
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2015

Cyber security research frameworks for coevolutionary network Cyber security research frameworks for coevolutionary network

defense defense

George Daniel Rush

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Rush, George Daniel, "Cyber security research frameworks for coevolutionary network defense" (2015).
Masters Theses. 7478.
https://scholarsmine.mst.edu/masters_theses/7478

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7478&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7478?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7478&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CYBER SECURITY RESEARCH FRAMEWORKS FOR COEVOLUTIONARY

NETWORK DEFENSE

by

GEORGE DANIEL RUSH

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2015

Approved by

Dr. Daniel Tauritz, Advisor
Dr. Sriram Chellappan
Dr. Alexander D. Kent

Copyright 2015

GEORGE DANIEL RUSH

All Rights Reserved

iii

PUBLICATION THESIS OPTION

This thesis has been prepared in the form of three papers formatted to Missouri

S&T specifications.

Paper 1. Pages 3–19 have been published as DCAFE: A Distributed Cyber Security Automa-

tion Framework for Experiments in the IEEE Thirty-eighth Annual International

Computers, Software and Applications Conference Workshops (2014) with Daniel

R. Tauritz and Alexander D. Kent.

Paper 2. Pages 20–43 have been published as Coevolutionary Agent-based Network Defense

Lightweight Event System (CANDLES) in the Seventeenth Annual Conference Com-

panion on Genetic and Evolutionary Computation (2015) with Daniel R. Tauritz and

Alexander D. Kent.

Paper 3. Pages 44–78 are intended for submission to the journal Computers & Security as

CANDLES v2: A Framework for Coevolving Attacker and Defender Strategies for

Enterprise Computer Networks with Daniel R. Tauritz and Alexander D. Kent.

iv

ABSTRACT

Cyber security is increasingly a challenge for organizations everywhere. Defense

systems that require less expert knowledge and can adapt quickly to threats are strongly

needed to combat the rise of cyber attacks. Computational intelligence techniques can be

used to rapidly explore potential solutions while searching in a way that is unaffected by

human bias.

Several architectures have been created for developing and testing systems used

in network security, but most are meant to provide a platform for running cyber security

experiments as opposed to automating experiment processes. In the first paper, we propose

a framework termed Distributed Cyber Security Automation Framework for Experiments

(DCAFE) that enables experiment automation and control in a distributed environment.

Predictive analysis of adversaries is another thorny issue in cyber security. Game

theory can be used to mathematically analyze adversary models, but its scalability limita-

tions restrict its use. Computational game theory allows us to scale classical game theory

to larger, more complex systems. In the second paper, we propose a framework termed Co-

evolutionary Agent-based Network Defense Lightweight Event System (CANDLES) that

can coevolve attacker and defender agent strategies and capabilities and evaluate potential

solutions with a custom network defense simulation.

The third paper is a continuation of the CANDLES project in which we rewrote key

parts of the framework. Attackers and defenders have been redesigned to evolve pure strat-

egy, and a new network security simulation is devised which specifies network architecture

and adds a temporal aspect. We also add a hill climber algorithm to evaluate the search

space and justify the use of a coevolutionary algorithm.

v

ACKNOWLEDGMENTS

This thesis would never have been possible without the support of the people around

me. I would like to thank my advisor, Dr. Daniel Tauritz, for helping me get through

the entire research process. His domain expertise, incredible work ethic, and boundless

optimism have helped make these ideas into a reality.

Dr. Alexander Kent helped me understand how I could focus my research on net-

work security in a practical way. His expertise in cyber security was crucial, and his en-

couragement enabled me to work through the most frustrating and difficult parts of the

research. I would also thank Dr. Sriram Chellappan for teaching me how to view cyber se-

curity problems, especially how to focus on each piece without being overwhelmed by the

whole. Many more professors and industry practitioners have taught me important lessons

over the years, for which I am eternally grateful.

I would also like to thank two organizations for providing funding for my research:

Los Alamos National Laboratory via the Cyber Security Sciences Institute under subcon-

tract 259565 and the Missouri S&T Intelligent Systems Center. This work would not be

possible without their contributions.

Last, but not least, I would like to thank my family and friends. Throughout child-

hood my parents, Clara and Steve, encouraged my curiosity about the world and everything

in it, giving me every opportunity they could to learn and grow as a person. My siblings

made sure I never got too full of myself, and countless members of my extended family

have given me tremendous support over the years. Finally, my friends kept me from taking

life too seriously, helping me remember that sometimes it really is about the journey and

not the destination. Thank you all, for everything.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xiii

SECTION

1. INTRODUCTION. 1

PAPER

I. DCAFE: A DISTRIBUTED CYBER SECURITY AUTOMATION FRAME-
WORK FOR EXPERIMENTS. 3

ABSTRACT . 3

1. INTRODUCTION . 4

2. RELATED WORK . 5

3. IMPLEMENTATION DETAILS . 6

3.1. System Virtualization . 6

3.2. Software Agent Design. 7

3.3. Snare Configuration Generation . 9

vii

4. ITERATIVE EXPERIMENT PROCEDURE . 10

4.1. Event Log Analysis. 12

4.2. Clustering Algorithm . 13

4.3. Objective Value Calculation . 14

5. PRELIMINARY RESULTS . 15

6. CONCLUSION AND FUTURE WORK . 15

7. ACKNOWLEDGMENT . 16

BIBLIOGRAPHY . 19

II. COEVOLUTIONARY AGENT-BASED NETWORK DEFENSE LIGHTWEIGHT
EVENT SYSTEM (CANDLES) . 20

ABSTRACT . 20

1. INTRODUCTION . 21

2. RELATED WORK . 22

3. METHODOLOGY. 23

3.1. Classes . 24

3.1.1 Action . 24

3.1.2 Attacker . 25

3.1.3 Attacker Solution . 25

3.1.4 Defender . 25

3.1.5 Defender Machine . 25

3.1.6 Defender Solution . 25

3.1.7 Detection System . 26

3.1.8 Dynamic Mitigation . 26

3.1.9 Exploit . 27

viii

3.1.10 Recon Technique . 28

3.2. Coevolutionary Algorithm . 28

3.3. Network Security Simulation . 30

4. EXPERIMENT PROCEDURE. 31

4.1. Experiment Variables. 31

4.2. Result Data Format . 31

4.3. Important Configuration Parameters. 32

4.4. Population Seeds . 34

4.4.1 Weak Attacker Seed . 34

4.4.2 Strong Attacker Seed . 35

4.4.3 Weak Defender Seed . 35

4.4.4 Strong Defender Seed . 35

5. RESULTS . 35

5.1. Entirely White or Black CIAO Plots . 36

5.1.1 X1, X5, X9, and X13. 36

5.1.2 X2, X6, and X14 . 36

5.1.3 X7 and X15 . 36

5.1.4 X16. 36

5.2. Gradient CIAO Plots . 36

5.2.1 X3 and X11 . 36

5.2.2 X10. 37

5.2.3 X4, X8, and X12 . 38

5.3. Outlier CIAO Plots . 38

6. DISCUSSION . 39

7. CONCLUSION AND FUTURE WORK . 40

ix

8. ACKNOWLEDGMENTS . 41

BIBLIOGRAPHY . 42

III. CANDLES V2: A FRAMEWORK FOR COEVOLVING ATTACKER AND DE-
FENDER STRATEGIES FOR ENTERPRISE COMPUTER NETWORKS 44

ABSTRACT . 44

1. INTRODUCTION . 45

2. RELATED WORK . 47

3. METHODOLOGY. 48

3.1. Attacker Strategy . 49

3.2. Defender Strategy . 49

3.3. Attacker . 52

3.4. Defender . 53

3.5. Network Security Simulation . 53

3.5.1 Preparation Phase . 53

3.5.2 Active Phase . 53

3.5.3 Return Values . 54

3.6. Network Graph Visualizations . 55

3.7. Fitness Function . 56

3.8. Investigating the Search Space. 57

3.9. Coevolutionary Algorithm . 57

3.9.1 Parent and Survivor Selection . 57

3.9.2 Attacker Recombination . 58

3.9.3 Attacker Mutation . 58

3.9.4 Defender Recombination . 58

x

3.9.5 Defender Mutation . 59

3.10. Hill Climber . 59

3.11. Nested Hill Climber . 60

4. EXPERIMENT PROCEDURE. 60

4.1. Experiment Variables. 60

4.2. Result Data Format – CoEA . 61

4.3. Result Data Format – Hill Climber . 62

5. RESULTS . 63

5.1. Attacker Parsimony Pressure – CoEA (X1–X3) . 63

5.2. Attacker Parsimony Pressure – HC (X1–X3) . 65

5.3. Attacker Starting Node – CoEA (X4–X5) . 66

5.4. Attacker Starting Node – HC (X4–X5). 66

5.5. IPS Ratio – CoEA (X6–X8) . 67

5.6. IPS Ratio – HC (X6–X8). 69

5.7. Machine Shutdown Threshold – CoEA (X9–X11) . 69

5.8. Machine Shutdown Threshold – HC (X9–X11) . 69

5.9. Network Topology – CoEA (X12–X17) . 69

5.10. Network Topology – HC (X12–X17). 70

5.11. Parent Selection – CoEA (X18–X19) . 70

5.12. Productivity Loss Multiplier – CoEA (X20–X22) . 70

5.13. Productivity Loss Multiplier – HC (X20–X22) . 71

5.14. Survivor Selection – CoEA (X23–X24) . 71

6. DISCUSSION . 72

6.1. Coevolutionary Algorithm . 73

6.2. Hill Climber . 73

xi

7. LIMITATIONS . 74

8. CONCLUSION AND FUTURE WORK . 75

9. ACKNOWLEDGMENTS . 76

BIBLIOGRAPHY . 77

SECTION

2. CONCLUSIONS . 79

VITA . 81

xii

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1.1 System Interaction Diagram . 11

1.2 Example Snare Event . 13

1.3 Example Event Term Set. 13

PAPER II

1.4 Attacker Diagram . 26

1.5 Defender Diagram. 27

1.6 Example CIAO Plot . 33

PAPER III

1.7 Example Attacker Strategy . 51

1.8 Example Defender Strategy. 52

1.9 Example Network Graph Visualization . 56

1.10 Example CIAO Plot . 62

xiii

LIST OF TABLES

Table Page

PAPER I

1.1 System Roles and Responsibilities . 7

1.2 Important Fields with Corresponding Attribute Values in Snare Rules. 10

PAPER II

1.3 Experiment Configuration Parameters . 32

1.4 Typical Resulting CIAO Plots (Attacker Perspective) . 37

1.5 Typical Resulting CIAO Plots (Defender Perspective) . 37

1.6 Outlier CIAO Plots . 40

PAPER III

1.7 Attacker Conditions . 50

1.8 Attacker Actions . 50

1.9 Typical Resulting CIAO Plots (Attacker Perspective) . 64

1.10 Typical Resulting CIAO Plots (Defender Perspective) . 64

1.11 Hill Climber Statistics for Number of Iterations . 65

1.12 Nested Hill Climber Statistics for Final Fitness Values (Static Attacker) 67

1.13 Nested Hill Climber Statistics for Final Fitness Values (Static Defender) 68

SECTION

1. INTRODUCTION

Cyber security is increasingly a challenge for organizations ranging from business

to government, as well as individual users. As more devices are connected to the Inter-

net, they become more accessible, but it also implies more potential targets and a larger

attack surface area that requires careful fortification. Defense systems that require less ex-

pert knowledge and can adapt quickly to threats are strongly needed to combat the rise of

cyber attacks. Unfortunately, trying to enumerate all possible attack vectors and defensive

strategies is not feasible. Computational intelligence techniques can be used to effectively

explore many potential solutions in a reasonable timeframe and may yield unintuitive solu-

tions since they are unaffected by human bias.

Complex configuration schemes and a distributed architecture are often required

when developing and testing systems used in network security. Several architectures have

been created for this purpose, but most of them are meant to provide a platform for running

cyber security experiments as opposed to automating experiment processes. In the first

paper, we propose a framework termed Distributed Cyber Security Automation Framework

for Experiments (DCAFE) that employs software agents to manage system roles, emulate

end users, automate data collection, analyze results, and initiate new experiments without

human intervention. The framework was used to run experiments that optimized Windows

logging configurations in order to quickly find indicators of compromise. The contribution

of the work is the creation of a model for experiment automation and control in a distributed

system environment.

2

Predictive analysis of adversaries is another thorny issue in cyber security. Game

theory can be used to mathematically analyze adversary models, but its scalability limita-

tions restrict its use to simple, abstract models. Computational game theory allows us to

scale classical game theory to large, complex systems capable of modeling real-world en-

vironments. In the second paper, we choose to utilize coevolution, an approach where each

player’s fitness is dependent on its adversaries, since attackers and defenders in network

security fit the adversarial model. Here we propose a framework termed Coevolutionary

Agent-based Network Defense Lightweight Event System (CANDLES) that can coevolve

attacker and defender agent strategies and capabilities and evaluate potential solutions with

a custom, abstract computer network defense simulation.

The third paper is a continuation of the CANDLES project in which we rewrote

key parts of the framework. Attackers and defenders have been redesigned to evolve pure

strategy, rather than a combination of strategy and available capabilities, or components. A

new network security simulation is devised which specifies network architecture as a graph

and uses a constrained number of discrete turns to add a temporal aspect. Then we add a

hill climber algorithm to evaluate the search space and justify the use of a coevolutionary

algorithm.

3

PAPER

I. DCAFE: A DISTRIBUTED CYBER SECURITY AUTOMATION
FRAMEWORK FOR EXPERIMENTS

George Rush1, Daniel R. Tauritz1, and Alexander D. Kent2

1Natural Computation Laboratory, Department of Computer Science,
Missouri University of Science and Technology, Rolla, Missouri, U.S.A.

2Advanced Computing Solutions, Los Alamos National Laboratory,
Los Alamos, New Mexico, U.S.A.

ABSTRACT

Cyber security has quickly become an overwhelming challenge for governments,

businesses, private organizations, and individuals. In an increasingly connected world, the

trend is for resources to be accessible from anywhere at any time. Greater access to re-

sources implies more targets and potentially a larger surface area for attacks, which makes

securing systems more difficult. Automated and semi-automated solutions are needed to

keep up with the deluge of modern threats, but designing such systems requires a dis-

tributed architecture to support development and testing. Several such architectures exist,

but most only focus on providing a platform for running cyber security experiments as

opposed to automating experiment processes. In response to this need, we have built a

distributed framework based on software agents which can manage system roles, automate

data collection, analyze results, and run new experiments without human intervention. The

contribution of this work is the creation of a model for experiment automation and control

4

in a distributed system environment, and this paper provides a detailed description of our

framework based on that model.

