
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2015

Argumentation based collaborative software architecture design Argumentation based collaborative software architecture design

and intelligent analysis of software architecture rationale and intelligent analysis of software architecture rationale

NagaPrashanth Chanda

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Chanda, NagaPrashanth, "Argumentation based collaborative software architecture design and intelligent
analysis of software architecture rationale" (2015). Masters Theses. 7389.
https://scholarsmine.mst.edu/masters_theses/7389

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7389?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ARGUMENTATION BASED COLLABORATIVE SOFTWARE

ARCHITECTURE DESIGN AND INTELLIGENT ANALYSIS OF SOFTWARE

ARCHITECTURE RATIONALE

by

NAGAPRASHANTH CHANDA

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2015

Approved by

Dr. Xiaoqing (Frank) Liu, Advisor

Dr. Maggie Cheng

Dr. Dan Lin

Copyright 2015

NAGAPRASHANTH CHANDA

All Rights Reserved

iii

ABSTRACT

A growing model for software architecture defines it as a set of principle design

decisions which drive system architects to design the architecture satisfying software

requirements and architectural constraints. The design decision making process in-

volves a group of stakeholders exchanging their viewpoints to address various concerns

and to reach a consensus collaboratively. These architecture design decisions are usu-

ally made based on experiences since there aren’t defined methods and models for

architecture design. Each design decision yields a set of outcomes which impacts

both the system architecture and the final product. As software product systems,

tend to be large in size, one need to understand the rationale behind decision of

each architectural element. This justifies the system design and avoids any critical

architectural problems in future due to volatile requirements. Often, the architecture

rationale behind various design decisions is not fully captured and hence affects the

maintainability of software systems. In order to address the above research challenge,

we developed an online intelligent software architecture rationale capture system (IS-

ARCS) that enables stakeholders located at various geographical locations to resolve

a design issue and capture the rationale behind issue resolution. The system captures

a structured design rationale which maintains its links to software requirements and

architectural elements.

This thesis also focuses on analyzing the architecture rationale captured dur-

ing stakeholders discussion in various perspectives to provide stakeholders with a

more detailed view that aids them in decision making. We propose use of intelligent

argumentation analysis and various data mining techniques to analyze the software

architecture rationale to unearth interesting information. Finally, a comprehensive

empirical study is presented along with its experimental results.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who have helped me during this

research. Firstly, I would like to thank my advisor Dr. Xiaoqing (Frank) Liu for giving

me the opportunity to work on this project, his valuable insights and suggestions have

helped me to overcome many hurdles during this work. I am grateful to him for the

advice and guidance he gave me throughout my Masters program. I also thank Dr.

Xiaoqing (Frank) Liu for his moral support during my tough times by understanding

and encouraging me to focus on my goals. Further, I thank the Intelligent Systems

Center for most of the funding during my Masters program. I would also like to thank

Dr. Maggie Cheng and Dr. Dan Lin for being part of my thesis committee and taking

time to review this work.

A special thanks to all my friends whose constant support and encouragement

has always been crucial for me. Finally, I would like to dedicate this work to my par-

ents (Mr. Sheshagiri and Mrs. Swaroopa) and my siblings (Mr.NagaPraneeth Chanda

and Mrs. NagaPrasanna Choudhary) for their emotional support and unconditional

love and sacrifices.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION . 1

1.1. SOFTWARE ARCHITECTURE RATIONALE CAPTURE 2

1.2. ANALYSIS OF SOFTWARE ARCHITECTURE RATIONALE 3

1.3. ORGANIZATION OF THESIS . 4

2. RELATED WORK . 5

2.1. ARCHITECTURE KNOWLEDGE MANAGEMENT 5

2.2. ARGUMENTATION SYSTEMS . 6

3. BACKGROUND. 8

3.1. INTELLIGENT ARGUMENTATION SYSTEM.. 8

4. ISARCS : INTELLIGENT SOFTWARE ARCHITECTURE RATIONALE
CAPTURE SYSTEM. 10

5. INTELLIGENT ANALYSIS OF SOFTWARE ARCHITECTURE RATIO-
NALE . 16

5.1. ANALYSIS OF SOFTWARE CONCERNS . 16

5.2. CLASSIFICATION OF STAKEHOLDERS VIEWPOINTS 18

vi

5.3. SOFTWARE REQUIREMENT TRACEABILITY . 20

5.4. TOPIC ANALYSIS . 23

6. EVOLUTIONARY ANALYSIS OF SOFTWARE ARCHITECTURE RATIO-
NALE . 25

6.1. DETECTION OF CONVERGENCE USING POLARIZATION
GROUPS . 25

6.2. DETECTION OF INFLUENTIAL ARGUMENT CHAINS. 29

6.3. DETECTION OF ACTIVE AND INACTIVE STAKEHOLDERS 32

6.4. DETECTION OF HOT ARGUMENTS . 33

6.5. DETECTION OF TRENDING TOPICS . 36

7. EXPERIMENTAL EVALUATION. 38

7.1. EXPERIMENTAL SETUP .. 38

7.2. DATA COLLECTION.. 40

7.2.1. ISARCS Discussion . 41

7.2.2. Industrial Experts Opinion . 44

7.3. INTELLIGENT DATA ANALYSIS . 44

7.3.1. Analysis of Software Concerns . 44

7.3.2. Classification of Stakeholders Viewpoints . 45

7.3.3. Requirements Traceability . 47

7.3.4. Topic Analysis . 48

7.4. EVOLUTIONARY DATA ANALYSIS . 49

7.4.1. Convergence Using Polarization Groups . 49

7.4.2. Detection of Influential Argument Chains . 50

7.4.3. Detection of Hot Arguments . 52

7.4.4. Detection of Active and Inactive Stakeholders . 54

7.4.5. Detection of Trending Topics . 54

vii

8. CONCLUSION AND FUTURE WORK . 56

BIBLIOGRAPHY. 57

VITA . 60

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1. Sample Argumentation Tree Reduction . 9

4.1. Software Architecture Design Flow. 11

4.2. Design Issue Relationship . 12

4.3. ISARCS Software Architecture . 12

4.4. A Snapshot of ISARCS. 14

4.5. Argument Relationship. 14

5.1. Sample Argumentation Tree for Collective Opinion Analysis 19

5.2. Traceability of Requirements and Architectural Elements . 21

6.1. Sample Argumentation Tree to Determine Stakeholder Favorability 27

6.2. Clustering Evolution of a Stakeholder . 31

6.3. Sample Tree of a Stakeholder . 31

6.4. Evolution of Individual Opinions of a Stakeholder . 33

6.5. A Sample Argumentation Tree . 35

7.1. Software Architecture of Collab . 39

7.2. Sample Argument Tree from Experiment . 42

7.3. Design Decision using ISARCS . 42

7.4. Traceability of Requirements and Architectural Elements . 48

ix

LIST OF TABLES

Table Page

5.1. Effect of Software Concerns . 17

5.2. Classification of Stakeholders Arguments . 20

5.3. Relationship among Issues, Requirements and Architecture Elements 22

5.4. Requirements Traceability Matrix . 23

6.1. Cluster Groups For Two Design Alternatives . 26

6.2. Cluster Groups For Three Design Alternatives . 27

6.3. Argument ID vs Number of Follow up Arguments . 35

7.1. Sample Requirements List . 41

7.2. Sample Argument List on Design Alternative 1 . 43

7.3. Effect of Concerns on Design Alternatives . 44

7.4. Collective Opinion Analysis . 46

7.5. List of Classified Arguments . 47

7.6. Topic Analysis . 49

7.7. Clustering Evolution . 50

7.8. Influential Argument Chain for Stakeholder 2 on Design Alternative 1 51

7.9. Transition of Cluster Groups of Two Stakeholders . 52

7.10. Influential Argument Chain for Stakeholder 1 on Design Alternative 2 52

7.11. List of Hot Arguments Since Start of Discussion (Overall Basis) 53

7.12. List of Hot Arguments on Each Day (Daily Basis). 53

7.13. Number of Follow up Arguments Received by Stakeholders 54

7.14. Evolution of Opinion Weights on Design Alternatives for a Stakeholder 54

7.15. Evolution of Trending Topics . 55

1. INTRODUCTION

Software development is currently seen as an iterative process [1]. There are

many phases involved in designing a software product following various software en-

gineering methodologies as part of software development life cycle. The software

requirements collected during requirements gathering phase play a key role in de-

veloping the software product in later phases of development cycle. The software

products developed should fulfill the customer requirements to the maximum extent.

During one of the phases, based on the software requirements, the software

architects design the architecture for the system. The software architecture design

plays a vital role in software development since it provides framework of system for

later development activities. The design of software architecture involves a decision

making process to reach to a consensus by various design architects. During the de-

sign, the architects should make sure that the design decisions that they have taken

are in congruence with software requirements. The mistakes made in architecture

design have a significant impact on final product that is developed. Hence, the ar-

chitects and other stakeholders of an organization should spend significant amount of

effort during architecture design to avoid any defects in future during development.

The design of software architecture involves design decisions that are taken by

design architects in order to fulfill various software requirements. The selection of ar-

chitecture elements and the justification of design decisions are found in architecture

rationale [2]. These set of principle design decision which describe software archi-

tecture [3], drives architects to develop an architecture that satisfies and reflects the

software requirements. The main idea for representing design decisions is to bridge

gap between software requirements and architectural products [4].

The requirements play a significant role in designing software architecture.

2

These requirements define what the system should do, whereas software architecture

describes how this is achieved [1]. In order to fulfill the customer requirements,

the software architecture can be designed in multiple ways. The software architects

should analyze tradeoffs between conflicting requirements and make a design decision

accordingly. The software architecture has been considered as a structure composed of

components, connectors, constraints and rationale [5]. The functionality depicted in

the architecture in terms of components and connectors should adhere to the software

requirements.

The software requirements are main pillars to build software architecture.

There are many design issues that arise in order to fulfill the stated requirements.

The design decisions that are taken during resolution of a design issue have their own

respective rationales which are often not documented as part of software artifacts.

Most of the time, the rationale for design is limited to remain only in the brains of

the designers. Therefore, due to the absence of the software architecture rationale, the

architects face difficulties to modify the architecture of system as they are not able to

assess the impact of changes on existing requirements and previous trade off decisions.

In order to effectively develop a software product based on software architecture, the

rationale should be captured and maintained and thus improving the understandabil-

ity of software architecture. Hence, we can couple the software architecture design

with its corresponding rationale and improve the efficiency of software development.

