
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2014

Evolving decision trees for the categorization of software Evolving decision trees for the categorization of software

Jasenko Hosic

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Hosic, Jasenko, "Evolving decision trees for the categorization of software" (2014). Masters Theses.
7308.
https://scholarsmine.mst.edu/masters_theses/7308

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7308?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

EVOLVING DECISION TREES FOR THE CATEGORIZATION OF SOFTWARE

by

JASENKO HOSIC

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2014

Approved by

Dr. Daniel Tauritz, Advisor

Dr. Samuel Mulder

Dr. Sriram Chellappan

Copyright 2014

JASENKO HOSIC

All Rights Reserved

iii

ABSTRACT

Current manual techniques of static reverse engineering are inefficient at pro-

viding semantic program understanding. An automated method to categorize appli-

cations was developed in order to quickly determine pertinent characteristics. Prior

work in this area has had some success, but a major strength of the approach detailed

in this thesis is that it produces heuristics that can be reused for quick analysis of new

data. The method relies on a genetic programming algorithm to evolve decision trees

which can be used to categorize software. The terminals, or leaf nodes, within the

trees each contain values based on selected features from one of several attributes:

system calls, byte N -grams, opcode N -grams, registers, opcode collocation, cyclo-

matic complexity, and bonding. The evolved decision trees are reusable and achieve

average accuracies above 90% when categorizing programs based on compiler origin,

authorship, and versions. Developing new decision trees simply requires more labeled

datasets and potentially different feature selection algorithms for other attributes, de-

pending on the data being classified. The genetic programming algorithm used to

evolve the decision trees was compared against C4.5, a classic decision tree technique.

In all experiments, the genetic programming approach outperformed C4.5.

This thesis is an extension and expansion of the work published in the Com-

puter Forensics in Software Engineering workshop at COMPSAC 2014 - the Annual

38th IEEE International Conference on Computer Software and Applications [1]. This

thesis is also being prepared as a journal article to be submitted for publication.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Daniel Tauritz. Not

only is he responsible for delivering the passionate lectures that sparked my interests

in the field of artificial intelligence, but without his dedicated involvement in every

step of the process, this thesis would not exist. I would like to thank you for your

understanding, patience, and guidance over the last six years.

I would also like to extend my gratidue to Dr. Samuel Mulder. He has been an

instrumental and invaluable tool in helping me complete this thesis. I could not ask

for a more knowledgeable mentor. His wisdom has guided this thesis to completion.

Dr. Sriram Chellappan helped me greatly through his classes. His lectures aim

not only to teach, but to inspire new ideas. His teaching style and enthusiasm for

research left a lasting impression on me from the very first class I attended. I would

like to thank Sandia National Laboratories for providing my funding through their

Critical Skills Master’s Program that made my graduate studies possible thus far.

Sandia National Laboratories is a multi-program laboratory managed and operated

by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,

for the U.S. Department of Energys National Nuclear Security Administration under

contract DE-AC04-94AL85000.

Completing my thesis required more than professional and academic assis-

tance. I would like to thank my brother, Jasmin Hosic, and my good friend, Ryan

Birmingham. I cannot express how much I truly value their support, and often, tol-

erance of me as I worked to complete my thesis. Lastly, and most importantly, I

wish to thank my parents, Mine and Mirsad, for raising me to appreciate and pursue

education. Their love and countless sacrifices throughout my life are responsible for

getting me where I am today. To them I dedicate this thesis.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES. ix

SECTION

1 INTRODUCTION. 1

2 BACKGROUND . 4

2.1 EVOLUTIONARY COMPUTATION 4

2.1.1 EC Cycle . 4

2.1.2 Genetic Programming . 6

3 RELATED WORK . 8

4 FEATURE SELECTION . 14

4.1 LOW-LEVEL FEATURES . 15

4.1.1 Cyclomatic Complexity . 15

4.1.2 Byte N-Grams . 17

4.1.3 Bonding . 19

4.2 HIGH-LEVEL FEATURES . 20

4.2.1 System Calls . 20

4.2.2 Opcode N-Grams . 22

vi

4.2.3 Opcode Collocation . 23

4.2.4 Registers . 25

4.3 INDIVIDUAL ATTRIBUTE PERFORMANCE 25

5 GENETIC PROGRAMMING METHODOLOGY. 28

6 EXPERIMENTAL SETUP . 30

7 RESULTS . 32

7.1 FUNCTIONAL CLASSES EXPERIMENT 37

7.2 C4.5 COMPARISON . 39

8 DISCUSSION . 44

9 FUTURE WORK . 48

10 CONTRIBUTIONS . 50

11 CONCLUSIONS. 51

BIBLIOGRAPHY . 52

VITA . 56

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1 General EC cycle . 5

4.1 A) edges=9; nodes=8; P=1; C=9-8+2(1)=3 B) edges=10; nodes=8;
P=1; C=10-8+2(1)=4 . 15

4.2 Individual feature tests run on the versions and compiler data sets,
averaged over 30 runs. 80% of the data was dedicated to the training
set, and the rest comprised the testing set. 26

4.3 Individual feature tests run on the authorship data set, averaged over
30 runs. 80% of the data was dedicated to the training set, and the
rest comprised the testing set. 27

5.1 A fuzzy logic example showing that using a threshold, such as ≥ .5
signifying true for a boolean operation, does not distinguish categories
well. Both of the trees in this example would evaluate to true. Using
the max/min rules, however, Tree A evaluates to .9987 while Tree B
evaluates to .5141. This is used to prioritize matches. 29

7.1 Fitness progression across the evaluations for the versions data set . . 32

7.2 Fitness progression across the evaluations for the compilers data set . 33

7.3 Fitness progression across the evaluations for the authors data set . . 33

7.4 Percent match with GP decision trees – versions max = 100%, ver-
sions min = 89.47%; compilers max = 100%, compilers min = 82.69%;
authors max = 100%, authors min = 66.66% 34

7.5 Compilers testing set percent match plotted against evaluations . . . 34

7.6 Individual feature tests run on the functional classes data set, averaged
over 30 runs. 38

7.7 Percent match with GP decision trees on functional classes – max = 28.57%,
min = 7.14% . 39

7.8 Percent match with C4.5 decision trees – versions max = 100%, ver-
sions min = 84.21%; compilers max = 76.92%, compilers min = 53.85%;
authors max = 83.33%, authors min = 33.33% 40

7.9 Compilers - GCC, No optimization 43

7.10 Versions - Pidgin . 43

viii

7.11 Versions - Nestopia . 43

7.12 Versions - BaculaTrayMonitor . 43

ix

LIST OF TABLES

Table Page

4.1 Byte N -gram performance with varied N values, averaged over 30 runs.
Standard deviation values are shown in parentheses. 18

4.2 Opcode N -gram performance with varied N values, averaged over 30
runs. Standard deviation values are shown in parentheses. 23

6.1 GP parameters . 31

7.1 F -Test: Two-Sample For Variances - Versions 35

7.2 F -Test: Two-Sample For Variances - Compilers 36

7.3 F -Test: Two-Sample For Variances - Authors 36

7.4 t-Test: Two-Sample Assuming Unequal Variance - Versions 36

7.5 t-Test: Two-Sample Assuming Equal Variance - Compilers 37

7.6 t-Test: Two-Sample Assuming equal Variance - Authors 37

7.7 F -Test: Two-Sample For Variances - Versions 40

7.8 F -Test: Two-Sample For Variances - Compilers 41

7.9 F -Test: Two-Sample For Variances - Authors 41

7.10 t-Test: Two-Sample Assuming Equal Variance - Versions 41

7.11 t-Test: Two-Sample Assuming Equal Variance - Compilers 42

7.12 t-Test: Two-Sample Assuming Equal Variance - Authors 42

1. INTRODUCTION

Software classification is the process of sorting applications into categories

of similar software based on specific criteria. For instance, software can be placed

into categories of 32-bit programs versus 64-bit programs, or applications that run

on Windows versus applications that run on OS X. Providing a heuristic for these

categorizations ranges in difficulty. The aforementioned examples are trivial, as all of

the information necessary to achieve the classification lies in the application header

data. Other criteria for categorizing software, however, require a thorough analysis

in order to make the correct distinctions.

The problem of software classification has been previously examined, and its

use for authorship [2], quality [3], and content attribution [4] is apparent. This field,

however, can have far-reaching implications on new problem spaces as well. For

instance, system administrators maintaining critical systems often need to quickly

determine various information about new software appearances. In terms of digital

forensics, recognizing more detailed semantic qualities of applications is essential.

Current methods for determining vital semantic data require deep dynamic analysis or

manual reverse engineering [5, 6]. While a thorough understanding of the instruction

sequences of an application will most likely require some human expertise and manual

analysis, the process can be assisted with some basic categorical knowledge. Is the

application obvious malware? Is the program a mutation or new version of a known,

preexisting program? Is the software packed or not? It is for these reasons that a

means of rapidly classifying software into categories through evolved decision trees is

proposed in this thesis.

A focus was placed on performing three primary experiments. First, an ex-

periment was executed wherein software was categorized based on the compiler and

2

optimization flags used during development. Next, multiple versions of the same

software were categorized. The third goal was to classify a set of software based on

the author that wrote it. Although the versioning, authorship, and compiler identifi-

cation problems have been tackled in previous research [2, 6, 7, 8], these experiments

are an initial demonstration of the overall approach. The same algorithm was used

to categorize software based on a variety of criteria. Furthermore, due to the absence

of any dynamic analysis in the algorithm, it performs more efficiently than many

previous approaches. Over 90% accuracy was achieved when matching test programs

to categories in all three experiments, and the resulting decision heuristics that are

derived can quickly be reused to categorize more software without requiring thorough

binary analysis. A fourth experiment was also performed to classify software based on

functionality, but the features used to perform this experiment were not tailor-made

for that problem set, and the ultimate accuracy suffered as a result.

