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ABSTRACT

The expanding cloud computing services offer great opportunities for consumers

to find the best service and best pricing, which however raises new challenges on how to

select the best service out of a huge pool. It is obvious time-consuming for consumers to

collect the necessary information and analyze all service providers to make the decision.

It is also a highly demanding task from a computational perspective, because the same

computations may be conducted repeatedly by multiple consumers who have similar

requirements. In this paper, we propose a novel brokerage-based architecture in the

cloud, where the cloud brokers is responsible for the service selection. In particular, we

design a unique indexing technique for managing the information of a large number of

cloud service providers. We then develop an efficient service selection algorithm that

recommend potential cloud service providers to the cloud consumers. We carry out

extensive experimental studies on real and synthetic cloud data, and demonstrate a

significant performance improvement over the existing approaches.
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1. INTRODUCTION

Cloud services offer an elastic and scalable variety of storage space and

computing capabilities, which are crucial to most business owners, especially small and

medium sized businesses [27]. While this has fueled the large growth in cloud services,

the growing number of cloud services make it difficult for the potential users to weigh

and decide which options suit their needs best. Without external helps, cloud service

consumers must manage payments, governance, data movement, customization and

enrichment, with providers and their services. This can rapidly become a difficult task

[3], [8]. There is clearly a need of an additional computing layer on top the base service

provisioning to enable tasks such as discovery, mediation, and monitoring. This

additional layer of computing is referred to as a brokerage system.

In general, a cloud broker is an intermediary between users and service providers,

in charge of aggregating, integrating or customizing cloud services [7], [15]. One of the

best known brokers is CloudSwitch [6], established in 2008 with service for only

Amazon EC2. It has the ability to provide federated services on demand and make the

cloud a secure and seamless extension of the enterprise data center. RightScale [21] is

another cloud broker that offers a cloud management platform to facilitate deployment

and management of applications across multiple clouds. Recently, Dell has also claimed

an interest in cloud services brokerage, and has been working in partnership with

VMWare to provide new brokerage infrastructure and services [25].

Among various responsibilities that a cloud broker can carry, the very first

important task could be to help cloud consumers select the appropriate cloud service

providers (CSPs) that satisfy their requirements. The selection of CSPs requires
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addressing a number of interesting questions raised by the unique characteristics of the

cloud computing environments. First, cloud services are enriched with non-standardized

representation of the cloud providers’ properties. Also, the Service Level Agreements

(SLAs) of cloud providers often vary in format and content. Therefore, existing web

service selection algorithms [13], [16], [24] cannot be directly applied to the cloud

domain. Secondly, a cloud user may have a service requirement that cannot be fulfilled

by any single CSP, thus requiring an aggregation of CSPs. Aggregating CSPs is

nontrivial, as cloud service providers build complex relationships with one another

through subcontracting mechanisms. For example, when aggregating service providers

that rely on the same contractor for storage space, the broker should avoid overextending

the actual storage space.

Figure 1.1. An Overview of the Cloud Brokerage Model

Bearing these challenges in mind, we propose a comprehensive brokerage-based

architecture to support cloud service selection. The overall architecture is illustrated in

Figure 1. The cloud broker has a collection of CSPs’ profiles and built an efficient index

structure (namely the Bcloud-tree) for retrieval of desired CSPs as well as management of

profile updates. The cloud broker takes cloud consumers’ requirements as input and
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groups similar queries that issued during the same time interval. Then, the cloud broker

queries our proposed Bcloud-tree to identify the CSPs that satisfy consumers’ requirement.

A preliminary version of this work appears in [26], where we presented the basic

idea of the cloud brokerage and an approach called CSS (Cloud Service Selection). In

this paper, we present a whole new approach that is much more efficient and accurate

than the CSS approach. Specifically, our new major contributions include the following:

(i) we define a more general type of service selection query that allow users to specify

service selection requests that contain intervals of desired values (e.g., a price range)

whereas the existing approach can only deal with exact match (e.g., a single price value);

(ii) we propose a new indexing structure, the Bcloudtree, to manage the CSPs’

information, along with a new query algorithm that achieves better efficiency and query

accuracy compared to the CSS approach; (iii) we also carried out extensive experiments

that compare our two approaches and a baseline approach using the data collected from

top cloud providers [22].
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2. RELATED WORKS

There have been some high level discussion on service provider selection and

brokerage-based frameworks in the cloud [7], [11], [15], [22]. For example, Gartner [8]

introduced different types of cloud brokerage including arbitrage, aggregation and

intermediation. Others [7], [15] discussed possible responsibilities of cloud brokers such

as service monitoring and service aggregation. However, to the best of our knowledge,

there is not any existing work that provides a specific solution to the cloud service

selection problem. The only academic effort in this direction is from Buya et al. [4] who

provide a general description of the key role of cloud broker services for a market-

oriented cloud service. In addition, although not specific to cloud brokers, Xin et al. [28]

have considered collaborative protocols among cloud service providers for resource

sharing. In particular, Xin et al. use trust as the only criteria to select service partners. As

we show next, our work considers a much wider range of factors during the service

selection. Han et al. [9] describe a time recommendation system for cloud computing [?],

which employs static approach to provide a ranking of available cloud providers. The

recommendation is done based on QoS and Virtual Machine (VM) platform factors of

difference CSPs. Our approach considers multiple factors, and provides a ranking based

on variable user queries expressed as a function of these factors. Recently, Pawluk et al.

[19] proposed a broker service to facilitate resource allocation decisions (RAD), and

formulate the solution as a multi criteria optimization problem. This RAD problem has

been earlier studied by Hosseini et al. [14], who adopted a static approach without

considering the possible change of the resource topology over time. The research on the

RAD problem is orthogonal to ours.
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While cloud brokerage and selection is a relatively unexplored territory, service

selection problem have been studied in great depth in the context of Web services. To

date, most of works on Web service selection are based on QoS (Quality of Service) [20].