1. INTRODUCTION

A significant challenge in developing cyber security software is the difficulty in

building a suitable test environment. While powerful network and software platforms ex-

ist, they typically focus on enabling researchers to run experiments and collect data rather

than managing the experiments and reacting dynamically based on results. A user for one

of these platforms might start by spending weeks setting up an experiment. Then the exper-

iment is run, results are collected and manually analyzed, and tweaks are made to system

parameters before running the experiment again. This cycle can continue hundreds or thou-

sands of times and divert limited resources without further automation of the experimental

process. As such, it is highly beneficial to automate management of system roles, data

collection, result analysis, experimental parameters, and experiment execution.

In this paper, we present the Distributed Cyber Security Automation Framework

for Experiments (DCAFE). DCAFE consists of several distributed controls, implemented

as software agents, running on a network of virtual machines (VMs). It was initially de-

signed for gathering and analyzing Windows event log data, though that is only one of many

possible uses for this system. Our goal was to find an optimal data collection configuration

to detect a given attack or network enumeration technique. As such, that experimental ob-

jective guided many of our design decisions.

The VMs implemented here represent the attacker, victim, and central control sys-

tem in the network. The distributed agents are designed to automate the user roles of

attacker and victim, gather and analyze event data, and synchronize actions from a central

point in the network. However, while our implementation utilizes a synchronous com-

5

munication model, it is important to note that DCAFE is fully capable of operating in an

asynchronous environment. The agents are synchronous in our implementation due to a

specific requirement in our experiments; namely, communicating accurate time windows

during data collection requires that agents are aware when various actions are completed

on the network.

2. RELATED WORK

Several platforms exist for implementing cyber security testbeds, though none di-

rectly enable the automation capabilities that we describe. Emulab is a network testbed

with extensive auto-configuration and large-scale experimentation capabilities. It allows

for the use of emulation with arbitrary network topologies or even live testing on the In-

ternet by using the RON and PlanetLab testbeds [1]. While Emulab provides a plausible

foundation for our approach, it is not designed for experiment automation. Our model

could be implemented in experiments run with Emulab at the cost of Emulab’s far greater

hardware and software environment prerequisites. While possible, keeping the model sep-

arate means greater applicability to a variety of system environments.

Similarly, Cyber Defense Technology Experimental Research (DETER) is a com-

plex framework used for risky experiment management, experiment health monitoring, and

dynamic federation of different testbed facilities [2]. While using this framework might

have allowed more exact control and monitoring of the experiment, it is not designed to

automate system or user roles.

Several unnamed Supervisory Control and Data Acquisition (SCADA) testbeds

have also been designed for single simulation, federated simulation, and emula-

tion/implementation [3]. These are useful as general models, but are specific to SCADA

systems at the implementation level. Since our research involves typical desktop and server

6

operating environments, SCADA frameworks fall outside the experiment scope. Also, ex-

periment automation is not considered by these testbeds.

Strategic and Tactical Resiliency Against Threats to Ubiquitous Systems (STRA-

TUS) is a model-driven framework used for attack detection and mitigation. It utilizes

models for missions, components, vulnerabilities, trust levels, attack plans, and host and

cluster organization [4]. While this is not relevant to testbed technology, it is comparable to

our example implementation as another model designed for attack detection. While STRA-

TUS may be a viable model, we preferred a more lightweight approach.

In general, no existing framework met the needs of our planned experiments. A

virtualization platform with internal networking, emulated hardware, and desktop/server

operating systems was necessary, as well as a distributed software agent design and sev-

eral system-specific capabilities. Data had to be contained on-site, and penetration testing

had to be possible without disrupting outside systems or networks. Most importantly, the

framework had to enable full automation of experimental procedures. DCAFE was devel-

oped to meet these requirements.

3. IMPLEMENTATION DETAILS

3.1. System Virtualization. Oracle VM VirtualBox was chosen as the virtu-

alization platform due to its popularity and ease of use [5]. Three VMs were created

and connected to an ‘internal network’ created by Virtualbox. Each VM ran a different

operating system (OS): Windows 7, Kali Linux, or Ubuntu Server. Each was chosen due to

its unique traits and suitability for a given role in the experiment. Occasionally, programs

and frameworks were also installed on each VM to facilitate experimental procedures.

System roles and responsibilities are listed in Table 1.1.

7

Table 1.1. System Roles and Responsibilities

Role OS System
Responsibilities

Agent
Responsibilities

victim Windows 7 Snare Agent sends event
log data to the command
server.

Update the Snare
configuration when
requested by the com-
mand server.

attacker Kali Linux Execute attack com-
mands for the software
agent.

Launch attacks and net-
work scans when re-
quested by the com-
mand server.

command server Ubuntu Server The service rsyslog is
used to receive event log
data in Syslog format
from the victim.

Isolate and analyze vic-
tim event logs, deter-
mine Snare configura-
tions to test, send attack
commands, and output
results.

Windows 7 was chosen for the victim role due to its enormous popularity in busi-

ness, government, and individual use. Snare Agent for Windows [6], a program designed

to collect and transfer event log information in real-time, was also installed and configured

to send system log data to a Syslog server in the virtual network. Kali Linux was chosen

for the attacker role due to its penetration testing capabilities and popularity with cyber

security professionals. Ubuntu Server was chosen for the command server role due to its

broad support, documentation, and easy setup for Syslog, SSH, and related capabilities.

It is worth noting that scalability could be a concern depending on the number of

available Windows licenses. Also, should tens or hundreds of systems be necessary for a

particular experiment, one might prefer an emulation platform with more autoconfiguration

capabilities than VirtualBox. In that case, a testbed like Emulab might be a better option.

3.2. Software Agent Design. Distributed software agents are used here to control

the experimental process, configure services on the fly, execute actions in various system

8

roles, and automate data collection and analysis. Several communication models can be

used with the agents, including peer-to-peer, client-server, hybrid, and subscription mod-

els. Agents can either work autonomously, deciding when to act on their own, or accept

commands from other agents. Regardless of the design choices, any agent must be able

to execute actions for its given role and communicate with other agents as necessary. One

possible implementation is described here.

All of our VMs have a software agent written in Python. These agents are initial-

ized with root privileges, and each plays a particular role in the experimental procedure.

All agents communicate with each other as necessary by sending commands and data over

network sockets using JavaScript Object Notation (JSON). The attacker and victim agents

are ‘dumb’ agents in the sense that they only take orders from the command agent and

reply when requested tasks have been completed. All agents operate synchronously in the

sense that only a single agent can perform an action while the others wait, even though

other actions may be carried out simultaneously by the operating systems where the agents

reside.

The attacker agent receives messages in JSON format from the command agent.

These messages contain commands (strings) and a duration in seconds for each command

(integers). The attacker agent executes each command in a subshell and then waits for the

specified duration. Once all commands are complete, the agent will reply with a comple-

tion message to the command agent.

The victim agent also receives messages in JSON format from the command agent.

These messages contain Snare Objective Configuration rules. The victim agent stops the

Snare service, clears the current configuration from the Windows Registry, inserts new

rules, and restarts the Snare service. Then the agent will reply with a completion message

to the command agent.

9

The command agent tracks experiment progress, isolates and analyzes Syslog data,

generates Snare configurations and attack commands, and periodically outputs configura-

tion and result information to a file. This is the only intelligent agent, changing its actions

according to feedback from experimental data. It coordinates the actions for all other agents

and stores all results locally.

3.3. Snare Configuration Generation. A Snare Objective Configuration is com-

posed of an arbitrary number of rules. Multiple options can be selected on a given rule to

gather various types of data at different levels, from very broad to extremely detailed. The

major categories and relevant values that were manipulated for Snare rules during these

experiments are listed in Table 1.2.

Due to the many levels of detail for logging capabilities, it is possible to start with a

set of Snare configuration rules that each represent a highly inclusive general category, and

then depending on which results are most interesting, explore more narrow configurations.

In this iterative process, the first round of configurations might use different event IDs, but

include all event sources and return values per rule. The next round might use one event ID

and one event source per rule, but still have all return values. Each round can have many

iterations depending on which of the previous candidates were accepted and require further

investigation, and at every level, only one rule is ever tested at a time. Eventually, a set

of extremely narrow but useful rules will remain, and those will be output as results for

manual review. Note that this algorithm is greedy in that not every configuration is consid-

ered even though all types of data are analyzed for their usefulness. As a result, there are

potential circumstances under which this algorithm may return suboptimal results.

The reason why this approach works so well for Snare data is best described with

a visual analogy. Suppose Snare configurations can be represented by a map. The largest

sections of the map are rules for all-inclusive general categories of data, while smaller sec-

10

Table 1.2. Important Fields with Corresponding Attribute Values in Snare Rules

Event ID Event Source Return Value
File_Events Active Directory Service ActivityTracing
Filtering_Events Application Critical
Logon_Logoff DFS-Replication Error
Process_Events Domain Name Server Failure
Reboot_Events Legacy FRS Information
Security_Policy_Events Security Success
User_Group_Management_Events System Verbose
User_Right_Events Warning

tions within them are the more specific rules. Data generated by each configuration is a

hill in the landscape, with the height of each hill determined by the volume of the data

produced. We found through experimentation that most of the landscape is flat, at least for

baseline data (generated by system processes) and attack data. This means that the most

specific rules rarely generated any data at all, and broad categories tended to either produce

useful data quickly or not at all. Due to this property, it was possible to scan the landscape

at a high level, then quickly drill down and find the most specific rules possible to provide

potential attack indicators.

4. ITERATIVE EXPERIMENT PROCEDURE

The experiment procedure is initialized by powering on all the VMs and initializ-

ing the agents on the victim and attacker VMs who await further commands. The main

control program on the command server is started by the user, at which point the following

automated iterative procedure commences (visualized in Fig. 1.1):

1. The command server determines the current Snare configuration to test and sends an

update command to the victim.

11

Figure 1.1. System Interaction Diagram

2. The victim updates the configuration and restarts Snare, then sends a completion

message to the command server.

3. The command server gathers baseline data. This requires waiting an arbitrary amount

of time for events caused by Windows background processes to accumulate. It then

copies the results to a separate file for later analysis.

4. The command server gathers attack data. This is done the same way as baseline

data, except that a command is sent to the attack machine while data accumulates.

Every command in our experiments requires sending some type of data to the victim.

12

The attack machine executes the command and returns a completion message to the

command server.

5. The baseline data is compared to the attack data, and any unique events or event types

in the attack data are noted as possible attack indicators.

6. Unless all Snare configurations have been tested or rejected, restart the process from

Step 1.

4.1. Event Log Analysis. Analyzing event logs requires comparing baseline data

to attack data. Baseline data consists of events generated by normal Windows processes.

No user actions were included in the baseline data, though the software agent was running

in a command window on the victim machine in order to update Snare configurations as

necessary. Both a Pass-the-Hash exploit and a SYN Stealth scan were used to generate

attack data in separate runs of the experiment.

The first attack, Pass-the-Hash, is a technique that allows an intruder to authenticate

on a remote system with the hashed value for a user’s password [7]. Since many systems

hash passwords as a security measure, it can be easier to obtain the hashed value as opposed

to getting the password in plain text. The second attack, a SYN Stealth scan, is also called

a TCP SYN scan or half-open scan. It can reliably determine whether a network port is

open, closed, or filtered, and it is considered stealthy since it does not fully establish a con-

nection [8]. This makes it less likely to show up in event logs for systems or applications.

Once baseline and attack behaviors were determined, data gathering and analysis

could begin. All analysis starts with raw event data, and an example of this is shown in

Fig. 1.2. Note that the victim’s hostname is duna, and the event indicates that a network

connection was permitted by the Windows Filtering Platform.

Pre-processing was applied to the raw event data in order to facilitate clustering and

to reduce the dimensionality of the data. Numerical data and punctuation were stripped

13

from the events to leave only the terms composed of ASCII text. These were then converted

into lowercase and used to build term sets. The example event from Fig. 1.2 is translated

into the term set in Fig. 1.3.

Next, the baseline events were clustered, followed by the attack events. If the attack

events formed new clusters using the baseline data, then the attack data was considered

unique enough to provide a possible attack indicator. Any attack indicator, and its Snare

configuration by association, was also given an objective value and stored in the final results

if the value exceeded a user-specified threshold.

Dec 26 16:21:21 duna MSWinEventLog 4 Security 7 Thu Dec 26 16:21:21

2013 5156 Microsoft-Windows-Security-Auditing N/A N/A Success Audit

duna Filtering Platform Connection The Windows Filtering Platform

has permitted a connection. Application Information: Process ID: 4

Application Name: System Network Information: Direction: Inbound

Source Address: 192.168.66.3 Source Port: 445 Destination Address:

192.168.66.4 Destination Port: 37041 Protocol: 6 Filter Information:

Filter Run-Time ID: 66057 Layer Name: Receive/Accept Layer Run-Time

ID: 44 6

Figure 1.2. Example Snare Event

{�, 'receive', 'filtering', 'protocol', 'connection', 'auditing',

'process', 'platform', 'dec', 'thu', 'run', 'security', 'name', 'id',

'network', 'source', 'direction', 'port', 'microsoft', 'information',

'permitted', 'time', 'the', 'destination', 'a', 'mswineventlog',

'success', 'windows', 'n', 'inbound', 'system', 'layer', 'address',

'audit', 'filter', 'accept', 'duna', 'has', 'application'}

Figure 1.3. Example Event Term Set

4.2. Clustering Algorithm. The clustering method was designed with the event

logs in mind, for highly textual data with unreliable timestamps due to clock drift. For this

purpose, we built a custom algorithm similar to the crisp nearest prototype classifier [9]

14

which addresses the specific needs of our experiments. In particular, the natural organiza-

tion of the data is exhibited through the behavior of an agglomerative clustering algorithm

with dynamic classes. Each event can belong to only one cluster, and events start out with

no cluster membership initially. There is no labeled data, and the number of clusters is not

specified since they are dynamically generated. Each cluster consists of one or more events,

but is represented by a prototype for ease of calculations and lower space complexity. The

prototype is a set containing all terms from the cluster members. A similarity threshold is

used when deciding if an event should join a cluster, and the similarity measure is defined

in (1.1).

similarity =
(number o f matching terms)×2

(total number o f terms)
(1.1)

The similarity measure is symmetric in that the order of the input and prototype

does not affect the result. This method also prevents any cluster from spreading too far,

a property which encourages formation of smaller and more distinct clusters. Pseudocode

for the clustering algorithm is provided in Algorithm 1. Note that any cluster prototype

and event term set are unlikely to have the same number of terms, and the similarity can

never exceed 1.0. The reason for multiplying the number of matching terms by two is to

normalize the range of similarity values to [0,1]. If the similarity exceeds the similarity

threshold for the current iteration, then the event joins the cluster. If the event in question

is not found to be similar enough to any existing cluster, a new cluster is formed with the

event as its only member.

4.3. Objective Value Calculation. The objective value of the Snare configuration

for a given event set is calculated by starting with a low similarity threshold (0.1), forming

clusters with the baseline data, and attempting to form new clusters with the attack data.