Many algorithms exist for developing decision trees, such as Chi-squared Au-

tomatic Interaction Detection (CHAID) [9, 10], Iterative Dichotomiser 3 (ID3) [11],

and its successor, C4.5 [12]. However, due to some known performance issues with

ID3 and a lower success rate on prediction problems when using CHAID [13, 14], a

different technique was employed. C4.5 does suffer from many of these drawbacks,

and it was therefore used as a basis for comparison in these experiments.

An approach utilizing Genetic Programming (GP) [15] was used to generate

the decision trees. A GP algorithm is a population-based evolutionary algorithm that

uses natural selection to reach a solution. GP solutions are often encoded with a tree

structure. This structure is ideal as the tree representation translates directly into

the decision trees that are employed to categorize applications. Although this is a

reinforcement learning technique, a training set was still applied to assist the learning

process. GP algorithms usually have a long runtime due to the many evolutionary

cycles they must perform before converging to a satisfactory solution, and while this is

3

true of the GP employed in this decision tree approach, applying the evolved decision

trees on new software takes only seconds. The performance of the resultant decision

trees was compared to the matching accuracy of C4.5 using the same feature sets. In

every case, the GP method outperformed C4.5.

The remainder of this thesis is structured in the following way: Section 3 con-

tains related work in the areas of software classification, decision trees, and heuristic

development is presented, followed by a description of the features used and the

methodology of the GP approach in Section 4 and Section 5, respectively. Section

6 contains detailed explanations of the experiments performed, and Section 7 shows

the results. The thesis concludes with a discussion of the results in Section 8 and the

possible applications of this categorization technique in Section 9.

4

2. BACKGROUND

2.1. EVOLUTIONARY COMPUTATION

Evolutionary Computation (EC) is a subfield of computational intelligence.

There are a large number of computational intelligence algorithms that address very

different problem classes. Supervised learning algorithms use known, labeled data to

train a model in order to make predictions on unlabeled data. Unsupervised learning

algorithms use no training data and have no knowledge of the problem domain, but

make predictions based on a pattern of incoming data. Reinforcement algorithms

are an intermediate option wherein training data is not required, but a knowledge

of the problem domain allows the algorithm to evaluate the quality of attempted

solutions [16].

EC is a population-based, iterative reinforcement learning technique inspired

by neo-darwinian evolution theory and Mendelian genetics, often used in optimiza-

tion problems [17]. The use of a population offers a parallel approach to finding a

global solution in the search space. Searching for a solution with a reinforcement

algorithm can be simplified into two basic components: exploration and exploita-

tion. Exploration means searching unexplored areas of the search space in order to

gain new knowledge. Exploitation refers to the use of known information to produce

more optimal solutions [18]. EC performs performs a mix of both exploration and

exploitation to arrive at a solution [16].

2.1.1. EC Cycle. There are many kinds of evolutionary algorithms, but

they all follow a cyclic process. The general cycle of EC is illustrated in Figure 2.1,

and a general overview of the steps follows.

5

Figure 2.1: General EC cycle

Initialization. During this phase of the algorithm, a population of size µ is

generated as a starting point for the evolutionary process. The starting population

is typically a set of initial, explorative guesses at the solution.

Fitness Evaluation. The fitness evaluation determines a numerical value

calculated to represent the quality of the solution as it pertains to the ultimate goal

of the evolution. The fitness evaluation varies from problem to problem. It makes up

the reinforcement phase of the learning process.

Parent Selection. Parent selection is the algorithm that pairs up the two

individuals that will mate to produce new solutions. An example of a parent selection

is k-tournament, where k randomly-selected individuals are compared and the winner

is selected. Two tournament winners are paired together to recombine.

Recombination. Recombination refers to the way in which the population

mates to produce new solutions, or offspring. Existing solutions are typically paired

6

up with a parent selection algorithm, broken into fragments, and recombined to pro-

duce λ offspring. The offspring contain components from both parent solutions. The

possible recombination methods depend on the representation used for the individu-

als. Recombination exploits previously-explored portions of the search space to reach

better solutions.

Mutation. Mutation is a way of manipulating existing solutions to introduce

new possibilities into the gene pool. For instance, if the individuals are represented

as binary strings, a viable mutation option is to randomly flip a bit. Even if both

parents of a solution do not contain a certain component of a solution, mutation

offers the chance to explore that option. Mutation, unlike recombination, is more of

an exploration phase. It is an essential component in EC as it allows the algorithm

to escape local optima in order to reach a global optimum.

Survival Selection. This step of the cycle is a major component of the “nat-

ural selection”, as an algorithm is used to determine which solutions in the population

should remain in order to reproduce and which should be discarded. Survival selec-

tion can be performed a number of ways, each with varying effects on the overall

selective pressure on the system. An example of a survival selection algorithm is

truncation, where the top µ solutions remain to make up the solution in the next

cycle and the rest are discarded.

Termination. The termination represents the conditions under which the

cycle is broken and the solutions are accepted as final. Termination could be deter-

mined with a multitude of criteria, such as reaching n number of fitness evaluations,

reaching a maximum fitness value, or running for a certain amount of time.

2.1.2. Genetic Programming. GP is a population-based meta-heuristic

EC technique [15]. In classic GP, each solution, encoded in an individual in the pop-

ulation, is represented with a tree wherein the leaf nodes take the form of some ter-

minal value while the internal nodes perform functionality that relates the terminals.

7

The trees can represent many things, such as mathematical formulas, complex pro-

gramming sequences, or, as shown later in this paper, decision making processes [19].

GP with a tree representation has its own set of recombination and mutation

operators. Single-point crossover, for example, is a recombination method that selects

a random point on each parent’s tree and swaps the sub-trees beneath that point.

Sub-tree mutation is a classic mutation operation that stochastically generates a sub-

tree and places it at a random location in an individual’s tree [15].

This tree structure, if kept unchecked, can cause solutions to grow very quickly.

A maximum tree depth provides a hard cap for solutions, but if set too small, can limit

the quality of the solutions that evolve from the algorithm. Parsimony pressure [20]

can also be applied, which punishes solutions that bloat too much in order to favor

smaller, more elegant solutions.

8

3. RELATED WORK

Significant contributions have been made to the fields of GP as it relates to de-

veloping new heuristics [21, 22, 23, 24], software classification [3, 19], version match-

ing [6, 7, 25], author identification [2], and compiler attribution [8]. The research

presented in this thesis takes inspiration from those ideas with distinct differences

for the purposes of providing fast semantic categorization. Methods used in former

papers provide solid results but either tend to focus on solving one kind of problem

or require long running times. As a result, a hybrid of some of these concepts is

proposed with the design of the GP-evolved decision trees.

The results of the GP are compared against the results of C4.5. C4.5 performs

well in many domains, and it does not suffer from some of the drawbacks of its

predecessors. J. Sun et al. [13] discuss several decision tree methods and cite numerous

potential weaknesses. They note that the Iterative Dichotomiser 3 (ID3) algorithm,

a precursor to C4.5, tends to overfit in noisy domains, inappropriately grow the size

of decision trees, and is particularly impaired when handling continuous, numeric

values. The attributes used in the decision trees are extracted from a highly noisy

domain, and therefore this algorithm does not seem suitable for the same sort of

problem. In [26], J. R. Quinlan addresses some of the shortcommings in ID3 and

earlier releases of his C4.5 algorithm. A solution is offered in release 8 of the algorithm,

wherein the Minimum Description Length (MDL) principle is used to remedy the

issues. The MDL principle is based on a sender and receiver scenario. The sender

encodes a possible classification solution, called a theory, into bits and sends the data

to the receiver. Small theories are likely inaccurate, but require the transmission of

fewer bits. More accurate and complex theories need more bits. The improved C4.5

algorithm applies this MDL concept in order to maximize accuracy while attempting

9

to minimize theory bit length. The effects of this approach improve the performance

of the algorithm significantly when tested against older releases. This idea, however,

is captured within GP as well. Selecting appropriate parsimony pressure can produce

the same results as MDL, as smaller, less complex solutions are favored if accuracy

remains acceptable [20]. C4.5 is the ideal decision tree algorithm to use as a basis for

comparison.

Other decision tree algorithms exist that perform well in noisy domains, but

are not as appropriately suited for the problems outlined in this thesis. CHAID, for

instance, is an algorithm for developing a set of induction rules which can be used for

classification [9]. CHAID makes use of a unique branching technique. A statistical

test is used to group attributes within the data that are very similar. This allows the

algorithm to determine how many branches are required. The trees produced allow for

non-binary classifiers with one node branching off into many others. Due to the use

of the Chi-squared test during the execution of the algorithm, noisy data is collapsed

and post-order pruning is not required, such as in CART [10]. In [14], P. Lewicki et

al. discuss the situations that best suit each decision tree algorithm. They suggest

that CHAID is best in accomplishing analysis, particularly in marketing scenarios,

while C4.5 is better at making predictions. All of the categorization experiments

require accurate predictions, therefore C4.5 provides the most apt comparison for the

evolved GP heuristics.

Using GP to generate heuristics is not a new concept. It is often chosen

because, in scenarios such as software categorization, determining the appropariate

formulas by which programs can be compared and classified is not inherently obvious.

Since the optimal metrics could be far too complex and difficult to construct by hand,

GP can be used to evolve a heuristic without the need for hand-tuned trial and error.

According to [21, 22], the tree structure of a GP and its ability to mutate in order

to escape local optima are ideal for evolving heuristics where little is known about

10

the possible final result. With appropriate selective pressure, the algorithm is able

to explore a wide variety of options before converging to a final solution.

