
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2018

Precise energy efficient scheduling of mixed-criticality tasks & Precise energy efficient scheduling of mixed-criticality tasks &

sustainable mixed-criticality scheduling sustainable mixed-criticality scheduling

Sai Sruti

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons, Computer Sciences Commons, and the Science and

Mathematics Education Commons

Department: Department:

Recommended Citation Recommended Citation
Sruti, Sai, "Precise energy efficient scheduling of mixed-criticality tasks & sustainable mixed-criticality
scheduling" (2018). Masters Theses. 7809.
https://scholarsmine.mst.edu/masters_theses/7809

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7809?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7809&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PRECISE ENERGY EFFICIENT SCHEDULING OF MIXED-CRITICALITY TASKS &

SUSTAINABLE MIXED-CRITICALITY SCHEDULING

by

SAI SRUTI

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2018

Approved by:

Zhishan Guo, Advisor
Sanjay Madria
Wei Jiang

Copyright 2018

SAI SRUTI

All Rights Reserved

iii

ABSTRACT

In this thesis, the imprecise mixed-criticality model (IMC) is extended to precise

scheduling of tasks, and integrated with the dynamic voltage and frequency scaling (DVFS)

technique to enable energy minimization. The challenge in precise scheduling of MC

systems is to simultaneously guarantee the timing correctness for all tasks, hi and lo, under

both pessimistic and optimistic (less pessimistic) assumptions. To the best of knowledge

this is the first work to address the integration of DVFS energy conserving techniques with

precise scheduling of lo-tasks of the MC model.

In this thesis, the utilization based schedulability tests and sufficient conditions

for such systems under Earliest Deadline First EDF-VD scheduling policy are presented.

Quantitative study in the forms of speedup bound and approximation ratio are also proved

for the unified model. Extensive experimental studies are conducted to verify the theoretical

results as well as the effectiveness of the proposed algorithm.

In safety- critical systems, it is essential to perform schedulability analysis prior to

run-time. Parameters characterizing the run-time workload are generated by pessimistic

techniques; hence, adopting conservative estimates may result in systems performing much

better than anticipated during run-time. This thesis also addresses the following questions

associated to the better performance of the task system: (i) How does parameter change

affect the schedulability of a task set(system)? (ii) In the event that a mixed-criticality

system design is deemed schedulable and specific part/parts of the system are reassigned

to be of low-criticality, is the system still safe to run? (iii) If a system is presumed to be

non-schedulable, does it invariably benefit to reduce the criticality of some task?

To answer these questions, in this thesis, we not only study the property of sustain-

ability with regards to criticality levels, but also revisit sustainability of several uniprocessor

and multiprocessor scheduling policies with respect to other parameters.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who have helped me during this

research. Dr. Zhishan Guo, my advisor, has been instrumental in my effectiveness as a

graduate student. I would like to thank him for giving me the opportunity to work on this

project; his valuable insights and suggestions have helped me to overcome many hurdles

during this work. I am grateful to him for the advice and guidance he gave me throughout

my master’s program and for granting me the opportunity to work with truly outstanding

researchers in the past two years.

Further, I would like to expressmy sincerest appreciation tomy committeemembers,

Dr. Sanjay Madria and Dr. Wei Jiang, for being part of my thesis committee and for taking

time to review this work. I am extremely proud to have spent two years in the Department

of Computer Science at Missouri S&T, and appreciate the infinite help from all the faculty

members and staff. A special thanks to all my friends in the real-time systems group,

from whom I learned a lot. I want to thank my parents and sisters for their constant and

unconditional love.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

NOMENCLATURE . x

SECTION

1. INTRODUCTION. 1

1.1. MIXED CRITICALITY SYSTEMS . 1

1.2. SUSTAINABILITY PROPERTY OF SCHEDULING ALGORITHMS 4

1.3. CONTRIBUTION AND ORGANIZATION . 5

2. LITERATURE REVIEW . 8

2.1. LIMITATION OF TRADITIONAL MODELS . 9

2.2. SUSTAINABLE SCHEDULING . 9

3. SYSTEM MODEL . 11

3.1. VARYING-SPEED PROCESSOR AND DVFS . 12

3.2. SYSTEM BEHAVIOR. 13

3.3. SPEEDUP AND APPROXIMATION RATIO METRICS . 13

3.3.1. Speedup. 14

3.3.2. Approximation Ratio. 14

vi

3.4. SUSTAINABILITYPROPERTYOFMIXEDCRITICALITYSCHEDUL-
ING ALGORITHMS . 14

3.5. THESIS PROBLEM STATEMENT . 15

4. EDF-VD AND ITS CORRECTNESS . 18

4.1. AN OVERVIEW OF ALGORITHM EDF-VD . 18

4.2. EDF-VD FOR PRECISE ENERGY-CONSERVING MODEL 19

4.2.1. Correctness Under LO-Criticality Mode . 20

4.2.2. Correctness Under HI-Criticality Mode . 21

4.3. SPEEDUP AND APPROXIMATION RATIO METRICS . 25

4.3.1. Speedup Factor of EDF-VD Algorithm . 25

4.3.2. Approximation Ratio. 29

4.4. EXPERIMENTAL EVALUATION . 31

4.4.1. Workload Generation . 31

4.5. SUMMARY OF ENERGY EFFICIENT PRECISE COMPUTING. 33

5. SUSTAINABILITY IN MC SCHEDULING . 35

5.1. SUSTAINABILITY IN UNIPROCESSOR SCHEDULING ALGORITHMS 36

5.1.1. Criticality Monotonic . 36

5.1.2. Earliest Deadline First with Virtual Deadlines (EDF-VD) 38

5.1.3. Adaptive Mixed-Criticality (AMC) . 43

5.1.4. OCBP for MC Job Scheduling . 45

5.2. SUSTAINABILITY IN MULTIPROCESSOR SCHEDULING ALGO-
RITHMS. 48

5.2.1. MC2 . 49

5.2.2. MC-Fluid . 53

5.3. SUMMARYOFSUSTAINABILITY INMIXED-CRITICALITYSCHEDUL-
ING . 56

vii

6. CONCLUSION . 57

REFERENCES . 59

VITA . 62

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1. Relationship between variable-speed and execution time, where the expected
WCET always caps the actual execution time. 16

4.1. Modified EDF-VD schedulability condition and scaling factor x 19

4.2. Relation between time instants . 21

4.3. Example outcomeof schedulability experiments, for parameters [Udown,Uup] =
[0.02, 0.2]; [Tdown,Tup] = [5, 50]; [Zdown, Zup] = [1, 4]; P = 0.5 for different
values of ρ . 32

4.4. Example outcomeof schedulability experiments, for parameters [Udown,Uup] =
[0.02, 0.2]; [Tdown,Tup] = [5, 50]; [Zdown, Zup] = [1, 8]; P = 0.5 for different
values of ρ . 32

4.5. Performance of the algorithm under normal speed 1 and energy conserving
speed αρ; with α value determined from Equation 4.9 . 34

5.1. Schedule demonstration of the sample task set (shown in Table 5.1) under
Criticality-Monotonic before and after the change of criticality level of one of
the tasks (τ1). 38

5.2. Priority assignment before and after the change of job Ji’s criticality level from
hito lo. 47

ix

LIST OF TABLES

Table Page

3.1. Summary of sustainability results for some MC scheduling algorithms with
respect to various parameters. 17

5.1. An MC task-set that is not sustainable under criticality monotonic scheduling
policy. 37

5.2. A mixed-criticality task-set which is not sustainable under MC2 scheduling
policy. 50

x

NOMENCLATURE

AMC Adaptive Mixed Criticality

ASILs Automotive Safety and Integrity Levels

CA Certification Authorities

CM Criticality Monotonic

COTS Commercial Off the Shelf

DALs Design Assurance Levels

DVFS Dynamic Voltage and Frequency Scaling

EDF Earliest Deadline First

EDF-VD Earliest Deadline First with Virtual Deadline

G-EDF Global Earliest Deadline First

IMC Imprecise Mixed Criticality

MC Mixed Criticality

MC-Fluid Mixed Criticality Fluid

MC2 Mixed Criticality Multi-Core

OCBP Own Criticality Based Priority

pEDF Partitioned Earliest Deadline First

RTA Response Time Analysis

xi

SILs Safety Integrity Levels

UAV Unmanned Aerial Vehicles

WCET Worst Case Execution Time

1. INTRODUCTION

Real-Time Systems: Real-time frameworks are characterized as systems that guar-

antee temporal correctness. Advanced embedded frameworks broadly associated with phys-

ical applications require an output or a response for every input signal within a foreseeable

or predictable time-frame. Such real-time applications entail two notions of correctness,

(i) logical correctness which ensures that correct results are produced and, (ii) temporal

correctness focuses on the generation of results at the right time. In real-time systems,

temporal correctness is often achieved by anticipation or predictability of the system’s be-

havior, i.e., in order to guarantee every task’s response within the assigned deadline, it is

crucial to anticipate the performance of the task’s execution time and throughput within a

time-frame prior to run-time. Real-time scheduling theory consists of the study of schedul-

ing algorithms constructed for such real-time task models. These algorithms are validated

by deriving schedulability tests to guarantee temporal correctness.

In this thesis, we study the scheduling of tasks in mixed-criticality real-time systems

while ensuring energy efficiency. This section provides a brief introduction literature for

the sections to follow. The motivation will be described in the next section, followed by the

problem statement addressed in the thesis, and finally the contribution and organization.

1.1. MIXED CRITICALITY SYSTEMS

There has been an exponential rise in the study of security essential systems with

mixed-criticality implementation. In mixed-criticality systems, components attributed with

different levels of criticality are facilitated onto a common framework to enableminimization

of energy and reduction of resource costs.

2

Examples of such systems are: UAV (unmanned aerial vehicles), different ASILs

(Automotive Safety and Integrity Levels), DALs (Design Assurance Levels or Development

Assurance Levels) and SILs (Safety Integrity Levels) are designated in industrial standards

such as IEC 61508, DO-178B and DO-178C, DO-254, and ISO 26262) (Esper et al., 2015;

Graydon and Bate, 2013; Paulitsch et al., 2015). In case of UAV, the functions are broadly

divided into two categories: (i) mission critical which comprises of functions that fall under

the surveillance jurisdiction such as capturing or communicating images, and (ii) flight

critical which consists of more performance oriented functionalities. The Certification

Authorities (CA) impose a mandatory safety requirement validation corresponding to strict

conservative safety requirements for flight critical functionalities. The mission critical

functions are usually validated by the system designers who do not impose stringent criteria.

The difference created in the certification requirement is modeled as varying Worst-Case

Execution Times. The WCET value thus generated for the flight critical functionalities by

the CA is more pessimistic than the WCETs obtained from the system designer.

This model for characterizing such mixed criticality workloads suggested by Vestal

(Vestal, 2007) over a decade ago, has been extensively followed by the real-time schedul-

ing network. There have been multiple extensions of this model analyzing the aspects of

scheduling and schedulability conditions under various platforms. These scheduling strate-

gies are centered around: (i) guaranteeing resources to all the tasks under less pessimistic

behaviors of the system and (ii) protecting hi-criticality tasks under more pessimistic be-

haviors i.e. in the event of task overrun. On the grounds of a significant rise in interest

in mixed-criticality scheduling, it is crucial to investigate the various modulations of the

mixed-criticality model and its platforms to segregate the more efficient mixed-criticality

scheduling algorithms and their associated schedulability tests on the respective platforms.

Current state-of-the art work: Most of the current and existing literature

focuses on the real-time facet of mixed criticality systems which adopts a popular workload

model to specify these systems.

3

The systems start in the lo-mode where all the tasks are guaranteed execution w.r.t

their lo-worst case execution times (WCET). However, in case of a task overrun i.e. if a

hi-criticality task exceeds its lo-WCET without signaling completion, the system switches

to hi-criticality mode in which the more critical tasks are guaranteed execution dropping

the less critical tasks (Baruah et al., 2015; Baruah and Guo, 2014). Sometimes in hi-mode,

degraded services are provided to the less critical tasks and the released resources are used to

guarantee tomeethi-task deadlines (Burns andBaruah, 2013). In recent times, the imprecise

mixed-criticality system (IMC)model is being studied which allows graceful degradation of

lo-crtiticality tasks in hi-criticality mode (Baruah et al., 2016; Burns and Baruah, 2013; Liu

et al., 2016). It embraces the concept of imprecise computing in which, upon mode-switch:

each individual lo-criticality task can execute with inaccuracy in computing which results

in relatively short worst-case execution time (WCET), thus saving resources for the more

critical tasks.

To date, significant amount of research in mixed criticality systems has focused on

the changing speeds of platforms onwhichMC systems are executed such as unpredictability

and varying (deteriorating) speed of Commercial Off-The-Shelf (COTS) processors during

runtime (Baruah and Guo, 2014) or intentionally varying the frequency of the processor

in order to minimize energy. Progressive analysis is centered on providing heterogeneous

temporal order guarantees for tasks of varied criticality levels. This can be achieved by

dropping less crucial tasks once crucial tasks overrun. However, with increasing demand of

drastically exaggerated computing needs of the typically battery operated nature of platforms

onwhichmixed-criticality systems run, energy reduction for such systems is turning crucial.

