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ABSTRACT 

 In this research, we show online social networks can be used to study crime 

detection problems. Crime is defined as an act harmful not only to the individual 

involved, but also to the community as a whole. It is also a forbidden act that is 

punishable by law. Crimes are social nuisances that place heavy financial burdens on 

society. Here we look at use of data mining followed by sentiment analysis on online 

social networks, to help detect the crime patterns. Twitter is an online social networking 

and microblogging service that enables users to post brief text updates, also referred to as 

"tweets". These updates can convey important information about the author. A filter was 

designed to extract tweets from cities deemed to be either the most dangerous or the 

safest in the United States (US). A geographic analysis revealed a correlation between 

these tweets and the crimes that occurred in the corresponding cities. Over 100,000 

crime-related tweets were collected over a period of 20 days. Sentiment analysis 

techniques were conducted on these tweets to analyze the crime intensity of a particular 

location. This type of study will help reveal the crime rate of a location in real-time. 

Although the results of this test helped in detecting crime patterns, the sentiment analysis 

techniques did not always guarantee the proper results. We conclude with applications of 

this type of study and how it can be improved by applying media to text processing 

techniques.  
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1. INTRODUCTION 

 National security concern is the primary goal of any nation. Criminology studies 

focus on identifying criminal characteristics. The application of data mining techniques 

can help with this identification. Crime analysis, a part of criminology, is a law 

enforcement function that involves the systematic analysis of identifying and analyzing 

both patterns and trends in crime and disorder.  

 In the current world, the criminals are becoming technologically sophisticated, 

often expressing their emotions on the web. The World Wide Web’s phenomenal growth 

has resulted in more users expressing their opinions online. Customers use these opinions 

to buy a product, conduct market analysis, and so forth. 

 Twitter is one of the most popular online social networks to date, where users post 

their opinions in short text called "tweets". These tweets are typically limited to 140 

characters. Twitter has approximately 500 million users; approximately 340 million 

tweets are sent every day. Twitter is used, primarily, for the following four reasons [1].  

 Daily Chatter (e.g., status messages on what the user is doing) 

 Conversations (e.g., tweeting to either a user or a group of users within a 

community) 

 Sharing information (e.g., posting links to web pages) 

 Reporting new (e.g., status updates on current affairs). 
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 According to Bollen, "a tweet is a microscopic, temporally-authentic in-

stantiation of sentiment" [2]. Since tweets are crispy and brief, the public sentiment can 

be easily explored. Twitter also provides the feature of Retweet (RT), which allows users 

to share content posted by another user.   

 Sentiment analysis (also known as opinion mining) refers to the use of natural 

language processing, text analysis, and computational linguistics to identify and extract 

subjective information in source materials. It is used to determine an author's attitude, 

with respect to a particular topic or the overall contextual polarity in the text.  

 The rapid growth of Social media has spurred interest in sentiment. Various forms 

of online expressions (e.g., opinions-like reviews, ratings, and recommendations) have 

become major sources of information for businesses looking to market their products and 

manage their reputations.  

 The challenge of detecting crime patterns lies in geographically analyzing crime-

related tweets and then performing sentiment analysis to identify crime prone zones in 

nearly real-time. Most of the studies that focused on crime pattern detection [8, 9] used 

data mining techniques to better understand historic data. This study used online social 

media to detect crime prone areas in almost real-time.    

1.1 GOALS 

This work was conducted in an attempt to accomplish the following: 

 Conduct geographic analysis of tweets within selected cities. 

 Analyze certain city intensity by applying sentiment analysis techniques to 

collected tweets. 
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 Identify the applications needed for this type of study.  

1.2 CONTRIBUTIONS 

 This study was conducted to better understand the crime intensity of a particular 

location, in almost real-time, through the online social media. As stated earlier in this 

paper, the existing studies draw the crime patterns using the historic data which lacks the 

real-time feasibility. As technology is growing rapidly, the data exchange can be done at 

a glance. Using the power of online social media, we believe this approach could be very 

useful in drawing patterns for crime detection. 

 The approach used in this study began with the identification of the top ten crime 

prone cities and the top ten safest cities in the United States as determined by Forbes [3, 

4]. The tweets generated within certain geographical area around these cities were then 

collected. The data collection process ran for nearly 21 days; which resulted in over 

100,000 tweets in our database. Geographic analysis is performed using the density of 

population in the respective cities. The results drawn from this phase matches the pattern 

mentioned in the Forbes articles.  