For instance, Kalepu et al [13] propose an objective measure of QoS based on the extent

up to which the Web service meets its service level agreements. Paolucci et al. [18]

proposed solution based on DAML-S, a DAML-based language for service description,

and then they perform a semantic matching between the request and a service

advertisement. Zeng et al. [30] developed a middleware that composes multiple Web

services to meet a single user’s need. The goal is to maximize user satisfaction while

satisfying user and service provider constraints at the same time. Bentallah et al. [2] also

propose various algorithms for Web service composition including fast composition,

scalable composition and distributed composition. Unlike works on Web service domain,

our work is unique in several aspects. First, our service selection approach is based on

efficient indexing and querying of service provider information. Such techniques have

never been leveraged in Web service domain. Second, we deal with much more

complicated properties and relationships pertaining to the service providers due to the

complexity of the cloud.
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3. THE CLOUD BROKERAGE MODEL

As shown in Figure 1, our proposed cloud brokerage model supports three types

of entities: (i) cloud users (consumers); (ii) cloud brokers; and (iii) cloud service

providers (CSP). The cloud broker serves as a middle man in-between the CSPs and

users. Specifically, the cloud broker, which may have a contract with the CSPs, maintains

latest information about the CSPs such as their service types, unit costs, and available

resources. When a user is looking for certain kind of cloud services, he/she submits the

desired service requirements to the cloud broker. The broker searches its database and

recommends the best available CSPs to the user.

The realization of this brokerage architecture includes two key technical

challenges. The first challenge is that the cloud broker should efficiently manage the

potentially large amount of CSPs’ information and ensure that they are up-to-date. For

example, the available resources of a CSP should be timely updated once a new service is

established or a service is terminated. The second challenge is that the broker should

respond to a user’s request promptly. This requires the broker to have the ability to

quickly retrieve, compare and rank CSPs against the user’s requirements.

To address the first challenge, we leverage indexing techniques that groups CSPs

according to the similarity of their properties. Then, we develop efficient query

algorithms to identify CSPs that satisfy users’ requirements. We elaborate these two

techniques in Section 4 and 5 respectively. For better understanding of our approach, we

first introduce the properties of CSPs considered in our work, and give the formal

definition of a user’s service request.
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3.1 PROPERTIES OF CSPS

This work focuses on ten properties most commonly acknowledged as relevant

properties of CSPs. We discuss the approach used to identify these properties in Section

6.1.

• Service Type (p1). This denotes the type of service provided, which could vary

between service on-demand, and reserved instances, or refer to specialized

services such as custom IPs in case of Amazon or caching in case of Windows

Azure.

• Security (p2). This denotes the level of security and/or privacy that can be

achieved using the various options provided by the cloud provider. If the service

provider satisfies three or more of the Information Security guidelines listed in the

Security Guidance for Critical Areas of Focus in cloud Computing published by

the cloud Standards group [23], apart from the compliance or risk management

guidelines, the service providers are classified as having high security. If they

satisfy only the compliance, legal or risk management guidelines they are

classified as having medium security. Else they are classified as having low

security. Accordingly, when the service provider offers advanced security

services such as Access Control, offered by Windows Azure, or it adopts a

number of security standards (e.g., secure connections), the level of security is

labeled as high. When there are security options, but these options are limited to

secure passwords and encryption as in case of Rackspace, the level of security

that can be achieved is considered to be low. When the features do not include

detailed access control options, but still provide improved security through
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automatic security updates, as Google does for its Clouds, then the security level

is considered to be medium.

• Quality of service (QoS, p3). QoS is determined by the cloud broker which

analyze the collected information about service providers over time, and ratings

provided by other vendors. It is briefly represented using value high, low or

medium.

• Measurement units (p4). This represents in what terms the service can be charged.

Measurement can be in terms of memory used, the number of the transactions, the

number of connections or data transfers, or the time taken for the data transfer.

• Pricing Units (p5). This indicates how long a service is reserved for. For example,

the price could be charged per hour, per month or per year.

• Instance sizes (p6). This refers to the amount of resources used at a given instant

by the user. The size may vary from micro (in case of Amazon EC2) to small,

medium, large, or extra large to something such as quadruple extra large provided

by Amazon EC2.

• Operating system (p7). This indicates that the operating system could be Linux or

Windows.

• Pricing (p8). This is the actual price for the usage of the cloud service.

• Pricing sensitivity to regions (p9). This denotes if the price varies by region.

• Subcontractors (p10). This indicates if subcontractors are present, and if so, what

kind of services they provide.
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3.2 TYPES OF USER REQUESTS

A user sends a service selection query to the broker which specifies what

properties and values he/she expects from the service providers. Our brokerage system

supports two types of queries as defined in the following.

Definition 3.1: An exact query on cloud services is in the form of Q = <(QP1 : V1), (QP2

: V2), . . . , (QPk : Vk)>, where k ≤ 10, QPi (1 ≤ i ≤ k) is the property that the user requests

the service provider to possess, and Vi describes the user expected value of property QPi.

Definition 3.2: An interval query on cloud services is in the form of Q = {(QP1 : I1),

(QP2 : I2), . . . , (QPk : Ik)}, where k ≤ 10, QPi (1 ≤ i ≤ k) is the property that the user

requests the service provider to possess, and Ii describes the range of user expected values

of property QPi.

An example of an exact query may look like: Q1 = {(ServiceType:0001),

(Cost:60cents/min)}. An example of an interval query may look like: Q2 =

{(ServiceType:[0001]), (pricing:[$0.3/min, $0.8/min]), (security:[medium, high])}.

At the user-end, a simplified GUI with check boxes and drop down lists is

provided, to facilitate property selection. The user needs not enter values for the entire list

of properties, but only those that are relevant to him/her. The use of such GUI also

ensures that the input for the cloud broker is in a machine recognizable form so that the

broker does not need to further clean the user’s input before processing it.

For the exact query, the cloud broker aims to return the best match, i.e., the CSP

that matches the most number of query conditions. For the interval query, the cloud

broker aims to return m CSPs that match the query conditions in a descending order of
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the number of conditions being satisfied. Here m is a value provided by the user. For

example, a user may be interested in 10 (m = 10) or 20 (m = 20) potential CSPs rather

than a very large number (e.g., 100) of CSPs that would be hard to choose from.

