
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2013

Hybridizing and applying computational intelligence techniques Hybridizing and applying computational intelligence techniques

Jeffery Scott Shelburg

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Shelburg, Jeffery Scott, "Hybridizing and applying computational intelligence techniques" (2013). Masters
Theses. 5395.
https://scholarsmine.mst.edu/masters_theses/5395

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5395?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

HYBRIDIZING AND APPLYING COMPUTATIONAL INTELLIGENCE

TECHNIQUES

by

JEFFERY SCOTT SHELBURG

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2013

Approved by

Dr. Daniel Tauritz, Advisor

Dr. Marouane Kessentini

Dr. Samuel Mulder

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Com-

mons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Published works retain their original copyrights.

Copyright 2013

JEFFERY SCOTT SHELBURG

All Rights Reserved

http://creativecommons.org/licenses/by-nc-sa/3.0/

iii

PUBLICATION THESIS OPTION

This thesis has been prepared in two styles utilized by two conferences. Pages

3-23 were submitted for publication to the Sixteenth International Workshop on

Learning Classifier Systems using the ACM SIG format. Pages 24-45 were submitted

for publication to the Symposium on Search-Based Software Engineering using the

Springer LNCS format.

iv

ABSTRACT

As computers are increasingly relied upon to perform tasks of increasing com-

plexity affecting many aspects of society, it is imperative that the underlying compu-

tational methods performing the tasks have high performance in terms of effective-

ness and scalability. A common solution employed to perform such complex tasks are

computational intelligence (CI) techniques. CI techniques use approaches influenced

by nature to solve problems in which traditional modeling approaches fail due to

impracticality, intractability, or mathematical ill-posedness.

While CI techniques can perform considerably better than traditional mod-

eling approaches when solving complex problems, the scalability performance of a

given CI technique alone is not always optimal. Hybridization is a popular process

by which a better performing CI technique is created from the combination of multi-

ple existing techniques in a logical manner. In the first paper in this thesis, a novel

hybridization of two CI techniques, accuracy-based learning classifier systems (XCS)

and cluster analysis, is presented that improves upon the efficiency and, in some

cases, the effectiveness of XCS.

A number of tasks in software engineering are performed manually, such as

defining expected output in model transformation testing. Especially since the num-

ber and size of projects that rely on tasks that must be performed manually, it is

critical that automated approaches are employed to reduce or eliminate manual effort

from these tasks in order to scale efficiently. The second paper in this thesis details

a novel application of a CI technique, multi-objective simulated annealing, to the

task of test case model generation to reduce the resulting effort required to manually

update expected transformation output.

v

ACKNOWLEDGMENTS

There are a number of people who have helped me greatly along my path to

completing this thesis to which I owe my undying gratitude. First and foremost, I

would like to thank my advisor Dr. Daniel Tauritz. After expressing my interest in

his research area, he gave me my first break as an undergraduate researcher. Over the

years since, he has pushed me to my full potential in both coursework and research

alike. His encouraging work ethic, technical expertise, and masterful guidance has

allowed me to achieve my academic and professional successes.

Dr. Marouane Kessentini helped me immensely through his instruction, expert

domain knowledge, and research ideas. His patience in helping me understand how to

apply my technical abilities to an unfamiliar domain is incredible. Dr. Samuel Mulder

has been a phenomenal mentor professionally and academically. His willingness and

ability to convey his expert knowledge has contributed greatly to my understanding

of the theory and applicatication of many areas in computer science. I would like to

thank Sandia National Laboratories for providing my funding through their Critical

Skills Master’s Program that made my graduate studies possible thus far. Sandia

National Laboratories is a multi-program laboratory managed and operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.

Department of Energys National Nuclear Security Administration under contract DE-

AC04-94AL85000.

I wish to thank my entire extended family for supporting me over the years,

especially my wife, Charity, and siblings, Brad and Sarah. Lastly, and most impor-

tantly, I wish to thank my parents, Geri and Scott, for raising, caring, supporting,

teaching, and loving me. Their countless sacrifices and affinity for computers have

made me who I am today. To them, I dedicate this thesis.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . x

SECTION

1. INTRODUCTION . 1

PAPER

I. Improving XCS Scalability with Automatic Problem Decomposition 3

ABSTRACT . 3

1. INTRODUCTION . 4

2. RELATED WORK . 4

3. METHODOLOGY . 7

3.1. LEXCS Algorithm .7

3.2. Automatic Problem Decomposition . 7

3.3. Classifier Migration . 10

4. EXPERIMENTAL SETUP . 12

5. RESULTS . 16

6. DISCUSSION .17

vii

7. CONCLUSION . 23

II. Regression Testing for Model Transformations: A Multi-Objective Approach . 24

ABSTRACT .24

1. INTRODUCTION . 24

2. METHODOLOGY . 27

2.1. Solution Representation . 27

2.2. Change Operators . 28

2.3. Objective Functions . 29

2.3.1. Metamodel coverage . 30

2.3.2. Metamodel conformity .32

2.3.3. Number of refactorings . 33

2.4. Search-based Approach . 34

2.4.1. Simulated annealing . 34

2.4.2. Multi-objective simulated annealing 34

2.4.3. MOSA adaptation for generating test case models . . 35

2.5. Implementation . 38

3. EXPERIMENTATION .40

3.1. Experimental Setting . 40

3.2. Results .41

3.3. Discussion . 41

4. RELATED WORK . 43

5. CONCLUSION AND FUTURE WORK .45

viii

SECTION

2. CONCLUSIONS . 46

BIBLIOGRAPHY . 48

VITA . 51

ix

LIST OF ILLUSTRATIONS

Figure Page

I. Improving XCS Scalability with Automatic Problem Decomposition

1. FHS datasets increasing in size, classes, and classification difficulty . . . 14

2. Results for the Ecoli dataset . 19

3. Results for the Diabetes dataset .20

4. Results for the Transfusion dataset . 20

5. Results for the FHS datasets . 21

6. Number of classifiers for each dataset at each size . 22

II. Regression Testing for Model Transformations: A Multi-Objective Approach

1. Example list of refactorings . 28

2. Example test case model . 32

3. Metamodel coverage versus iterations . 42

4. Invalid model elements versus iterations . 42

5. Refactorings versus iterations . 42

x

LIST OF TABLES

Table Page

I. Improving XCS Scalability with Automatic Problem Decomposition

1. Dataset details . 15

2. XCS parameter settings . 15

3. Commonly used XCS parameter settings . 16

4. Ecoli dataset results . 17

5. Diabetes dataset results . 18

6. Transfusion dataset results . 18

7. FHS dataset results . 19

II. Regression Testing for Model Transformations: A Multi-Objective Approach

1. Partition analysis example . 31

2. Example coverage items created from values in Table 1 31

3. Coverage items satisfied by the example shown in Figure 2 32

4. Refactorings used in experiments . 41

5. Empirical results with standard deviations in parenthesis 41

1. INTRODUCTION

As computers are increasingly relied upon to perform tasks of increasing com-

plexity affecting many aspects of society, it is imperative that the underlying compu-

tational methods performing the tasks have high performance in terms of effective-

ness and scalability. A common solution employed to perform such complex tasks are

computational intelligence (CI) techniques. CI techniques use approaches influenced

by nature to solve problems in which traditional modeling approaches fail due to

impracticality, intractability, or mathematical ill-posedness.

While CI techniques have been developed that perform well on artificial bench-

mark problems as well as relatively small real-world problems, their functionality does

not always scale well when applied to larger and more complex artificial and real-world

problems. One approach used to improve the functional scalability of CI techniques

is a process known as hybridization. Hybridization is a popular process by which a

better performing CI technique is created from the combination of multiple existing

techniques in a logical manner. The first paper introduces a novel extension of the

accuracy-based learning classifier system (XCS) termed Local Expert Accuracy-Based

Learning Classifier System (LEXCS) that employs an automated problem decompo-

sition technique to transform a problem into a number of simpler, disjoint subprob-

lems based on the problem’s spatial structure. Results are presented demonstrating

LEXCS’ improved scalability in terms of efficiency and, in some cases, classification

accuracy in real-world classification problems and a novel artificial benchmark prob-

lem of varying size and difficulty. Furthermore, the effectiveness of employing a novel

classifier migration technique is described.

2

A number of tasks in software engineering are performed manually, such as

defining expected output in model transformation testing. Especially since the num-

ber of size of projects that rely on tasks that must be performed manually, it is critical

that automated approaches are employed to reduce or eliminate manual effort from

these tasks in order to scale efficiently. In the second paper, an effective and scalable

approach to model transformation testing is proposed by refactoring the existing test

case models, employed to test previous metamodel versions, to cover new changes.

To this end, a multi-objective optimization algorithm is employed to generate test

case models that maximizes the coverage of the new metamodel while minimizing

the number of refactorings as well as test case model elements that have become

invalid due to the new changes. Validation results on a widely used transformation

mechanism confirm the effectiveness of the approach.

3

PAPER

I. Improving XCS Scalability with Automatic

Problem Decomposition

Jeffery S. Shelburg1, Daniel R. Tauritz1, and Samuel A. Mulder2

1Natural Computation Laboratory, Department of Computer Science,

Missouri University of Science & Technology, Rolla, Missouri, U.S.A.

2Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

ABSTRACT

XCS is a widely popular variant of LCS that creates a population of classi-

fiers whose fitnesses are based upon their prediction accuracy. Although it performs

sufficiently well on a variety of problems, there is still plenty of room for improve-

ment in terms of scalability. This paper introduces a novel extension of XCS termed

Local Expert Accuracy-Based Learning Classifier System (LEXCS) that employs an

automated problem decomposition technique to transform a problem into a number

of simpler, disjoint subproblems based on the problem’s spatial structure. Results

are presented demonstrating LEXCS’ improved scalability in terms of efficiency and,

in some cases, accuracy in real-world classification problems and a novel artificial

benchmark problem of varying size and difficulty. Furthermore, the effectiveness of

employing a novel classifier migration technique is described.

4

1. INTRODUCTION

Real-world problems and control processes are increasingly being offloaded to

computers. These problems and processes are only getting larger and more difficult,

so it is imperative that their underlying solutions perform well, be efficienct, and have

the ability to scale well. While XCS performs sufficiently well over a wide variety of

problems in general, its performance and efficiency can degrade quickly as the size

and difficulty of problems increase. Specialized measures can be taken to overcome

this scalability deficiency, but it normally requires problem knowledge and can be

difficult and tedious to implement.

