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ABSTRACT

In this dissertation a number of investigations were conducted on ballistic

quantum networks in the mesoscopic range. In this regime, the wave nature of elec-

tron transport under the influence of transverse magnetic fields leads to interesting

applications for digital logic and computing circuits. The work specifically looks at

characterizing a few main areas that would be of interest to experimentalists who

are working in nanostructure devices, and is organized as a series of papers. The

first paper analyzes scaling relations and normal mode charge distributions for such

circuits in both isolated and open (terminals attached) form. The second paper com-

pares the flux-qubit nature of quantum networks to the well-established spintronics

theory. The results found exactly contradict the conventional school of thought for

what is required for quantum computation. The third paper investigates the require-

ments and limitations of extending the Thévenin theorem in classic electric circuits

to ballistic quantum transport. The fourth paper outlines the optimal functionally

complete set of quantum circuits that can completely satisfy all sixteen Boolean logic

operations for two variables.
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1. INTRODUCTION

1.1. STRUCTURE OF DISSERTATION

As this dissertation consists of a collection of journal publications, it is im-

portant to establish a base background for the research to help make the transitions

between each chapter logical and smooth. This work focuses on the problem of scal-

ing down traditional semiconductor process technologies into the nanoscale range. As

the feature sizes get smaller and smaller, undesirable parasitic and quantum mechan-

ical effects begin to dominate for traditional transistor and memory architectures.

At this point, a logical question could be whether new circuits can instead lever-

age these quantum mechanical effects to their advantage to create new and unique

devices. Regardless of the operating mechanisms, any practical device needs to be

able to be fabricated with processes that are not radically different from how cur-

rent CMOS devices are constructed. In addition to being physically smaller, hence

faster operating frequencies, another goal is to simplify how the devices are used to

form logic gates and arithmetic logic units. Parallel processing, the breaking down

of sequential calculations into separate jobs, needs to be a main focal point at the

hardware level. Optical computing was one of the first unique architectures that

attempted to move the field forward. It employed a number of focused light-emitting

sources, lenses, and polarizing filters to construct logic gates and memories. It was

able to perform parallel Boolean logic in a simpler manner than static or dynamic

CMOS transistor implementations. Unfortunately, the field largely died out because

of the impracticalities of size and cost of such schemes. Quantum computing, or

spintronics, was the next big idea to come along. Its foundation is built on the idea

of preparing a closed system of N qubits (bits in a |0⟩ or |1⟩ state simultaneously) in
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a superposition that can then be operated on with unitary (reversible) gates. These

gates simply rotate the system in the state space spanned by the basis of the di-

rect product (|ψ1⟩ ⊗ |ψ2⟩ ⊗ ... |ψN⟩) and entangled states. The idea, mathematically

speaking, is that every single input/output possibility for the operation exists at

once. When the system is measured, the state collapses to a single state with a given

probability. The trick is then to attempt to figure out how to measure such a sys-

tem to give the answer(s) to the computation that is desired. This has proven to be

extremely difficult; to date there are no experimental devices that can do even basic

Boolean algebra. One conjecture of why, considered in a paper in this dissertation,

is how the fundamental unit, the qubit, and the measurement process are treated as

separate and independent processes.

A newer alternative to spintronics computing is quantum network circuits. A

quantum network can be considered as a quasi-1D construction of electron waveguides

that are arranged into small loops at the nanoscale. An example of this is shown in

Fig. 1.1. At this size, the charge transport (conductance) is highly dependent upon

the discrete energy states of the carrier. The electron behaves like a wave packet,

and hence undergoes many elastic scattering events as it transports through the

network. Furthermore, when a magnetic field is normal and present to the electron’s

wavevector k⃗, the wave picks up an additional phase factor. By tuning the magnetic

field’s magnitude and direction, it is possible to control the constructive/destructive

interference effects in the network. This is called the Aharonov-Bohm (AB) effect

and was first predicted in 1959 [2]. This is similar to the Mach-Zehnder effect in

electro-optics [3]. This effect is the basis for this type of computing and was first

proposed by Wu [4]. Later on, a half-adder circuit that operated on this principle

was proposed by Cain and Wu [1]. This dissertation focuses on developing more in-

depth investigations into these circuits and help establish foundational work in this
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Figure 1.1: (a) A typical quasi-1D quantum network, an AB ring, in a two terminal
setup. The loop diameter is typically up to a micron, and is much larger
than the thickness. This constricts the various electronic modes to their
fundamental mode, much like is done for classical rectangular waveg-
uides. A magnetic flux Φ is assumed to be present and penetrating the
ring. (b) A discrete quantum network model that represents that of the
continuous ring. The scattering sites (dots) have equal lattice spacings l.
This model allows for good approximation for a defect and disorder-free
network within the coherence limit.

area. In order to assist the reader, a more complete set of derivations based on the

original work in Ref. [4] is provided in Appendix A.

A first area of interest was to numerically investigate the scaling relations of

the lowest-order mode of a given quantum network, and determine their operating

characteristics as they are enlarged to the microscopic scale. At the same time,

how the electric charge distributes itself in a quantum network can have important

implications for potential applications such as memory cells. Both of these topics are

outlined and discussed in the first paper of this work.

Another important topic to attract interest to quantum networks was to thor-

oughly investigate its relation to spintronics. A single AB loop at zero flux can be

considered as a flux-qubit, whose angular momentum vector is in a superposition of

spin-up or spin-down states. Two loops are then coupled (entangled) together. This
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coupling is then paired with varying measurement strengths to determine how the

transport and logic gate operations are affected. The published results were then

compared and contrasted in the second paper.