A survey by P. G. Espejo et al. [19] shows that there are multiple ways in

which GP can be used in the classification field. The flexibility of GP representations

allows for many kinds of models, which has led to numerous applications. Conditional

operators, as well as other comparison operators, can easily be implemented in tree

representations to generate classifiers. If the need for multiple classifiers to be used

in conjunction with each other exists, ensemble classifiers can be evolved with GP. In

instances where achieving conflicting goals is desired, multi-objective GP classifiers

have been developed. No matter the type of classifier that is required, the quality

must be measured through the use of a fitness function. There are many ways to

model a problem using GP, and as such, there are many ways to assess a solution’s

fitness. Common fitness function metrics for classification accuracy are precision,

confidence, sensitivity, and specificity.

While GP is a solid method for building a classifier, other techniques have

certainly been explored. K. Gao et al. [3] developed a classification system that uses

several different feature selection algorithms, such as automatic hybrid search (AHS),

with a combination of five different classifiers, including instance-based learning (k-

nearest neighbor), multilayer perceptrons, support vector machines, näıve bayes, and

logistic regression. They derived data by applying feature selection algorithms to

numerous attributes. Metrics such as the number of loop constructs, the number

of lines of code, and the span of variables have been considered. The results found

with this method suggest two things. First, it is essential to remove metrics that

are irrelevant and unnecessary for accomplishing the end goal so as to avoid over-

saturating the possible terminals during evolution. Second, while the success of these

techniques on a difficult problem like software quality classification is impressive,

11

there is a dependence on having access to the source code. Without the source code,

certain metrics used in this work are difficult to extrapolate.

Software classification clearly has its merits, but it is not the only way to po-

tentially solve the compiler and versions problems. V. Nagarajan et al. [7] attempt

to tackle the version comparison problem, but take a drastically different approach

than the categorization schemes considered in other papers. They specifically aim to

detect version differences by using a similarity metric to match the call graphs and

control flow of two programs. Their research attempts to identify situations in which

two programs are functionally equivalent, but one is written in a more obfuscated

manner. The applications are dynamically analyzed and every executed instruction

is stored in tables of execution histories. An application is broken down into intrapro-

cedural calls, interprocedural calls, and singular instructions. Due to the sporadic

nature of multiple calls in potentially obfuscated code, V. Nagarajan et al. dynami-

cally construct call graphs and perform flattening techniques so that the obfuscated

code can accurately be matched to the execution history traces of another program.

Although it performs well in many instances, some false-positives are found with this

technique. In order to reduce the error, whenever one program’s calls or instructions

match multiple sections of another program, a confidence measure is applied to each

match. These confidence measures are calculated using the reachability of each node,

found via the control flow structure, and prioritized in order to produce a successful

error correction mechanism. The accuracy of this technique when applied to applica-

tions that have undergone common obfuscation techniques is high. When comparing

many applications at once, the number of control flow comparisons that would be

required to achieve this success rate (n2) could become unmanageable. The work

proposed in this thesis attempts to provide a more efficient method, requiring fewer

comparisons and no dynamic analysis to produce accurate results when attempting

to identify multiple versions of the same application.

12

Software can be altered to produce new versions of the same or similar func-

tionality in a multitude of ways. The work of D. Bruschi et al. [6] attempts to find

similarities in multiple malware applications wherein any variations occurred due to

self-mutation. Their approach also involves dynamically tracing the execution of the

malware. Identical instructions between malware instances are paired, and any de-

viations are transformed until a match is found so as to account for programming

variations or optimization differences [6]. While this idea shows promise, the running

times are long due to the need to dynamically analyze all calls and instructions. The

amount of time it would take to consider all essential flow paths and execute all the

necessary code transformations could be staggering in certain cases where application

sizes are large. The techniques presented are invaluable in scenarios where analyz-

ing malware is commonplace and detailed analysis is prioritized over quick semantic

attribution. Only self-mutating malware is considered, and as a result, the solution

does not seem ideal for categorizing large numbers of purely benign applications. As

a contrast to this work, the decision trees evolved with the GP algorithm primarily

consider mundane, non-malicious software in order to identify version differences.

Compiler attribution has been examined in much the same way as version

classification. N. E. Rosenblum et al. [8] have performed deep analysis of program

binaries to determine compiler origin, even if multiple compilers were used (such

as when statically linked library code is included). Their work analyzes idioms, or

simply put, opcode trigrams along with their respective operands. These sequences of

three instructions at function entry points allow for pattern recognition that hints at

compiler origin [5]. Furthermore, gaps between functions as well as intraprocedural

branches are also used to model compiler behavior. Whether multiple compilers were

used or not, the compiler matching accuracy reaches as high as 90%.

Their work extends beyond just compiler provenance. One of the biggest in-

spirations for this thesis comes from the ideas presented in [2]. N. E. Rosenblum et

13

al. use various features, such as N -grams, idioms, graphlets (several basic blocks re-

trieved from control flow for pattern matching), and super graphlets (graphlets span-

ning larger distances with some collapsed control flow) to determine code authorship

from compiler binaries. Using a statistical feature selection technique, essential fea-

tures are extracted which aid in the categorization of software based on programmer.

N -grams and idioms assist in detecting patterns that comprise an author’s signa-

ture, allowing for high accuracy during classification. This thesis attempts to utilize

some similar concepts in order to produce quick, reliable results for the version and

compiler categorization problems as well as the authorship problem.

14

4. FEATURE SELECTION

In order to accurately develop a system of distinguishing and categorizing

software, a heuristic for the decision making process of what software belongs in

which group must be developed. However, many different criteria exist with which

applications can be measured and grouped. For instance, programs that are simply

version revisions of each other should intuitively have similar functionality while

programs that are entirely different most likely contain very different instructions or

code. There are a vast number of categories which software can be placed into, and a

massive set of potential features that can resolve acceptance or denial into a particular

group. Even when appropriate attributes are chosen, such as using byte N -grams to

differentiate the programs, proper feature selection must be performed to obtain solid

results [3]. For this reason, several different attributes to were considered, each with

their own feature selection process. The attributes were chosen for their potential as

distinguishing factors for the versions, authorship, and compiler problems. A data

set for the version problem, composed of nineteen different applications with four

to six versions each, totalling 90 programs, was used during experimentation. For

the compilers problem, 61 programs compiled with GCC and Visual Studio, each

with two different optimization levels for a total of 244 programs, were used. We ran

the authorship experiment on a set of programs that were created by three different

programmers. Each programmer independently solved the first ten challenges from

Project Euler ∗ in the same language and compiled them in the same manner. The

following is an explanation of each attribute and its feature selection scheme.

∗Colin Hughes. Project euler. https://projecteuler.net/, 2014.

15

4.1. LOW-LEVEL FEATURES

4.1.1. Cyclomatic Complexity. Cyclomatic complexity is a software met-

ric that measures the logical complexity of an application. It was selected as a

potentially useful feature as it was expected to aid in both the versions and compiler

experiments. Programs that are merely different versions of each other likely have

the same complexity if their functionality did not change much. Likewise, there is a

possibility that complexity could be a factor in distinguishing compiler optimization.

Higher amounts of optimization could decrease a program’s complexity, which would

allow for some insights into compiler origin.

Cyclomatic complexity, in this case, is defined by the following equation:

C = edges− nodes+ 2P (4.1)

where C is the complexity, edges is the number of edges in the control flow graph,

nodes is the number of nodes in the control flow graph, and P is the number of exit

nodes in the control flow graph. Figure 4.1 illustrates this equation in practice.

Figure 4.1: A) edges=9; nodes=8; P=1; C=9-8+2(1)=3 B) edges=10; nodes=8;
P=1; C=10-8+2(1)=4

16

It is slightly higher-level metric than examining pure byte data, but it is based

entirely on the control flow graph of an application. It ignores all of the truly high-

level instruction information from disassembly. In the experiments, this equation is

applied to an application on a per-function basis. The results of each function’s com-

puted cyclomatic complexity are then averaged to produce the cyclomatic complexity

for an entire program. The mean of all the cyclomatic complexity averages is calcu-

lated to produce a category’s complexity baseline. Test programs are then matched

to categories based on smallest difference between a category’s complexity and their

own complexity. Algorithm 1 shows the psuedocode for the feature extraction and

matching algorithms.

Algorithm 1 Cyclomatic complexity feature extraction algorithm

function getComplexity(program)
CTotal← 0
for all functions ∈ program do

C ← edges− nodes+ 2P
CTotal← CTotal + C

CTotal← CTotal/count(functions)
return CTotal

function getCategoryComplexity(programs)
finalC ← 0
for all program ∈ programs do

finalC ← finalC + getComplexity(program)

finalC ← finalC/count(programs)
return finalC

function matchPrograms(testPrograms, categories)
for all testProgram ∈ testPrograms do

minDiff ←∞
for all category ∈ categories do

C ← getComplexity(testProgram)
categoryComplexity ← getCategoryComplexity(category)
diff ←| categoryComplexity − C |
if diff ≤ minDiff then

minDiff ← diff
testProgramCategory ← category

17

4.1.2. Byte N-Grams. N -Grams are a method of partitioning data into

N -sized chunks. These partitions can be used in many contexts, such as in textual

data for classifying written documents [27, 28]. The information captured within an

N -gram could provide insight into the contents of a document. For instance, the

3-grams, or trigrams, containing “win” and “ine” would very useful in identifying

articles about fine wines. On the other hand, the trigram “the” is likely to show up

in all English language articles. Determining which N -grams are useful and which

are noise requires proper feature selection.