LEXCS, the XCS extension proposed in this paper, aims to alleviate XCS’

scalability deficiency without requiring any prior problem knowledge through the use

of automatic problem decomposition. A clustering algorithm and quality metric are

used to automatically determine how a given problem space can be logically parti-

tioned based on spatial structure so that one large problem is transformed into a

number of disjoint, simpler problems that can be more easily approached. Addition-

ally, a classifier migration technique utilizing a novel classifier mapping operator and

donor subpopulation selection technique are proposed. Experiments on real datasets

and an artficial benchmark are performed using LEXCS with classifier migration,

LEXCS without classifier migration, and XCS to explore LEXCS’ overall scalability

performance as well as the effectiveness of the proposed classifier migration technique.

2. RELATED WORK

In [1], Gershoff and Schulenburg introduce Collective Behavior Hierarchical

XCS (CB-HXCS) that takes a partitioned problem space and creates a hierarchy

architecture of XCS instances where the bottom level XCS instances (micro agents)

are assigned to partitions. Signals are sent up the hierarchy through multiple XCS

5

instances to the meta XCS agent that makes the final classification. Although

CB-HXCS’s classification performance on a multiplexer problem was shown to be an

improvement over XCS, it requires multiple XCS instances at different levels to pro-

cess input signals to produce a final classification signal. Because of this, CB-HXCS

may require more classifier evaluations, and therefore more time and computational

resources, than XCS to attain the same level of classification accuracy.

In [2], Richter et al. investigate different distributed XCS learning approaches

on a novel simulation environment. Experimental results showed that manually de-

composing the problem into emergence values and assigning separate XCS instances

to respond to each value improved the speedup and classification performance over

XCS. As with CB-HXCS, these learning approaches do not perform the problem space

partitioning automatically as the authors manually partition problems using problem

knowledge. Since problem knowledge is not always known a priori and manually par-

titioning a problem can be very tedious and difficult even with problem knowledge,

this is not always a reliable method of problem space partitioning.

The research presented in [3] introduces Coevolutionary XCS (CoXCS) which

randomly partitions the input feature space and assigns an XCS instance to each

partition in order to induce restrictive mating resulting in feature subspace specialized

classifiers. After a number of training iterations, a classifier migration episode occurs

where randomly selected classifiers from subpopulations are migrated in a random

topology to faciliate the sharing of specialized genetic material. Results from these

experiments and subsequent experiments detailed in [4] not only show that CoXCS

can outperform XCS in terms of classification accuracy, but that allowing classifiers

to migrate between subpopulations yielded better results that disallowing it in these

cases. In [5], Bull et al. show that adding classifier migration episodes to an LCS

ensemble can reduce the number of training iterations needed to achieve optimal

classification accuracy on multiplexer problems. Because classifier migration has been

6

shown to be beneficial in similar techniques that utilize multiple classifier populations,

its effectiveness when used with LEXCS is explored in this paper.

In [6], the authors introduce a method of initializing an LCS ruleset using

information extracted from the problem space using k -means clustering. In addition

to improving classification accuracy and ruleset interpretability, this approach also

achieved faster training speeds and smaller ruleset size. Since k -means clustering

is powerful enough to successfully extract useful information from problem spaces

while also maintaining a low time complexity, its use in problem decomposition is

investigated with LEXCS.

In [7], it is noted that crossover operators that blindly recombine solution

genes can disrupt complex solution structures. To combat this, specialized crossover

operators can be created that preserve values of logically connected genes, but these

can be complex and tedious to implement. In island models, such crossover operators

are less likely to cause disruption since solutions in the same island tend to become

similar to one another. Thus, using crossover in an island model as opposed to a global

model can increase its success rate of creating fit offspring. Because LEXCS utilizes

an island model where classifier subpopulations are isolated in terms of reproduction,

it is believed that the use of common crossover operators in LEXCS will perform well

even if the operators were disruptive when used globally on a problem in XCS. If

true, the use of LEXCS in place of XCS could eliminate the need to obtain problem

knowledge or implement specialized crossover operators for such problems.

Other methods used to improve XCS scalability include compaction algorithms

such as Wilson’s compact ruleset algorithm (CRA) [8] and a speedier alternate ver-

sion called CRA2 introduced by Dixon et al. [9]. XCS variants such as XCS with

code fragmented action (XCSCFA) [10] introduced by Iqbal et al. extract and use

building blocks of problem domain knowledge to facilitate complex problem learning.

Scalability improvement methods such as these are implemented at the population

7

and classifier action level while LEXCS is implemented at the problem domain level.

As a result, LEXCS is not meant to replace such methods, but rather offer another

level at which to potentially improve XCS scalability.

3. METHODOLOGY

3.1. LEXCS Algorithm. LEXCS is a simple extension of XCS that does

not modify the core XCS algorithm; rather, LEXCS facilitates the automatic decom-

position of problems as well as provides the ability for isolated rulesets to share rules

This is accomplished in LEXCS by a priori decomposing the original problem into

a number of simpler subproblems. The maximum population size (sum of classifier

numerosities in XCS) is distributed amongst the partition classifier subpopulations

based on the ratio of number of training objectsassigned to a given partition and the

total number of all training objects. This is done to ensure each partition ruleset

gets a fair share of the overall maxmimum population size. During each iteration of

the training phase, an input is randomly drawn from the training set. The classifier

subpopulation for the partition to which the drawn input belongs is then activated

for use in the XCS algorithm. After XCS trains with the drawn input and activated

classifier subpopulation, classifier migration between subpopulations is done if clas-

sifier migration criteria is met, in this case, number of training iterations since the

last migration episode. The pseudocode for LEXCS with classifier migration can be

found in Algorithm 1.

3.2. Automatic Problem Decomposition. To improve the scalability of

XCS functionality, LEXCS first automatically decomposes a problem into smaller

subproblems. A clustering algorithm and cluster validity measure are used for this

task because of its ability to exploit the spatial layout of a given problem space to

find suitable partitions that logically partitions a problem into subproblems without

8

Algorithm 1 LEXCS with Classifier Migration Pseudocode

Automatically partition training data
Initialize subpopulation for each partition
Allot maximum population size amongst partitions
while termination criteria is not met do

Select random training input
Activate subpopulation from input’s partition
Perform XCS algorithm
if Classifier migration criteria is met then

Perform classifier migration

any external problem knowledge in an automated fashion. This is done by first using

the clustering algorithm to partition the training dataset into two partitions. The

quality of the partition is then evaluated using the cluster validity measure. The

number of partitions is then incremented by one followed by a new partitioning of

the training dataset and quality measure until a decrease in partition quality from the

previous partitioning is found. By decomposing the problem in this manner, neither

the number of partitions to use nor the maximum number of clusters to evaluate need

to be known a priori thus automating the problem decomposition process.

While there exist many clustering algorithms and cluster validity measures

that can be used for automatic problem decomposition, the k -means clustering algo-

rithm [11, 12] and Caliński and Harabasz index (CH index) [13] were chosen for use in

LEXCS. k -means was chosen because it it maintains a low time complexity (approx-

imately linear) and is therefore a good choice for use with large-scale datasets [14].

As a tradeoff, k -means suffers from the disadvantage of being prone to getting stuck

in a local optimum because of its hill climbing optimization approach. For the task of

logically partitioning a problem into smaller subproblems, this disadvantage is accept-

able because partitioning is used to group similar items in the training set at a high

level while the task of fine-grained, local expert classification within each partition is

taken care of by the XCS algorithm within the training loop of LEXCS. The CH index

9

was the cluster validity measure chosen to evaluate quality of partitioning in LEXCS

because it has been shown to be among the best performing measures [14, 15].

The k -means clustering algorithm is among the most popular and has a rela-

tively simple implementation. Given a number of clusters k into which inputs must be

clustered, k cluster centroids are randomly generated within the input space. Next,

each input is assigned to the cluster whose centroid minimizes the Euclidean distance

between the input and centroid. Then, all cluster centroids are recalculated by taking

the arithmetic mean of the inputs assigned to the cluster over all dimensions. The

process of assigning inputs to the nearest cluster centroids and recalculating the clus-

ter centroids is repeated until the input cluster assignments do not change from the

previous iteration. In LEXCS, only inputs from the training set are utilized during

this process. The k -means pseudocode is shown in Algorithm 2.

Algorithm 2 k -means Clustering Pseudocode

Generate k random centroids within input space
repeat

Assign each input to nearest cluster centroid
Recalculate cluster centroids

until Cluster assignments do not change

The CH index measures the quality of a clustering structure based on cluster

compactness, spread between clusters, number of inputs, and the number of clusters

such that a higher quality clustering structure translates to a higher CH index value

using Equation 1. SB represents the scatter matrix of error sum of squares between

different clusters (inter-cluster) while SW represents the scatter matrix of squared

differences of inputs from the centroids of their assigned cluster (intra-cluster). Fur-

thermore, Tr(SB) measures cluster compactness while Tr(SW) measures the spread

between clusters given that the notation Tr(·) represents the linear algebra operation

trace that yields the sum of the elements in the main diagonal of a matrix.

10

As shown in reduced form in Equation 2, Tr(SB) is calculated by summing up

the distance between the cluster centroid and the centroid of the all inputs multiplied

by the number of inputs assigned to the cluster for each cluster. Tr(SB) is initially a

relatively large value (not very compact) when using two clusters and will decrease as

the number of clusters increases until cluster compactness eventually decreases due

to over-clustering. In its reduced form shown in Equation 3, Tr(SW) is calculated by

summing up the distance between an input and the centroid of its assigned cluster for

all inputs. In constrast to the behavior of Tr(SB), Tr(SW) is initially a relatively small

value (low cluster spread) when using two clusters and will increase as the number

of clusters increases. When these are combined with the number of inputs, N, and

number of clusters, K, to yield the CH index as defined in Equation 1, the resulting

CH index is initially relatively small value using two clusters and will increase as the

number of clusters increases until over-clustering occurs (stopping criterion).