By maintaining the rationale, architects can now trace back the software architecture

elements to the design decision as well to their related software requirements.

1.1. SOFTWARE ARCHITECTURE RATIONALE CAPTURE

The satisfaction of software requirements is regarded as a design issue. There

are many design solutions called design alternatives which can be chosen as a design

in order to resolve a design issue. Each design alternative has its own pros and cons in

3

satisfying the requirements to an extent. The pros and cons of each design alternative

have to be analyzed in various perspectives in their level of satisfying the related

requirements. In order to resolve such a design issue, the design alternatives have to

be analyzed by various stakeholders of an organization. But, different stakeholders

may have different viewpoints in order to address the design issue. Some of the

viewpoints may be contradictory while some of them might be similar. The viewpoints

of all the stakeholders needs to be considered and analyzed in order to reach to a

consensus that addresses the concerns of entire group. Generally, architects design the

software architecture based on their experience and knowledge but sometimes their

knowledge is limited and may not provide a fruitful end result. So, the stakeholders

need to collaboratively exchange their views and thus build an organized rationale

that enables them to reach to a most viable design solution.

An online intelligent software architecture rationale capture system (ISARCS)

is developed that enable stakeholders from various geographical locations to partici-

pate in an online discussion to share their viewpoints in terms of arguments in order to

resolve a design issue. Stakeholders can either attack or support a design alternative

that resolves a design issue. The entire argumentation maintains its link to related

software requirements and software architectural elements. The argumentation ra-

tionale captured during online discussion, serves like a justification for evolution of

software architecture. A huge argumentation tree that is built during design issue

resolution is analyzed to identify the most favored alternative by most of the stake-

holders.

1.2. ANALYSIS OF SOFTWARE ARCHITECTURE RATIONALE

The argumentation data that is captured during stakeholders discussion is

analyzed using various data mining techniques in different perspectives to provide

stakeholders with a more comprehensive view that supports them in selecting a best

4

design solution.

After the argumentation process, the data is analyzed using various approaches

to classify the arguments, to develop a traceability matrix based on rationale and to

perform topic analysis. The stakeholders viewpoints can also be analyzed to detect

the impact of selection of a design alternative based on various software concerns.

On other hand, since the discussion is spanned for several days. The data that

is captured on each day of argumentation can be analyzed to unearth some interesting

information. Different evolutionary approaches are proposed to show the convergence

of discussion to reach to a consensus, to detect arguments that have changed some

of the stakeholders opinions, to detect the participation of stakeholders in discussion

and to detect arguments which have gained significant attention during discussion.

1.3. ORGANIZATION OF THESIS

The rest of the thesis is organized as follows. Section 2 presents a review

about the related work in field of software architecture management. In Section

3 details about background of Intelligent Argumentation System. Further, Section

4 explains in detail about the process employed to capture software architecture

rationale using ISARCS. In Section 5, intelligent analysis of architecture rationale is

discussed. Later, in Section 6, we explain about various approaches that are used to

perform evolutionary analysis on architecture rationale. Finally, in Section 7, we talk

about the empirical evaluation of a case study which exemplifies different approaches

proposed with experimental results.

5

2. RELATED WORK

This section presents the literature review of related research. 2.1 presents

the work done in field of architectural knowledge management and 2.2 discusses the

related work of other argumentation systems.

2.1. ARCHITECTURE KNOWLEDGE MANAGEMENT

There has been a significant amount of work in architectural knowledge man-

agement in order to bridge gap between software architecture and architecture design

decisions. In one of the approaches proposed by Fabian et al [6], design decision

are concrete bindings between requirements and from requirements to their mani-

festations as model elements in architectural models. The architectural knowledge

rationale is maintained as documentation linked to architectural significant require-

ments. Van et al [1] proposed an approach to bridge gap between rationale and

architecture artifacts by uniting them into a concept of a design decision. In another

approach, Perry et al [7] considers the management of architecture design decision an

important aspect in case of global software development. Also, they consider that the

rationale provides a design decision that serves as a justification for the architectural

elements. Capilla et al [8] proposes a web based tool, ADDSS, for documenting design

decision during architecture design. The proposed approach connects requirements

to architectures via design decisions and enables traceability between them. ADDSS

captures rationale by linking motivating factor to design decision made, also stores

design pattern knowledge. PAKME [9] captures design alternatives as cases from lit-

erature. It considers that a design case consists of problem and solution, patterns and

tactics used, rationale and related design options. Cui et al [10] proposed a design

centric architectural design in which stakeholders determine the architectural issue

6

from requirements as well as their solutions. The system explores all the feasible

combinations of the issue solutions and combines the feasible combinations to gener-

ate architectural solution. They as well measure the pros and cons of each solution

to generate an architectural solution. Architecture as design decisions was presented

by Lytra et al [11]. The system automates component and constraint generation

based on design decisions. Each design decision has a set of outcomes, which are

mapped directly to architectural elements they generated in the component model,

allowing for each component to be traced back to its corresponding design decision.

Savolainen and Mannisto [12] proposed a method of creating architectural views that

more prominently communicate the conflicts from multiple perspectives between key

stakeholders concerns. It helps in capturing architectural rationale based on inter-

actions among stakeholders. Bratthall et al [13] propose the importance of design

rationale in change management and also an approach to document the architectural

knowledge to verify change impact.

All the above methods discussed states the importance of maintaining archi-

tecture rationale for software architecture management. But, they fail to propose a

method to capture the rationale by consulting various stakeholders of organization.

Apart from that, the rationale captured by above methods are not structured and

organized in terms of arguments, requirements and other architectural elements. The

methods also fail to analyze the architectural rationale from multiple perspectives to

fetch more information that helps stakeholders to understand the design issue and

design decision in detail.

2.2. ARGUMENTATION SYSTEMS

There is also a large amount of work done in collaborative decision making

through argumentation. Most of the argumentation systems proposed follow Stephen

Toulmins model of argumentation [14]. The first method was gIBIS [15] which repre-

7

sents design dialog as a graph. The method displays arguments, issues, and positions

in the form of a graph. HERMES [16] is a computer based decision support tool

which organizes arguments and evidences in hierarchy. Chenn-Junn Huangs [17] ar-

gumentation system assess the quality of the arguments by parsing arguments.

These argumentation systems discussed above serves as a decision support

system and are biased to general issues and are not related to software architecture

design. They fail in capturing rationale for a software architecture design as the

resolution of a design issues involves consideration of other elements like requirements

and architecture design.

8

3. BACKGROUND

As part of preliminary work , Intelligent Argumentation System was proposed

to capture software architecture rationale [18]. But, later the idea was enhanced to

develop a new system called ISARCS, that can be used to capture software architec-

ture rationale in a more structured and organized way. The new system, ISARCS

is built on existing Intelligent Argumentation System that is used for collaborative

decision support and has displayed promising results.

3.1. INTELLIGENT ARGUMENTATION SYSTEM

Different people have varied opinions and views with respect to the issue which

contradict to each other in many ways. Generally issues may be related to an orga-

nization like introduction of new business strategies or in a software development

process like architecture design or to global challenges like global warming, national

debt or genetic modified crops. Whenever there are such issues, people discuss a lot

about them in course of time and as well attract significant attention of other people

across the globe. Our system allows users to collaboratively participate and resolve

an issue through online discussion. As part of argumentation system, the issue is

referred as an Issue and various alternatives that address the issue are termed as

Positions. In order to resolve the issue, the users exchange their views in terms of

arguments supporting or attacking a position. The users should enter a degree of

strength explicitly for an argument in range of -1 to 1. An argument with negative

degree signifies that it is attacking another argument and arguments with positive

degree signify that it is supporting another argument. An argument with 0 degree

signifies indecisiveness [19]. The priority of the users is also one of the factors in

decision making. So, the users are assigned priorities based on their expertise and

9

knowledge of topic [20].

The entire argumentation tree built during the argumentation process is re-

duced to a single level such that all arguments posted refer directly to the position

as shown in Figure 3.1. The overall favorability of the design alternative is computed

by weighted summation of the argument strengths. In order to assess the impact of

the indirect arguments on a position, we have four general argumentation reduction

heuristic rules and 25 fuzzy rules are derived from these 4 rules [20, 21, 22, 23]. The

four heuristic rules are formulated as,

Argumentation Reduction Rule 1: If argument B supports argument A and ar-

gument A supports position P, then argument B supports position P.

Argumentation Reduction Rule 2: If argument B attacks argument A and ar-

gument A supports position P, then Argument B attacks position P.

Argumentation Reduction Rule 3: If argument B supports argument A and ar-

gument A attacks position P, then argument B attacks position P.

Argumentation Reduction Rule 4: If argument attacks argument A and argu-

ment A attacks position P, then argument B supports position P.

Figure 3.1. Sample Argumentation Tree Reduction

10

4. ISARCS : INTELLIGENT SOFTWARE ARCHITECTURE
RATIONALE CAPTURE SYSTEM

In this section, we introduce our system ISARCS that aids organizations to

resolve software architecture design issues collaboratively and develop an architecture

that is favored by most of the stakeholders. In order to capture and maintain the

architecture knowledge [24], we have developed a web based tool that enables stake-

holders located at various geographical locations to participate in an online discussion

to resolve a design issue. It is built on client-server architecture where client provides

users an interface to interact with the system and server analyses and maintains dif-

ferent clients connected to system. The entire discussion is captured and maintained

and thus provides a permanent repository of architecture knowledge.

Software requirements are basis for architecture design. Whenever a design

decision is chosen, the decision should satisfy the requirements to maximum extent.

Apart from software requirements, there are architectural constraints that should as

well be satisfied by the design decision. Figure 4.1 shows the architecture design flow

where ISARCS is used to resolve a design issue that arises from software requirements

and existing architectural elements. The design issue can be resolved with various de-

sign alternatives. But, not all alternatives have same impact on existing architecture

or may have varied levels of satisfaction of software requirements. The stakeholders,

using ISARCS discuss the pros and cons of each design alternatives with respect to

related requirements and architecture elements. The system analyzes the discussion

using data analysis engine to provide stakeholders with a more comprehensive view of

discussion. The architecture knowledge maintained using ISARCS, helps architects or

stakeholders in design of architecture in future, if they want to revisit the architecture

due to change requirements.