N -Grams can be used to partition software by bytes as well. Rosenblum

et al. [2] had great success in using N -grams to classify software by author. The

numerous chunks of byte data key in on essential programming patterns which allow

for the identification of the author. This same concept can applied to idenitifying

other information about the software. In identifying compiler origin, the N -grams

could reveal essential header data or the compiler’s allocation of registers. The case

for using N -grams is most compelling when attempting to identify mutliple versions

of the same software. It is expected for the applications to be very similar in terms

of header data, functionality, and size. There are likely only marginal changes to the

instructions. As such, the N -gram spread of two applications should be quite similar

if they are merely different versions of each other.

The byte N -grams attribute, for the purposes of all experiments, contained

only trigrams. Initial experiments were performed with bigrams and quadgrams as

well, but their results were either virtually identical or significantly worse than the

accuracies achieved with trigrams. Table 4.1 shows the results of the N -grams feature

selection with N values of two, three, and four. The results were obtained from using

80% of each data set as the training set and 20% as the testing set.

18

Table 4.1: Byte N -gram performance with varied N values, averaged over 30 runs.
Standard deviation values are shown in parentheses.

N Versions Compilers Authors
2 95.26% (1.61%) 59.55% (9.25%) 72.22% (13.37%)
3 95.09% (1.34%) 92.69% (3.48%) 81.41% (19.04%)
4 94.21% (1.61%) 92.88% (4.20%) 81.11% (17.90%)

Using different values of N can have an impact on more than just accuracy.

As N increases, so do the number of possible N -grams that can exist, increasing both

the processing time and storage resources required to compute the feature selection

algorithm. There are 256 possible values for a byte, therefore the number of possible

N -grams with N -byte sized fragments is 256N . As this is an exponential relationship,

smaller values of N are favored. The difference in cost of using trigrams versus

bigrams is marginal in both processing time and resources, however, as each is a one-

time cost per program, which is miniscule in comparison to the disassembly costs of

higher-level features. As a result, trigrams were chosen for their superior performance.

The feature selection was performed by first placing trigrams of the programs

in each category into histograms. The intersection of all of the histograms within

a category comprised the feature set. It is not necessarily the most common N -

grams that carry the most weight in correctly categorizing applications, but instead,

a particular N -gram may carry immense weight with only a few appearances. By

intersecting not only on the N -grams that all programs in a category have in com-

mon, but also on the frequency with which they appear, some of those scenarios are

captured. With this scheme, a particular trigram appearing the same number of

times in each of the programs of the category is added to the feature set. Once a

set of N -grams is selected for a category, testing programs are introduced. Testing

programs are matched to the category with which they have the highest number of

histogram values in common. A psuedocode representation is shown in Algorithm 2.

19

Algorithm 2 Byte N -grams feature extraction algorithm

function getCategoryNGrams(programs)
for all program ∈ programs do

nGrams← getNGramHistogram(program)

for all program ∈ programs do
for all nGram ∈ nGrams do

if nGram ∈ otherProgs then
if frequency(nGram) = frequency(otherProgs[nGram]) then

categoryNGrams← categoryNGrams+ nGram
return categoryNGrams

function matchPrograms(testPrograms, categories)
for all testProgram ∈ testPrograms do

testNGrams← getNGramHistogram(testProgram)
for all category ∈ categories do

percentMatch[category]← 0
categoryNGrams← getCategoryNGrams(category)
for all nGram ∈ categoryNGrams do

if nGram ∈ testNGrams then
if frequency(nGram) = frequency(testNGram) then

percentMatch[category]← percentMatch[category] + 1

numNGrams← count(categoryNGrams)
matchPercent[cateogry]← matchPercent[category]/numNGrams

testProgramCategory ← category(max(matchPercent))

4.1.3. Bonding. Bonding is a concept presented in [29]. This graph metric

has been useful in distinguishing many graph types, such as social graphs, and it

was included in these experiments in an attempt to investigate its applicability in

distinguishing control flow graphs. Bonding is calculated with a formula that takes

the following form:

B =
6 ·#triangles

#length two paths
(4.2)

Bonding refers to a ratio of triangles within the control flow to the number of

potential triangles (2-paths). It takes a maximum value of one if a graph is complete,

and zero if a graph contains no triangular subgraphs. In social graphs, triangular

subgraphs identify situations where two people know a third person and also know

20

each other. A high bonding ratio in a social graph suggests that this occurs more

frequently than situations where two people know a third but not each other. In

a control flow graph, however, these subgraphs represent something very different.

A triangular structure can represent many things, such as a single occurrence of a

conditional sequence, a loop structure, or grouping of function calls.

The bonding was expected to be similar in applications that are version vari-

ations of each other. It was hypothesized that the control flow structure of an appli-

cation would not change drastically if a program is simply a new version of existing

software. In the case of compiler identification, the optimization level can have a large

impact on the structure of a program’s control flow. Optimization for size, compile

time, and efficiency produce different control flow graphs, which in turn affects the

bonding value. The third experiment, author identification, had the potential to ben-

efit from this metric as well. The way in which a person programs may affect the

number of triangular subgraphs that result after compilation. It is also possible that

the minor differences in coding habits do not have a large enough affect on the overall

subgraph structure of the whole application. This feature was included in order to

investigate these ideas.

As with complexity, the bonding values are calculated on a per-function basis

from only the control flow graph data. The function bonding values are averaged to

find the program values, and a category average is again evaluated for each category.

Test programs are matched to categories based on the smallest difference between

their bonding values and category averages.

4.2. HIGH-LEVEL FEATURES

4.2.1. System Calls. Extracting system calls from an application requires a

higher-level look at the content of the software. System calls can take many different

21

forms. Allocating memory, exception handling, network connections, and registry

manipulation are all examples of procedures that can be performed by making the

right system calls. Examining the different calls a function makes elucidates a large

portion of its functionality. As with N -grams, noise exists in this domain as well.

An application’s primary purpose may be to establish a network connection, which

could require a handful of different system calls. These system calls, while vital to the

functionality, may appear only once. Other calls, however, such as exit procedures

and exception handling, could be called numerous times for various conditions.

System calls were identified as possible discriminating features because differ-

ent versions of the same program are likely to make the same types of calls due to

their related functionality. They are likely less useful in distinguishing compilers and

authors. Compiling the same application with a different compiler or optimization

level would not have any effect on the system calls the programmer chose to make.

In regard to authorship, a programmer may have a greater likelihood to make certain

system calls that another programmer chooses not to use, but these distinctions are

marginal at best.

When determining the proper way to select features with system calls, a bal-

ance needed to be achieved between the focus placed on the number of times each

call was made within a category or program, versus the impact each call would have

as a distinguishing factor. In order to create this balance, histograms of the system

calls within each application were first created. The histograms were treated as vec-

tors wherein the system calls denoted dimensions and the quantities determined the

magnitudes of the vector. The vectors were then reduced to direction vectors in order

to negate the impact of program size. An average direction vector was calculated for

each category, and the resultant vector’s direction was then compared to the direcion

vector of test programs. The difference in direction from test program vectors and

22

category vectors was used to match programs to categories. Algorithm 3 shows a

pseudocode implementation.

Algorithm 3 System Calls feature extraction algorithm

function makeDirectionV ector(systemCalls)
sumFreqs← 0
for all systemCall ∈ systemCalls do

sumFreqs← sumFreqs+ frequency(systemCall)

for all systemCall ∈ systemCalls do
directionV ector[systemCall]← frequency(systemCall)/sumFreqs

return directionV ector

function getCategorySystemCalls(programs)
for all program ∈ programs do

directionV ector[program]← makeDirectionVector(callHistogram)
return averageVectors(directionV ector, programs)

function matchPrograms(testPrograms, categories)
for all testProgram ∈ testPrograms do

testCalls← makeDirectionVector(testProgram)
for all category ∈ categories do

sysCalls[category]← getCategorySystemCalls(category)
diff [category]← directionDiff(sysCalls[category], testCalls)

testProgramCategory ← category(min(diff))

4.2.2. Opcode N-Grams. Our opcode N -gram attribute is a higher-level

version of the byte N -grams feature. Opcode N -grams are gathered by producing

N -grams from the instruction opcodes (excluding operands) of a disassembled appli-

cation. This type of attribute is very similar to the idioms proposed in [2], and R.

K. Shahzad et al. [30] have had great success in detecting adware through the use

of opcode N -grams. By using a higher-level data repository for the N -grams, the

feature extraction is able to key in on more semantic abstractions of an application’s

content.

The versions experiment can benefit greatly from using opcode N -grams, as

a majority of the functionality and instructions should remain unchanged. Compiler

optimization can influence opcode use as certain instruction sequences can be reduced

23

to common equivalent instructions. While this is helpful for the compiler identifica-

tion experiment, it does muddle the benefits to the authorship experiment. Even

though a programmer determines the functionality of the program, the compiler’s

optimizations can influence groups of opcodes more.

Again, as with the byte-based attribute, trigrams were used exclusively in all

experiments. Using bigrams or quadgrams did not significantly improve the results.

Table 4.2 shows the comparisons of each N value. The histogram intersection tech-

nique used with byte N -grams, as presumed, did not produce viable results in inital

tests. Instead, the opcode N -grams for a category of application were placed into a

unified histogram. The histogram represents the frequency of each opcode N -gram

as it occurs among all programs in a category. The top 50% of the N -grams are used

as essential features for that category. Test programs are matched to categories that

have the most opcode N -grams in common. The percentage threshold value of 50%

was determined through experimentation as it produced the most optimal results in

the data sets.

Table 4.2: Opcode N -gram performance with varied N values, averaged over 30 runs.
Standard deviation values are shown in parentheses.

