numerous prestigious projects for Government of India.

Shashank came to the Missouri University of Science and Technology in 2011,

where he earned his Masters of Science in Computer Science, in Aug, 2014. While

there, he worked as a research assistant with Dr. Sanjay Madria, focusing on cloud

database management and query optimization.

	M-Grid : A distributed framework for multidimensional indexing and querying of location based big data
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	TRADITIONAL ARCHITECTURE OF LOCATION BASED APPLICATIONS
	DEPLOYING LOCATION BASED APPLICATIONS IN THE CLOUD
	MOTIVATION AND CHALLENGES
	RESEARCH GOAL AND SCOPE
	SOLUTIONS OVERVIEW
	OUTLINE OF THESIS

	Background
	LINEARIZATION USING SPACE FILLING CURVE
	OVERLAY NETWORKS
	PREFIX-GRID (PGRID) OVERLAY NETWORK
	Searching in P-Grid
	Comparison between P-Grid and Other Overlay Networks

	Related Work
	SYSTEM ARCHITECTURE: MASTER-SLAVE VERSUS P2P BASED SYSTEM DESIGN
	COMPARISON MATRIX

	The MGrid Index Framework
	OVERVIEW
	DATA STORAGE LAYER
	Apache HBase

	STORAGE MODELS
	Table per Node (TPN) Model
	Table Share (TS) Model

	Query Processing
	DATA INSERT & POINT QUERY
	RANGE QUERY PROCESSING
	kNN QUERY PROCESSING

	Experimental Evaluation
	PERFORMANCE OF INSERT
	PERFORMANCE OF POINT & RANGE QUERY
	PERFORMANCE OF kNN QUERY

	CONCLUSIONS
	BIBLIOGRAPHY
	VITA