In fact, this has already been feasible since several modern processors are equipped with the

capability of dynamic voltage and frequency scaling (DVFS), where processor frequency is

decreased at runtime to save energy.

4

Huang et.al proposed the integration of dynamic voltage and frequency scaling

(DVFS) technique with the earliest deadline first with virtual deadlines (EDF-VD) schedul-

ing scheme for dual-criticality systems (Huang et al., 2014) to enable energy minimiza-

tion. (Huang et al., 2014) established that increased speeds during overrun conditions are

beneficial to minimize expected energy consumption of the system. This model is ex-

tended to accommodate multi-core processors, in which a trade-off is determined between

both static and dynamic energy consumptions in different operation modes(lo- and hi)

(Narayana et al., 2016). Numerous advanced processors are prepared with the capacity of

dynamic voltage and frequency scaling (DVFS), where processor frequency can be dimin-

ished at runtime to conserve energy as demonstrated by the energy model in (Huang et al.,

2014). We adopt an off-line DVFS scheme to diminish energy utilizations in the lo-mode

by choosing a minimum speed (≤ 1) for the processor, while protecting mixed-criticality

schedulability of the framework.

1.2. SUSTAINABILITY PROPERTY OF SCHEDULING ALGORITHMS

The notion of sustainabilitywas introduced (Baruah andBurns, 2006) to characterize

and define the likelihood that a system that is schedulable under its worst-case specifications

should continue to be schedulable when its actual run-time behavior is better than the worst-

case. Given a particular run-time scheduling algorithm and an associated schedulability

test, one of the important questions is that will tighter estimations always lead to better

schedulability results? To better answer such a question, the idea of the sustainability

property was introduced in 2006 by Baruah and Burns (Baruah and Burns, 2006) for real-

time schedulers: "A scheduler is sustainable if any task set is schedulable under the most

pessimistic specifications under certain schedulability test, it will continue to be schedulable

when its performance is improved (e.g., less pessimistic)."

5

On the grounds of the significant rise in interest in multi-criticality systems, another

parameter is considered: criticality levels and consequently the WCETs respective to each

criticality level; for instance, if the criticality level of several jobs is changed from hi- to lo-

criticaliy, will the schedulability test still hold? Sustainability corresponding to criticality

levels is an introspectively intriguing and potentially relevant question, and is examined it

in some detail in this thesis.

1.3. CONTRIBUTION AND ORGANIZATION

As discussed above, significant work on MC scheduling has been done which indi-

vidually considers some level of precision in scheduling lo-criticality tasks in pessimistic

conditions and speed scaling in order to minimize energy during run-time. Our work ad-

dresses the need to save energy in platforms supporting mixed criticality applications. The

idea behind the work is to entertain both accuracy and energy efficiency in real-time system

applications. In this thesis, the goal is to integrate the precision model in (Pathan, 2017)

to guarantee precise computing to all lo-criticality tasks in hi-mode and the varying-speed

model in (Huang et al., 2014) where we introduce an energy conserving speed or optimal

minimum speed for the processor in lo-mode. The unified model is used to schedule

implicit-deadline sporadic tasks by the well known EDF-VD scheduling policy (Baruah

et al., 2011b). The main contributions of this thesis are:

• This thesis explores the aggregation of mixed-criticality scheduling with design

options of recent computing platforms, i.e. combining precise computing of lo-

criticality tasks on varying-speed processors.

• We present conditions to derive the minimum speed for the processor to execute in

lo-mode, while correctly scheduling all the tasks in each mode of operation.

6

• We propose a sufficient test for our precise-energy conserving model under EDF-

VD (see Theorem 3 in Section 4.3.1) and prove a quantitative speedup bound and

approximation ration on the worst-case performance of EDF-VD.

• We also show that no non-clairvoyant algorithm can guarantee to always meet all

deadlines on a processor that is less than 2 times as fast as the processor available to

the optimal clairvoyant algorithm, thereby proving that EDF-VD is an optimal non-

clairvoyant algorithm from the perspective of this metric.

• We defined another metric named approximation ratio, which compares the mini-

mum possible degraded processor speed without speeding up upon the mode switch

(unlike what is done in speedup bounds), and proved the relationship between the

approximation ratio of our algorithm and the per-level utilizations of the input task.

• Experimental studies are conducted based on randomly generated synthetic tasks,

which verifies the theoretical findings as well as effectivenesses of the proposal

algorithm.

• Sustainability analysis is performed upon numerous popular and frequently used

uniprocessor and multiprocessor mixed-criticality scheduling policies.

Organization: The rest of the thesis is organized as follows: The next section(Section 2)

consists of literature of previousworks. In Section 3 the adoptedmodel is elaborated in detail

comprising of system behavior, varying-speed processors and correctness specification.

Section 4 consists of the literature of the EDF-VD scheduling algorithm and the revised

schedulability conditions pertaining to the chosen model. In Section 4.3.1 and 4.3.2 of

Section 4, the speedup bound and approximation ratio metrics of the modified EDF-VD

algorithm proposed are determined which is followed by the performance evaluation with

experiments.

7

Section 5 comprises of detailed sustainability analysis of EDF-VD and several other

MC-scheduling policies on both uni-core and multi-core platforms. Section 6 consists of a

summary of the thesis.

8

2. LITERATURE REVIEW

Significant work has been done on various versions of the MC model proposed

by Vestal (Vestal, 2007). A thorough review of the various adaptations are reviewed in

the survey by Burns et. al (Burns and Davis, 2017). Several of these existing works

adopt a stringent approach of dropping the lo-criticality jobs in hi-mode (Baruah et al.,

2015; Baruah and Guo, 2014; Easwaran, 2013; Ekberg and Yi, 2014). (Burns and Baruah,

2013) was the first literature to address this issue by assigning time budgets to lo-priority

tasks by switching their priority or degrading their services by extending the periods in hi-

mode (Huang et al., 2015; Jan et al., 2013). These techniques however have minor setbacks

and are not practical (Ernst and Di Natale, 2016). Another approach is presented in (Burns

and Baruah, 2013) popularly known as the IMC model, where execution time of lo-tasks is

diminished in the event of a mode-switch. The schedulability analysis of the IMCmodel has

been studied for both fixed-priority scheduling and EDF-VD in (Burns and Baruah, 2013)

and (Liu et al., 2016) respectively. Minimizing energy utilization has also become a rising

concern in mixed-critical applications. (Huang et al., 2014) exploits the DVFS technique to

address energy minimization issue in mixed-criticality systems during overrun by speeding

up the systembut lo-tasks are however penalized inhi-criticalitymode. (Huang et al., 2014)

also established that increased speeds during overrun conditions are beneficial to minimize

expected energy consumption of the system. This model was extended to accommodate

multi-core processors, in which a trade-off is determined between both static and dynamic

energy consumptions in different operation modes(lo- and hi) (Narayana et al., 2016).

9

2.1. LIMITATION OF TRADITIONAL MODELS

All of the above works (Baruah et al., 2015; Baruah and Guo, 2014; Huang et al.,

2014; Narayana et al., 2016), consider a stringent model in which all the lo-tasks are

dropped upon mode switch. Such handling of lo-criticality tasks is argumentative as in hi-

mode, all lo-criticality tasks are penalized and can result in failures in timing assumptions

in hi-criticality tasks (Burns and Davis, 2017; Ernst and Di Natale, 2016). (Burns and

Baruah, 2013) exploits the elastic task model in (Su and Zhu, 2013) where lo-criticality

tasks continue to execute with extended time-periods. This model generates accurate but

delayed execution results. To ensure sufficient safety and performance features, imprecise

computing was introduced in mixed-criticality systems in (Baruah et al., 2016; Burns and

Baruah, 2013; Liu et al., 2016) in which each lo-critical task is also guaranteed to some

(degraded) service after the system switches to the hi-critical behavior. However, (Ernst and

Di Natale, 2016) argues that the period and priority of a task are functional requirements and

cannot be altered easily, while degrading services for the execution of lo-criticality tasks

can result in performance or service loss. (Pathan, 2017) observed that in case of utilization

slack during execution of hi-criticality tasks in hi-mode, all the lo-criticality tasks need

not be penalized with degraded service. Considering this model, implicit-deadline IMC

sporadic tasks were scheduled, in which some (if not all) lo-criticality tasks were provided

full service during the hi-critical behaviors as well.

2.2. SUSTAINABLE SCHEDULING

The formal abstraction and definition of sustainability was introduced by Baruah

and Burns (Baruah and Burns, 2006; Burns and Baruah, 2008). Earlier work in this domain

centered around sustainability analysis of periodic and sporadic (non-MC) task systems

in uniprocessors, and established that several notable schedulability tests in preemptive

uniprocessor scheduling are not sustainable.

10

(Baker and Baruah, 2009) comprises of detailed study if the sustainability attribute

of global scheduling algorithms that utilize sporadic task model such as EDF, Earliest-

Deadline with Zero-Laxity and fixed priority scheduling. The sustainability property of

these scheduling policies are cross-examined against numerous parameters such as depre-

ciated execution time, postponed arrivals, and deadline relaxations.

11

3. SYSTEMMODEL

In this section, the system or mixed critical real-time workload model is introduced.

The considered MC workload comprises of an implicit-deadline sporadic task model where

each task set τ includes n tasks that are scheduled on a preemptive uniprocessor. Every task

τi ∈ τ may generate an unbounded number of MC jobs, with successive jobs being released

at least Ti time units apart. Without loss of generality, we assume that all tasks in τ start at

time 0.

MC instance: In this paper, we restrict our attention to dual-criticality task systems where

the system has two criticality levels, χi ∈ {lo, hi}. Each task τi ∈ τ is characterized by 5-

tuples = {Ti,Di, χi,CL
i ,C

H
i }, whereTi represents theminimum inter-arrival time between any

two consecutive job releases (by the same task), CL
i ,C

H
i ∈ R+ are the WCET estimations,

Di specifies the deadline, and χi ∈ {lo, hi} characterizes the criticality level. Due to

pessimistic impositions on assurance for hi-criticality tasks, for our model, we assume that

0 < CL
i ≤ CH

i ≤ Ti. Every task τi ∈ τ may generate an unbounded number of MC jobs,

with successive jobs being released at least Ti time units apart.

A job prototypes a single piece of code, to be carried out to completion in a

consecutive manner upon a processor. AnMC job Ji is described by a 5-tuple of parameters

(ai, cL
i , c

H
i , di, χi), where

• ai ≥ 0 denotes its release time (after which the piece of code may start to execute),

• cL
i ≤ cH

i ∈ RL
+ are per-mode WCET estimations,

• di ≥ ai represents the deadline, and

• χi ∈ {lo, hi} indicates the criticality level.

12

The utilizations in all modes of operation of each task τi and the whole task set τ

are determined as follows:

∀τi ∈ τ, ulo
i =

Clo
i

Ti
;

∀τi ∈ τ, uhi
i =

Chi
i

Ti
.

The total utilization for each mode of operation is represented as follows:

• The total utilization for all lo-criticality tasks in lo- and hi-modes respectively, we

have: Ulo
lo =

∑
∀τi∈τlo ulo

i , Uhi
lo =

∑
∀τi∈τhi ulo

i .

• Similarly for all hi-criticality tasks, the utilization for hi-and lo-criticality tasks is

represented as: Ulo
hi =

∑
∀τi∈τlo uhi

i , Uhi
hi =

∑
∀τi∈τhi uhi

i .

Since we do not degrade services for lo-criticality tasks in hi-mode, their utilization

in both modes of operation remains the same, i.e. Ulo
lo = Uhi

lo.

3.1. VARYING-SPEED PROCESSOR AND DVFS

Dynamic voltage and frequency scaling (DVFS) technique is customarily used to

moderate energy by investigating free slacks within the framework to slow the processor

down (Benini et al., 1999). Conversely, DVFS technique can also employed to speed up

the processor in the event of urgency caused by task overrun, to guarantee that all tasks still

meet their deadlines (Huang et al., 2014). DVFS technique by speeding up the processor

has been applied in the service degradation model, in which less critical tasks are executed

in hi-criticality mode, in order to enhance degraded services for lo-criticality tasks (Huang

et al., 2015). Processors today aremanufacturedwith several advanced features, one of them

being the capability of DVFS, where processor frequency can be diminished or boosted at

runtime to conserve energy (Huang et al., 2014).

13

We examine off-line DVFS to diminish energy utilizations in the lo-mode by choos-

ing a minimum speed for the processor, while protecting mixed-criticality schedulability of

the framework. The processor is characterized by a normal speed s (without loss of gener-

ality, s← 1) and an energy-conserving speed ρ (where 0.5 ≤ ρ ≤ 1). During lo-mode, the

processor is assumed to exhibit energy conserving behavior where its speed remains ρ. In

the event of overrun when the system switches to hi-mode, the processor exhibits normal

behavior where the speed of the processor is maximized (s← 1).

