
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2013

Efficient integrity verification of replicated data in cloud Efficient integrity verification of replicated data in cloud

Raghul Mukundan

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Mukundan, Raghul, "Efficient integrity verification of replicated data in cloud" (2013). Masters Theses.
7201.
https://scholarsmine.mst.edu/masters_theses/7201

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7201?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

EFFICIENT INTEGRITY VERIFICATION OF REPLICATED DATA IN

CLOUD

by

RAGHUL MUKUNDAN

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2013

Approved by

Dr. Sanjay Madria, Advisor

Dr. Sriram Chellappan

Dr. Wei Jiang

ii

PUBLICATION THESIS OPTION

This thesis consists of the following articles that have been submitted for

publication as follows:

Paper 1. Pages 10-28 have been published as Replicated Data Integrity Verication

in Cloud, IEEE Data Engineering Bulletin, December 2012

Paper 2. Pages 29-67 have been submitted as Efficient Integrity Verification of

Replicated Data in Cloud using Homomorphic Encryption, Distributed

and Parallel Database Journal, 2013

http://sites.computer.org/debull/A12dec/replicated.pdf
http://sites.computer.org/debull/A12dec/replicated.pdf

iii

ABSTRACT

The cloud computing is an emerging model in which computing infras-

tructure resources are provided as a service over the Internet. Data owners can

outsource their data by remotely storing them in the cloud and enjoy on-demand

high quality services from a shared pool of configurable computing resources. By

using these data storage services, the data owners can relieve the burden of local

data storage and maintenance. However, since data owners and the cloud servers

are not in the same trusted domain, the outsourced data may be at risk as the

cloud server may no longer be fully trusted. Therefore, data integrity is of critical

importance in such a scenario. Cloud should let the owners or a trusted third

party to check for the integrity of their data storage without demanding a local

copy of the data. Owners often replicate their data on the cloud servers across

multiple data centers to provide a higher level of scalability, availability, and dura-

bility. When the data owners ask the Cloud Service Provider (CSP) to replicate

data, they are charged a higher storage fee by the CSP. Therefore, the data owners

need to be strongly convinced that the CSP is storing data copies agreed on in the

service level contract, and data-updates have been correctly executed on all the

remotely stored copies. In this thesis, a Dynamic Multi-Replica Provable Data

Possession scheme (DMR-PDP) is proposed that prevents the CSP from cheating;

for example, by maintaining fewer copies than paid for and/or tampering data.

In addition, we also extended the scheme to support a basic file versioning system

where only the difference between the original file and the updated file is propa-

gated rather than the propagation of operations for privacy reasons. DMR-PDP

also supports efficient dynamic operations like block modification, insertion and

deletion on replicas over the cloud servers.

iv

ACKNOWLEDGMENTS

I owe a debt of gratitude to all those who have helped me with this thesis.

First of all, I would like to thank my advisor Dr. Sanjay Kumar Madria, who gave

me an opportunity to work on this research. His suggestions and encouragement

carried me through difficult times. His valuable feedback contributed greatly to

this thesis. Secondly, I would also like to express my gratitude to Dr. Chellappan

and Dr. Wei Jiang for serving on my thesis committee and for taking time to

review this work.

Im grateful to my loving dad Mukundan Srinivasan for his professional help

and inputs. This project is partially funded by the Air Force Research Laboratory

(AFRL) in Rome, New York and I express my gratitude to them as well.

v

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . ii

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES. x

SECTION

1 INTRODUCTION . 1

1.1 DATA REPLICATION AND CHALLENGES 1

1.2 MOTIVATION . 2

2 RELATED WORK . 3

2.1 BASIC APPROACH . 3

2.2 HOMOMORPHIC VERIFIABLE TAGS 3

2.3 PRIVACY-PRESERVING PDP SCHEME 4

2.4 MULTIPLE REPLICA PROVABLE DATA POSSESSION
SCHEME . 5

2.5 DYNAMIC PROVABLE DATA POSSESSION 5

2.6 ON VERIFYING DYNAMIC MULTIPLE DATA COPIES OVER
CLOUD SERVERS . 6

PAPER

I REPLICATED DATA INTEGRITY VERIFICATION IN CLOUD . . 9

vi

ABSTRACT . 9

1.1 INTRODUCTION . 10

1.2 Related Work . 12

1.3 Dynamic Multi-Replica Provable Data Possession (DMR-PDP)
Scheme . 13

1.3.1 Problem Definition and Design Goals 14

1.3.2 Preliminaries and Notations 15

1.3.3 DMR-PDP Construction 16

1.4 Conclusions and Future Work 23

BIBLIOGRAPHY . 24

II EFFICIENT INTEGRITY VERIFICATION OF REPLICATED DATA
IN CLOUD USING HOMOMORPHIC ENCRYPTION. 26

ABSTRACT . 26

2.1 INTRODUCTION . 27

2.2 Related Work . 30

2.3 Dynamic Multi-Replica Provable Data Possession (DMR-PDP)
Scheme . 32

2.3.1 Problem Definition and Design Goals 32

2.3.2 Preliminaries and Notations 33

2.3.3 DMR-PDP Construction 35

2.3.4 Using RSA Signatures 42

2.4 Security Analysis . 42

2.5 Multiple Replica File Version Control System (MRFVCS) . . . 44

2.5.1 MRFVCS Construction 44

2.6 Implementation and Experimental Results 50

vii

2.7 Conclusion . 59

BIBLIOGRAPHY . 60

SECTION

3 CONCLUSION . 62

BIBLIOGRAPHY . 63

VITA . 64

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Rank Based Skip List . 6

2.2 Merkle Hash Tree . 7

2.3 MHT Directory . 8

PAPER I

1.1 Cloud Computing Data Storage Model. 14

1.2 DMR-PDP Scheme . 17

1.3 Block modification operation in the DMR-PDP scheme 22

1.4 Block insertion operation in the DMR-PDP scheme 23

PAPER II

2.1 Cloud Computing Data Storage Model. 32

2.2 DMR-PDP Scheme . 36

2.3 Block modification operation in the DMR-PDP scheme 40

2.4 Block insertion operation in the DMR-PDP scheme 42

2.5 DMR-PDP scheme using RSA signatures 43

2.6 Computation time comparison . 51

2.7 CSP computation time comparison for the number of replicas on
the local cloud servers . 52

2.8 User computation time comparison for the number of replicas on
the local cloud servers . 53

2.9 Time for file block insert and modify operations on the local cloud
servers . 54

2.10 CSP computation time for number of replicas on Amazon EC2 in-
stances . 55

2.11 Time for file block insert and modify operations in Amazon EC2
micro instance . 56

2.12 Time for file block insert and modify operations in Amazon EC2
large instance . 57

ix

2.13 Download and Upload time to EC2 Micro and Large Instances . . . 58

2.14 CSP computation time comparison for FileVersionDeliver algorithm 58

x

LIST OF TABLES

Table Page

PAPER II

2.1 DMR-PDP Communication cost . 50

1. INTRODUCTION

Cloud computing is an innovative and enticing technology by which highly

scalable and technology enabled services can be easily consumed over the Inter-

net. The advantages of cloud computing include on-demand self-service, ubiqui-

tous network access, location independent resource pooling, usage-based pricing,

etc. Its great exibility and economic savings are motivating both individuals and

enterprises e.g., Amazon, Google, Microsoft, Yahoo, and Salesforce to outsource

their data into the cloud. But concerns on data availability and security are pre-

venting data owners and companies from taking advantage of the cloud. When

users store data in the cloud, their main concern is whether the cloud can maintain

data integrity and whether the data can be recovered when there is data loss or

server failure. Cloud Service Providers (CSP), in order to save storage cost, may

tend to discard some data or data copies that are not accessed often, or mitigate

such data to the second-level storage devices. CSPs may also conceal data loss

due to management faults, hardware failures or attacks. Therefore, a critical issue

in storing data at untrusted CSPs is periodically verifying whether the storage

servers maintain data integrity and store data completely and correctly as stated

in the Service Level Agreement (SLA).

1.1. DATA REPLICATION AND CHALLENGES

Data Replication is a commonly used technique to increase the data avail-

ability in the cloud computing. Cloud replicates the data and stores them strate-

gically on multiple servers located at various geographic locations. Since the repli-

cated data are copies, it is difficult to verify whether the cloud really stores multiple

copies of the data. The cloud can easily cheat the owner by storing only one copy

of the data. Thus, the owner would like to verify at regular intervals whether

the cloud indeed possesses multiple copies of the data as claimed in the SLA. In

2

general, the cloud has the capability to generate multiple replicas when a data

owner challenges the CSP to prove that it possesses multiple copies of the data.

Also, it is a valid assumption that the owner of the data may not have a copy of

the data stored locally. So, the major task of the owner is not only to verify that

the data is intact but also to recover the data if any deletions/corruptions of data

are identified. If the owner, during his verification, detects some data loss in any

of the replicas in the cloud, he can recover the data from other replicas that are

stored intact. Since, the replicas are to be stored at diverse geographic locations,

it is assumed to be safe that the data loss will not occur at all the replicas at the

same time.

1.2. MOTIVATION

Data owners outsource their data to the cloud and may not physically

possess a local copy of their data. The data owners should be able to verify that

the data with the data stored at the CSP is intact and secure. Cloud should let

either users or a user trusted third party to audit the cloud data storage without

demanding the local copy of data. These are the factors that need to be considered

while designing a scheme that verifies data integrity.

• Communication complexity. The amount of communication between client

and server should be minimal.

• Storage cost. Additional storage of client and server required by the scheme

should be minimal apart from the original data.

• Data recovery. The scheme should help in data recovery in case of data loss.

• Provable security. The scheme should be secure.

3

2. RELATED WORK

In this section, a review of significant works in the literature on data in-

tegrity verification is presented.

2.1. BASIC APPROACH

One basic approach to verify data integrity is to hash the entire file before

storing it on the cloud. The hash is computed by the data owner and is stored

locally. When client wants to verify, he downloads the entire file, computes the

hash, and verifies if the values match. But this scheme has the drawbacks of

downloading and hashing the entire file every time. This scheme is effective if the

file size is less and becomes an overhead for files of huge sizes.

There are two types of schemes that are discussed extensively in the lit-

erature, which offer better solution than the basic approach. They are Provable

Data Possession (PDP) [1] and Proof of Retrievability (POR) [4]. PDP schemes

only checks whether the data stored in the CSP is intact whereas POR schemes

help the data owner to recover the data in case of data failure.

2.2. HOMOMORPHIC VERIFIABLE TAGS

Ateniese et al [1] proposed this scheme data owner preprocesses the file

before storing it on the cloud. They introduce the concept of Homomorphic Veri-

fiable Tags (HVTs). Tags generation is based on RSA signature scheme. Consider

a file F to be a finite ordered collection of n blocks, F = (m1, m2,.., mn). Given

a message m, the client computes tag Tm. These tags will be stored on the cloud

together with file F. These homomorphic verifiable tags act as verification meta-

data for the file blocks. Because of the homomorphic property, tags computed for

multiple file blocks can be combined into a single value. Given two values Tmi

and Tmj
, anyone can combine them into a value Tmi+mj

corresponding to the sum

4

of the messages mi + mj. At a later time, the client can verify that the server

possesses the file by generating a random challenge against a randomly selected

set of file blocks. Using the queried blocks and their corresponding tags, the server

generates a proof of possession. The client is thus convinced of data possession,

without actually having to retrieve file blocks. The disadvantages of this scheme

are that, it does not consider data encryption and data replication. This scheme

works only for static files.

2.3. PRIVACY-PRESERVING PDP SCHEME

Shah et al.[11] proposed privacy-preserving PDP protocols. Using this

scheme, an external Third Party Auditor (TPA) can verify the integrity of files

stored by a remote server without knowing any of the file contents. The data

owner first encrypts the file, and then sends both the encrypted file along with

the encryption key to the remote server. Moreover, the data owner sends the

encrypted file along with a key-commitment that fixes a value for the key without

revealing the key to the TPA. The primary purpose of this scheme is to ensure that

the remote server is correctly possessing clients data along with the encryption key,

and to prevent any information leakage to the TPA which is responsible for the

auditing task. Since key should be kept secret from both the auditor and the

cloud, the data owner places a key commitment gk instead of storing k on the

server. The auditor generates n random numbers and generates MAC values for

random blocks and stores it. Periodically the auditor issues a challenge to the

server by generating a random block number for which the server generates MAC

for that block and sends it back to the auditor for verification. This scheme has a

lot of disadvantages. The number of times a particular data item can be verified

is limited and must be fixed beforehand. TPA has to regenerate a new list of

hash values to achieve unbounded number of audits. Lack of support for stateless

verification, i.e., the TPA has to update its state between audits to prevent using

the same random number or the same MAC twice.