 Sentiment analysis was applied over the collected crime-related tweets to measure 

the crime intensity of a particular location. Both Stanford's Recursive Deep model [5] and 

the dictionary-based approach, using Affective Norms for English words (ANEW) [6, 7], 

were used to conduct the sentiment analysis technique. The sentiment obtained from 

these techniques was used to identify a location's intensity in almost real-time. 
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1.3 THESIS STRUCTURE 

 The following discussion is divided into four sections. A brief background on the 

crime distribution in the United States is given in Section-II. This section also includes 

the existing techniques that tried to detect crime patterns using the historic data and a 

brief background on the existing sentiment analysis techniques available for use, 

including machine learning and lexicon-based approaches. Section-III contains 

information on the data collection and data processing used in this approach. The results 

collected are presented in Section-IV. The entire paper is concluded in Section-V. 
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2. BACKGROUND 

2.1 CRIME DISTRIBUTION 

 The main challenge behind crime data mining is to understand patterns in criminal 

behavior in order to predict crime and prevention. Any research that can assist in solving 

crimes is preferred to protect individuals. A number of studies examined data obtained 

from either a sheriff's office [8] or a Crime Analysis Unit [9]. Clustering and Series 

Finder algorithms, respectively, were applied to the data in an effort to predict crime. 

Twitter, a powerful online social network, was used in this study to detect crime in 

almost real-time.  The top ten most dangerous cities in the United States, as listed by 

Forbes magazine, were chosen for examination; the top ten safest cities were also 

examined for comparison. A complete list of cities analyzed is given in Table 2.1. 

Table 2.1.  List of Cities and Their Central Geolocation 

Rank Crime 

Cities 

Geolocation (lat, 

long) 

Safe Cities Geolocation(lat, long) 

1 Detroit 42.352711, -

83.099205 

Plano 33.061262, -96.7366254 

2 East St. 

Louis 

38.6106505, -

90.1125948 

Portland 45.5424364, -122.654422 

3 Oakland 37.7919584, -

122.2287941 

Honolulu 21.3280681, -57.7989705 
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Table 2.1.  List of Cities and Their Central Geolocation (cont.) 

4 Memphis 35.129186, -

89.9696395 

San Jose 37.2970155, -

121.8174129 

5 Birmingham 33.5312374, -

86.850137 

Omaha 41.2918589, -96.0812485 

6 Atlanta 33.7677129, -

84.420604 

New York 40.7056308, -73.9780035 

7 Baltimore 39.2847064, -

76.6204859 

Santa Ana 33.7380535, -117.887414 

8 Stockton 37.9730234, -

121.3018775 

Anaheim 33.7380535, -117.887414 

9 Cleveland 41.4949426, -

81.70586 

San Diego 32.8245525, -

117.0951632 

10 Buffalo 42.8962389, -

78.854702 

Glendale 33.6030034, -

112.3064516 

2.2 SENTIMENT ANALYSIS 

 Sentiment analysis was used to determine a writer's/speaker's attitude with respect 

to either a topic or the overall contextual polarity of a text. Researchers use this analysis 

to measure emotions in online texts. The rise of social media fueled interest in using 

sentiment analysis to identify public opinions and interests. Several open source software 

tools utilize machine learning, statistics, and natural language processing techniques to 

automate sentiment analysis on a large collection of texts that have been gathered from 

various sources.  
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Sentiment analysis is a two-step process that includes both subjectivity 

classification and sentiment classification. The term subjectivity classification [7], is 

defined as distinguishing factual sentences from those used to present opinions, before 

analyzing sentiments. Paragraphs that present facts are typically removed so the 

researcher can focus on those paragraphs in which the author expresses opinions. Both 

naive Bayes classification [10] and Cut Based classification [11] are used for subjectivity 

classification. 

 The term sentiment classification [7], is defined as detecting sentiment polarity of 

the subjective sentences. This sentiment classification is also divided into two categories: 

binary sentiment classification and multi-class sentiment classification. Binary sentiment 

classification involves classifying sentiments either positive or negative. Multi-class 

sentiment classification involves classifying sentiments into one of five categories:  

strong positive, positive, neutral, negative and strong negative. 