The ISARCS is built on existing Intelligent Argumentation System [20, 21,

11

Figure 4.1. Software Architecture Design Flow

22, 23] which displayed promising results in resolution of general issues. During soft-

ware development, there are numerous requirements gathered during requirements

gathering phase. Some of the requirements may result in certain design issues which

needs to be resolved to design the architecture for a system. Since, not all require-

ments captured are responsible for a design issue, the stated design issue is mapped

to relevant requirements list. As part of ISARCS, we capture the relationship be-

tween a design issue and also the requirements that are related to a design issue.

Apart from requirements, sometimes a design issue might impact existing architec-

tural elements. In that case, the system will also capture the elements which might

be impacted due to resolution of a design issue. Figure 4.2 shows the relationship

of software requirements and existing architectural elements to design issue. Once a

design issue is proposed, there are many ways to resolve the design issue using design

alternatives. These design alternatives are as well mapped to the software require-

ments, architectural elements and architectural constraints. The clear mapping of

related requirements and existing architectural elements enables stakeholders to un-

derstand various relationships before they participate in online discussion to resolve

issue collaboratively.

Figure 4.3 shows the architecture of ISARCS. It mainly consists of four high

level components which are connected to each other using connectors. The first com-

ponent, collective discussion engine is responsible to collect the viewpoints of various

12

Figure 4.2. Design Issue Relationship

Figure 4.3. ISARCS Software Architecture

13

stakeholders regarding the design issue and as well maintain entire discussion chains.

The component software architecture engine enables stakeholders to maintain soft-

ware requirements, software architecture elements in system. The third component,

software architecture drawing palette aids the stakeholders to draw the architecture

during discussion and thus provides a visual view of software architecture under dis-

cussion. The software architecture knowledge component is a permanent repository

of the entire architecture rationale which consists of stakeholders arguments, archi-

tectural elements, architecture design, software requirements and their inter relation-

ships.

Figure 4.4 shows snapshot of ISARCS. The stakeholders will be able to partici-

pate in discussion stating their viewpoints in terms of arguments to support or attack

various design alternatives. Apart from just posting their arguments, stakeholders can

post evidences in order to strengthen their arguments. Whenever a stakeholders posts

arguments, he can enter an argument weight in range of -1 to 1 to signify his degree

of support or attack of a design alterative or with respect to another arguments. As

the discussion evolves, a huge argumentation tree is built that is analyzed to compute

a design decision that is favored by most of the stakeholders using argumentation

reduction inference engine [23].

A stakeholder viewpoint might be related to a certain requirements or to cer-

tain architecture constraints or to some architectural elements. So, when a stakeholder

is posting his viewpoint, he will be able to choose the related requirements, archi-

tectural elements that his argument is based on. In that case, other stakeholders in

discussion can understand the basis of the argument posted by a stakeholder and can

respond accordingly. The chosen requirements and architecture elements are subset

of those that are linked to design issue as shown in Figure 4.5. The entire discussion

of arguments, design issue and design alternatives are all linked to software require-

ments, architectural elements that provides stakeholders with clear understanding of

14

Figure 4.4. A Snapshot of ISARCS

Figure 4.5. Argument Relationship

15

the relations among various elements of system. The system also provides a drawing

area that enables stakeholders to draw the software architecture during online dis-

cussion to state their idea clearly using visual ques. The software architecture that is

drawn is as well linked to a design issue and other design alternatives that provides

stakeholders a view of how architecture is affected if a particular design alternative

is selected.

16

5. INTELLIGENT ANALYSIS OF SOFTWARE ARCHITECTURE
RATIONALE

In this section, we propose various approaches to analyze the software archi-

tecture rationale captured during design decision making process.

5.1. ANALYSIS OF SOFTWARE CONCERNS

In order to resolve a design issue, since many stakeholders state their view-

points to support their design alternative, after discussion, there is a huge tree that

is built and it is a difficult task for stakeholders to get an overview about entire dis-

cussion. To provide the stakeholders with an overview of discussion, we can analyze

the arguments and provide them with an analysis to detect affect of various software

concerns on individual design alternatives. The software concerns are generally ex-

tracted by manual analysis of software requirements. There are many concerns like

cost, development effort, development time, security, software testing, software main-

tenance that can be considered to analyze the arguments and provide stakeholders

with their effect on alternatives.

Algorithm 1 is employed to compute the effect of each concern on design al-

ternatives. The input to the algorithm is a set of argument lists in the argumentation

tree, a list of software concerns and a design alternative. After the argument anal-

ysis, the algorithm outputs a matrix that shows the effect of a concern on a design

alternative. Lines 1-3 in algorithm reduces all the arguments in tree to a single level

such that they directly point to their respective design alternatives using fuzzy logic

based argumentation reduction inference engine. During the reduction, the strengths

of the arguments are recalculated to compute their effect on a design alternative. At

Line 5, we collect the synonyms of the concerns using thesaurus. Since, many stake-

17

Alg. 1 SoftwareConcernAnalysis(ArgumentationTree, ConcernsList ,
DesignAlternative)

Input: Argumentation Tree; A list of software concerns; Design Alternative
Output: Affect of Concerns on a design alternative

1 begin
2 for each arg in ArgumentationTree(DesignAlternative) do
3 argWeight = ArgumentationInferenceEngine(arg)
4 for each concern in ConcernsList do
5 synonymConcernsList = Synonyms(concern)
6 for each arg in ArgumentList do
7 for each concernItem in synonymConcernsList do
8 if arg contains concernItem then
9 overAllEffect = overAllEffect + argWeight
10 end

holders can express their viewpoint about a concern in various ways. So, we need

to consider all the possible available words for a given concern. For Example: If we

consider a software concern as cost, then we consider all the other words which are

synonym to cost like expensive, expense, expenditure, money etc,. Once we determine

all the required words for a concern, we parse through all the arguments to verify if

the argument is talking about that particular concern. This is represented as part

of line 6-8 in the algorithm. Once we detect all such arguments, we aggregate the

recalculated strengths of those arguments to compute the overall effect of a concern

on a design alternative. After the entire analysis, the algorithm provides stakeholders

with a Software Concerns Effect Matrix as shown in Table5.1.

Table 5.1. Effect of Software Concerns

Software Concern
Design Alternative
1

Design Alternative
2

Design Alternative
3

Cost
Overall Related
Arguments Effect

Overall Related
Arguments Effect

Overall Related
Arguments Effect

18

5.2. CLASSIFICATION OF STAKEHOLDERS VIEWPOINTS

During architecture design, individual stakeholders express their viewpoints in

terms of arguments. The credibility or the influence of an argument can be analyzed

by computing collective thoughts of other stakeholders on that argument. The assess-

ment of collective thought on an argument conveys more information from a group’s

perspective. By determining the collective opinion of a group on an argument posted

by a stakeholder, we can detect arguments that have gained more attention in discus-

sion. The collective weight of other stakeholders arguments provides more insight to

determine arguments that attracted more support from other stakeholders and also

arguments that were attacked by most of the stakeholders.

As said earlier that during argumentation, stakeholders associate a weight of -1

to 1 to an argument. The collective thought on argument is computed by considering

the arguments posted by stakeholders either supporting or attacking it. The collective

thought which is termed as collective determination of an argument is summation of

collective support and collective attack an argument receives. The collective support

an argument is calculated based on arguments that support it and collective attack

for an argument is determined considering arguments that attack it. The collective

determination value of an argument determines the arguments that have contributed

significantly in selecting a design alternative.

CollectiveDetermination = CollectiveSupport + CollectiveAttack

Figure 5.1 shows a sample argumentation tree consisting of eight arguments

posted under a design alternative. The collective determination for argument A2 is

computed by considering arguments that refer A2 either directly or indirectly. In this

case, arguments A5, A6, A7 and A8 refer to argument A2 and hence these arguments

19

Figure 5.1. Sample Argumentation Tree for Collective Opinion Analysis

contribute to compute collective determination of A2. As arguments A6 and A8 refer

argument A2 indirectly, we need to compute the effect of both the arguments by

reducing them to a single level pointing directly to A2. The reduction of indirect

arguments to single level is performed using argumentation reduction fuzzy inference

engine. For ex. In this case, the argumentation reduction engine takes strengths of

arguments A5 and A6 as input and computes the effect of A6 on A2. Similarly, the

effect of argument A8 on A2 is computed using A7 and A8 as inputs to inference

engine. After the argumentation reduction, the collective support for A2 is computed

by summation of arguments that support A2 and collective attack for A2 is computed

by summation of arguments that attack A2.

The collective determination for all the arguments in the argumentation tree

is computed to detect arguments that have contributed a significant weight and at-

tracted more attention during discussion. The collective determination values for leaf

arguments are considered as zero as they are not supported or attacked by any other

arguments. Table5.2 shows classification of arguments based on collective opinion

values and number of follow up arguments posted for an argument.

The arguments which are having more number of follow up arguments have

20

Table 5.2. Classification of Stakeholders Arguments

Condition Argument Classification
MAX(Number of Follow up Arguments) Attention Seeking Arguments
MAX(Collective Support) Most Supported Argument
MIN(Collective Attack) Most Attacked Argument
MAX(Collective Determination) or
MIN(Collective Determination)

Decision Centric Arguments

attracted significant number of stakeholders to participate in discussion. Such ar-

guments have created a buzz in discussion and are classified as Attention Seeking

Arguments. There are also some arguments which receive a lot of support from other

stakeholders under discussion. The support an argument receives may be attributed

to its authenticity and credibility and such arguments are classified as Most Sup-

ported Argument. On other hand, there are arguments that are attacked by most of

the stakeholders, in such case, most of the stakeholders disagree with the argument

because of the conflicting nature of the argument. Such arguments are classified as

Most Attacked Arguments. When we consider the collective determination value of

arguments, the arguments that have maximum and minimum values will impact the

final weight on design alternative and such arguments might result in deciding the fi-

nal design decision. So, those arguments are classified as Decision Centric Arguments

as they are crucial in choosing a design solution.

5.3. SOFTWARE REQUIREMENT TRACEABILITY

In software architecture design, every architectural element in the architecture

is associated with its related software requirements. The traceability between software

requirements and architecture is of critical importance as it helps the system architect

to analyze the impact of volatile requirements on existing architecture elements. On

other hand, an architect can also analyze the requirements that are affected if any of

21

the architectural elements is modified.

As part of ISARCS, every design issue stated is mapped to its related software

requirements so that stakeholders are cognizant of the requirements that they are

dealing with during online discussion. The resolution of a design issue might result in a

new architectural element in architecture or might have modified existing architectural

elements. As software systems evolve, there are many design issues that needs to be

resolved. Every design issue is related to a subset of software requirements. The

resolution of the design issues impacts the software architecture design. Since, the

modifications of the architecture of system is through design issue resolution, and the

design issue is mapped to software requirements, the design solutions which reflects

software architecture are as well mapped to the respective requirements lists as shown

is Figure 5.2.