5

2.4. MULTIPLE REPLICA PROVABLE DATA POSSESSION SCHEME

Curtmola [6] proposed Multiple-Replica PDP (MR-PDP) scheme where a

data owner can verify that several copies of a file are stored by a storage service

provider. The MR-PDP scheme is an extension to the PDP models proposed by

Ateniese. Curtmola proposed creating distinct replicas/copies of the data file by

first encrypting the file then masking the encrypted version with some randomness

generated from a Pseudo-Random Function (PRF). Different PRF keys are used

to generate multiple data copies. RSA signatures are used for tag generation. RSA

signatures have holomorphic property where multiple data blocks can be verified

at the same time. The main advantage of this scheme is that it proves the integrity

of multiple replicas. The disadvantages are the data is not encrypted, the size of

RSA signatures is huge, deals with static data, and the authorized users have to

know which copy has been specifically retrieved from the CSP to properly unmask

it before decryption.

2.5. DYNAMIC PROVABLE DATA POSSESSION

This scheme [7] tries to solve the certain limitations of MRPDP scheme by

using a rank based authenticated skip list. This data structure is used to verify

the integrity of the data. According to this scheme, a file F is split into n blocks

m1, m2,..., mn. The tag T(mi) of block mi is stored at the i-th bottom-level node

of the skip list. Block mi will be stored elsewhere by the cloud. Each node v of the

skip list stores the number of nodes at the bottom level that can be reached from

v. This value is called the rank of v and denote it with r(v). The figure below

shows a skip list with ranks of nodes. An insertion, deletion, or modification of a

file block affects only the nodes of the skip list along a search path. Ranks of the

affected nodes are computed bottom-up in constant time.

The top leftmost node of a skip list will be referred to as the start node.

For a node v the indices of the leftmost and rightmost nodes at the bottom level

6

Figure 2.1. Rank Based Skip List

reachable from v, is denoted by low(v) and high(v) respectively. At each level

based on certain conditions each node will also store the collective hash value of

the nodes from left to right in the bottom level in this way h(x1,.., xk) = h(h(x1)

‖...‖ h(xk)). Where ‖ denote a concatenation operator. These hash entries act

as metadata. Whenever a file block is updated or modified, the hash value of

the nodes in this skip list from which the updated or modified node is reachable

is recomputed and the path where the nodes are updated is sent to the user for

verification. The integrity verification scheme is similar to the earlier schemes but

this scheme supports data dynamics and verifies data block insert, update and

modify operations.

2.6. ON VERIFYING DYNAMIC MULTIPLE DATA COPIES OVER
CLOUD SERVERS

This scheme [8] supports multiple replicas and data encryption. The data

blocks in each copy are appended to file blocks before encryption. AES encryption

scheme is used for data encryption and BLS signatures are used for tag genera-

tion. Dynamic data operations are supported with the help of Merkle Hash Trees

(MHT).

7

Figure 2.2. Merkle Hash Tree

A MHT is a binary tree structure used to efficiently verify the integrity of

the data. The MHT is a tree of hashes where leaves of the tree are the hashes of

the data blocks. In the above figure hA = h(h1 ‖ h2), hB = h(h3 ‖ h4), and so on.

Finally, hR = h(hE ‖ hF) is the hash of the root node that is used to authenticate

the integrity of all data blocks. The data blocks {b1, b2,..,b8} are stored on a

remote server, and only the authentic value hR is stored locally on the verifier

side. For example, if the verifier requests to check the integrity of the blocks b2

and b6, the server will send these two blocks along with the authentication paths

A2 = {h1, hB} and A6 = {h5, hD} that are used to reconstruct the root of the MHT.

Aj the authentication path of bj is a set of node siblings (grey-shaded circles) on

the path from hj to the root. In the dynamic behavior of outsourced data, both

the values and the positions of the data block needs to be authenticated. This

will give an assurance that a specific value is stored at a specific leaf node. For

example, if a data owner requires inserting a new block after position j, the verifier

needs to make sure that the server has inserted the new block in the requested

position. To validate the positions of the blocks, the leaf nodes of the MHT are

8

treated in a specific sequence, e.g., left-to-right sequence. So, the hash of any

internal node is h(left child ‖ right child), e.g., hA = h(h1 ‖ h2) 6= h(h2 ‖ h1).

Besides, the authentication path Aj is viewed as an ordered set, and thus any leaf

node is uniquely specified by following the used sequence of constructing the root

of the MHT. A MHT directory is constructed for all the replicas.

Figure 2.3. MHT Directory

The disadvantage of this scheme is that the number of nodes in MHT de-

pends on number of blocks in the file and also on the number of copies. If a file

has huge number of blocks, then number of nodes in MHT will be huge. This

scheme incurs computation and communication overhead to the data owner to

generate and send such a huge tree structure. For every verification, the authen-

tication paths and multiple hash values are also sent to the user which will create

a communication overhead to data owner.

9

PAPER I

REPLICATED DATA INTEGRITY VERIFICATION IN CLOUD

Raghul Mukundan1, Sanjay Madria1, Mark Linderman2

1Department of Computer Science, Missouri University of Science & Technology,

Rolla, MO 65409

2Air Force Research Lab, Rome, NY

ABSTRACT

Cloud computing is an emerging model in which computing infrastructure

resources are provided as a service over the Internet. Data owners can outsource

their data by remotely storing them in the cloud and enjoy on-demand high quality

applications and services from a shared pool of configurable computing resources.

However, since data owners and cloud servers are not in the same trusted domain,

the outsourced data may be at risk as the cloud server may no longer be fully

trusted. Therefore, data integrity is of critical importance in such a scenario.

Cloud should let either the owners or a trusted third party to audit their data

storage without demanding a local copy of the data from owners. Replicating data

on cloud servers across multiple data centers provides a higher level of scalability,

availability, and durability. When the data owners ask the Cloud Service Provider

(CSP) to replicate data at different servers, they are charged a higher fee by the

CSP. Therefore, the data owners need to be strongly convinced that the CSP is

storing all the data copies that are agreed upon in the service level contract, and

the data-update requests issued by the customers have been correctly executed on

all the remotely stored copies. To deal with such problems, previous multi copy

verification schemes either focused on static files or incurred huge update costs in

a dynamic file scenario. In this paper, we propose some ideas under a Dynamic

10

Multi-Replica Provable Data Possession scheme (DMR-PDP) that prevents the

CSP from cheating; for example, by maintaining fewer copies than paid for. DMR-

PDP also supports efficient dynamic operations like block modification, insertion

and deletion on data replicas over cloud servers.

1.1. INTRODUCTION

When users store data in the cloud, their main concern is whether the

cloud can maintain the data integrity and data can be recovered when there is a

data loss or server failure. Cloud service providers (CSP), in order to save storage

cost, may tend to discard some data or data copies that is not accessed often, or

mitigate data to second-level storage devices. CSPs may also conceal data loss

due to management faults, hardware failures or attacks. Therefore, a critical issue

in storing data at untrusted CSPs is periodically verifying whether the storage

servers maintain data integrity; store data completely and correctly as stated in

the service level agreement (SLA).

Data replication is a commonly used technique to increase the data avail-

ability in cloud computing. Cloud replicates the data and stores them strategically

on multiple servers located at various geographic locations. Since the replicated

copies look exactly similar, it is difficult to verify whether the cloud really stores

multiple copies of the data. Cloud can easily cheat the owner by storing only one

copy of the data. Thus, the owner would like to verify at regular intervals whether

the cloud indeed possesses multiple copies of the data as claimed in the SLA. In

general, cloud has the capability to generate multiple replicas when a data owner

challenges the CSP to prove that it possesses multiple copies of the data. Also,

it is a valid assumption that the owner of the data may not have a copy of the

data stored locally. So, the major task of the owner is not only to verify that

the data is intact but also to recover the data if any deletions/corruptions of data

are identified. If the data owner during his verification using DMR-PDP scheme

detects some data loss in any of the replicas in the cloud, he can recover the data

11

from other replicas that are stored intact. Since, the replicas are to be stored at

diverse geographic locations, it is safe to assume that a data loss will not occur at

all the replicas at the same time.

Provable data possession (PDP) [2] is a technique to audit and validate

the integrity of data stored on remote servers. In a typical PDP model, the

data owner generates metadata/tag for a data file to be used later for integrity

verification. To ensure security, the data owner encrypts the file and generates

tags on the encrypted file. The data owner sends the encrypted file and the tags

to the cloud, and deletes the local copy of the file. When the data owner wishes

to verify the data integrity, he generates a challenge vector and sends it to the

cloud. The cloud replies by computing a response on the data and sends it to the

verifier/data owner to prove that multiple copies of the data file are stored in the

cloud. Different variations of PDP schemes such as [2], [4], [6], [7], [9], [10], [11],

[12], [15] were proposed under different cryptographic assumptions. But most of

these schemes deal only with static data files and are valid only for verifying a

single copy. A few other schemes such as [3], [5], [8], [13], [14] provide dynamic

scalability of a single copy of a data file for various applications which mean that

the remotely stored data can not only be accessed by the authorized users, but

also be updated and scaled by the data owner.

In this paper, we propose a scheme that allows the data owner to securely

ensure that the CSP stores multiple replicas. A simple way to make the replicas

look unique and differentiable is using probabilistic encryption schemes. Prob-

abilistic encryption creates different cipher texts each time the same message is

encrypted using the same key. Thus, our scheme uses homomorphic probabilistic

encryption to create distinct replicas/copies of the data file and BLS signatures

[17] to create constant amount of metadata for any number of replicas. Proba-

bilistic encryption encrypts all the replicas with the same key. Therefore, in our

scheme the data owner will have to share just one decryption key with the autho-

rized users and need not worry about CSP granting access to any of the replicas to

12

the authorized users. The homomorphic property of the encryption scheme helps

in efficient file updates. The data owner has to encrypt the difference between the

updated file and the old file and send it to the cloud, which updates all the replicas

by performing homomorphic addition on the file copies. Any authenticated data

structure, e.g, Merklee Hash Trees and Skiplist can be used with our scheme to

ensure that the cloud uses the right file blocks for data integrity verification. How-

ever, the ways to efficiently manage authenticated data structures in the cloud is

not within the scope of our paper.

Organization: The rest of the paper is organized as follows. Overview of

the related work is provided in Section 2 followed by the problem definition in

Section 3, and a detailed description of our scheme in Section 4. Future work is

discussed in Section 5.

1.2. RELATED WORK

Ateniese et al. [2] were the first to define the Provable Data Possession

(PDP) model for ensuring the possession of files on untrusted storages. They

made use of RSA-based homomorphic tags for auditing outsourced data. How-

ever, dynamic data storage and multiple replica system are not considered in this

scheme. In their subsequent work [12], they proposed a dynamic version which

supports very basic block operations with limited functionality, and does not sup-

port block insertions. In [13], Wang et al. considered dynamic data storage in a

distributed scenario, and proposed a challenge-response protocol which can deter-

mine data correctness as well as locate possible errors. Similar to [12], only partial

support for dynamic data operation is considered. Erway et al. [14] extended the

PDP model in [2] to support provable updates to stored data files using rank-based

authenticated skip lists. However, efficiency of their scheme remains unclear and

these schemes hold good only for verifying a single copy.

13

Curtmola et.al [1] proposed Multiple-Replica PDP (MR-PDP) scheme wherein

the data owner can verify that several copies of a file are stored by a storage ser-

vice provider. In their scheme, distinct replicas are created by first encrypting

the data and then masking it with randomness generated from a Pseudo-Random

Function (PRF). The randomized data is then stored across multiple servers. The

scheme uses RSA signatures for creation of tags. But, their scheme did not ad-

dress how the authorized users of the data can access the file copies from the cloud

servers noting that the internal operations of the CSP are opaque and do not sup-

port dynamic data operations. Ayad F. Barsoum et al. [16] proposed creation of

distinct copies by appending replica number to the file blocks and encrypting it

using an encryption scheme that has strong diffusion property, e.g., AES. Their

scheme supports dynamic data operations but during file updates, the copies in

all the servers should be encrypted again and updated on the cloud. This scheme

suits perfectly for static multiple replicas but proves costly in a dynamic scenario.

BLS signatures are used for creating tags and authenticated data structures like

Merklee Hash Trees are used to ensure right file blocks are used during verifica-

tion. Authorized users of the data should know random numbers in [1] and replica

number in [16] to generate the original file.

1.3. DYNAMIC MULTI-REPLICA PROVABLE DATA POSSESSION
(DMR-PDP) SCHEME

The cloud computing model considered in this work consists of three main

components as illustrated in Figure 1: (i) a data owner that can be an individual

or an organization originally possessing sensitive data to be stored in the cloud;

(ii) a CSP who manages cloud servers and provides paid storage space on its

infrastructure to store the owner’s files and (iii) authorized users - a set of owner’s

clients who have the right to access the remote data and share some keys with the

data owner.