3.3 EXISTING WORK

Since the new approach presented in this paper is compared to the existing work,

we review the existing work in more details as follows. In [24], we proposed a CSP-index

to index CSPs (cloud service providers) according to the similarity of their properties.

The CSP-index is developed based on a multidimensional index, called iDistance [10]

with the B+-tree as the base structure. In order to capture the similarity among CSPs, we

proposed an encoding technique that encoded each CSP’s properties using a bit array.

The bit array is of the same size for every CSP and consists of 10 sections corresponding

to the 10 properties identified in Section 4.1. The number of bits used for each section is

based on the domain of each property and the encoding differs according to the types of

the properties. Based on individual property encodings (denoted as e1, ..., e10) where ei

is the encoding of property pi, we further generate the integrated encoding by

concatenating the bits representing the service type with the XOR-ed results of the

remaining property encodings.

Ecsp = e1||(e2⊕e3⊕e4⊕e5⊕e6⊕e7⊕e8⊕e9⊕e10) (1)

After obtaining the encoding for all the CSPs, we employ the k-means algorithm

[8] to cluster the CSPs based on the Hamming distance between their encodings Ecsp.

Then we leverage the idea of the iDistance [10], [27] to generate the indexing key Keycsp

for each CSP.
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Keycsp = S・ k + Dh(Ecsp,Eck ) (2)

In Equation 2, Eck is the encoding of the cluster center that the CSP belongs to, S

is a scaling value that separate indexing values from different clusters, and Dh is the

Hamming distance between the CSP and its cluster center. The obtained index keys are

used to insert CSPs to a B+-tree. Using Equation 2, CSPs with similar properties are

likely to obtain closer indexing keys and hence will be placed nearby in the B+-tree.

One limitation in the CSP-index is that it not only puts similar CSPs together but

may also group dissimilar CSPs, which can in turn affect the query efficiency. This is

clearly shown in the following example.

Example 3.1: For ease of illustration, we consider only four properties per CSP.

Consider the following three CSPs whose properties p1, pi, pj, pk have been encoded:

CSP1(e1=0, ei=1, ej = 5, ek = 9)

CSP2(e1=0, ei=9, ej = 1, ek = 5)

CSP2(e1=0, ei=9, ej = 5, ek = 1)

Ecsp1 = 0||(1⊕ 5⊕ 9)

Ecsp2 = 0||(9⊕ 1⊕ 5)

Ecsp3 = 0||(9⊕ 5⊕ 1)

The above three CSPs will obtain exactly the same encoding since XOR operation

ignores the order of the properties. Consequently, the three CSPs will be placed nearby in

the index. However, we can observe that they are not very much similar in that CSP1 and
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CSP2 differ in all three properties considered, and CSP1 and CSP3 differ in two

properties out of three.

In a summary, the XOR encoding allows even dissimilar CSPs to receive the

same encoding as long as these CSPs have the same set of values regardless what

properties the values are for. We call such a problem “encoding collision”. The encoding

collision problem becomes much more severe with the increase of the number of the

properties associated with a CSP. When 9 properties are considered (excluding the

service type property), a same set of values can be assigned to the 9 properties in 9! =

362880 ways. In other words, 362880 CSPs share the same encoding (and index key)

while many of these CSPs are not similar at all. Such encoding collision significantly

affects the query efficiency. In this work, we propose a new encoding approach that

addresses this problem by taking into account the order of properties, and the

experimental results show that our new approach is hundreds of times faster. Moreover,

our new approach also supports the interval query (Definition 3.2) whereas the existing

work does not.
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4. MANAGING INFORMATION OF CLOUD SERVICE PROVIDERS

In face of a large number of cloud service providers, it is important to design an

efficient data structure to facilitate information management and retrieval. The specific

design goals are the following.

• If the broker needs to update a CSP’s information such as change of properties

and available resources, the broker should be able to quickly locate where the

CSP is stored rather than scanning the whole database.

• Given a user’s service selection request, the broker should be able to narrow down

the search within a small group of eligible CSPs rather than checking all CSPs

against the user’s request.

To achieve the above goals, we propose a Bcloud-tree which provides quick

access to individual CSPs and also groups CSPs with similar properties to facilitate

queries. In what follows, we elaborate how to construct the Bcloud-tree to realize the

design goals.

4.1 THE STRUCTURE OF Bcloud - TREE

The Bcloud-tree is a multi-level balance tree as shown in Figure 3. Each node in the

Bcloud-tree is of the same size (typically the size of a disk page), and contains a number of

equal-size entries. An entry in the leaf node stores the following information of a CSP:

{к, ID, p1, p2, ..., p10}, where к is the indexing key of the CSP whose identity is ID, and pi

is the ith property of the CSP (0 ≤ i ≤ 10). The internal nodes of the Bcloud-tree serve as

the search directory which contain indexing keys and pointers to children nodes.
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The Bcloud-tree has a similar structure as the B+-tree. The biggest advantage of

basing the Bcloud-tree on the B+-tree is that the B+-tree provides the great foundation for

our new index structure to be easily integrated to existing systems since the B+-tree is

widely adopted in commercial database systems.

Figure 4.1. An Example of Bcloud - Tree

Figure 4.2. An Example of B+ - Tree
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Moreover, we can also leverage the same suite of efficient B+-tree’s algorithms to

search, insert, delete and update the information of a CSP (i.e., an entry in a leaf node).

For example, to search the properties of a CSP with a known indexing key, we

start from the root of the Bcloud-tree, and look for the internal pointer that leads to the

range of keys including the CSP’s indexing key. The search just needs to access h nodes

to locate any given CSP where h is the height of the tree.