N Versions Compilers Authors
2 33.68% (3.27%) 59.55% (8.23%) 33.33% (4.37%)
3 58.95% (4.23%) 71.09% (4.96%) 35.90% (9.06%)
4 59.29% (4.35%) 71.67% (5.02%) 36.11% (18.61%)

4.2.3. Opcode Collocation. Although a viable number of feature selection

algorithms had been created to assist in the compiler and versions classifications, few

of the aforementioned algorithms were sufficient in distinguishing authorship. It is

difficult to capture programming style in low-level features. In order to accurately

capture some semantic characteristics about the manner in which a programmer

writes code, high-level features that highlight the relationship between instruction

24

sequences are required in some form. In this feature selection algorithm, opcode

collocations were used to extract information about programming style.

Collocations show the relationships of objects, such as words, and express

how they are conventionally grouped. For instance, in linguistics, the words “tall”

and “tree” are used together more often than the words “high” and “tree”. These

words are therefore strongly connected. Determining these strong connections can be

done via a mutual information calculation [31]. The formula for mutual information

compares the probability of two objects occurring together if they are independent

and the probability of their actual occurrence together. Equation 4.3 shows the

mutual information formula.

I = P (XY) · log
P (XY)

P (X)P (Y)
(4.3)

I is the mutual information value and X and Y are the two objects being compared.

This concept was applied to the opcodes of each application to potentially extract

information about programming style from the authorship data set. The authorship

experiment considered only applications that were compiled in the exact same way to

negate the influence of compiler bias on the opcode occurrence. The way in which a

programmer codes an application could cause a stronger collocation of certain opcode

combinations in much the same way that a writer has a greater prepensity for putting

together certain word combinations.

Such as with the system calls feature, the collocation feature selection tech-

nique considered the set of collocations to be a vector with each opcode pair signifying

a dimension. An average direction vector was calculated for a category, and the dif-

ference in direction from a test program’s direction vector determined the ultimate

value of this feature.

25

4.2.4. Registers. Register allocation is the process of assigning a large num-

ber of variables to a limited number of available processor registers. Registers can

then be accessed to retrieve allocated data. The occurrence of register use, whether

for loading or saving, was the focus of this feature selection algorithm.

The compiler choice has the greatest influence in deciding which registers are

used more frequently. When using the same compiler and optimization flags, how-

ever, the way in which a programmer chooses to design an application could lead to a

greater allocation or reference of variables, which in turn, affects the register alloca-

tion. The register use frequency was extracted statically from a linear disassembly of

each file. In the experiment, the register use was expressed with a histogram, which

was again used in a vector direction calculation. The individual registers symbolized

dimensions while their frequency of use in an application determined the magnitude.

An average category direction vector was calculated, and the difference in direction

of test program vectors was used to categorize the data set.

4.3. INDIVIDUAL ATTRIBUTE PERFORMANCE

Before implementing all of the features as primitives in a GP algorithm, each

attribute’s performance in categorizing the data sets was first examined. In each ex-

periment, 80% of the data was used as the training set for determining the pertinent

features and 20% was used as the testing set. Each feature was individually tested

30 times over both datasets with randomized training and testing groups for each

run. The accuracy of each feature was independently gathered, and the results con-

firmed many of the assumptions about which experiments would benefit from each

feature selection method. The averages of the results for the versions and compiler

experiments are shown in Figure 4.2.

26

Figure 4.2: Individual feature tests run on the versions and compiler data sets, av-
eraged over 30 runs. 80% of the data was dedicated to the training set,
and the rest comprised the testing set.

It is evident that while both N -gram features produced performed very well,

they were not perfect for all cases. The other features showed signs of promise in

certain setups.

Initial experiments suggested that this same combination of features would

not be sufficient in distinguishing the authors data set. As a result, two additional

features, register vectors and opcode collocation, were introduced to assist in cate-

gorizing the data. It was clear that the additional high-level features were needed to

represent more of the programming styles in the authorship data set.

Figure 4.3 shows the accuracy of all features when individually applied to the

authorship data set. The results are averaged across 30 runs.

27

Figure 4.3: Individual feature tests run on the authorship data set, averaged over 30
runs. 80% of the data was dedicated to the training set, and the rest
comprised the testing set.

The ultimate goal was to use some combination of these features to achieve

fast, consistent results with high accuracy and outperform all single features. The

method used in accomplishing this goal is explained in the following sections.

28

5. GENETIC PROGRAMMING METHODOLOGY

A GP algorithm was developed to evolve decision trees that would represent

each individual category. In this way, a program could be matched to multiple cat-

egories (such as a program that belongs to a certain version group, and has been

compiled by a particular compiler). The terminals in the GP trees contain the fea-

ture selection data presented in the previous section. Every category has its own

values for each attribute, normalized between zero and one, and the terminals con-

tain the relational data for a program being examined for acceptance into a category.

For instance, a byte N -gram terminal would contain the percent match between the

N -gram histogram of the program in question and the essential N -gram histogram

features selected for a category. For cyclomatic complexity and bonding, the dif-

ference value is subtracted from one when normalized so that a high value in that

terminal denotes a closer match. A linear disassembler was used for any features

requiring disassembly.

The functional operators used in the non-leaf nodes of the GP trees are the

binary operators AND, OR, and XOR. Due to the normalization of the terminal data,

the binary operators must use fuzzy logic operators to be evaluated appropriately.

Fuzzy logic dictates that the union of two values (OR) is equivalent to the maximum

of both values, while an intersection (AND) is the same as a minimum of the values.

A negation is equal to one minus the value. Extrapolating this further, an XOR can

be represented as the AND of a higher value and the negation of a lower value.

Testing showed that if a hard threshold is imposed for the binary evaluations

within the trees, such as evaluating anything greater than .5 as true, the category

matching is far less precise. By using the fuzzy logic binary operators, a best match

29

can be evaluated because each tree receives a numerical value as opposed to a true

or false evaluation. Figure 5.1 illustrates this concept.

Tree A Tree B

Figure 5.1: A fuzzy logic example showing that using a threshold, such as ≥ .5 sig-
nifying true for a boolean operation, does not distinguish categories well.
Both of the trees in this example would evaluate to true. Using the
max/min rules, however, Tree A evaluates to .9987 while Tree B evalu-
ates to .5141. This is used to prioritize matches.

In order for the GP algorithm to assess the quality of each tree in the popula-

tion, a fitness function is needed. The fitness function does make use of a threshold

(.5) to denote a match during the training phase. When a decision tree is evaluated

for fitness, each program that makes up a category in the training set, known as the

category set, is evaluated to determine if it would be accepted into the category using

the current tree. An equal number of programs outside of the category set are evalu-

ated to guide the decision tree in properly filtering out known mismatches. This set

of programs, called the helper set, reduces the number of false-positives and ensures

that the trees do not evolve to accept every program. A program in the helper set

is not accepted by a category if the tree returns a value lower than the lowest match

from the category set. Essentially, the lowest matching member of the category set

becomes the new threshold for acceptance. The helper set carries the same weight as

the category set to preserve fairness in acceptance and filtration.

30

6. EXPERIMENTAL SETUP

When testing the validity of this approach, only Windows executables were

considered. Most software is developed for Windows, and it allows for an easy collec-

tion of data. The software in the versions and compiler data sets consisted of a large

variety, ranging from video game emulators, system monitoring tools, and compres-

sion applications, to single-algorithm programs such as basic bubble sort and AVL

tree implementations.

A GP generally requires a large number of parameters, all of which benefit

greatly from tuning. However, in practical applications where a system administrator

or security expert may need to evolve decision trees to categorize software, parameter

tuning would be both too time-consuming, and out of the scope of their knowledge

base. The algorithm should perform well enough under conditions where parameter

tuning will not be performed. As such, some reasonable, but mostly arbitrary param-

eters were used in these experiments. A high tree depth was not necessary for either

the versions or the compilers problem since optimal convergence came quickly with

small values, and testing showed that higher values produced redundant logic. The

authorship data set consistenly performed with three to ten percent higher average

accuracies when a slightly higher tree depth was allowed. These concepts are easy

to grasp, where as determining optimal terminal conditions and population sizes are

not. Throughout the algorithm’s runs, parsimony pressure was added to the trees

to encourage smaller tree sizes and prevent unnecessary growth. The algorithm was

trained on 80% of the data and tested on the remaining 20%. The intent of this

option was to make sure that the evolved formula was not over-specialized to the

31

dataset. 30 runs were performed with the category, helper, and testing sets random-

ized each time. Table 6.1 shows the parameters applied to every category’s GP in

each problem.

Table 6.1: GP parameters

Parameter Versions Compilers Authors
µ 100 100 100
λ 20 20 20

max depth 2 2 3
selection k-tournament k-tournament k-tournament
survival k-tournament k-tournament k-tournament

k 7 7 7
crossover single-point single-point single-point
mutation sub-tree sub-tree sub-tree

mutation rate .1 .2 .2
termination 5000 generations 5000 generations 5000 generations

The results of these configurations are shown and discussed in the subsequent

sections.

32

7. RESULTS

It is always important to ensure that a GP algorithm does not converge too

early. During the all phases of these experiments, it is very clear what the maximum

value should be. When all of the category applications are matched correctly and

all of the helper set applications are filtered out during training, a 100% accuracy

rate is achieved. In all of the experiments we performed, The average fitness of

each GP population achieved the maximum value by the end of the evaluations.

Figures 7.1, 7.2, and 7.3 show the average fitness progression of the populations

(converted to percent accuracies in order to preserve an identical scale) across the

evaluations for each experiment. It is clear from these figures that the convergence

was appropriate.

Figure 7.1: Fitness progression across the evaluations for the versions data set

33

Figure 7.2: Fitness progression across the evaluations for the compilers data set

Figure 7.3: Fitness progression across the evaluations for the authors data set

Figure 7.4 shows the matching accuracy of the GP method for all three testing

datasets, averaged over 30 runs.