14

Figure 1.1. Cloud Computing Data Storage Model.

1.3.1. Problem Definition and Design Goals. More recently, many

data owners relieve their burden of local data storage and maintenance by out-

sourcing their data to a CSP. CSP undertakes the data replication task in order

to increase the data availability, durability and reliability but the customers have

to pay for using the CSPs storage infrastructure. On the other hand, cloud cus-

tomers should be convinced that the (1) CSP actually possesses all the data copies

as agreed upon, (2) integrity of these data copies are maintained, and (3) the cus-

tomers are receiving the service that they are paying for. Therefore, in this paper,

we address the problem of securely and efficiently creating multiple replicas of

the data file of the owner to be stored over untrusted CSP and then auditing all

these copies to verify their completeness and correctness. Our design goals are

summarized below:

1. Dynamic Multi-Replica Provable Data Possession (DMR-PDP) protocols

should efficiently and securely provide the owner with strong evidence that

the CSP is in possession of all the data copies as agreed upon and that these

copies are intact.

2. Allowing the users authorized by the data owner to seamlessly access a file

copy from the CSP.

15

3. Using only a single set of metadata/tags for all the file replicas for verification

purposes.

4. Allowing dynamic data operation support to enable the data owner to per-

form block-level operations on the data files while maintaining the same level

of data correctness assurance.

5. Enabling both probabilistic and deterministic verification guarantees.

1.3.2. Preliminaries and Notations. In this section, we provide details

of the Bilinear mapping and Paillier Encryption schemes used in our present work.

1. Assume that F, a data file to be outsourced, is composed of a sequence of m

blocks, i.e., F = {b1, b2,..,bm}.

2. Fi = {bi1, bi2,....,bim} represents the file copy i.

3. Bilinear Map/Pairing: Let G1, G2, and GT be cyclic groups of prime order

a. Let u and v be generators of G1 and G2, respectively. A bilinear pairing

is a map e : G1 x G2 → GT with the following properties:

• Bilinear: e(u1u2, v1) = e(u1, v1) . e(u2, v1), e(u1, v1v2) = e(u1, v1) .

e(u1,v2) ∀ u1, u2 ∈ G1 and v1, v2 ∈ G2

• Non-degenerate: e(u, v) 6= 1

• There exists an efficient algorithm for computing e

• e(u1
x, v1

y) = e(u1, v1)xy ∀ u1 ∈ G1; v1 ∈ G2, and x, y ∈ Za

4. H(.) is a map-to-point hash function: {0, 1}∗ → G1.

5. Homomorphic Encryption: A homomorphic encryption scheme has the fol-

lowing properties.

• E(m1+ m2) = E(m1) +h E(m2) where +h is a homomorphic addition

operation.

• E(k*m) = E(m)k.

16

where E(.) represents a homomorphic encryption scheme and m, m1, m2 are

messages that are encrypted and k is some random number.

6. Paillier Encryption: Paillier cryptosystem is a homomorphic probabilistic

encryption scheme. The steps are as follows.

• Compute N = p * q and λ = LCM (p-1, q-1), where p, q are two prime

numbers.

• Select a random number g such that its order is a multiple of N and g

∈ ZN
2∗.

• Public key is (N, g) and secret key is λ, where N = p*q.

• Cipher text for a message m is computed as c = gm rN mod N2 where

r is a random number and r ∈ ZN
∗, c ∈ ZN

2∗ and m ∈ ZN .

• Plain text is obtained by m = L(cλ mod N2) * (L(gλ mod N2))−1 mod

N.

7. Properties of public key g in Paillier Scheme

• g ∈ ZN
2∗.

• If g = (1 + N) mod N2, it has few interesting properties

(a) Order of the value (1 + N) is N.

(b) (1 + N)m ≡ (1 + mN) mod N2. (1 + mN) can be used directly

instead of calculating (1 + N)m. This avoids the costly exponential

operation during data encryption.

1.3.3. DMR-PDP Construction. In our approach, the data owner cre-

ates multiple encrypted replicas and uploads them on to the cloud. The CSP stores

them on one or multiple servers located at various geographic locations. The data

owner shares the decryption key with a set of authorized users. In order to access

the data, an authorized user sends a data request to the CSP and receives a data

copy in an encrypted form that can be decrypted using a secret key shared with

17

Figure 1.2. DMR-PDP Scheme

the owner. The proposed scheme consists of seven algorithms: KeyGen, Replica-

Gen, TagGen, Prove, Verify, PrepareUpdate and ExecUpdate. The overview of

the communication involved in our scheme is shown in Figure 2.

1. (pk, sk) ← KeyGen(). This algorithm is run by the data owner to generate

a public key pk and a private key sk. The data owner generates three sets

of keys.

(a) Keys for data tags : This key is used for generating tags for the data.

The data owner selects a bilinear map e and selects a private key l ∈

Za. Public key is calculated as y = vl ∈ G2.

(b) Keys for data : This key is used for encrypting the data and thereby

creating multiple data copies. The data owner selects paillier public

keys (N, g) with g = (1 + N) mod N2 and secret key λ.

(c) PRF key : The data owner generates a PRF key KeyPRF which gen-

erates s numbers. These s numbers are used in creating s copies of

the data. Each number is used in creating one data copy. Let {k1,

k2,..,ks} ∈ ZN
∗ be the numbers generated by the PRF key. KeyPRF is

maintained confidentially by the data owner and hence the s numbers

used in creating multiple copies are not known to the cloud.

2. {Fi}1≤i≤s ← ReplicaGen (s, F). This algorithm is run by the data owner. It

takes the number of replicas s and the file F as input and generates s unique

18

differentiable copies {Fi}1≤i≤s. This algorithm is run only once. Unique

copies of each file block of file F is created by encrypting it using a proba-

bilistic encryption scheme, e.g., Paillier encryption scheme. Through prob-

abilistic encryption, encrypting a file block s times yields s distinct cipher

texts. For a file F = {b1, b2,..,bm} multiple data copies are generated us-

ing Paillier encryption scheme as Fi = {(1+N)b1(kiri1)N , (1+N)b2(kiri2)N ,..,

(1+N)bm(kirim)N }1≤i≤m. Using Paillier’s properties the above result can be

rewritten as Fi = {(1+b1N)(kiri1)N , (1+b2N)(kiri2)N ,.., (1+bmN)(kirim)N}1≤i≤m,

where i represents the file copy number, ki represents the numbers gener-

ated from PRF key KeyPRF and rij represents any random number used in

Paillier encryption scheme. ki is multiplied by a random number rij and the

product is used for encryption. The presence of ki in a file block identifies

which file copy the file block belongs to. All these file copies yield the origi-

nal file when decrypted . This allows the users authorized by the data owner

to seamlessly access the file copy received from the CSP.

3. φ ← TagGen (sk, F). This algorithm is run by the data owner. It takes the

private key sk and the file F as input and outputs the tags φ. We use BLS

signature scheme to create tags on the data. BLS signatures are short and

homomorphic in nature and allow concurrent data verification, which means

multiple data blocks can be verified at the same time. In our scheme, tags

are generated on each file block bi as φi = (H(F) . ubiN)l ∈ G1 where u ∈

G1 and H(.) ∈ G1 represents hash value which uniquely represents the file

F. The data owner sends the tag set φ = {φi}1≤i≤m to the cloud.

4. P ← Prove (F, φ, challenge). This algorithm is run by the CSP. It takes the

file replicas of file F, the tags φ and challenge vector sent by the data owner

as input and returns a proof P which guarantees that the CSP is actually

storing s copies of the file F and all these copies are intact. The data owner

uses the proof P to verify the data integrity. There are two phases in this

algorithm:

19

(a) Challenge: In this phase the data owner challenges the cloud to verify

the integrity of all outsourced copies. There are two types of verification

schemes:

i. Deterministic - here all the file blocks from all the copies are used

for verification.

ii. Probabilistic - only a few blocks from all the copies are used for

verification. A Pseudo Random Function key (PRF) is used to

generate random indices ranging between 1 and m. The file blocks

from these indices are used for verification. In each verification a

percentage of the file is verified and it accounts for the verification

of the entire file.

At each challenge, the data owner chooses the type of verification

scheme he wishes to use. If the owner chooses the deterministic ver-

ification scheme, he generates one PRF key, Key1. If he chooses the

probabilistic scheme he generates two PRF keys, Key1 and Key2. PRF

keyed with Key1 generates c (1 ≤ c ≤ m) random file indices which in-

dicates the file blocks that CSP should use for verification. PRF keyed

with Key2 generates s random values and the CSP should use each of

these random numbers for each file copy while computing the response.

The data owner sends the generated keys to the CSP.

(b) Response: This phase is executed by the CSP when a challenge for

data integrity verification is received from the data owner. Here, we

show the proof for probabilistic verification scheme (the deterministic

verification scheme also follows the same procedure). The CSP receives

two PRF keys, Key1 and Key2 from the data owner. Using Key1, CSP

generates a set {C} with c (1≤ c ≤ m) random file indices ({C} ∈

{1, 2,..,m}), which indicate the file blocks that CSP should use for

verification. Using Key2, CSP generates ’s’ random values T = {t1,

20

t2,..,ts}. The cloud performs two operations. One on the tags and the

other on the file blocks.

i. Operation on the tags: Cloud multiplies the file tags corresponding

to the file indices generated by PRF key Key1.

σ =
∏
j∈C

(H(F).ubjN)l

=
∏
j∈C

H(F)l.
∏
j∈C

ubjNl

= H(F)cl.u
Nl

∑
j∈C

(bj)

ii. Operation on the file blocks: The cloud first takes each file copy

and multiplies all the file blocks corresponding to the file indices

generated by PRF key Key1. The product of each copy is raised to

the power the random number generated for that copy by the PRF

key Key2. The result of the above operation for each file copy i is

given by (
∏
j∈C

(1+N)bj(kirij)
N)ti mod N2. The CSP then multiplies

the result of each copy to get the result

µ =
s∏
i=1

(
∏
j∈C

(1 +N)bj(kirij)
N)ti

=
s∏
i=1

(
∏
j∈C

(1 +N)bjti
∏
j∈C

(kirij)
Nti)

=
s∏
i=1

((1 +N)
ti

∑
j∈C

bj ∏
j∈C

(kirij)
Nti)

= (
s∏
i=1

(1 +N)
ti

∑
j∈C

bj
)(

s∏
i=1

((ki)
ctiN

∏
j∈C

(rij)
Nti))

= ((1+N)

s∑
i=1

ti
∑
j∈C

bj
)(

s∏
i=1

(ki)
ctiN)(

s∏
i=1

∏
j∈C

(rij)
Nti)

21

Using properties of Paillier scheme, the above equation can be

rewritten as

µ = (1 +N
s∑
i=1

(ti)
∑
j∈C

(bj))(
s∏
i=1

(ki)
Ncti)(

s∏
i=1

(
∏
j∈C

(rij)
tiN))

The CSP sends σ and µ mod N2 values to the data owner.

5. {1, 0} ← Verify (pk, P). This algorithm is run by the data owner. It takes as

input the public key pk and the proof P returned from the CSP, and outputs

1 if the integrity of all file copies is correctly verified or 0 otherwise. After

receiving σ and µ values from the CSP, the data owner does the following:

(a) calculates v = (
s∏
i=1

(ki)
ticN) and d = Decrypt(µ)/(

s∑
i=1

ki). This can be

calculated from the values generated from KeyPRF and c.

(b) checks if µ mod v ≡ 0. This ensures that the cloud has used all the file

copies while computing the response.

(c) checks if (H(F)c udN)l = σ. This ensures that the CSP has used all

the file blocks while computing the response. If options b and c are

satisfied, it indicates that the data stored by the owner in the cloud is

intact and the cloud has stored multiple copies of the data as agreed in

the service level agreement.

6. Update ← PrepareUpdate (). This algorithm is run by the data owner to

perform any operation on the outsourced file copies stored by the remote

CSP. The output of this algorithm is an Update request. The data owner

sends the Update request to the cloud and will be of the form <IdF , BlockOp,

j, bi’, φ’>, where IdF is the file identifier, BlockOp corresponds to block

operation, j denotes the index of the file block, bi’ represents the updated

file blocks and φ’ is the updated tag. BlockOp can be data modification,

insertion or delete operation.

22

Owner CSP
1. Calculates ∆bj = bj’ - bj.
2. Encrypts ∆bj using Paillier encryption.

E(∆bj) = (1 + ∆bjN) rN , where r is some random number.