Figure 5.2. Traceability of Requirements and Architectural Elements

Table 5.3 shows sample design issues, Issue 1 to Issue 4 during architecture

design which are resolved using ISARCS to compute different solutions, Solution 1 to

22

Table 5.3. Relationship among Issues, Requirements and Architecture Elements

Design Issue Related Requirements Design Solution
Impact on Architec-
ture

Issue 1 R1, R5, R6 Solution 1
New Architecture Ele-
ments (AE1, AE2)

Issue 2 R1, R4, R7 Solution 2
Modified Architecture
Element (AE4)

Issue 3 R1, R8, R7 Solution 3
New Architecture Ele-
ment (AE3)

Issue 4 R3, R1, R2, R8 Solution 4
Modified Architecture
Elements (AE5, AE6)

Solution 4. We can see that each design issue is related to a subset of requirements.

Some of the requirements might also be part of multiple design issues. Each design

solution has an impact on architecture, For Eg: the solution 1 has yielded two new

architecture elements AE1 and AE2 into software architecture. These two architecture

elements AE1 and AE2 are now mapped to requirements R1, R5 and R6.

Similarly, architectural element AE4 which got modified due to Solution 2 is

mapped to requirements R1, R4 and R7. These requirements R1, R4 and R7 are

appended to existing requirements lists which are already mapped to AE4. In future,

if any of the requirements change says R2, then the architects now can trace back to

architecture and determine that AE5 and AE6 are elements that need to be checked

on. Similarly, if AE1 is modified for any reason, the architects needs to trace back to

related requirements and verify that the requirements are not violated due to modified

design.

Based on the above analysis, we developed a requirements traceability matrix

which maps the software requirements to the software architecture elements. Ta-

ble 5.4 shows a sample traceability matrix which depicts the relationships between

architectural elements and software requirements. The numeric value 1 in cell illus-

trates that the architectural element is mapped to the corresponding requirement

23

and 0 represents that there is no relationship between them. When we observe the

traceability matrix, we can see that requirement R1 is mapped to six different ar-

chitectural elements and similarly architectural elements AE5 and AE6 are mapped

to 4 different requirements. By analyzing the matrix, we can check the impact of

modifying a requirement on architecture design and similarly can verify the impact of

modifying the architecture design on software requirements. For Eg. If requirement

R1 is modified in future, then it has a significant impact on software architecture as

it affects 6 architectural elements and a major modification of design is involved. In

that case, the stakeholders of the organization have to rethink of allowing changes to

such requirements which might hinder there entire development process.

Table 5.4. Requirements Traceability Matrix

Requirements/
Architecture El-
ements

R1 R2 R3 R4 R5 R6 R7 R8 Total

AE1 1 0 0 0 1 1 0 0 3
AE2 1 0 0 0 1 1 0 0 3
AE3 1 0 0 1 0 0 1 0 3
AE4 1 0 0 0 0 0 1 1 3
AE5 1 1 1 0 0 0 0 1 4
AE6 1 1 1 0 0 0 0 1 4
Total 6 2 2 1 2 2 2 3 0

5.4. TOPIC ANALYSIS

In an online discussion, each stakeholder expresses his viewpoints in different

perspectives for available design alternatives. But, as the online discussion evolves,

there are numerous arguments posted by stakeholders which address various concerns

of discussion. This results in tedious task to understand the state of argumentation

and also its very difficult to study each argument individually to perceive the content

posted. Of all the arguments, some of the arguments refer to a similar subject of

24

concern and identification of such concerns will enable the stakeholders to understand

various topics that are under discussion and the topics which grasped large attention

in discussion. In order to detect the topics of interest, the entire argumentation tree

have to be analyzed and the arguments which talk about similar concerns have to be

grouped to evaluate the strength of the concern.

We can make use of text clustering techniques to cluster the arguments and

identify the topics that are often under discussion [25]. The clustering result provides

stakeholders with an overall view of the topics that are most discussed. Clustering

also enables to group arguments according to the concerns they represent. The text

clustering of arguments is performed using Lingo algorithm [26] that is generally used

to cluster web search results. Each cluster in the result is represented by a cluster

label that denotes the topic of interest of the arguments present in that cluster. There

is always a possibility that an argument might discuss about multiple topics. In that

case, the argument is part of multiple clusters.

25

6. EVOLUTIONARY ANALYSIS OF SOFTWARE ARCHITECTURE
RATIONALE

In this section, we propose various approaches to perform evolutionary analysis

of the software architecture rationale captured during design decision making process.

6.1. DETECTION OF CONVERGENCE USING POLARIZATION
GROUPS

The main idea in an online decision making is generally to reach to a consen-

sus by various stakeholders sharing their viewpoints collaboratively. In architecture

design process, ISARCS facilitates stakeholders to express their opinions in terms

of viewpoints supporting or attacking various design alternatives. During decision

making, stakeholders tend to form different polarization groups [27, 28]. The stake-

holders with similar opinions tend to get closer by supporting one another. Similarly,

stakeholders within a group have contrasting opinions with other polarization groups.

The online discussion often influences certain stakeholders to change their opinion on

design alternatives. As discussion is evolved, there is always a possibility that a stake-

holder might attack an alternative that he was previously supporting. On other hand,

he might also support an alternative that he might have attacked earlier. The change

in decision can be attributed to influence of various arguments on his opinion.

Whenever a stakeholder gets influenced due to the discussion, he tends to move

away from his earlier similar stakeholders group and move closer to other group. This

makes stakeholders to jump from one polarization group to another. In order to

study such transitions of stakeholders among different groups, the evolution of en-

tire discussion on each day should be analyzed. The evolutionary analysis of online

discussion aids in understanding the dynamics of argumentation. Initially the stake-

holders are scattered around different groups. But, as the discussion is evolved each

26

day, stakeholders tend to understand the pros and cons of each design alternative

and tend to form a group with significant number of stakeholders. Since, the idea

for collaborative discussion is to reach to a consensus, during discussion we can see a

large number of stakeholders forming a polarization group whose opinion decides the

final design solution. Such evolutionary analysis helps in visualizing the convergence

of stakeholders opinions in choosing a design alternative.

We propose a clustering process to form different polarization groups. As

stated earlier, during online discussion, a stakeholder associates a weight to signify his

degree of attack or support. We use the stakeholders favorability values for various

design alternatives as basis to form cluster groups. The stakeholders favorability

implies his degree of support and degree of attack on various design alternatives.

The overall favorability of a stakeholder on a design alternative is either positive or

negative. The cluster groups are decided based on number of design alternatives

available. So, if there are two design alternatives, then there would be 4 cluster

groups formed. Similarly, if there are 3 design alternatives, the number of cluster

groups considered is 9 as shown in Tables 6.16.2

Table 6.1. Cluster Groups For Two Design Alternatives

Cluster Group Overall Favorability(Design Alternative 1, Design Alternative 2)
C1 (Positive , Positive)
C2 (Positive, Negative)
C3 (Negative, Positive)
C4 (Negative, Negative)

Based on the tables, for two design alternatives, if the overall favorability of a

stakeholder on design alternative 1 is positive and on design alternative 2 is negative

then he would belong to cluster group C2. Similarly, for three design alternatives,

if overall favorability of a stakeholder on alternative 1 is positive, alterative 2 is

27

Table 6.2. Cluster Groups For Three Design Alternatives

Cluster Group
Overall Favorability(Design Alternative 1, Design Alternative
2, Design Alternative 3)

C1 (Positive, Positive, Positive)

C2 (Positive, Positive, Negative)

C3 (Positive, Negative, Negative)

C4 (Positive, Negative, Positive)

C5 (Negative, Positive, Positive)

C6 (Negative, Positive , Negative)

C7 (Negative, Negative, Positive)

C8 (Negative, Negative, Negative)

negative and alternative 3 is positive then he would belong to cluster group C4.

The favorability values of each stakeholder who participated in online discussion is

computed and assigned to respective clusters based on the determined values. If we

consider cluster group C7 for three design alternatives, then all the stakeholders who

are present in C7 collaboratively attack alternatives 1, 2 whereas support alternative

3. On other hand, the stakeholders in cluster group C8 attack all the three design

alternatives and agree with neither of them.

Let us exemplify by considering sample argumentation tree consisting of two

design alternatives and two stakeholders posting arguments supporting or attacking

them as shown in Figure 6.1.

Figure 6.1. Sample Argumentation Tree to Determine Stakeholder Favorability

28

Stakeholder S1 posted one argument A1 directly on design alternative 1 and

argument A3 on argument A2 which refer indirectly to design alternative 1. Similarly,

S1 posted arguments A7 and A6 which refer to design alternative 2. On other hand,

stakeholder S2 posted arguments A2, A4 on design alternative 1 and A5, A8 on design

alternative 2. The arguments like A4, A3, and A6 which refer indirectly to design

alternatives are reduced using argumentation reduction inference engine to compute

their effect directly on design alternatives. Each argument in the argumentation tree

is associated with weights signifying their degree of support or attack. For stakeholder

S1, the overall weight of his support or attack on a design alternative is computed

by weighted summation of arguments posted under that alternative. In this case, for

design alternative 1, the summation of arguments weights A1 and A3 determines his

decision weight. Similarly, for stakeholder 2, the summation of weights A2 and A4

determines his weight of support or attack on design alternative 1. The opinion of

each stakeholder is represented by a tuple where each element in tuple determines the

decision weight on design alternatives. In this example, stakeholders S1 and S2 each

have a tuple, say, (S1W1, S1W2) and (S2W1, S2W2). Based on the signs of elements

in tuple, the stakeholders are assigned to respective cluster groups. If S1W1 is positive

and S1W2 is negative then S1 would belong to cluster group C2. Similarly, if S2W1

negative and S2W2 are positive, S2 is associated with group C3. The tuples for all

the stakeholders in the discussion are calculated and are assigned to their respective

cluster groups forming clusters.