Should zero new clusters be formed from the attack data, the threshold is incrementally

increased, and the clustering process is repeated. The objective value is calculated as the

15

inverse of the similarity threshold required for the attack data to form new clusters, as

defined in (1.2). Pseudocode for the objective value algorithm is provided in Algorithm 2.

ob jective value =
1

(current similarity threshold)
(1.2)

The result is that attack data with highly distinctive events compared to the baseline

will form new clusters at a low similarity threshold, consequently receiving a high objective

value. Should new clusters not form at any threshold (or if zero events are available for a

given Snare configuration), the objective value is zero. Any Snare configuration with an

objective value of zero is immediately rejected, while all others are stored for later analysis.

In practice, due to the flat data landscape, we found most Snare configurations to have an

objective value of zero.

5. PRELIMINARY RESULTS

Initial experiments run using DCAFE have resulted in finding several indicators of

compromise representing known exploits. While we cannot elaborate on those results at

present due to their sensitive nature, they have provided useful direction for later experi-

ments and validation of DCAFE’s usefulness in experiment automation.

6. CONCLUSION AND FUTURE WORK

This paper introduces DCAFE, a practical, light-weight, distributed framework for

the automation of cyber security research experiments, based on software agents, which can

manage system roles, automate data collection, analyze results, and run new experiments

without human intervention. For a given attack specification, DCAFE has demonstrated

its ability to discover event log configurations containing indicators of compromise, which

can be fruitfully employed by attack detection mechanisms.

16

DCAFE currently provides a model and example implementation for distributed

software agents used to automate the experimental process. This paper is meant to act as

a guide for others to design similar agents and implement the technologies described here.

Unfortunately, the source code from our own experiments cannot currently be released due

to the sensitive nature of the work. As such, future work might involve the creation of a

standard software package that other researchers could download and use as a base for their

own experiment designs.

7. ACKNOWLEDGMENT

This work was supported in part by Los Alamos National Laboratory via the Cyber

Security Sciences Institute under subcontract 259565 and in part by the Missouri S&T

Intelligent Systems Center.

17

Algorithm 1 Clustering Algorithm
function CALCULATESIMILARITY(setA, setB)

numO f Matches← 0
for each termA in setA do

if termA in setB then
numO f Matches← numO f Matches+2

end if
end for
total← SIZE(setA)+ SIZE(setB)
return numO f Matches/total

end function

function FORMCLUSTERS(eventList, clusterList, clusterFormationT hreshold)
for each event in eventList do

bestMatch← None
bestScore←−1
for each cluster in clusterList do

similarity← CALCULATESIMILARITY(cluster,event)
if similarity≥ clusterFormationT hreshold and similarity > bestScore then

bestMatch← cluster
bestScore← similarity
break

end if
end for
if bestMatch = None then

newCluster← EVENTCLUSTER(event)
clusterList.APPEND(newCluster)

else
bestMatch.signature← bestMatch.signature.UNION(event)

end if
end for
return clusterList

end function

18

Algorithm 2 Objective Value Algorithm
SIMILARITY _T HRESHOLD_ST EP_SIZE← 0.1
SIMILARITY _T HRESHOLD_MAX ← 1.0

function CALCULATEOBJECTIVEVALUE(baselineEvents, attackEvents)
ob jectiveValue← 0.0
similarityT hreshold← SIMILARITY _T HRESHOLD_ST EP_SIZE
while similarityT hreshold ≤ SIMILARITY _T HRESHOLD_MAX do

normalClusters← FORMCLUSTERS(baselineEvents,similarityT hreshold,
None)

allClusters← FORMCLUSTERS(attackEvents,similarityT hreshold,
normalClusters)

if LENGTH(allClusters)> LENGTH(normalClusters) then
ob jectiveValue← 1.0/similarityT hreshold
break

end if
similarityT hreshold← similarityT hreshold+

SIMILARITY _T HRESHOLD_ST EP_SIZE
end while
return ob jectiveValue

end function

19

BIBLIOGRAPHY

[1] Emulab.net - emulab - network emulation testbed home. https://www.emulab.net/.
Accessed: 2014-02-24.

[2] Terry Benzel, Bob Braden, Ted Faber, Jelena Mirkovic, Steve Schwab, Karen Sollins,
and John Wroclawski. Current Developments in DETER Cybersecurity Testbed Tech-
nology. In Proceedings of the Cybersecurity Applications & Technology Conference
For Homeland Security (CATCH), pages 57–70. IEEE, 2009.

[3] Annarita Giani, Gabor Karsai, Tanya Roosta, Aakash Shah, Bruno Sinopoli, and Jon
Wiley. A Testbed for Secure and Robust SCADA Systems. ACM SIGBED Review -
Special issue on the 14th IEEE real-time and embedded technology and applications
symposium (RTAS’08) WIP session, 5(2), July 2008.

[4] Mark Burstein, Robert Goldman, Paul Robertson, Robert Laddaga, Robert Balzer, Neil
Goldman, Christopher Geib, Ugur Kuter, David Mcdonald, John Maraist, et al. STRA-
TUS: Strategic and Tactical Resiliency against Threats to Ubiquitous Systems. In Pro-
ceedings of the Sixth International Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW), pages 47–54. IEEE, 2012.

[5] Oracle vm virtualbox. https://www.virtualbox.org/. Accessed: 2014-02-24.

[6] Snare eventlog agent for windows - event log transfer to snare & syslog servers - open
source. http://www.intersectalliance.com/projects/BackLogNT/. Accessed:
2014-02-24.

[7] Psexec pass the hash - metasploit unleashed. http://www.offensive-security.

com/metasploit-unleashed/PSExec_Pass_The_Hash. Accessed: 2014-05-06.

[8] Port scanning techniques. http://nmap.org/book/

man-port-scanning-techniques.html. Accessed: 2014-05-06.

[9] James M Keller, Michael R Gray, and James A Givens. A Fuzzy K-Nearest Neighbor
Algorithm. Transactions on Systems, Man, and Cybernetics, SMC-15(4):580–585,
July/August 1985.

20

II. COEVOLUTIONARY AGENT-BASED NETWORK DEFENSE
LIGHTWEIGHT EVENT SYSTEM (CANDLES)

George Rush1, Daniel R. Tauritz1, and Alexander D. Kent2

1Natural Computation Laboratory, Department of Computer Science,
Missouri University of Science and Technology, Rolla, Missouri, U.S.A.

2Cyber Futures Laboratory, Los Alamos National Laboratory,
Los Alamos, New Mexico, U.S.A.

ABSTRACT

Predicting an adversary’s capabilities, intentions, and probable vectors of attack is

in general a complex and arduous task. Cyber space is particularly vulnerable to unforeseen

attacks, as most computer networks have a large, complex, opaque attack surface area and

are therefore extremely difficult to analyze. Abstract adversarial models which capture the

pertinent features needed for analysis, can reduce the complexity sufficiently to make anal-

ysis feasible. Game theory allows for mathematical analysis of adversarial models; how-

ever, its scalability limitations restrict its use to simple, abstract models. Computational

game theory is focused on scaling classical game theory to large, complex systems capable

of modeling real-world environments; one promising approach is coevolution where each

player’s fitness is dependent on its adversaries. In this paper, we propose the Coevolution-

ary Agent-based Network Defense Lightweight Event System (CANDLES), a framework

designed to coevolve attacker and defender agent strategies and evaluate potential solutions

with a custom, abstract computer network defense simulation. By performing a qualitative

analysis of the result data, we provide a proof of concept for the applicability of coevolu-

21

tion in planning for, and defending against, novel attacker strategies in computer network

security.

1. INTRODUCTION

Great strides are needed in the defensive tools and technologies available to cy-

ber security practitioners, as the asymmetric nature of cyber warfare [1] puts defending

practitioners at a distinct disadvantage; i.e., cyber attackers get to decide when and where

to attack, without the need for physical presence providing advance notice to the cyber

defenders who must scramble to quickly determine that an attack is occurring, select an

appropriate defense, and execute it. In cyber security, as in many security-related fields, it

can be prudent to evaluate worst-case attack scenarios. Whether facing insider threats or

sophisticated adversaries outside one’s networks, it is important to develop threat and at-

tack models such that one can predict an adversary’s capabilities, intentions, and probably

vectors of attack. Cyber space is particularly vulnerable to unforseen attacks due to most

computer networks having a large, complex, opaque attack surface area and therefore being

extremely difficult to analyze. Invariably, the large number of variables involved in both

offensive and defensive strategies makes an exhaustive search of all strategies infeasible.

Abstract adversarial models which capture the pertinent features needed to analyze such

strategies, can reduce the complexity sufficiently to make analysis feasible.

Game theory allows for mathematical analysis of adversarial models; however, its

scalability limitations restrict its use to simple, abstract models. Computational game the-

ory is focused on scaling classical game theory to large, complex systems capable of mod-

eling real-world environments; one promising approach is coevolution where each player’s

fitness is dependent on its adversaries. Coevolution can be employed to explore the as-

22

sociated search spaces, examining strategic capabilities and estimating how each side will

adapt in response to moves made by an opponent.

It makes sense to focus resources on securing systems such that attacks become

less effective. There are several well-known ways to harden systems against attack, from

limiting access permissions to patching software and reducing exposed network services.

These are useful measures to reduce the attack surface and make it easier to defend vital

assets. Yet for all the efforts taken to secure systems, intrusions still occur in many organi-

zations, often without their knowledge [1]. Once it is acknowledged that intrusions cannot

be stopped entirely, awareness, damage mitigation, and disaster recovery become important

goals. In particular, knowing how an adversary could break into a network and devising

possible counter-strategies is vital. In this paper, we propose the Coevolutionary Agent-

based Network Defense Lightweight Event System (CANDLES), a framework designed

to coevolve attacker and defender agent strategies and evaluate potential solutions with a

custom, abstract computer network defense simulation. Our approach coevolves two pop-

ulations containing attacker and defender strategies in a network defense scenario, and the

fitness of strategies is determined through simulations. In this way, unique, near-optimal

strategies for both sides can be discovered. By performing a qualitative analysis of the

result data, we provide a proof of concept for the applicability of coevolution in planning

for, and defending against, novel worst-case attacker strategies in computer network secu-

rity, allowing an end user to develop strategies and set up test scenarios. This offers new

possibilities for analyzing and reinforcing defensive capabilities against unknown threats.

2. RELATED WORK

Coevolution has been used to find better placements for Flexible AC Transmission

System (FACTS) devices [2], which are used to prevent cascading blackouts in electric

23

transmission systems [3], and also to evolve attackers and defenders for graph-based net-

work theory models [4]. Defenses have been designed that can predict the behavior of

adaptive adversaries using a combination of game theory and machine learning [5], and

machine learning has likewise been used to predict the nature of relationships in adversar-

ial social networks [6]. Strategies have been developed for defending against Distributed

Denial-of-Service (DDoS) attacks using a Bayesian game theoretic framework [7], and

hidden Markov models have been developed to detect cyber attacks in network traffic [8].

Current approaches to developing computer network defense strategies largely fo-

cus on either pure game theoretic models [9] or real world implementations and emulated

systems [10, 11]. Emulated systems more accurately reflect real world conditions, but

require a fair amount of resources and configuration knowledge. Game theoretic mod-

els are mathematically elegant, but they do not scale well to larger solution spaces. Our

approach falls somewhere in the middle, as our experiments employ a custom network se-

curity simulation. Coevolution allows us to approximate game theory solutions for large

search spaces, thus providing scalability beyond the limits of classic game theory, and the

simulation provides a more realistic strategy evaluation without the configuration difficulty

of most emulated systems.

3. METHODOLOGY

There are two main parts to the CANDLES framework: the coevolutionary al-

gorithm (CoEA) and the network security simulation. A CoEA was chosen over other

stochastic methods since it most closely represents the natural dynamic between attackers

and defenders in cyber space. Namely, they evolve their capabilities over time in response

to actions taken by opponents. The network security simulation was developed to evaluate

24

potential solutions in the CoEA, and it is used to simulate cyber defense scenarios given an

abstract set of capabilities for both attackers and defenders.

In our model, attacker capabilities include exploits and reconnaissance, or recon.

Recon techniques identify features of defender machines or networks and increase the

chance of exploit success. Exploits are used to compromise a vulnerability and deliver

a payload used to exfiltrate data. In our simulation, a vulnerability may be specific to a

service or operating system, and there are no payloads designed to damage enemy systems.

This is meant to model a stealthy attacker with advanced intrusion capabilities and a desire

to gather as much information as possible. Attacker profit is defined in the simulation as

the total amount of information exfiltrated from the defender’s machines.

Defender capabilities include detection systems, mitigation techniques, and shut-

ting down machines. Detection systems attempt to detect both exploits and reconnaissance

and inform the defender. Upon detection, dynamic mitigation techniques can be used to

attempt to stop the attack. Should the attack not be detected or if dynamic mitigation

fails, then static mitigation techniques may still prevent the attack from working. Dynamic

mitigation is meant to represent an Intrusion Prevention System (IPS), whereas static mit-

igation represents passive defenses like closed network ports, software patches, or limited

user privileges. Paranoia is also used to represent how alert a defender is after exploits have

been detected, and high paranoia will eventually cause the defender to shut down targeted

machines.

3.1. Classes. This section describes classes that provide the structural basis for the

rest of the framework.

3.1.1. Action. The Action class represents a possible action by any entity in the

simulation, and it specifies both a target and a technique. Since currently only Attackers

use Actions, techniques can be either Recon Techniques or Exploits.

25

3.1.2. Attacker. The Attacker class is initialized with an Attacker Solution and

executes Actions during the simulation. Which Actions to use are determined using ca-

pabilities in the Attacker Solution, and state information is used to track reconnaissance

information and event history. The structure for this class is visualized in Fig. 1.4.

3.1.3. Attacker Solution. An Attacker Solution specifies attack capabilities by

defining available Recon Techniques and Exploits, and it specifies strategy through a target

list of Defender Machines. In general, an attacker should not attack too many targets since

that raises the Defender’s paranoia level, which makes it harder to extract information once

machines are shut down. On the other hand, attacking too few targets or targets of low value

will not provide enough profit to be worthwhile. Attacker Solutions compose the first of

two populations in the CoEA, and they are initialized using population seeds as described

in Subsection 4.4.

3.1.4. Defender. The Defender class is initialized with a Defender Solution and re-

sponds to Actions by an attacker using detection systems and mitigation techniques. State

information is used here to track the paranoia level. Paranoia is a mechanism that increases

with detected exploits and allows the Defender to shut down machines upon reaching cer-

tain thresholds. Note that shutting down machines incurs a passive cost for productivity

loss, but it prevents further data exfiltration. The structure for this class is visualized in

Fig. 1.5.