3. Calculates the new file tag for bj’, φ’ = (H(F) ub
′
jN)l.

4. Generates PRF keys Key1, Key2 to verify the correctness
of modify operation.

<IdF , modify, j, E(∆bj), φ’> , Key1, Key2
-

5. Performs homomorphic addition operation
E(bj’) = E(∆bj) * E(bj) on all the file copies.

6. Deletes the old tag and replaces it with the new tag φ’.
7. Calculates a response µ, σ.

µ, σ
�

8. Calculates v and d
9. Verifies if µ mod v ≡ 0 and checks if (H(F)c udN)l = σ.

Figure 1.3. Block modification operation in the DMR-PDP scheme

7. (F’, φ’) ← ExecUpdate (F, φ, Update). This algorithm is run by the CSP

where the input parameters are the file copies F, the tags φ, and Update

request (sent from the owner). It outputs an updated version of all the file

copies F’ along with updated signatures φ’. After any block operation, the

data owner runs the challenge protocol to ensure that the cloud has executed

the operations correctly. The operation in Update request can be modifying

a file block, inserting a new file block or deleting a file block.

(a) Modification: Data modification is one of the most frequently used

dynamic operations. The data modification operation in DMR-PDP

scheme is shown in Figure 3.

(b) Insertion: In the block insertion operation, the owner inserts a new

block after position j in a file. If the file F had m blocks initially,

the file will have m+1 blocks after the insert operation. The file block

insertion operation is shown in Figure 4.

(c) Deletion: Block deletion operation is the opposite of the insertion

operation. When one block is deleted, indices of all subsequent blocks

23

are moved one step forward. To delete a specific data block at position

j from all copies, the owner sends a delete request <IdF , delete, j, null,

null> to the cloud. Upon receiving the request, the cloud deletes the

tag and the file block at index j in all the file copies.

Owner CSP
1. Encrypts the new file block s times
2. Creates tag φ for the new file block
3. Generates PRF keys Key1, Key2 to verify the correctness

of insert operation.
<IdF , insert, j, s file blocks, φ> , Key1, Key2

-

4. Inserts the new file block at location j
5. Stores the new tag φ.
6. Calculates a response µ, σ.

µ, σ
�

7. Calculates v and d
8. Verifies if µ mod v ≡ 0 and checks if (H(F)c udN)l = σ.

Figure 1.4. Block insertion operation in the DMR-PDP scheme

1.4. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed work related to the replicated data in-

tegrity preservation in a cloud environment and presented a Dynamic Multi-

Replica Provable Data Possession scheme (DMR-PDP) to periodically verify the

correctness and completeness of multiple data copies stored in the cloud. Our

scheme also supports dynamic data update operations. All the data copies can

be decrypted using a single decryption key, thus providing a seamless access to

the data’s authorized users. This scheme can be extended for multiple versions

where only deltas can be stored in the cloud and owner can save on storage cost.

Currently, we are implementing the proposed scheme for evaluating it in a real

cloud platform using different performance metrics and comparing it with some of

the existing methods. We also plan to extend this scheme for secure multi-version

data where only one original and multiple deltas can be stored in the cloud.

24

BIBLIOGRAPHY

[1] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-
Replica Provable Data Possession,” in 28th IEEE ICDCS, 2008, pp. 411-420.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D.
Song, “Provable data possession at untrusted stores,” in CCS ’07: Proceedings
of the 14th ACM Conference on Computer and Communications Security, New
York, NY, USA, 2007, pp. 598-609.

[3] G. Ateniese, R. D. Pietro, L. V. Mancin, and G. Tsudik, “Scalable and efficient
provable data possession,” in SecureComm 08: Proceedings of the 4th Interna-
tional Conference on Security and Privacy in Communication Netowrks, New
York, NY, USA,2008, pp. 1-10.

[4] Y. Deswarte, J.-J. Quisquater, and A. Sadane, “Remote integrity checking,”
in 6th Working Conference on Integrity and Internal Control in Information
Systems (IICIS), S. J. L. Strous, Ed., 2003, pp. 1-11.

[5] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic provable
data possession,” in CCS 09: Proceedings of the 16th ACM Conference on
Computer and Communications Security, New York, NY, USA, 2009, pp. 213-
222.

[6] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating data possession
and uncheatable data transfer,” Cryptology ePrint Archive, Report 2006/150,
2006.

[7] P. Golle, S. Jarecki, and I. Mironov, “Cryptographic primitives enforcing com-
munication and storage complexity,” in FC’02: Proceedings of the 6th Inter-
national Conference on Financial Cryptography, Berlin, Heidelberg, 2003, pp.
120-135.

[8] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote data integrity
checking protocol with data dynamics and public verifiability,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 99, no. PrePrints, 2011.

[9] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and integrity in
outsourced databases,” Trans. Storage, vol. 2, no. 2, 2006.

[10] F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and J.-J.
Quisquater, “Efficient remote data possession checking in critical information
infrastructures,” IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 8, 2008.

[11] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Auditing to
keep online storage services honest,” in HOTOS’07: Proceedings of the 11th
USENIX workshop on Hot topics in operating systems, Berkeley, CA, USA,
2007, pp. 1-6.

25

[12] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving audit and
extraction of digital contents,” Cryptology ePrint Archive, Report 2008/186,
2008.

[13] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage secu-
rity in cloud computing,” Cryptology ePrint Archive, Report 2009/081, 2009,
http://eprint.iacr.org (Retrieved: 08/06/2013).

[14] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability
and data dynamics for storage security in cloud computing,” in ESORICS09:
Proceedings of the 14th European Conference on Research in Computer Secu-
rity, Berlin, Heidelberg, 2009, pp. 355-370.

[15] K. Zeng, “Publicly verifiable remote data integrity,” in Proceedings of the
10th International Conference on Information and Communications Security,
ser. ICICS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 419-434.

[16] A. F. Barsoum and M. A. Hasan, “On verifying dynamic multiple data copies
over cloud servers,” Cryptology ePrint Archive, Report 2011/447, 2011, 2011,
http://eprint.iacr.org (Retrieved: 08/06/2013).

[17] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,”
in ASIACRYPT ’01:Proceedings of the 7th International Conference on the
Theory and Application of Cryptology and Information Security, London, UK,
2001, pp. 514-532.

26

PAPER II

EFFICIENT INTEGRITY VERIFICATION OF REPLICATED
DATA IN CLOUD USING HOMOMORPHIC ENCRYPTION

Raghul Mukundan1, Sanjay Madria1, Mark Linderman2

1Department of Computer Science, Missouri University of Science & Technology,

Rolla, MO 65409

2Air Force Research Lab, Rome, NY

ABSTRACT

The cloud computing is an emerging model in which computing infras-

tructure resources are provided as a service over the Internet. Data owners can

outsource their data by remotely storing them in the cloud and enjoy on-demand

high quality services from a shared pool of configurable computing resources. How-

ever, since data owners and the cloud servers are not in the same trusted domain,

the outsourced data may be at risk as the cloud server may no longer be fully

trusted. Therefore, data integrity is of critical importance in such a scenario.

Cloud should let the owners or a trusted third party to check for the integrity

of their data storage without demanding a local copy of the data. Owners often

replicate their data on the cloud servers across multiple data centers to provide

a higher level of scalability, availability, and durability. When the data owners

ask the Cloud Service Provider (CSP) to replicate data, they are charged a higher

storage fee by the CSP. Therefore, the data owners need to be strongly convinced

that the CSP is storing data copies agreed on in the service level contract, and

data-updates have been correctly executed on all the remotely stored copies. To

deal with such problems, previous multi copy verification schemes either focused

on static files or incurred huge update costs in a dynamic file scenario. In this

27

paper, we propose a Dynamic Multi-Replica Provable Data Possession scheme

(DMR-PDP) that prevents the CSP from cheating; for example, by maintaining

fewer copies than paid for and/or tampering data. In addition, we also extend the

scheme to support a basic file versioning system where only the difference between

the original file and the updated file is propagated rather than the propagation

of operations for privacy reasons. DMR-PDP also supports efficient dynamic op-

erations like block modification, insertion and deletion on replicas over the cloud

servers. Through security analysis and experimental results, we demonstrate that

the proposed scheme is secure and performs better than some other related ideas

published recently.

2.1. INTRODUCTION

When users store data in the cloud, their main concern is whether the cloud

can maintain data integrity and whether the data can be recovered when there is

data loss or server failure. Cloud Service Providers (CSP), in order to save storage

cost, may tend to discard some data or data copies that are not accessed often,

or mitigate such data to the second-level storage devices. CSPs may also conceal

data loss due to management faults, hardware failures or attacks. Therefore, a

critical issue in storing data at untrusted CSPs is periodically verifying whether

the storage servers maintain data integrity and store data completely and correctly

as stated in the Service Level Agreement (SLA).

Replication is a commonly used technique to increase the data availability

in the cloud computing. Cloud replicates the data and stores them strategically

on multiple servers located at various geographic locations. Since the replicated

data are copies, it is difficult to verify whether the cloud really stores multiple

copies of the data. The cloud can easily cheat the owner by storing only one copy

of the data. Thus, the owner would like to verify at regular intervals whether

the cloud indeed possesses multiple copies of the data as claimed in the SLA. In

general, the cloud has the capability to generate multiple replicas when a data

28

owner challenges the CSP to prove that it possesses multiple copies of the data.

Also, it is a valid assumption that the owner of the data may not have a copy

of the data stored locally. So, the major task of the owner is not only to verify

that the data is intact but also to recover the data if any deletions/corruptions of

data are identified. If the owner, during his verification using DMR-PDP scheme,

detects some data loss in any of the replicas in the cloud, he can recover the data

from other replicas that are stored intact. Since, the replicas are to be stored at

diverse geographic locations, it is assumed to be safe that the data loss will not

occur at all the replicas at the same time.

Provable data possession (PDP) [2] is a technique to audit and validate

the integrity of data stored on remote servers. In a typical PDP model, the

data owner generates metadata/tag for a data file to be used later for integrity

verification. To ensure security, the data owner encrypts the file and generates

tags on the encrypted file. The data owner sends the encrypted file and the

tags to the cloud, and deletes the local copy of the file. When the data owner

wishes to verify data integrity, he generates a challenge vector and sends it to the

cloud. The cloud replies by computing a response on the data and sends it to the

verifier/data owner to prove that multiple copies of the data file are stored in the

cloud. Different variations of PDP schemes such as [2], [4], [6], [7], [9], [10], [11],

[12], [15] were proposed under different cryptographic assumptions. However, most

of these schemes deal only with static data files and are valid only for verifying a

single copy. A few other schemes such as [3], [5], [8], [13], [14] provide dynamic

scalability of a single copy of a data file for various applications which means that

the remotely stored data can not only be accessed by the authorized users, but

also be updated and scaled by the data owner.

In this paper, we propose a scheme that allows the data owner to securely

ensure that the CSP stores multiple replicas. A simple way to make the replicas

29

look unique and differentiable is by using probabilistic encryption schemes. Prob-

abilistic encryption creates different cipher texts each time the same message is en-

crypted using the same key. Thus, our scheme uses homomorphic probabilistic en-

cryption to create distinct replicas/copies of the data file and BonehLynnShacham

signature scheme (BLS) signatures [17] to create constant amount of metadata for

any number of replicas. Probabilistic encryption encrypts all the replicas with the

same key. Therefore, in our scheme the data owner will have to share just one

decryption key with the authorized users and need not worry about CSP granting

access to any of the replicas to the authorized users. The homomorphic property

of the encryption scheme helps in efficient file updates. The data owner has to

encrypt the difference between the updated file and the old file and send it to

the cloud, which updates all the replicas by performing homomorphic addition

on the file copies. Any authenticated data structure such as Merkle Hash Trees

or Skiplist can be used with our scheme to ensure that the cloud uses the right

file blocks for data integrity verification. However, the ways to efficiently manage

authenticated data structures in the cloud is not within the scope of this paper.

RSA signatures used in [1] can also be used with DMR-PDP scheme for creating

data tags. We compare the performance of BLS and RSA signatures and discuss

the benefits of using BLS signatures over RSA singatures. We identify the possible

attacks the CSP can use to cheat the data owner and provide a security analy-

sis of the proposed protocol against these attacks. Efficiency of the protocol has

been experimentally tested and the results demonstrate that our protocol is more

efficient than the scheme in [16].

We also extended the DMR-PDP scheme to support a basic file versioning

system. The advantage of a file version system is that the data owner can review

the changes done to the file and also retrieve the older versions of the file. The

cloud computing solutions like Dropbox, Google Drive provide basic file version

control system in addition to data storage service. The client-server file versioning

models like SVN offer much more features when compared to what these cloud

30

solutions provide. All these solutions use Delta compression technique where only

the difference between the original file and the updated file is propagated and

stored on the server. The differences are recorded in discrete files called ”deltas”

or ”diffs”. To retrieve any particular version of the file, the change or delta stored

on the server is merged with the base version. This reduces the bandwidth and

storage space on the server. In our present setting, the data owner uses a homomor-

phic probabilistic encryption scheme to encrypt and generates multiple encrypted

replicas of the file. The cloud stores the replicas across multiple servers. The chal-

lenge is to store multiple replicas of the file and maintain the file updates as deltas

to support a basic file versioning system when the files are encrypted. To address

this, we propose Multiple Replica File Version Control System (MRFVCS) as an

extension to the DMR-PDP scheme, which supports encrypted file version con-

trol when the data is replicated and the data owner can still use the DMR-PDP

scheme to verify the integrity of the data. We implemented the MRFVCS scheme

and our experiments show that it is efficient maintaining versions and needs only

a little data storage on the data owner side .