CH(K) =
Tr(SB)

K − 1

/Tr(SW)

N −K
(1)

Tr(SB) =
K∑
k=1

|Ck| ‖Ck − x̄‖2 (2)

Tr(SW) =
K∑
k=1

|Ck|∑
i=1

‖xk,i − Ck‖2 (3)

3.3. Classifier Migration. In LEXCS, classifier migration episodes take

place after a number of training iterations where a percentage of a subpopulation’s

classifiers are migrated to another subpopulation as done in previously published

work [3, 5]. However, since partitioning is done automatically based on the arbitrary

spatial structure of the problem space and only one XCS instance is used to deter-

mine LEXCS’s overall classification signal, a few changes had to be made. During a

11

migration episode, the subpopulation that will receive the immigrant classifiers is the

one utilized in the most recent training iteration. By choosing the receiving subpop-

ulation in this way, partitions that cover the subspaces containing the most inputs

will receive the most genetic material from other subpopulations on average.

Next, the donor partition containing the subpopulation from which the im-

migrant classifiers will originate is chosen. Based on the premise that classifiers in

partitions closest to the receiving partition are more likely to be relevant than those

classifiers in partitions furthest away, LEXCS chooses the donor partition based on

a probability distribution where the partitions closest to the receiving partition are

given the highest probabilities of being chosen while those furthest away have the

lowest. This probability that a given partition j is chosen as the donor partition

given that partition i is the receiving partition is calculated based on the distance

between their centroids using the soft-max equation as shown in Equation 4 [16].

After the donor partition is chosen, a percentage of its classifier subpopulation is

chosen for migration using fitness proportional selection without replacement where

a classifier’s accuracy is used as fitness.

Before the immigrant classifiers are inserted into the receiving partition’s sub-

population, a mapping operator must first be applied. Since each partition subpopu-

lation is used in non-overlapping subspaces of the input space, immigrant classifiers

that migrate from one partition to another may never match any inputs that exist

within the receiving partitions subspace. This can happen if the subspace covered by

the immigrant classifiers’ conditions lies completely outside of the receiving partition’s

subspace. To overcome this limitation, the mapping operator checks if each feature

of the immigrant classifiers match any training inputs of the receiving partition. If

a feature is matched by at least one training input in the receiving partition, then

that feature is not modified. If, however, a feature is not matched by any training

input in the receiving partition, that immigrant classifier’s feature is changed to a

12

“don’t care” so that it will match. Mapping immigrant classifiers in this way maxi-

mizes the preservation of classifier genes while ensuring that immigrant classifiers are

relevant to the receiving partition’s subspace and maximally general.

pij =

e−||xi−xj ||

2∑
k e−||xi−xk||2

if j 6= i

0 if j = i

(4)

4. EXPERIMENTAL SETUP

To determine the effectiveness of the proposed automatic problem decomposi-

tion and classifier migration strategy, experiments were carried out for XCS, LEXCS

with classifier migration, and LEXCS without classifier migration. The quality of

results is determined by two metrics: classification accuracy and number of classi-

fiers evaluated. The number of classifiers evaluated metric is used instead of number

of training iterations or wall time because neither metrics are sufficient for accu-

rate speed comparisons. Not all training iterations take the same amount of time

to process, especially with multiple classifier subpopulations, because the number of

classifiers evaluated in any given training iteration are not the same. Using wall time

measurements can be problematic especially on multiuser computers because other

processes running concurrently can greatly affect resulting runtimes. Furthermore,

wall time is heavily dependent on the software implementation as well as computer

hardware specifications, so it is very difficult for other researchers to compare against.

Using the number of classifiers evaluated during training iterations is an accurate met-

ric because all classifier evaluations have the same constant computational cost and

it is not affected by concurrently running processes, implementation, or computer

hardware specifications so other researchers can easily compare against the metric.

13

The real-valued XCS (XCSR) [17] variant of XCS is used in the experiments

carried out in this paper because real-valued features appear very often in real-world

problems and they make it easier to create and control the difficulty of arbitrary

spatial structures in artificial benchmark problems. The experiments were performed

on problems based on two types of datasets: real-world datasets and novel artificial

datasets. The three real-world datasets used are the diabetes, blood transfusion, and

ecoli datasets from the UC Irvine Machine Learning Repository [18]. To show how

performance scales with the size of the dataset, experiments were done on randomly

sampled versions of these datasets at 25%, 50%, 75%, 100% for a total of 12 real-world

datasets.

The novel artificial datasets introduced in this paper called Fuzzy Hyper-

spheres (FHS) are composed of two features where inputs of the same class exist

in clusters arranged in a square grid formation as shown in Figure 1. The clusters

are created by a Gaussian distribution about evenly spaced cluster centroids. These

datasets vary by two measures: number of class clusters (affecting the size of the

dataset and number of classes) and the fuzziness of the classification boundaries be-

tween the class clusters (affecting classification difficulty). The fuzziness is varied

based on how many standard deviations of the underlying Gaussian distributions the

Manhattan neighbor class cluster centroids are from each other. The number of class

clusters is varied between 4, 9, 16, and 25 while the number of standard deviations

between neighboring class cluster centroids is varied between 3.5, 3.75, 4.0, 4.25, and

4.5 to make a total of 20 different FHS datasets. The purpose of the FHS datasets

is to showcase how a traditional crossover operator (uniform crossover) can be dis-

ruptive when used with XCS while performing well with LEXCS. This is due to the

fact that a crossover of two randomly selected inputs in the entire problem space will

likely yield an offspring somewhere between the two parents where inputs of neither

of the parents’ classes exist. The same operator will likely perform well when the

14

Figure 1: FHS datasets increasing in size, classes, and classification difficulty

problem space is logically partitioned based on spatial structure because an offspring

of two parents from the same problem subspace is more likely to be relevant. Detailed

descriptions of all of these datasets can be found in Table 1.

To ensure that parameter configurations are not unfairly skewed to induce

more favorable results from either XCS or LEXCS, a wide variety of parameter con-

figurations are tested for each. The commonly used XCS parameter values shown

in Table 2 were taken from Wilson’s algorthmic description of XCS [19] while the

remaining XCS parameter settings are shown in Table 3. The crossover and muta-

tion rates were chosen within the suggested ranges from [19] with the exception of

the 1/#Features mutation rate which was found to yield good results in preliminary

testing. The iterations between migration episodes and percentage of classifier sub-

population to migrate parameter settings were derived from suggested ranges given

15

Table 1: Dataset details

Dataset Instances Features Majority
Diabetes 768 8 65%

Transfusion 748 4 76%
Ecoli 336 7 43%
FHS4 100 2 25%
FHS9 225 2 11%
FHS16 400 2 6%
FHS25 625 2 4%

Table 2: Commonly used XCS parameter settings

Parameter Value
Learning Rate 0.15
GA Threshold 37

Deletion Threshold 20
Subsumption Threshold 20
Exploration Probability 0.5

Min Represented Actions #Actions
DoGASubsumption True

DoActionSetSubsumption True
α 0.1
ε0 0.1
v 5
δ 0.1
pI 0.001
εI 0.001
FI 0.001

in [5] and the mutation range parameter for XCSR was taken from [17]. The re-

maining parameter settings were values that were found to yield good performance

in preliminary testing. All experiments were performed with three runs of ten-fold

stratified cross validation for a total of 30 test folds in order to establish a baseline

for statistical significance.

16

Table 3: XCS parameter settings

Parameter Values
Crossover Rates 55%, 75%, 95%
Mutation Rates 1%, 5%, 1/#Features

Iterations b/t Migrations 100, 500, 1000, ∞
Percent Pop. to Migrate 1%, 5%, 10%

Converge Iters w/o Improve 5000
Max Pop. (Numerosity) #Inputs × #Classes

Crossover Operator Uniform
Mutation Range ±10%

5. RESULTS

For each dataset, only the results from the parameter configurations for LEXCS

with rule migration, LEXCS without rule migration, and XCS with the highest av-

erage accuracy are used for comparison. Detailed results for the experiments can be

found in Tables 4 - 7 where the first value in each cell represents the average over

all 30 folds and the second value in parenthesis represents the standard deviation.

Graphs depicting traces of accuracy versus number of classifiers evaluated for the

experiments are shown in Figures 2 - 5. Note that the x-axis (number of classifiers

evaluated) is logarithmically scaled and trace lines end at the number of classifiers

evaluated when training is terminated due to convergence. The differences in accuracy

for each sampling size of the three real-world datasets are statistically insignificant

using an independent two-sample t-test except where noted. Furthermore, all differ-

ences in the number of classifiers evaluated between the LEXCS configurations with

and without classifier migration are statistically insignificant while all differences be-

tween these results for the LEXCS configurations and the XCS configurations are

statistically significant using the aforementioned test.

For the sake of succinctness, only the results of four FHS dataset configurations

are included in the FHS graphs and table. To obtain the best coverage of the FHS

17

Table 4: Ecoli dataset results

Data Config % Acc. Classifiers Eval’d Pop. Size Partitions

25%
CM 87.2 (10.3) 4.0e+04 (2.1e+04) 7.8 (12.6) 13.5 (2.1)

No CM 85.8 (11.0) 3.8e+04 (2.1e+04) 7.4 (9.5) 13.6 (2.1)
XCS 89.2 (8.2) 2.3e+05 (1.3e+05) 49.2 (1.9) 1.0 (0.0)

50%
CM 83.4 (8.3) 9.9e+04 (2.2e+04) 13.7 (15.6) 15.2 (2.4)

No CM 85.2 (9.6) 9.4e+04 (3.7e+04) 13.5 (15.6) 15.4 (2.7)
XCS 84.0 (6.6) 1.1e+06 (3.4e+05) 131.8 (4.0) 1.0 (0.0)

75%
CM 83.5 (7.2) 9.7e+04 (2.7e+04) 13.6 (15.7) 20.0 (3.6)

No CM 82.7 (7.9) 1.0e+05 (2.5e+04) 13.5 (14.6) 20.0 (3.1)
XCS 83.2 (3.8) 1.4e+06 (3.4e+05) 179.5 (6.4) 1.0 (0.0)

100%
CM 84.4 (6.8) 1.2e+05 (3.4e+04) 16.6 (12.9) 21.6 (3.3)

No CM 84.1 (7.6) 1.2e+05 (3.6e+04) 15.9 (12.6) 22.5 (4.0)
XCS 82.6 (5.1) 2.5e+06 (9.8e+05) 259.4 (6.6) 1.0 (0.0)

datasets, the size and complexity are changed simultaneously such that the four FHS

datasets range from a small size with a low number of classes and simple classification

task to a large dataset with a high number of classes and difficult classification task.