S1W1 = Weight(A1) + Weight(A3),

S1W2 = Weight(A6) + Weight(A7)

29

S2W1 = Weight(A2) + Weight(A4),

S2W2 = Weight(A8) + Weight(A5)

As the discussion is spanned for several days, the stakeholders who participated

in discussion are clustered into different cluster groups on each day. The clustering

process is performed on each day of discussion. Every day some new stakeholders join

into discussion and some stakeholders might change their opinion on certain design

alternatives. When we cluster the stakeholders opinions on each day, we can visualize

that certain cluster groups gain more number of stakeholders into their group where

as some groups tend to lose their strength. As the discussion is evolved, certain cluster

groups becomes more and more large and others shrink in their number and after final

day of discussion, we can see that a cluster group has more number of stakeholders

when compared to other groups. The size of cluster group signifies the design solution

that is favored by most of the stakeholders. For Example: If there is an architecture

design issue with two design alternatives and the discussion is carried out for 3 days

with 10 stakeholders. On final day, if 6 stakeholders are present in cluster group C2,

it signifies that the most of the stakeholders support design alternative 1 and attack

design alternative 2 suggesting a convergence point in the decision making process.

6.2. DETECTION OF INFLUENTIAL ARGUMENT CHAINS

As stated earlier, that during decision making process, some of the stakehold-

ers might change their opinion and move from one cluster group to another cluster

group. But, what has made those stakeholders to change their cluster group? Gener-

ally in any discussion, different people share their ideas about their likes and dislikes.

Some of the ideas receive more attention and people tend to discuss a lot about them

30

forming a deep discussion chain. Such discussion chains always gains significant at-

tention and may influence an individual to opt the idea discussed. In ISARCS, as

well stakeholders discuss in resolving a design issue by exchanging their rationale in

supporting or attacking various design alternatives. Certain arguments gain a lot of

attention resulting in many numbers of arguments following it forming a deep argu-

mentation chain. These branches of argumentation chains in an argumentation tree

tend to influence certain stakeholders to change their opinion on a design alternative.

We can detect such influential argument chains in tree by studying the clus-

tering evolution of discussion. A stakeholder during discussion is associated with a

cluster group along with other similar stakeholders. But, when he encounters such

argumentation chains and changes his decision then he would start supporting an

alternative that he attacked earlier and attacks other alternatives. When he changes

his decision then his overall favorability on an alternative might either increase grad-

ually to reach positive or might decrease gradually to reach negative weight. In that

case, the elements in the stakeholders tuple change their signs and hence stakeholder

is assigned to different cluster group.

Consider cluster evolution of stakeholder S1 for a period of 6 days as shown

in Figure 6.2. During discussion, we can see that stakeholder S1 was part of cluster

group C2 supporting design alternative 1 and attacking design alternative 2 for first 3

days. But, later from day 4, S1 started attacking design alternative 1 and supporting

design alternative 2 and changing his cluster group to C3 from C2. The reason for

the stakeholders change in his opinion can be attributed to various arguments posted

by other stakeholders. As stated earlier that some of the argument chains might have

influenced the stakeholder to change his opinion. The argumentation tree for each day

needs to be analyzed to detect from which day there is a decrease in opinion weight

of S1 on design alternative 1 and increase in opinion weight on design alternative 2.

Consider a sample argumentation tree as shown in Figure 6.3. In figure, el-

31

Figure 6.2. Clustering Evolution of a Stakeholder

Figure 6.3. Sample Tree of a Stakeholder

32

ements marked in green like A1, A3, A7, A9 and A14 are the arguments posted by

stakeholder S1. From the tree, we can see that arguments A1 and A3 supports design

alternative 1 and argument A9 attacks design alternative 2. These arguments are

posted by stakeholders during early stage of discussion and thus assigning himself

to cluster group C2. But, A7 which is posted under A6 attacks design alternative 1

indirectly and similarly, A14 supports design alternative 2 based on argumentation

reduction rules. From there on, the overall opinion weight of S1 on design alternative

1 has started decreasing to reach negative and weight on design alternative 2 has

increased to reach positive and changing the stakeholder group to C3. The argument

chains (A4, A5, A6) and (A10, A12, A13) are considered as influential argument

chains that influenced S1 to change his opinion completely with the help of online

collaborative discussion.

6.3. DETECTION OF ACTIVE AND INACTIVE STAKEHOLDERS

As said earlier that in an online decision making to resolve a design issue, stake-

holders posts their viewpoints supporting or attacking a design alternative. Some-

times, some of the stakeholders actively participate in discussion by posting arguments

responding to other arguments till the end of discussion. But, there are as well some

stakeholders who participate in discussion initially and never contribute to discus-

sion in later stages of decision making. We analyze the argumentation on each day

and determine individual opinion weights of stakeholder on each design alternative

on every day of discussion. An individual opinion on each design alternative for a

stakeholder is computed by weighted summation of argument weights related to a

stakeholder after argumentation reduction when all the arguments point directly to

the design alternative. We analyze the individual opinions of stakeholder on each

day of discussion and verify if any of the opinion weights of stakeholders change over

time. If, the individual opinion of a stakeholder on any of design alternatives does not

33

change after initial stages of discussion, then it implies that he is inactive in the pro-

cess and we classify such stakeholders as Inactive Stakeholders. On other hand, the

opinion weights of certain stakeholders all through the end of discussion. Such stake-

holders are classified as Active Stakeholders as they are continuously contributing to

the discussion.

Consider the evolution of individual opinions of two stakeholders S1 and S2

for a period of 5 days as shown in Figure 6.4. Stakeholder’s S1 individual opinions

weights on the two design alternatives changes their values all through the discussion

depicted by variation of colors. On other hand, stakeholder S2’s opinions remains

unchanged after Day 3 till end of discussion on Day 5. In this scenario, we classify

S1 as Active Stakeholder whereas S2 is classified as Inactive Stakeholder.

Figure 6.4. Evolution of Individual Opinions of a Stakeholder

6.4. DETECTION OF HOT ARGUMENTS

During argumentation, a stakeholder posts their arguments directly under a

design alternative or in response to posts of other stakeholders. In this process, cer-

tain arguments gain a lot of attention and attract significant number of arguments

following it. These arguments tend to increase the discussion by influencing various

stakeholders to participate and effectively aid in decision making. Since, the argu-

mentation process to resolve a design issue is spanned for several days, we analyze the

discussion and detect viewpoints which have gained attention in process on each day

34

and also viewpoints that have significant number of follow up arguments from the

start of the discussion. We classify these arguments or viewpoints as Hot Arguments

in the discussion and detect such arguments on daily basis and overall basis since

the start day of discussion. The Hot Arguments are determined based on number of

follow up arguments an argument receive in discussion i.e., we compute the number

of nodes from the current node till we reach the leaf node in all its branches in an

argumentation tree.

Consider a sample argumentation tree showing a design alternative 1 for a

design issue and various arguments posted for the alternative as shown in Figure

6.5. In order to compute the Hot Arguments based on this argumentation tree,

we compute the number of follow up arguments each argument has received in the

discussion process. For argument A1, there are totally 6 follow up arguments (A4, A5,

A6, A7, A8, A9) which refer it either directly or indirectly. Similarly for argument

A3, there is only one follow up argument A10. The count for A1 would be 6 whereas

count for A3 would be 1.

Table 6.3 shows the follow up arguments for each argument in the tree. We

can see that A1 has received most number of follow up arguments and has gained

attention from significant number of stakeholders. Based on above analysis, we detect

such arguments on each day during discussion process and also the arguments that

are happening since the start of discussion till the day.

The number of follow up arguments for each argument is computed in the

argumentation tree. Based on this computation, we determine the number of follow

up arguments a stakeholder received for his posts. From the argumentation tree as

shown in Figure 6.5, if arguments A1 and A3 are posted by a stakeholder S1, then we

determine the total number of follow up arguments for a stakeholder by summation

of arguments A1 and A3 received in discussion as in Equation 6.1. This helps us

to understand the most happening stakeholder in the argumentation process i.e. we

35

Figure 6.5. A Sample Argumentation Tree

Table 6.3. Argument ID vs Number of Follow up Arguments

Argument ID Number of Follow up Arguments
A1 6 (A4, A5, A6, A7, A8, A9)
A2 0
A3 1 (A10)
A4 1 (A6)
A5 3 (A7, A8, A9)
A6 0
A7 2 (A8, A9))
A8 0
A9 0
A10 0

determine a stakeholder whose viewpoints have gained significant attention in decision

making. We compute this again on daily basis on each day of argumentation.

36

NumberofFollowupArguments(S1) = FollowupArguments(A1)+

FollowupArguments(A2) (6.1)

6.5. DETECTION OF TRENDING TOPICS

During the argumentation process, stakeholders post their viewpoints in vari-

ous perspectives. The arguments cover various topics of discussion and as the online

discussion evolves, there is large number of viewpoints posted and its often difficult

for stakeholders to understand the state of argumentation. The argumentation talks

about various topics that affect the choice of a design alternative. It is a tedious

task for a stakeholder to study each argumentation in the tree to figure out topics

of interest. Some of the arguments might refer to similar topics and identification

of such topics of interest enables the stakeholders to understand the topics that are

most discussed and that have gained great attention in decision making and a major

concern for stakeholder. The arguments that talk about similar topics needs to be

detected by analyzing the argumentation tree and grouping such arguments makes

us to understand the significance of the topic.

The entire argumentation tree has to be analyzed to detect such topics. We

propose a use of text clustering technique that clusters the arguments based on their

text similarity and identifies the topics of interest. We make use of Lingo algorithm

[26] that is generally used to cluster web search results to perform text clustering of

arguments posted by stakeholders. The Lingo algorithm outputs different clusters

which are denoted by a cluster label. The cluster label depicts the topics that are

discussed as part of the cluster group. This cluster label is identified as topic of

interest of the arguments within that cluster. We perform the clustering process

37

on each day of the argumentation process to detect the topics of interest that are

discussed till that day. In this way, the stakeholders will understand the state of

argumentation till that day and also the topic that is discussed most often . As we

perform the topic analysis on each day, we can also visualize the increase in demand

for a particular topic as the discussion is evolved for several days.

38

7. EXPERIMENTAL EVALUATION

In this Section we describe in detail about the experimental setup and we

showcase the results of various approaches discussed earlier. The results from the

study indicate that our system is effective in capturing and supporting stakeholders

in a collaborative decision making for software architecture design.

7.1. EXPERIMENTAL SETUP

In order to demonstrate the effectiveness of the proposed system a group of 50

students from Software Engineering class were recruited and presented with a hypo-

thetical case study and were asked to resolve the design issue stated collaboratively

using ISARCS. The students are considered as stakeholders to design the architecture

of the system by resolving the design issue collaboratively. Apart from students as

stakeholders, the case study is presented to three industrial experts who are having

an experience of more than 10 years in software development. They were asked to

choose a design alternative by reading the case study thoroughly. The result ob-

tained from the experts is as well presented and compared with the result obtained

by stakeholders in online discussion.