34

Figure 7.4: Percent match with GP decision trees – versions max = 100%, versions
min = 89.47%; compilers max = 100%, compilers min = 82.69%; authors
max = 100%, authors min = 66.66%

Due to the sufficiently large size of the compiler data set, an extra plot was

produced to visualize potential overfitting in that experiment. The testing data was

applied to every new generation of decision trees during the evolution of the training

phase. The percent accuracy of categorizing the testing set was plotted against the

evaluations. The plot is shown Figure 7.5.

Figure 7.5: Compilers testing set percent match plotted against evaluations

35

The average accuracy reaches its highest percentage earlier in the evolution

cycle and wavers at slightly lower values at the end. This dip in accuracy is an in-

dication of the GP trees overfitting to the training data. While this is an undesired

effect, the drop in accuracy is only a few percent, and the results were achieved with-

out parameter tuning. Parameter tuning may allow for a more generalized solution

which caps the evolution when the testing set’s matching accuracy peaks, but such a

small gain may not be worth the rigor required for true parameter optimization.

The average accuracies of the GP trees in every experiment were higher than

those of any single feature. The N -grams performed only slightly worse, however.

A set of t-tests were used to show that this method is a significant improvement

over running only the N -grams feature. F -tests showed that unequal variance should

be assumed for the versions data, but not the compilers and authors data. In all

three t-tests, |t Stat| was greater than t Critical Two-Tail. This means that the

improvement gained from using the GP method is statistically significant. The results

are summarized in Tables 7.1-7.6.

Table 7.1: F -Test: Two-Sample For Variances - Versions

Parameter Decision Trees N-Grams
Mean 97.19298246 95.0877193

Variance 12.863374 1.783042
df 29 29
F 7.21428571

P(F ≤ f) One-Tail 4.2497E-07
F Critical One-Tail 1.86081144

36

Table 7.2: F -Test: Two-Sample For Variances - Compilers

Parameter Decision Trees N-Grams
Mean 95.25641026 92.69230769

Variance 17.020336 12.08937
df 29 29
F 1.407876231

P(F ≤ f) One-Tail 0.181150886
F Critical One-Tail 1.860811435

Table 7.3: F -Test: Two-Sample For Variances - Authors

Parameter Decision Trees N-Grams
Mean 90.5555555555 81.66666667

Variance 89.7190293744 351.532567
df 29 29
F .25522252497799

P(F ≤ f) One-Tail .00021729
F Critical One-Tail .537399965

Table 7.4: t-Test: Two-Sample Assuming Unequal Variance - Versions

Parameter Decision Trees N-Grams
Mean 97.19298246 95.0877193

Variance 12.863374 1.783042
Hypoth. Mean Dif. 0

df 37
t Stat 3.0130152454

P(T ≤ t) Two-Tail 0.0046475888
t Critical Two-Tail 2.026192463

37

Table 7.5: t-Test: Two-Sample Assuming Equal Variance - Compilers

Parameter Decision Trees N-Grams
Mean 95.25641026 92.69230769

Variance 17.020336 12.08937
Pooled Variance 14.5548528

Hypoth. Mean Dif. 0
df 58

t Stat 2.6030176593
P(T ≤ t) Two-Tail 0.011713133
t Critical Two-Tail 2.0017174841

Table 7.6: t-Test: Two-Sample Assuming equal Variance - Authors

Parameter Decision Trees N-Grams
Mean 90.5555555555 81.66666667

Variance 89.7190293744 351.532567
Pooled Variance 220.625798

Hypoth. Mean Dif. 0
df 58

t Stat 2.3177413
P(T ≤ t) Two-Tail .02401221
t Critical Two-Tail 2.00171748

The performance of the GP trees was enhanced by the other features. Using

only N -grams achieves a certain baseline, and the use of additional features increases

the accuracy as more data is presented when categorizing the software each experi-

ment. When N -grams cause false-positives to occur due to low matching percentages

for certain test programs, the other features in the tree minimize the error as better

matches are prioritized with the binary operators.

7.1. FUNCTIONAL CLASSES EXPERIMENT

A fourth experiment was also performed wherein the intent was to categorize

software based on functionality using all of the same features detailed in Section

4. A set of 50 programs spanning thirteen categories of manually-labeled functional

38

classes were used. The GP was unable to achieve results that were any better than

a random search. This is a much harder problem, and the features used in the other

three experiments were not ideal in distinguishing these functional classes. It was

hypothesized that at least the system calls attribute would be able to produce some

correct matches, given that it could select features that elucidate some functionality.

Unfortuantely, the feature selection technique was not enough. It may be possible

to solve this problem using the GP decision tree method if other feature selection

algorithms were developed to extract higher-level information about the program

functionalities. For instance, developing some algorithm detection features would

likely result in higher accuracies. Figure 7.6 shows the poor performance of each of

the feature selection techniques. The same setup was used as in the other experiments.

80% of the data was used for training, and the rest was used for testing. The results

are averaged over 30 runs.

Figure 7.6: Individual feature tests run on the functional classes data set, averaged
over 30 runs.

39

Given the poor perforamnce of the single features, the GP algorithm was not

expected to perform well either. The box plot in Figure 7.7 shows the results of the

GP. A single max outlier exists where the algorithm achieved 28.57% accuracy.

Figure 7.7: Percent match with GP decision trees on functional classes –
max = 28.57%, min = 7.14%

7.2. C4.5 COMPARISON

The results of the GP decision trees were compared to the classic statistical

decision tree classifier C4.5, which employs a table of data to make a decision tree

classifier with rules at each node of the tree. The nodes of the tree are based on the

table attributes that best split the data in order to achieve a correct categorization

of a labeled data set. This tree can then be used on a testing set, similar to the

GP approach. The same attributes and feature selection methods were used in both

the GP trees and the C4.5 algorithm’s data table. 80% of each category was again

combined to create the training set, and the rest was used for testing. All of the

feature selection values extracted for an application were normalized values, relative

to values of each category. As such, the table that was created for C4.5 had rela-

tional data representing how much each program matched to each category for every

40

attribute. The training and testing sets were randomized for 30 total runs. A box

plot containing the percent accuracy of the C4.5 algorithm on our data sets is shown

in Figure 7.8.

Figure 7.8: Percent match with C4.5 decision trees – versions max = 100%, versions
min = 84.21%; compilers max = 76.92%, compilers min = 53.85%; au-
thors max = 83.33%, authors min = 33.33%

The average accuracy in each experiment was lower for C4.5 than the GP

method. A set of t-tests were performed again to show that the results of using GP

were significantly better than those of C4.5. F -tests showed that two-tailed t-tests

with equal variance were required for all experiments. The results of all tests are

shown in Tables 7.7-7.12.

Table 7.7: F -Test: Two-Sample For Variances - Versions

Parameter C4.5 GP
Mean 93.68421053 97.19298

Variance 27.50979081 12.86337
df 29 29
F 2.138613861

P(F ≤ f) One-Tail 0.022440709
F Critical One-Tail 1.86081144

41

Table 7.8: F -Test: Two-Sample For Variances - Compilers

Parameter C4.5 GP
Mean 64.42307692 95.25641

Variance 47.12048562 17.02034
df 29 29
F 2.768481518

P(F ≤ f) One-Tail 003869137
F Critical One-Tail 1.86081144

Table 7.9: F -Test: Two-Sample For Variances - Authors

Parameter C4.5 GP
Mean 56.111111111 90.5555555555

Variance 296.6155811 89.71903
df 29 29
F 3.306049822

P(F ≤ f) One-Tail 0.000952421
F Critical One-Tail 1.8608114355

Table 7.10: t-Test: Two-Sample Assuming Equal Variance - Versions

Parameter C4.5 GP
Mean 93.68421053 97.19298

Variance 27.50979081 12.86337
Pooled Variance 20.18658261

Hypoth. Mean Dif. 0
df 58

t Stat -3.02460989
P(T ≤ t) Two-Tail 0.00370572
t Critical Two-Tail 2.001717484

42

Table 7.11: t-Test: Two-Sample Assuming Equal Variance - Compilers

Parameter C4.5 GP
Mean 64.42307692 95.25641

Variance 47.12048562 17.02034
Pooled Variance 37.0704108

Hypoth. Mean Dif. 0
df 58

t Stat -21.0869538
P(T ≤ t) Two-Tail 7.0227E-29
t Critical Two-Tail 2.001717484

Table 7.12: t-Test: Two-Sample Assuming Equal Variance - Authors

Parameter C4.5 GP
Mean 56.111111111 90.5555555555

Variance 296.6155811 89.71903
Pooled Variance 193.1673052

Hypoth. Mean Dif. 0
df 58

t Stat -9.598381406
P(T ≤ t) Two-Tail 1.38639E-13
t Critical Two-Tail 2.001717484

In every experiment, the GP method’s higher accuracies were statistically

significant. The number of false-positives was far higher with C4.5. It was likely

the addition of the helper set that enabled the GP algorithm to perform so well.

The helper set trained the decision trees to filter out programs that do not belong

to their categories. Without the helper set, the GP trees would evolve to accept all

applications, and C4.5 would be far superior in its ability to classify software.

Figures 7.9, 7.10, 7.11, and 7.12 contain some of the GP-evolved trees with

the highest fitness values for certain categories.

43

Figure 7.9: Compilers - GCC, No opti-
mization

Figure 7.10: Versions - Pidgin

Figure 7.11: Versions - Nestopia Figure 7.12: Versions - BaculaTrayMoni-
tor

These figures illustrate how simplistic, yet powerful the trees can be. Fig-

ure 7.10, for instance, contains two high-level features and a low-level feature. If the

N -grams and system calls match well, the minimum value of the two in comparison

to the established category values (derived from the training set) is passed up the

tree. The maximum of this value and the opcode N -grams feature is used as the

ultimate value signifying how closely the test program matches the category. If the

value produced by this tree is higher than that of any other tree, the test program

belongs to this category.