For all FHS dataset results, the difference in LEXCS configuration results are statis-

tically insignificant while the difference between LEXCS configurations and XCS are

all statistically significant. As shown in Figure 6, XCS evaluates many times more

classifiers than LEXCS as the sample size and classification difficulty of the datasets

increase.

6. DISCUSSION

For the real-world dataset experiments, LEXCS attained classification accu-

racies that are statistically indistinguishable from or statistically better than the

corresponding accuracies attained by XCS for all but two dataset configurations (the

75% and 100% sample of the Diabetes dataset, although differences were <3%). How-

ever, LEXCS attained these accuracies evaluating approximately one-tenth or fewer

18

Table 5: Diabetes dataset results

Data Config % Acc. Classifiers Eval’d Pop. Size Partitions

25%
CM 86.3 (4.9) 2.4e+04 (5.5e+03) 3.6 (10.3) 18.7 (3.9)

No CM 86.5 (4.7) 2.5e+04 (6.7e+03) 3.5 (8.1) 18.5 (3.3)
XCS 88.3 (3.9) 2.6e+05 (5.8e+04) 36.6 (1.2) 1.0 (0.0)

50%
CM 85.7 (4.3) 3.6e+04 (1.1e+04) 4.3 (7.4) 25.4 (4.6)

No CM 84.7 (4.0) 3.5e+04 (1.2e+04) 4.7 (9.6) 24.2 (4.3)
XCS 86.8 (3.9) 6.1e+05 (1.7e+05) 76.0 (0.3) 1.0 (0.0)

75%
CM 81.6 (4.5) 4.0e+04 (1.5e+04) 5.3 (6.5) 28.4 (5.7)

No CM 81.1 (4.9)1 4.4e+04 (1.4e+04) 5.6 (7.2) 27.6 (4.6)
XCS 83.9 (4.3)1 1.0e+06 (2.8e+05) 113.6 (0.9) 1.0 (0.0)

100%
CM 80.5 (2.7)1 5.1e+04 (1.9e+04) 6.0 (8.0) 32.4 (6.2)

No CM 80.8 (3.0)1 5.2e+04 (1.7e+04) 5.9 (6.0) 32.5 (3.8)
XCS 83.2 (2.1)1 1.3e+06 (4.1e+05) 151.5 (0.8) 1.0 (0.0)

Table 6: Transfusion dataset results

Data Config % Acc. Classifiers Eval’d Pop. Size Partitions

25%
CM 90.2 (4.0)1 1.7e+04 (5.0e+03) 2.7 (3.0) 17.4 (2.2)

No CM 91.1 (4.4)1 2.0e+04 (6.9e+03) 2.9 (3.8) 16.9 (2.6)
XCS 87.6 (3.7)1 2.3e+05 (5.6e+04) 35.7 (1.1) 1.0 (0.0)

50%
CM 86.5 (4.5)1 3.7e+04 (1.3e+04) 5.2 (2.6) 17.7 (3.2)

No CM 86.5 (3.4)1 3.6e+04 (1.1e+04) 4.9 (2.7) 17.7 (1.7)
XCS 84.0 (3.2)1 5.0e+05 (1.8e+05) 71.7 (0.9) 1.0 (0.0)

75%
CM 83.6 (2.5) 4.8e+04 (1.3e+04) 6.6 (2.6) 21.0 (2.0)

No CM 83.3 (2.5) 5.2e+04 (1.6e+04) 6.5 (2.9) 21.3 (2.7)
XCS 82.8 (2.4) 8.3e+05 (3.1e+05) 108.6 (1.6) 1.0 (0.0)

100%
CM 83.9 (2.1)1 6.6e+04 (1.8e+04) 8.9 (3.0) 21.8 (2.7)

No CM 83.8 (1.9)1 6.4e+04 (2.0e+04) 8.9 (2.7) 21.6 (3.1)
XCS 82.7 (2.1)1 1.1e+06 (3.1e+05) 144.3 (3.7) 1.0 (0.0)

1 Difference in results is statistically significant using an independent
two-sample t-test with α=0.05

19

Table 7: FHS dataset results

CL,SD Config % Acc. Classifiers Eval’d Pop. Size Partns

4,4.5
CM 100.0 (0.0) 1.4e+03 (2.2e+03) 4.1 (9.6) 14.4 (2.6)

No CM 100.0 (0.0) 2.2e+03 (4.1e+03) 4.2 (8.0) 13.8 (2.2)
XCS 93.8 (9.5) 1.0e+05 (6.5e+04) 31.8 (0.8) 1.0 (0.0)

9,4.25
CM 90.4 (6.9) 7.1e+04 (2.9e+04) 11.0 (12.1) 19.1 (1.9)

No CM 90.0 (5.8) 7.3e+04 (2.5e+04) 11.1 (11.7) 18.9 (2.3)
XCS 49.8 (6.2) 1.0e+06 (2.3e+05) 145.7 (9.0) 1.0 (0.0)

16,3.75
CM 83.3 (9.4) 1.8e+05 (4.6e+04) 24.4 (19.0) 23.7 (3.9)

No CM 82.2 (9.6) 2.0e+05 (6.1e+04) 24.4 (16.9) 23.9 (4.1)
XCS 29.0 (3.6) 2.6e+06 (5.7e+05) 397.7 (22.1) 1.0 (0.0)

25,3.5
CM 78.1 (5.4) 4.7e+05 (1.3e+05) 51.1 (8.3) 26.1 (3.2)

No CM 78.1 (4.9) 4.7e+05 (9.8e+04) 50.5 (5.6) 26.2 (3.0)
XCS 19.7 (2.4) 6.1e+06 (1.4e+06) 785.4 (51.8) 1.0 (0.0)

Figure 2: Results for the Ecoli dataset

20

Figure 3: Results for the Diabetes dataset

Figure 4: Results for the Transfusion dataset

21

Figure 5: Results for the FHS datasets

classifiers than XCS, making LEXCS overall much more efficient in terms of accuracy

versus number of classifiers evaluated.

In the experiments on the FHS datasets, the gap between the accuracies at-

tained by LEXCS and XCS increased significantly as the number of class clusters and

classification difficulty were increased as can be seen from the graphs in Figure 5. Sim-

ilarly to the real-world dataset experiment results, FHS dataset experiment results

show than LEXCS evaluated less than one-tenth the number of classifiers than XCS.

These results show that LEXCS can overcome the downfalls of utilizing a common

crossover operator an entire problem space that is disruptive without requiring the

implementation of any specialized crossover operator. This is important because

problem knowledge will not always be known a priori that could be used to formulate

22

Figure 6: Number of classifiers evaluated for each dataset at each size. FHS results
also varied from least to most difficult classification simultaneously with
smallest to largest dataset size.

a specialized crossover operator and the implementation of such specialized crossover

operators can be difficult and tedious.

In addition to training faster, the results obtained from these experiments sug-

gest that LEXCS likely also has the advantage of creating a classification model that

classifies new inputs more efficiently than XCS’ resulting classification model. In the

LEXCS model, a new input is first assigned to a partition using the nearest neigh-

bor algorithm with the partition centroids and then classified using that partition’s

classifier subpopulation whereas the XCS model only uses its classifier population

to perform classification. Although the total number of classifiers in the LEXCS

model (sum of subpopulation sizes) is slightly more than the number of classifiers in

the XCS population on average, the number of items evaluated to yield a classification

using the LEXCS model (partition centroids + one partition’s classifiers) is less than

23

that of the XCS model (all classifiers). Since the evaluation of partition centroids and

classifiers both require comparing its features to the input’s features, LEXCS should

be able to classify new inputs quicker than XCS for all resulting models obtained in

these experiments.

Results from the experiments performed indicate that there is no statistical

difference in accuracy or number of classifiers evaluated between LEXCS with and

without classifier migration. This could be due to partition subpopulations’ ability to

quickly and accurately map their assigned problem subspaces on their own. Another

possibility is that the chosen datasets and the manner in which they were partitioned

were such that classification patterns were largely localized within each partition’s

subspace so that performance improvements due to immigrant classifiers were limited

at best.

7. CONCLUSION

On the real-world dataset problems used in experimentation, LEXCS per-

formed approximately equivalent to XCS in terms of accuracy while the number of

classifiers it evaluated were much less than that of XCS making it overall much more

efficient and scalable. For the artificial benchmark dataset problems presented in this

paper, LEXCS not only consistently evaluated many fewer classifiers than XCS, but

its accuracy beyond that of XCS increased as problem size and difficulty increased.

This suggests that the structure of the novel artificial datasets exemplifies a draw-

back of using a common crossover operator with XCS, while demonstrating LEXCS’

superiority. Employing the proposed novel classifier migration technique in LEXCS

did not yield statistically improved results.

24

II. Regression Testing for Model Transformations:

A Multi-Objective Approach

Jeffery S. Shelburg, Marouane Kessentini, Daniel R. Tauritz

Department of Computer Science

Missouri University of Science & Technology

Rolla, Missouri, U.S.A.

ABSTRACT

In current model-driven engineering practices, metamodels are modified fol-

lowed by an update of transformation rules. After this is done, the updated trans-

formation mechanism should be validated to ensure quality and robustness. Model

transformation testing is a recently proposed effective technique used to validate

transformation mechanisms. In this paper, a more efficient approach to model trans-

formation testing is proposed by refactoring the existing test case models, employed

to test previous metamodels/rules versions, to cover new changes. To this end, a

multi-objective optimization algorithm is employed to generate test case models that

maximizes the coverage of the new metamodel while minimizing the number of refac-

torings as well as test case model elements that have become invalid due to the new

changes. Validation results on a widely used transformation mechanism confirm the

effectiveness of our approach.

1. INTRODUCTION

Model-Driven Engineering (MDE) considers models as first-class artifacts dur-

ing the software lifecycle. The number of available tools, techniques, and approaches

25

for MDE are growing that support a huge variety of activities such as model creation,

model transformation, and code generation. The use of different domain-specific

modeling languages and diverse versions of the same language increases the need

for interoperability between languages and their accompanying tools [20]. Therefore,

metamodels are regularly modified/evolved and their respective transformation rules

updated.