The stakeholders are presented with a case study where a hypothetical com-

pany is in process of modifying its existing product due to some change requirements.

In order to modify the existing product, the company should initially analyze the

requirement into lower level requirements and should accordingly modify its existing

software architecture. In order to address the requirements, the company has came

across a design issue that needs to be resolved and should capture a structured ra-

tionale along with maintaining linkage with the change requirement and the software

architecture. The case study consists of 19 software requirements, 3 architectural

39

constraints and 25 architectural components and connectors.

The product that the company presently owes and wants to modify is called

Collab that is used by various organizations or educational institutions to solve their

internal organizational issues by effective collaborative discussion among their staff.

While using the company’s software users expressed their concerns about the lack

of ability to draw and depict their ideas visually. This made the company to revisit

their product and modify. Figure 7.1 shows the architecture for software Collab.

Figure 7.1. Software Architecture of Collab

The architecture design issue that arise from change requirement here is to

40

provide users a platform in order to draw and describe their ideas visually. The

proposed design issue can be resolve in different ways using different design solutions.

In order to resolve the design issue, three design alternatives are proposed of which

one of the alternative needs to be selected as a design solution.

Design Alternative 1: Drawing Canvas Integrated in System that needs to be

developed from scratch.

Design Alternative 2: Integrate a third party Software Drawing Tool into present

system.

Design Alternative 3: Use of native paint application of Operating Systems and

share the desktop with all users connected to system.

7.2. DATA COLLECTION

During the experiment, the stakeholders were provided with the required in-

formation regarding the case study and were given a week to understand it. The

students were then asked to choose a best design alternative among available 3 design

alternatives satisfying 19 software requirements stated. The experiment is carried

out for a period of 2 weeks where the students actively participated in discussion

contributing 413 arguments, 42 evidences and 628 architectural relations. In order to

ensure that the arguments posted are relevant and related to context of discussion, the

entire discussion is moderated by a moderator. The main goal of the experiment is to

resolve a design issue for software architecture design collaboratively using ISARCS

and to capture the argumentation data that can be used for further data analysis to

provide more depth view of entire online discussion. The case study is also shared to

three industrial experts and the experts were given a period of 2 weeks to understand

the case study. After the experts have studied the case study, they have responded

with their own design decision and respective rationales individually.

41

7.2.1. ISARCS Discussion. A class of students participated in an online

discussion to resolve a design issue that is presented as a case study for a period of

two weeks. Each of the students is provided with credentials that will enable him

to login and post his arguments by appropriately selecting the related requirements

and architectural elements. There were totally 413 arguments, 42 evidences and 628

architectural relations captured during online discussion.

The stakeholders participated in online discussion using ISARCS explaining

their views in support or attack of a design alternative. Figure7.2 shows sample argu-

mentation tree of design issue discussion using ISARCS where the design issue, design

alternatives and arguments are linked to software requirements and architecture ele-

ments. There are numerous requirements during software architecture design. Only

certain requirements are related to design issue under discussion. Table 7.1 shows

sample requirements list that are related to design issue stated as part of case study.

Table 7.1. Sample Requirements List

Requirement ID Requirement Description

R1
Users may be given different drawing options and pre defined
drawing patterns (like circle or rectangle) that enables them
to draw and visualize their ideas quickly.

R2
The change requirement should be implemented, tested and
deployed in short period of time.

R3
When a user edits a diagram, his changes need to be broad-
casted to all users who are connected to the system efficiently.

R4 The entire system should be easily maintainable

R5
Multiple Users connected to the system must be able to work
collaboratively on the same diagram simultaneously.

As pointed earlier, stakeholders have to explicitly mention the weight of sup-

port or attack of their arguments. Table 7.2 shows sample arguments list posted by

the stakeholders for one of the design alternatives. Using the argument weights, we

use fuzzy argumentation reduction inference engine to compute the design alternative

42

Figure 7.2. Sample Argument Tree from Experiment

Figure 7.3. Design Decision using ISARCS

43

that is favored by most of the stakeholders during discussion. As per result computed

by ISARCS, the design alternative 2 is supported by most of the stakeholders while

design alternative 3 is attacked by majority of them as shown in Figure 7.3. This

result helps architects to choose a design alternative and design the architecture for

system.

Table 7.2. Sample Argument List on Design Alternative 1

Argument ID Argument Description Strength of Argument

A4

The cost of paying someone to sit down
and write out this drawing tool would
be very high and would also take away
from development time elsewhere.

-0.5

A13

If you are to make something from
scratch you can not know if it is
user friendly without user testing which
takes a lot of time. The other two op-
tions have been tested by a lot of users
and have ratings online already for you
to see.

-0.5

A68

Also, using a third party software cre-
ates the risk that an updated version
may remove components used for de-
signing their ideas. This risk would not
be present in a Position 1 because the
system would be self-designed.

0.7

A19

If we design this system from scratch
then the responsibility to support it,
add new features, and fix bugs lies en-
tirely on us. I think it would be wiser
to lay that responsibility off on some
other organization.

-0.5

A74

Agreed, while the other options are
cheaper, and faster methods, there is
definitely the positive of easily adding
new functionality if it is needed in the
scratch-made tool.

0.3

44

7.2.2. Industrial Experts Opinion. As said earlier that the case study is

also presented to three industrial experts. The experts had gone through the entire

case study and provided their design decision. Out of the three experts, two of the

experts presented their decision as design alternative 2 and one of them as design

alternative 1. The majority of the experts shared their decision as design alternative

2. When we compare the result obtained from ISARCS with that of experts decision,

we can see that the results are similar. The collaborative discussion of inexperienced

professionals using ISARCS has yielded a design decision which is incongruence to

the decision of industrial experts. This proves the effectiveness of the system in its

support to software architecture design using collective decision making process.

7.3. INTELLIGENT DATA ANALYSIS

7.3.1. Analysis of Software Concerns. Huge argumentation tree that is

captured during discussion is further analyzed to provide stakeholders with overall

view of effect of concerns on each design alternative. The requirements list is studied

manually and a list of concerns are shortlisted. Based on these concerns list, the

entire argumentation is parsed to compute the effect of each concern on three design

alternatives using Algorithm 1. Table 7.3 shows the result.

Table 7.3. Effect of Concerns on Design Alternatives

Software Concern
Design Alter-
native 1

Design Alter-
native 2

Design Alter-
native 3

Cost 2.766 5.337 -5.1

Testing Effort 5.828 6.928 -0.2139

Development Time -4.064 5.423 -6.1826

Development Effort 0.1 1.0 -1.048

Software Maintenance 6.3640 2.04 -3.2

Security 1.71 3.0 -3.375

Licensing Issue 0.63 -0.572 -0.5

Architecture Complexity 0.5 -0.8 -3.339

45

The results of Algorithm 1 help the stakeholders to understand how each

concern would affect their choice of design alternative. As per results, the design

alternative 1 is supported more for software maintenance concern but the same alter-

native is attacked by most people in case of other concerns like cost and testing effort.

With the help of these results, stakeholders now tradeoff among these concerns and

choose an alternative that best suits their project needs and priority.

7.3.2. Classification of Stakeholders Viewpoints. The stakeholders posted

arguments supporting or attacking various design alternatives all through the argu-

mentation experiment. The data that is captured after entire discussion is analyzed

to compute the collective opinions of a group on individual arguments. As part of

this discussion, since there were totally 413 arguments posted, the collective opinion

of a group on all the arguments is computed to determine the arguments that are

most favored or attacked through the discussion.

Table 7.4 shows the collective opinion values for some of the arguments from

the argumentation tree. The arguments listed in the table have high follow up argu-

ments and high collective determination values when compared to other arguments in

the tree. From the table, we can see that argument A7 is having highest collective de-

termination value when compared to all other arguments and is collectively supported

by posting 6 follow up arguments. Since A7 is the argument having highest collec-

tive determination value, we classify the argument as Decision Centric Argument.

This argument A7 totally has a positive impact on the design alternative. Similarly,

argument A6 has the least collective determination value and also is classified as

Decision Centric Argument. The argument A6 has a significant negative impact on

the design alternative and understanding of such arguments helps the stakeholders

in the decision making process. On other hand, when we consider arguments A1 and

A12, though the collective determination value of these arguments are trivial, they

46

have attracted more number of arguments into discussion when compared to all other

arguments having significant values of collective determination. We classify these ar-

guments A1 and A12 as Attention Seeking Arguments as they attracted most of the

stakeholders to participate in discussion accumulating 16 and 20 follow up arguments

respectively.

Table 7.4. Collective Opinion Analysis

Argument ID
Collective
Support

Collective
Attack

Collective
Determi-
nation

Follow up
Arguments

7 3.5 0 3.5 6

84 3.75 -2 1.75 10

4 3.67 -2.98 0.68 11

3 5 -4.58 0.41 14

1 5.3 -4.88 0.42 16

6 0.5 -8.1 -7.6 15

12 4.28 -9.22 -4.93 20

5 0.3 -6 -5.7 10

10 2.3 -4.5 -2.2 14

146 0.7 -2.18 -1.48 5

When we consider arguments having maximum collective support value, from

the table we can see that argument A1 is having maximum collective support value

suggesting that the argument is supported by most of the stakeholders. The argument

A1 is classified as Most Supported Argument when compared to all other arguments

during online discussion. Such argument helps stakeholders to understand the concern

or context that most of the stakeholders agreed upon to resolve the design issue. On

other hand, argument A12 has least collective attack value. With negative collective

attack value, the argument illustrates that it has conflicting interest among stake-

holders and is classified as Most Attacked Argument. Table 7.5 lists the arguments

classified.

47

Table 7.5. List of Classified Arguments

Argument ID Argument Description
Design Al-
ternative

Argument
Classifica-
tion

7

If you are using a design tool na-
tive to the operating system then
you most likely would not be able
to have multiple users editing the
same diagram without some extra
code that you must write.

Design Al-
ternative 3

Decision
Centric
Argument

6
In terms of cost I think this option
would be the best.

Design Al-
ternative 3

Decision
Centric
Argument

1

I support this position because
there are enough drawing tools
out there that can meet the nec-
essary requirements and still be
easy to integrate into the system.

Design Al-
ternative 2

Attention
Seeking
Argument
and Most
Supported
Argument

12
When using a 3rd party software
you can only hope that it has
been tested fully.

Design Al-
ternative 2

Attention
Seeking
Argument
and Most
Attacked
Argument.