In the design of the Bcloud-tree, the main challenge is the generation of the

indexing key. Specifically, the indexing keys determine the storage order of CSPs. How

the CSPs are stored has a great impact on the efficiency of answering a user’s service

request. Reconsider the example query Q1 = {(ServiceType:0001), (Cost:$0.6/min)} in

the previous section. The B+-tree that indexes CSPs simply based on their IDs may store

CSPs as shown in Figure 3. We can observe that to answer the user’s request, the Bcloud-

tree (Figure ??) just needs to access one leaf node (shaded node) while the traditional B+-

tree needs to conduct a linear search to check all the leaf nodes because CSPs that offer

service “0001” (shaded nodes) may be stored in any leaf node. Based on the observation,

the desired indexing keys in the Bcloud-tree should be generated in the way that CSPs with

similar properties receive nearby indexing keys. We present the detailed algorithm of key

generation in the following subsection.

4.2 THE CONSTRUCTION OF Bcloud - TREE

As aforementioned, the novelty of the Bcloud-tree is the construction of the

indexing keys that can speed up the query processing. The difficulty lies in how to

capture the similarity among service providers, and then convert them into a single key

value. It is obviously time consuming to compare every pair of CSPs to identify which of
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them are similar to each other. This is also impractical concerning the changing of CSP’s

properties, joining of new CSPs or leaving of old CSPs. Therefore, we propose a hash

style key generation method, which allows us to directly compute the indexing key for

any given CSP based on its properties and ensures that most of the resulting keys have

the following properties: the more similar the CSPs are in terms of their properties, the

closer their indexing keys will be.

The algorithm to generate the index keys consists of two major steps. The first

step is to encode the properties of the CSPs so that they can be input to the key generation

function. The second step is to compute the indexing key. We elaborate each step in the

following.

4.2.1 Property Encoding : The property encoding transforms various types of

CSP properties into decimal values. The encoding algorithms differs according to the

types of the properties.

• Service Type (p1): Since services may be described in different ways, we employ

the oneR mining algorithm on the service type to identify CSPs that perform

similar services. According to the mining result, service types falling into the

same group will be assigned the same encoding. For example, if there are total

100 types of services identified, the domain of the encoding will be from the

numerical value 1 to 100.

• Properties with continuous values: This category includes the properties:

pricing (p8), instance sizes (p6) (e.g., requested storage capacity), pricing unit (p5)

and measurement unit (p4). For such type of properties, we first partition the

domain of the corresponding property into n ranges, where n is a tunable system
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parameter. Then we represent each range using one bit. If a CSP’s property falls

into a given range, the respective bit will be set to 1. Finally, we convert the

binary representation to a decimal value.

Example 4.1: Assume that the domain of storage space provided is divided

into four ranges: [10G,∞), [1G,10G), [500M,1G), [0,500M). If the storage

capacity of a service provider is 800M to 2G, the second and the third bits will be

set to 1, resulting in the encoding ‘0110’.

• Properties with categorical values: This category includes the following

properties: security (p2), quality of service (p3), operating system (p7), pricing

sensitivity (p9). Such properties are typically represented by a categorical value.

For each of the categorical value, we assign a distinct numerical value. For

example, the property “quality of service” can be described using “high”,

“medium”, “poor”. Correspondingly, we convert it to numbers “3”(high),

“2”(medium), “1”(poor).

• Relationship property: This refers to the specifical property “Subcontractor”

(P10) which describes the relationship among the CSPs built upon subcontracting.

We represent the relationship using a binary bit array with three bits. The first bit

is set to 1 if subcontractors are present. The second bit is set to 1 if the

subcontractor provides computational or storage services. The third bit is set to 1

if the subcontractor provides security, privacy, or search related services. Then,

the binary value is converted into a decimal value.

In addition, if a service provider does not have specific value for certain

properties, the encoding of that property will be set to the default value 0.
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4.2.2 Indexing Key Generation : A CSP is described by 10 decimal values, using

the property encoding described in the previous section. Next, we aim to generate the

indexing keys based on the encoded properties of the CSP. Recall that the indexing key

should ensure that CSPs with similar properties (i.e., the encoding value of the properties)

have close indexing keys. This will ensure that they will be placed closer in the index,

speeding up the subsequent service selection. To achieve this, we leverage one of the

space-filling curves, the Z-curve [15]. The reason to choose the Z-curve is many-fold.

First, Z-curves have been implemented in many commercial databases just like our base

structure, the B+-tree, facilitating potential deployment of our approach in practice.

Second, the Z-curve can be computed efficiently. Third and the most important, the Z-

curve maps a data point in a multi-dimensional space to a single-dimensional value. The

resulting one dimensional value has the proximity property, that is, for points which are

closer in multi-dimensional space, they are very likely to receive closer one-dimensional

value. Figure 4 shows an example of data points in the 2-dimensional space and their Z-

curve values (in each grid cell). For example, consider the data points (1,1), (1,2), which

are near each other in the 2-dimensional space. Their Z-curve values are 1 and 2

respectively, which are also closer to each other. If we consider the coordinates of the

data points as the properties of CSPs, the corresponding Z-curve values can then be used

as the indexing keys. Notice that there are some cases where the Z-curve values cannot

fully preserve the proximity properties, such as data points (2,4) and (3,1) which are far

from each other in 2-dimensional space but receive nearby Z-curve values 8 and 9

respectively. However, our experimental results (in Section 6) show that such small

deviation does not significantly affect the accuracy.
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The steps of generating the indexing keys are the following.

1. Given a service provider CSP1(p1, ..., p10) and its property encodings denoted as

CSP1(e1, ..., e10), the broker converts each encoding into a binary representation:

ei → bei (1 ≤ i ≤ 10). The binary representation is normalized to be of the same

length for all the properties. The normalization is done by taking the longest

binary value as the standard length l of all binary values. If an initial binary value

does not have l bits, we fill up its beginning bit positions with 0.

• Then, we concatenate the binary encoding of the service type with the result of

interleaving the binary values of the remaining 9 property’s encodings. Let [be i]j

denote the jth bit of bei. The interleaving process is as follows, where the symbol

“||” denote bit concatenation.

• The last step is to convert Z into a decimal value, which would be the indexing

key of the CSP1: Z→к.