After evolving metamodels, the updated transformation mechanism should be

validated to assure quality and robustness. One efficient validation method proposed

recently is model transformation testing [20, 21] which consists of generating a large

number of different source models as test cases, applying the transformation mecha-

nism to them, and verifying the result using an oracle function such as a comparison

with an expected result. Two challenges are: the efficient generation of test cases, and

the definition of the oracle function. This paper focuses on the efficient generation of

test cases.

The generation of test cases for model transformation mechanisms is challeng-

ing because many issues need to be addressed. As explained in [22], testing model

transformation is distinct from testing traditional implementations: the input data

are models that are complex when compared to simple data types which complicates

the generation and evaluation of test cases [23]. The basis of the work presented

in this paper starts from the observation that most existing approaches in testing

evolved transformation mechanisms regenerate all test cases from scratch. However,

this can be a very fastidious task since the expected output for all test cases needs to

be redefined. A better strategy is to revise existing test cases to cover new changes

in metamodels to reduce the effort required to redefine expected test case results.

In this paper, a multi-objective search-based approach is used to generate test

case models that maximizes the coverage of the new metamodel while minimizing the

number of refactorings and test case model elements that have become invalid due to

26

the new changes. The proposed algorithm is an adaptation of multi-objective simu-

lated annealing (MOSA) [24] and aims to find a Pareto optimal solution consisting

of test case model refactorings that will yield the new test case models when applied

to the test case models of the previous version that best satisfy the three criteria

previously mentioned.

This approach is implemented and evaluated on a known case of transforming

UML 1.4 class diagrams to UML 2.0 class diagrams [25]. Results detailing the effec-

tiveness of the proposed approach are compared to results of a traditional simulated

annealing (SA) approach (whose single objective is to maximize metamodel coverage)

to create UML 2.0 test case models in two scenarios: (1) updating test case models

for UML 1.4 and (2) creating new test case models from scratch. The results indicate

that the proposed approach has great promise: based on 30 runs for each approach,

MOSA outperforms SA in terms of minimizing the number of refactorings while, how-

ever, underperforming the SA approach in terms of maximizing metamodel coverage

in both scenarios. Since the number of invalid test case model elements is always

zero for the scenario where test case models are created from scratch, the proposed

approach outperforms the SA approach in terms of minimizing the number of invalid

test case model elements only in the approach updating UML 1.4 test case models.

The primary contributions of this paper are summarized as follows: (1) The

paper introduces a novel formulation of the model transformation testing problem

using a multi-objective optimization technique, and to the best of our knowledge,

this is the first paper in the literature to use this technique to test the evolution of

metamodels and transformation mechanisms, and (2) the paper reports the results

of an empirical study with an implementation of the proposed MOSA approach com-

pared to a traditional SA approach. The obtained results provide evidence supporting

the claim that MOSA is more efficient than SA and starting from existing test case

models is more effective than regenerating all test case models from scratch.

27

2. METHODOLOGY

In this section, the three main components of any search-based approach are

defined: the solution representation, change operators, and objective function.

2.1. Solution Representation. Since the proposed approach needs to mod-

ify test case models in response to changes at the metamodel level, the solution pro-

duced from MOSA should yield a modified version of the original test case models

that best conforms to the updated metamodel. This can be done primarily in one

of two different ways: the solution could either consist of the actual updated test

case model itself, or represent a structure that, when applied to the original test

case models, produces the updated test case models. The latter was chosen for this

problem in the form of lists of model refactorings, because it allows MOSA to mod-

ify a sequence of refactorings out of order. Modifying the updated test case models

directly is more restrictive, because changes can only be applied to the current state

of the updated test case models in the search-based process, whereas modifying lists

of model refactorings allows for modifications at any point in the sequence of refac-

torings, such as removing, modifying, or inserting refactorings anywhere within the

lists. By allowing such modifications, MOSA is able to reach far more possible test

case models with a single solution modification, because it has the ability to, for ex-

ample, modify or remove suboptiomal refactorings as well as insert well-performing

refactorings anywhere in a sequence of refactorings.

If test case models were modified directly, the resulting sequence of refactorings

executed to transform the original test case model to the updated test case models

would be very long and likely include suboptimal refactorings as refactorings could

only be added and not removed or modified. Ensuring that the resulting list of

refactorings is as small as possible and contains the least amount of suboptimal

28

refactorings is important in software engineering because it makes the task of updating

the test case models less difficult, more effective, and easier to understand.

The lists of refactorings solution representation consists of a set of vectors

whose elements are refactorings that are applied to their corresponding test case

model in the order in which they appear in the vector, where each vector of refactor-

ings corresponds to one test case model. After applying the refactorings, the test case

models will be transformed into the updated test case models that better conform to

the updated metamodel. Figure 1 shows an example of a possible list of refactorings

for a test case model that moves method getAge from class Employee to class Person,

adds a Salary field to the Employee class, and then removes the Job class, in that

order.

MoveMethod(getAge, Employee, Person) AddField(Salary, Employee) RemoveClass(Job)

Figure 1: Example list of refactorings

2.2. Change Operators. The only change operator employed in MOSA is

mutation. When mutating a given test case model’s list of refactorings, the type of

mutation to perform is first determined from a user-defined probability distribution

that chooses between inserting a refactoring into the list, removing a refactoring from

the list, or modifying a refactoring in the list. When inserting a refactoring into a

list of refactorings, an insertion point between refactorings is first chosen, including

either ends of the list. The refactorings that appear in the list before the insertion

point are first applied to the test case model in the order in which they appear in the

list. A refactoring is then randomly generated for the refactored test case model as

it exists at the selection point, applied to the model, and inserted into the list at the

insertion point. The refactorings that appear after the insertion point in the list are

then validated in the order in which they appear by first checking their validity and

subsequently applying them to the test case model if they are valid. If a refactoring

29

is found to be invalid due to a conflict caused by the insertion of the new refactoring

into the list, the refactoring is removed from the list. An invalid refactoring could

occur if, for example, a new refactoring is inserted into the beginning of a list of

refactorings that removes a model element referenced by a refactoring that appears

later in the list. When performing a mutation that removes a refactoring from a

list of refactorings, a refactoring is selected at random and removed from the list.

Validation is performed in the same manner as when inserting a refactoring for those

refactorings that appear after the removed refactoring in the list of refactorings.

When mutating a refactoring in the list of refactorings, a refactoring is first

randomly selected. Then, one of three types of mutations is performed on the selected

refactoring from a user-defined probability distribution. The types are: to either re-

place the selected refactoring with a new randomly-generated refactoring, replace the

selected refactoring with a new randomly-generated refactoring of the same refac-

toring type, or mutate a parameter of the selected refactoring. An example of a

refactoring parameter mutation is changing the target class of a MoveMethod refac-

toring to another randomly chosen class in the model. Validation for all three types

of refactoring mutations are performed in the same manner as described previously.

2.3. Objective Functions. Objective functions are a very important com-

ponent of any search-based algorithm, because they define the metrics upon which

solutions are compared that ultimately guides the search process. In the context of

determining the quality of lists of refactorings to be applied to test case models in

response to metamodel changes, three objective functions that define characteristics

of a good solution are: (1) maximize target metamodel coverage, (2) minimize model

elements that do not conform to the target metamodel, and (3) minimize the number

of refactorings used to refactor the existing source models.

30

Maximizing the coverage of the target metamodel is imperative because the

sole purpose of test case models is to ensure that the model transformation mecha-

nisms are robust. Minimizing the number of invalid test case model elements due to

metamodel changes, ensures that the test case models themselves are free of defects

in order to properly assess the quality of the model transformation mechanism being

tested. Finally, minimizing the number of refactorings used to refactor the test case

models reduces the amount of effort required to update the expected output for the

test case model transformations.

2.3.1. Metamodel coverage. The method used to derive metamodel cov-

erage was first introduced in [23]. This method begins by a priori performing par-

tition analysis in which the types of coverage criteria taken into consideration for

a given problem are chosen. For metamodel coverage, an adaptation of the same

three coverage criteria from [23] are used. These criteria are association-end mul-

tiplicities (AEM), class attributes (CA), and generalizations (GN). AEM refers to

the types of multiplicities used in associations included in a metamodel such as 0..1,

1..1, or 1..N. CA refers to the types of class attributes included in a metamodel such

as integer, string, or boolean. Since both source and target metamodels used in the

empirical tests in this paper support class operations in addition to attributes, class

method return types are included in CA. GN refers to the coverage of classes that

belong to each of the following categories: superclass, subclass, both superclass and

subclass, and neither superclass nor subclass.

Each coverage criterion must be partitioned into logical partitions that, when

unioned together, represent all the value types each criterion could take on. These

partitions are then assigned representative values to represent each coverage criterion

partition. For example, if a metamodel allows for classes to have an integer attribute,

then the integer class attribute element is included in the CA coverage criterion.

The values an integer class attribute can take on can be split into partitions whose

31

representative values are <-1, -1, 0, 1, and >1, for example. An example of partition

analysis and a subset of the coverage items generated from its representative values

are shown in Table 1 and Table 2, respectively.

Table 1: Partition analysis example

Coverage Criteria Representative Values
CA: boolean true, false
CA: integer <-1, -1, 0, 1, >1
CA: float <-1.0, -1.0, 0.0, 1.0, >1.0
CA: string Null, ‘’, ‘something’
AEM: 1..1 1
AEM: 1..N 1, N
GN sub, super, both, neither

Table 2: Example coverage items created from values in Table 1

Constraint 1 Constraint 2
CA: -1 AEM: N
CA: ‘something’ GN: super
AEM: 1 AEM: N
AEM: 1 GN: neither
CA: false CA: >1.0
CA: Null AEM: 1

After representative values are defined, a set of coverage items for the target

metamodel is created. In our adaptation of the coverage item set creation method

introduced in [23], this is done by calculating all possible tuple combinations of rep-

resentative values from all partitions of all coverage criteria types that are included

in the target metamodel. The exception being the coverage items containing two

different GN representative values, because they would be impossible to satisfy. The

metamodel coverage objective value for given test case models and target metamodel

is determined by calculating the percentage of metamodel coverage items the test

case models satisfy. For example, if a given target metamodel included associations

with end multiplicities of 1..1 → 1..N, then the derived coverage items would include

associations with end-multiplicities of 1 → 1 and 1 → N. Additionally, if a given

32

target metamodel also included boolean class attributes, then the additional coverage

items would include classes with a boolean attribute and association end multiplicity

of true and 1, false and 1, true and N, and false and N, respectively. For a more

in-depth example of a model and the coverage items it would satisfy, refer to Figure 2

and Table 3, respectively.