7.3.3. Requirements Traceability. As stated earlier that every design is-

sue is mapped to subset of software requirements that are related to the issue. In

this case study, the proposed design issue is related to 19 software requirements. The

design issue in the case study is related to introducing a new component into the soft-

ware architecture to address the concern raised by users of the product. The design

solution that is chosen after entire argumentation will result in addition of new com-

ponent and connectors to existing components in the software architecture. After the

argumentation reduction and weighted summation of arguments, design alternative 2

is the alternative that is favored by most of the stakeholders. The result computed by

argumentation engine supports stakeholders in choosing alternative 2 as their design

48

solution. As per the decision, a new component Third Party Drawing Tool is added

into the architecture design. This new component communicates to other component,

Message Communication to Server through a connector. The resolution of the design

issue resulted in two new architectural elements into software architecture. These

two architectural elements are now related to the 19 software requirements mapped

to the design issue as shown in Figure 7.4. Any modification to any of those require-

ments affects these two architectural elements and vice versa. In the requirements

traceability matrix, the cells corresponding to these requirements and architectural

elements are updated to 1 showing their dependency.

Figure 7.4. Traceability of Requirements and Architectural Elements

7.3.4. Topic Analysis. The entire argumentation data captured during on-

line discussion is clustered using Lingo algorithm to detect the topics that are under

discussion. Table 7.6 shows some of the topics that are discussed as part of issue

resolution. The topics that are often discussed in issue resolution are Development

Time and Cost. By this analysis, we can say that most of the stakeholders are con-

cerned with those aspects of software development. On other hand, there are not

49

many arguments related to resource usage suggesting that the stakeholders are not

much concerned with utilization aspect.

Table 7.6. Topic Analysis

Topic Number of Arguments
Development Time 60

Testing 55
Open Source 22

Operating Systems 18
Cost 74

Maintenance 20
Security 57

Resource Usage 2

7.4. EVOLUTIONARY DATA ANALYSIS

7.4.1. Convergence Using Polarization Groups. As the experiment is

conducted for a period of 2 weeks, the favorability of stakeholders participating in

the discussion is computed for each day on individual alternatives based on their

opinion weights. The stakeholders are clustered into different polarization groups.

The clustering process is performed on each day of online discussion.

From Table 7.7, we can see the evolution of clusters during online discussion

where the number of stakeholders in a cluster group change as the discussion is

spanned for several days. There are stakeholders who are joining into the discussion

on each day. Consider cluster group C6. It started with 1 stakeholder in its group

after first day of discussion. But, as the discussion is evolved and as more and more

participated in discussion, the number of stakeholders in the group gradually increased

and reached 17 after final day of discussion. This cluster group C6 is the one which

has more number of stakeholders when compared to other clusters. The stakeholders

in this group support design alternative 2 and attack other two design alternatives.

50

Table 7.7. Clustering Evolution

Dates C1 C2 C3 C4 C5 C6 C7 C8
Total
Stake-
holders

November
11th, 2014

1 2 0 0 0 1 1 0 5

November
12th, 2014

0 0 1 1 0 3 0 1 6

November
13th, 2014

0 0 2 1 0 3 0 1 7

November
14th, 2014

0 0 2 1 0 4 0 1 8

November
15th, 2014

0 0 4 1 0 4 0 1 10

November
16th, 2014

0 2 3 0 0 7 0 3 15

November
17th, 2014

0 2 7 0 1 8 1 4 23

November
18th, 2014

1 3 10 0 1 10 1 10 36

November
19th, 2014

8 8 7 3 3 12 1 2 44

November
22nd, 2014

3 4 11 1 1 17 2 6 45

November
23rd, 2014

3 4 12 1 1 17 2 6 46

The clustering evolution illustrates the point of convergence in discussion. The design

alternative 2 would be most preferred design solution as most of the stakeholders agree

with it.

7.4.2. Detection of Influential Argument Chains. During discussion,

the stakeholders also change their opinion and move from one cluster to another

cluster. The reason for stakeholders transition is the influence of certain argument

chains in the discussion that have made them to change their opinion. Without loss of

generality, we consider userids of two stakeholders as Stakeholder 1 and Stakeholder

2, who participated in the discussion and changed their opinion.

51

Table 7.8. Influential Argument Chain for Stakeholder 2 on Design Alternative 1

Argument
ID

Argument Description
Argument
Weight

A343(By
Stake-
holder
2)

However, using a third party application would re-
quire us first to obtain their permission for use in
our software, possbily permission to edit it if the
tool doesnt already meet all the requirements per-
fectly, and we would need their support for any fu-
ture changes that are made either to their tool or
ours. The additional correspondence needed may
make that option take more time than developing
the tool from scratch, depending on how we rank
in the third partys priorities

-0.4

A321

I agree this would give the development team the
greatest amount of control but according to re-
quirement 145 the change needs to be made in
a short period of time. Trying to create a new
functionality quickly could lead to a lot more mis-
takes. Rushing through the testing process leads
to a worse output then using an already working
third party application.

-0.5

A269

Since it is an integrated Canvas, development team
has the full control. That the entire system along
with the new functionality should be tested thor-
oughly end to end is highly achievable. Therefore,
I support position 1 on this.

1.0

Table 7.9 shows the transition of cluster groups for two stakeholders. Stake-

holder 1 was part of cluster C8 on November 18th, 2014 where he agrees with neither

of the alternatives. But, on November 19th, 2014, he moved to cluster group C6 sup-

porting design alternative 2 and attacking other alternatives. Similarly, Stakeholder

2 changed his opinion and moved from cluster group C8 to C3 supporting design

alternative 1.

Based on these transitions, we analyze the argumentation tree and detect the

argumentations chains that have influenced these individuals to change their opinion

and opt a different idea. Tables 7.10 7.8 shows the argument chains that have influ-

52

enced stakeholder 1 and stakeholder 2 to change their decisions respectively.

Table 7.9. Transition of Cluster Groups of Two Stakeholders

Stakeholder ID November 18th, 2014 November 19th 2014

Stakeholder 1
C8 (Negative, Negative,
Negative)

C6 (Negative, Positive,
Negative)

Stakeholder 2
C8 (Negative, Negative,
Negative)

C3 (Positive, Negative,
Negative)

Table 7.10. Influential Argument Chain for Stakeholder 1 on Design Alternative 2

Argument
ID

Argument Description
Argument
Weight

A320 (By
Stake-
holder
1)

I agree, with a limited amount of time this is
the best option to have an application that works.
Time can be spent testing the third-party applica-
tion instead of trying to create one from scratch.

1.0

A194

This position will have the fewest amount of bugs,
because the third party tool has been in use and
tested for a while, and there is an entire community
of developers committed to improving it. While I
cannot say it will be defect-free in our implemen-
tation, a lot of the testing and improvement has
already been done. This also takes out the time of
developing the full tool, and requirement 145 says
it should happen in a short period of time.

1.0

7.4.3. Detection of Hot Arguments. As the online discussion evolves on

each day of argumentation, we compute the number of follow up arguments for each

argument posted during discussion. Based on the number of follow up arguments,

we detect the arguments that have gained significant attention in the argumentation.

The system computes the Hot Arguments on each day and as well the Hot Arguments

all through the discussion till that date. Table 7.11 shows the Hot Arguments till the

date from the beginning of discussion. A12 is the argument that has gained more

53

number of follow up arguments when compared to others at the end of discussion.

Similarly, Table 7.12 shows the Hot Arguments on each day. We can see that, on

each day different arguments stand out and receive significant number of follow up

arguments in discussion. A12 is the arguments which have received large number of

arguments on a single day.

Table 7.11. List of Hot Arguments Since Start of Discussion (Overall Basis)

Date Argument ID Number of Follow up Arguments
November 11th, 2014 A7 2
November 12th, 2014 A1, A2 3
November 13th, 2014 A1,A2 4
November 14th, 2014 A1,A2,A11 4
November 15th, 2014 A11 5
November 16th, 2014 A31 6
November 17th, 2014 A10 10
November 18th, 2014 A12 13
November 19th, 2014 A12 20
November 22nd, 2014 A12 20
November 23rd, 2014 A12 20

Table 7.12. List of Hot Arguments on Each Day (Daily Basis)

Date Argument ID Number of Follow up Arguments
November 11th, 2014 A7 2
November 12th, 2014 A1,A2,A10,A11,A14,A31 2
November 14th, 2014 A11 2
November 16th, 2014 A3 3
November 17th, 2014 A10, A6 5
November 18th, 2014 A12, A3 6
November 19th, 2014 A12 7
November 23rd, 2014 A1, A3, A201 2

The number of follow up arguments received for each stakeholder’s arguments

is also computed and the stakeholders who have received most number of follow up

arguments has increased the participation in the online discussion. Table 7.13 shows a

sample list of stakeholders and the number of follow up arguments they have received.

54

Table 7.13. Number of Follow up Arguments Received by Stakeholders

Stakeholder Number of Follow up Arguments
Stakeholder 1 106
Stakeholder 2 48
Stakeholder 3 36
Stakeholder 4 26

Stakeholder 1 has received significant number of follow up arguments in discussion.

7.4.4. Detection of Active and Inactive Stakeholders. After entire ar-

gumentation, the opinion weights on various design alternatives for each of the stake-

holders in computed on daily basis. Some of the stakeholders have consistently par-

ticipated in the discussion, whereas some of the stakeholders participated only during

initial days. Table 7.14 shows the opinion weights on design alternatives for one of

the stakeholder who participated in discussion for each day. The opinion weights

from the table depicts that the stakeholder was active in discussion only for the first

3 days of discussion and for the next 9 days of discussion, he has not posted a single

argument. Such stakeholders are classified as Inactive Stakeholders.

Table 7.14. Evolution of Opinion Weights on Design Alternatives for a Stakeholder

Design Alternative/Dates November 11th, 2014
November 12th, 2014 to
November 23rd, 2014

Design Alternative 1 1 2.3
Design Alternative 2 0 -2.125
Design Alternative 3 0 1.625

7.4.5. Detection of Trending Topics. On each day of argumentation, the

argumentation data that is captured is analyzed to detect the topics that are most

discussed till that day. The arguments are clustered using Lingo algorithm based

on the topic they discuss. Table 7.15 shows the evolution of topics for some of

55

Table 7.15. Evolution of Trending Topics

Dates/Topics Testing Cost
Development
Time

Security
Operating
Systems

November 11th,
2014

4 4 2 0 0

November 12th,
2014

5 6 2 5 0

November 13th,
2014

6 7 2 5 0

November 14th,
2014

9 8 2 7 2

November 15th,
2014

10 8 2 8 2

November 16th,
2014

20 14 2 15 7

November 23rd,
2014

55 74 60 57 18

the days of argumentation. As part of the discussion, we can see that most of the

stakeholders discuss a lot about Testing, Cost, Development Time and Security. Some

of the stakeholders are also concerned with the dependency of operating system during

product development.