3.1.5. Defender Machine. Each Defender Machine has a unique ID, intrinsic

value, operating system, and list of available services. State information tracks whether

the machine is active and any status effects incurred as a result of Exploits or Recon Tech-

niques.

3.1.6. Defender Solution. A Defender Solution specifies a Defender’s capabilities

by defining available Detection Systems and Dynamic Mitigations, and it specifies strategy

26

Figure 1.4. Attacker Diagram

through suspected targets and paranoia thresholds. Suspected targets are used to perform

extra defensive measures with a one-time cost, and paranoia thresholds are used to deter-

mine when to shut down machines. Defender Solutions compose the second population in

the CoEA, and they are initialized using population seeds as described in Subsection 4.4.

3.1.7. Detection System. Each Detection System has a one-time installation cost

and four separate detection probabilities for the following events against any target: suc-

cessful recon, failed recon, successful exploit, and failed exploit.

3.1.8. Dynamic Mitigation. Each Dynamic Mitigation has a local execution cost,

a user cost (to represent spent effort or time), and a probability of success. Note that

27

Figure 1.5. Defender Diagram

Dynamic Mitigations can also be used as a static defensive measure on suspected targets.

This means the costs are only incurred once per suspected target, but they are incurred

regardless of whether or not that target is attacked.

3.1.9. Exploit. Each Exploit has a value multiplier, a probability of success, and

one or more constraints. The value multiplier indicates the utility of the payload since a

higher multiplier will extract more value, representing information, from a given Defender

Machine. The constraints specify the operating system or services required for the Exploit

to function correctly.

28

3.1.10. Recon Technique. Each Recon Technique has type information and a

probability of success. Type information indicates which effect the Recon Technique will

have if successful, and the three possible effects are to increase the probability of exploit

success, identify the OS, or identify running services.

3.2. Coevolutionary Algorithm. The CoEA evolves a population of Attacker So-

lutions against a population of Defender Solutions. Attacker Solutions use targets, Recon

Techniques, and Exploits while Defender Solutions use paranoia thresholds, a budget, sus-

pected targets, Detection Systems, and Dynamic Mitigations. Note that in both solution

classes, targets are references to Defender Machines. Both Attacker and Defender Solu-

tions are initialized from population seeds as covered in Subsection 4.4.

Parent selection is random, and survivor selection uses truncation. For recombina-

tion, a random subset of values are chosen for each variable from each parent. For mutation,

a target or technique is randomly added or removed from the given solution. Defender So-

lutions can also mutate paranoia thresholds to any value with a step size of 0.1 in the range

[0, 1]. Note that paranoia thresholds specify the necessary paranoia level for a Defender

to shut down machines, whereas the paranoia level itself just specifies how paranoid the

Defender is at any time during a given simulation.

Fitness evaluation for any individual requires measuring its performance multiple

times against several opponent solutions in the network security simulation and averag-

ing the results. The exact number of opponents and number of simulations per opponent

are determined by the CoEA configuration (listed in Subsection 4.3). Pseudocode for the

fitness function is provided in Algorithm 3.

One unique aspect of our CoEA is that the fitness function is asymmetric. The

attacker only attempts to maximize its profit (representative of information gained), but the

defender wants to both minimize the attacker’s profit and minimize its own costs. To do

29

Algorithm 3 Fitness Function
function CALCULATEFITNESS(individual, enemyPopulation)

randomlyChosenOpponents← CHOOSEOPPONENTS(enemyPopulation,
NUM_OF_OPPONENT S)

allOpponentAverages← None
for each opponent in randomlyChosenOpponents do

simulationResults← None
for i in RANGE(NUM_OF_SIMULAT IONS) do

de f enderCosts,attackerPro f it← RUNSIMULATION(individual,opponent)
if individual.class = Attacker then

result←−attackerPro f it
else if individual.class = De f ender then

result←−attackerPro f it−de f enderCosts
end if
simulationResults.APPEND(result)

end for
opponentAverage← AVERAGE(simulationResults)
allOpponentAverages.APPEND(opponentAverage)

end for
return AVERAGE(allOpponentAverages)

end function

this, the fitness value per simulation is calculated as shown in (1.3) and (1.4).

attacker f itness =−(attacker pro f it) (1.3)

de f ender f itness =−(attacker pro f it)− (de f ender costs) (1.4)

It is important to point out that fitness is determined on a scale of (−∞,0], and attackers

always want to minimize their fitness value while defenders want to maximize theirs. This

mirrors reality in that the best case for defenders in cyber security is having zero losses

from attacks and zero resources spent on defense, resulting in a maximum fitness value of

zero. Attackers attempt to minimize their fitness value so that the attacker profit can be

represented the same way in both equations.

30

3.3. Network Security Simulation. The network security simulation follows this

process:

1. Attacker and Defender are initialized from solutions.

2. Defender prepares initial defenses.

3. Event loop begins:

(a) Attacker performs an action (or does nothing).

(b) Defender responds as necessary.

(c) Passive costs are calculated.

(d) Exit the loop if Attacker does not act.

During initialization, the Attacker will build attack sequences based on all possible com-

binations of available targets and techniques. It should be emphasized that the Attacker

Solution only specifies the targets and techniques available for composing Actions in the

attack sequence, and the Attacker’s strategy for building attack sequences is static. The De-

fender then prepares its initial defense capabilities, which involves calculating installation

costs for detection systems and static defensive measures. At this point, the main event

loop begins. During each iteration of the event loop, the Attacker will start by looking up

its next planned Action. If there are recon Actions remaining, those will be given prior-

ity. Should an exploit Action be selected, it will be executed only if the exploit constraints

match any known recon information for the target. The Defender will respond to either

recon or exploits by attempting to detect and mitigate them. If the event is successfully

detected, dynamic mitigations are applied. If dynamic mitigations fail or if the event is not

detected, then static mitigations may still take effect for suspected targets. The Defender

also has a paranoia level which increases when exploits are detected. Should paranoia reach

certain thresholds, then targeted machines will be shut down upon further detection of ex-

ploits or data exfiltration. Passive costs are also calculated for each iteration of the event

31

loop. The only passive costs are currently those for productivity loss by inactive Defender

Machines, which are meant to balance out the tendency of a Defender Solution to simply

shut down machines in order to block all attacks. Finally, should the Attacker have zero

planned actions remaining, the event loop terminates.

4. EXPERIMENT PROCEDURE

The objective of our experiments is to demonstrate that coevolution can be used to

explore and evaluate strategies in a cyber defense simulation. To this end, we have designed

a number of experiments to explore various offensive and defensive scenarios.

4.1. Experiment Variables. The variables for individual experiments are the at-

tacker population seed, defender population seed, and whether or not each population

evolves (listed in Table 1.3). Population seeds are individual solutions used as a tem-

plate for all population members during initialization, and they are listed as weak or strong

depending on their capabilities. We also examine both static and dynamic populations in

order to examine evolution in different contexts. It is easier, for example, to determine how

well a population is evolving against a static opponent since it is not considered a moving

target.

4.2. Result Data Format. There are 30 CoEA runs per experiment, and several

types of result data are provided for each run. During a single run of the CoEA, the best

Attacker Solution and Defender Solution are stored from each generation. After the run is

complete, all the best solutions are output to file and used to generate a CIAO plot (Current

Individual vs. Ancestral Opponents), which is used to visually convey the progress of two

populations during coevolution [12]. The Defender Machine configuration is also output

to provide contextual information if needed during analysis.

32

Table 1.3. Experiment Configuration Parameters

Experiment ID Attacker
Pop. Seed

Defender
Pop. Seed

Attacker
Evolution

Defender
Evolution

X1 Weak Weak Static Static
X2 Weak Weak Static Dynamic
X3 Weak Weak Dynamic Static
X4 Weak Weak Dynamic Dynamic
X5 Weak Strong Static Static
X6 Weak Strong Static Dynamic
X7 Weak Strong Dynamic Static
X8 Weak Strong Dynamic Dynamic
X9 Strong Weak Static Static

X10 Strong Weak Static Dynamic
X11 Strong Weak Dynamic Static
X12 Strong Weak Dynamic Dynamic
X13 Strong Strong Static Static
X14 Strong Strong Static Dynamic
X15 Strong Strong Dynamic Static
X16 Strong Strong Dynamic Dynamic

To briefly explain CIAO plots, an example is provided in Fig. 1.6. This particular

plot is from the attacker’s perspective in experiment X8. For this perspective, darker regions

indicate more success for the attacker, and the attacker’s generation is plotted along the

increasing y-axis while the defender’s generation is plotted along the increasing x-axis.

If this were the defender’s perspective, darker regions would indicate more success for

the defender, and the defender’s generation would be plotted along the increasing y-axis

while the attacker’s generation would be along the increasing x-axis. In this CIAO plot, the

attacker is most effective towards the last of its generations against the earliest generations

of defenders as indicated by the nearly black pixels.

4.3. Important Configuration Parameters. All experiments ran with certain

fixed values defined in the configuration, and this section will examine those values.

33

Figure 1.6. Example CIAO Plot

• 30 CoEA Runs

This specifies the number of times a full CoEA is run per experiment. 30 CoEAs will

result in 60 different CIAO plots (one each for attacker and defender perspective).

This means that outliers can be identified, but when discussing results, we chose a

representative pair of plots for each experiment.

• 10 Defender Machines

This specifies how many machines the Defender has running on their network.

• 10 Fitness Opponents

This is the number of opponents used to evaluate a given population member for

fitness.

• 5 Simulation Runs

This is the number of simulation runs between any two opponents during fitness

evaluation. With 10 fitness opponents, this means that 50 simulation runs are needed

to evaluate any population member.

• 100 Generations per CoEA

34

• Attacker Population Size of 100

• Defender Population Size of 100

• 30 Parents

This is the number of parents selected from each population per generation, and each

pair of parents produces a single offspring (i.e., 15 offspring for each population).

• Random Parent Selection

• Truncation Survivor Selection

• No Pre-Defined Defender Machines

This is used to specify a Defender Machine configuration for the network security

simulation. Since one is not given, the program will generate a random set of De-

fender Machines for the duration of each CoEA.

Many of these constants were chosen to meet time constraints in the experiments

or to simplify the model, though there are a few exceptions. Random parent selection was

chosen to add genetic variety to the offspring, and using truncation for survivor selection

ensured that the population would attempt to improve over time, or at least not throw away

the best solutions. There were never any pre-defined settings for the Defender Machines

aside from the total number, as this forced solutions to be robust enough to succeed against

multiple network configurations.

4.4. Population Seeds. Both of the initial populations were generated using ei-

ther strong or weak solutions for each experiment. The design of each population seed is

presented here.

4.4.1. Weak Attacker Seed. The weak attacker solution has only three out of ten

possible targets and zero recon techniques or exploits. All useful capabilities must be

developed through mutation.

35

4.4.2. Strong Attacker Seed. The strong attacker solution has all ten defender

machines as targets, one recon technique for each possible effect, and an exploit with the

highest possible multiplier for the current configuration. All techniques have a success rate

of 100 percent. While not a perfect solution, this provides the attacker with a powerful set

of starting capabilities.

4.4.3. Weak Defender Seed. The weak defender solution starts both shutdown

thresholds at 1.0 (the highest level), which means that the defender will wait the longest

possible time before shutting down machines despite detecting exploits and data exfiltration

many times. Only three out of ten machines are listed as suspected targets, and there are

no detection systems or dynamic mitigation techniques. Like the weak attacker seed, all

useful capabilities must be developed through mutation.

4.4.4. Strong Defender Seed. The strong defender solution starts both shutdown

thresholds at 0.5, which is meant to strike a balance between increasing security and mini-

mizing productivity losses from having to shut down machines. It also has a cheap detection

system with perfect detection rates against all recon techniques and exploits, and it has an

even cheaper mitigation technique with a success rate of 100 percent. All ten machines are

listed as suspected targets. This provides a nearly perfect defense.

5. RESULTS

Typical CIAO plots for each experiment are shown in Tables 1.4 and 1.5. The

reason for having CIAO plots with both the attacker and defender perspectives is because

each population uses a slightly different fitness function (as explained in Subsection 3.2).

36

5.1. Entirely White or Black CIAO Plots. CIAO plots are entirely white or black

for ten experiments, indicating that little or no evolution occurred. The following is an

examination of these cases.

5.1.1. X1, X5, X9, and X13. These are experiments where both populations were

static (no evolution was allowed to occur), so this behavior is entirely expected.

5.1.2. X2, X6, and X14. These are experiments with a static attacker and dynamic

defender. In X2, both sides start with weak population seeds. Since the weak attacker

essentially starts out with zero attack capabilities, there is no motivation for the defender

to evolve. In X6, the defender is strong while the attacker is still weak, so the same thing

happens. In X14, both sides start out strong, and this leads to a different problem: If both

sides are currently near their peak capabilities, there is little room to improve via evolution.

5.1.3. X7 and X15. These are experiments with a dynamic attacker and static de-

fender. In X7, the attacker starts out weak while the defender starts out strong. While this

provides plenty of room for the attacker to evolve, the defender was simply too power-

ful. The attacker never managed to evolve stronger capabilities since it could never gain a

foothold in the defender’s network. In X15, both sides start out strong, so neither has room

to evolve past their peak capabilities.

5.1.4. X16. In this experiment, both populations were dynamic and started out

strong. However, since both started near their peak, there was no room to evolve for their

best members.

5.2. Gradient CIAO Plots. CIAO plots have gradients for six experiments, indi-

cating that evolution occurred for one or both sides. The following is an examination of

these cases.

5.2.1. X3 and X11. These are experiments with a dynamic attacker and static de-

fender. In X3, both sides start out weak, which allows the attacker to evolve many new

37

Table 1.4. Typical Resulting CIAO Plots (Attacker Perspective)

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

Table 1.5. Typical Resulting CIAO Plots (Defender Perspective)

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

capabilities and produce a smooth gradient in the corresponding CIAO plots. In X11, at-

tackers started out strong while defenders started out weak. As a result, the attacker’s best

members only evolved a few times since they were already strong. This created CIAO plots

with a few large bands in the gradient. In both cases, these CIAO plots show clear evolution

by the attacker.

5.2.2. X10. In this experiment, the defender was dynamic and started out weak

while the attacker was static and started out strong. Because of the attacker’s strength, the

defender had an incentive to evolve better capabilities, and since the defender started out

weak, it had a lot of room to evolve. Also, the attacker being static made it easier for the

defender to improve since it was not chasing a moving target. This led to a smooth gradient

38

in the corresponding CIAO plots representing the clearest evolution by the defender in all

experiments.

5.2.3. X4, X8, and X12. These are experiments where both populations were dy-

namic. In X4, both populations started out weak, which leads to a lot of evolution on both

sides. This experiment’s CIAO plots show the attacker doing better against earlier defend-

ers, whereas the later defenders eventually became strong enough that the attackers had

trouble keeping up.