3.2. SYSTEM BEHAVIOR

The behavioral semantics of theMCworkload is as follows: a job released by taskTi

may first execute for its lo-WCET (CL
i units of time). If all jobs indicate completion at after

executing for their lo-WCETs, the system is claimed to perform in lo-mode, else a system-

wide mode switch is triggered and the system exhibits hi-criticality behavior. Analogous

to the traditional MC task-model behavior, instead of discarding all lo-criticality tasks in

hi-mode, our model guarantees execution time to all tasks according to their given WCETs

during bothmodes of operation. We incorporate the DVFS technique to impose a minimum

energy-conserving speed in the lo-mode. Upon mode-switch, the processor continues to

perform at normal speed (of 1). Since we do not know statically how long the system will

overrun, we can safely assume that the system can recover when the processor is idle, i.e.,

when all arrived/active workloads are finished.

3.3. SPEEDUP AND APPROXIMATION RATIO METRICS

The theoretical real-time systems community considers speedup as a viable measure

to measure the effectiveness of mixed-criticality scheduling algorithms.

14

(Baruah and Agarwal, 2018) lists the sources of intractability for mixed criticality

systems, isolates their impacts and highlights the need for metrics that are able to indepen-

dently evaluate the approximation-ratio impact (i.e., comparison with MC-optimality) and

the competitive-ratio impact (i.e., the sub-optimality emerging from the need of clairvoy-

ance) of EDF-VD in planning recurrent frameworks.

3.3.1. Speedup. A resource augmentation bound called speedup bound is used as a

conventional way to characterize the worst-case performance of mixed criticality scheduling

algorithms and provide relevant insight about the algorithm’s properties.

Definition 1: (Kalyanasundaram and Pruhs, 2000) An algorithm A is defined to have

a speedup bound of s ≥ 1 if any task system τ that can be correctly scheduled upon

a processor with energy-conserving speed ρ and normal speed 1 by any hypothetical

clairvoyant scheduling algorithm, can be correctly scheduled upon a processor with speed

s and energy-conserving speed ρ × s by algorithm A.

The closer the speedup bound is to 1 (which means the scheduler is optimal), the

better.

3.3.2. Approximation Ratio. Approximation ratio provides an insight in the com-

putational tractability of the mixed criticality schedulability analysis. An algorithm A has

an approximation ratio of α ≥ 1 if and only if some non clairvoyant on-line algorithm

can guarantee MC correctness with full speed of 1 and a energy conserving speed of ρ,

Algorithm A guarantees MC correctness to the same set with a processor of normal speed

1 and energy conserving speed of α × ρ.

3.4. SUSTAINABILITY PROPERTY OF MIXED CRITICALITY SCHEDULING
ALGORITHMS

Any algorithm that establishes an MC instance as MC-schedulable is termed as

sustainable if and only if the MC instance continues to be schedulable by the algorithm if a

single or all of the parameters representing the MC instance is improved.

15

Correspondingly, a schedulability test for someMC scheduling policy is said termed

as sustainable if any MC instance that is established to be MC-schedulable by the schedula-

bility test will continue to be MC-schedulable by the test if a single or all of the parameters

representing the MC instance is improved. During run-time the system tends to perform

better when the parameters of one or more individual job(s) are changed in any, some, or

all of the following ways:

1. Diminishing WCET of one or more individual tasks or jobs (CL
i and/or CH

i).

2. Elongating periods for sporadic task systems; prolonging release times(i.e., decreasing

ai) for a single or a set of jobs.

3. Extending relative deadlines of one or more tasks (Di).

4. Lowering the criticality level assigned (χi) to a task/job (from hi to lo in case of

dual-criticality systems).

3.5. THESIS PROBLEM STATEMENT

It is widely understood that it should be rare for any task to exhibit hi-criticality

behavior; i.e., not signaling completion after executing for a length of lo-WCET. As a result,

more attention should be placed on lo-mode in terms of energy consumption. In this paper,

we seek to reduce energy utilizations in the lo-mode by minimizing the energy-conserving

speed ρ for the processor, while protecting mixed-criticality correctness of the system.

Assumption: The relationship between the speed and worst-case execution time (WCET)

of the task is considered to be linear, e.g., half speed will lead to double execution time. I.e.,

a task with lo-WCET of Ci (on a speed-1 processor) would take Ci/ρ time units to finish

its execution on a processor of degraded speed ρ such that(0.5 ≤ ρ ≤ 1).

16

Figure 3.1. Relationship between variable-speed and execution time, where the expected
WCET always caps the actual execution time. Here ρ represents the energy conserving
speed.

In practice, this assumption should always hold since the speed of cache andmemory

access, I/O bus etc. are not extensively affected by a decrease in processor speed. We

believe it is safe in terms of schedulability to consider a linear relationship, as illustrated in

Figure 3.1. The actual Ci is a considerably accurate portrayal of the relationship between

processor speed and execution time. We are considering a pessimistic upper bound on Ci

(expected Ci from Figure 3.1) by assuming a linear relationship.

We present a model that integrates precise scheduling of lo-criticality tasks and

energy-minimization using DVFS techniques. The correctness of the system is mode

based, defined as follows:

- During all lo-criticality behaviors of the system, the processor is down-scaled

by the energy-conserving speed ρ. All jobs receive up to their lo-WCET and meet their

deadlines.

17

- In hi-criticality mode, the processor speed increases to 1, where all jobs may

receive computation time up to their hi-WCET and meet their deadlines.

Another problem tackled in this thesis comprises of the detailed sustainability anal-

ysis of mixed-criticality scheduling algorithms. A scheduling policy and/or schedulability

test may be sustainable with respect to some but not all parameters. In Section 5 of the

thesis, we will consider several well-known MC schedulers, and examine the sustainability

with respect to all four parameters. The algorithms studies are frequently used and posses

a variety of schedulability tests. This lets us throw light on fixed priority based, utilization

and response time analysis based schedulability tests among several others. Table 3.1 lists

the algorithms studies and their sustainability properties with respect to various parameters

which are elaborately discussed in Section 5. In the table, summary of sustainability results

for someMC scheduling algorithms with respect to various parameters. A ‘Y’ / ’N’, denotes

that the scheduler is / is not sustainable with respect to that parameter.(The first four listed

algorithms are uniprocessor algorithms; the remaining two, multiprocessor ones.)

Table 3.1. Summary of sustainability results for some MC scheduling algorithms with
respect to various parameters.

Scheduler Crit. Level wcet Period Deadline
Crit. Mono. N Y Y Y
EDF-VD Y Y Y Y
AMC Y Y Y Y
OCBP Y Y Y∗ Y
MC2 N Y Y Y
MC Fluid Y Y Y Y

∗Please note that OCBP is for scheduling MC job sets and thus the ‘Y’ in the period column
represents sustainability over release time, while others are for MC task set scheduling.

18

4. EDF-VD AND ITS CORRECTNESS

As discussed earlier, the motivation of the thesis to integrate the precision model

in (Pathan, 2017) with the energy conserving DVFS implemented in (Huang et al., 2014)

to guarantee computation time to all tasks (hi and lo) in both modes of operation with

an energy conserving speed or optimal minimum speed for the processor in lo-criticality

mode. The well-known EDF-VD scheduling algorithm (Baruah et al., 2011b) is extended to

incorporate the proposed unified model. In this section, we first present how our modified

EDF-VD algorithm for the precise energy efficient model (Section 4.2) varies from the EDF-

VD algorithm for traditional MC system model in (Baruah et al., 2011b). A description of

how the modified EDF-VD algorithm works and then proof of its correctness in both modes

of operation is included thereafter with detailed representation of the schedulability tests.

Conclusive analysis of the speedup and approximation ratio are presented in Section 4.3.1

and 4.3.2 respectively in this section.

4.1. AN OVERVIEW OF ALGORITHM EDF-VD

Traditional EDF-VD scheduling (Baruah et al., 2011b) is an modification of the

Earliest Deadline First (EDF) scheduling algorithm in order to adapt to the dual-criticality

implicit-deadline sporadic task systems on a unit-speed processor. In order to guarantee

that hi-criticality tasks can still meet their deadlines in situations of overrun, resources

have to be retained for those tasks. In the EDF-VD algorithm, the reservation of resources

for hi-criticality tasks is accomplished in the lo-mode by artificially scaling down the

deadlines of hi-criticality tasks. Such scaled virtual deadline settings enables hi-criticality

tasks to budget enough resources to handle overrun while finishing their lo-WCET within

the lo-mode. In order to address the resource demands on different levels of criticality:

19

For a dual-criticality task-set τ = {τ1, τ2,, τn} to be scheduled by energy conserving
preemptive processor:

• Scaling factor x is computed to determine virtual deadline of hi-criticality tasks:

x ← Ulo
hi

ρ −Ulo
lo

• If (x − 1)Ulo
lo +Uhi

hi + x ≤ 1
then virtual-deadline T̂i ← xTi for every hi-criticality task τi.

Figure 4.1. Modified EDF-VD schedulability condition and scaling factor x

– In lo-mode, the EDF-VD algorithm adjusts the deadlines of all the hi-criticality tasks

by a common factor x. This is done to retain budget for the hi-criticality tasks in

hi-mode by triggering an earlier mode-switch. Here, all the deadlines of hi-tasks are

scaled down by x to obtain virtual deadlines.

– In hi-mode, the hi-criticality tasks are scheduled according to their original deadlines

and all lo-criticality tasks are discarded.

4.2. EDF-VD FOR PRECISE ENERGY-CONSERVING MODEL

In this section, we describe in detail the enhanced EDF-VD algorithm to compromise

our precise energy-conservingmodel. As discussed earlier, we consider theDVFS technique

to conserve energy in lo-mode by slowing down the processor to speed ρ. Figure 4.1

represents a modified EDF-VD algorithm which determines if the task-set τ is schedulable

and then assigns virtual deadline T̂i for all hi-criticality tasks of the schedulable task-set.

According to the algorithm in Figure 4.1, the scaling factor x is computed and T̂i values are

assigned to all hi-criticality tasks as T̂i ← x×Ti. Theorem 1 demonstrates how parameter x

20

is derived. Contradictory to the traditionalMCmodel, instead of discarding all lo-criticality

tasks in hi-criticality behaviors, our model schedules both lo- and hi-criticality tasks with

their given WCETs at processor speed s← 1.

4.2.1. CorrectnessUnderLO-CriticalityMode. In thismode, lo-andhi-criticality

tasks are guaranteed time budgets equal to their lo-WCET values within their deadlines

and virtual deadlines respectively at processor speed ρ. For all tasks being scheduled in

lo-mode, we establish the following theorem.

Theorem 1. The following condition is sufficient for guaranteeing that EDF-VD correctly

schedules all the assignments in lo-criticality mode:

x ≥ Ulo
hi

ρ −Ulo
lo

(4.1)

where Ulo
lo < ρ.

Proof. According to the EDF-VD algorithm, the virtual deadlines of all the hi-criticality

tasks for our model are determined where T̂i = xTi prior to runtime. Scaling down the

period of each hi-criticality task by parameter x indicates increase in its utilization by x.

If all the jobs execute for no more than lo-WCETs (CL
i), the density bound of EDF for

implicit-deadline tasks which is equal to processor capacity (Liu and Layland, 1973) we

can therefore conclude that:

Ulo
lo +

Ulo
hi

x
≤ ρ

=⇒ x ≥ Ulo
hi

ρ −Ulo
lo

is the sufficient for guaranteeing that EDF-VD correctly schedules all the assignments in

lo-criticality mode.

21

ai t∗ T̂i
Ti

T̂i ← x × Ti
(1 − x) × Ti

Figure 4.2. Relation between time instants

The smallest value of x such that Theorem 1 is satisfied is assigned by the EDF-VD

algorithm:

x ← Ulo
hi

ρ −Ulo
lo

(4.2)

We now derive a sufficient condition to ensure that EDF-VD meets all deadlines in hi-

criticality mode using obtained value of parameter x.

4.2.2. Correctness Under HI-Criticality Mode. Similar to the classical model, if

a task τi does not signal completion after CL
i units of execution within its virtual deadline

equal to T̂i, the system exhibits hi-criticality behaviors and triggers a mode-switch. At

a specific time instant t* during run-time, in the event that the scheduler identifies a hi-

criticality task executing for a duration greater that its CL
i without indicating completion,

mode-switch corresponding to the whole system is activated which advocates a need to

perform the following:

• re-assignment of time period Ti of active hi-criticality tasks from T̂i (xTi = T̂i) to Ti.

• continue to execute lo-criticality tasks and not discard them as in the traditional

MC-model.

• the speed of the processor increases from ρ to 1.

22

Theorem 2. The following condition is sufficient for guaranteeing that EDF-VD correctly

schedules all the assignments in hi-criticality mode:

Ulo
lo +

Uhi
hi

(1 − x) ≤ 1 (4.3)

Proof. If there is an active hi-criticality task at mode-switch instant t*, the relative deadline

of the hi-criticality task is adjusted to T̂i = xTi. The actual deadline is Ti − xTi = x(1 − Ti)

time units in the future. The relation is illustrated in Figure 4.2. Thus the utilization of

hi-criticality tasks after time instant t* is upper bounded by CH
i

(1−x)Ti .