Figure 4.3. An Example of Z - curve

For better understanding, we step through the key generation processing using the

following example.
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Example 4.2: Consider the following small set of properties with divided value

domains for example:

• Service type: 0001, 0002,...,1000

• Storage: [10G, ∞), [1G, 10G), [500M, 1G), [0, 500M)

• Pricing: [50cents/min, 1 Dollar/min], [10 cents/min, 50cents/min), [0,

10cents/min)

• Quality of service: 3-High, 2-medium, 1-poor

• Security: 3-High, 2-medium, 1-poor

Suppose that a service provider CSP1 provides service type ‘0001’, 800M to 2G

storage space to each end user at 10 cents/min with medium service quality and medium

privacy protection. The corresponding encoding of each property is: ‘0110’(storage),

‘010’(pricing), ‘010’(service quality), ‘010’(privacy). After normalization, we have the

following binary values for each property:

service type: ‘0001’

storage: ‘0110’

pricing: ‘0010’

privacy: ‘0010’

Next, we interleave the property encodings as shown in Figure 5 where the arrows

indicate the interleaving order, and obtain the Z-value ‘0000010001111000’. Its

corresponding decimal value is 1144, which will be used as the indexing key for this

CSP.
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Once the indexing key is generated, the insertion and deletion in the Bcloud-tree

resembles that in the B+-tree.

Figure 4.4. Generating the Index Key Through Interleaving
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5. CLOUD SERVICE SELECTION

The Bcloud-tree helps the broker arrange the service providers in a way that

facilitates fast information retrieval. Recall that two common types of service selection

are defined in Section 3.2: (i) the exact query; (ii) the interval query. Both types of

queries can be answered by the following four major steps: (1) Query normalization and

grouping; (2) Query encoding; (3) Searching the Bcloud-tree; (4) Refining the search

results and considering special criteria. The query encoding converts the user query into

the form of intervals of indexing keys that cover CSPs who may satisfy the query. Based

on the query encodings, we then search the B−tree to locate the candidate CSPs. The last

step is to further exam the properties of the candidate CSPs and their relationship to find

the best combination of service providers that addresses the user’s needs. We detail the

key steps of each phase in the following subsections.

5.1 QUERY NORMALIZATION

For both exact queries and interval queries, the first step is the query

normalization which fills in the non-query properties using the property domains, so that

all the 10 properties are associated with a query domain. Since the exact query is a

special case of an interval query, we define the query normalization on the interval query

directly.

Definition 5.1: Query Normalization: Let Q=(QP1:I1, ..., QPk:Ik) be an exact or an

interval query. For each property pj /∈ QPi (1 ≤ i ≤ k), create a query interval NPj = (pj :

D1) where Dj is the domain of the property pj . Then, a normalized Q’ will be in the form
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of Q=(QP1:I1, ..., QPk:Ik, NP1, ..., NPn), where n is the total number of properties not

listed in Q.

For example, the interval query Q2 in Section 3.2 will be normalized to the

following query Q'2.

Q'2 = <(p1:[0001]), (p2:[2..3]), (p8:[$0.3/min..$0.8/min]), (p3:[1..3]), (p4:[1..4]),

(p5:[1..4]), (p6:[1..4]), (p7:[1,2]), (p9:[0..1]), (p10:[000, 111])>.

In Q'2, the first three properties (highlighted in bold) are the query properties

provided by the user, and the remaining properties are the results of the normalization

using the domains of the corresponding properties (details about the property domains are

shown in Table 1 in Section 6).

It is worth noting that in the case that multiple requests are received at the same

timestamp (which may occur in large scale systems), the broker will group the same

queries and then perform normalization to avoid repeated efforts.

5.2 QUERY ENCODING

The second step of service selection is to convert the normalized user query into

the ranges of indexing keys so that the search of CSPs can be conducted in the Bcloud-tree.

The simplest case is an exact query with all 10 properties given by the user. For such type

of exact query, we just need to treat the query as a new CSP, and then encode the query

properties and generate the indexing keys using the same algorithm presented in the

previous section.
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However, most of service selection queries include a subset of CSP’s properties

and ranges of possible values for the querying properties. The task is to find the indexing

keys of the CSPs whose properties fall into the query ranges. A naive approach is to

consider all the combination of values in the query ranges, compute the indexing keys,

and then search the Bcloud-tree using the obtained indexing keys to locate the qualifying

CSP. Take the previously normalized interval query Q'2 as an example. All of the

following CSPs satisfy the query:

CSP2: (p1:[0001]), (p2:[2]), (p8:[$0.3/min]), (p3:[1]), (p4:[2]), (p5:[4]), (p6:[1]), (p7:[2]),

(p9:[0]), (p10:[000])>. CSP10: (p1:[0001]), (p2:[2]), (p8:[$0.5/min]), (p3:[3]), (p4:[4]),

(p5:[2]), (p6:[2]), (p7:[1]), (p9:[1]), (p10:[111])>. CSp13: (p1:[0001]), (p2:[3]),

(p8:[$0.4/min]), (p3:[2]), (p4:[3]), (p5:[1]), (p6:[4]), (p7:[1]), (p9:[0]), (p10:[110])>.

Observe that CSPs satisfying the query may have very different property values

for non-querying properties.

Figure 5.1. Point Query vs. Interval Query for Service Selection
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Instead of computing the indexing key for each possible combination, we propose

to compute the boundaries of the indexing keys belonging to all the CSPs that satisfy the

query, and then execute interval queries rather than single point queries in the Bcloud-tree.

As shown in Figure 6 (a), conducting multiple point search to locate each possible CSP

results in accessing a large number of internal nodes of the Bcloud-tree (highlighted as red

paths); whereas, conducting an interval search to locate the CSPs accesses much fewer

tree nodes as shown in Figure 6(b), and hence will be more efficient.

To compute the query interval, we leverage the properties of the Z-curve. We note

that the minimum and maximum indexing key values of a query are reached by taking all

the lower and upper boundaries of the query properties respectively. The formal

definition of the boundaries of the query indexing keys is given below.