44

8. DISCUSSION

The advantages of using GP to produce decision trees for program classifica-

tion are quite clear. In all three test cases, the decision tree heuristics produced by

the GP performed very well. For the versions problem, the solution produces an av-

erage accuracy of 97.2% while the compilers problem reached a slightly lower average

of 95.3%. The authorship data set was the most difficult to categorize correctly, but

the average accuracy of this method was still 90.6%. The majority of the compiler

mismatches came from incorrectly guessing the optimization flags, not the actual

source compiler. Version mismatches encountered a far different hurdle. Some of the

programs in the versions dataset had very minor changes from one version to the next,

and the evolved trees were able to make those connections. On more complicated

version differences, if two very different versions of the same program were not both

in the category set, some false matches occurred. One of the programs in the dataset

had a size increase of 43% between versions. The evolved heuristics were unable to

make this big leap and relate the versions. Ultimately it is a question of semantics,

but a case can be made that the large variation from one version to the next resulted

in an altogether different application. After all, if an application remains the same

in name but completely overhauls every aspect of its code, it is reasonable to expect

a different categorization between those versions. The results of the author origin

experiment did not suggest a pattern to the false-positives, though certain programs

were mismatched more often than others. Based on visual inspection, the coding

styles for those programs seem consistent with the authors that wrote them, but it

is possible that compiler optimization muddled the distinctions.

All of the GP trees reached maximum fitness during the training phase. This

suggests that the success of the decision trees in classifying software lies more in the

45

proper feature selection. The features need to be robust enough to match programs

within a category and filter out applications that do not belong. Even though 100%

accuracy was achieved in the training phase, false positives occurred in testing. The

different tree variations produced by the evolution were likely a result of a varied

training and helper set.

The C4.5 algorithm performed worse than the GP in all three experiments,

reaching average accuracy rates of 93.68%, 64.42%, and 56.11% for the versions,

compilers, and authors data sets, respectively. There are many possible reasons for the

unsuccessful results. Traditionally, data tables used for C4.5 contain direct attribute

values for an item, where as the data tables used in these experiments contained

attribute values for programs as they related to certain established category values.

As such, enough columns had to exist in the data table to represent a program’s

feature values in relation to every cateogry. The number of columns in the table can

be computed with the following equation:

Columns = Features · Categories+ 1 (8.1)

where the +1 denotes the column for labeling the correct category. When the resul-

tant decision trees were examined, the tree for the versions problem seemed to overfit

to the training data as there were many highly specific rules. Regardless, the versions

experiment was most successful for the C4.5 decision tree. The compilers problem

produced a far different tree, however. The tree resolves to being nearly equivalent

to the N -grams feature alone.

It should be noted from the individual feature tests and a majority of the GP

trees, that byte n-grams gathered with our feature selection method produced the best

results. This is presumably due to the types of categories used in these experiments.

In the versions and compiler cases, byte N -grams from the portable executable (PE)

46

header could be the primary features selected with this attribute. Since none of

the applications were purposely obfuscated and had no reason to contain corrupted

or misleading headers, this information most likely led to easy matches. It can be

assumed that these types of features would not be as useful given different problem

types, such as categorizing software by functional classes. The N -gram features were

expected to perform well on the authorship data set as the common trigrams within

a category could indicate programming style.

In these experiments, not all terminals were useful all of the time. Cyclo-

matic complexity was a highly used attribute for the versions problem tests, but not

throughout the compiler identification runs (unless it was included in an XOR). It

stands to reason that the complexity of an application would give little insight to

the compiler used to create it, unless optimization flags caused an extreme difference

in complexity. The system calls primitive experienced the same high frequency of

occurrence in the versions problem tests, but was almost nonexistent when applied

to the compilers dataset. Although bonding occasionally appeared in final solutions

of the compilers problem, it was not a major discriminator. Despite some filtration

qualities within a few decision trees, this metric is best suited for social graphs. The

introduction of the opcode collocations and register features increased the average

accuracy of the authorship data set by almost 10%. It is clear that such a data set

is categorized with a higher accuracy if the features in the GP trees key in on a

programmer’s habits and patterns.

Categories based on a more semantic grouping require more semantic features.

Program behavior is difficult to capture in low-level attributes such as N -grams and

cyclomatic complexity. A fourth experiment was performed to show that categoriza-

tion based on criteria such as functionality cannot be done with the features presented

in Section 4. Using all of the attributes detailed in this thesis on the functional classes

data set resulted in a mere 15% average accuracy for the decision trees. In order to

47

represent such characteristics, algorithm or functionality identification may need to

be implented as a primitive for the GP trees. Extracting such information is difficult

to do and requires longer run times. It is difficult to determine how many primitives

of this nature would be required to achieve high accuracy results.

48

9. FUTURE WORK

The future work of this research can take many logical paths. The results

achieved in this thesis have a high average accuracy, but they can still be improved.

Added both low-level and high-level attributes could drive the average accuracy even

higher. Removing false-positives is necessary for any practical applications of this

approach. More robust feature selection methods would need to be investigated in

order to make that a reality.

It would also be useful to perform proper parameter tuning for the GP algo-

rithms. Although the methodology detailed in Section 5 is sufficient for practitioners

not experienced with EC to achieve high accuracy results, Figure 7.5 shows that the

performance can be increased further by avoiding overfitting and generalizing the

decision trees through parameter tuning.

Most importantly, more difficult categorization problems should be attempted

with these methods. For instance, categorizing software based on functionality would

have far-reaching impact on many fields in computer science, but as was shown in

Section 7.1, that will require more semantic feature extraction. While research in the

area of software quality exists, it would be useful to use this method to categorize

poorly written software or software that is exploitable. Furthermore, it is likely that

different universities or countries have different programming styles of their own.

With the right data and a rich feature set, it would be interesting to categorize

software by country of origin.

Although packing and obfuscation would increase the difficulty substantially,

classifying benign versus malicious programs or categorizing different kinds of mal-

ware would be an essential accomplishment for the field of computer security. The

true strength of the techniques discussed in this thesis lies in the richness of the

49

features that comprise the decision trees. Any research that extracts valuable se-

mantic data about software can be easily combined with this method to further its

categorization capabilities.

50

10. CONTRIBUTIONS

The work presented in this thesis contains three distinct contributions to the

field of computer science. First, a novel and general approach to classifying soft-

ware was developed. The method can be used to categorize software based on many

different criteria, if the right feature selection methods are chosen. Furthermore,

classifying more data into the same categories with this technique does not require

running more EC algorithms or deep analytical comparisons. The evolved trees can

be reused quickly after the initial evolution has completed. Second, an alternative

option to developing decision trees was offered. GP was used to evolve a set of

decision trees that employ fuzzy logic to determine the degree to which a certain

application belongs to a category. While more experiments would need to be per-

formed to verify the validity of this approach in other contexts, in this case, the

decision tree method outperformed C4.5 on three different experiments. Third, and

most important, several quality feature selection methods were provided and their

usefulness in certain problem domains was elucidated. These features are the true

foundations from which the GP trees draw their success. It is worth examining these

contributions when considering problems in similar domains.

51

11. CONCLUSIONS

The need for quick methods of software classification is undeniable. Although

techniques exist to analyze binaries in order to extract some semantic information

about them, most require long running times and considerable computational re-

sources. The ideas presented in this thesis aim to provide a means of quickly catego-

rizing software based on a few key attributes. The notion of evolving decision trees

through GP was explored. Due to the nature of the solutions being evolved by the

GP, they can be reused to categorize more data. Applying a decision tree to a new

set of data without executing the entire GP process requires only a few seconds.

This method can be applied to a large range of problems that require classifi-

cation. All that is required is a training set to evolve initial decision trees, and the GP

does the rest. When distinguishing programs by versions, compiler, or author origin,

the decision trees achieve over 90% accuracy. These same methods can be utilized

to categorize software using different criteria, though more applicable attributes may

need to be mined for features because the particular attributes used in Section 4, as

shown with the functional classes experiment, will not be sufficient discriminators of

every kind of data set. In such instances, more semantic feature extraction methods

may be required to key in on higher-level abstractions of application functionality.

The GP approach was compared to a classic decision tree algorithm called

C4.5. Using the same feature data as was presented to the GP trees, the C4.5 algo-

rithm performed significantly worse in the three primary experiments. This further

validates our use of GP to generate decision trees for classifying software.

52

BIBLIOGRAPHY

[1] Jasenko Hosic, Samuel A. Mulder, and Daniel R. Tauritz. Evolving Decision
Trees for the Categorization of Software. In Proceedings of COMPSAC 2014
- the 38th Annual IEEE International Computers, Software, and Applications
Conference, 2014.

[2] Nathan E. Rosenblum, Xiaojin Zhu, and Barton P. Miller. Who Wrote This
Code? Identifying the Authors of Program Binaries. In Proceedings of the 15th
European Symposium on Research in Computer Security, ESORICS ’11, pages
172–189, September 2011.

[3] Kehan Gao, Taghi M. Khoshgoftaar, and Huanjing Wang. An Empirical In-
vestigation of Filter Attribute Selection Techniques for Software Quality Clas-
sification. In 10th IEEE International Conference on Information Reuse and
Integration, pages 272–277, August 2009.

[4] James F. Bowring, James M Rehg, and Mary Jean Harrold. Active Learning for
Automatic Classification of Software Behavior. In Proceedings of the 2004 ACM
SIGSOFT international symposium on Software testing and analysis, ISSTA ’04,
pages 195–205, July 2004.

[5] Nathan E. Rosenblum, Xiaojin Zhu, Barton P. Miller, and Karen Hunt. Machine
Learning-Assisted Binary Code Analysis. In Workshop on Machine Learning in
Adversarial Environments for Computer Security, NIPS ’07, December 2007.