Summing over all hi- and lo-criticality tasks according to the fact that EDF has a

utilization bound equal to the processor capacity (which in our case is 1) we arrive at a

conclusion that:

∑
τi∈χ=LO

Clo
i

Ti
+

∑
τi∈χ=HI

Chi
i

(1 − x)Ti
≤ 1

⇒ Ulo
lo +

Uhi
hi

(1 − x) ≤ 1

is a sufficient condition for guaranteeing that EDF-VD correctly schedules all the assign-

ments in hi-criticality mode.

In order to guarantee schedulability inhi-criticalitymode, the upper bound of scaling

parameter x is determined below.

⇒ (1 − x)Ulo
lo +Uhi

hi ≤ 1 − x

⇒ Ulo
lo − xUlo

lo +Uhi
hi ≤ 1 − x

⇒ x(1 −Ulo
lo) ≤ 1 − (Uhi

hi +Ulo
lo)

23

The upper bound of scaling parameter x is:

x ≤ 1 − (Uhi
hi +Ulo

lo)
(1 −Ulo

lo)
(4.4)

We have thus justified the correctness of the EDF-VD scheduling algorithm. From Theorem

1, the value of x ensures the correctness of all lo-criticality behaviors and Theorem 2

guarantees correctness of all hi-criticality behaviors. We give the following sufficient

condition for MC-schedulability by EDF-VD for our precise energy conserving model.

Theorem 3. If τ satisfies

Ulo
lo + min

(
Uhi

hi,
Ulo

hi(
1 − Uhi

hi

1 −Ulo
lo

)) ≤ ρ (4.5)

then it is schedulable by EDF-VD.

Proof. We consider two cases:

Case A: Ulo
lo +Uhi

hi ≤ ρ, In this case, all the lo- and hi-criticality tasks are considered

performing on processor with speed ρ which is worst-case reservation schedulable by

EDF (Baruah et al., 2012a). The total utilization of the tasks can be represented as:

Ulo
lo

ρ
+

Uhi
hi

ρ
≤ 1

The task set can be scheduled by EDF without deadline scaling for hi-criticality tasks at an

energy conserving speed.

24

Case B: Ulo
lo +Uhi

hi ≥ ρ

For Condition (4.5) to hold, it must be the case that,

Ulo
lo +

Ulo
hi

(1 − Uhi
hi

1 −Ulo
lo
)
≤ ρ

⇒ Ulo
hi

1 − (Ulo
lo +Uhi

hi)
1 −Ulo

lo

≤ ρ −Ulo
lo

⇒
Ulo

hi

ρ −Ulo
lo
≤

1 − (Ulo
lo +Uhi

hi)
1 −Ulo

lo

⇒ x ≤
1 − (Ulo

lo +Uhi
hi)

1 −Ulo
lo

⇒ Ulo
lo +

Uhi
hi

(1 − x) ≤ 1

which is the schedulability condition to correctly schedule all the tasks in hi-mode.

By combining Theorem 1 and Theorem 2, we prove the following theorem.

Theorem 4. Given a precise mixed criticality model task set, the minimum value of ρ for

the task set to be schedulable by EDF-VD is:

min
(
Ulo

lo +Uhi
hi , Ulo

lo +
Ulo

hi (1 −Ulo
lo)

1 − (Uhi
hi +Ulo

lo)

)
(4.6)

only when,

Ulo
lo +

Ulo
hi (1 −Ulo

lo)
1 − (Uhi

hi +Ulo
lo)
≤ 1

Proof. On combining Theorem 1 and 2, from Condition (4.1) and Condition (4.4) we can

represent the range of the value of parameter x:

Ulo
hi (τ)

ρ −Ulo
lo (τ)

≤ x ≤ 1 − (Uhi
hi +Ulo

lo)
(1 −Ulo

lo)

25

Thus determining the minimum value of ρ as:

Ulo
hi (τ)

ρ −Ulo
lo (τ)

≤ 1 − (Uhi
hi +Ulo

lo)
(1 −Ulo

lo)

⇒ Ulo
lo +

Ulo
hi (1 −Ulo

lo)
1 − (Uhi

hi +Ulo
lo)
≤ ρ

⇒ Ulo
lo +

Ulo
hi

1 − (Uhi
hi +Ulo

lo)
1 −Ulo

lo

≤ ρ

which is the sufficient condition (refer Theorem 3) to ensure that EDF-VD successfully

schedules all the hi-criticality tasks in τ.

4.3. SPEEDUP AND APPROXIMATION RATIO METRICS

The theoretical real-time systems community considers speedup as a viable mea-

sure to measure the effectiveness of mixed-criticality scheduling algorithms. (Baruah and

Agarwal, 2018) lists the sources of intractability for mixed criticality systems, isolates their

impacts and highlights the need for metrics that are able to independently evaluate the

approximation-ratio impact (i.e., comparison with MC-optimality) and the competitive-

ratio impact (i.e., the sub-optimality emerging from the need of clairvoyance) of EDF-VD

in planning recurrent frameworks.

4.3.1. Speedup Factor of EDF-VDAlgorithm. In this section, we prove that EDF-

VD for our problem has a speedup bound equal to 2, for any non-clairvoyant algorithm for

our chosen workload and platform model with ρ ranging from [0.5, 1].

Theorem 5. For the optimization problem described in Section 3.5, algorithm EDF-VD (in

Section 4.2) has a speedup bound no larger than 2.

26

Proof. We will show below that any MC task system τ that can be correctly scheduled by

a clairvoyant optimal algorithm on a processor with normal speed b and energy conserving

speed b× ρ, is correctly scheduled by EDF-VD on a processor with normal speed 1 and the

energy-conserving speed ρ (where 0.5 ≤ ρ ≤ 1). This way we prove the theorem, such that

a processor that is faster by a factor of b is sufficient for EDF-VD to correctly schedule τ.

Note that any task set τ that is correctly schedulable by a clairvoyant scheduler

should necessarily satisfy

max
(
Ulo

lo

ρ
+

Ulo
hi

ρ
,Ulo

lo +Uhi
hi

)
≤ b (4.7)

since its lo-criticality utilization (Ulo
lo +Ulo

hi) must be ≤ bρ and its hi-criticality utilization

(Ulo
lo +Uhi

hi) must be ≤ b.

From Theorems 1 and 2, we know that if an x satisfying both theorems exists,

sufficient conditions for both lo- and hi-mode schedulability are met and there will be no

deadline miss. Since lo-mode schedulability condition Theorem 1 requires that:

x ≥ Ulo
hi

ρ −Ulo
lo

where Ulo
lo < ρ.

And hi-mode schedulability condition from Theorem 2 requires that:

x ≤ 1 − (Uhi
hi +Ulo

lo)
(1 −Ulo

lo)
.

We can represent the schedulability conditions from both modes of operation as:

Ulo
hi

ρ −Ulo
lo
≤ 1 − (Uhi

hi +Ulo
lo)

(1 −Ulo
lo)

27

Since Ulo
lo +Ulo

hi ≤ bρ =⇒ Ulo
hi ≤ bρ −Ulo

lo

⇒ (bρ −Ulo
lo)

ρ −Ulo
lo
≤ 1 − (Uhi

hi +Ulo
lo)

(1 −Ulo
lo)

we have necessary condition Ulo
lo +Uhi

hi ≤ b

⇒ (bρ −Ulo
lo)

ρ −Ulo
lo
≤ 1 − b
(1 −Ulo

lo)
⇒ (bρ −Ulo

lo)(1 −Ulo
lo) ≤ (1 − b)(ρ −Ulo

lo)

(Ulo
lo)2 − (bρ + b)Ulo

lo + 2bρ − ρ ≤ 0 (4.8)

Now, if we set b← 1
2 , Condition (4.8) becomes:

(Ulo
lo)2 − (

ρ

2
+

1
2
)Ulo

lo ≤ 0

⇒Ulo
lo ≤

ρ

2
+

1
2

which is true for all values of Ulo
lo since 0 ≤ Ulo

lo ≤ ρ ≤ 1. This is because

according to Equation (4.2) in Theorem 1, Ulo
lo < ρ. We have thus shown that any task

system that is clairvoyant schedulable by an optimal algorithm on a speed 1
2 processor with

energy conserving speed ρ/2 is scheduled by EDF-VD to meet all deadlines on a unit-speed

processor and energy conserving speed ρ. This establishes the theorem since it shows that

a processor that has a speedup bound of 2 is sufficient for EDF-VD to correctly schedule

τ.

We now show that the speedup bound cannot get better than 2 for any non-clairvoyant

scheduler by providing a counter-example.

Theorem 6. No non-clairvoyant algorithm for scheduling dual-criticality implicit-deadline

sporadic task systems can have a speedup bound better than 2.

28

Proof. We prove this theorem by providing a counter-example. Consider the example task

system τ = {τ1, τ2} running on a processor with energy conserving speed 0.5, with the

following parameters:

τi χ Clo
i Chi

i Ti
τ1 lo 0.45 + ε 0.45 + ε 2
τ2 hi 0.05 0.55 + ε 2

This system has a utilization which is larger than 0.5 by an arbitrarily small value ε . Let us

consider the minimum possible energy conserving speed ρ equal to 0.5 1.

We want to prove that no non-clairvoyant algorithm can have a speedup bound better

than 2. In order for that to happen, it is crucial to show that this system is: (i) schedulable by

a clairvoyant optimal algorithm on a processor with normal speed b and energy conserving

speed b × ρ (since speedup bound is better than 2, b > 0.5. For this theorem we consider

b = 0.5+ε) and, (ii) is not correctly scheduled by a non-clairvoyant algorithm on a processor

with normal speed 1 and the energy-conserving speed ρ.

Clairvoyant Algorithm: The processor executes at a normal speed (in hi-criticality

mode) of 0.5+ε and energy conserving speed (in lo-criticalitymode) equal to (0.5+ε)×0.5 =

0.25 + 0.5ε . For an MC-instance to be schedulable by clairvoyant EDF algorithm, it is

necessary for the utilization to not exceed processor speed. From the example, we observe

that the total utilization in lo-criticality mode is 0.25 + 0.5ε which is equal to the energy

conserving processor speed. Correspondingly, the hi-mode utilization is 0.5+ ε which does

not exceed the normal speed of the processor. It is safe to conclude that the clairvoyant EDF

scheduler will meet all the deadlines in both hi- and lo-criticality behaviors.

Non-clairvoyant Algorithm: We consider the same example task system τ consisting

of tasks τ1 and τ2. Suppose all tasks were to generate jobs simultaneously (i.e., arrival time

of the jobs = 0).

1Since the speedup bound obtained in Theorem 5 depends upon the value of ρ chosen (0.5 ≤ ρ ≤ 1), we
consider the minimum possible ρ for the model, which is 0.5.

29

Since the system is non-clairvoyant, it is not revealed prior to the execution of the job,

whether the behavior is a lo-criticality or a hi-criticality one.

Consider a case: τ1’s job receives (0.45 + ε) units of execution before τ2’s job and

is executed at an energy conserving speed ρ = 0.5. From Figure 3.1 we have considered a

linear relationship between speed ρ and WCET. In this case, τ1’s job executes for (0.45 +

ε)/0.5 = 0.9+2ε units. If τ2’s job reveals itself to be a hi-criticality job, there is not enough

time remaining for τ2’s job to complete by its deadline at time-instant 2. The MC instance

is not schedulable by the non-clairvoyant algorithm on a processor with normal speed 1 and

the energy-conserving speed.

4.3.2. Approximation Ratio. It has been proven that MC-schedulability for dual-

criticality recurrent task systems is NP-hard in the strong sense, thus adopting non-optimal

algorithms (EDF-VD) is justified (Baruah and Agarwal, 2018). An instance is declared as

MC-schedulable if it is correctly scheduled by any non clairvoyant on-line algorithm.

An algorithm A has an approximation ratio of α ≥ 1 if and only if some non

clairvoyant on-line algorithm can guarantee MC correctness with full speed of 1 and a

energy conserving speed of ρ, Algorithm A guarantees MC correctness to the same set with

a processor of normal speed 1 and energy conserving speed of α × ρ.

Theorem 7. For this model, algorithm EDF-VD has an approximation ratio no larger than

1 +
Ulo

hi (1 −Ulo
lo)

Ulo
lo (1 − (Uhi

hi +Ulo
lo))

(4.9)

Proof. We observe that any task-set τ that is correctly scheduled by a clairvoyant scheduler

upon a processor with normal speed 1 and energy conserving speed α × ρmust necessarily

satisfy:

max
(
Ulo

lo

αρ
+

Ulo
hi

αρ
,Ulo

lo +Uhi
hi

)
≤ 1 (4.10)

30

Inequality (4.10) only indicates that the speed of the processor is increased by an

approximation ratio α in the lo-mode.