Figure 2: Example test case model

Table 3: Coverage items satisfied by the example shown in Figure 2

Constraint 1 Constraint 2
CA: ‘something’ CA: 1.0
CA: ‘something’ AEM: 1
CA: 1.0 AEM: 1
CA: ‘something’ GN: super
CA: 1.0 GN: super
AEM: 1 GN: super
CA: -1 GN: sub
CA: false AEM: N
AEM: 1 AEM: N
AEM: N GN: neither
CA: false GN: neither

2.3.2. Metamodel conformity. Unlike the bacteriological approach used

to automatically generate test case models from scratch in [23], the proposed approach

is initialized with test case models that were created to conform to a metamodel that

may contain metamodel elements that are not compatible with the target metamodel.

Because of this, there may exist test case model elements that do not conform to

the target metamodel, and if so, should be removed or modified to improve the

validity of the test case models by reducing the number of invalid model elements.

33

Calculating the metamodel conformity objective value of given test case models and

target metamodel is done by summing up the number of test case model elements from

all test case models that do not conform to the target metamodel. For example, say

that Metamodel 1.0 includes integer class attribute elements with the representative

values 1, 2, 3, and 4. Metamodel 2.0 includes integer class attribute elements with

representative values of 2, 3, 4, and 5. When starting from test case models that

satisfy 100% of the coverage items for Metamodel 1.0 and generating test case models

to conform to Metamodel 2.0, all test case model elements that are class attributes

with the value 1 are invalid because they do not conform to Metamodel 2.0. These

elements must be removed or modified to improve test case model validity.

2.3.3. Number of refactorings. While automatically generating test case

models in an attempt to maximize metamodel coverage has been previously explored

and improving metamodel conformity of test case models by itself can be accom-

plished trivially by removing or modifying nonconforming test case model elements,

performing these tasks by finding a minimal number of refactorings to apply to exist-

ing test case models has not yet been explored to our knowledge and highlights the

main contribution of this paper. By minimizing the number of refactorings required

to update existing test case models to a new target metamodel, the task of updating

expected test case model transformation output is simplified. The challenge of find-

ing a minimal set of refactorings to apply to test case models to maximize metamodel

coverage and minimize the number of nonconforming test case model elements, stems

from the fact that there are a multitude of different refactoring sequences that can

be applied to achieve the same resulting test case models. Calculating the number of

refactorings is done by summing up the number of refactorings in the lists of refac-

torings.

34

2.4. Search-based Approach.

2.4.1. Simulated annealing. Simulated annealing (SA) is a local search

heuristic inspired by the concept of annealing in metallurgy where metal is heated,

raising its energy and relieving it of defects due to its ability to move around more

easily. As its temperature drops, the metal’s energy drops and eventually it settles in a

more stable state and becomes rigid. This technique is replicated in SA by initializing

a temperature variable with a “high temperature” value and slowly decreasing the

temperature for a set number of iterations by multiplying it by a value α every

iteration, where 0 < α < 1. During each iteration, a mutation operator is applied to

a copy of the resulting solution from the previous iteration. If the mutated solution

has the same or better fitness than the previous one, it is kept and used for the next

iteration. If the mutated solution has a worse fitness, a probability of keeping the

mutated solution and using it in the next iteration is calculated using an acceptance

probability function which takes as input the difference in fitness of the two solutions

as well as the current temperature value and outputs the acceptance probability

such that smaller differences in solution fitness and higher temperature values will

yield higher acceptance probabilities. In effect, this means that for each passing

iteration, the probability of keeping a mutated solution with worse fitness decreases,

resulting in a search policy that, in general, transitions from an explorative policy

to an exploitative policy. The initial lenience towards accepting solutions with worse

fitness values is what allows simulated annealing to escape local minima/maxima.

2.4.2. Multi-objective simulated annealing. Traditional SA is not suit-

able for the automatic test case model generation as described previously because a

solution’s fitness consists of three separate objective functions and SA cannot com-

pare solutions based on multiple criteria. Furthermore, even if SA had the ability

to determine relative solution fitness, there would still be the problem of quantifying

the fitness disparity between solutions as a scalar value for use in the acceptance

35

probability function. Multi-objective simulated annealing (MOSA) overcomes these

problems. When comparing the relative fitness of solutions, MOSA utilizes the idea

of Pareto optimality using dominance as a basis for comparison. Solution A is said to

dominate solution B if: (1) every objective value for solution A is the same or better

than the corresponding objective value for solution B, and (2) solution A has at least

one objective value that is strictly better than the corresponding objective value of

solution B. If solution A does not dominate solution B and solution B does not dom-

inate solution A, then these solutions are said to belong to the same non-dominating

front. In MOSA, the mutated solution will be kept and used for the next iteration if

it dominates or is in the same non-dominating front as the solution from the previ-

ous iteration. To determine the probability that the mutated solution dominated by

the solution from the previous iteration will be kept and used for the next iteration

of MOSA, there are a number of possible acceptance probability functions that can

be utilized. Since previous work has noted that the average cost criteria, shown in

Equation 1, yields good performance [24], we have utilized it. The average cost cri-

teria simply takes the average of the differences of each objective value between two

solutions, i and j, over all objectives D, as shown in Equation 1. The final acceptance

probability function used in MOSA is shown in Equation 2.

c(i, j) =

|D|∑
k=1

(ck(j)− ck(i))

|D|
(1)

AcceptProb(i, j, temp) = e
−abs(c(i,j))

temp (2)

2.4.3. MOSA adaptation for generating test case models. When us-

ing the number of refactorings fitness criterion along with mutations that add, modify,

or remove refactorings in MOSA, a slight modification of the definition of dominance

36

is required in order to obtain quality results. The problem with using the traditional

definition of dominance in this case is that “remove refactoring” mutations will al-

ways generate a solution that is at least in the same non-dominated front as the

non-mutated solution if it does not dominate the non-mutated solution because it

utilizes less refactorings, thus making it strictly better in at least one objective. In

MOSA, this means that the non-mutated solution will always be discarded in favor of

the mutated solution that it will use in the following iteration. The problem with this

is that the probability of an add refactoring or modify refactoring mutation yielding a

mutated solution that is in the same non-dominated front or better is much less than

that of a mutation removing a refactoring (100%). This is because the only way an

add or modify refactoring mutation could at least be in the same non-dominated front

is if it satisfied a previously unsatisfied metamodel coverage item, removed an invalid

model element, or modified an invalid model element to make it valid. As a result,

solutions tend to gravitate towards solutions with less refactorings that eventually

results in solutions with the least possible number of refactorings, one refactoring per

each test case model. This was found to be the case in experiments executed with

the traditional dominance implementation.

The problem is alleviated by modifying how dominance is determined in

MOSA such that a mutated solution with less refactorings and less metamodel cov-

erage or more invalid model elements than the non-mutated solution is considered to

be dominated by the non-mutated solution. In other words, MOSA will only transi-

tion from the non-mutated solution from the previous iteration to the new mutated

solution (using the “remove refactoring” mutation) with 100% probability if the mu-

tated solution dominates the non-mutated solution. If the mutated solution has less

refactorings but also less metamodel coverage or more invalid model elements, then it

will only be accepted and used for the next iteration given the probability calculated

by the acceptance probability function.

37

The second problem to overcome is how to use the metamodel coverage, num-

ber of invalid model elements, and number of refactoring values in the acceptance

probability function in a meaningful way. As they are, these three values take on val-

ues in different scales: metamodel coverage takes on values between 0% and 100% (0.0

and 1.0), number of invalid model elements takes on values between 0 and the initial

number of invalid model elements before MOSA begins, and the number of refactor-

ings takes on the value of any nonnegative integer. In order to make the average

of differences between fitness criteria values meaningful, normalization is performed.

Metamodel coverage does not require any normalization as its values already lie be-

tween 0.0 and 1.0 and thus all differences between metamodel coverage values will

as well. The only operation necessary is to take the absolute value of the difference

to ensure it is positive as shown in Equation 3. To normalize the difference between

numbers of invalid model elements, simply take the absolute value of the difference

between the number of invalid model elements values and divide by the number of

invalid model elements from the initial test case models as shown in Equation 4.

CovDiff = abs(Cov(i)− Cov(j)) (3)

InvDiff =
abs(Inv(i)− Inv(j))

Inv0
(4)

To normalize the difference in number of refactorings, the maximum number

of refactorings should be used as a divisor. Since there is theoretically no upper

bound to the possible number of refactorings that the lists of refactorings could have,

a reasonable estimate is required. For this estimate, the sum of the initial number of

unsatisfied coverage items and the number of invalid model elements of the starting

test case models is used because it assumes that each coverage item and invalid model

element will take one refactoring to satisfy and remove, respectively. As shown in

38

Equation 5, the normalization of the difference in number of refactorings is calculated

by taking the absolute value of the difference in number of refactorings divided by

the sum of the initial number of unsatisfied coverage items and the number of invalid

model elements of the starting test case models.

NumRefDiff =
abs(NumRef(i)−NumRef(j))

UnsatCovItems0 + Inv0
(5)

2.5. Implementation. Before using MOSA to generate the lists of refactor-

ings, a maximum model size must be declared to ensure a balance between the size

of the test cases and the number of test cases is maintained. As explained in [23],

smaller test cases allow for easier understanding and diagnosis when an error arises

while the number of test cases should be reasonable in order to maintain an acceptable

execution time and amount of effort for defining an oracle function.

After the maximum model size is declared, the automatic test case model gen-

eration begins. The algorithm iterates through all test case models once. For each

test case model, its corresponding list of refactorings is initialized with one randomly-

generated refactoring before the adapted MOSA algorithm is executed. After the

algorithm has iterated over every test case model, the final lists of refactorings for

each test case model are output along with the resulting test case models yielded

from the application of the refactorings. The pseudocode for this algorithm is shown

in Algorithm 1. It is important to note that although search is done for refactor-

ings at the test case model level, the objective functions are executed on the overall

running solution of the entire set of updated test case models at any given iteration.