Organization: The rest of the paper is organized as follows. Overview of the

related work is provided in Section 2 followed by the a detailed description of our

scheme in Section 3, and Security analysis in Section 4. MRFVCS is discussed in

section 5 followed by Experimental results in Section 6 and Conclusion in Section

7.

2.2. RELATED WORK

Ateniese et al. [2] were the first to define the Provable Data Possession

(PDP) model for ensuring the possession of files on untrusted storages. They

made use of RSA-based homomorphic tags for auditing outsourced data. How-

ever, dynamic data storage and multiple replica system are not considered in this

scheme. In their subsequent work [3] and [12], they proposed a dynamic version

which supports very basic block operations with limited functionality, and does

31

not support block insertions. In [13], Wang et al. considered dynamic data stor-

age in a distributed scenario, and proposed a challenge-response protocol which

can determine data correctness as well as locate possible errors. Similar to [12],

only partial support for dynamic data operation is considered. Erway et al. [5]

extended the PDP model in [2] to support dynamic updates to stored data files

using rank-based authenticated skip lists. However, the efficiency of their scheme

remains unclear and these schemes hold good only for verifying a single copy.

Wang et al. [14] use Merkle Hash Trees (MHT) for data integrity verification and

their scheme supports dynamic data operations, but in their scheme data is not

encrypted and works only for a single copy. Hao et al. [8] proposed a scheme that

supports both the dynamic data operations and public verifiability. Public verifia-

bility allows anyone, not necessarily the data owner, to verify the integrity of data

stored in the cloud by running the challenge-response protocol. Their scheme too

do not consider data encryption and their scheme cannot be extended to suit the

scenario where multiple data copies are stored.

Curtmola et.al [1] proposed Multiple-Replica PDP (MR-PDP) scheme wherein

the data owner can verify that several copies of a file are stored by a storage ser-

vice provider. In their scheme, distinct replicas are created by first encrypting the

data and then masking it with the randomness generated from a Pseudo-Random

Function (PRF). The randomized data is then stored across multiple servers. The

scheme uses RSA signatures for creation of tags. But, their scheme did not ad-

dress how the authorized users of the data can access the file copies from the cloud

servers noting that the internal operations of the CSP are opaque and do not sup-

port dynamic data operations. Ayad F. Barsoum et al. [16] proposed creation of

distinct copies by appending replica number to the file blocks and encrypting it

using an encryption scheme that has strong diffusion property, e.g., AES. Their

scheme supports dynamic data operations but during file updates, the copies in

all the servers should be encrypted again and updated on the cloud. This scheme

suits perfectly for static multiple replicas but proves costly in a dynamic scenario.

32

BLS signatures are used for creating tags and authenticated data structures like

Merkle Hash Trees are used to ensure that the right file blocks are used during

verification. Authorized users of the data should know random numbers in [1] and

replica number in [16] to generate the original file.

2.3. DYNAMIC MULTI-REPLICA PROVABLE DATA POSSESSION
(DMR-PDP) SCHEME

The cloud computing model considered in this work consists of three main

components as illustrated in Figure 1: (i) a data owner that can be an individual

or an organization originally possessing sensitive data to be stored in the cloud;

(ii) a CSP who manages the cloud servers and provides paid storage space on its

infrastructure to store the owner’s files and (iii) authorized users - a set of owner’s

clients who have the right to access the remote data and share some keys with the

data owner.

Figure 2.1. Cloud Computing Data Storage Model.

2.3.1. Problem Definition and Design Goals. More recently, many

data owners relieve their burden of local data storage and maintenance by out-

sourcing their data to a CSP. CSP undertakes the data replication task in order

to increase the data availability, durability and reliability but the customers have

to pay for using the CSPs storage infrastructure. On the other hand, the cloud

33

customers should be convinced that the (1) CSP actually possesses all the data

copies as agreed upon, (2) integrity of these data copies are maintained, and (3)

the owners are able to update the data that they are paying for. Therefore, in

this paper, we address the problem of securely and efficiently creating multiple

replicas of the data file of the owner to be stored over untrusted CSP and then

auditing all these copies to verify their completeness and correctness. Our design

goals are summarized below:

1. Dynamic Multi-Replica Provable Data Possession (DMR-PDP) protocols

should efficiently and securely provide the owner with strong evidence that

the CSP is in possession of all the data copies as agreed upon and that these

copies are intact.

2. Allowing the users authorized by the data owner to seamlessly access a file

copy from the CSP.

3. Using only a single set of metadata/tags for all the file replicas for verification

purposes.

4. Allowing dynamic data operation support to enable the data owner to per-

form block-level operations on the data files while maintaining the same level

of data correctness assurance.

5. Enabling both probabilistic and deterministic verification guarantees.

2.3.2. Preliminaries and Notations. In this section, we provide details

of the Bilinear mapping and Paillier Encryption schemes used in our present work.

1. Assume that F, a data file to be outsourced, is composed of a sequence of

m blocks, i.e., F = {b1, b2,..,bm} where bi ∈ ZN, where ZN is the set of all

residues when divided by N and N is a public key in Paillier scheme.

2. Let Fi represent the file copy i. So Fi = {bi1, bi2,....,bim}, where bij repre-

sents file block bj of file copy i.

34

3. BLS Signatures: BLS signatures are short homomorphic signatures that use

the properties of bilinear pairings on certain elliptic curves. These signatures

allow concurrent data verification, where multiple blocks can be verified at

the same time.

4. Bilinear Map/Pairing: Let G1, G2, and GT be cyclic groups of prime order

a. Let u and v be generators of G1 and G2, respectively. A bilinear pairing

is a map e : G1 x G2 → GT with the following properties:

• Bilinear: e(u1u2, v1) = e(u1, v1) . e(u2, v1), e(u1, v1v2) = e(u1, v1) .

e(u1,v2) ∀ u1, u2 ∈ G1 and v1, v2 ∈ G2

• Non-degenerate: e(u, v) 6= 1

• There exists an efficient algorithm for computing e

• e(u1
x, v1

y) = e(u1, v1)xy ∀ u1 ∈ G1; v1 ∈ G2, and x, y ∈ Za

5. H(.) is a map-to-point hash function: {0, 1}∗ → G1.

6. Homomorphic Encryption: A homomorphic encryption scheme has the fol-

lowing properties.

• E(m1+ m2) = E(m1) +h E(m2) where +h is a homomorphic addition

operation.

• E(k*m) = E(m)k.

where E(.) represents a homomorphic encryption scheme and m, m1, m2 are

messages that are encrypted and k is some random number.

7. Paillier Encryption: Paillier cryptosystem is a homomorphic probabilistic

encryption scheme. The steps are as follows.

• Compute N = p * q and λ = LCM (p-1, q-1), where p, q are two prime

numbers.

• Select a random number g such that its order is a multiple of N and g

∈ ZN
2∗.

35

• Public key is (N, g) and secret key is λ, where N = p*q.

• Cipher text for a message m is computed as c = gm rN mod N2 where

r is a random number and r ∈ ZN
∗, c ∈ ZN

2∗ and m ∈ ZN .

• Plain text is obtained by m = L(cλ mod N2) * (L(gλ mod N2))−1 mod

N.

8. Properties of public key g in Paillier Scheme

• g ∈ ZN
2∗.

• If g = (1 + N) mod N2, it has few interesting properties

(a) Order of the value (1 + N) is N.

(b) (1 + N)m ≡ (1 + mN) mod N2. (1 + mN) can be used directly

instead of calculating (1 + N)m. This avoids the costly exponential

operation during data encryption.

2.3.3. DMR-PDP Construction. In our approach, the data owner cre-

ates multiple encrypted replicas and uploads them on to the cloud. The CSP stores

them on one or multiple servers located at various geographic locations. The data

owner shares the decryption key with a set of authorized users. In order to access

the data, an authorized user sends a data request to the CSP and receives a data

copy in an encrypted form that can be decrypted using a secret key shared with

the owner. The proposed scheme consists of seven algorithms: KeyGen, Replica-

Gen, TagGen, Prove, Verify, PrepareUpdate and ExecUpdate. The overview of

the communication involved in our scheme is shown in Figure 2.

1. (pk, sk) ← KeyGen(). This algorithm is run by the data owner to generate

a public key pk and a private key sk. The data owner generates five sets of

keys.

(a) Key for data tags : This key is used for generating tags for the data.

The data owner selects a bilinear map e and selects a private key l ∈

Za, where l is the private key and a is the order of cyclic groups G1,

36

Figure 2.2. DMR-PDP Scheme

G2, and GT . Public key is calculated as y = vl ∈ G2, where v is the

generator of group G2.

(b) Key for data : This key is used for encrypting the data and thereby

creating multiple data copies. The data owner selects paillier public

keys (N, g) with g = (1 + N) mod N2 and secret key λ.

(c) PRF key for verification: The data owner generates a PRF key KeyPRF

which generates s numbers. These s numbers are used in creating s

copies of the data. Each number is used in creating one data copy.

Let {k1, k2,..,ks} ∈ ZN
∗ be the numbers generated by the PRF key.

KeyPRF is maintained confidentially by the data owner and hence the

s numbers used in creating multiple copies are not known to the cloud.

(d) PRF key for Paillier encryption: The data owner generates a PRF

key Keyrand, which is used for generating the random numbers used in

Paillier encryption.

(e) PRF key for Tag generation: The data owner generates a PRF key

Keytag, which is used in generation of tags.

2. {Fi}1≤i≤s ← ReplicaGen (s, F). This algorithm is run by the data owner. It

takes the number of replicas s and the file F as input and generates s unique

differentiable copies {Fi}1≤i≤s. This algorithm is run by the data owner only

once. Unique copies of each file block of file F is created by encrypting it

using a probabilistic encryption scheme, e.g., Paillier encryption scheme.

37

Through probabilistic encryption, encrypting a file block s times yields s

distinct cipher texts. For a file F = {b1, b2,..,bm} multiple data copies

are generated using Paillier encryption scheme as Fi = {(1+N)b1(kiri1)N ,

(1+N)b2(kiri2)N ,.., (1+N)bm(kirim)N }1≤i≤m. Using Paillier’s properties the

above result can be rewritten as Fi = {(1+b1N)(kiri1)N , (1+b2N)(kiri2)N ,..,

(1+bmN)(kirim)N}1≤i≤m, where i represents the file copy number, ki rep-

resents the numbers generated from PRF key KeyPRF and rij represents

random number used in Paillier encryption scheme generated from PRF key

Keyrand. ki is multiplied by the random number rij and the product is used

for encryption. The presence of ki in a block identifies which copy the file

block belongs to. All these file copies yield the original file when decrypted.

This allows the users authorized by the data owner to seamlessly access the

file copy received from the CSP.

3. φ ← TagGen (sk, F). This algorithm is run by the data owner. It takes the

private key sk and the file F as input, and outputs the tags φ. We use BLS

signature scheme to create tags on the data. BLS signatures are short and

homomorphic in nature and allow concurrent data verification, which means

multiple data blocks can be verified at the same time. In our scheme, tags

are generated on each file block bi as φi = (H(F) . ubiN+ai)l ∈ G1 where u

∈ G1, H(.) ∈ G1 represents hash value which uniquely represents the file

F and {ai}1≤i≤m are numbers generated from PRF key Keytag to randomize

the data in the tag. Randomization is required to avoid generation of same

tags for similar data blocks. The data owner sends the tag set φ = {φi}1≤i≤m

to the cloud.

4. P ← Prove (F, φ, challenge). This algorithm is run by the CSP. It takes

the replicas of file F, the tags φ and challenge vector sent by the data owner

as input and returns a proof P which guarantees that the CSP is actually

storing s copies of the file F and all these copies are intact. The data owner

38

uses the proof P to verify the data integrity. There are two phases in this

algorithm:

(a) Challenge: In this phase, the data owner challenges the cloud to verify

the integrity of all outsourced copies. There are two types of verification

schemes:

i. Deterministic - here all the file blocks from all the copies are used

for verification.

ii. Probabilistic - only a few blocks from all the copies are used for

verification. A Pseudo Random Function key (PRF) is used to

generate random indices ranging between 1 and m. The file blocks

from these indices are used for verification. In each verification a

percentage of the file is verified and it accounts for the verification

of the entire file.