The table shows the most discussed topics during argumentation. There are

other topics under discussion as well, but they haven’t grasped a lot of attention from

the group.

56

8. CONCLUSION AND FUTURE WORK

In this thesis, we presented and discussed about ISARCS that enables archi-

tects to capture and maintain the software architecture rationale for collaborative

architecture design. The entire architectural rationale maintains its links to soft-

ware requirements and architectural elements that aids stakeholders to understand

the relationships between various elements during software development. We also

presented various techniques to analyze the architectural rationale in different per-

spectives and support stakeholders to understand the state of argumentation that

aids them in choosing a well suited design solution. Finally, we conducted a case

study and provided with the results that indicate the effectiveness of the proposed

system and intelligent analysis of architecture rationale.

In future, if multiple products encounter similar design issues, then the design

knowledge captured for similar products can be retrieved and reused so that significant

effort and cost can be saved in software design process. The architectural knowledge

captured can be reused across products to resolve similar design issues. Apart from

that, the architectural rationale captured can also be analyzed with advanced data

mining techniques to understand more about argumentation.

57

BIBLIOGRAPHY

[1] JanSalvador van der Ven, AntonG.J. Jansen, JosA.G. Nijhuis, and Jan Bosch.
Design decisions: The bridge between rationale and architecture. In AllenH.
Dutoit, Raymond McCall, Ivan Mistrk, and Barbara Paech, editors, Rationale
Management in Software Engineering, pages 329–348. Springer Berlin Heidel-
berg, 2006.

[2] Dewayne E Perry and Alexander L Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

[3] Anton Jansen and Jan Bosch. Software architecture as a set of architectural
design decisions. In Software Architecture, 2005. WICSA 2005. 5th Working
IEEE/IFIP Conference on, pages 109–120. IEEE, 2005.

[4] Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C Dueñas. A web-
based tool for managing architectural design decisions. ACM SIGSOFT software
engineering notes, 31(5):4, 2006.

[5] Cristina Gacek, Ahmed Abd-Allah, Bradford Clark, and Barry Boehm. On the
definition of software system architecture. In Proceedings of the First Interna-
tional Workshop on Architectures for Software Systems, pages 85–94. Seattle,
Wa, 1995.

[6] Fabian Gilson and Vincent Englebert. Rationale, decisions and alternatives trace-
ability for architecture design. In Proceedings of the 5th European Conference on
Software Architecture: Companion Volume, page 4. ACM, 2011.

[7] Meiru Che and Dewayne E. Perry. Exploring architectural design decision man-
agement paradigms for global software development. In The 25th International
Conference on Software Engineering and Knowledge Engineering, Boston, MA,
USA, June 27-29, 2013., pages 8–13, 2013.

[8] Rafael Capilla, Francisco Nava, Jesús Montes, and Carlos Carrillo. Addss:
Architecture design decision support system tool. In Proceedings of the 2008
23rd IEEE/ACM International Conference on Automated Software Engineering,
pages 487–488. IEEE Computer Society, 2008.

[9] Muhammad Ali Babar and Ian Gorton. A tool for managing software architecture
knowledge. In Proceedings of the Second Workshop on SHAring and Reusing
Architectural Knowledge Architecture, Rationale, and Design Intent, SHARK-
ADI ’07, pages 11–, Washington, DC, USA, 2007. IEEE Computer Society.

[10] Xiaofeng Cui, Yanchun Sun, and Hong Mei. Towards automated solution syn-
thesis and rationale capture in decision-centric architecture design. In Software

58

Architecture, 2008. WICSA 2008. Seventh Working IEEE/IFIP Conference on,
pages 221–230. IEEE, 2008.

[11] I. Lytra, Huy Tran, and U. Zdun. Constraint-based consistency checking be-
tween design decisions and component models for supporting software architec-
ture evolution. In Software Maintenance and Reengineering (CSMR), 2012 16th
European Conference on, pages 287–296, March 2012.

[12] J. Savolainen and T. Mannisto. Conflict-centric software architectural views:
Exposing trade-offs in quality requirements. Software, IEEE, 27(6):33–37, Nov
2010.

[13] Lars Bratthall, Enrico Johansson, and Björn Regnell. Is a design rationale vital
when predicting change impact? a controlled experiment on software architecture
evolution. In Proceedings of the Second International Conference on Product
Focused Software Process Improvement, PROFES ’00, pages 126–139, London,
UK, UK, 2000. Springer-Verlag.

[14] Stephen Toulmin. The uses of argument. 1958. Cambridge: Cambridge UP, 2003.

[15] Jeff Conklin and Michael L. Begeman. gibis: A hypertext tool for exploratory
policy discussion. ACM Trans. Inf. Syst., 6(4):303–331, October 1988.

[16] N Papadias. Hermes: Supporting argumentative discourse in multi agent decision
making. In Proceedings of the 15th National Conference on Artifical Intelligence
(AAAI-98), pages 827–832, 1998.

[17] Chenn-Jung Huang, Yu-Wu Wang, Tz-Hau Huang, Jia-Jian Liao, Chun-Hua
Chen, Chuan-Hsiang Weng, Yu-Jen Chu, Chiao-Yun Chien, and Hung-Yen Shen.
Implementation and performance evaluation of an intelligent online argumenta-
tion assessment system. In Electrical and Control Engineering (ICECE), 2010
International Conference on, pages 2560–2563. IEEE, 2010.

[18] Xiaoqing Liu, NagaPrashanth Chanda, and Eric Barnes. Software architecture
rationale capture through intelligent argumentation. In Proc. of 2014 Interna-
tional Conference on Software Engineering & Knowledge Engineering, Vancou-
ver, Canada, July 2014.

[19] R.S. Arvapally and Xiaoqing Liu. Collective assessment of arguments in an
online intelligent argumentation system for collaborative decision support. In
Collaboration Technologies and Systems (CTS), 2013 International Conference
on, pages 411–418, May 2013.

[20] Xiaoqing Frank Liu, Maithili Satyavolu, and Ming C Leu. Contribution based
priority assessment in a web-based intelligent argumentation network for collab-
orative software development. In Collaborative Technologies and Systems, 2009.
CTS’09. International Symposium on, pages 147–154. IEEE, 2009.

59

[21] Xiaoqing(Frank) Liu, Samir Raorane, and MingC. Leu. A web-based intelligent
collaborative system for engineering design. In W.D. Li, Chris McMahon, S.K.
Ong, and AndrewY.C. Nee, editors, Collaborative Product Design and Manufac-
turing Methodologies and Applications, Springer Series in Advanced Manufactur-
ing, pages 37–58. Springer London, 2007.

[22] Xiaoqing Frank Liu, Ekta Khudkhudia, Lei Wen, Vamshi Sajja, and M Leu.
An intelligent computational argumentation system for supporting collaborative
software development decision making. Artificial Intelligence Applications for
Improved Software Engineering Development, Farid Meziane and Sunil Vadera,
Hershey, PA: IGI Global, pages 167–180, 2009.

[23] Scott Sigman and Xiaoqing Frank Liu. A computational argumentation method-
ology for capturing and analyzing design rationale arising from multiple perspec-
tives. Information and Software Technology, 45(3):113 – 122, 2003.

[24] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up and reasoning
about architectural knowledge. In Christine Hofmeister, Ivica Crnkovic, and
Ralf Reussner, editors, Quality of Software Architectures, volume 4214 of Lecture
Notes in Computer Science, pages 43–58. Springer Berlin Heidelberg, 2006.

[25] Eric Barnes and Xiaoqing Liu. Text-based clustering and analysis of intelligent
argumentation data. In Proc. of 2014 International Conference on Software
Engineering & Knowledge Engineering, Vancouver, Canada, July 2014.

[26] Stanislaw Osinski and Dawid Weiss. A concept-driven algorithm for clustering
search results. IEEE Intelligent Systems, 20(3):48–54, May 2005.

[27] Bibb Latan and Sharon Wolf. The social impact of majorities and minorities.
Psychological Review, 88(5):438–453, Sep 1981.

[28] Bibb Latan. The psychology of social impact. American Psychologist, 36(4):343–
356, Apr 1981.

60

VITA

NagaPrashanth Chanda earned his Bachelors degree in Electrical and Elec-

tronics Engineering from Osmania University, India in 2010. After completion of his

bachelors, he worked as a Senior Systems Engineer at Infosys Limited, Hyderabad,

India for 3 years (till July 2013). He has been a graduate student in the Computer Sci-

ence Department at Missouri University of Science and Technology since August 2013

and worked as a Graduate Research assistant under Dr. Xiaoqing (Frank) Liu from

August 2013 to till date. He received his Masters in Computer Science at Missouri

University of Science and Technology in May 2015.

	Argumentation based collaborative software architecture design and intelligent analysis of software architecture rationale
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	Software Architecture Rationale Capture
	Analysis of Software Architecture Rationale
	Organization of Thesis

	Related Work
	Architecture Knowledge Management
	Argumentation Systems

	Background
	Intelligent Argumentation System

	ISARCS : Intelligent Software Architecture Rationale Capture System
	Intelligent Analysis of Software Architecture Rationale
	Analysis of Software Concerns
	Classification of Stakeholders Viewpoints
	Software Requirement Traceability
	Topic Analysis

	Evolutionary Analysis of Software Architecture Rationale
	Detection of Convergence using Polarization Groups
	Detection of Influential Argument Chains
	Detection of Active and Inactive Stakeholders
	Detection of Hot Arguments
	Detection of Trending Topics

	Experimental Evaluation
	Experimental Setup
	Data Collection
	ISARCS Discussion
	Industrial Experts Opinion

	Intelligent Data Analysis
	Analysis of Software Concerns
	Classification of Stakeholders Viewpoints
	Requirements Traceability
	Topic Analysis

	Evolutionary Data Analysis
	Convergence Using Polarization Groups
	Detection of Influential Argument Chains
	Detection of Hot Arguments
	Detection of Active and Inactive Stakeholders
	Detection of Trending Topics

	Conclusion and Future Work
	BIBLIOGRAPHY
	VITA