In X8, the attacker started out weak while the defender started out strong. The

attacker managed to evolve enough to do better against earlier opponents, though against

the defenders compensated for this by the end of the CoEA. Interestingly, the defender’s

CIAO plot in X8 is mostly black since the defender was doing well nearly the entire time

according to its own fitness estimates.

In X12, the attacker started out strong while the defender started out weak. In the

attacker’s CIAO plot, it is clear that the attacker was getting weaker over time according

to its own fitness estimates. This is because it started out strong while the defender was

weak, meaning that the attacker did not have much room to evolve and was also chasing a

moving target. The defender’s CIAO plot for X12 has mixed gradients, which means that

the attacker was at least attempting to counter the defender’s evolution. However, it still

shows that the defender eventually evolved to do well against almost all the attackers.

5.3. Outlier CIAO Plots. There were a few outlier CIAO plots for experiments

X14 and X16, and examples of them are displayed in Table 1.6. In both experiments, each

side starts out with a strong population seed, though the attacker is static for X14 while the

defender is dynamic in both experiments. The CoEA starts out with the attackers doing

decently well early on, but then they are clearly dominated by all later defender solutions.

This is consistent with other CIAO plots for X14 and X16 in the sense that little evolution

39

seems to occur, at least after a certain point. With little room for improvement, it appears

that the defender will always dominate due to a nearly perfect defense.

6. DISCUSSION

The results show that coevolution can be used to explore strategies by both attackers

and defenders in network security, but there are still several opportunities for improvement.

First, we chose to develop our own network security simulation as a compromise between

a purely mathematical model and real world testing. Unfortunately, there seem to be few

realistic simulations with the capabilities to test different types of cyber attacks. This is

an important point since both the scenarios and strategies need to map accurately to real

world entities. With our current simulation, it is possible to connect individual components

in solutions to offensive and defensive capabilities in modern networks, but it will likely be

an inaccurate or inconsistent mapping.

Second, the attacker and defender solutions mostly contained capabilities and a few

important thresholds. The fundamental strategy for both sides does not change according

to the solutions. Attackers always attempt to maximize their own profit by attacking a

specific list of targets with all reconnaissance techniques and exploits available to them.

Exploits will only be ignored for a given target if reconnaissance on that target has shown

it to violate the exploit’s own constraints (e.g. cannot use a SQL exploit if that service does

not exist on the target). Defenders only respond to attacks rather than taking independent

actions, and beyond detection and mitigation techniques, their only available option for

stopping attacks is to shut down machines entirely.

Third, there are a number of parameter combinations that can affect the simulation

or CoEA in interesting ways. One can change the number of defender machines, the num-

ber of generations, parent and survivor selection methods, the fitness function for either

40

Table 1.6. Outlier CIAO Plots

X14 Attacker X14 Defender

X16 Attacker X16 Defender

side, population sizes, etc. So far only limited hand tuning has been performed, due to the

high computational cost of running experiments.

7. CONCLUSION AND FUTURE WORK

The goal of this work is to demonstrate the viability of developing cyber defense

strategies by applying coevolution to network security simulations. We created our own

simulation to test attacker and defender capabilities since existing frameworks did not meet

our needs, and the results have shown that coevolution is a capable model in this solution

space. In particular, experiments X3, X7, X11, and X15 are significant since they reflect

the current situation in cyber security. This is because they model a dynamic attacker and

static defender, an accurate situation as a defender will typically deploy defenses once and

rarely change them while attackers constantly update their capabilities.

41

Note that our project is designed as a proof of concept. The network simulation in

CANDLES is purposely somewhat abstract for the sake of simplicity. By utilizing coevo-

lution with a more accurate simulation, it is likely that solutions with a stronger mapping

to real world systems would emerge. Therefore, in future work, the first priority is to in-

crease the fidelity of the simulation, such as introducing the notion of time (currently the

simulation only recognizes order). Another important goal would be to develop more of

the general strategy and less of the capabilities for attackers and defenders, as this could

lead to more dynamic behavior on both sides. Finally, an extensive sensitivity study needs

to be performed for identifying high-quality CoEA and simulation parameters.

8. ACKNOWLEDGMENTS

This work was supported in part by Los Alamos National Laboratory via the Cyber

Security Sciences Institute under subcontract 259565 and in part by the Missouri S&T

Intelligent Systems Center.

42

BIBLIOGRAPHY

[1] Andrew T Phillips. Now Hear This–The Asymmetric Nature of Cyber Warfare. In
US Naval Institute, volume 138/10/1,316, October 2012.

[2] Travis Service and Daniel Tauritz. Increasing Infrastructure Resilience Through Com-
petitive Coevolution. New Mathematics and Natural Computation, 5(2):441–457,
July 2009.

[3] Narain G Hingorani, Laszlo Gyugyi, and Mohamed El-Hawary. Understanding
FACTS: Concepts and Technology of Flexible AC Transmission Systems. Wiley-IEEE
Press, December 1999.

[4] Holly Arnold, David Masad, Giuliano Andrea Pagani, Johannes Schmidt, and Elena
Stepanova. NetAttack: Co-Evolution of Network and Attacker. In Proceedings of the
Santa Fe Institute Complex Systems Summer School 2013.

[5] Richard Colbaugh and Kristin Glass. Predictability-Oriented Defense Against Adap-
tive Adversaries. In 2012 IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 2721–2727, 2012.

[6] Richard Colbaugh and Kristin Glass. Leveraging Sociological Models for Prediction
I: Inferring Adversarial Relationships. In 2012 IEEE International Conference on
Intelligence and Security Informatics (ISI), pages 66–71. IEEE, 2012.

[7] Guanhua Yan, Ritchie Lee, Alex Kent, and David Wolpert. Towards a Bayesian Net-
work Game Framework for Evaluating DDoS Attacks and Defense. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security (CCS ’12),
pages 553–566, 2012.

[8] Justin Grana, David Wolpert, Joshua Neil, Dongping Xie, Tanmoy Bhattacharya, and
Russell Bent. HMMs for Optimal Detection of Cybernet Attacks. Technical Report
SFI-2014-06-022, Santa Fe Institute, June 2014.

[9] Marten Van Dijk, Ari Juels, Alina Oprea, and Ronald L Rivest. FlipIt: The Game of
“Stealthy Takeover”. Journal of Cryptology, 26(4):655–713, 2013.

[10] Terry Benzel, Bob Braden, Ted Faber, Jelena Mirkovic, Steve Schwab, Karen Sollins,
and John Wroclawski. Current Developments in DETER Cybersecurity Testbed Tech-
nology. In Proceedings of the Cybersecurity Applications & Technology Conference
For Homeland Security (CATCH), pages 57–70. IEEE, 2009.

43

[11] Lori Pridmore, Patrick Lardieri, and Robert Hollister. National Cyber Range (NCR)
Automated Test Tools: Implications and Application to Network-centric Support
Tools. In Proceedings of the 2010 IEEE Systems Readiness Technology Conference
(AUTOTESTCON), pages 1–4, September 2010.

[12] Dave Cliff and Geoffrey F Miller. Tracking the Red Queen: Measurements of Adap-
tive Progress in Co-Evolutionary Simulations. In Advances In Artificial Life, pages
200–218. Springer, 1995.

44

III. CANDLES V2: A FRAMEWORK FOR COEVOLVING ATTACKER AND
DEFENDER STRATEGIES FOR ENTERPRISE COMPUTER NETWORKS1

George Rush1, Daniel R. Tauritz1, and Alexander D. Kent2

1Natural Computation Laboratory, Department of Computer Science,
Missouri University of Science and Technology, Rolla, Missouri, U.S.A.

2Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A.

ABSTRACT

Predicting an adversary’s capabilities, intentions, and probable vectors of attack is

in general a complex and arduous task. Cyber space is particularly vulnerable to unforeseen

attacks, as most computer networks have a large, complex, opaque attack surface area and

are therefore extremely difficult to analyze. Abstract adversarial models which capture

the pertinent features needed for analysis can reduce the complexity sufficiently to make

analysis feasible. Game theory allows for mathematical analysis of adversarial models;

however, its scalability limitations restrict its use to simple, abstract models. Computational

game theory is focused on scaling classical game theory to large, complex systems capable

of modeling real-world environments; one promising approach is coevolution where each

player’s fitness is dependent on its adversaries. In this paper, we propose CANDLES v2,

a framework designed to coevolve attacker and defender agent strategies for enterprise

computer networks. We utilize a custom hill climber algorithm to determine the modality

and complexity of the search space, and a coevolutionary algorithm is employed to find

near-optimal strategies for both attackers and defenders. By performing both quantitative

1This is a significantly extended version of the authors’ SECDEF2015 workshop paper [1].

45

and qualitative analysis of the result data, we provide a proof of concept for the applicability

of coevolution in planning for, and defending against, novel attacker strategies in computer

network security.

1. INTRODUCTION

Great strides are needed in the defensive tools and technologies available to cy-

ber security practitioners, as the asymmetric nature of cyber warfare [2] puts defending

practitioners at a distinct disadvantage; i.e., cyber attackers get to decide when and where

to attack, without the need for physical presence providing advance notice to the cyber

defenders who must scramble to quickly determine that an attack is occurring, select an

appropriate defense, and execute it. In cyber security, as in many security-related fields, it

can be prudent to evaluate worst-case attack scenarios. Whether facing insider threats or

sophisticated adversaries outside one’s networks, it is important to develop threat and at-

tack models such that one can predict an adversary’s capabilities, intentions, and probable

vectors of attack. Cyber space is particularly vulnerable to unforseen attacks due to most

computer networks having a large, complex, opaque attack surface area and therefore being

extremely difficult to analyze. Invariably, the large number of variables involved in both

offensive and defensive strategies makes an exhaustive search of all strategies infeasible.

Abstract adversarial models which capture the pertinent features needed to analyze such

strategies, can reduce the complexity sufficiently to make analysis feasible.

Game theory allows for mathematical analysis of adversarial models; however, its

scalability limitations restrict its use to simple, abstract models. Computational game the-

ory is focused on scaling classical game theory to large, complex systems capable of mod-

eling real-world environments; one promising approach is coevolution where each player’s

fitness is dependent on its adversaries. Coevolution can be employed to explore the as-

46

sociated search spaces, examining strategic capabilities and estimating how each side will

adapt in response to moves made by an opponent.

It makes sense to focus resources on securing systems such that attacks become

less effective. There are several well-known ways to harden systems against attack, from

limiting access permissions to patching software and reducing exposed network services.

These are useful measures to reduce the attack surface and make it easier to defend vital

assets. Yet for all the efforts taken to secure systems, intrusions still occur in many or-

ganizations, often without their knowledge [2]. Once it is acknowledged that intrusions

cannot be stopped entirely, awareness, damage mitigation, and disaster recovery become

important goals. In particular, knowing how an adversary could break into a network and

devising possible counter-strategies is vital. In this paper, we propose CANDLES v2, a

framework designed to coevolve attacker and defender agent strategies for enterprise com-

puter networks. Our approach coevolves two populations containing attacker and defender

strategies in a network defense scenario, and the fitness of strategies is determined through

a custom, abstract simulation. In this way, unique, near-optimal strategies for both sides

can be discovered.

In our framework, attacker strategies focus on what action to take in a given turn

based upon available state information. Example actions might include discovering neigh-

bors, connecting to other machines, and launching exploits. Example state information

might include recent action history or the number of uncompromised neighbors. Defender

strategies are more static, focusing on changes made to the network at the beginning of a

simulation. These changes can include adding or removing network connections, adding

intrusion prevention systems (IPSs), and fortifying individual machines. This models real

world capabilities in that defenders tend to make changes periodically and rarely update

them, but attackers take a more active approach that requires more immediate information

47

to be available. This design is intended to make the simulations more realistic and provide

greater insight into attacker and defender behavior.

We have also implemented a custom hill climber algorithm which is used to deter-

mine the modality and complexity of the search space for attacker and defender strategies.

By showing that the search space is multimodal and has high variation, we justify the use

of evolutionary algorithms to explore possible solutions.

By performing both quantitative and qualitative analysis of the result data, we pro-

vide a proof of concept for the applicability of coevolution in planning for, and defending

against, novel worst-case attacker strategies in computer network security, allowing an end

user to develop strategies and set up test scenarios. This offers new possibilities for analyz-

ing and reinforcing defensive capabilities against unknown threats.

2. RELATED WORK

Coevolution has been used to find better placements for Flexible AC Transmission

System (FACTS) devices [3], which are used to prevent cascading blackouts in electric

transmission systems [4], and also to evolve attackers and defenders for graph-based net-

work theory models [5]. Co-optimization has also been used to generalize coevolution in

such a way that it can be used with other black-box function optimization techniques [6],

and we used co-optimization to construct our custom hill climber algorithm as discussed

in Subsection 3.10. Defenses have been designed that can predict the behavior of adaptive

adversaries using a combination of game theory and machine learning [7], and machine

learning has likewise been used to predict the nature of relationships in adversarial social

networks [8]. Strategies have been developed for defending against Distributed Denial-

of-Service (DDoS) attacks using a Bayesian game theoretic framework [9], and hidden

Markov models have been developed to detect cyber attacks in network traffic [10]. Pareto

48

optimization with Vulnerability Dependency Graphs (VDGs) has been used to simultane-

ously maximize productivity and minimize patching costs in enterprise networks [11]. A

previous version of the CANDLES framework was used to coevolve strategies for attackers

and defenders in computer networks, though it focused on evolution of both strategy and

available capabilities rather than pure strategy [1].

Current approaches to developing computer network defense strategies largely fo-

cus on either pure game theoretic models [12, 13] or real world implementations and em-

ulated systems [14, 15]. Emulated systems more accurately reflect real world conditions,

but require a fair amount of resources and configuration knowledge. Game theoretic mod-

els are mathematically elegant, but they do not scale well to larger search spaces. Our

approach falls somewhere in the middle, as our experiments employ a custom network se-

curity simulation. Coevolution allows us to approximate game theory solutions for large

search spaces, thus providing scalability beyond the limits of classic game theory, and the

simulation provides a more realistic strategy evaluation without the configuration difficulty

of most emulated systems.

3. METHODOLOGY

The two primary components of the CANDLES framework are: (a) a network secu-

rity simulation which quantifies the quality of attacker and defender solutions, thus creating

a search gradient giving rise to a graduated search space, and (b) an optimization algorithm

to search that graduated space of attacker and defender solutions for (sub)optimal solutions.

We investigated two optimization algorithms: a hill climber for the initial exploration of

the search space which revealed multimodality, thus justifying a more computationally ex-

pensive, but also more powerful, second algorithm, namely a CoEvolutionary Algorithm

(CoEA) to represent the natural dynamics between attackers and defenders in cyber space.

49

A custom network security simulation is used to evaluate potential solutions for

both the CoEA and hill climber. Attackers and defenders only change their strategies for

the simulation rather than available capabilities, a purposeful constraint. The reason is that

by focusing on keeping capabilities static, each side is forced to make strategic trade-offs

which provide more interesting and realistic observations.