Conventional electric circuits can be characterized by Thévenin and Norton

equivalent models. An interesting area that had yet to be explored was whether it

was possible to extend these concepts to much more restrictive quantum mechanical

models such as previously proposed quantum circuits. It was obvious that the the-

orems would not universally apply, however the main goal was to identify the set of

requirements that need to be fulfilled, and unique examples that satisfy them. These

were the subject of the third paper.

While basic inverting and half-adder circuits have already been demonstrated,

a minimal functionally complete set of quantum circuits had not yet been proposed

to perform each of the sixteen possible Boolean algebraic operations on two input

operands. The fourth paper focuses on finding the optimal set of four different circuits

that are able to satisfy all these operations. Each circuit is capable of performing

multiple jobs by simply changing the biasing of the magnetic fluxes to each circuit.

In the subsequent section, a brief review of the current state of the art for these

nanotechnologies is given. This focuses on current fabrication schemes, experimental

setups, spintronic progress, and the future outlook of the field.

1.2. CURRENT STATE OF THE ART

1.2.1. AB Ring Technology. Aharonov-Bohm ring technologies have sig-

nificantly advanced in the last few decades. The classic experiment was performed at

IBM in the mid 1980s [5]. It consisted of a clean gold ring on the order of a micron

in diameter used in a two-terminal setup. By Fourier transforming the measured

magnetoresistance values that change as a function of flux, the predicted periodic
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components hc/e and hc/2e were recovered. As time moved on process technolo-

gies have increasingly turned to heterostructure devices. These devices consist of

different elemental materials layered together or embedded (deposited) within one

another, often being doped in specific ways to produce electronic band structures

that are useful for the specific application. A very common example is sandwiching

GaAs against AlGaAs (GaAs:AlGaAs). This results in a triangular quantum well

that confines the electrons near the interface on the GaAs side. They are then free to

move tangential to the interface, and make up what is commonly referred to as a 2D

electron gas (2DEG). An alternative that also is used frequently is InGaAs:InAlAs,

due to the very high carrier mobilities of InGaAs. In 2013 a 1300nm diameter ring of

InGaAs:InAlAs was investigated [6]. Not only were the AB effects clearly observable

at low temperature (T = 400mK), but the coherence length was approximately 3µm.

This allows the circuit to be accurately measured before the effects begin to wash out.

Alternatively, a recent experiment looked at creating a ring by doping a planar phos-

phorous layer in silicon (Si:P) [7]. This is motivated due to the fact Si:P transports

diffusively, and with very high carrier concentration. The particular ring structure

was quite small at 85nm. At T = 100mK the coherence length was observed to be

upwards of 100nm, and thus can be useful for circuit outputs. Current experimental

research continues to investigate different heterostructure, semiconducting (such as

graphene), and dopant devices that can operate more efficiently.

1.2.2. Magnetic Flux Generation. One particular issue that makes con-

structing a practical device that operates on the AB effect difficult is how to physically

build the components that generate the magnetic flux inputs to the circuit. In the

previous subsection, the experimental results for rings of this size required magnetic

flux densities in the mT range. Obviously, one possibility is to use a solenoidal setup

or a Halbach array to generate a constant B-field. However, this is cumbersome and
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inefficient when attempting to pair it with a nanodevice. One very recent develop-

ment has been the fabrication of nanomagnets. Most recently in 2014, a relevant

experimental implementation was realized [8]. Physically, they are constructed in a

similar way as the AB ring circuits. They employ a substrate that insulates in the

bulk but allows for surface current states, called a topological insulator. A very thin

ferromagnetic film is then deposited on top of the substrate. A source and drain

electrode configuration, much like an n/p-FET, is then implanted on either end of

the substrate. When a potential source is connected, the surface current density J⃗s

flowing across the boundary between the insulator and the ferromagnetic film induces

a magnetization vector M⃗ . By controlling the voltage bias an appropriate magnetic

field up to ≈ 2T can be achieved, though typical values to drive the AB ring circuits

need only be in the tens of mV range. A nanomagnet could then be placed above or

below an AB ring to provide the necessary flux input to control the circuit.

1.2.3. Spintronics Progress. There are a variety of different spintronic-

based technologies. One of the most common are superconducting quantum interfer-

ence devices, or SQUID. They are formed into loops similar to an AB-based quantum

network, but instead rely on two electrons as a result of the Cooper pairing. In each

arm of the superconducting loop, there are thin insulating Josephson junctions. A

magnetic field penetrates the loop and induces a persistent current, which in co-

operation with the junctions can tune the interference effects. This current, also

called a flux qubit, can be prepared in a state that is a superposition of clockwise-

counterclockwise spins. In addition, by tuning the flux the energy gap spacing be-

tween states can be changed. This changes the coupling between the lowest two level

states useful for computation. Experimental results have demonstrated an ability to

entangle up to three qubits using this scheme [9]. However from an algorithm stand-

point, a two-qubit device is the current limit [10]. One of the main algorithms that

people want to solve, particularly for cryptography applications, is the Shor algorithm
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for prime factorization [11]. In 2001, the first experimental demonstration of this was

performed at IBM [12]. The algorithm relies on the use of the quantum Fourier trans-

form (QFT) to repeatedly detect and filter out periodic components until a solution

is found. This algorithm can be done in a superposition because there is no coupling

or dependencies between any given state. Another recent quantum algorithm pro-

posed solves a 2 × 2 linear system [13]. This linear algebra operation is a natural

fit due to the reversible nature of spintronic-based quantum gates. Semiconductor

quantum dots are another popular choice for charge-based qubits. When a quantum

dot is made to be small relative to the exciton Bohr radius, the energy states for

the valence and conduction bands become discrete. By confining the electron for a

given spin configuration, it is possible to use an external magnetic field to flip their

spin since the magnetic moment u⃗ will align with the field. A functional device has

been demonstrated recently [14]. One of the large challenges for spintronics is how

to entangle many qubits together so they interact. Currently, fourteen (14) qubits

is the limit of what has been reported [15]. This was achieved using an ion trap

configuration, which is not well-suited for practical implementations. Additionally as

the number of qubits increases, it becomes more challenging to keep them entangled

for enough time to perform an operation (coherence time).
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ABSTRACT∗