It is safe to assume that energy conserving speed is always ≤ normal speed. For an

on-line algorithm A, to correctly claim that τ is MC-schedulable, we derive a bound (range)

for the approximation ratio where α × ρ ≤ 1 (for 0.5 ≤ ρ ≤ 1). At first glance, it is quite

evident that the maximum value of α can be 1/ρ for the system to be schedulable (since

αρ ≤ 1). This however is a loose upper bound on the value of approximation α. To generate

a more viable upper bound for approximation ratio, we have the following two cases:

Case 1: If ρ ≥ Ulo
lo + min

(
Uhi

hi,
Ulo

hi (1 −Ulo
lo)

1 − (Uhi
hi +Ulo

lo)
)
.

If this condition is true, we can claim that ρ ≥ ρmin. This is evident from Condition

(4.6) of Theorem 4. If ρ ≥ ρmin, for any value of ρ ≤ 1 the system will be schedulable.

Thus for this case the maximum value of α to guarantee MC-correctness is 1.

Case 2: If ρ ≤ Ulo
lo + min

(
Uhi

hi,
Ulo

hi (1 −Ulo
lo)

1 − (Uhi
hi +Ulo

lo)
)
.

The maximum value of α for an on-line algorithm to correctly schedule a system

can be given as:

α ≤ 1 +
Ulo

hi (1 −Ulo
lo)

Ulo
lo (1 − (Uhi

hi +Ulo
lo))

We justify the reason for selecting such a bound below:

From Theorem 4 we have the minimum value of ρmin as,

min
(
Ulo

lo +Uhi
hi , Ulo

lo +
Ulo

hi (1 −Ulo
lo)

1 − (Uhi
hi +Ulo

lo)

)
The schedulability condition is guaranteed if and only if ρ ≥ ρmin. In this case the value

of α should be such that αρ should satisfy the schedulability condition i.e., α ≥ ρmin/ρ.

Keeping this as a minimum bound required for α, we select a maximum bound for α as

ρmin/Ulo
lo . Since 0 ≤ Ulo

lo < ρ ≤ 1, for this value of α, the schedulability condition will

31

always hold. Thus we have

α ≤ 1 +
Ulo

hi (1 −Ulo
lo)

Ulo
lo (1 − (Uhi

hi +Ulo
lo))

The inequality (4.9) may not represent the tightest upper bound, however is signif-

icantly better than the loose upper-bound of 1/ρ. The performance of the algorithm with

the derived value of α is demonstrated in Figure 4.5 in Section 4.5.

4.4. EXPERIMENTAL EVALUATION

We have conducted a progression of schedulability tests to assess the effectiveness

of the EDF-VD scheduling technique to guarantee that MC implicit deadlines sporadic task

systems are correctly scheduled.

4.4.1. Workload Generation. The experiments were conducted on a randomly

generated task-set that were generated according to the workload generation model estab-

lished by Guan et al. (Guan et al., 2013) with further modifications. The input specifications

for our workload generation are as follows:

• Ubound is the desired upper bound of utilization of the system: (Ulo
lo (τ) +Uhi

hi (τ))

• The time period of a task is randomly chosen in the range [Tdown,Tup]; 0 ≤ Tdown ≤

Tup.

• For each task, a value is randomly selected in the range [Udown,Uup] and multiplied

with task’s period, to obtain execution time in the lo-mode; 0 ≤ Udown ≤ Uup ≤ 1.

• The ratio of hi-WCET and lo-WCET is drawn from the range [Zdown, Zup]; 1 ≤

Zdown ≤ Zup.

• P: Probability that the chosen task is hi-critical; 0 ≤ P ≤ 1

32

0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

0

20

40

60

80

100

F
ra
ct
io
n
o
f
sc
h
ed

u
le
d
sy
st
em

s

ρ = 0.70
ρ = 0.75
ρ = 0.80
ρ = 0.85
ρ = 0.90

Figure 4.3. Example outcome of schedulability experiments, for parameters [Udown,Uup] =
[0.02, 0.2]; [Tdown,Tup] = [5, 50]; [Zdown, Zup] = [1, 4]; P = 0.5 for different values of ρ

0.4 0.5 0.6 0.7 0.8 0.9 1
System utilization

0

20

40

60

80

100

R
a
ti
o
o
f
sy
st
em

s
sc
h
ed

u
le
d
(%

)

ρ = 0.50
ρ = 0.55
ρ = 0.60
ρ = 0.65
ρ = 0.70
ρ = 0.75
ρ = 0.80
ρ = 0.85
ρ = 0.90

Figure 4.4. Example outcome of schedulability experiments, for parameters [Udown,Uup] =
[0.02, 0.2]; [Tdown,Tup] = [5, 50]; [Zdown, Zup] = [1, 8]; P = 0.5 for different values of ρ

For the generation of a MC-workload from the combination of these parameter

values, the task generation algorithm iteratively adds tasks to an empty set until the utilization

bound is met.

33

In our experiments, we determine the ratio of systems scheduled correctly against

the system utilizationUbound . Simulations are carried out for different values of ρ. Although

we cannot draw authoritative conclusions from the experiments as the results are influenced

by the random workload generator, we do make some interesting observations.

When the average utilization percentage is smaller than 0.5, the task system is always

schedulable. This observation from Figure 4.3 matches our speed-up factor computation,

since speed up bound is 2 (0.5).

Figure 4.3 clearly demonstrates the ratio of systems scheduled correctly as a function

of system utilization. For different values of ρ ranging from [0.5,0.9], the system is

completely schedulable for average utilization ≤ 0.5.

Likewise in Figure 4.4, the performance of the EDF-VD algorithm is demonstrated

for a workload with different values of ρ and [Zdown, Zup] = [1, 8]. Figure 4.5 shows the

ratio of correctly scheduled task sets with an energy conserving speed of α × ρ against

system utilization.

The performance of the algorithm was determined again with an energy conserving

speed of αρ and normal speed 1, where α is the approximation ratio. Themaximum value of

α was considered according to Condition (4.9) as proved in Section 4.3.2. It is interesting to

observe that the maximum bound chosen for approximation ratio α is sufficient to guarantee

MC correctness by an on-line non-clairvoyant algorithm.

4.5. SUMMARY OF ENERGY EFFICIENT PRECISE COMPUTING

The conventional mixed-criticality model, despite its popularity, is controversial for

penalizing all lo-criticality tasks in hi-mode. Recent works throw light on overcoming

this setback by partially (if not fully) trying to accommodate lo-criticality tasks even under

pessimistic behaviors.

34

0 0.2 0.4 0.6 0.8 1

ULO
LO + UHI

HI

0

0.2

0.4

0.6

0.8

1

R
a
ti
o
o
f
ta
sk

se
ts

sc
h
ed
u
le
d
co
rr
ec
tl
y

w
it
h
sp
ee
d
α
ρ

Figure 4.5. Performance of the algorithm under normal speed 1 and energy conserving
speed αρ; with α value determined from Equation 4.9

In this work, we develop an integrated model combining precise scheduling of lo-

criticality tasks on energy conserving platforms that adopt the DVFS strategy. A sufficient

test for this unified model under EDF-VD scheduling algorithm is proposed. The sufficient

test is evaluated theoretically with sound proofs and via schedulability experiments on

randomly generated workloads. We provide results on calculating both speedup bound and

also approximation ratio to satisfy real-time requirements in situation of overrun.

35

5. SUSTAINABILITY IN MC SCHEDULING

Schedulability tests play an vital part within the confirmation of safety-critical real-

time systems. Given the detail of an occurrence comprising the abstraction of workload

and the computing framework upon which the workload is to execute, a schedulability test

decides whether all timing limitations (frequently indicated by deadlines) are ensured to

be met under indicated scheduling policies. For safety-critical frameworks, schedulability

investigation must be performed earlier to run-time; in order to do so, parameters charac-

terizing the run-time workload must be evaluated earlier to run-time. Distinctive tools and

strategies utilized for making such estimations may be more or less pessimistic (cynical)

than each other; consequently, the use of traditional techniques may result in frameworks

exhibiting run-time behavior way better than estimated.

An MC scheduling policy is said to be sustainable if any MC instance that is

MC-schedulable by the policy remains so if one or more of the parameters characterizing

the instance is improved. Analogously, a schedulability test for some MC scheduling

policy is said to be sustainable if any MC instance that is deemed MC-schedulable by the

schedulability test will continue to be deemed MC-schedulable by the test if one or more of

its parameters is improved in one/all of the following ways:

1. Diminishing WCET parameters (CL
i and/or CH

i).

2. Elongating periods for sporadic task systems; expediting release times forward (i.e.,

decreasing ai) for a set of jobs.

3. Prolonging relative deadlines (Di).

4. Lowering the criticality level assignment (χi) of a task/job (from hi to lo in case of

dual-criticality systems).

36

In this section of the thesis we will visit several existing uniprocessor and multi-

processor algorithms and perform sustainability analysis on each of them. Here, we will

consider the traditional behavior where an MC system is assumed to begin execution in

lo-mode and if a job has executed for more than its lo-criticality WCET specification

without signaling completion, a system-wide mode switch to hi-mode is said to occur. The

system returns to lo-mode at the first idle instant after the mode switch (S. Baruah and A.

Burns, 2014). In all other scenarios, the system is considered as an erroneous mode, where

no correctness guarantees are made and thus is not considered in this work.

A scheduling policy and/or schedulability test may be sustainable with respect to

some but not all parameters. In each of the following subsections, we will consider one

well-known MC scheduler, and examine the sustainability with respect to all parameters.

We limit ourselves in this paper to two criticality levels – although many results are easily

extended to more than two levels, we leave filling in the details as future work.

5.1. SUSTAINABILITY IN UNIPROCESSOR SCHEDULING ALGORITHMS

In this section, we study sustainability properties of four uniprocessor MC schedul-

ing algorithms and their associated schedulability tests. The first three – Criticality Mono-

tonic, EDF-VD, and AMC – are task-scheduling algorithms; the fourth, OCBP, schedules

collections of jobs.

5.1.1. Criticality Monotonic. Criticality Monotonic (CM) (Vestal, 2007) is a

scheduling policy that schedules at each time instant an available job of highest criticality.

Hence a task of criticality level ` cannot affect the scheduling of tasks of criticality greater

than `. In this paper we restrict ourselves with only two criticality levels, lo and hi. We

study a sporadic task model where each task is characterized by τi = {CL
i ,C

H
i ,Ti,Di, χi}.

We assume that the (non MC) mechanism to schedule tasks within each criticality

level is sustainable w.r.t. all parameters, and examine the sustainability of CM as a general

MC scheduling framework.

37

Sustainability w.r.t. relative deadline, WCET, and period. Changing relative dead-

line, WCET, and period parameters will not affect the general CM framework since no

criticality level is modified. As it is assumed that the scheduler used within each criticality

level is sustainable to all parameters, the schedulability conditions will still hold within each

criticality level, leading to sustainability of CM.

Now we look into sustainability w.r.t. criticality levels.

Theorem 8. Criticality Monotonic scheduling algorithm is not sustainable with respect to

criticality levels.

Proof. Consider the task-set shown in Table 5.1, which is CM-schedulable (using deadline

monotonic within each criticality level). Figure 5.1(a) illustrates the schedule of the task-set

with its respective arrival times and deadlines.

Table 5.1. An MC task-set that is not sustainable under criticality monotonic scheduling
policy.

Task CL
i CH

i Ti Di Criticality Priority

τ1 20 25 120 40 HI→LO 1→ 3

τ2 28 60 200 160 HI 2

τ3 12 12 120 100 LO 4

We now decrease the criticality level of task τ1 from hi- to lo- criticality and observe

the outcome schedule in Figure 5.1(b), where τ1 misses its deadline. Thus we conclude that

the CM scheduling policy is not sustainable w.r.t. criticality levels.

38

τ1

τ2

τ3

0 200 300 400 500 600100

(a) Criticality-Monotonic schedule for tasks
in Table 5.1 under lo-criticality mode.

0 4020

τ1 misses deadline

(b) Criticality-Monotonic schedule for tasks
in Table 5.1, when criticality level of τ1 is
changed from hi to lo, where τ1 misses its
deadline.

Figure 5.1. Schedule demonstration of the sample task set (shown in Table 5.1) under
Criticality-Monotonic before and after the change of criticality level of one of the tasks (τ1).

5.1.2. Earliest Deadline First with Virtual Deadlines (EDF-VD). The Earliest

Deadline First with Virtual Deadline scheduling policy (EDF-VD) (Baruah et al., 2012b)

is an adaptation of the Earliest Deadline First (EDF) algorithm to dual-criticality implicit-

deadline sporadic task systems. It is proved in (Baruah et al., 2012b) that EDF-VD correctly

schedules any dual-criticality task system τ = {τ1, τ2, . . . , τn} upon a unit-speed preemptive

processor if

x Ulo
lo (τ) +Uhi

hi (τ) ≤ 1 (5.1)

where x is defined as follows:

x ← Ulo
hi (τ)/(1 −Ulo

lo (τ)) (5.2)

Condition 5.1, in fact, constitutes a schedulablity test for EDF-VD: EDF-VD computes x

according to Equation 5.2 above and determines whether Condition 5.1 is satisfied. In the

remainder of this section, we establish that this schedulability test for EDF-VD is sustainable

with respect to criticality level, WCETs, and period. (Since this schedulability test is for

39

implicit-deadline task systems, its sustainability with respect to relative deadlines trivially

follows from the observation that EDF-VD does not make use of the relative deadline

parameter.)