As attacker and defender strategies are used by everything else in CANDLES, those

will be covered in more detail first, followed by the attacker and defender classes since

they utilize strategies. Then the CoEA, hill climber, and network security simulation will

be discussed.

3.1. Attacker Strategy. An attacker strategy is represented by a binary decision

tree. Each internal node stores a condition which can evaluate to true or false, and based on

how that condition evaluates, a path is chosen to traverse down the tree. Each leaf node has

an action to be executed if it is reached. The attacker can only execute one action per turn.

All conditions and actions that an attacker strategy can use are listed in Tables 1.7 and 1.8.

Any attacker strategy can be translated as fully executable Python code, and an

example is shown in Fig. 1.7. One can see multiple places in this example where code is

either unreachable or reaches the same action no matter how a condition evaluates. This

is allowed in order to preserve genetic diversity since correcting or optimizing attacker

strategies might remove code which is useful when recombined with other strategies.

3.2. Defender Strategy. A defender strategy first requires the creation of a net-

work template. This network template includes all defender machines (nodes) and any

connections between them (edges). Based on changes to this template, the defender strat-

egy is defined by four item sets:

• Edges to add

• Edges to remove

50

Table 1.7. Attacker Conditions

Variable Operators Possible Values
Uniform Random Value

From [0.0, 1.0]
<=, > Value From [0.0, 1.0]

Number Of
Uncompromised

Neighbors

> 0

Size Of Discovered
Network

<=, > Value From [1, (Number
Of Defender Machines)]

Previous Action == Any Attacker Action

Table 1.8. Attacker Actions

Action Description
Discover Exploit Generates a new random exploit. This is useful if the attacker has no

exploits that work on a given target.
Discover

Neighbors
Adds neighboring machines to the discovered network. This does
not gather any information beyond the existence of adjacent nodes
and edges.

Jump To
Random Node

Attempt to connect to a random machine in the network. This may
fail if the discovered network is outdated.

Launch Exploit Attempts to compromise neighboring machine. This may fail if the
discovered network is outdated, if an intrusion prevention system
(IPS) blocks the scan, or if the target node is resistant to attack due
to being fortified by the defender.

Scan Neighbor Scan neighboring machine for reconnaissance information. Like ex-
ploits, target scans may fail if the discovered network is outdated, if
an IPS blocks the scan, or if the target node is resistant to attack.

Search Local
Machine

Extract value from the current machine. The amount of value ex-
tracted depends on the configuration.

Wait Do nothing this turn. This is useful for letting defender paranoia
decrease over time.

• Edges with intrusion prevention systems (IPSs)

• Machines to harden against attack

Adding and removing edges changes the network connectivity. Adding IPSs to

various edges allows the defender to block exploits and scans, as well as raise paranoia

51

if 'jumpToRandomNode' in self.previousAction:

if self.discoveredNetwork.number_of_nodes() > 13:

if self.discoveredNetwork.number_of_nodes() <= 11:

self.launchExploit(config)

else:

self.searchLocalMachine(results, config)

else:

if random.uniform(0.0, 1.0) > 0.815565908109849:

self.discoverNeighbors()

else:

if 'launchExploit' in self.previousAction:

self.searchLocalMachine(results, config)

else:

self.searchLocalMachine(results, config)

else:

if 'discoverNeighbors' in self.previousAction:

if 'discoverNeighbors' in self.previousAction:

self.launchExploit(config)

else:

self.searchLocalMachine(results, config)

else:

if 'launchExploit' in self.previousAction:

self.jumpToRandomNode()

else:

self.discoverNeighbors()

Figure 1.7. Example Attacker Strategy

depending on what is detected. Paranoia is covered further in Subsection 3.4. Hardening

machines makes it less likely that attacks of any kind will succeed against specific targets.

An example defender strategy is shown in Fig. 1.8. Defender machines are repre-

sented by their numeric IDs, and edges are represented as tuples of IDs. Note that edges

to remove are not listed here. Since the default network template starts with zero edges,

removing edges would not make sense in this context.

52

33 edges to add: (0, 0), (0, 7), (1, 8), (1, 16), (1, 17), (2, 12), (2,

14), (3, 4), (3, 8), (3, 11), (3, 13), (5, 5), (5, 9), (5, 18), (6,

9), (6, 12), (6, 13), (6, 17), (6, 18), (6, 19), (7, 15), (9, 19),

(10, 10), (10, 13), (10, 14), (11, 12), (11, 15), (11, 19), (13, 15),

(14, 19), (15, 15), (15, 18), (15, 19)

2 edges with an IPS: (0, 0), (10, 18)

4 machines to fortify: 6, 7, 13, 15

Figure 1.8. Example Defender Strategy

3.3. Attacker. The attacker stores state information and executes actions during a

simulation based on its strategy. The attacker uses several pieces of information to accom-

plish this:

• Attacker strategy

• Exploits

• Discovered network

• Connection trace

• Previous action information

The attacker strategy is described in Subsection 3.1. Exploits only specify the constraints

necessary for successful execution, which is important to note since all exploits have the

same probability of success once their constraints are met. The discovered network repre-

sents an attacker’s understanding of the defender’s network, and it can change according

to the results of neighbor discovery and machine scans. The discovered network may also

need to be corrected periodically since the defender is capable of shutting down machines

during the simulation, which can disrupt other actions by the attacker. The connection trace

represents the attacker’s current path through the defender network, which is useful in case

a machine is shut down which is in the attacker’s path. The attacker’s most recent action is

stored as state knowledge for attacker strategies.

53

3.4. Defender. The defender sets up the network before the simulation begins, so

much of the defensive strategy is passive. However, the defender can shut down machines

during the simulation if paranoia reaches certain thresholds. To accomplish this, the de-

fender stores several pieces of information:

• Defender strategy

• Paranoia

• Attack history

The defender strategy is described in Subsection 3.2. Paranoia indicates how nervous the

defender is based on detected scans or attacks. Attack history stores the source, destination,

and type of any detected attacks.

3.5. Network Security Simulation. The network security simulation consists of

two phases: preparation and active. Both are discussed below, as well as the data returned

from each run of the simulation.

3.5.1. Preparation Phase. During this phase, variables are initialized and config-

ured as necessary. The network template is copied to allow modifications, and the attacker’s

starting location is chosen based on the current configuration. By default, the attacker will

start from a perimeter node connected to the Internet, as this is meant to simulate an attack

from an external source. Default exploits are generated for the attacker, and both the at-

tacker and defender are initialized with their respective strategies. The defender then sets

up passive defenses across the network. These include adding and removing connections,

adding intrusion prevention systems, and hardening machines against attack.

3.5.2. Active Phase. The active phase consists of an event loop that runs for a set

number of iterations, essentially turns. There are four steps to each turn:

1. Attacker action

2. Defender paranoia checks

54

3. Defender paranoia decay

4. Productivity loss calculation

Each turn, the attacker will take the action determined by its current strategy (as described

in Subsections 3.1 and 3.3). Next the defender will check its paranoia level, and if the

machine shutdown threshold is met, it will find the most recent detected attack involving

currently active machines and shut them down. This includes both the attack source, be-

cause it is compromised, and the target, to prevent further compromise. Then the defender

will decay its paranoia, reducing it according to some value specified in the configuration.

Note that paranoia can never drop below zero. Finally, the defender calculates produc-

tivity loss due to machines that have been shut down or disconnected from the Internet.

Since only one node in the network connects to the defender’s Internet service provider,

all machines must be active and have a valid path to that node in order to have Internet

connectivity.

3.5.3. Return Values. Two values and one object are returned from any run of the

simulation:

• Total attacker profit

• Total defender cost

• Final network

The total attacker profit includes all value that the attacker extracted by searching compro-

mised machines. In this case, extracting value from compromised machines represents the

theft of data from an opponent’s network. Since there are diminishing returns for searching

the same machine multiple times, this encourages the attacker to compromise more ma-

chines. At the same time, compromising more machines means taking actions that make

the attacker more noticeable. This can raise defender paranoia and make it more likely that

compromised machines will be shut down.

55

The total defender cost includes all productivity losses from every turn of the simu-

lation. A defender has an incentive to shut down compromised machines in order to prevent

further compromise or data theft. However, productivity loss is the trade-off since inactive

machines are useless. Also, an inactive machine cannot transfer data, so any path through

it to the Internet is no longer valid. This means that shutting down one machine can poten-

tially disconnect many others, leading to massive productivity loss for the remainder of the

simulation.

The final network is the defender network along with all of its state information

at the end of the simulation. This data is used to draw an image of the network, creating

a visual representation of all nodes and edges. Specific colors and notation are used for

relevant network features as covered in Subsection 3.6.

3.6. Network Graph Visualizations. Network graph visualizations are used to

represent networks either before modification by attackers and defenders or at the end of a

network security simulation to show the final result. An example network graph visualiza-

tion from the end of a simulation is shown in Fig. 1.9. Several properties are used to make

the graph easier to interpret, and color is one of the most important. All nodes start out blue

by default, and compromised nodes are red. The perimeter node connected to the Internet

is initially lime green, though since the attacker’s starting node is orange and takes a higher

priority, the perimeter node will typically be orange unless the configuration specifies a

different starting point for the attacker. Finally, nodes which are inactive due to being shut

down are black.

A few properties are useful besides color. Fortified nodes are larger at roughly twice

the diameter of unfortified nodes, and edges containing an IPS are drawn bold (greater edge

width).

56

Figure 1.9. Example Network Graph Visualization

3.7. Fitness Function. The fitness function is asymmetric, with the attacker min-

imizing one fitness value while the defender maximizes another fitness value. Attacker

profit is an abstract representation of the amount of data that attackers are able to exfiltrate

after searching compromised machines. Since attacker profit is good for attackers and bad

for defenders, both sides take it into account. Without parsimony pressure, attacker strate-

gies were getting too large and difficult to analyze. Applying parsimony pressure made

the resulting attacker strategies smaller and easier to understand while still allowing more

effective strategies to thrive. Also, since all defenders have the same resources available,

defender costs are represented by productivity loss as described in Subsection 3.5.3. The

57

fitness values are calculated as shown in Equations (1.5), (1.6), and (1.7).

attacker f itness =−(attacker pro f it)+(attacker parsimony) (1.5)

attacker parsimony = (parsimony weight)∗ (attacker tree size) (1.6)

de f ender f itness =−(attacker pro f it)− (de f ender costs) (1.7)

Fitness is determined on a scale of (−∞,0]. Defenders attempt to maximize their fitness

value since having zero losses from data theft and zero defender costs is the best case sce-

nario. Attackers want to have as large a profit as possible, and they attempt to minimize

their fitness value so that the attacker profit can be represented the same way in both equa-

tions.

3.8. Investigating the Search Space. A custom hill climber algorithm has been

employed to determine the modality and complexity of the search space. The hill climber

implementation is described in Subsection 3.10, and a nested version of it is described in

Subsection 3.11. Results from its application are shown in Section 5 and are later discussed

in Subsection 6.2. To briefly summarize the results, there is a high standard deviation in

both the number of iterations and final fitness values for hill climber runs across nearly all

experimental configurations. This includes testing against both dynamic and static oppo-

nents, since the search space is essentially a moving target for each side when both oppo-

nents are dynamic. From these results, the search space is determined to be multimodal

with a high level of complexity. Due to this, coevolution can be used to effectively search

for near-optimal solutions.

3.9. Coevolutionary Algorithm. The CoEA evolves a population of attacker

strategies against a population of defender strategies using the methods described below.

3.9.1. Parent and Survivor Selection. Parent and survivor selection can be ran-

dom or utilize truncation. By default, parent selection is random, and survivor selection

58

utilizes truncation. This ensures that the best population members are never discarded, but

genetic variety is still introduced into offspring. However, these values are also manipu-

lated as experimental variables.

3.9.2. Attacker Recombination. Attacker recombination uses subtree swapping.

The subtree root nodes are selected randomly from two attacker decision trees, which

means that subtrees of different sizes may be swapped. This makes it possible to grow

or shrink the size of the recombined decision trees, leading to greater variety in the pos-

sible solutions. It also helps keep strategic components intact, making it more likely that

useful genetic data will be introduced in the resulting offspring. Although this technique

creates two resulting trees with swapped data, only one is randomly chosen and returned

from the function.

3.9.3. Attacker Mutation. Attacker mutation selects a random node from the at-

tacker decision tree and randomizes the data in that node. The randomization will not

change whether the node is a condition or action since that could break the decision tree.

It will instead generate a new condition or action as appropriate and assign it to the node.

Note that multiple nodes may be randomized per mutation as determined by the relevant

config value.

3.9.4. Defender Recombination. Defender strategies are composed of sets. To

create a new offspring, two parents are chosen, and the union of each of their variables is

used to create a pool of new values. From these values, a new random subset is chosen

for each variable. For network connections being added and removed, the set size can

change in the offspring. However, the set size is kept constant for edges to receive intrusion

prevention systems and machines to harden against attack. This is because having a larger

subset of IPSs and hardened machines would give offspring an unreasonable advantage.

59

3.9.5. Defender Mutation. To begin, one of the sets composing the defender strat-

egy is randomly chosen for mutation. If the sets are the network connections to be added or

removed, then edges may be randomly added or removed from those sets. If the sets are for

intrusion prevention systems or hardened machines, then one item in the set is randomly

chosen and replaced. Note that multiple changes can occur per mutation as determined by

the relevant config value.

3.10. Hill Climber. Our hill climbing algorithm is a variation of first-choice hill

climbing, in which successors are generated randomly until an improvement on the cur-

rent state is found [16]. Our algorithm also uses co-optimization since both attackers and

defenders require at least one opponent to be evaluated for fitness [6].

The hill climber begins each run by randomly generating a network template, de-

fender strategy, and attacker strategy. Depending on the configuration, the algorithm will

then attempt to improve either or both strategies until no further improvements can be made

(i.e., climbing the hill). By default, both strategies are improved simultaneously.

Due to the stochastic nature of the network security simulation, it is not possible

to say with certainty that one solution is statistically better than another without many

computationally intensive calculations. Also, it would be infeasible to test every possible

change to a specific strategy. To improve efficiency, the algorithm will only attempt to

improve a solution 100 consecutive times before giving up during any iteration. However, it

is possible that the attacker may improve for several iterations before the defender improves

in a later iteration, or vice versa. During a run in which both sides are dynamic, it only

terminates when neither side improves during an iteration. This is necessary since the

fitness landscape changes with any improvement to either side, requiring the evaluation of

both candidates even if only one side has improved in the previous iteration.

60

Likewise to improve efficiency, rather than attempt every possible change to a so-

lution, possible improvements are found by performing random mutations using the same

operators as the CoEA. This is because in some cases it would be more computationally

intensive to compute all possible changes than to attempt 100 random mutations. The rele-

vant mutation operators are described in Subsections 3.9.3 and 3.9.5.