Theorem 5.1: Let Q=(QP1:[V
l
1 , Vu

2 ], ..., QPk:[V
l
k , Vu

k ], NP1 : [[Vl
k+1, V

u
k+1], ...,

NPn : [Vl
10, V

u
10]) be a normalized interval query, where Vl

j and Vu
j denote the lower and

upper bounds of the interval respectively. Let кl be the indexing key computed from

(QP1:V
l
1 , ..., QPk:V

l
k, NP1 : Vl

k+1,..., NPn : Vl
10), and let кu be the indexing key computed

from (QP1:V
u

1 , ..., QPk:V
u

k , NP1 : Vu
k+1, ..., NPn : Vu

10). Then, for any CSP=(p1,.., p10)

whose pj ∈ [Vl
j , Vu

j ] (for all 1 ≤ j ≤ 10), its indexing key кcsp will be in the range: кl ≤

кcsp ≤ кu.

The range of the one-dimensional query interval obtained from Theorem 5.1 may

contain false positives which are the CSPs whose indexing keys falling in the one-

dimensional query interval converted from the boundaries of the query properties, but

whose actual properties do not satisfy the query conditions. For illustration, Figure 7(a)

shows an example when each CSP has only two properties and hence each CSP is
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represented as a point with the two properties being the coordinates. Consider a service

selection query (denoted as the shaded box in the figure) on two properties x and y which

requires qualifying CSPs to have their properties in the following ranges: 3 ≤ x ≤ 4 and 2

≤ y ≤ 4. This query will be converted into a 1-dimensional interval [10, 15] according to

the Z-curve. Then, only CSPs whose index keys are in [10, 15] will be evaluated. As

shown in the figure, there are two index key values 11 and 14 (circled in the figure)

which are in the 1-dimensional query interval but not the original 2-dimensional query

(the shaded box). In order to reduce checking such false positives, we propose a search

algorithm that takes three values of indexing keys: the minimum, the median, and the

maximum. We then conduct the k nearest neighbor search for these three values as shown

in Figure 7b (detailed search algorithm is presented in the following subsection).

Figure 5.2. Query Encoding
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5.3 SEARCH IN THE Bcloud- TREE

The output from the last step will contain three indexing key values: minimum

boundary (denoted as кmin), median (кmed), and maximum (кmax). For each of the query

indexing key, we search from the root of the Bcloud-tree and locate the leaf node that

contains the range of keys including this query indexing key. It may happen that the leaf

node does not have the exact value of the querying key since there is not such a service

provider who matches the query requirements. In this case, the broker will find the

closest value to the querying indexing key and start the search. From the located starting

value (either the exact querying indexing key or the closest one), we will find its k

nearest neighbors. The search of the k nearest neighbors differs a bit as shown in Figure

7b: for кmin, we look for k neighbors which have key values greater than it; for кmed, we

look for k neighbors from both sides; for кmax, we look for k neighbors that are smaller

than it. During the search, if the leaf node containing the query indexing key does not

have k entries, we expand the search to its neighboring leaf nodes along the search

direction until k nearest neighbors are found.

Here, the chosen of the value of k, i.e., the number of neighbors to be considered,

is critical to the overall performance. If too few neighbors are retrieved, the broker may

not find the service provider which fully satisfy the query requirements. This is because

the Bcloud-tree stores service providers according to the similarity between all of their

properties, in order to be versatile for different queries. A specific query usually focuses

on a smaller set of properties, and hence the k nearest neighbors retrieved based on all

properties may not contain the best solution regarding the querying properties. On the

other hand, if k is too large, it will slow down the search process as well as the
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subsequent refinement phase. This value of k is therefore decided by a trial and error

process. We will present the tuning of the k in the experiments.

5.4 REFINEMENT

From the obtained candidate service providers, the refinement phase further

evaluates the actual properties of the candidate service providers and finds the service

providers or the combinations of service providers that satisfy the query requirements.

The first step is to check whether the properties of a candidate service provider

fully satisfies the query requirements. If so, the candidate service provider will be added

to the query result. After examining all candidate service providers, if the result set is not

empty, we will directly return the CSPs in the result set to the users. If the result set is

still empty, we will pursue the second step to take into account combined service

provided by multiple CSPs.

To find the combination of the CSPs to satisfy the query requirements, we employ

a greedy algorithm as follows. First, we sort the candidate CSPs based on each querying

properties. Suppose that there are n querying properties. We obtain n sorted lists of

candidate CSPs. If the querying properties are given in a decreasing order of importance

in the query, we will start from the sorted list of the first (i.e., the most important)

querying property. We first select the service provider on top of the first sorted list. We

remove the satisfied querying properties from subsequent process, and adjust partially

satisfied querying properties. For example, if the user requests 20GB of storage space,

while the selected service provider only has 5GB available, we adjust the querying

property on storage space to 15GB (=20GB-5GB) and look for more service providers.
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As long as there are unsatisfied querying properties, we continue the selection of service

providers by looking into the list of the next important unsatisfied property, and repeat

the process. The selection process stops when all querying properties are satisfied. This

set of service providers is sent to the next phase to verify possible collision among them

caused by the shared subcontractors. If there exists any collision in current solution, the

collision checking step will return a ranking for this solution to indicate its collision

degree. The higher the ranking, the less the collision or collusion. The service selection

process will be repeated to find other possible combinations of service providers until a

better solution cannot be found. The final output of the service selection algorithm may

contain a ranked list of solutions to let end users to make the final decision.

Table 5.1. Cloud Service Provider Properties and Domains

The possibility of a collision between service providers needs to be considered

during their selection. Collision is the occurrence of a lack of a promised immutable

resource due to the dependence of the selected service providers on the same contractor

who promises the resource to all of them, not accounting for a simultaneous demand from

all. For example, let us consider two service providers CSP1 and CSP2, who both lease 50

GB of storage space from a subcontractor CSP3. CSP3 can guarantee both CSP1 and CSP2
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the 50GB provided there are no restrictions on the region in which the storage servers are

located, being that it has a part of its servers in USA and the rest in China. When a user

requests a 100GB of storage space, CSP1 and CSP2 can fulfill this requirement together

by depending on CSP3. However, if the user specifies that the servers should be located

only in USA, then a collision occurs if the shared subcontractor is not taken into account.