Recall the various the total utilization for each mode of operation parameters defined

in the system model section represented as follows:

• The total utilization for all lo-criticality tasks in lo- and hi-modes respectively, we

have: Ulo
lo =

∑
∀τi∈τlo ulo

i , Uhi
lo =

∑
∀τi∈τlo uhi

i .

• Similarly for all hi-criticality tasks, the utilization is represented as: Ulo
hi =

∑
∀τi∈τhi

ulo
i , Uhi

hi =
∑

∀τi∈τhi uhi
i .

Let us introduce some simplifying notations:

ul ← Ulo
lo (τ)

uh ← Ulo
hi (τ)

u′h ← Uhi
hi (τ)

While executing in lo-criticality mode, the deadlines of the high criticality tasks are

determined by scaling down the original period of a hi-criticality task with a factor x (x ≤

1) to obtain a virtual deadline. The scaling factor x is calculated off-line as x = uh/(1− ul).

For the EDF-VD scheduling policy to correctly schedule a dual-criticality implicit

deadline task system on a single unit-speed processor, the sufficient conditions for tasks to

be scheduled in both lo- and hi-mode respectively are (Baruah et al., 2012b):

x ≥ uh

1 − ul
, (5.3)

x · ul + u′h ≤ 1. (5.4)

40

We now determine the sustainability of the scheduling policy by making favorable

alterations in the parameters and verify if the schedulability condition still persists.

Lemma 1. EDF-VD is sustainable w.r.t criticality levels; i.e., when changing the criticality

of a task from hito lo, Conditions (5.3) and (5.4) will continue to hold if they used to be so.

Proof. The change to the criticality level of a task from hito lowill result in an increase

of the utilization of lo-criticality tasks (ul) and decreases in the utilization of hi-criticality

tasks (uh, u′h), all with the same amount (assumed to be δ) i.e.,

uh = uh − δ,

u′h = u′h − δ,

ul = ul + δ.

Now, on substituting these notations in Equations (5.3) and (5.4), the scaling term

x can then be denoted as:

x← uh

1 − ul
.

The equation for the hi-criticality schedulability test can be written as:

uh.ul

1 − ul
+ u′h ≤ 1. (5.5)

On modifying the utilization values with δ in the Equation (5.5) we get:

(uh − δ)(ul + δ)
1 − (ul + δ)

+ (u′h − δ) ≤ 1. (5.6)

To determine if the schedulability condition in Equation 5.6 still holds, we show the

following proof: By demonstrating that the difference between Equations (5.5) and (5.6) is

positive, i.e.,

41

(uh − δ)(ul + δ)
1 − (ul + δ)

+ (u′h − δ) ≤
uh.ul

1 − ul
+ u′h ≤ 1. (5.7)

uh · ul

1 − ul
+ u′h −

(uh − δ)(ul + δ)
1 − (ul + δ)

+ (u′h − δ) ≥ 0

⇒ uh · ul

1 − ul
− (uh − δ)(ul + δ)

1 − (ul + δ)
− δ ≥ 0

⇒ uh.ul

1 − ul
− (uh − δ)(ul + δ) − δ + δ(ul + δ)

1 − (ul + δ)
≥ 0

⇒ uh · ul

1 − ul
− (ul + δ)uh − δ

1 − (ul + δ)
≥ 0

⇒ uh · ul

1 − ul
− uh.ul + δuh − δ

1 − (ul + δ)
≥ 0

⇒ uh · ul(1 − ul + δ) − uh · ul(1 − ul) − δ(uh − 1)(1 − ul) ≥ 0

⇒ δ(1 − uh)(1 − ul) − uh · ulδ ≥ 0

⇒ (1 − uh)(1 − ul) ≥ uh · ul

⇒ 1 − uh − ul ≥ 0

⇒ ul + uh ≤ 1.

(5.8)

The solution obtained in Equation (5.8) satisfies the schedulability conditions stated

in Equations (5.3) and (5.4), thus establishing that the EDF-VD scheduling policy is sus-

tainable w.r.t. to criticality levels.

Lemma 2. EDF-VD is sustainable w.r.t WCETs.

Proof. According to the definition of sustainability, on decreasing the WCET of a task

τi (either CL
i or CH

i), the schedulability conditions of the whole task system should still

hold. To demonstrate the sustainability, we consider a small arbitrary value δ by which we

decrease CL
i or CH

i values, and check the two sufficient conditions.

(1) Decrease of CH
i .

42

Upon decreasing the CH
i by a menial amount δ > 0, the utilization of the set (uh)

will decrease by a value (δ′ = δ/Ti > 0). Thus, the corresponding hi-mode schedulability

condition for the new task set is:

x · ul + (u′h − δ
′) ≤ 1, (5.9)

which obviously holds from Condition (5.4) and the fact that δ′ > 0. This conveys that in

hi mode, decreasing the CH
i value does not have any adversary effect on the schedulability

of the whole system.

Now we will check the schedulability under lo mode; i.e., if the condition in

Equation (5.3) holds. Since CH
i values have nothing to do with the condition for lo mode, it

remains true. Thus we conclude that the decrease of CH
i will not have any adversary effects

on the schedulability of the whole system.

(2) Decrease of CL
i .

Similarly, if CL
i is diminished in such a way, the ul value decreases by δ. The

following schedulability test (in hi mode) will also hold as x > 0 and δ > 0.

x · (ul − δ) + u′h ≤ 1. (5.10)

Now we inspect the schedulability under lo mode; i.e., if the condition in Equation

(5.3) complies after substituting the modified value of ul :

uh

1 − (ul − δ)
≤ uh

1 − ul
= x, (5.11)

and
uh − δ
1 − ul

≤ uh

1 − ul
x. (5.12)

This indicates that the condition for lo-mode correctness continues to prevail.

43

Lemma 3. EDF-VD is sustainable w.r.t period.

Proof. This follows directly from the proof for sustainability over WCETs as an increasing

period will lead to a decrease of per-mode utilization.

Theorem 9. EDF-VD is sustainable w.r.t all parameters.

Proof. This follows from Lemmas 1, 2, and 3.

5.1.3. AdaptiveMixed-Criticality (AMC). The adaptivemixed criticality schedul-

ing policy (AMC) (Baruah et al., 2011a) is a fixed-priority algorithm for scheduling MC

sporadic task systems on preemptive uniprocessors. A priority order is achieved by applying

Audsley’s priority assignment algorithm (Audsley, 2001), and has been demonstrated to be

optimal (Baruah et al., 2011a; Vestal, 2007); i.e., whenever a feasible priority order exists,

the system will be AMC-schedulable.

Response Time Analysis (RTA) techniques are used to determine the schedulability

of AMC scheduling policy. The analysis is done in three phases (Baruah et al., 2011a):

1. Verifying schedulability of lo-criticality mode with:

RL
i = Ci +

∑
j∈hp(i)

⌈
RL

i

Tj

⌉
CL

j , (5.13)

where hp(i) is the set of all tasks with priority higher than that of task τi.

2. Verifying schedulability of hi-criticality mode with

RH
i = Ci +

∑
j∈hpH(i)

⌈
RH

i

Tj

⌉
CH

j , (5.14)

where hpH(i) is the set of hi-critical tasks with priority higher than, or equal to, that

of task τi.

44

3. Verifying schedulability during criticality (mode) change in an iterative manner w.r.t.

maximum response time R∗i until it is stabilized with:

R∗i = CH
i +

∑
j∈hpH(i)

⌈
R∗i
Tj

⌉
CH

j +
∑

j∈hpL(i)

⌈
RL

i

Tk

⌉
CL

k . (5.15)

Theorem 10. AMC is sustainable w.r.t. to all parameters

Proof. The proof will contain two parts – one for showing sustainability w.r.t. criticality

levels, and the other for the remaining parameters:

Sustainability w.r.t WCETs, periods, and relative deadlines. It has been

proved by Baruah and Burns in (Burns and Baruah, 2008) that the response time analysis

of fixed priority preemptive task system is sustainable w.r.t parameters such as execution

requirements (Ci), relative deadlines (Di) and periods (Ti). Thus Conditions (5.13) and

(5.14) will hold when we adjust the parameters.

With respect to Condition (5.15), although the value of RL
i is fixed, decreasing CL

k

and increasing Tk will deplete the overall value of response time R∗i . The modified value

of response time can be recursively determined until a value less than the initial response

time is obtained. The altered value of R∗i is acquired from recursive calculations and can be

represented as:

new(R∗i) ≤ R∗i ≤ Di

The above equation satisfies the schedulability condition for AMC scheduling algorithm.

For all tasks τi ∈ τLO,HI the response time RL
i and RH

i are no larger than the relative deadline

Di. It is observed that the amount of execution available to a task τi over a period [0,t)

can only increase if job execution requirements decrease. The similar rationale is applied

when job periods increase, i.e., modifying the parameters accordingly only guarantees the

execution of the task in [0, Ri].

45

Consequently, the AMC scheduling model is sustainable with respect to execution-

requirements, periods and relative deadlines.

Sustainability w.r.t criticality levels. Asmentioned earlier, theAMCschedul-

ing policy employs an optimal priority assignment technique before scheduling the jobs.

(Baruah et al., 2011a) states that Audsley’s priority assignment algorithm delivers an op-

timal priority ordering in polynomial time, i.e., Audsley’s algorithm is guaranteed to find

a priority assignment, if there exists one, which is AMC-schedulable. If we change the

criticality level of a task from hito lo, the priority of the task may remain the same or de-

crease; if another feasible priority assignment exists, it will be determined by the Audsley’s

algorithm. In case no other feasible priority order exists, the available order of the task-set

before the criticality level modification can be used as the valid priority ordering. Since the

order is already AMC-schedulable, we claim that it is sustainable w.r.t. criticality levels.

5.1.4. OCBP for MC Job Scheduling. The OCBP (Own Criticality Based Prior-

ity) scheduling policy (Baruah et al., 2010) is a priority basedMC-job scheduling algorithm.

It derives a valid priority ordering of the jobs prior to run-time in order to guarantee

a correct schedule. These priorities are assigned in a recursive manner following Audsley’s

approach (Audsley, 2001). That is, a job Ji is assigned lowest priority if it meets its deadline,

while Ji and all other jobs (of higher priority) execute for a duration not exceeding their

WCETs estimated at Ji’s own criticality level χi. If such a job Ji is found, then it is assigned

lowest priority and the process repeated on the remaining (higher-priority) jobs.

Specifically if the candidate job Ji of lo-criticality is assigned lowest priority, the

following set of conditions will be checked for any l such that l ∈ hp(i)1 and al ≤ di:

CL
i +

∑
j∈hp(i)∩aj≥al

CL
j ≤ di − al . (5.16)

1hp(i) indicates the set of jobs with higher priority assignment than Ji .

46

While if Ji is of hi-criticality, for any l such that: l ∈ hp(i) and al ≤ di, we check2:

CH
i +

∑
j∈hp(i)∩χj=hi∩aj≥al

CH
j ≤ di − al . (5.17)

It is relatively straightforward to implement this priority-assignment process in such

a manner that the following assumption is satisfied:

Assumption 2: Upon changing some parameter of a single job, the priority assigned to

this particular job may be different from the original but the relative priority order of other

jobs remains the same.

This assumption can be achieved by restricting the order of the jobs in each iteration while

determining a lowest priority job; e.g., in decreasing deadline order or simply following job

indices.

Theorem 11. OCBP is sustainable for all parameters under Assumption 2.

Proof. Assume that an instance J of dual-criticality jobs is OCBP schedulable, and modify

the parameter of a particular job Ji ∈ J by one of the four actions: decrease its release

time by δ, increase its deadline by δ, decrease its lo- or hi-WCET by δ, or change its

criticality level from hi to lo (CL
i ≤ CH

i) to obtain a new job set J′ (while parameters of

other jobs remains unchanged). According to Audsley’s priority assignment algorithm and

Assumption 2, there are three possible scenarios upon assigning priorities to J′: (1) the job

Ji is assigned a higher priority than before, (2) the priority order of all jobs does not change,

and (3) the job Ji is assigned a lower priority than before.

We first show that Case (1) is not possible. Since OCBP is a fixed priority scheme,

the schedulability of Ji is only affected by the higher priority jobs. If Ji is assigned priority

pi at a certain iteration before changing the parameter, we would make the same attempt to

assign it the lowest priority at that round, with the same higher priority jobs left (according

2Note that none of the existing work stated the math conditions for OCBP to be schedulable – this is part
of our contribution in this paper as sustainability proof requires clearly expressed equations.

47

to Assumption 2). Since it is schedulable before the parameter change, the claim is that Ji

will continue be assigned the lowest priority at that round (if not sooner). The reason is that

changing Ji’s parameters in the given manner will just relax Conditions (5.16) and (5.17)

such that the schedulaiblity test on current priority assignment remains a success.