Electron transport and the exact scaling relations for two irreducibly coupled

Aharonov-Bohm (AB) rings with two external terminals attached are investigated.

In coupled AB rings, a center common path exists where the phase of the electron

wave function can be modulated by two applied fluxes simultaneously. The two

coupled rings can be considered as two coupled atoms where Fermi level crossings

exist not only between bonding states, but also between bonding and anti-bonding

states when the applied flux is varied in one of the two cases studied. We show that

when the smallest atomic-sized coupled rings are scaled up any odd number of times

an identical electron transmission is preserved. When two terminals are attached

to isolated coupled AB rings, there is a further redistribution of bond-charge stored

∗Published in Journal of Applied Physics 111 094304 (2012).
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within the center common path. The shift of the electron charge distribution to favor

one end of the common path is accompanied by the redistribution of the two partial

waves that traverse through the two arms from the input to the output terminal.

The flux can control which arm the electron traverses through more favorably, and

hence the center path behaves like a flux-controlled charge reservoir for the electron

transport. The unbalanced charge in the entire structure creates a space-charge

effect much like a p-n junction. The paradox of the delocalization of the electron

wave when two AB rings are coupled and the subsequent localization effect of the

electron transport in a quantum network are described.
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1. INTRODUCTION

In the mesoscopic and microscopic world, it can be useful to investigate strictly

one-dimensional networks in order to gain physical insights. An Aharonov-Bohm

(AB) ring of this size with two terminals was first investigated experimentally over

two decades ago and the effect has since been studied extensively [5, 16, 17, 18, 19, 20,

21, 22]. While there are several allowed one-dimensional paths that can be embedded

into a mesoscopic ring of small cross section, it has been calculated and experimen-

tally shown that only one dominant path will persist [23, 24, 25, 26, 27, 28, 29]. The

behavior of this dominant class is of key interest. There are similarities between clas-

sical waveguides and the electron waveguides presented here in a two-terminal AB

ring. In a rectangular waveguide (in the microwave region) with cross-sectional di-

mensions a and b, there are two distinctive classes of propagation, transverse electric

(TEmn) and transverse (TMmn) magnetic, described by zero electric and magnetic

fields in the direction of wave vector k⃗, respectively. Each propagation mode (mn)

within the TE or TM class is then determined by how many half-integer wavelengths

can fit within the cross section. The higher divisions are the high-frequency modes

while the lowest division (fundamental mode) is simply a and b. In the corresponding

electron waveguide situation, this is reversed. The minimum division of an AB ring

is the atomic spacing, with the lowest-order mode corresponding to an atomic-sized

ring. In principle, rings of a higher-order can exist in a larger structure, such as in

carbon nanotubes or graphene lattice structures [30, 31]. Mesoscopic rings will pos-

sess small cross-sectional areas consisting of several embedded one-dimensional rings.

This raises an important question of the scaling relations between the lowest division

AB ring and its higher-order counterparts. In a one-dimensional AB ring, the total

number of atoms, M , is large but finite. Even when the value of M approaches very
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large values, it is not valid to assume theM → ∞ limit. This is because three distinc-

tive classes of propagation exist, much like the TE and TM classes in microwaves. It

has been shown [4] that the value of M is one of the determining parameters for this

classification. In strictly one-dimensional rings with two terminals, the total number

of atoms is denoted by M = m + n, where m is the number of atoms in the upper

arm while n is the corresponding number in the lower arm. In Class I, m and n

are both even numbers. Class II is when m and n are both odd, making M even.

Lastly, Class III is when M is odd which constricts m and n to differ in parity. The

asymmetrical result is that the upper arm and the lower arm must differ by at least

one atomic spacing and hence the flux periodicity is doubled at (Φ0/2). This is the

universal double periodicity for any combination of an odd-numbered ring [4]. The

important result is that this finiteness prevents one from treating the network as a

continuum. Therefore a mesoscopic ring consists of 1D rings which propagate like a

TEmn or TMmn class at a high-frequency mode or at a higher-order division of the

length a or b. To demonstrate a lower-order mode, an AB ring has to be reduced in

atomic size and hence there must be fewer embedded one-dimensional rings. In this

case three distinctive classes of AB rings can be exhibited separately. At a low-order

propagation mode, an AB ring appears as a 1D atomic-sized ring with smallM , while

at a higher-order mode, a collection of integrated one-dimensional rings. When M is

monotonically increased the electron transport cycles through three different classes

of propagation or three different transmissions and two flux periodicities, and hence

uniquely distinguishes mesoscopic from macroscopic systems. Scaling relations exist

which demonstrate a preservation of transmission behavior within each class if the

value ofM (m,n) is scaled up properly. The scaling relations for simple two-terminal

rings will be briefly revisited first before we present relations for coupled AB rings.