 The most common machine learning techniques used for sentiment classification 

include naive Bayes, maximum entropy, and support vector machine [12]. Most 

sentiment analysis algorithms use simple terms to express sentiment. However the 

cultural factors, linguistic nuances, and differing contexts prevent researchers from 

drawing the sentiment accurately.  
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2.2.1 ANEW Based Approach. The ANEW is being developed to provide a 

set of normative emotional ratings for a large number of words in the English language 

[6]. This was developed to aid researchers when studying emotions; it is often used to 

determine a tweet's sentiment [7].  

 Siddharth and Dr. Healey [7] adopted a dictionary-based approach for 

determining the sentiment of tweets. They used the ANEW dictionary to provide pre-

existing, normative emotional ratings for 1034 words along the three dimensions of 

valence, arousal and dominance. They used an independent matching technique to map 

all of the words in a tweet that were found in ANEW. They used two approaches (the 

arithmetic mean and normal distribution) to calculate both the mean valence and arousal.  

 These values were then plotted in a 2D emotional circumplex model. The tweet 

emotion was determined its position within the model. They used the model proposed by 

Russell and Barett [13] which is shown in Figure 2.1.  
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Figure 2.1.  Semantic Structure of Emotional Model 

 

2.2.2 Deep Learning for Sentiment Analysis. Richard, Alex, Jean, and 

Jason [5] introduced the Recursive model, a state-of-the-art in sentiment analysis. They 

also introduced both the Recursive Neural Tensor Networks (RNTN) and the Stanford 

Sentiment Treebank. The Treebank includes fine-grained sentiment labels for over 

200,000 phrases in the parse trees of over 11,000 sentences. When the RNTN model is 

trained on the new Treebank, it outperformed all previous methods on several metrics. 

This approach follows the multi-class sentiment classification; it predicts five sentiment 

classes: very positive, positive, neutral, negative and very negative. The sentiment 

prediction's accuracy can reach 80.7%. An example of the RNTN accurately predicting 
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five sentiment classes at every node of a parse tree is given in Figure 2.2. It also captures 

the negation and its scope in the sentence. 

 

Figure 2.2. Example of the Recursive Neural Tensor Network 

 

 RNTN proposed here [5], takes the input phrases and represent through word 

vectors and a parse tree, then compute vectors for higher nodes in the tree using the same 

tensor based composition function. Unlike bag of words techniques, it also accurately 

captures the sentiment by giving negative results for the negation of positive phrases. 

This study was focused primarily on semantic vector spaces, compositionality in vector 

spaces, logical form, deep learning and sentiment analysis. 
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3. TWITTER DATA PROCESSING 

 In this section, a detailed explanation of our data collection from twitter, 

geographic analysis and sentiment analysis over the collected data including the 

implementation details of the proposed solution is provided. The tweet analysis used to 

detect crime consisted of the following steps: 

 1. Collect tweets 

 2. Clean and parse the data 

 3. Conduct geographic analysis on the extracted tweets 

 4. Conduct sentiment analysis on the extracted tweets 

3.1 COLLECT TWEETS 

 The top ten dangerous and safe cities in the United States, with their geolocation 

details were identified before the experiments were begun. The list of the cities and the 

geolocation details are provided in Table 2.1. Tweets were collected within a 50km 

radius around the city's central geolocation. This radius was kept constant for all the cities 

examined. 

 Twitter allows developers to explore its platform. Twitter4J, an unofficial Java 

library for the Twitter Application Program Interface (Twitter API), was used to 

automate the application so that it could be integrated into Twitter. Tweets were then 

collected according to crime-related topics within a certain constant area of each city. A 

keyword search strategy was adopted for collection purposes. Keywords used to identify 

crime-related tweets included "gun," "crime," "sinister," "kill," and so forth.  
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Unfortunately, Twitter places limits on the developer's account for reliability purposes. 

The default rate limit for calls to the API varies according to the authorization method 

being used and whether or not the method itself requires authentication [18]. The 

limitations are:  

 Unauthenticated calls are permitted 150 requests per hour. Unauthenticated calls are 

measured against the public facing IP of the server or device making the request. 

 OAuth calls are permitted 350 requests per hour and are measured against 

the oauth_token used in the request. 