For Case (2), sustainability also holds as Conditions (5.16) and (5.17) will continue

to subsist for other jobs. For Ji, again the condition are more relaxed and will continue to

hold. As a result, OCBP will return success after change in the parameters.

ForCase (3), since parameter changing is leading to relaxation of original conditions,

it is possible that Ji can be assigned a priority earlier than before; i.e., a lower priority than

the one before such change. Figure 5.2 depicts the priority assignment of the jobs before

and after incorporating the criticality level change.

J(i)
 hp

J(i)
 lp

J(i)
int

High priority jobs,
not affected

Low priority jobs,
not affected

Ji

Ji

..

..

..

..

..

..

Figure 5.2. Priority assignment before and after the change of job Ji’s criticality level from
hito lo.

The first shaded section J(i)hp comprises jobs that initially have a higher priority than

job Ji. Similarly, after Ji is assigned a lower priority, the jobs with still lower priority than

Ji forms a set denoted by J(i)lp .

48

The densely shaded region in the middle, denoted by J(i)int ; is the rest of jobs that are

originally assigned lower priority than Ji and then higher than Ji after its parameter gets

changed.

The entire job set can be represented as:

J(i)hp ∩ Ji ∩ J(i)int ∩ J(i)lp .

It is assumed that the priority order within each subset does not change (as we restrict

OCBP to try the same order each round). We first know that Ji’s schedualbility conditions

are satisfied.

For the rest of the jobs in three sets:

• The schedulability conditions of jobs in J(i)hp is never affected as lower priority jobs

have nothing to do with their priority assignment check.

• The schedulability conditions of jobs in J(i)int will hold as for any job in this set, there

is one less higher priority job (Ji) after the change.

• The schedulability conditions of jobs in J(i)lp will hold as well, since for them the

higher priority job set remains the same, while one of them, Ji, has less interference

than before due to the parameter change.

We can thus claim that the job-set is OCBP-schedulable after the parameter change

of job Ji.

5.2. SUSTAINABILITY IN MULTIPROCESSOR SCHEDULING ALGORITHMS

We now study the sustainability properties of two multiprocessor MC scheduling

algorithms.

49

5.2.1. MC2. The MC2 algorithm (Mollison et al., 2010) employs a hierarchical

scheduling approach: special tasks called container tasks are scheduled alongside the

higher-criticality tasks. lo-criticality tasks will be assigned to containers (i.e., servers) and

will use the container’s budget to execute only when the container task is scheduled for

execution in the platform. Tasks at each criticality level are scheduled by different intra-

container schedulers, and thus according to different scheduling policies. Four criticality

levels are considered in (Mollison et al., 2010) – A, B, C, and D. Level-A tasks adopt a table-

driven approach modeled on a cyclic executive scheduler, with tasks statically assigned to

processors and scheduling tables precomputed prior to runtime. Each processor also hosts

a level-B container, to which level-B tasks are assigned. Partitioned EDF is used at level B,

so each level B container is served by an EDF scheduler. The periods of all level-B tasks are

required to be integer multiples of the level-A hyperperiod, and the sum of the utilizations

of all level-A and level-B tasks must not exceed 1.0. Both level-A and level-B tasks are

guaranteed to meet their deadlines. Level-C tasks are grouped into the Level-C container

which is served by all processors and is scheduled using global EDF. Level-C tasks are

guaranteed only for soft real-time correctness (i.e., with bounded tardiness). G-EDF is

executed on any processor whenever some level-C task is eligible but no higher-criticality

tasks (level-A or -B) are eligible. At level D, best effort jobs are scheduled by a server that

is invoked whenever a processor would otherwise be idle – no guarantee is made to those.

Sustainability w.r.t WCET. As stated earlier, the cyclic executive execution of

level A tasks is table driven and the execution order is determined off-line. Therefore on

decreasing WCET of a level-A task, a modified schedule is established off-line according

to which tasks are dispatched. For an existing MC2-schedulable task set, on decreasing

the WCET of a level B task by a small value δ > 0, the utilization of the task decreases,

which results in an easier partitioning problem to obtain a partitioned-EDF schedule. Thus,

50

the schedulability of the set will be maintained. For level-C tasks, MC2 only guarantees

the tardiness bound instead of hard real-time constraints. We therefore conclude that MC2

algorithm is schedulable w.r.t to execution time.

Sustainability w.r.t relative deadlines and periods. On increasing the pe-

riod/deadline of the task by δ, the schedulability conditions should hold in order to establish

sustainability. Since tasks of level A are statically scheduled while level B and C adopt

partitioned-EDF and global-EDF respectively, on increasing the deadline by a small value

δ, the schedulability conditions are not affected adversely and continue to persist.

Sustainability w.r.t criticality level. We separately consider the cases where

a task’s criticality level is lowered from A to B, B to C, and C to D.

Level A to B: Levels A and B are criticality-monotonically partitioned; since we

have shown (Theorem 8) that criticality monotonic is not sustainable, it follows that MC2

is not sustainable w.r.t criticality level for level-A tasks.

Level B to C:At level C, tasks are allocated at instants when the processor is available

and not consumed by tasks of levels A and B.

Theorem12. The MC2 scheduling algorithm isnot sustainablewith respect to the criticality-

level change B→ C.

Table 5.2. A mixed-criticality task-set which is not sustainable under MC2 scheduling
policy.

Task τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15
Crit. A A A A A A B B B B B B G* G* G*
CPU 1 1 2 2 3 3 1 1 2 2 3 3 1 2 3
Ti 5 10 10 5 10 10 10 20 20 10 10 20 20 20 20
CA

i 3 4 4 3 6 4 - - - - - - - - -
CB

i 1 1 2 2 2 1 6 2 4 3 4 6 - - -
CC

i 1 1 2 1 2 1 6 1 3 2 3 3 1 2 1
∗G* indicates Level-C container which is served by all processors is scheduled using

global EDF

51

Proof of Theorem 12: The MC2 scheduling algorithm is not sustainable with respect

to criticality levels.

Proof. Consider the multi-criticality task-set shown in Table 5.2. We first show that the

given example is MC2-schedulable.

Calculating UC
i for each task:

UC
1 = 1 −

(1
5
+

1
10
+

6
10
+

1
20

)
=

1
20

UC
2 = 1 −

(3
20
+

2
10
+

2
10
+

1
5

)
=

5
20

UC
3 = 1 −

(3
10
+

3
20
+

2
10
+

1
10

)
=

5
20

Substituting in Equation (5.18),

1
20
+

2
20
+

1
20
=

4
20

<
11
20

Substituting in Equation (5.19),

11
20
− 2 ·

(1
20

)
−

(1
20
+

2
20

)
> 0

The tardiness is thus bounded at level C.

The next step is to decrease the criticality level of task τ7 from B to C, and check

if the schedulability condition (tardiness bounds) still holds. The schedulability conditions

are given in Equations (5.18) and (5.19). On substituting the values from the table,

UC
1 = 1 −

(1
5
+

1
10
+

1
20

)
=

13
20

UC
2 = 1 −

(3
20
+

2
10
+

2
10
+

1
5

)
=

5
20

UC
3 = 1 −

(3
10
+

3
20
+

2
10
+

1
10

)
=

5
20

Substituting in Equation (5.18),

1
20
+

2
20
+

1
20
+

6
10
=

16
20

<
23
20

Substituting in Equation (5.19),

52

23
20
− 2 ·

(6
10

)
−

(6
10
+

2
20

)
≯ 0

The second tardiness bound Condition (5.19) does not hold. Thus we conclude that the

MC2 scheduling policy is not sustainable w.r.t. criticality levels.

The example above illustrates the non-sustainability of MC2 upon changes in criti-

cality level – a task’s criticality decreasing from level B to level C rendered a schedulable

system unschedulable. We now provide some insight into why sustainability failed to hold

in our example.

There are two conditions to demonstrate that the tardiness is bounded (Mollison

et al., 2010). The first condition is:

∑
i:χi=C

uC
i ≤

m∑
k=1
(1 − uAB

(k)), (5.18)

where τAB
(k) denotes the set of tasks on processor k above level C, and 1−uAB

(k) is the available

utilization on processor k after assigning level-A and level-B tasks.

Thus, when changing the criticality level fromB to C, the task is added to the level-C

container (serving by all the processors). The increase in utilization available for level C

tasks is proportional to the drop in uAB
(k) (utilization of tasks in level A and B). Thus the

Equation (5.18) is always satisfied.

However, the second condition for the tardiness bound for level-C may not hold as

we make such changes, which is originally given by:

m∑
k=1
(1 − uAB

(k)) > (m − 1) · max
i:χi=C

uC
i +UC

max(m−1). (5.19)

53

Here UC
max(m−1) denotes the sum of the m-1 largest uC

i values of tasks Ti which belong to

task system τ. It is possible that the task of interest, whose criticality level is changed from

B to C, has a maximum very high utilization value, such that the increase in right hand side

of Equation (5.19) is much more significant than the gain on the left hand side (difference

by m-2 times its utilization), leading to a violation of the condition.

Level C to D: Since no guarantee is made for level-D task, such change is trivially

sustainable (although rather meaningless).

Overall, we conclude that MC2 is not sustainable w.r.t criticality level in general.

5.2.2. MC-Fluid. In theMCFluid scheduling algorithm (Lee et al., 2014), schedul-

ing occurs under a fluid scheduling model which allows for schedules in which an individual

task may be assigned a fraction of a processor at each time instant.

Each job of each task τi is executed at a rate of θL
i under lo-criticality mode, and

another at a rate of θH
i after a mode switch (with θH

i = 0 for all lo tasks).

The MC-Fluid schedulability conditions (Lee et al., 2014) for a task set τ and

associated lo- and hi-mode execution rates (θL
i and θH

i) is MC-schedulable under MC-

Fluid if and only if the following set of conditions:

∀τi ∈ τ, θL
i ≥ uL

i (5.20)

∀τi ∈ τH,
uL

i

θL
i

+
uH

i − uL
i

θH
i

≤ 1, (5.21)∑
τi∈τ

θL
i ≤ m, (5.22)

∑
τi∈τH

θH
i ≤ m (5.23)

We now establish the sustainability of the MC-Fluid scheduling algorithm with respect to

different parameters.

54

Lemma 4. MC-Fluid is sustainable w.r.t WCET and period.

Proof. According to the definition of sustainability, on decreasing the WCET of a task τi

(either CL
i or CH

i) and/or increasing the time period, the schedulability conditions of the

whole task system will still hold.

To analyze sustainability w.r.t to execution amounts Ci and time period Ti, for a task

τi ∈ τL , we decrease CL
i by a small arbitrary value and/or increase period (Ti). As a result,

all modifications can be modeled as a decrease of lo-utilization (uL
i) by an amount of δ > 0.

We then examine the conditions one by one.

Equation (5.20) can be written as:

∀τi ∈ τ, θL
i ≥ (uL

i − δ)

and is true for any value of τi ∈ τL .

Consider Equation (5.21) where τ ∈ τH , we determine the effect of decreasing CL
i

and CH
i on Equation (5.21). On decreasing the value of CL

i by δ, the uL
i also decreases.

Substituting in Equation (5.21) we get:

∀τi ∈ τH,
uL

i − δ
θL

i

+
uH

i − (uL
i − δ)

θH
i

≤ 1. (5.24)

In order to prove that the condition still holds, we subtract the left hand side of Equation

(5.24) from that of Equation (5.21) and establish that it is greater than zero.

uL
i

θL
i

+
uH

i − uL
i

θH
i

−
uL

i − δ
θL

i

−
uH

i − (uL
i − δ)

θH
i

≥ 0

⇔ δ

θL
i

− δ

θH
i

≥ 0

⇔ δ(1
θL

i

− 1
θH

i

) ≥ 0

55

The above equation can be easily validated since Equation (5.21) only considers

hi-criticality tasks, where θL
i ≤ θH

i holds.

It is obvious that Conditions (5.22) and (5.23) will not get affected by utilization

changes.

We can thus conclude that MC-Fluid scheduling is sustainable w.r.t the execution

time (Ci) and time period (Ti).

Lemma 5. MC-Fluid is sustainable w.r.t criticality levels.

Proof. To check the sustainability of the scheduling model w.r.t. the criticality levels. i.e.,

if we change the criticality of a task from hito lo, then Condition (5.21) no longer needs to

be validated for this task. Thus if the original conditions can be satisfied, the new condition

is a strict relaxation of it, and so will be the execution rate. Since MC-Fluid is optimal in

rate searching; i.e., whether there exist a feasible rate assignment, MC-Fluid will find it, we

claim that it is sustainable with respect to criticality levels.

Theorem 13. MC-Fluid is sustainable w.r.t all input parameters.

Proof. This follows from Lemmas 4 and 5.

Sustainable schedulability tests ensure that a system that has been successfully

verified will meet all its deadlines at run-time even if its operating parameters change for

the better during system run-time. It has been argued (Baker and Baruah, 2009; Burns

and Baruah, 2008) that from an engineering perspective, sufficient and sustainable tests

are more useful than exact but non-sustainable tests. Here we have analyzed, for the first

time, the sustainability properties of a variety of widely studied mixed-criticality scheduling

algorithms. While all are sustainable with respect to the parameters WCET, period, and

deadline, which MC models inherit from traditional (i.e., non-MC) models, it turns out that

Criticality-Monotonic and MC2 schedulability analysis are not sustainable with respect to

criticality level.