3.11. Nested Hill Climber. The nested hill climber is an extension of our hill

climbing algorithm in which 30 static opponents are tested against random individuals

over 30 runs. Since the static opponents do not change, this provides a constant fitness

landscape. Evaluating the search space becomes much easier as a result. It is referred to

as ‘nested’ because the original hill climber is nested inside multiple loops to accomplish

this.

4. EXPERIMENT PROCEDURE

The objective of our experiments is to use coevolution and hill climbing to explore

and evaluate strategies in a cyber defense simulation. The hill climber is also used to

determine the modality and complexity of the search space, justifying the use of a CoEA.

4.1. Experiment Variables. The experiment variables are configuration parame-

ters. Several parameters are tested with multiple values for both the hill climber and CoEA

algorithms, though there are a few exceptions in which a parameter only affects the CoEA.

Each parameter with corresponding values is listed here, and each value has its experiment

ID listed in parentheses:

• Attacker Parsimony Pressure

0 (X1), 0.5 (X2), 1 (X3)

• Attacker Starting Node

perimeter (X4), random (X5)

61

• Intrusion Prevention System (IPS) Ratio

0.1 (X6), 0.25 (X7), 0.5 (X8)

• Machine Shutdown Threshold

0.01 (X9), 0.1 (X10), 1.0 (X11)

• Network Topology

linear (X12), random (X13), ring (X14), star (X15), tree (X16), and zero connectivity

(X17)

• Parent Selection (CoEA Only)

random (X18), truncation (X19)

• Productivity Loss Multiplier

0 (X20), 0.5 (X21), 1 (X22)

• Survivor Selection (CoEA Only)

random (X23), truncation (X24)

Only one configuration parameter is tested at a time, and all other parameters use a

set of default values. The only difference between the default values for the hill climber and

CoEA is that the former tests fitness against one opponent instead of five. This is because

only one opponent exists during the hill climber algorithm, rather than an entire opposing

population. The CoEA will instead perform random sampling against five opponents for

each individual being evaluated. Also, each experiment is run 30 times due to the stochastic

nature of both the algorithms and the network security simulation. This provides a sufficient

sample size for statistical analysis where appropriate.

4.2. Result Data Format – CoEA. During a single run of the CoEA, the best

attacker and defender strategies are stored for each generation. A network graph visual-

ization is output once at the beginning of each run before any changes are made, and one

is also output every ten generations in order to provide visual feedback of typical network

62

defense simulations between the best strategies. After the run is complete, all the best

solutions are output to file and used to generate two CIAO plots (Current Individual vs.

Ancestral Opponents), which are used to visually convey the progress of two populations

during coevolution [17]. One CIAO plot shows the attacker perspective while the other

shows defender perspective, an important contrast since the fitness function is asymmetric.

To briefly explain CIAO plots, an example is provided in Fig. 1.10. Assume this

particular plot is from an attacker’s perspective. From this perspective, darker regions

indicate more success for the attacker, and the attacker’s generation is plotted along the

increasing y-axis while the defender’s generation is plotted along the increasing x-axis.

If this were the defender’s perspective, darker regions would indicate more success for

the defender, and the defender’s generation would be plotted along the increasing y-axis

while the attacker’s generation would be along the increasing x-axis. In this CIAO plot,

the attacker would be most effective towards the last of its generations against the earliest

generations of defenders as indicated by the nearly black pixels.

Figure 1.10. Example CIAO Plot

4.3. Result Data Format – Hill Climber. During a single run of the hill climber,

the final attacker and defender strategies are output to file. Fitness values for each iteration

63

are also output for each strategy, which provides a way to measure the fitness values and

number of iterations across one or more runs. A network graph visualization is output once

at the beginning of each run before any changes are made, and one is also output at the end

of each run to show the result of a typical network defense simulation between the final

strategies.

5. RESULTS

This section contains results from the experiments described in Section 4. Results

are organized by experimental variable and corresponding algorithm: the coevolutionary

algorithm (CoEA) or the hill climber (HC). The reason that the nested hill climber results

are not discussed in more detail is that they reflect similar results to the hill climber, and

their main purpose is to demonstrate variability in the final fitness values of hill climber

results, even when one side is kept static.

There are several result tables containing information organized by experiment ID.

Tables 1.9 and 1.10 show typical CIAO plots from the attacker and defender perspectives

for each CoEA experiment. Table 1.11 lists statistics for the number of iterations across

all 30 runs for each hill climber experiment. Tables 1.12 and 1.13 show statistics for the

final fitness values of strategies across all 30 runs for each nested hill climber experiment.

Table 1.12 is specific to experiments with static attackers while Table 1.13 is specific to

static defenders. However, since each nested hill climber tests 30 static opponents against

random opponents, statistics are first calculated per run (for each set of 30 static opponents)

and then averaged over all runs for that experiment ID.

5.1. Attacker Parsimony Pressure – CoEA (X1–X3). Attacker parsimony pres-

sure was a configuration parameter added to reduce attacker strategies down to a more

manageable size. At higher levels, the attacker did tend to evolve simpler strategies, but

64

Table 1.9. Typical Resulting CIAO Plots (Attacker Perspective)

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

X17 X18 X19 X20 X21 X22 X23 X24

Table 1.10. Typical Resulting CIAO Plots (Defender Perspective)

X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16

X17 X18 X19 X20 X21 X22 X23 X24

there was also a noticeable effect with regards to stagnation. Particularly with zero parsi-

mony pressure, the attacker was a bit more free to try unusual strategies, even if that meant

making them larger. This meant that the attacker tended to get stuck more often when ap-

plying higher parsimony pressure, even though it made the strategies easier to understand.

65

Table 1.11. Hill Climber Statistics for Number of Iterations

Experiment ID Median Average Standard
Deviation

X1 2.0 371.7 1248.2
X2 2.0 137.5 524.3
X3 2.0 701.0 2992.1
X4 2.0 5.1 13.1
X5 3798.5 6174.5 5918.6
X6 2.0 99.0 519.2
X7 2.0 690.0 3391.9
X8 2.0 548.5 1530.8
X9 2.0 501.3 1595.6
X10 2.0 293.0 1065.9
X11 2.0 418.7 1424.5
X12 1.0 411.7 1288.0
X13 2.0 242.7 635.2
X14 1.5 356.7 1081.6
X15 2.0 221.8 713.8
X16 2.0 314.6 1436.7
X17 2.0 326.5 1166.0
X18 n/a n/a n/a
X19 n/a n/a n/a
X20 1.5 59.5 307.6
X21 2.0 1042.2 4470.7
X22 2.0 651.4 2067.9
X23 n/a n/a n/a
X24 n/a n/a n/a

5.2. Attacker Parsimony Pressure – HC (X1–X3). For the hill climber, the at-

tacker did not perform significantly better or worse at any level of parsimony pressure.

However, this is a bit unfair to test with the hill climber. Since it changes strategies us-

ing the same mutation operator as the CoEA and recombination is never used, the attacker

strategy trees can never grow or shrink. As a result, parsimony pressure applies a uniform

penalty to all solutions, essentially having zero effect on the algorithm. Across all result

sets, the number of iterations was a median of two with a standard deviation over 500.

66

What this seems to indicate is a wildly variable search space in which the ability to find

better solutions largely depends upon the starting points for each side. In visual terms,

the fitness landscape is probably flat in several places with large jagged mountains placed

intermittently. As it turns out, this search space topography persists throughout nearly all

other hill climber results.

5.3. Attacker Starting Node – CoEA (X4–X5). It was difficult to determine if the

attacker had an advantage when the starting node was random as opposed to starting from

the perimeter (attacking from the Internet). There were several runs for both configurations

where each side stagnated and made little, if any, progress. It is also interesting that both

sides had more variable fitness values when the attacker’s starting node was random, though

it makes sense as the advantage for each side would change from simulation to simulation,

making it harder to measure.

5.4. Attacker Starting Node – HC (X4–X5). This was one instance where the hill

climber’s results deviated strongly from the CoEA. The attacker completely dominated the

network when using a random starting node, whereas starting at the perimeter rarely yielded

any progress. One possible explanation is that having a random starting point allows the

attacker to test its strategy in more positions and therefore adapt faster. Another possibility

is that regardless of the attacker’s strategy, starting from many points in the network makes

it more likely that a well-positioned starting node will make the attacker appear to have a

better strategy when the starting point actually made the difference. Either way, this allows

the attacker to continue getting better for a longer period of time until it develops strong

strategies.

Another unusual point of this experiment involved the number of iterations across

results. For a starting node at the perimeter, the median number of iterations was 2.0 with a

standard deviation of 13.1. This indicates that almost no useful improvements were found

67

Table 1.12. Nested Hill Climber Statistics for Final Fitness Values (Static Attacker)

Experiment ID Avg Median Avg Average Avg Standard
Deviation

X1 -6.6 -43.3 142.1
X2 -7.2 -59.4 236.3
X3 -9.0 -48.3 181.2
X4 -16.6 -58.0 169.4
X5 -10.6 -44.0 129.6
X6 -9.9 -59.2 212.7
X7 -10.1 -44.7 144.1
X8 -19.0 -58.6 159.8
X9 -17.2 -72.5 216.6
X10 -17.3 -55.1 159.0
X11 -14.1 -66.0 193.8
X12 -11.0 -17.6 34.7
X13 -7.4 -14.7 38.2
X14 -11.3 -12.1 4.3
X15 -16.7 -17.3 2.3
X16 -16.5 -16.6 4.1
X17 -3.9 -38.5 150.8
X18 n/a n/a n/a
X19 n/a n/a n/a
X20 -8.3 -8.2 0.5
X21 -6.2 -27.4 93.1
X22 -12.3 -56.7 187.9
X23 n/a n/a n/a
X24 n/a n/a n/a

for attacker solutions with a standard configuration starting from the perimeter. However,

for a random starting node, the median number of iterations was 3798.5 with a standard

deviation of 5918.6. This disparity between the results seems to support the notion that a

random starting node enables the attacker to progress more consistently over time.

5.5. IPS Ratio – CoEA (X6–X8). The IPS ratio indicates the number of intrusion

prevention systems to place in the network relative to the number of nodes. This parameter

seemed to make little difference in the CoEA at any level, and there were several runs in

68

Table 1.13. Nested Hill Climber Statistics for Final Fitness Values (Static Defender)

Experiment ID Avg Median Avg Average Avg Standard
Deviation

X1 -56.3 -88.8 118.6
X2 -37.7 -63.9 99.0
X3 -39.2 -69.0 101.1
X4 -39.1 -73.5 109.1
X5 -74.9 -163.6 166.4
X6 -41.9 -71.6 99.0
X7 -41.6 -70.1 92.8
X8 -38.6 -65.4 97.8
X9 -30.1 -60.0 92.4
X10 -34.0 -68.9 109.7
X11 -40.7 -66.1 96.7
X12 -32.9 -57.1 100.6
X13 -34.0 -65.4 98.1
X14 -37.4 -70.9 112.6
X15 -40.8 -65.0 91.5
X16 -38.1 -65.5 97.0
X17 -33.5 -54.9 86.2
X18 n/a n/a n/a
X19 n/a n/a n/a
X20 -35.8 -62.4 89.6
X21 -26.1 -56.0 103.2
X22 -28.3 -52.4 89.5
X23 n/a n/a n/a
X24 n/a n/a n/a

which little or no evolution occurred. Since placing an IPS near the attacker’s starting point

can lead to shutting down at least the target (and therefore the network connection itself),

the defender has to be careful not to cut off the rest of the network. This usually leads to

the defender either placing the IPSs further from the Internet connection, or connecting the

Internet to the rest of the network by multiple edges to prevent cutting off all machines and

incurring massive productivity losses.

69

5.6. IPS Ratio – HC (X6–X8). The IPS ratio seemed to make little difference at

any level, and the end result was similar to the CoEA. For all IPS ratio values, the number

of iterations across result sets was a median of two and a standard deviation over 500.

5.7. Machine Shutdown Threshold – CoEA (X9–X11). Machine shutdown

threshold seemed to have little effect on the CoEA. Overall it followed a similar pattern

as the placement of intrusion prevention systems, probably for much the same reason. Set-

ting the shutdown threshold too low makes it too easy to disconnect lots of machines from

the network and incur productivity losses.

5.8. Machine Shutdown Threshold – HC (X9–X11). The machine shutdown

threshold made little difference here, much like with the CoEA. For all machine shutdown

thresholds, the number of iterations across result sets was a median of two with a standard

deviation over 1000.

5.9. Network Topology – CoEA (X12–X17). For the linear topology, the de-

fender often did the best by changing none of the edges. Since all machines are connected

from the beginning, there is little point in adding new edges other than redundancy, and

removing edges would create a productivity loss. Also, by having machines connected in

a line, the attacker is forced to compromise each available machine consecutively in order

to reach any others. Despite this, attackers were often successful in compromising several

machines and exfiltrating data. This is probably because it is impossible to completely

isolate the attacker without cutting off large portions of the network.

The ring topology had similar results to the linear topology, which is unsurprising

considering the only difference in the ring is an extra edge from the starting point to the

other end of the network.

The star topology is designed to be the worst one for the defender. From the begin-

ning, every machine is accessible with only one hop from the starting node, and the starting

70

node cannot be shut down since that would disconnect the entire network. Due to this, the

defender often reforms the network template in a completely different format to counter

attacker efforts. Sometimes this involves isolating the starting point, and in some cases the

resulting configuration ends up closer to a ring topology.

The tree topology yielded nothing particularly unusual. It is a relatively sparse

network, providing a smaller attack surface area than most random topologies, but still

providing more machines to attack at once than a linear or ring topology.

The zero connectivity model did surprisingly badly for the defender. While final so-

lutions tended to connect all nodes and prevent productivity loss, the attacker either evolved

well and took over most of the network or evolved barely at all. Once an attacker found a

working strategy, it tended to take over everything with little resistance from the defender.

This seems to indicate that it is best to start from a topology that keeps all machines con-

nected while providing the smallest possible attack surface.

The random network topology had mixed results, as expected from an unpredictable

starting configuration.

5.10. Network Topology – HC (X12–X17). Individual results for different net-

work topologies were roughly the same for the hill climber as the CoEA. The median num-

ber of hill climber iterations ranges from one to two depending on the network topology,

and the standard deviation is over 600 iterations for all result sets.

5.11. Parent Selection – CoEA (X18–X19). There was generally more evolution

on both sides when parent selection was random. This is expected since survivor selection

utilizes truncation by default, and parent selection has to be random in order to introduce

new genetic material.