   Because of these Twitter Developer limitations over its database, research 

devices were able to pass 150 requests in semi-hourly intervals. Our research used around 

20 distinct developers, students at Missouri S&T, keys and managed to pass over 3000 

requests every 15 minutes. In order to make the dataset short, research was able to extract 

tweets that contain the keyword "gun". Sample tweets collected during this process are 

listed in Table 3.1 

Table 3.1. Sample Tweets Collected 

S. 

No 

Location Date Tweet 

1 Detroit Sat Jul 26 22:25:35 

CDT 2014 

So I'm walking home some dude pulls up and 

puts a gun in my face... Great fucking night.. 
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Table 3.1. Sample Tweets Collected (cont.) 

2 New 

York 

Thu Jul 24 20:53:22 

CDT 2014 

Good guy with a gun takes out bad guy with a 

gun. Injuries reported after shots are fired at 

Pennsylvania hospital 

3 East St. 

Louis 

Wed Jul 16 23:50:31 

CDT 2014 

gun shots are so pleasant to hear #uhm... 

 

 Tweets were continuously collected in these cities for a period of 21 days, 

between July 7, 2014 and July 21, 2014 which ultimately ended up with over 100,000 

tweets in the database. Although research obtained a variety of information from the 

tweets, relevant and irrelevant, particular interest was in specific content from the tweets.  

3.2 CLEAN AND PARSE THE DATA 

Each tweet was parsed before sentiment analysis was conducted. These parsing steps 

included the following: 

1. Separate the individual terms in a tweet according to the white-space boundaries 

2. Convert the tweet into lower case letters 

3. Remove all non-alphanumeric characters from tweets (e.g., hash signs and 

dashes) 

 These steps helped with identifying the individual set of string tokens needed to 

word match as part of the ANEW-based sentiment analysis approach. While the Deep 

Learning for sentiment analysis approach requires only non-alphanumeric characters to 

be excluded. The study can be further extended by Gingering [14] all the terms in the 
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tweet which can help to increase the number of terms mapped to corresponding stemmed 

equivalents in ANEW. 

3.3 CONDUCT GEOGRAPHIC ANALYSIS 

 Geographic analysis is a component of data analytics that involves both collecting 

and scrutinizing each data sample in a set of items from which the samples are drawn. 

The primary goal is to identify the trends. The datasets in this study that were extracted 

from twitter needed to be filtered before trends could be drawn. The parameters defined 

for this analysis phase included the following: 

1. TweetMean: The TweetMean was defined as the average number of tweets per 

day in a particular city. The average tweet count of all days in a particular city 

were computed to estimate TweetMean µ𝑡 :  

 

  µ𝑡 =
∑ 𝐶𝑖,𝑡 

𝑛
𝑖=1

𝑛
                                         (3.1) 

Where 𝐶𝑖,𝑡  is the tweet count in a city for day i. 

2. SearchArea: The SearchArea was defined as the area within the city from which 

the tweets were extracted: 

  𝑆𝑒𝑎𝑟𝑐ℎ𝐴𝑟𝑒𝑎 = 𝜋𝑟2                 (3.2) 

Where the radius ( 𝑟 ) was fixed to 50km. 

3. PopulationCount: The PopulationCount was defined as the count of people in a 

particular SearchArea:   

𝑃𝐶 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑆𝑒𝑎𝑟𝑐ℎ𝐴𝑟𝑒𝑎       (3.3) 
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Where 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 is the population per unit area. 

4. TweetRatio: The TweetRatio was defined as a PopulationCount per TweetMean: 

  𝑇𝑤𝑒𝑒𝑡𝑅𝑎𝑡𝑖𝑜 =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡

𝑇𝑤𝑒𝑒𝑡𝑀𝑒𝑎𝑛
       (3.3) 

5. PeopleTR: The PeopleTR was defined as a reciprocal of the TweetRatio; it was 

simply the probability that a single person would commit a crime. 

  𝑃𝑒𝑜𝑝𝑙𝑒𝑇𝑅 =
𝑇𝑤𝑒𝑒𝑡𝑀𝑒𝑎𝑛

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡
        (3.3) 

The steps used to design a filter for geographic analysis on data collected included the 

following: 

1. Read the database and cluster the tweets according to the city 

2. Cluster the city-specific data according to the date the tweet the tweet was posted 

in Twitter   

3. Count the number of crime-related tweets in each city. For example, 

CityName#TweetCount_Day1#TweetCount_Day2#......#TweetCount_Day20 

4. Load the population density defined as the population per unit area of each city 

5. Calculate the predefined parameters (e.g., TweetMean, SearchArea, TweetRatio, 

PopulationCount, and PeopleTR) 
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3.4  CONDUCT SENTIMENT ANALYSIS 

 Sentiment analysis is used to determine an author's attitude with respect to either a 

particular topic or a document's overall contextual polarity. As stated earlier, effort was 

given to evaluate the sentiment which existed in our tweets using two sentiment analysis 

techniques, namely ANEW based technique and Deep Learning model.  