Earlier investigations by one of us has shown [4] that the electron transmission

through a two-terminal AB ring is physically equivalent to a chain of flux-assisted
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harmonic oscillators of the same topology (see Fig. 2 in Ref. [1]) when subjected to

an external perturbation by using a set of linear node equations described in Sec II.

Therefore intuitively it is very easy to visualize that a four-atom AB ring (M = 4)

can have equal arm lengths (two atomic spacings) between the input to the output

terminals. At zero flux, the two partial waves scattered at the input will arrive at

the output in phase, resulting in total transmission. However, at the flux value of

Φ = ±(Φ0/2), where Φ0 is the elementary flux quanta hc/e, the two partial waves

will arrive with a phase difference |δ| = π, resulting in a total reflection. If the

number of atoms were doubled (M = 8), phase conditions will remain the same. The

harmonic oscillators are topologically equivalent in both cases (the scaling relation),

hence the flux dependence of the electron transmission from zero at Φ = ±(Φ0/2) to

1 at Φ = 0 remains unchanged. The governing set of equations for the network are

unchanged except the atomic spacing a is changed to 2a in all the cos(ka) terms (the

Mβ term in Eq. (36) of Ref. [4] is an invariant quantity). Thus anM = 400 AB ring

with m = n = 200 corresponds to an arbitrary higher-order mode of Class I, whose

fundamental mode is given by M = 4 (m = n = 2). The important consequence

of this argument is that there is no need to investigate the electron transmission

through a large structure. An equivalent small-scale toy model, corresponding to the

fundamental propagation mode, is sufficient due to the manifestation of the scaling

relations.

In this paper we investigate the electron transmission through two irreducibly

coupled AB rings in terms of the added scaling relations (Sec. 3) and the impor-

tant role played by the bond-charge storage behavior within the center common path

(Sec. 4). An isolated AB ring can be considered a man-made atom with a circulating

persistent current playing the role of the orbiting electron, except the positive charge

is uniformly distributed in the ring. When two AB rings are irreducibly coupled by

a center common path, the situation is similar to that of two coupled atoms where
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bonding and anti-bonding effects are present [32]. The persistent currents are now

controlled by the two external fluxes Φ1 and Φ2. The clockwise (counter-clockwise)

persistent current is analogous to spin-up (spin-down) states so that computing net-

works comprised of AB rings can be described in a similar manner as spintronics [33].

Therefore correlating the charge storage behavior within the network to the electron

transport is of significant interest. As we will show later, there is a charge redis-

tribution along the center path that becomes asymmetrical when two terminals are

attached as a result of the perturbation. Our investigation is motivated by the pos-

sible applications of using coupled AB rings for computing in place of two equivalent

coupled spins [1].
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2. NODE EQUATION APPROACH

In our work, we used the quantum network approach developed earlier [1, 4,

34, 35, 36] to calculate the one-dimensional electron transport of a given network with

elastic scatterings at the node points. A quantum network is composed of nodes and

bond lengths that connect adjacent nodes. Within a bond, the Schrödinger equation

is satisfied. Furthermore, at each node point, the Kirchhoff law for conservation of

current must also hold [37]. The resulting linear set of node equations is an exact

relationship between the electron wave function at a given node with all neighboring

nodes. This is physically similar to a network of coupled harmonic oscillators of the

same topology with masses and springs, except the value of the spring constant is

flux-modulated. The equivalence of this method compared to the traditional S-matrix

approach has been established [4]. The set of node equations for a network can then

be written as

[∑
y

cot(klxy)− iD
]
Ψ(x)−

∑
y

[csc(klxy)exp[iϕlxy]Ψ(y)] = 0, (I.1)

where k =
√
2mE/~, and E is the electron energy. The phase modulation between

atoms in the ring is defined as ϕ = (2π/M)(Φ/Φ0). D = (1 − R)/(1 + R), where R

is the reflection amplitude if node x is an input, D = −1 if node x is an output, and

D = 0 otherwise. This set of node equations allow one to solve for all the electron

wave functions at each node in the network and determine the transmission proba-

bilities Tsum = 1 − |R|2 if there are external terminals attached. The transmission

probability is then used to calculate the conductance as described in the Landauer-

Büttiker formalism [38, 39, 40, 41, 42, 43]. Note that Eq. (I.1) is not a tight-binding

approximation but an exact solution.
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3. SCALING RELATIONS FOR IRREDUCIBLY COUPLED AB
RINGS

Figure 3.1: M3S AC network where two odd M = 3 rings are coupled together. If
a second center path was connected between B and D, then the network
would be considered a double bond, denoted by M3D. The areas for each
ring are implied to be equal.

When two simple AB rings are merged together where they share a finite

center common path [1, 30, 32, 36], they are referred to as irreducibly coupled. We

examined two cases: a single bond and a double bond. In this configuration, the

electron wave function along the center common path can be modulated by two

fluxes Φ1 and Φ2. There are three primary classes of electron transmission: when the

number of atoms in each ring of (I) are even, (II) odd, and (III) odd-even pairs [1].

We investigated the validity of extending the scaling relations from a simple ring to

coupled AB rings. Two coupled rings can be generally described as (l,m, n), which

defines the atomic spacings in the left ring, right ring, and center path respectively.