At each challenge, the data owner chooses the type of verification

scheme he wishes to use. If the owner chooses the deterministic ver-

ification scheme, he generates one PRF key, Key1. If he chooses the

probabilistic scheme he generates two PRF keys, Key1 and Key2. PRF

keyed with Key1 generates c (1 ≤ c ≤ m) random file indices which in-

dicates the file blocks that CSP should use for verification. PRF keyed

with Key2 generates s random values and the CSP should use each of

these random numbers for each file copy while computing the response.

The data owner sends the generated keys to the CSP.

(b) Response: This phase is executed by the CSP when a challenge for

data integrity verification is received from the data owner. Here, we

show the proof for probabilistic verification scheme (the deterministic

verification scheme also follows the same procedure). The CSP receives

two PRF keys, Key1 and Key2 from the data owner. Using Key1, CSP

generates a set {C} with c (1≤ c ≤ m) random file indices ({C} ∈

39

{1, 2,..,m}), which indicate the file blocks that CSP should use for

verification. Using Key2, CSP generates ’s’ random values T = {t1,

t2,..,ts}. The cloud performs two operations; One on the tags and the

other on the file blocks.

i. Operation on the tags: Cloud multiplies the file tags corresponding

to the file indices generated by PRF key Key1.

σ =
∏
j∈C

(H(F).ubjN+aj)l

=
∏
j∈C

H(F)l.
∏
j∈C

u(bjN+aj)l

= H(F)cl.u
(N

∑
j∈C

bj+
∑
j∈C

aj)l

ii. Operation on the file blocks: The cloud first takes each file copy

and multiplies all the file blocks corresponding to the file indices

generated by the PRF key Key1. The product of each copy is raised

to the power the random number generated for that copy by the

PRF key Key2. The result of the above operation for each file

copy i is given by (
∏
j∈C

(1 +N)bj(kirij)
N)ti mod N2. The CSP then

multiplies the result of each copy to get the result

µ =
s∏
i=1

(
∏
j∈C

(1 +N)bj(kirij)
N)ti

=
s∏
i=1

(
∏
j∈C

(1 +N)bjti
∏
j∈C

(kirij)
Nti)

=
s∏
i=1

((1 +N)
ti

∑
j∈C

bj ∏
j∈C

(kirij)
Nti)

= (
s∏
i=1

(1 +N)
ti

∑
j∈C

bj
)(

s∏
i=1

((ki)
ctiN

∏
j∈C

(rij)
Nti))

40

Owner CSP
1. Calculates ∆bj = bj’ - bj.
2. Encrypts ∆bj using Paillier encryption.

E(∆bj) = (1 + ∆bjN) rN , where r is some random number.

3. Calculates the new file tag for bj’, φ’ = (H(F) ub
′
jN)l.

4. Generates PRF keys Key1, Key2 to verify the correctness
of modify operation.

<IdF , modify, j, E(∆bj), φ’> , Key1, Key2
-

5. Performs homomorphic addition operation
E(bj’) = E(∆bj) * E(bj) on all the file copies.
6. Deletes the old tag and replaces it with
the new tag φ’.
7. Calculates a response µ, σ.

µ, σ
�

8. Calculates v and d

9. Verifies if µ * Inverse(
s∏
i=1

(ri)
ticN) mod v ≡ 0 and

checks if H(F)cl . u
(Nd+

∑
j∈C

aj)l

= σ.

Figure 2.3. Block modification operation in the DMR-PDP scheme

= ((1 +N)

s∑
i=1

ti
∑
j∈C

bj
)(

s∏
i=1

(ki)
ctiN)(

s∏
i=1

∏
j∈C

(rij)
Nti)

Using properties of Paillier scheme, the above equation can be

rewritten as

µ = (1 +N
s∑
i=1

(ti)
∑
j∈C

(bj))(
s∏
i=1

(ki)
Ncti)(

s∏
i=1

(
∏
j∈C

(rij)
tiN))

The CSP sends σ and µ mod N2 values to the data owner.

5. {1, 0} ← Verify (pk, P). This algorithm is run by the data owner. It takes as

input the public key pk and the proof P returned from the CSP, and outputs

1 if the integrity of all file copies is correctly verified or 0 otherwise. After

receiving σ and µ values from the CSP, the data owner does the following:

(a) calculates v = (
s∏
i=1

(ki)
ticN) and d = Decrypt(µ) * Inverse(

s∑
i=1

ti). This

can be calculated from the values generated from Keyrand, KeyPRF and

the value c.

41

(b) checks if µ * Inverse(
s∏
i=1

(ri)
ticN) mod v ≡ 0. This ensures that the

cloud has used all the file copies while computing the response.

(c) checks if (H(F)c u
dN+

∑
j∈C

aj
)l = σ. The random numbers in the tag are

generated from PRF key Keytag. This ensures that the CSP has used

all the file blocks while computing the response. If options b and c are

satisfied, it indicates that the data stored by the owner in the cloud is

intact and the cloud has stored multiple copies of the data as agreed in

the service level agreement.

6. Update ← PrepareUpdate (). This algorithm is run by the data owner to per-

form any operation on the outsourced file copies stored by the remote CSP.

The output of this algorithm is an Update request. The data owner sends

the Update request to the cloud that will be of the form <IdF , BlockOp,

j, bi’, φ’>, where IdF is the file identifier, BlockOp corresponds to block

operation, j denotes the index of the file block, bi’ represents the updated

file blocks and φ’ is the updated tag. BlockOp can be data modification,

insertion or delete operation.

7. (F’, φ’) ← ExecUpdate (F, φ, Update). This algorithm is run by the CSP

where the input parameters are the file copies F, the tags φ, and Update

request (sent from the owner). It outputs an updated version of all the file

copies F’ along with updated signatures φ’. After any block operation, the

data owner runs the challenge protocol to ensure that the cloud has executed

the operations correctly. The operation in Update request can be modifying

a file block, inserting a new file block or deleting a file block.

(a) Modification: Data modification is one of the most frequently used

dynamic operations. The data modification operation in DMR-PDP

scheme is shown in Figure 3.

(b) Insertion: In the block insertion operation, the owner inserts a new

block after position j in a file. If the file F had m blocks initially,

42

Owner CSP
1. Encrypts the new file block s times
2. Creates tag φ for the new file block
3. Generates PRF keys Key1, Key2 to verify the correctness

of insert operation.
<IdF , insert, j, s file blocks, φ> , Key1, Key2

-

4. Inserts the new file block at location j
5. Stores the new tag φ.
6. Calculates a response µ, σ.

µ, σ
�

7. Calculates v and d

8. Verifies if µ* Inverse(
s∏
i=1

(ri)
ticN)mod v ≡ 0 and

checks if H(F)cl . u
(Nd+

∑
j∈C

aj)l

= σ.

Figure 2.4. Block insertion operation in the DMR-PDP scheme

the file will have m+1 blocks after the insert operation. The file block

insertion operation is shown in Figure 4.

(c) Deletion: Block deletion operation is opposite of the insertion oper-

ation. When one block is deleted, indices of all subsequent blocks are

moved one step forward. To delete a specific data block at position j

from all copies, the owner sends a delete request <IdF , delete, j, null,

null> to the cloud. Upon receiving the request, the cloud deletes the

tag and the file block at index j in all the file copies.

2.3.4. Using RSA Signatures. DMR-PDP scheme works well even if

RSA signatures are used instead of BLS singatures. The complete DMR-PDP

scheme using RSA signatures is shown in Figure 5.

2.4. SECURITY ANALYSIS

In this section, we present a formal analysis of the security of our proposed

scheme. The data owner encrypts the files and stores them on the cloud which is

untrusted and so we identify the cloud as the main adversary in this scheme. The

43

Preliminaries
1. Data owner selects two prime numbers p, q
2. N = pq is the RSA modulus
3. g is the generator of QRN (QRN is the set of quadratic residues modulo N)
4. Publick key is (N, g) and secret key is (p, q)
5. Data owner encrypts the file blocks s times
6. Data owner generates tags Ti for each file block bi, where Ti = gbi mod N
6. The data file and the data tags are sent to the cloud.

Owner CSP
1. Generates PRF keys Key1, Key2 and sends them

to the cloud to verify data integrity
IdF , Key1, Key2

-

2. Calculates µ
3. Calculates response using data tags

σ =
s∏
i=1

gbi mod N

µ, σ
�

4. Calculates v and d

5. Verifies if µ * Inverse(
s∏
i=1

(ri)
ticN) mod v ≡ 0 and checks if gd mod N = σ.

Figure 2.5. DMR-PDP scheme using RSA signatures

scheme is secure only if it does not let the cloud cheat the data owner by deleting

file blocks and still pass the challenge/response phase initiated by the data owner.

• Security against forging the response by the adversary : In the

challenge phase, the data owner sends to the CSP, two PRF keys - Key1, Key2

and a parameter ’c’ which indicates number of file blocks he wishes to verify.

DMR-PDP scheme provides flexiblity to the data owner to send different ’c’

and PRF keys in each challenge phase to the CSP. This ensures that the

response generated by the CSP will not be the same for each challenge sent

by the data owner. This eliminates any opportunity for the CSP to forge

the response without actually calculating it.

• Security against deletion of file blocks with same value : The data

tags generated will be the same for similar file blocks. Though the file blocks

are encrypted, the cloud can identify similar file blocks by identifying tags

with the same value. Cloud can cheat the user by just storing one block and

44

deleting similar data blocks. To avoid it, DMR-PDP scheme randomizes

the data before constructing the tags. The data in the tags are added with

random numbers generated from PRF key Keytag. So, even if the data tag

values are the same, the underlying data file block values will not be the

same. For file blocks bi = bj

Tag(bi) = (H(F).ubiN+ai)l

Tag(bj) = (H(F).ubjN+aj)l

where ai, aj are the random numbers generated from PRF key Keytag.

Though the data blocks are the same, the generated tags will differ in value.

2.5. MULTIPLE REPLICA FILE VERSION CONTROL SYSTEM (MR-
FVCS)

MRFVCS is an extension to DMR-PDP scheme to support a basic file

versioning system. The data owner encrypts the data, creates multiple replicas

and stores them on the cloud. When the data is updated, the data files are not

updated directly rather the updates are maintained as deltas. With MRFVCS

the data owner can still use the DMR-PDP scheme to verify that the cloud stores

multiple replicas and the deltas intact.

2.5.1. MRFVCS Construction. The data owner divides the file into

multiple file blocks and generates unique multiple replicas and data tags for the

file blocks. Unique multiple replicas of the file blocks are generated using the

homomorphic probabilistic encryption scheme and the data tags for the file blocks

are generated using the BLS signatures as discussed in Section 3.3. The file block

replicas and the data tags for the file blocks are sent to the cloud. These encrypted

replicas of the file blocks represent the base version of the un-encrypted file blocks.

Any modification done to the latest version of un-encrypted file blocks will result

in a new version of the file blocks. The new version of the file blocks are not stored

45

directly on the cloud, and instead, the deltas are stored. Delta is calculated as

the difference between the un-encrypted new version of the file block and the un-

encrypted base version of the file block. When a particular version of the file blocks

are needed, the data owner requests the cloud to merge the delta blocks with the

base version of the file blocks to get the required version of the file blocks. The

data owner uses a file version table to track the versions of the file blocks. The

table is a small data structure stored on the verifier side to validate the integrity

and consistency of all files and its versions stored by the CSP. New versions of the

file blocks are generated when the data owner performs an update operation on

the file blocks. The data update operation includes inserting new file blocks or

modifying or deleting a few file blocks. Delta blocks are generated only when the

update operation is ’modify’. Once the update operation is done, the file version

table is updated by the data owner. The file version table is maintained only on

the data owner side. Keeping the file version table only on the data owner side

will help the data owner to hide the details of update operations from the CSP.

The file version table consists of five columns: Block Number (BN), Delta Block

Number (DBN), File Version (FV), Block Version (BV), Block Operation (BO).

The BN acts as an indexing to the file blocks. It indicates the physical position

of a block in a data file. The DBN is an indexing to the delta block. If delta does

not exist, the value is stored as ’-’. The FV indicates the version of the entire file

and BV indicates the version of the file block. The BO indicates the operation

done on the file block. The maximum value of FV gives the latest version of the

file and the maximum value of BV for a particular BN gives the latest version

of that particular file block. If no entry of a file block number is found in the

file version table, it means no update operations are done on the base version of

the file block and the file block in the base version and the latest version of the

file are same. When a file block with block number B, file version V, and file

block version Y is modified, the data owner may choose to change the version of

entire file to V+1 or keep the file blocks under the same version. For both these

46

cases, a new entry is made in the file version table by the data owner. In first

case, the table entry will be <B, - , V+1, 0, Modify> and for the seond case, the

table entry will be <B, -, V, Y+1, Modify>. The proposed scheme consists of

seven algorithms : Keygen, ReplicaGen, TagGen, Prove, Verify, PrepareUpdate,

ExecUpdate, FileVersionRequest, FileVersionDeliver.