 In ANEW based technique, effort was made in mapping every term from ANEW 

to its equivalent in the tweet. This was then applied by Porter Stemming [15] to improve 

the mapping. Selection of matching words that existed in both ANEW and the tweet was 

given further consideration. The mean valence µ𝑣 and mean arousal µ𝑎 for each selected 

ANEW term is fetched to compute average of the valence and arousal of all the ANEW 

terms. For example, the tweet “Good guy with a gun takes out bad guy with a gun. 

Injuries reported after shots are fired at Pennsylvania hospital " has four words 'good', 

'hospital', 'fire' and 'gun' which map to ANEW. The valence and arousal scores for the 

terms 'good', 'hospital', 'fire' and 'gun' are [7.47, 5.43], [5.04, 5.98], [3.22, 7.17]  and 

[3.47, 4.02] respectively. The overall mean valence and mean arousal score of the tweet 

is calculated using the formula (3.1) as 

µ𝑣 =
7.47 + 5.04 + 3.22 + 3.47

4
= 4.8 

µ𝑎 =
5.43 + 5.98 + 7.17 + 4.02

4
= 6.4 

These final mean scores were plotted in Figure 2.1 so that the sentiment analysis could be 

determined. 
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 Most sentiment prediction tools work by matching certain keywords, giving 

positive points to positive words and negative points for negative words and summing up 

these points to give the sentiment of the text. The order of words is not considered which 

results in lack of important information. In order to overcome the drawbacks in keyword 

matching techniques, new deep learning model that actually works on sentence structure 

was proposed in [5]. By passing the tweets accordingly, we can extract the sentiment 

using deep learning models. As stated earlier this method is based on multi-class 

classification, where the outcomes are one among the following list [very positive, 

positive, neutral, negative, and very negative]. For example, the tweet “Good guy with a 

gun takes out bad guy with a gun. Injuries reported after shots are fired at Pennsylvania 

hospital “falls under negative class out of five classes. The tweet “gun shots are so 

pleasant to hear #uhm..." falls under positive class. 
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4. RESULTS AND DISCUSSIONS 

 In this section, we analyze the crime related tweets in the selected cities and 

demonstrate the correlation between the crime intensity based on Forbes article and 

trends observed on Twitter. Sentiment analysis techniques were then used to examine the 

crime intensity within each city's twitter dataset. 

4.1 SCENARIO I 

 An exact correlation was drawn between the crime trends described in a Forbes 

article and sentiments identified in Twitter. The tweets were run through a geographic 

analysis phase after both the data collection and cleaning phase were complete. The 

geographic analysis results are included in Scenario I. Stepped Area Charts, a step-wise 

graphical representation of quantitive data, were used to visualize the datasets. The 

number of tweets collected from the crime cities are graphed in Figure 4.1. 
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Figure 4.1. Distribution of Tweets in Cities Identified as Crime  

 

 The top ten crime cities are listed sequentially along the horizontal axis. The 

number of tweets collected each day is listed in a step manner along the vertical axis. 

Those cities with largest amount of crime (e.g., Detroit, Oakland, and Atlanta) had a 

larger number of tweets than any other cities. The number of tweets collected from select 

cities identified as safe is illustrated in Figure 4.2. 
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  Figure 4.2. Distribution of Tweets in Cities Identified as Safe 

 

 The top ten safe cities are listed sequentially along the horizontal axis. The 

number of tweets collected each day is listed in a step manner along the vertical axis. The 

top safe cities (e.g., Plano, Honolulu, and Omaha) had a smaller number of tweets than 

any other city. The number of tweets collected from random cities, from list of collected 

cities, is illustrated in Figure 4.3.  
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Figure 4.3. Distribution of Tweets in Select Cities 

 

 Several of the cities from each list (both dangerous and safe) were combined into 

one list so that any trends present in the data could be identified. The cities in Figure 4.3 

are distributed along the X-axis. The safe cities (e.g., Plano, Honolulu, and Omaha) had 

significantly fewer tweets than the crime cities (e.g., Detroit, Atlanta, and Oakland).  