Starting with the smallest M3S AC case, where (l,m, n) = (2, 2, 1) and M3 stands for

a total of three atoms (the smallest odd number) in each ring coupled together by a

single center path with terminals at A and C as shown in Fig. 3.1, we demonstrate

that the transmission is exactly preserved when the network is scaled up by any odd

n-factor, with a half-period flux shift depending if the particular scaled up ring is
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classified as M = [5, 9, 13, 17, 21, ..., 4N + 1] or M = [3, 7, 11, 15, 19, ..., 4N + 3]. The

results are shown in Fig. 3.2. There is a difference of a half-period flux shift between

M = 4N + 1 and M = 4N + 3 of odd-numbered rings, and is not observed a single

odd ring. If a second center path is added to the M3S structure, the network now

has a double bond and is denoted by M3D. This additional path does not alter the

flux period or possible flux shift, but does affect the transmission.

Figure 3.2: Transmission results when the smallest (2, 2, 1) structure for M3S (a)
and M3D (c) networks is scaled up by an odd n-factor leading to each
ring having M = [3, 7, 11, 15, 19, ..., 4N + 3] atoms. If the n-factor leads
to M = [5, 9, 13, 17, 21, ..., 4N + 1], then M3S is depicted by (b) and
M3D by (d). Note the half-period flux shift of (3/4)Φ0 between the two
classifications for both bonds.
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Figure 3.3: M4S AD network where two even M = 4 rings are coupled together. If
a second center path was connected between C and F, then the network
would be considered a double bond, denoted M4D. The areas of each ring
are implied to be equal.

The M4S AD network is shown in Fig. 3.3, where (l,m, n) = (3, 3, 1). This is

the smallest even coupled ring configuration. Like the M3 structure, a double bond

M4D network can be created by simply inserting another common path into an M4S.

The transmission behavior is again preserved in Fig. 3.4 when scaling by any odd

n-factor of M4. While the M3 cases exhibit a half-period flux shift, such a difference

disappears in even networks since the total atoms always remain within the sameM =

[4, 8, 12, 16, 20, ..., 4N ] group, never crossing into M = [6, 10, 14, 18, 22, ..., 4N + 2].

The same would hold true if one were scaling a coupled network initially falling into

the 4N + 2 group.

Combining these results with previous works, it can be sufficiently stated

that a fixed quantum network can be scaled any odd number of times and exhibit

identical transmission behavior, i.e., changing the atomic spacings in the network from

(3, 3, 1) to (9, 9, 3) and so on has no effect on the transmission. These observations

are very important because together they state that an atomic-scale network can

be scaled-up to a mesoscopic size as long as the electron coherence is maintained.
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Figure 3.4: Transmission results for M4S AD (a) and M4D AD (b) networks. The
transmission remains exact for any odd n-factor, without a flux shift since
all odd scaling configurations fall into the same 4N group.

Since there are only three classes of coupled rings, the scaling relations imply that

any fabricated mesoscopic structure of small cross section will exhibit the dominant

electron transmission mode present in one of the three classes.
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4. CHARGE DISTRIBUTION AND ITS RELATION TO THE
ELECTRON TRANSMISSION IN TWO COUPLED AB RINGS

In an isolated situation of two even coupled AB rings, the total amount of

electron charge accumulated along the center common path can be varied by the

applied fluxes Φ1 and Φ2 to reach a peak value or total depletion. In our study, we

examine when fluxes Φ1 = Φ2 = Φ only. As the electron charge starts to be depleted

with an increasing value of the applied flux Φ, the electron density is redistributed so

that the outer loop of the weakened bonding orbital get more share of the electron

density as one expects. The corresponding electron density profiles are plotted in

Figs. 4.1(a) and 5(b) for the entire flux period. The electron charge is integrated

over the entire center path and then evaluated as a fraction of the total charge in

the normalized unit of a single electron e, shown in Fig. 4.1(c). In the double bond

situation, the electron charge is depleted monotonically as the flux increases due to

the Fermi level residing at a bonding orbital over the entire flux period (Fig. 4.2(a)).

The average charge at the center path over the entire flux period is calculated to be

0.2355e of the total charge in the entire structure, which is less than the value of

0.25e in the uniform charge distribution for two bonds out of the 8 total. However,

for the single bond situation, the Fermi level of the coupled rings starts at an anti-

bonding orbital, rather than a bonding orbital, with a small electron density along

the center path at zero flux. There is then a Fermi level crossover to a lower energy

bonding orbital at Φ = ±(2/9)Φ0 as the applied flux is increased where there is a

sudden inrush of charge into the common path, as shown in Figs. 4.1 and 4.2(b).

The average electron charge for the single bond case is 0.1112e of the total charge.

Again this value is less than one expects (0.143e) from a uniform charge distribution

for one bond out of 7 total. The Fermi level crossing uniquely defines where uniform

charge distribution takes place between all bonds in the network. The discontinuity

in our calculations can be attributed to the charge instantly being depleted from
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a higher energy anti-bonding orbital to fill the lower bonding orbital at this Fermi

level crossing. Note that right at the crossing, electron density will be adjusted to

a uniform distribution first before any further changes. At flux values less than the

crossing, there is no net current flowing through the center path since there is no

electron density at the midpoint. Once the Fermi level crosses into the bonding

orbital, the net current remains zero since the directional derivative of the electron

density vanishes. From observing both the single and double bond situations, it is

obvious that whenever two AB rings are coupled there is an equilibrium redistribution

of electron charge from the center common path to the outer bonds, which can result

in a fractional electron charge circulating around the larger outer loop. This space-

charge effect is no different from bringing an n-type and a p-type semiconductor

together to form a classical diode at equilibrium, except now the space-charge is from

two metallic rings. This origin is of course from the delocalization tendency when two

rings (two atoms) are coupled and the degree of which depends whether the Fermi

level resides at a bonding or anti-bonding orbital.