1. (pk,sk)← KeyGen(). Along with the keys described in section 3.3, the data

owner generates a PRF key Keydata which is used to randomize the file blocks

before encryption.

2. {F’Bi
}1≤i≤s ← ReplicaGen (s, FB). This algorithm is run by the data owner

and it slightly differs from the algorithm described in Section 3.3. In this

algorithm, the data owner randomizes the data before generating multiple

replicas. File blocks are randomized using the random numbers generated

from the PRF key Keydata. For a file FB = {b1, b2,..,bm}, the randomized

file will be F’B, which is {b1 + x1, b2 + x2,..,bm + xm} where FB repre-

sents the base version of the file and {xj}1≤j≤m are the random numbers

generated using Keydata. The data owner uses Paillier encryption, a homo-

morphic probabilistic encryption scheme, to create s replicas of the file FB.

So, F’Bi
= {(1+(b1 + x1)N)(kiri1)N , (1+(b2 + x2)N)(kiri2)N ,.., (1+(bm +

xm)N)(kirim)N}1≤i≤m, where i represents the file copy number, ki represents

the numbers generated from PRF key KeyPRF and rij represents random

number used in Paillier encryption scheme generated from PRF key Keyrand

(discussed in section 3.3).

3. φ ← TagGen (sk, F). This algorithm is run by the data owner and BLS

signatures are used to generate the data tags. The details of this algorithm

are same as discussed in Section 3.3.

4. P ← Prove (FB, F∆, φ, challenge). This algorithm is run by the CSP. It

takes the replicas of file FB, all delta files F∆, tags φ and the challenge vector

sent by the data owner as input and returns a proof P. Proof P guarantees

47

that the CSP is actually storing s copies of the file FB and all the delta files

F∆. The data owner uses proof P to verify data integrity. The details of

this algorithm are the same as discussed in Section 3.3.

5. {1, 0} ← Verify (pk, P). This algorithm is run by the data owner. It takes

as input public key pk and the proof P returned from the CSP, and outputs

1 if the integrity of all file copies is correctly verified or 0 otherwise. The

details of this algorithm are same as discussed in Section 3.3.

6. Update ← PrepareUpdate (). This algorithm is run by the data owner to per-

form any operation on the outsourced file copies stored by the remote CSP.

The output of this algorithm is an Update request. The data owner sends the

Update request to the cloud that will be of the form <IdF , BlockOp, j, bi’,

φ’>, where IdF is the file identifier, BlockOp corresponds to block operation,

j denotes the index of the file block, bi’ represents the updated file blocks

and φ’ is the updated tag. BlockOp can be data insertion or modification

or delete operation.

(a) Insertion: An insert operation on any version ’V’ of the file FV means

inserting new file blocks in the file. The data owner decides the version

of the file to which the new file blocks belong, either to current file

version V or to next file version V+1. If the new file blocks are added

to the file version ’V+1’, then ’V+1’ will be the new version of the file.

A new entry is made in the file version table as <BN, - , V or V+1, 0,

Insert>. Since there are no delta blocks, the DBN value is ’-’ and since

the file blocks are new, the BV value is 0.

(b) Modification: Modification is done on the latest version of the file

blocks. The data owner identifies the block numbers of the file blocks

that he wishes to modify and searches the file version table for block

numbers. If no entry is found for a particular block number, the file

48

blocks from the base version are downloaded from the cloud. If an en-

try is found, then the latest version of the file block is identified and

downloaded from the cloud, the file blocks from the base version and

the delta blocks associated with the latest version. The downloaded

blocks are decrypted and added with the delta to get the latest version

of the file blocks. Modify operation is done on the plain text to get the

updated plain text. The data owner calculates the new delta as the

difference between the updated plain text and the plain text belonging

to the base version. Delta is then randomized and then sent to the

cloud. Randomization is required in order to not reveal the delta value

to the cloud. Let M = {bi} where 1 ≤ i ≤ s be the set of file blocks

before the update operation and M’ = {b’i} where 1 ≤ i ≤ s be the file

blocks after the update operation. Deltas ∆M are calculated as {b’i

- bi} where 1 ≤ i ≤ s. Deltas are randomized using random numbers

generated from PRF key Keydata. So, ∆M = {b’i - bi + N - xi} where

1 ≤ i ≤ s. ∆M values are sent to the cloud.

(c) Deletion: A delete operation on any version of the file ’V’ means delet-

ing few file blocks from the file. The data owner can delete the file

blocks from the current version V or delete the file blocks in the next

version of the file which is V+1. The data owner makes an entry in

the file version table <BN, - , V or V+1, 0, Delete>. The result of the

delete operation is just an entry in the file version table while the cloud

does not know anything about the delete operation.

7. (F’, φ’) ← ExecUpdate (F, φ, Update). This algorithm is run by the CSP

where the input parameters are the file copies F, the tags φ, and Update

request (sent by the data owner). It outputs new file copies F’ along with

updated signatures φ’. After any block operation, the data owner runs

the challenge protocol to ensure that the cloud has executed the operations

correctly. The operation in Update request can be modifying a file block or

49

inserting a new file block. The data owner does not send any delete requests

to the cloud and so no data blocks will be deleted.

(a) Insertion: New file blocks sent by the data owner are added to the file

F.

(b) Modify: Delta values sent by the data owner are stored on the cloud.

8. FileVersionRequest: The data owner identifies the file blocks of the required

version by checking the file version table and sends a request to the cloud

with the block numbers. The request will be of the form <BN, DBN>. The

DBN is required to get to the required version of the file. If there is no DBN

entry in the file version table, then the request will be <BN, - >.

9. FileVersionDeliver: For all the file block numbers with DBN value ’-’ in

the FileVersionRequest, the base version of the file is delivered to the data

owner. If DBN has a delta file block number, then the cloud encrypts the

deltas with the public key and does a homomorphic addition operation on the

base version of the file blocks to get the file blocks of the version requested by

the data owner. Let ∆M = {b’i - bi + N - xi} where 1 ≤ i ≤ s, be the deltas

associated with the file blocks of the corresponding file version requested by

the data owner. The encrypted deltas E(∆M) is given by {(1+(b’i - bi +

N - xi)N)(r)N}, where r ∈ ZN* is some random number. The cloud then

performs a homomorphic addition operation on the requested file blocks on

the base version of the file.

E(Fv) = E(Fb) ∗ E(∆Mv).

= {(1 + (bi + xi)N)(kiri)
N}∗

{(1 + (b′i − bi +N − xi)N)(r)N}.

= {(1 + (b′iN)(kirir)
N}.

50

The file blocks obtained after the homomorphic addition represents the en-

crypted file blocks of the version requested by the data owner. The encrypted

file blocks are sent to the data owner and the data owner decrypts the file

blocks to get the version he requested.

2.6. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We implemented our scheme and the protocols in C language. We con-

ducted several experiments using the local cloud servers as well as EC2 cloud

instnaces with different configurations. We measured the computation time for

various operations for both the CSP and the user. In addition, we also measured

latency in terms of communication cost. Varying file sizes were considered in these

experiments.

Table 2.1. DMR-PDP Communication cost

Phase Cost Data From To

Challenge 256 bits Key1, Key2, c Owner Cloud
Verification 2048 + 160 bits µ, σ Cloud Owner

Update 2048 + 160 bits bi’, φ’ Owner Cloud

To start with, we conducted several experiments on a system with an In-

tel(R) Xeon (R) 2.67 GHZ processor and 11 GB RAM running CentOS 6.3. In

our implementation, we use PBC library version 0.5.11. To achieve 80-bit security

parameter, the curve group with 160-bit group order is selcted and the size of

modulus N is 1,024 bits. We utilize the Barreto-Naehrig (BN) [18] curve defined

over prime field GF(p) with |p| = 160 and embedding degree = 12. The data tags

generated are points on this curve and a point on this curve can be represented

by 160 bits. We use SHA algorithm for computing file hash, and PBC library

provides functions to represent the hash values as a point on the curve. The data

owner will have to store three PRF keys of size 128 bit, one secret key for data

tags of size 128 bit and one secret key for data encryption of size 1024 bits. The

communication cost for each phase incurred in this protocol is shown in Table 1.

51

(a) CSP computation time

(b) User computation time

Figure 2.6. Computation time comparison

Here, we compare the performance of the DMR-PDP scheme proposed

in this paper with that of the DMC-PDP scheme proposed in [16]. The 1024

bit modulus used for Paillier encryption in this paper is comparable in terms of

security to 128 bit AES encryption used in [16]. Figure 6 shows the CSP and

User computation times for both the schemes using files of sizes 1, 5, 10 and 20

MB with 3 replicas. The DMR-PDP scheme has lower CSP computation time

compared to the DMC-PDP scheme whereas the User computation time for both

the schemes differ only in a 1000th of a second . Both the schemes involve just the

pairing operation in the user verification phase and hence similar User computation

times. Performance of the DMR-PDP scheme is better than that of the DMC-PDP

scheme and improves with increase in file size.

The CSP and User computation costs incurred during the response phase

of the proposed scheme is depicted in Figure 7.a and 8.a for 1, 5, 10 and 20 MB

52

(a) CSP computation time for BLS signatures

(b) CSP computation time for RSA signatures

Figure 2.7. CSP computation time comparison for the number of replicas on the
local cloud servers

files with 2KB encrypted file block size. Figure 7.a shows the computation time

in seconds on the local cloud servers for different number of replicas. For the

DMR-PDP scheme the User verification phase involves only one heavy pairing

operation and the user computation time is independent of the number of replicas

and the file size as shown in Figure 8.a. It has been reported in [1] that if the

remote server is missing a fraction of the data, then the number of blocks that

needs to be checked in order to detect server misbehavior with high probability

is constant and is independent of the total number of file blocks. For example, if

the server deletes 1% of the data file, the verifier only needs to check for c = 460

randomly chosen blocks of the file so as to detect this misbehavior with probability

larger than 99%. Therefore, in our experiments, we use c = 460 to achieve a high

probability of assurance.

Figures 7.b and 8.b show the CSP and the User computation times on the

local cloud servers when RSA signatures are used. For better security, we used

53

(a) User computation time for BLS signatures

(b) User computation time for RSA signatures

Figure 2.8. User computation time comparison for the number of replicas on the
local cloud servers

N to be of size 1024 bits. From Figure 7.a and Figure 7.b, we notice that, the

CSP computation time for BLS and RSA signatures is almost the same. Figure 8

shows the comparison of User computation times when BLS and RSA signatures

are used. Since user verification of RSA signatures involves only exponentional

operations and does not involve any complex pairing operations, it is faster than

BLS signatures. BLS signatures are better to use with our scheme when compared

with RSA signatures since BLS signatures are shorter. The size of RSA signatures

is equal to the size of RSA modulus. Since the size of RSA modulus we used is

1024 bits, RSA signatures are also of 1024 bits, whereas size of BLS signatures

are just 160 bits. In addition, the BLS construction has the shortest query and

response. Further, in our scheme, the data blocks are of size 128 bytes, and so

the tag size will also be 128 bytes, if RSA signatures are used. This will increase

the communication cost. RSA signatures are useful if the size of the data blocks

is huge. [1] uses RSA signatures because they consider data blocks of size 4 KB.

54

(a) Time for Insert and Modify operations

(b) Time for Insert + Modify operations

Figure 2.9. Time for file block insert and modify operations on the local cloud
servers

The data update operations are done on multiple file blocks at a time by

the data owner. The update operation includes file block insert, modify, delete

operations in addition to creation of new file tags and their storage on the cloud.

We ran the experiments for file block update on a 1 MB file with 3 replicas

and file block size of 128 bytes. Figure 9.a. shows the combined User and CSP

computation times for file block insert and modify operations, run separately. The

expermients are run by inserting and modifying 1% to 50% number of file blocks.

For example, a file of size 1 MB has 8192 file blocks. The computation times are

calculated by inserting 1% (≈ 82 file blocks) to 50% (4096 file blocks) new file

blocks and modifying 1% (≈ 82 file blocks) to 50% (4096 file blocks) of 8192 file

blocks. Figure 9.b. shows the computation times when the data owner runs both

insert and modify operations on a percentage of file blocks. We notice that modify

operations take much less time when compared to insert operations. The time

taken for modify operation depends on the time taken for paillier multiplication

55

of two 256 byte encrypted file blocks whereas the time taken for insert operation

depends on the time taken for writing the 256 byte encrypted file blocks on to the

hard drive. We do not calculate the time taken for the file block delete operation

since the delete operation does not involve any real User and CSP computations.