 The results gathered from the geographic analysis are represented five 

dimensionally in Figure 4.4. Each bubble has a set of five parameters (e.g., abbreviated 

city name, crime intensity, tweet count, TweetRatio, and PeopleTR). The number of 

tweets appears along the x-axis, and the TweetRatio appears along the y-axis. Each city's 
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abbreviated name appears on its corresponding bubble. Both the crime intensity and the 

PeopleTR can be observed in the colour variance (as per the scale at the top of Figure 

4.4) and bubble's size, respectively. 

 
Figure 4.4. Five-dimensional View of Geographic Analysis 

 

 Each of the safe cities is located at the bottom of the graph. They are safe based 

on the following: 

 These bubbles registered a smaller tweet count on the x-axis and a larger tweet 

ratio on the y-axis. Thus, although these cities have large populations, their crime 

patterns are small. 
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 The bubbles are nearly green in colour, indicating they have been reported as safe 

in Forbes. 

 The bubbles are comparatively small, suggesting that the probability of a person 

in that area committing a crime is small. 

Cities at the top of the graph are considered crime cities based on the following: 

 These bubbles registered a larger tweet count on the x-axis and a smaller tweet 

ratio on the y-axis. Thus, a larger population has expressed crime patterns than 

those in other cities. 

 The bubbles are nearly red in colour, indicating they have been reported as crime-

prone in Forbes. 

 The bubbles are large, suggesting that the probability of a person in that area 

committing a crime is large. 

A number of cities examined in this study that had been reported as safe were found here 

to be prone to criminal activity. Thus, a location's crime intensity should be measured in 

real-time rather than from previous statistics.  
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4.2 SCENARIO II 

 As detailed in Section 3, we first tried to measure the sentiment involved in the 

tweet using dictionary based approach. All of the tweets were clustered according to 

city, and each cluster was passed through the sentiment analyzer. This analyzer was 

implemented in such a way that it chose the tweet, cleaned and parsed the data, and 

provided sentiments according to the ANEW based approach. The output from this 

multi-class sentiment analyzer was as follows:  

 Very Positive 

 Positive 

 Neutral 

 Negative and  

 Very Negative 

Tweets that were categorized as either Negative or Very Negative were identified as 

contributing to the crime intensity. Crime trends exist in every city, even those 

identified as safe in Forbes magazine. 

 The probability of the tweets that contribute to crime intensity within a particular 

cluster was calculated so that the crime intensity of that cluster could be identified. 

Tweets that contribute to crime intensity are that classified as either very Negative or 

Negative. A heat map, in which the findings of this study are plotted, is illustrated in 

Figure 4.5. It is detailed as a day-wise crime intensity plot of the cities. The crime 

intensity is represented as a colour scale. The crime pattern in this map is not limited 

to crime-prone cities. Safe cities (e.g., Plano, Portland, and San Hose) each recorded 
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several days of high crime intensities. A number of crime cities (e.g., Stockton and 

Cleveland) also recorded high intensities.  

Figure 4.5. Results from Dictionary-Based Sentiment Analysis Conducted Over the 

Tweets 

 

 Recursive deep models were used for sentiment analysis to overcome the 

limitations of a dictionary-based approach. The recursive deep models accurately 

capture not only the effects of negation but also its scope at various tree levels for 

both positive and negative phrases. Crime intensity is measured in the following 

steps: 

 Cluster the extracted tweets according to city 

 Pass the tweets through both the data cleaning and parsing phase 
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 Use an analyzer to measure the sentiment involved in the tweets 

 Cluster the tweets according to day, thereby narrowing the intensity variance 

This model also follows a multi-class sentiment analysis scheme. Again, the output 

includes the following:  

 Very Positive 

 Positive 

 Neutral 

 Negative and  

 Very Negative 

 
Figure 4.6. Results from Deep Learning Models Over the Tweets 
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 A heat map was again used to plot these results (see Figure 4.6). This day-wise 

crime intensity plot indicates that the crime prone cities had a greater crime intensity than 

safe cities. The crime trends observed in safe cities, however, must still be considered.   

 A city's average crime intensity per thousand people was calculated next. In 

Figure 4.7, each block represents a city's crime intensity per thousand people on a 

specific day. 