There is an opposite effect in odd coupled AB rings. That is, as flux is in-

creased there is now a monotonic increase in charge accumulation along the common

path. As in the transmission perspective, this fundamental difference in charge ac-

cumulation behavior between even and odd networks is very interesting. The M3S

(single bond) network possesses a Fermi level crossing at Φ ≈ ±0.522Φ0 where a

stronger bonding orbital is then encountered out to the zone boundary, as depicted

in Fig. 4.3(b). The existence of this Fermi crossover can be further explained by the

sudden burst of charge at the center common path, leading to the average charge

of the single-bond to possess 0.1296e, dominating the double bond network (lacking

such a crossing) which only has an average of 0.0407e. These results are shown in

Fig. 4.4. At the Fermi level crossing for the M3S case, there is again a uniform

charge distribution among all of the bonds in the network, even though this crossing
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Figure 4.1: Isolated M4D (a) and isolated M4S (b) common path densities. (c) Total
density along common path. (d) Total density for all bonds in M4S
network. At the Fermi level crossing, there is uniform distribution and is
the cause of the discontinuity.

is between two like (bonding) orbitals, unlike the M4S case discussed previously. The

discontinuity in this region is again a signature of the Fermi level crossing.

We further examined the situation when two externals terminals are attached

to even coupled rings and study the relation between the electron transport and the

behavior of the electron density at the center common path. In Fig. 4.5, we show the

corresponding electron density of Fig. 4.1 when two terminals are attached at nodes

A and D. There is now an asymmetry between the upper and lower branches of the

ring. The two electron partial waves scattered at the input terminal A are unequal in
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Figure 4.2: M4D (a) and M4S (b) band structures, also shown as part of Fig. 4 in Ref.
[1]. The Fermi level for the M4S network encounters a crossover between
an anti-bonding to bonding orbital, not present for M4D. Reprinted with
permission from J. Appl. Phys. 110 054315 (2011). Copyright 2011
American Institute of Physics.

Figure 4.3: M3D (a) and M3S (b) band structures. Note that the Fermi level for the
M3S network encounters a crossover to a stronger bonding orbital, which
is not present for M3D.

amount and now favor passing more through node C and less through node F to arrive

at the output D. This bond charge redistribution within the common path is closely

related to the electron transmission through the terminals. It implies that when two

external terminals are attached the electron charge stored within the segment of the
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Figure 4.4: Isolated M3D (a) and isolated M3S (b) common path densities. (c) Total
density along common path. (d) Total density for all bonds in M3S
network. A uniform distribution exists at the Fermi crossing, leading to
the discontinuity.

center path not only redistributes with the outer loop bonds, but also redistributes

within the path itself by shifting more of its share of the charge to one end (at

node C) to accommodate the mode of the electron transport. There is always a tiny

amount of residual charge remaining in the path for both double and single bond

situations at the flux value of Φ = (2/3)Φ0. Thus whenever two external terminals

are attached, the charge at the center common path cannot be totally emptied as in

the case of isolated coupled rings if transmission is said to be possible. However the

total integrated charge along the common path is very similar to the situation of the



24

two isolated coupled rings, even though at the zone boundary (|Φ| = (2/3)Φ0) the

total charge is not exactly zero, as shown in Fig. 4.5(c). As a result of charge density

redistributing to the outer bonds along with the remaining charge shifting to one end

of the center common path, the incoming electron will favor passing through one of

the two arms (ACD) by adjusting the amount of the two partial waves in each arm

accordingly. This is in sharp contrast with the situation of having two equal partial

waves in a simple even AB ring of two equal paths with no center common path. Thus

which path the electron can traverse through a network of two coupled AB rings is

determined by the class said network belongs to. Those classes are determined by

the parameters of (l,m, n) as discussed earlier in Sec. 3. We note there is a similarity

between the electron transport when the Fermi energy is at a bonding orbital at the

range of (2/9)Φ0 < |Φ| < (2/3)Φ0 for a single bond and 0 < |Φ| < (2/3)Φ0 for the

double bond situation, both depicted previously in Fig. 3.4. For the anti-bonding

orbital at 0 < |Φ| < (2/9)Φ0 in the single bond case, there is a drop in the electron

density along the common path, thus an electron traverses through the coupled ring

in that flux range as if the two nodes at the ends of the center common path are weak

scattering centers and the transmission probability peak is reduced to 0.8 from 1 for a

simple AB ring. When two terminals are attached, the charge density discontinuities

at the Fermi crossing previously observed in the isolated network (Fig. 4.1) are

removed by the perturbation and a more subtle change is observed due to the mode

of transport now controlling how the charge is allocated within the bonds.

When two odd coupled rings have terminals attached at A and C, forming

equal upper and lower arm lengths, a similar general trend of charge shifting to the

upper end (at node B) of the common path is present, as shown in Fig. 4.6. The

single bond structure however exhibits this behavior up to the Fermi level crossing

to the lower (and hence stronger) bonding orbital, but the charge then shifts more to

the lower end (at node D) of the common path past this point to the zone boundary.
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Figure 4.5: M4D AD (a) and M4S AD (b) common path densities. (c) Total density
along common path. (d) Total density for all bonds in M4S AD network.
Note that while there are no electron density discontinuities at the Fermi
crossing flux, the uniform density distribution is achieved at the crossing
nonetheless.