This means that, for example, if the space of refactoring lists for a particular test

case model is being searched and a mutation is performed that covers a new coverage

item for that test case model, but a list of refactorings for another test case model

from a previous iteration already covered that particular coverage item, then there

39

is no increase in the metamodel coverage objective function. The value yielded from

the metamodel coverage objective function will only increase if a coverage item is

covered that has not already been covered by any other test case model with their

refactorings in the overall solution.

Algorithm 1 Pseudocode for adapted MOSA for generating test case models

function MOSA(testCaseModels, maxModelSize, initialTemperature, α)
ListOfRefactorings.setMaxModelSize(maxModelSize)
solution ← list()
for testCaseModel in testCaseModels do

refactorings ← ListOfRefactorings(testCaseModel)
temp ← initialTemperature
for iteration = 1 → maxIterations do

newRefactorings ← copy(refactorings)
newRefactorings.mutate()
if newRefactorings.dominates(refactorings) then

refactorings ← newRefactorings
else if u[0.0,1.0] < AcptProb(refactorings,newRefactorings,temp) then

refactorings ← newRefactorings
temp ← temp × α

solution.push(refactorings)
return listsOfRefactorings

function ListOfRefactorings::ListOfRefactorings(testCaseModel)
this.testCaseModel ← testCaseModel
this.refactorings ← list()
this.refactorings.push(Refactoring(testCaseModel))

function ListOfRefactorings::dominates(otherList)
if Coverage(this) > Coverage(otherList) then return True

if NumInvElems(this) < NumInvElems(otherList) then return True

if NumRefs(this) < NumRefs(otherList) then
if Coverage(this) == Coverage(otherList) then

if NumInvElems(this) == NumInvElems(otherList) then return True
return False

40

3. EXPERIMENTATION

3.1. Experimental Setting. To test the effectiveness of the proposed ap-

proach, experiments were carried out to evolve test case models for the UML 2.0

metamodel. In the implementation used, the UML 2.0 metamodel generated 857

coverage items that needed to be satisfied in order to obtain 100% metamodel cover-

age. To discover if initializing the test case models with those of a previous metamodel

version was beneficial, experiments were done starting from a set of test case models

that conform to UML 1.4 as well as a set of “blank” test case models. The UML 1.4

test case models consist of between 17 and 23 model elements that initially satisfy

46.58% of the UML 2.0 metamodel coverage items and have 60 invalid model ele-

ments, while the blank test case models each consist of only five class model elements

and satisfy 0% of the UML 2.0 metamodel coverage items and have no invalid model

elements. Both sets are comprised of 20 test case models each.

To justify the multi-objective approach proposed in this paper, the same ex-

periments were carried out using an SA approach utilizing only metamodel coverage

like in previous works [23]. All experiments were run 30 times in order to establish

statistical significance. For each of the 20 test case models, 10,000 iterations of SA

were performed with a starting temperature of 0.0003 and an alpha value of 0.99965.

When randomly generating a mutation, each type of mutation had the same

probability of being generated; there was a one-third chance each of adding a refac-

toring, modifying a refactoring, or removing a refactoring. If the add refactoring

mutation was chosen, then there was equal chance of each type of refactoring shown

in Table 4 being chosen. If the modify refactoring mutation was chosen, then there

was equal chance of any refactoring in the list of refactorings being chosen for mod-

ification. For the refactoring chosen for modification, there was equal chance of the

following being chosen: (1) modify a refactoring parameter, (2) replace the chosen

41

Table 4: Refactorings used in experiments

Add Field Add Association Move Field Push Down Field
Add Method Add Generalization Move Method Push Down Method
Add Class Remove Method Extract Class Pull Up Field
Remove Field Remove Association Extract Subclass Pull Up Method
Remove Class Remove Generalization Extract Superclass Collapse Hierarchy
Change Bi- to Uni-Directional Association Change Uni- to Bi-Directional Association

refactoring with a randomly-generated refactoring of the same refactoring type, or (3)

replace the chosen refactoring with a randomly-generated refactoring. If the remove

refactoring mutation was chosen, each refactoring in the list of refactorings had equal

chance of being removed.

3.2. Results. The complete results from all four experiment configurations

can be found in Table 5. The SA approaches outperformed the corresponding MOSA

approaches in the metamodel coverage objective as shown in Figure 3 while, however,

using a far greater number of refactorings as shown in Figure 4. Figure 5 shows that

the MOSA experiment that started with the UML 1.4 test case models removed all 60

test case model elements every run while the corresponding SA experiment removed

less than half of the invalid test case model elements on average. All differences in

results were determined to be statistically significant employing a two-tailed t-test

with α = 0.05.

Table 5: Empirical results with standard deviations in parenthesis

Blank Previous Models
SA MOSA SA MOSA

% Coverage 83.82 (0.05) 63.36 (0.04) 96.20 (<0.01) 91.70 (0.01)
Invalid - - 35.47 (4.03) 0.00 (0.00)

Num. Ref. 1185.87 (176.69) 315.17 (18.08) 726.87 (34.15) 348.90 (13.60)

3.3. Discussion. With respect to the metamodel coverage objective, it is

intuitive that the SA approaches would outperform the MOSA approaches, albeit

by a relatively small margin when starting from existing test case models, because

42

Figure 3: Metamodel coverage versus
iterations

Figure 4: Refactorings versus itera-
tions

Figure 5: Invalid model elements ver-
sus iterations

the MOSA approaches must balance conflicting objectives while the SA approaches

do not. As a result, the lists of refactorings yielded from the MOSA approaches are

more effective in terms of metamodel coverage per refactoring than the ones yielded

from SA. Combined with the fact that the total number of refactorings yielded by

the MOSA approaches are drastically less than those yielded by the SA approaches,

this means that the effort required to implement the changes to expected output is

less and overall more effective using the MOSA approach.

Furthermore, the results show that the approaches that start with existing

test case models of a previous metamodel version outperform the same approaches

43

that start with blank models. This also helps reduce the effort required to update the

expected test case output because portions of the expected output for the existing

test cases will not need to be modified.

4. RELATED WORK

In this section, contributions related to model-level test case generation and

search-based testing approaches are presented. Fleurey et al. [23, 26] and Steel et

al. [27] discuss the reasons why testing model transformations is distinct from testing

traditional implementations: the input data are models that are complex in compar-

ison to simple data types. Both papers describe how to generate test data in MDE

by adapting existing techniques, including functional criteria [21] and bacteriologic

approaches [22]. Lin et al. [28] propose a testing framework for model transformation

built on their modeling tools and transformation engine that offers a support tool for

test case construction, test execution, and test comparison; however, the test case

models are manually developed in this work.

Some other approaches are specific to test case generation for graph trans-

formation mechanisms. Küster [29] addresses the problem of model transformation

validation in a way that is very specific to graph transformation by focusing on the

verification of transformation rules with respect to termination and confluence. This

approach aims to ensure that a graph transformation will always produce a unique

result. Küster’s work is concerned with the verification of transformation properties

rather than the validation (testing) of their correctness. Darabos et al. [30] investi-

gate the testing of graph transformations by considering graph transformation rules

as the transformation specification and propose to generate test data from this specifi-

cation. Darabos et al. propose several faulty models that can occur when performing

44

pattern matching as well as a test case generation technique that targets those par-

ticular faults. Compared to the multiobjective search-based approach proposed in

this paper, Darabos work is specific to graph-based transformation testing. Mottu et

al. [20] describe six different oracle functions to evaluate the correctness of an output

model. In [31], the authors suggest manually determining the expected outcome of

the transformation and comparing it with the actual outcome of the transformation

using a simple graph-comparison algorithm.

The multi-objective search-based approach proposed in this paper is inspired

by contributions in the domain of Search-Based Software Engineering (SBSE) [32].

SBSE uses search-based approaches to solve optimization problems in software engi-

neering, and once a software engineering task is framed as a search problem, many

search algorithms can be applied to solve that problem. These search-based ap-

proaches are also used to solve problems in software testing [31, 33, 34]. The general

idea behind the proposed approach is that possible test case model refactorings de-

fine a search space and multiple conflicting test case model criteria are integrated

into multiple objective functions. These components guide the search approach in

an attempt to find an optimal set of test case model refactorings that yields a set of

adequate updated test case models.

To conclude, although the problem of generating test cases at the code level

is well-studied, there are few works that generate test cases at the model level to test

transformation mechanisms. To our knowledge, there is currently no other work that

utilizes existing test case models of a previous metamodel version to generate test

case models for an updated metamodel version. Furthermore, this is the first adap-

tation of heuristic search algorithms to take into consideration multiple objectives

when generating artificial source models (test cases) similar to the data that will be

transformed.

45

5. CONCLUSION AND FUTURE WORK

Empirical results show that MOSA can automatically generate quality test

case models from existing test case models in response to metamodel changes. The

new test case models are generated in such a way that the effort required to update

the expected test case model transformation output is reasonable. While SA is able to

achieve better overall metamodel coverage, the effort required to update the expected

test case model transformation results is not reasonable. Furthermore, the MOSA

approach is able to reliably remove test case model elements that become invalid due

to metamodel changes.

To generalize our proposed approach and ensure its robustness, we plan to

extend our validation to other metamodels such as Petri nets and relational schema.

Furthermore, comparative studies between different multiobjective metaheuristic al-

gorithms will be performed.

46

SECTION

2. CONCLUSIONS

In this thesis, two novel approaches are presented that show how CI can be

used to improve the scalability other CI algorithms through hybridization as well

as specific application domains, namely, model transformation testing in software

engineering. As presented in the first paper, the novel hybridization of XCS and

cluster analysis provides a means of improving the scalability of XCS functionality,

making its utilization with larger and more complex problems more feasible. The

novel application of MOSA to test case model generation in the second paper allows

for the efficient generation of new test case models in response to metamodel changes

that minimizes the effort required to redefine expected output, thus making it more

practical and scalable in real-world problems.

As the number, size, and complexity of real-world problems continually grow,

improvements such as these are critical to the success of CI techniques because they

increase the accessibility of CI techniques for utilization on a wider array of problems.