(a) CSP computation time on EC2 micro instance

(b) CSP computation time on EC2 large instance

Figure 2.10. CSP computation time for number of replicas on Amazon EC2
instances

We also ran our experiments on a micro and large instance in the Amazon

EC2 cloud. We used a 64-bit Ubuntu OS with 25GB storage for the micro and

large EC2 instances. A micro instance has 613 MB RAM and uses up to 2 EC2

Compute Units whereas a large instance has 7.5GB RAM and uses 4 EC2 Compute

Units. Figure 10 shows the comparison of CSP computation times in micro and

large instances on the EC2 cloud. We notice that the experiments run a lot faster

on the EC2 large instance when compared to the micro instance. EC2 provides

instances which have higher configuration than the large instance and the data

owner can use them to get better performance. The user computation time is

56

independent of the CSP. We calculated it on the local CentOS 6.3 machine which

is shown in Figure 8.a. Figures 11 and 12 show the CSP computation times for

insert and modify operations on micro and large EC2 instances. It is found that

the performance of the update operation is a little faster in large instance when

compared to the micro instance. Downloading and uploading file blocks to EC2

micro and large instances take almost the same time. Figure 13 shows the times

to download and upload file blocks to EC2 instances.

(a) Time for Insert and Modify operations

(b) Time for Insert + Modify operations

Figure 2.11. Time for file block insert and modify operations in Amazon EC2
micro instance

We also implemented the basic file versioning system ’MRFVCS’. A file

version table is created by the data owner to track the data updates. The number

of entries in this table depends on the number of dynamic file block operations

performed on the data. The file updates are stored as deltas in the cloud. The

delta files generated are of size 128 bytes. To get a particular version of the file,

the data owner sends ’FileVersionRequest’ to the cloud with two parameters <BN,

57

DBN>. After receiving ’FileVersionRequest’, the cloud executes ’FileVersionDe-

liver’ algorithm. For a FileVersionRequest with DBN value ’-’, the file blocks with

block number BN are directly delivered to the data owner and does not involve

any CSP computation time. For FileVersionRequest with a valid DBN value, the

cloud encrypts the file blocks with block number DBN and does a homomorphic

addition operation with file blocks with block number BN. The experiments are

run on a 1 MB file on local, Amazon EC2 micro and large instances.

(a) Time for Insert and Modify operations

(b) Time for Insert + Modify operations

Figure 2.12. Time for file block insert and modify operations in Amazon EC2
large instance

Figure 14 shows the time taken by the CSP on various instances for exe-

cuting ’FileVersionDeliver’ algorithm when a number of FileVersionRequests with

valid DBN values is sent by the data owner. We considered FileVersionRequests

only with valid DBN values since there is no computation time involved for de-

livering file blocks with DBN value ’-’. The number of FileVersionRequests in

Figure 14 is represented in terms of percentage of file blocks. For example, a

58

1 MB file has 8192 file blocks of size 128 bytes. When the data owner sends 81

FileVersionRequests, the CSP encrypts 81 delta blocks (1% of 8192 file blocks) and

performs 81 homomorphic addition operations. So any number of FileVersionRe-

quests will lead to the CSP performing operations on those number of file blocks

and FileVersionRequests can be represented in terms of number of file blocks.

MRFVCS does not involve any computation on the part of the data owner side

for executing FileVersionDeliver algorithm and the only cost for the data owner is

for maintaining the file version table.

The CSP computation time for executing FileVersionDeliver algorithm in

MRFVCS is much less compared to the time taken for update operations in the

DMR-PDP scheme.

Figure 2.13. Download and Upload time to EC2 Micro and Large Instances

Figure 2.14. CSP computation time comparison for FileVersionDeliver algorithm

59

2.7. CONCLUSION

In this paper, we have presented a scheme for validating the replicated

data integrity in a cloud environment. The scheme called Dynamic Multi-Replica

Provable Data Possession scheme (DMR-PDP) periodically verifies the correctness

and completeness of multiple data copies stored in the cloud. Our scheme considers

dynamic data update operations on data copies in the verification process. All

the data copies can be decrypted using a single decryption key, thus providing

a seamless access to all the datas authorized users. The experimental results

using the local as well as EC2 cloud instances show that this scheme is better

than the previous proposed scheme in terms of dynamic data operations which are

performed in much lesser time. In addition, we showed that our scheme works well

when extended to support the multiple file versioning where only deltas are stored

in the cloud which saves storage cost to the data owner. We believe that these

results will help the data owner to negotiate with the cloud provider about the

cost and the performance guarantees while maintaining the integrity of the data.

Also, these results will provide various incentives to the cloud to take appropriate

steps, such as running computations in parallel, to deliver good performance.

60

BIBLIOGRAPHY

[1] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-
Replica Provable Data Possession,” in 28th IEEE ICDCS, 2008, pp. 411-420.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in CCS ’07:
Proceedings of the 14th ACM Conference on Computer and Communications
Security, New York, NY, USA, 2007, pp. 598-609.

[3] G. Ateniese, R. D. Pietro, L. V. Mancin, and G. Tsudik, “Scalable and ef-
ficient provable data possession,” in SecureComm 08: Proceedings of the
4th International Conference on Security and Privacy in Communication Ne-
towrks, New York, NY, USA,2008, pp. 1-10.

[4] Y. Deswarte, J.-J. Quisquater, and A. Sadane, “Remote integrity checking,”
in 6th Working Conference on Integrity and Internal Control in Information
Systems (IICIS), S. J. L. Strous, Ed., 2003, pp. 1-11.

[5] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic provable
data possession,” in CCS 09: Proceedings of the 16th ACM Conference on
Computer and Communications Security, New York, NY, USA, 2009, pp.
213-222.

[6] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating data possession
and uncheatable data transfer,” Cryptology ePrint Archive, Report 2006/150,
2006 (Retrieved: 08/06/2013).

[7] P. Golle, S. Jarecki, and I. Mironov, “Cryptographic primitives enforcing
communication and storage complexity,” in FC’02: Proceedings of the 6th In-
ternational Conference on Financial Cryptography, Berlin, Heidelberg, 2003,
pp. 120-135.

[8] Z. Hao, S. Zhong, and N. Yu, “A privacy-preserving remote data integrity
checking protocol with data dynamics and public verifiability,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 99, no. PrePrints, 2011.

[9] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and integrity
in outsourced databases,” Trans. Storage, vol. 2, no. 2, 2006.

[10] F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and J.-J.
Quisquater, “Efficient remote data possession checking in critical information
infrastructures,” IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 8, 2008.

[11] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Auditing to
keep online storage services honest,” in HOTOS’07: Proceedings of the 11th
USENIX workshop on Hot topics in operating systems, Berkeley, CA, USA,
2007, pp. 1-6.

61

[12] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving audit and
extraction of digital contents,” Cryptology ePrint Archive, Report 2008/186,
2008.

[13] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security
in cloud computing,” Cryptology ePrint Archive, Report 2009/081, 2009,
http://eprint.iacr.org (Retrieved: 08/06/2013).

[14] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability
and data dynamics for storage security in cloud computing,” in ESORICS09:
Proceedings of the 14th European Conference on Research in Computer Se-
curity, Berlin, Heidelberg, 2009, pp. 355-370.

[15] K. Zeng, “Publicly verifiable remote data integrity,” in Proceedings of the
10th International Conference on Information and Communications Security,
ser. ICICS ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 419-434.

[16] A. F. Barsoum and M. A. Hasan, “On verifying dynamic multiple data copies
over cloud servers,” Cryptology ePrint Archive, Report 2011/447, 2011, 2011,
http://eprint.iacr.org (Retrieved: 08/06/2013).

[17] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,”
in ASIACRYPT ’01:Proceedings of the 7th International Conference on the
Theory and Application of Cryptology and Information Security, London,
UK, 2001, pp. 514-532.

[18] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime
order”,in Proceedings of SAC 2005, volume 3897 of LNCS. Springer-Verlag,
2005, pp. 319331.

[19] Raghul Mukundan, Sanjay Madria and Mark Linderman, “Replicated data
integrity verification in cloud ”,in IEEE Data Engineering Bulletin 2012.

62

SECTION

3. CONCLUSION

In this work, we have presented a scheme for validating the replicated

data integrity in a cloud environment. The scheme called Dynamic Multi-Replica

Provable Data Possession scheme (DMR-PDP) periodically verifies the correctness

and completeness of multiple data copies stored in the cloud. Our scheme considers

dynamic data update operations on data copies in the verification process. All

the data copies can be decrypted using a single decryption key, thus providing

a seamless access to all the datas authorized users. The experimental results

using the local as well as EC2 cloud instances show that this scheme is better

than the previous proposed scheme in terms of dynamic data operations which are

performed in much lesser time. In addition, we showed that our scheme works well

when extended to support the multiple file versioning where only deltas are stored

in the cloud which saves storage cost to the data owner. We believe that these

results will help the data owner to negotiate with the cloud provider about the

cost and the performance guarantees while maintaining the integrity of the data.

Also, these results will provide various incentives to the cloud to take appropriate

steps, such as running computations in parallel, to deliver good performance.

63

BIBLIOGRAPHY

[1] Provable Data Possession at Untrusted Stores - Giuseppe Ateniese, Randal
Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary Peterson Dawn
Song, ACM Conference on Computer and Communications Security (CCS)
2007

[2] Privacy-Preserving Public Auditing for Secure Cloud Storage - Cong Wang,
Sherman S.-M. Chow, Qian Wang, Kui Ren, and Wenjing Lou, The 29th
IEEE Conference on Computer Communications (INFOCOM’10), San Diego,
CA, March 15-19, 2010.

[3] Ensuring Data Storage Security in Cloud Computing - Cong Wang, Qian
Wang, and Kui Ren, Wenjing Lou, The 17th IEEE International Workshop
on Quality of Service (IWQoS’09), Charleston, South Carolina, July 13-15,
2009.

[4] Proofs of Retrievability: Theory and Implementation - Kevin D. Bowers, Ari
Juels, Alina Oprea, In: Proc. of ACM-CCSW ’09, pp.43-54, 2009.

[5] Provable Possession and Replication of Data over Cloud Servers -
Ayad F.Barsoum and M.Anwar Hasan, Centre For Applied Crypto-
graphic Research (CACR), University of Waterloo, Report 2010/32, 2010,
http://www.cacr.math.uwaterloo.ca/techreports/2010/cacr2010-32.pdf (Re-
trieved: 08/06/2013).

[6] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, MR-PDP: Multiple-
Replica Provable DataPossession, in 28th IEEE ICDCS, 2008, pp. 411420.

[7] C. Erway, A. Kup, C. Papamanthou, and R. Tamassia, Dynamic provable
data possession, in CCS 09: Proceedings of the 16th ACM Conference on
Computer and Communications Security, New York, NY, USA, 2009, pp.
213222.

[8] A. F. Barsoum and M. A. Hasan, On verifying dynamic multiple data copies
over cloud servers, Cryptology ePrint Archive, Report 2011/447, 2011, 2011,
http://eprint.iacr.org (Retrieved: 08/06/2013).

64

VITA

Raghul Mukundan was born on February 19, 1987 in Chittor, India. He

received distinction in Bachelor of Technology degree in Computer Science and

Engineering from Amrita Vishwavidyapeetham, India in 2008. He has been a

graduate student in the Computer Science Department at Missouri University of

Science and Technology since August 2011 and worked as a Graduate Research

Assistant under Dr. Sanjay Kumar Madria from August 2011 to July 2013. He

received his Masters in Computer Science at Missouri University of Science and

Technology in August 2013.

	Efficient integrity verification of replicated data in cloud
	Recommended Citation

	PUBLICATION THESIS OPTION
	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	INTRODUCTION
	DATA REPLICATION AND CHALLENGES
	MOTIVATION

	RELATED WORK
	BASIC APPROACH
	HOMOMORPHIC VERIFIABLE TAGS
	PRIVACY-PRESERVING PDP SCHEME
	MULTIPLE REPLICA PROVABLE DATA POSSESSION SCHEME
	DYNAMIC PROVABLE DATA POSSESSION
	ON VERIFYING DYNAMIC MULTIPLE DATA COPIES OVER CLOUD SERVERS

	Replicated Data Integrity Verification in Cloud
	ABSTRACT
	INTRODUCTION
	Related Work
	Dynamic Multi-Replica Provable Data Possession (DMR-PDP) Scheme
	Problem Definition and Design Goals
	Preliminaries and Notations
	DMR-PDP Construction

	Conclusions and Future Work

	Bibliography

	Efficient Integrity Verification of Replicated Data in Cloud using Homomorphic Encryption
	ABSTRACT
	INTRODUCTION
	Related Work
	Dynamic Multi-Replica Provable Data Possession (DMR-PDP) Scheme
	Problem Definition and Design Goals
	Preliminaries and Notations
	DMR-PDP Construction
	Using RSA Signatures

	Security Analysis
	Multiple Replica File Version Control System (MRFVCS)
	MRFVCS Construction

	Implementation and Experimental Results
	Conclusion

	Bibliography
	Conclusion

	Conclusion
	VITA