56

5.3. SUMMARY OF SUSTAINABILITY IN MIXED-CRITICALITY SCHEDUL-
ING

Sustainable schedulability tests ensure that a system that has been successfully

verified will meet all its deadlines at run-time even if its operating parameters change for

the better during system run-time. It has been argued (Baker and Baruah, 2009; Burns

and Baruah, 2008) that from an engineering perspective, sufficient and sustainable tests

are more useful than exact but non-sustainable tests. Here we have analyzed, for the first

time, the sustainability properties of a variety of widely studied mixed-criticality scheduling

algorithms. While all are sustainable with respect to the parameters WCET, period, and

deadline, which MC models inherit from traditional (i.e., non-MC) models, it turns out that

Criticality-Monotonic and MC2 schedulability analysis are not sustainable with respect to

criticality level.

57

6. CONCLUSION

The main objective of this thesis is to enable efficient and precise scheduling in

mixed-criticality systems by integrating the DVFS technique for efficient energy consump-

tion and the precise scheduling model to decrease the penalization of lo-criticality tasks

in hi-criticality behaviors. In this thesis we consider the scheduling of an MC-workload

comprising of implicit-deadline sporadic tasks upon preemptive uniprocessor with varying

speeds. The processor runs at an energy conserving speed during lo-criticality behaviors

in order to minimize energy consumption. The popular EDF-VD algorithm was modified

to adapt to the precise energy-efficient model. It has been proved that (i) the modified

EDF-VD algorithm has a speedup factor of 2 (Theorem 5) (ii) no non-clairvoyant algorithm

can have a speedup factor better than 2 (Theorem 6). Another contribution that highlights

this work is the approximation ratio presented for the EDF-VD algorithm corresponding to

our model. Extensive experiments were conducted to reveal the behavior of EDF-VD on

randomly-generated task systems.

The second contribution is this thesis is the sustainability analysis of popular mixed-

criticality schedulers on both uniprocessor and multiprocessor platforms 1. Sustainable

schedulability tests establish validation that the system will meet it deadlines during run-

time in the event that the parameters change due to better performance. In this thesis,

the sustainability properties of a variety of widely studied mixed-criticality scheduling

algorithms have been analyzed. While all are sustainable with respect to the parameters

WCET, period, and deadline, which MC models inherit from traditional (i.e., non-MC)

models, it turns out that Criticality-Monotonic and MC2 schedulability analysis are not

sustainable with respect to criticality level.

1This work was published in the Real-Time Systems Symposium (RTSS 2017)(Guo et al., 2017)

58

Future Direction: For the precise energy efficient scheduling of MC tasks using

EDF-VD, we seek to derive and prove a tighter bound for the approximation ratio (if one

exists), work on counter examples to show the minimum possible bound, and also explore

schedulability conditions under a task-wise mode-switch, contrary to the system-wise mode

switch adopted in this work. We also wish to conduct simulation study on actual energy

savings with on-board implementations.

The study of sustainability of scheduling algorithms and schedulability tests has been

restricted to an off-line analysis, where parameter changes occur prior to run-time. There

is another aspect to sustainability, dealing with dynamic changes to parameters during

run-time. It would be interesting to study sustainability properties of mixed-criticality

scheduling algorithms under such a dynamic interpretation.

59

REFERENCES

Audsley, N.C., ‘On priority assignment in fixed priority scheduling,’ Information Processing
Letters, 2001, 79(1), pp. 39–44.

Baker, T. P. and Baruah, S. K., ‘Sustainable multiprocessor scheduling of sporadic task
systems,’ in ‘Proceedings of the 21st Euromicro Conference on Real-Time Systems
(ECRTS),’ 2009 pp. 141–150.

Baruah, S. and Agarwal, K., ‘Intractability issues in mixed-criticality scheduling,’ in ‘Pro-
ceedings of the 30th EuroMicro Conference onReal-Time Systems (ECRTS), IEEE,’
IEEE, 2018 .

Baruah, S., Bonifaci, V., DAngelo, G., Li, H., Marchetti-Spaccamela, A., Van Der Ster,
S., and Stougie, L., ‘The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems,’ in ‘Proceedings of the 24th Euromicro
Conference on Real-Time Systems (ECRTS), IEEE,’ IEEE, 2012a pp. 145–154.

Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-Spaccamela, A., van der Ster,
S., and Stougie, L., ‘The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems,’ in ‘Proceedings of the 24th Euromicro
Conference on Real-Time Systems (ECRTS),’ 2012b .

Baruah, S., Bonifaci, V., D’angelo, G., Li, H., Marchetti-Spaccamela, A., Van Der Ster, S.,
and Stougie, L., ‘Preemptive uniprocessor scheduling of mixed-criticality sporadic
task systems,’ Journal of the ACM (JACM), 2015, 62(2), p. 14.

Baruah, S. and Burns, A., ‘Sustainable scheduling analysis,’ in ‘Proceedings of the 27th
IEEE Real-Time Systems Symposium (RTSS),’ 2006 pp. 159–168.

Baruah, S., Burns, A., and Davis, R., ‘Response-time analysis for mixed criticality systems,’
in ‘Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS),’ 2011a .

Baruah, S., Burns, A., andGuo, Z., ‘Schedulingmixed-criticality systems to guarantee some
service under all non-erroneous behaviors,’ in ‘Proceedings of the 28th Euromicro
Conference on Real-Time Systems (ECRTS), IEEE,’ IEEE, 2016 pp. 131–138.

Baruah, S. and Guo, Z., ‘Scheduling mixed-criticality implicit-deadline sporadic task sys-
tems upon a varying-speed processor,’ in ‘Proceedings of the 35th Real-Time Sys-
tems Symposium (RTSS), IEEE,’ IEEE, 2014 pp. 31–40.

Baruah, S., Li, H., and Stougie, L., ‘Towards the design of certifiable mixed-criticality
systems,’ in ‘Proceedings of the 16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS),’ 2010 .

60

Baruah, S. K., Bonifaci, V., DâĂŹAngelo, G., Marchetti-Spaccamela, A., Van Der Ster,
S., and Stougie, L., ‘Mixed-criticality scheduling of sporadic task systems,’ in
‘European Symposium on Algorithms,’ Springer, 2011b pp. 555–566.

Benini, L., Bogliolo, A., Paleologo, G. A., and De Micheli, G., ‘Policy optimization for
dynamic power management,’ IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 1999, 18(6), pp. 813–833.

Burns, A. and Baruah, S., ‘Sustainability in real-time scheduling,’ Journal of Computing
Science and Engineering, 2008, 2(1), pp. 74–97.

Burns, A. and Baruah, S., ‘Towards a more practical model for mixed criticality systems,’
in ‘Workshop on Mixed-Criticality Systems (colocated with RTSS),’ 2013 .

Burns, A. and Davis, R. I., ‘A survey of research into mixed criticality systems,’ ACM
Computing Surveys (CSUR), 2017, 50(6), p. 82.

Easwaran, A., ‘Demand-based scheduling of mixed-criticality sporadic tasks on one pro-
cessor,’ in ‘Proceedings of the 34th Real-Time Systems Symposium (RTSS), IEEE,’
IEEE, 2013 pp. 78–87.

Ekberg, P. and Yi, W., ‘Bounding and shaping the demand of generalized mixed-criticality
sporadic task systems,’ Real-time systems, 2014, 50(1), pp. 48–86.

Ernst, R. and Di Natale, M., ‘Mixed criticality systems - A history of misconceptions?’
IEEE Design & Test, 2016, 33(5), pp. 65–74.

Esper, A., Nelissen, G., Nélis, V., and Tovar, E., ‘How realistic is the mixed-criticality
real-time system model?’ in ‘Proceedings of the 23rd International Conference on
Real Time and Networks Systems (RTNS),’ 2015 pp. 139–148.

Graydon, P. and Bate, I., ‘Safety assurance driven problem formulation for mixed-criticality
scheduling,’ Proceedings of the Workshop on Mixed Criticality (WMC), 2013, pp.
19–24.

Guan, N., Ekberg, P., Stigge, M., and Yi, W., ‘Improving the scheduling of certifiable
mixed-criticality sporadic task systems,’ Technical Report 2013–008, 2013.

Guo, Z., Sruti, S., Ward, B. C., and Baruah, S., ‘Sustainability in mixed-criticality schedul-
ing,’ in ‘2017 IEEEReal-Time Systems Symposium (RTSS),’ IEEE, 2017 pp. 24–33.

Huang, P., Kumar, P., Giannopoulou, G., and Thiele, L., ‘Energy efficient dvfs scheduling
for mixed-criticality systems,’ in ‘Proceedings of the 14th International Conference
on Embedded Software, ACM,’ ACM, 2014 p. 11.

Huang, P., Kumar, P., Giannopoulou, G., and Thiele, L., ‘Run and be safe: Mixed-criticality
scheduling with temporary processor speedup,’ in ‘Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2015,’ IEEE, 2015 pp. 1329–1334.

61

Jan, M., Zaourar, L., and Pitel, M., ‘Maximizing the execution rate of low criticality tasks
in mixed criticality system,’ Proc. WMC, RTSS, 2013, pp. 43–48.

Kalyanasundaram, B. and Pruhs, K., ‘Speed is as powerful as clairvoyance,’ Journal of the
ACM (JACM), 2000, 47(4), pp. 617–643.

Lee, J., Phan, K.-M., Gu, X., Lee, J., Easwaran, A., Shin, I., and Lee, I., ‘Mc-fluid: Fluid
model-based mixed-criticality scheduling on multiprocessors,’ in ‘Proceedings of
the 35th IEEE Real-Time Systems Symposium (RTSS),’ IEEE, 2014 pp. 41–52.

Liu, C. L. and Layland, J. W., ‘Scheduling algorithms for multiprogramming in a hard-real-
time environment,’ Journal of the ACM (JACM), 1973, 20(1), pp. 46–61.

Liu, D., Spasic, J., Guan, N., Chen, G., Liu, S., Stefanov, T., and Yi, W., ‘Edf-vd scheduling
of mixed-criticality systems with degraded quality guarantees,’ in ‘Proceedings of
the 37th Real-Time Systems Symposium (RTSS), 2016 IEEE,’ IEEE, 2016 pp.
35–46.

Mollison, M. S., Erickson, J. P., Anderson, J. H., Baruah, S. K., and Scoredos, J. A.,
‘Mixed-criticality real-time scheduling for multicore systems,’ in ‘Proceedings of
the 10th IEEE International Conference on Computer and Information Technology
(CIT),’ 2010 pp. 1864–1871.

Narayana, S., Huang, P., Giannopoulou, G., Thiele, L., and Prasad, R. V., ‘Exploring
energy saving for mixed-criticality systems on multi-cores,’ in ‘Proceedings of the
22nd Real-Time and Embedded Technology and Applications Symposium (RTAS),
IEEE,’ IEEE, 2016 pp. 1–12.

Pathan, R. M., ‘Improving the quality-of-service for scheduling mixed-criticality systems
on multiprocessors,’ in ‘LIPIcs-Leibniz International Proceedings in Informatics,’
volume 76, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017 .

Paulitsch, M., Duarte, O. M., Karray, H., Mueller, K., Muench, D., and Nowotsch, J.,
‘Mixed-criticality embedded systems–a balance ensuring partitioning and perfor-
mance,’ in ‘Proceedings of the 2015 Euromicro Conference on Digital System
Design (DSD),’ 2015 pp. 453–461.

S. Baruah and A. Burns, ‘Towards a more practical model for mixed criticality systems,’ in
‘Proceedings of the Workshop on Mixed-Criticality Systems (WMC),’ 2014 .

Su, H. and Zhu, D., ‘An elastic mixed-criticality task model and its scheduling algorithm,’
in ‘Proceedings of the Conference on Design, Automation and Test in Europe,’ EDA
Consortium, 2013 pp. 147–152.

Vestal, S., ‘Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance,’ in ‘Proceedings of the 28th IEEE Real-Time Systems
Symposium (RTSS),’ 2007 .

62

VITA

The author, Sai Sruti, was born in Odisha, India. She developed a passion for

technology early in life and received her bachelors degree in Computer Science from India,

in May 2016. After her bachelor’s she enrolled in Missouri University of Science and

Technology for graduate studies. During her time at Missouri S&T, the author worked as a

Graduate Research Assistant under Dr. Zhishan Guo, from August 2016 to May 2018.

In partial fulfillment of the requirements for the Master of Science in Computer

Science degree from Missouri University of Science and Technology, this thesis is the

culmination of that degree. The author obtained her Master of Science in Computer

Science from Missouri University of Science and Technology in July 2018.

	Precise energy efficient scheduling of mixed-criticality tasks & sustainable mixed-criticality scheduling
	Recommended Citation

	tmp.1536349688.pdf.kfUd6