Since the terminal locations form a symmetric outer loop, there is a corresponding

symmetrical charge distribution at the center common path for zero flux and at the

zone boundary |Φ| = (3/4)Φ0, which can be attributed to singularities in transmis-

sion at these values. Unlike the isolated odd coupled rings, there is now a clear

difference of additional total charge accumulation in the common path for a double

bond, compared to a single bond. Even though in the isolated situation the sin-

gle bond contained a Fermi level crossing to a stronger (lower) bonding orbital, the
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sudden burst of charge (at the discontinuity) for uniform distribution once present

is now mitigated by the network having to accommodate the mode of transport for

symmetric terminals. Thus the double bond takes a greater share of the charge, with

an average of about 0.3e, compared to the single bond taking only about 0.2e. Note

how both are very close to uniform charge distributions of 1/3, and 1/5, respectively.

The physical significance of this observation is the mode of transport for symmetric

terminals forces the charge to redistribute equivalently across the entire flux period,

consistent with what one might predict. There is not a uniform charge distribution

at the Fermi crossing for M3S AC, unlike its corresponding isolated network and the

M4S AD case described earlier (Fig. 4.5(d)). This is due to its Fermi crossing being

between orbitals of the same type (weaker to stronger bonding orbital). In other

words, for a uniform charge distribution to exist at some finite flux value within the

flux period for a two-terminal network, there must be a Fermi level crossing between

bonding and anti-bonding orbitals, regardless of terminal arrangement. Additionally,

we can deduce that symmetric terminal arrangements do not in general indicate a

symmetrical charge distribution at the center common path, but instead lead to an

average uniform charge distribution between all bonds within a single flux period.

The significance of a Fermi level crossing is bolstered by another observable

phenomenon related to the transmission within a given network. By examining the

transmission of structures containing Fermi crossings (M3S, M4S), shown in Figs.

3.2 and 3.4, respectively, it is clear the transmission probability being driven to

zero (excluding zero flux and the zone boundary) is simply the manifestation of a

crossing itself. Thus the reflected waves magnitude is always unity in this region.

This strong pull-down of the transmission to zero is similar to having a simple two-

terminal AB ring with a narrowed flux period whose zone boundary is now at the

Fermi level crossing. By being able to identify Fermi level crossings by observing the

transmission in coupled AB ring networks, one can additionally determine when the
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Figure 4.6: M3D AC (a) and M3S AC (b) common path densities. (c) Total density
at the common path. (d) Total density for all bonds in M3S AC network.
Note that at the Fermi crossing the uniform distribution that once existed
in the isolated network is no longer present.

center common path has a large portion of the total charge stored within it in the

case of bonding to bonding orbital crossings, or when there is likely to be a uniform

charge distribution throughout all bonds in the network for bonding to anti-bonding

orbital crossings.
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5. CONCLUSIONS

We examine the coupled AB rings from a purely one-dimensional point of

view. In any quantum network for guided electron partial waves, there cannot be an

infinite number of atoms in the network. Instead, there exist several different classes

of the smallest building blocks. When each of these smallest structures is magnified

properly, an identical transmission behavior will be preserved for each class. This is

in a reverse trend with respect to classical microwave waveguides as far as the division

of length is concerned. The finiteness for the value of M , the total number of atoms

in the one-dimensional network, is the same requirement as that on the finiteness of

length in microwave waveguides. While small atomic-sized AB rings can exist in pure

one-dimensional form, larger 1D rings can be embedded in a mesoscopic ring of small

cross section and are thus experimentally observable. For two coupled AB rings, we

showed that scaling relations exist which connect the smallest rings to larger sized

rings with an identical electron transmission if the size is scaled-up any odd number

of times, within the coherence length limit. The classification is determined by the

parameters (l,m, n), where l = m for two identical rings and M = l + n is the

total number of atoms. Since M is one of the classification parameters, mesoscopic

rings cannot be treated as a continuum. The scaling relations presented suggest one

only needs to investigate the electron transport based on the smallest atomic-sized

structures.

When the two coupled AB rings are attached with two terminals, the bond-

charge stored at the center common path is further redistributed as compared to

the situation of two isolated coupled rings. In general, at zero applied flux charge

flows to the outer loop to strengthen the anti-bonding orbital, or weaken the bonding

orbital, depending on where the Fermi level is residing at. Therefore the space-

charge capacitance of the coupled rings is also continuously varied with respect to the
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applied flux. When the two terminals are attached, there is now an asymmetry of the

charge storage in the common path that is correlated with the asymmetry of the two

partial waves passing through the two arms between the input and output terminals.

This asymmetry is flux-controllable, therefore the electron transport can be tuned

between the two arms for a given network. The net current passing through the

common path is always zero. The presence or depletion of charge in the common path,

paired with the ability to modulate between both states, has potential applications

in nanoelectronics such as a quantum capacitor or memory storage element. We have

shown that there exist a few fundamental modes from the coupled electron waveguides

based on the 1D structures. Therefore, experimentally, we expect a dominant mode

can be observed from mesoscopic-sized coupled AB rings similar to the verification

of a simple two-terminal AB ring in Ref. [5].

Finally there is a paradox of electron transport through a quantum network.

When two AB rings are coupled, the electron wave function is spread out over a

larger region. However this delocalization of the electron wave is at the expense of an

increase of two more scattering centers created at the two ends of the common path.