[6] Bruschi Danilo, Lorenzo Martignoni, and Mattia Monga. Detecting Self-
Mutating Malware Using Control-Flow Graph Matching. In Proceedings of the
Third international conference on Detection of Intrusions and Malware and Vul-
nerability Assessment, DIMVA ’06, pages 129–143, 2006.

[7] Vijay Nagarajan, Rajiv Gupta, Xiangyu Zhang, Matias Madou, and Bjorn
De Sutter. Matching Control Flow of Program Versions. In IEEE International
Conference on Software Maintenance, ICSM, pages 84–93, October 2007.

[8] Nathan E. Rosenblum, Barton P. Miller, and Xiaojin Zhu. Extracting Compiler
Provenance from Program Binaries. In Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program Analysis for Software Tools and Engineering,
PASTE ’10, pages 21–28, June 2010.

[9] Gordon V. Kass. An Exploratory Technique for Investigating Large Quantities
of Categorical Data. Applied Statistics, 29(2):119–127, 1980.

53

[10] Jay Fowdar, Keeley Crockett, Bandar Zuhair, and James O’Shea. On the Use
of Fuzzy Trees for Solving Classification Problems with Numeric Outcomes. In
Proceedings of the Seventh International Conference on Machine Learning and
Cybernetics, volume 1, pages 12–17, July 2008.

[11] John Ross Quinlan. Induction of Decision Trees. In Machine Learning, volume 1,
pages 81–106. Kluwer Academic Publishers, Boston, MA, USA, March 1986.

[12] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, Inc., San Francisco, CA, USA, 1993.

[13] Juan Sun and Xi-Zhao Wang. An initial comparison on noise resisting between
crisp and fuzzy decision trees. In Proceedings of 2005 International Conference
on Machine Learning and Cybernetics, volume 4, pages 2545–2550, August 2005.

[14] Pawel Lewicki and Thomas Hill. CHAID Analysis. In Statistics: Methods and
Applications, pages 84–86. StatSoft, Inc., Tulsa, OK, USA, November 2005.

[15] John R. Koza. Overview of Genetic Programming. In Genetic Programming:
On the Programming of Computers by Means of Natural Selection, pages 74–78.
MIT PRESS, Cambridge, MA USA, 1992.

[16] Mario Bkassiny, Yang Li, and Sudharman K. Jayaweera. A Survey on Machine-
Learning Techniques in Cognitive Radios. IEEE Communications Surveys &
Tutorials, 15(3):1136–1159, July 2013.

[17] Jose L. Ribeiro Filho, Philip C. Treleaven, and Cesare Alippi. Genetic-Algorithm
Programming Environments. Computer, 27(6):28–43, June 1994.

[18] Jih-Yiing Lin and Ying-Ping Chen. On the Effect of Population Size and Se-
lection Mechanism from the Viewpoint of Collaboration between Exploration
and Exploitation. In 2013 IEEE Workshop on Memetic Computing, MC, pages
16–23, April 2013.

[19] Pedro G. Espejo, Sabastian Ventura, and Francisco Herrera. A Survey on the
Application of Genetic Programming to Classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(2):942–
958, March 2010.

[20] Riccardo Poli and Nicholas Freitag McPhee. Parsimony Pressure Made Easy:
Solving the Problem of Bloat in GP. In Proceedings of the 10th annual conference
on Genetic and evolutionary computation, GECCO ’08, pages 1267–1274, July
2008.

[21] Edmund K. Burke, Matthew R. Hyde, Graham Kendall, and John R. Woodward.
A Genetic Programming Hyper-Heuristic Approach for Evolving 2-D Strip Pack-
ing Heuristics. IEEE Transactions on Evolutionary Computation, 14(6):942–958,
December 2010.

54

[22] Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender
Ozcan, and John R. Woodward. Exploring Hyper-heuristic Methodologies with
Genetic Programming. In Computational Intelligence: Collaboration, Fusion and
Emergence, pages 177–201. Springer, Berlin-Heidelberg, Germany, March 2009.

[23] Edmund K. Burke, Matthew R. Hyde, Graham Kendall, and John R. Woodward.
Automatic Heuristic Generation with Genetic Programming: Evolving a Jack-
of-all-Trades or a Master of One. In Proceedings of the 9th annual conference on
Genetic and evolutionary computation, GECCO ’07, pages 1559–1565, 2007.

[24] Una-May O’Reilly. Using a Distance Metric on Genetic Programs to Understand
Genetic Operators. In IEEE International Conference on Systems, Man, and
Cybernetics, pages 4092–4097, October 1997.

[25] Silvio Cesare and Yang Xiang. Malware Variant Detection Using Similarity
Search over Sets of Control Flow Graphs. In IEEE 10th International Conference
on Trust, Security and Privacy in Computing and Communications, TrustCom,
pages 181–189, November 2011.

[26] John Ross Quinlan. Improved Use of Continuous Attributes in C4.5. Journal of
Artificial Intelligence Research, 4(1):77–90, January 1996.

[27] Daniel Remy Tauritz. Adaptive Information Filtering: concepts and algorithms.
Ph.D. dissertation, Leiden University, 2002.

[28] Imre Solti, Colin R. Cooke, Xia Fei, and Mark M. Wurfel. Automated Classifica-
tion of Radiology Reports for Acute Lung Injury: Comparison of Keyword and
Machine Learning Based Natural Language Processing Approaches. In IEEE In-
ternational Conference on Bioinformatics and Biomedicine Workshop, BIBMW
2009, pages 314–319, November 2009.

[29] Owen Macindoe and Whitman Richards. Graph Comparison Using Fine Struc-
ture Analysis. In Proceedings of the 2010 IEEE Second International Conference
on Social Computing, SOCIALCOM ’10, pages 193–200, August 2010.

[30] Raja Khurram Shahzad, Niklas Lavesson, and Henric Johnson. Accurate Adware
Detection using Opcode Sequence Extraction. In Sixth International Conference
on Availability, Reliability and Security, ARES, pages 189–195, August 2011.

[31] Jian-Fang Lin, Sheng Li, and Yuhan Cai. A new collocation extraction method
combining multiple association measures. In Proceedings of the Seventh Interna-
tional Conference on Machine Learning and Cybernetics, volume 1, pages 12–17,
July 2008.

[32] Supreeth Burji, Kathy J. Liszka, and C. C. Chan. Malware Analysis Using
Reverse Engineering and Data Mining Tools. In International Conference on
System Science and Engineering, ICSSE, pages 619–624, July 2010.

55

[33] Avi Pfeffer, Catherine Call, Arun Lakhotia, John Bay, and Robert Hall. Malware
Analysis and Attribution Using Genetic Information. In 7th International Con-
ference on Malicious and Unwanted Software, MALWARE, pages 39–45, October
2012.

[34] Sharif Monirul, Andrea Lanzi, Jonathon Griffin, and Wenke Lee. Automatic
Reverse Engineering of Malware Emulators. In 30th Symposium on Security and
Privacy, pages 94–109, May 2009.

[35] Martin Apel, Christian Bockerman, and Michael Meier. Measuring Similarity
of Malware Behavior. In IEEE 34th Conference on Local Computer Networks,
pages 891–898, October 2009.

[36] Nicholas Sherlock and Andrew Trotman. Id - Dynamic Views on Static and Dy-
namic Disassembly Listings. In Proceedings of the 14th Australasian Document
Computing Symposium, pages 19–26, December 2009.

56

VITA

Jasenko Hosic was born on October 24th 1989 in Bosnia and Herzegovina.

His family moved to Germany in 1992 to escape the Bosnian genocide. In 1997,

his family moved to the United States. He spent the remainder of his childhood in

Saint Louis, Missouri. He was ranked in the top ten of his high school, Rockwood

Summit, with a GPA of 4.33. During his high school years, he became a National AP

Scholar, National Merit Commended student, John M. Kasner award recipient, and

Falcon Flight award winner. From fall of 2008 to Spring of 2014, he attended Missouri

University of Science and Technology to earn Bachelor of Science degrees in Computer

Science and Computer Engineering with the help of Bright Flight and Missouri S&T

Chancellor’s scholarships. From Spring 2009 to Spring of 2010, Jasenko served as

Campus Ambassador and President of Missouri S&T’s OSUM organization, an open-

source initiative funded by Sun Microsystems. During the spring and summer of

2010 and the summer of 2011, he worked as a developer for Nucor-Yamato Steel.

Throughout his years at Missouri S&T, he was an active member of ACM SIG-

Security. In fall of 2012, he was the organization’s Special Projects Officer. In the

summer of 2012, Jasenko worked for Sandia National Laboratories as a technical

intern in the Center of Cyber Defenders. He was then accepted into Sandia’s Critical

Skills Master’s Program that lasted from the summer of 2013 to Spring of 2014.

With funding from Sandia’s Critical Skills Master’s Program, Jasenko earned his

Master of Science degree in Computer Science from Missouri University of Science

and Technology in August of 2014 and performed the research upon which this thesis

was based.

	Evolving decision trees for the categorization of software
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	Background
	EVOLUTIONARY COMPUTATION
	EC Cycle
	Genetic Programming

	Related Work
	Feature Selection
	LOW-LEVEL FEATURES
	Cyclomatic Complexity
	Byte N-Grams
	Bonding

	HIGH-LEVEL FEATURES
	System Calls
	Opcode N-Grams
	Opcode Collocation
	Registers

	INDIVIDUAL ATTRIBUTE PERFORMANCE

	Genetic Programming Methodology
	Experimental Setup
	Results
	FUNCTIONAL CLASSES EXPERIMENT
	C4.5 COMPARISON

	Discussion
	Future Work
	Contributions
	CONCLUSIONS
	BIBLIOGRAPHY
	VITA