To detect collision, we verify the subcontractor encoding (p10) of the service

providers involved in a compound service to see if they have any subcontractor in

common. The verification is conducted by checking the encoding of the property p10 for

each pair of service providers in the same compound service. If any two service providers

have at least two common bits set to 1, that means they have subcontractors for same type

of services. In that case, we further check the actual subcontractors to see if there is any

collision. Only when there is no collision, the answer will be returned.
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6. PERFORMANCE STUDY

In this section, we first describe the collection and generation of the datasets, and

then present the performance evaluation of our algorithms. All the algorithms were

implemented as C programs. The tests were conducted using a Sony Vaio F series

Laptop, with a 8GB DDR3-SDRAM-1333, 640GB Hardrive and a Intel Core i7-2820QM

quad-core processor (2.30GHz) with Turbo Boost up to 3.40GHz.

6.1 GENERATION OF TESTING DATA SETS

In order to identify what is the actual information that a broker should account for

when performing the service selection, we studied the profile of the top ten cloud service

providers [20]. Our analysis included providers offering storage services or the Platform

as a Service (Rackspace, Salesforce, cloud Foundry from VMWare), enterprise cloud

platforms (CloudSwitch from Verizon, IBM cloud), and service providers who offer

multiple types of services (Microsoft Azure, Amazon EC2, and Google cloud).

To extract functional and non-functional properties of each provider, we first

analyzed the providers’ available manifests including documents related to security

practices, privacy policies, the cloud documentations on getting started and other user

guides, FAQs, white papers, Terms of use, and Service Level Agreements (SLAs). We

then identified and extracted a set of common properties based on common business

recommendations for service selection [21]. Table 1 provides an excerpt of our data

collection analysis which shows the first 9 properties as introduced in Section III.A.1.

Specifically, Service Type of type 1 refers to service on-demand, 2 refers to reserved

instances, while 3 refers to specialized services such as custom IPs in case of Amazon, or
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caching in case of Windows Azure. Msrmt stands for measurement units, where 1 refers

to measurement in terms of memory used, 2 refers to measurement in terms of number of

transactions, 3 stands for number of connections or data transfers done and 4 for the data

transfer time. Prcg unts stands for Pricing Units, where 1 stands for per month, 2 per year,

3 per 3 years, and 4 per hour. IS denotes Instance sizes where 1 refers to Small and

anything below small such as Micro in case of Amazon EC2, 2 for Medium, 3 for Large,

while 4 for extra large and above such as Quadruple extra Large provided by Amazon.

OS is the operating system. A value 1 corresponds to Linux, while 2 is Windows. Prc

stands for pricing and is normalized to per hour for each SP. Reg stands for regions

where Yes denotes that pricing varies by region, while No denotes there is no differential

pricing across various regions. Based on the collected real data, we identified the

acceptable values for each of the properties (using ranges), based on the maximum and

minimum service levels offered for a given property by any of the service providers. This

gave us our starting set of ten data points and shaped the representation of service

providers. With the starting data points, we generated 10,000 data points representing

synthetic providers. Each synthetic providers was generated using random combinations

for each of the properties describing it. Specifically, we use a pseudo random number

generator to generate a subset of the total possible 1010 combinations, and filter out the

outliers wherein all the properties have either very low or very high values.

6.2 EXPERIMENTAL RESULTS

We compare the query performance of the Bcloud-tree with the existing work, the

CSS algorithm [], and a baseline approach which uses an exhaustive search to check all
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possible combinations of all service providers for a given query and find the service

providers that match the query properties best.

The performance is evaluated in terms of both efficiency and accuracy. Efficiency

is measured using the processing time. Accuracy is measured by comparing the results

obtained from our proposed query algorithms with that obtained from the baseline

approach. Specifically, the query accuracy is defined in Equation 4, where Nq is the

average number of query properties being satisfied in the results obtained from our

proposed approach (Bcloud-tree or CSS), and Nbase is the average number of query

properties being satisfied in the results obtained from the baseline approach.

Accuracy =Nq/Nbase

6.2.1 Performance of Exact Queries : First, we evaluate the performance of

exact queries by varying the number of CSPs and the number of querying properties.

• Effect of the Number of CSPs

In this round of experiments, we generate 100 exact queries, each of which

includes 5 (out of 10) randomly chosen query properties and values. We execute the 100

queries against different number of CSPs ranging from 1000 to 10,000. Figure 8 shows

the query processing time of the three approaches: the Bcloud-tree, the CSS algorithm and

the baseline approach (the results are plotted on a log scale). It is not surprising to see that

the baseline approach is the slowest since it needs to check all the CSPs for each service

selection query. In contrast, our proposed new approach, the Bcloud-tree, performs best

among the three. Specifically, the Bcloud-tree is about 100 times faster than the baseline

approach and more than 10 times faster than the existing CSS approach when the number
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of CSPs is more than 5000. Such good performance of the Bcloud-tree is attributed to the

better grouping of similar CSPs using the new encoding method as described in Section

4.2. As similar CSPs are stored closer to each other in the Bcloud-tree, a query needs to

retrieve much fewer number of nodes to find the answers. Specifically, we tested various

values of k in the k-nearest neighbor search adopted by the Bcloud-tree and found that k =

5 already yields high accuracy for different datasets as reported in this experimental

section, which is much smaller than that in the CSS approach. The CSS approach requires

relatively a large k ( k is set to 10% of the total number of CSPs) in order to find answers

of reasonable accuracy, because the encoding used by the CSS may give totally different

CSPs the same encoding as shown in Example 2.1. The accuracy of the query results of

the three approaches is reported in Figure 9, where the baseline approach has always

100% accuracy since it is used as the base for comparison according to Equation 4. As

we can see that the Bcloud-tree achieves much higher accuracy than the CSS approach

which is mainly due to the effectiveness of the encoding method adopted by the Bcloud-

tree. Moreover, the accuracy of the CSS approach decreases with the increase of the

number of CSPs. This is because the more CSPs, the higher chance of having more CSPs

with same encoding but totally different values of their properties caused by the

ignorance of the order of properties in the encoding (as shown in Example 2.1).
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Figure 6.1. Effect of the Number of CSPs on Service Selection Time (Exact Queries)

Figure 6.2. Effect of the Number of CSPs on Accuracy (Exact Queries)
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• Effect of Number of Query Properties

In this set of experiments, we vary the number of querying properties per request

from 1 to 10 and test them in the dataset containing 5000 service providers. We report the

average cost of 100 queries with the same number of querying properties for each setting.