 
Figure 4.7. Refined Results Gathered From Sentiment Analysis 

 

 The safe cities at the bottom of Figure 4.7 appear to be safer according to the 

colour scale. The crime-prone cities appear to be dangerous according to the colour scale. 

Crime trends in various safe cities (e.g., New York and Santa Ana) reveal that crime 

patterns do exist in these areas.  
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4.3 SCENARIO III 

 The shootings that recently took place in Ferguson, St. Louis were analyzed as 

part of the third scenario. The situation began when an unarmed, 18-year-old African-

American male, Michele Brown, was fatally shot by Darren Wilson, a white Ferguson 

police officer, on August 9, 2014 [17]. The incident sparked protests and vandalism. 

The street violence continued for two weeks, creating terror throughout the 

community. The crime trend divergence observed in Twitter for St .Louis, both 

before and after the Ferguson shooting is depicted in Figure 4.8. 

 Figure 4.8. Crime Trend Divergence in St. Louis County 

 

 

 From Figure 4.8, two safe weeks had an average of 93 and 101 tweets per day, 

as per the crime pattern search strategy utilized. This average rose sharply the week 

the street violence occurred. An average of 697 tweets per day indicates the city was 
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terrified as a result of the continuing crime. Studies previously conducted on crime 

pattern detection held the crime intensity of a geolocation. The strategy utilized in 

this study drew the crime patterns in almost real-time. 

 In depth, the tweets like "Yeah applying for my gun license!" and "I'm not 

familiar with the gun laws in Missouri but aren't you allowed to carry a gun?" can 

warn the audience that the city has become violent, and residents are trying to protect 

themselves. Tweets that help to raise awareness, that people in the city are going 

crazy are: 

 “Forget cameras, let's disarm the police. Gun control for the 5-0.  #Ferguson" 

  “@johnnybHEAT3 suspended? If I pointed a gun in a cop's face and threaten 

to kill him, where would I be?" and  

 " @staceyhopkinsga @kroger @citygear shut the fuck up bitch , ima carry my 

gun in there regardless of their policy"  

.  
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4.4 SCENARIO IV 

 Tweets were next extracted from the city-specific crime identification groups 

(e.g., city police, the city crime page, and the local media). These pages rely on 

information provided by sheriffs. A number of tweets were extracted from these accounts 

to improve the scheme. For example, Atlanta's Twitter account "Atlanta_Crime" is 

monitored by Spot Crime [19]. This page maintains tweets that report all of the crime 

scenes registered by the sheriff. The data collected from this page is pictorially 

represented in Figure 4.9. 

 Figure 4.9. Crime Trends Drawn From @Atlanta_Crime Twitter Account 
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 The crimes in this image that were registered on July 14th include one shooting, 

four thefts, one assault, and one burglary. Also in the Figure 4.7, these days are reported 

as experiencing more crime than usual. This proves the fact that, monitoring online social 

media will help with identifying crime trends in advance. In future, we can always design 

some algorithms on top of our study, to give priorities to different twitter pages [City 

Police, Spot Crime, Media, etc] which ultimately improve the accuracy in measuring 

city's crime intensity.  
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5. CONCLUSION 

 A crime pattern can be detected, nearly in real-time, when online social media is 

monitored. Crime can occur anywhere at anytime. Previous statistics do not accurately 

identify the crime intensity of a specific location. More accurate results can be drawn 

from social media. Results from geographic data analysis conducted on various tweets 

provided a clear picture of the criminal trends in several different cities. The crime 

intensity day-wise positively correlated with crime statistics from cops, which ultimately 

prove the hypothesis. The Ferguson shooting case study clearly differentiates the city's 

safe and dangerous pattern. To be more precise, we analyzed the specific twitter accounts 

which tweet only about the crime scenarios happened in the city based on sheriff data and 

visualized.   

 The results gathered from this study were positive. An advanced sentiment 

analysis algorithm will aid in differentiating a sinister murderer from tweets within a 

specific location. Video-to-text processing, image-to-text processing, and data from 

various online sources would also help improve accuracy. This type of study would help 

with informing others of the crime pattern both within and around their location, 

ultimately assisting them with staying in a safe zone. Monitoring various social media 

outlets (e.g., Facebook, Google+, Tumblr, and Myspace) would improve accuracy.  
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