5.12. Productivity Loss Multiplier – CoEA (X20–X22). When the productivity

loss multiplier was zero, there was little evolution for either side, but this was because the

71

defender almost immediately found a winning strategy: disconnect all nodes. This can

be seen in the example CIAO plots for X20 where evolution stops halfway through the

run. Once the multiplier was increased to 0.5 and 1.0 respectively, resulting networks were

mostly connected. The multiplier 0.5 resulted in the best competition between both sides,

probably because the lower penalty allowed the defender to experiment a bit more with

changes to the network. Further changes by the defender stimulated more frequent changes

in attacker strategy, which then started a virtuous cycle of greater evolution for both sides.

5.13. Productivity Loss Multiplier – HC (X20–X22). There was a significant

difference between CoEA and hill climber results for a productivity loss multiplier of zero.

Several of the final networks for the hill climber were connected even though there was

no penalty for disconnecting all nodes. This is because while the CoEA allows both sides

plenty of time to find new improvements based on a set of randomized solutions, the hill

climber only has a single randomized solution per run for each side. If neither side can

mutate in a way that provides an improvement to performance, the hill climber will stop

after one iteration. This means that if the attacker could not improve with any single muta-

tion, then the defender had no advantage from removing edges and therefore no reason to

change anything.

The multiplier of zero also had the fewest iterations with a median of 1.5 per run and

a standard deviation of 307.6. The multipliers for 0.5 and 1.0 had a median of 2.0 iterations

with standard deviations of 4470.7 and 2067.9 respectively. As in other hill climber runs,

this demonstrates extreme variability in the search space.

5.14. Survivor Selection – CoEA (X23–X24). Using random survivor selection

led to an unusual striping effect in the CIAO plots for X23. Black, white, and gray horizon-

tal stripes alternate as solutions of different quality are found, lost, and discovered again

over multiple generations. For truncation, evolution is more consistent in the cases where

72

evolution occurs at all. However, there are still instances in which little to no evolution

occurs due to a lack of real competition.

6. DISCUSSION

A few common patterns emerged among attacker and defender strategies. Defend-

ers often attempt to isolate the attacker source by placing several nodes in a line between

the source and the rest of the network. This forces the attacker to compromise each ma-

chine in turn to attack other parts of the network, a process called pivoting. Machines are

also reinforced more near the attacker source since they are more likely to be attacked.

Since the attacker is starting from the Internet, this strategy is a kind of perimeter defense.

Also, when placing an intrusion prevention system near the attacker source, it is common to

add multiple connections to prevent disconnecting the entire network in the case a detected

attack causes machines to be shut down. This reflects the real world conundrum of how to

block attacks from the Internet while still maintaining the connection for legitimate traffic.

Attacker strategies typically employed a variety of actions in order to deal with

different situations. All actions in Table 1.8 appeared at least some of the time. However,

one unusual result would occasionally appear in which the attacker would create a tree

with only a single action: to search the local machine. Since the attacker starts with only

one compromised node on any network, it was apparently easier in some cases to stay

in one place and scan for data. Since compromising other machines requires multiple

actions, coming up with a strategy to gain access to other machines can be somewhat tricky.

Searching the local machine is also the only direct way to extract value, so it is not entirely

unexpected that the attacker might choose to do this.

For attacker conditions, one of the most common was checking if the previous

action matched a given value. This indicates a strong need for context, which makes sense

73

given that attacker actions work best when executed in a specific order. For example, one

might first scan a neighboring machine before launching an exploit, or jump to a random

compromised machine before searching locally for valuable data.

6.1. Coevolutionary Algorithm. The CoEA found several useful solutions, but

it also had the issue of evolving poorly in many cases for randomly initialized solutions.

Many randomly generated strategies were weak, which created little incentive for either

side to get stronger. In other cases, attackers improved quickly, but defenders never found

the right combination of changes to mitigate attacks. In general, needing fewer changes

made it easier for the defender to do well. This seems to indicate that the choice of network

template is important to the defender’s evolution and is especially apparent in the network

topology experiments, since defenders made the fewest changes to the best starting topolo-

gies: linear and ring. Those topologies tended to have some of the best evolution since

defenders were starting from a stronger position which made improvements easier to find,

and attackers had reason to develop better strategies against inherently stronger opponents.

6.2. Hill Climber. Overall the hill climber had a high standard deviation for the

number of iterations across all result sets. This indicates that the fitness landscape is flat in

many places with jagged mountains in between. Points in flat spaces represent strategies

that are essentially useless and require many changes to become helpful at all. For defend-

ers this could mean changing multiple edges, IPSs, or fortified machines, where attackers

may have several actions or conditions in their decision trees that need to be modified in

order to gain an advantage. In contrast, a point on a mountain or hill represents a decent

strategy that just needs to be optimized.

This process is further complicated by having a fitness landscape that changes de-

pending on the opponent. A strategy that is useful against one opponent may be ineffective

or even counterproductive against another opponent. This means that the fitness landscape

74

itself shifts as the opponent changes, making a hill climber ineffective for testing robustness

of strategies against multiple opponents. A CoEA is better suited for that type of analysis

since it evolves a set of strategies for each side over multiple generations.

7. LIMITATIONS

CIAO plots are used to visually convey the progress of two populations during

coevolution [17]. While this is useful for quick visual analysis, comparison of two or more

CIAO plots is difficult from a statistical perspective. In particular, comparing the rate of

coevolution from different runs is difficult without examining all values, and as such, it

would be worthwhile to find methods of performing quantitative analysis on experimental

data using coevolution.

Experiments were also constrained by computational complexity due to the stochas-

tic nature of the network defense simulation. Introducing randomness made it possible to

simulate a probability of success for any action without understanding its underlying mech-

anism, but it also made it more difficult to accurately measure strategy fitness since it could

change from one simulation to another. The CoEA performed random sampling against

five opponents for each individual being evaluated, and results from each opponent were

averaged over five simulations. This meant that a single individual took 25 simulations

to evaluate, and it had to be evaluated multiple times since any change in one population

could change the fitness values for the other population. This raises the question of how

accurate a fitness estimate has to be in order to be useful. Reducing the number of required

simulations is desirable since it reduces experiment run time, but increasing the number of

simulations generates a clearer CIAO plot with less noise.

The matter is further complicated when considering outliers. Sometimes the ex-

treme cases are more interesting from a security point of view, since they represent either

75

the worst or best case scenarios. Worst case scenarios might benefit from further evalua-

tion within our framework, though it is unclear how that would be accomplished without

involving human expertise.

The fidelity of the network representation is also important to consider when run-

ning these simulations. The network was represented by a graph and did not attempt to

simulate application protocols or even traffic rates across various edges. Instead it mostly

served to keep track of available connections and intrusion prevention systems, as well as

the status of defender machines. This abstraction kept the focus on features that were es-

sential to the analysis and reduced the complexity of implementation, but it did mean losing

the detail and accuracy obtained by emulating network traffic in a realistic way.

8. CONCLUSION AND FUTURE WORK

This work has shown certain existing strategies in network security to be highly

effective. For defenders, perimeter security should be strong, and making pivoting more

difficult will mitigate the amount of damage that can be done in a given time span. For

attackers, it is best to have a diverse set of capabilities since both the opponent’s network

topology and machine characteristics can be diverse and unpredictable. Stealth is extremely

useful when possible since it avoids raising defender paranoia, making it easier to further

infiltrate the network and exfiltrate data.

No entirely new strategies were found using our simulations, though it is difficult

to say whether that is due to the design of the simulation or the nature of network security.

Adding more capabilities to both sides could lead to more interesting observations, if not

new strategies. As such, future work might include adding the capability for defenders to

deploy honeypots or host-based firewalls, as well as potentially simulating the behavior of

end users in an organization. For the attacker, it might make sense to test a scenario starting

76

outside the network. Rather than starting with a single compromised machine and breaking

through internal defenses, perhaps an attacker could sneak in via a phishing attempt or

insider attack. Increasing the realism of both sides’ capabilities and tradeoffs might also be

helpful, such as allowing defenders to fortify more machines with a fixed cost or allowing

an attacker to encrypt network traffic to avoid detection.

Regarding our implemention of the coevolutionary algorithm, future work might

include switching to a multiobjective model. By doing this, one could more effectively

search for the best tradeoff between defense costs and attack mitigation for defenders. A

Pareto front of the best solutions could be established, and defenders could choose the best

solution from that front to fit their needs.

Other future work might include performing a complexity study to determine

whether the runtime of CANDLES is linear, superlinear, or sublinear depending on the

size of the network. While our network only had twenty nodes, it would be interesting

to measure the results when hundreds or even thousands of nodes are deployed in the de-

fender’s network. The analysis could be instructive when building other simulations or

attempting to apply CANDLES to a large enterprise network.

9. ACKNOWLEDGMENTS

This work was supported in part by Los Alamos National Laboratory via the Cyber

Security Sciences Institute under subcontract 259565 and in part by the Missouri S&T

Intelligent Systems Center.

77

BIBLIOGRAPHY

[1] George Rush, Daniel R. Tauritz, and Alexander D. Kent. Coevolutionary Agent-
based Network Defense Lightweight Event System (CANDLES). In Proceedings
of the Companion Publication of the 2015 Genetic and Evolutionary Computation
Conference, GECCO Companion ’15, pages 859–866, New York, NY, USA, 2015.
ACM.

[2] Andrew T Phillips. Now Hear This–The Asymmetric Nature of Cyber Warfare. In
US Naval Institute Proceedings Magazine, volume 138/10/1,316, October 2012.

[3] Travis Service and Daniel Tauritz. Increasing Infrastructure Resilience Through Com-
petitive Coevolution. New Mathematics and Natural Computation, 5(2):441–457,
July 2009.

[4] Narain G Hingorani, Laszlo Gyugyi, and Mohamed El-Hawary. Understanding
FACTS: Concepts and Technology of Flexible AC Transmission Systems. Wiley-IEEE
Press, December 1999.

[5] Holly Arnold, David Masad, Giuliano Andrea Pagani, Johannes Schmidt, and Elena
Stepanova. NetAttack: Co-Evolution of Network and Attacker. In Proceedings of the
Santa Fe Institute Complex Systems Summer School 2013.

[6] Travis C. Service and Daniel R. Tauritz. Co-optimization algorithms. In Proceedings
of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO
’08, pages 387–388, New York, NY, USA, 2008. ACM.

[7] Richard Colbaugh and Kristin Glass. Predictability-Oriented Defense Against Adap-
tive Adversaries. In 2012 IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC), pages 2721–2727, 2012.

[8] Richard Colbaugh and Kristin Glass. Leveraging Sociological Models for Prediction
I: Inferring Adversarial Relationships. In 2012 IEEE International Conference on
Intelligence and Security Informatics (ISI), pages 66–71. IEEE, 2012.

[9] Guanhua Yan, Ritchie Lee, Alex Kent, and David Wolpert. Towards a Bayesian Net-
work Game Framework for Evaluating DDoS Attacks and Defense. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security (CCS ’12),
pages 553–566, 2012.

78

[10] Justin Grana, David Wolpert, Joshua Neil, Dongping Xie, Tanmoy Bhattacharya, and
Russell Bent. HMMs for Optimal Detection of Cybernet Attacks. Technical Report
SFI-2014-06-022, Santa Fe Institute, June 2014.

[11] Edoardo Serra, Sushil Jajodia, Andrea Pugliese, Antonino Rullo, and V. S. Subrah-
manian. Pareto-Optimal Adversarial Defense of Enterprise Systems. ACM Trans. Inf.
Syst. Secur., 17(3):11:1–11:39, March 2015.

[12] Marten Van Dijk, Ari Juels, Alina Oprea, and Ronald L Rivest. FlipIt: The Game of
“Stealthy Takeover”. Journal of Cryptology, 26(4):655–713, 2013.

[13] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Qishi Wu. A Survey of
Game Theory as Applied to Network Security. In 43rd Hawaii International Confer-
ence on System Sciences (HICSS), pages 1–10, Jan 2010.

[14] Terry Benzel, Bob Braden, Ted Faber, Jelena Mirkovic, Steve Schwab, Karen Sollins,
and John Wroclawski. Current Developments in DETER Cybersecurity Testbed Tech-
nology. In Proceedings of the Cybersecurity Applications & Technology Conference
For Homeland Security (CATCH), pages 57–70. IEEE, 2009.

[15] Lori Pridmore, Patrick Lardieri, and Robert Hollister. National Cyber Range (NCR)
Automated Test Tools: Implications and Application to Network-centric Support
Tools. In Proceedings of the 2010 IEEE Systems Readiness Technology Conference
(AUTOTESTCON), pages 1–4, September 2010.

[16] Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(3rd Edition). Prentice Hall, 2009.

[17] Dave Cliff and Geoffrey F Miller. Tracking the Red Queen: Measurements of Adap-
tive Progress in Co-Evolutionary Simulations. In Advances In Artificial Life, pages
200–218. Springer, 1995.

79

SECTION

2. CONCLUSIONS

In this thesis, two cyber security research frameworks are presented that apply com-

putational intelligence techniques to solve complex problems in network defense scenarios.

The first paper describes DCAFE, a framework that makes it possible to automate and con-

trol experiments in a distributed environment and allow for more realistic experiments to

be carried out. DCAFE facilitated experiments that optimized Windows logging configu-

rations to detect indicators of compromise, a form of automated system configuration. The

second and third papers describe the ongoing development of CANDLES, a coevolutionary

network defense simulation that explores possible attacker and defender strategies while

abstracting away unnecessary details. This system gave us the capability to determine how

adversaries on both sides would respond in various scenarios, creating a predictive capabil-

ity.

Work like this will continue to make network security systems more autonomous

and adaptive in the face of evolving adversaries. While it is impossible to know the future,

predictive analysis will make it possible to change defensive strategy as necessary depend-

ing on expected attack vectors. Ever more sophisticated tools will appear for developing,

testing, deploying, and maintaining both networks and the software infrastructure needed

to protect them. Computational intelligence has a key role to play here since it can flexi-

bly respond to unexpected changes in a way that traditional algorithms cannot. By placing

more of the intelligence into the software itself, it enables non-experts to use tools that are

otherwise unavailable to them, and experts can better utilize their time by focusing more

80

on the problem and less on configuring the tools. Over time, it may also give defenders the

advantage they need to protect their networks against constantly changing adversaries.

81

VITA

George Rush was born on July 7th 1988 and grew up in southwest Missouri. He

graduated from Fair Grove High School in Spring of 2006. From Summer of 2006 to Spring

of 2010, he attended Missouri University of Science and Technology to earn a Bachelor

of Science degree in Computer Science with a Minor in Applied Mathematics. He then

worked in industry at AT&T Services, Inc. and Exegy, Inc. as a web developer before

returning to Missouri S&T in Summer of 2013. While at the university, he performed

research in collaboration with the Los Alamos National Laboratory that resulted in the three

papers which are the foundation of this thesis. He earned his Master of Science degree in

Computer Science from Missouri University of Science and Technology in December of

2015.

	Cyber security research frameworks for coevolutionary network defense
	Recommended Citation

	tmp.1454010185.pdf.u41ef