Figure 10 compares the average query processing time of the three approaches. Observe

that the number of query properties does not affect the performance of the three

approaches much. The reason for the baseline approach is straightforward since no matter

what queries are, the baseline approach needs to check all the CSPs. As for the CSS

approach, its query processing time is dominated by the total number of CSPs since the

value of k in the k-nearest neighbor is set to 10% of the number of CSPs. Regarding the

Bcloud-tree, the more query properties, the slightly smaller the search range would be

according to the query normalization algorithm in Section 5.1. However, the difference of

the search range varied by the number of query properties may have too small impact on

the processing time to be observed clearly.

Figure 6.3. Effect of the Number of Querying Properties on Service Selection Time
(Exact Queries)
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In terms of accuracy of the query results, Figure 11 shows that the accuracy in

both the Bcloud-tree and the CSS approach decreases with the increase of the query

properties. This is because the more query properties, the fewer number of CSPs

satisfying the query, and hence the higher chance of missing qualifying CSPs in the k-

nearest neighbor search adopted by both approaches. However, we also observe that the

Bcloud-tree always achieves higher accuracy than the CSS approach because the new

encoding method in the Bcloud-tree gathers similar CSPs closer than that in the CSS

approach and hence misses fewer qualifying CSPs.

Figure 6.4. Effect of the Number of Query Properties on Accuracy (Exact Queries)

6.2.2 Performance of Interval Queries : We now evaluate the performance of

the interval queries which allow the users to specify a range of desired values for

querying properties and the cloud broker will return 10 candidate CSPs that satisfy the

query conditions best. Since the CSS algorithm does not support interval queries, we
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present the comparison results between the Bcloud-tree and the baseline approach.

Specifically, we examine the effect of the number of CSPs, the query range of the

properties, and the number of querying properties.

• Effect of the Number of CSPs and Querying Intervals:

For this round of experiments, we generate 100 interval queries with the

following characteristics: (1) each query contain 5 (out of 10) randomly selected

properties; (2) each query property is associated with a randomly generated interval that

covers 30% (or 70%) of values in the corresponding domain respectively.

Figure 6.5. Effect of the Number of CSPs and the Querying Range on Service Selection
Time

Figure 12 reports the query processing time of the two approaches. As shown in

the figure, our proposed Bcloud-tree is hundreds of times faster than the baseline approach

in all cases. The reason is similar to that for the exact queries. The Bcloud-tree utilizes

indexing techniques to target the potential candidate CSPs and significantly reduces the
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number of candidate CSPs that need to be examined compared to the baseline approach.

Another important observation is that the query processing time of the two kinds of query

intervals (30% or 70%) is quite similar in both approaches. It is expected that the baseline

approach will perform the same for various kinds of query settings since it always needs

to check all CSPs. As for the Bcloud-tree, the query processing time is determined mainly

by the value of k in the k-nearest neighbor search. For interval queries that require 10

CSPs in the results, we set k to 10 as well which provides 30 candidates for refinement as

k nearest neighbor search is conducted in three directions (as presented in Section 5.3).

Figure 6.6. Effect of the Number of CSPs and the Querying Range on Accuracy

Figure 13 shows the accuracy of the query results, whereby the baseline approach

is considered 100% accurate as a comparison base. We can see that the Bcloud-tree

achieves higher accuracy when the query interval becomes larger. This is because that the

larger the query intervals, the more CSPs may satisfy the query conditions and hence

improves the query accuracy. In addition, we also see a slight increase of the query
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accuracy in the Bcloud-tree approach with the increase of the number of CSPs which is due

to the similar reason that more CSPs may satisfy the query conditions when the dataset is

larger.

• Effect of the Number of Querying Properties:

We also evaluate the effect of the number of query properties by varying the

query properties from 1 to 10 and keeping the same query interval to 30%. Figure 14

reports the average time to process the queries on 5000 CSPs. From the figure, we can

see that the performance of both approaches are not affected by the number of query

properties. As previously mentioned, the baseline approach’s performance is independent

of any type of queries due to the exhaustive search, while the performance of the Bcloud-

tree is dominated by the number of query results to be returned to the end user which in

term determines the value of the k in the k-nearest neighbor search.

Figure 6.7. Effect of the Number of Querying Properties on Service Selection Time
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Figure 6.8. Effect of the Number of Querying Properties on Accuracy (Interval Queries)

On the other hand, the query accuracy of the Bcloud-tree is affected by the number

of query properties as shown in Figure 15. Specifically, the query accuracy drops when

the number of query properties increases. The possible reason is that the more query

properties, the fewer satisfying CSPs exist and hence the higher chance to miss qualifying

CSPs using the Bcloud-tree.
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7. CONCLUSION

In this thesis, I presented a brokerage-based architecture for cloud computing

systems, as well as an efficient cloud service selection algorithm that provides a list of

recommended cloud service providers to the cloud consumers based on their needs. In

particular, I designed a novel indexing structure, namely the Bcloud-tree, to facilitate the

arrangement and retrieval of the information about service providers. On top of the Bcloud-

tree, I further developed an efficient service selection query algorithm that quickly

retrieves desired service providers based on the users’ service requests. The experimental

results show that the Bcloud-tree achieves significant improvement in terms of both

efficiency and accuracy compared to our prior work. In the future, I plan to build an

automated parser for extracting manifest variables of cloud service providers, and design

strategies to provide the cloud users an opportunity to negotiate some terms of the service

level agreements with the potential service providers.
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