As ongoing research continues to improve the overall accessibility of CI techniques to

problems of all types, the main consideration when solving a complex problem shifts

from choosing the best CI technique that happens to support a particular problem

configuration to choosing the best CI technique based solely on the suitability of

its underlying problem solving mechanism. As this shift becomes more prevalent,

further research into methods of choosing the most suitable CI technique for a given

problem should reveal insights that can be used to predict the relative effectiveness

47

of CI techniques on both specific problems as well as general problem classes. When

enough insight is revealed that yield highly accurate CI effectiveness predictions,

problem solving can be available to a wider audience of non-CI experts through

automated processes. As a result, experts in non-CI domains will be able to take

advantage of CI techniques’ ability to solve complex problems and apply it to their

domain of expertise without requiring the assistance of a CI expert.

48

BIBLIOGRAPHY

[1] Matthew Gershoff and Sonia Schulenburg. Collective Behavior-based Hierarchi-
cal XCS. In Proceedings of the 2007 GECCO Conference Companion on Genetic
and Evolutionary Computation, GECCO ’07, pages 2695–2700, New York, NY,
USA, 2007. ACM.

[2] Urban Richter, Holger Prothmann, and Hartmut Schmeck. Improving XCS Per-
formance by Distribution. In Proceedings of the 7th International Conference on
Simulated Evolution and Learning, SEAL ’08, pages 111–120, Berlin, Heidelberg,
2008. Springer-Verlag.

[3] Mani Abedini and Michael Kirley. CoXCS: A Coevolutionary Learning Classifier
Based on Feature Space Partitioning. In Proceedings of the 22nd Australasian
Joint Conference on Advances in Artificial Intelligence, AI ’09, pages 360–369,
Berlin, Heidelberg, 2009. Springer-Verlag.

[4] M. Abedini and M. Kirley. A Multiple Population XCS: Evolving Condition-
Action Rules based on Feature Space Partitions. In Evolutionary Computation
(CEC), 2010 IEEE Congress on, pages 1 –8, July 2010.

[5] L. Bull, M. Studley, A. Bagnall, and I. Whittley. Learning Classifier System
Ensembles with Rule-Sharing. Evolutionary Computation, IEEE Transactions
on, 11(4):496–502, 2007.

[6] Fani A. Tzima, Pericles A. Mitkas, and John B. Theocharis. Clustering-based Ini-
tialization of Learning Classifier Systems: Effects on Model Performance, Read-
ability and Induction Time. Soft Comput., 16(7):1267–1286, July 2012.

[7] Zbigniew Maciej Skolicki. An Analysis of Island Models in Evolutionary Com-
putation. PhD thesis, George Mason University, Fairfax, Virginia, U.S.A., 2007.

[8] StewartW. Wilson. Compact Rulesets from XCSI. In PierLuca Lanzi, Wolf-
gang Stolzmann, and StewartW. Wilson, editors, Advances in Learning Classi-
fier Systems, volume 2321 of Lecture Notes in Computer Science, pages 197–208.
Springer Berlin Heidelberg, 2002.

[9] Phillip William Dixon, David Wolfe Corne, and Martin John Oates. A Rule-
set Reduction Algorithm for the XCS Learning Classifier System. In PierLuca
Lanzi, Wolfgang Stolzmann, and StewartW. Wilson, editors, Learning Classi-
fier Systems, volume 2661 of Lecture Notes in Computer Science, pages 20–29.
Springer Berlin Heidelberg, 2003.

[10] Muhammad Iqbal, WillN. Browne, and Mengjie Zhang. Evolving Optimum
Populations with XCS Classifier Systems. Soft Computing, 17(3):503–518, 2013.

49

[11] E. W. Forgy. Cluster Analysis of Multivariate Data: Efficiency vs Interpretability
of Classifications. Biometrics, 21:768–769, 1965.

[12] J. MacQueen. Some Methods for Classification and Analysis of Multivariate Ob-
servations. In Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., volume 1,
pages 281–297. Univ. of Calif. Press, 1967.

[13] T. Calinski and J. Harabasz. A Dendrite Method for Cluster Analysis. Commu-
nications in Statistics - Theory and Methods, 3(1):1–27, 1974.

[14] Rui Xu and Don Wunsch. Clustering. Wiley-IEEE Press, 2009.

[15] Glenn W Milligan and Martha C Cooper. An Examination of Procedures for
Determining the Number of Clusters in a Data Set. Psychometrika, 50(2):159–
179, 1985.

[16] Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. Neigh-
bourhood Components Analysis. In Advances in Neural Information Processing
Systems 17, pages 513–520. MIT Press, 2004.

[17] Stewart W. Wilson. Get Real! XCS with Continuous-Valued Inputs. In Learning
Classifier Systems, From Foundations to Applications, LNAI-1813, pages 209–
219. Springer-Verlag, 2000.

[18] A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.

[19] Martin Butz and Stewart W. Wilson. An Algorithmic Description of XCS. In
Revised Papers from the Third International Workshop on Advances in Learning
Classifier Systems, IWLCS ’00, pages 253–272, London, UK, UK, 2001. Springer-
Verlag.

[20] J.M. Mottu, B. Baudry, and Y. Le Traon. Model Transformation Testing: Oracle
Issue. In IEEE International Conference on Software Testing Verification and
Validation Workshop, 2008. ICSTW ’08, pages 105–112, 2008.

[21] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. le Traon. Metamodel-based
Test Generation for Model Transformations: an Algorithm and a Tool. In ISSRE
’06, 17th International Symposium on Software Reliability Engineering, pages
85–94, 2006.

[22] Benoit Baudry, Franck Fleurey, Jean-Marc Jezequel, and Yves Le Traon. Auto-
matic Test Cases Optimization Using a Bacteriological Adaptation Model: Ap-
plication to .NET Components. In Proceedings of ASE’02 (Automated Software
Engineering), Edimburgh, 2002.

[23] F. Fleurey, J. Steel, and B. Baudry. Validation in Model-Driven Engineering:
Testing Model Transformations. In Proceedings of First International Workshop
on Model, Design and Validation, pages 29–40, 2004.

50

[24] Dongkyung Nam and Cheol Hoon Park. Multiobjective Simulated Annealing: A
Comparative Study to Evolutionary Algorithms. International Journal of Fuzzy
Systems, 2(2):87–97, 2000.

[25] Petra Brosch, Uwe Egly, Sebastian Gabmeyer, Gerti Kappel, Martina Seidl,
Hans Tompits, Magdalena Widl, and Manuel Wimmer. Towards Scenario-Based
Testing of UML Diagrams. In Achim D. Brucker and Jacques Julliand, editors,
Tests and Proofs, volume 7305 of Lecture Notes in Computer Science, pages
149–155. Springer Berlin Heidelberg, 2012.

[26] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and YvesLe Traon. Quali-
fying input test data for model transformations. Software & Systems Modeling,
8(2):185–203, 2009.

[27] J. Steel and M. Lawley. Model-based Test Driven Development of the Tefkat
Model-Transformation Engine. In 15th International Symposium on Software
Reliability Engineering. ISSRE 2004., pages 151–160, 2004.

[28] Yuehua Lin, Jing Zhang, and Jeff Gray. A Testing Framework for Model Trans-
formations. In Research and Practice in Software Engineering - Model-Driven
Software Development. 2005, pages 219–236. Springer, 2005.

[29] Jochen M. Küster and Mohamed Abd-El-Razik. Validation of Model Transfor-
mations – First Experiences using a White Box Approach. In Proceedings of
MODEVA 06 (Model Design and Validation Workshop Associated to MODELS
06), pages 193–204. Springer, 2006.

[30] Andrea Darabos, András Pataricza, and Dániel Varró. Towards Testing the
Implementation of Graph Transformations. In In Proceedings of the 5th Inter-
national Workshop on Graph Transformations and Visual Modeling Techniques,
pages 69–80. Elsevier, 2006.

[31] Phil McMinn. Search-based Software Test Data Generation: A Survey: Research
Articles. Softw. Test. Verif. Reliab., 14(2):105–156, June 2004.

[32] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based Soft-
ware Engineering: Trends, Techniques and Applications. ACM Comput. Surv.,
45(1):11:1–11:61, December 2012.

[33] André Baresel, David Binkley, Mark Harman, and Bogdan Korel. Evolutionary
testing in the presence of loop-assigned flags: a testability transformation ap-
proach. In Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, ISSTA ’04, pages 108–118, New York, NY, USA,
2004. ACM.

[34] André Baresel, Harmen Sthamer, and Michael Schmidt. Fitness Function De-
sign To Improve Evolutionary Structural Testing. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’02, pages 1329–1336, San
Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

51

VITA

Jeffery Scott Shelburg grew up in Saint Charles, Missouri. He achieved the

rank of Eagle Scout in the Boy Scouts of America and graduated Valedictorian from

Saint Charles West High School. From Fall of 2008 to Spring of 2011, he attended

Missouri University of Science and Technology to earn a Bachelor of Science degree in

Computer Science with the help of Bright Flight, AT&T Foundations, and Missouri

S&T Curator’s scholarships. From Spring 2009 to Fall of 2012, Jeffery served as an

officer of Missouri S&T’s ACM SIG-Security organization as University Relations of-

ficer and then Co-Chair. In the Summer of 2010, Jeffery worked for Sandia National

Laboratories as a technical intern in the Center for Cyber Defenders. He was then

accepted into Sandia’s Critical Skills Master’s Program that lasted from the Summer

of 2011 to Spring of 2013 during which he worked at Sandia in the summers. With

funding from Sandia’s Critical Skills Master’s Program, Jeffery earned his Master of

Science degree in Computer Science from Missouri University of Science and Tech-

nology in Spring of 2013 and performed the research upon which the two papers in

this thesis were based.

	Hybridizing and applying computational intelligence techniques
	Recommended Citation

	PUBLICATION THESIS OPTION
	ABSTRACT
	ACKNOWLEDGMENTS
	ABSTRACT
	Introduction
	Related Work
	Methodology
	LEXCS Algorithm
	Automatic Problem Decomposition
	Classifier Migration
	Experimental Setup
	Results
	Discussion

	Conclusion
	ABSTRACT
	Introduction
	Methodology
	Solution Representation
	Change Operators
	Objective Functions
	 2.3.1 Metamodel coverage
	 2.3.2 Metamodel conformity
	 2.3.3 Number of refactorings
	Search-based Approach
	 2.4.1 Simulated annealing
	 2.4.2 Multi-objective simulated annealing
	 2.4.3 MOSA adaptation for generating test case models
	Implementation

	Experimentation
	Experimental Setting
	Results
	Discussion
	Related Work
	Conclusion and Future Work
	BIBLIOGRAPHY

	VITA