Thus the incoming electron from the input terminal will suffer more scattering events

compared to when the center common path is removed. The electron wave is then

decomposed into more partial waves every time a scattering event occurs. More scat-

tering centers lead to more backscattering and hence to the Anderson localization for

the electron transport [44]. Therefore at zero applied flux, the forward transmission

will suffer generally as compared to the situation when the center common path is

absent. The applied fluxes can reverse the localization trend (as in M4S and M4D

cases where the bond-charge decreases) or increase the localization (as in M3S and

M3D where the bond-charge increases) by being able to tune the two partial waves at

the output terminal to be in or out of phase. We have shown even and odd coupled

rings store the bond-charge in an opposite trend with respect to the increase of the
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applied flux. Thus the ideal indicator is to observe the bond-charge at the center

common path. If the common path has more than a uniform share of bond-charge,

the electron wave is more localized than before and by the paradox theory stated

earlier, the electron transport to the output terminal will improve. On the other

hand, if the bond-charge is reduced to less than a uniform share, the electron wave is

more delocalized than before and hence the Anderson localization effect prevails and

the favorable forward transmission will be reduced to a smaller flux range.
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ABSTRACT∗

In this work, we attempt to show the differences between traditional qubit-

based spintronic methodology for quantum computation and the possible ballistic

quantum network implementations. Flux qubits can be considered topologically sim-

ilar to the persistent currents possessed as the angular momentum in Aharonov-Bohm

loops, which can be coupled and thus entangled together. Since entanglement is guar-

anteed for coupled quantum networks, starting from a point-contacted situation, we

first investigate how varying the degree of entanglement strength can affect the super-

position of the four possible states for two isolated flux qubits being brought together.

In general the superposition is destroyed once the degree of entanglement is altered

from the point-contact situation. However we show that for a specific network with

maximum entanglement, a Bell state situation can be produced. We then examine

∗Published in Journal of Applied Physics 113 154309 (2013).
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the effects of varying the external perturbation strength on the readout capability

in quantum networks by changing the coupling strength through the cross-sectional

area ratio. From the analysis of our results, we are persuaded to believe that two uni-

versally accepted components for quantum computing are not valid in the quantum

network approach: the need of a weak perturbation for measurement of computa-

tional results, and the requirement of fixed entanglement among qubits. We show

there is an interplay between the strength of the entanglement and that of the external

perturbation for high-fidelity classical readouts.
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1. INTRODUCTION

Quantum computing has been investigated extensively by many researchers

founded on the qubit-based concept [9, 10, 14, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56]. In the standard qubit formalism for a particle such as an electron, the state

of the qubit can be written as the linear combination of the eigenstates of the Pauli

spin matrix along the rotational (typically z) axis,

Sz =
~
2

1 0

0 −1

 (II.1)

with normalized eigenstates {(1, 0), (0, 1)}. In quantum network theory [4, 57, 58,

59, 60, 61] it is possible to extend the notion of a flux qubit to Aharonov-Bohm

(AB) rings based on the angular momentum concept. The typical spin-up/spin-

down eigenstates can be considered as the clockwise (CW)/counter-clockwise (CCW)

circulating persistent currents flowing in an AB loop network, as shown in Fig. 1.1.

Hence for a single isolated AB ring the CW or CCW angular momentum superposition

exists periodically with a period of hc/e or Φ0. For example in Fig. 1.1 at Φ = ±0.5Φ0

or 0, the persistent current will discontinuously switch between the global maximum

and minimum. This always occurs at the Brillouin zone boundary or a Fermi level

crossing between bonding and anti-bonding states. Therefore the AB ring is similar

to an atom whose angular momentum vector exhibits the switching of the eigenstates

because the current oscillation is equivalent to a chain of coupled harmonic oscillator

waves.

For a single qubit, the flux model for an AB ring seems to fit the traditional

quantum computing concept. When two such isolated AB rings are entangled with

each other by sharing a center common path, there are now two possible fluxes which

can penetrate each loop, denoted by ϕ1 and ϕ2, with the flux periodicity deviating
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Figure 1.1: Single isolated AB ring whose angular momentum state is in a super-
position. At zero flux there is an overlap at Ef between bonding and
anti-bonding states which causes this, with the other case being the zone
boundary. There are four possible groups, M = 4N , 4N + 2, 4N + 1,
and 4N +3, where M is the number of scattering sites and N an integer.
For the even and odd curves shown, we use the lowest M for each group.
I0 = (~2M)/(2meΦ0). The two odd groups are in superposition at zero
flux and the zone boundary, while the even groups only have a single
flux value for superposition. There is a half period flux shift between the
superposition for the even 4N (zero flux) and 4N + 2 (zone boundary),
as well as the odd 4N + 1 and 4N + 3 (min/max switched) groups. We
have described these relations in the past [4, 62].

from the elementary flux quanta accordingly [1]. There is now an interaction along

this channel between the two partial waves embedded in each ring, and hence the

Brillouin zone is two-dimensional. For quantum computing purposes, any ring-to-

ring entanglement is supposed to provide the four possible spin pairings for parallel

computation, which corresponds to the parallel execution of boolean algebra addition
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for two values, typically called a half-adder. The two point-contacted AB rings (Fig.

2.1(a)) can fit into this picture with the superposition condition unaltered. However

the ring-to-ring interaction, which can be arbitrarily and lithographically imposed

(Fig. 2.1(b)), may or may not leave the superposition condition intact even if we

allow the shift of applied flux at the superposition region. Secondly, the readout of

the computation from the qubit concept requires that the external perturbation be

very weak and brief as not to alter the state of the system’s four spin pairing condition.

In this paper, we show those two conditions are not valid from the quantum network

theory. We describe in Sec. 2 how varying the entanglement strengths may change

the existence of superposition for the four pairings. In essence, it depends on the ring-

to-ring interaction (internal coupling) that is physically imposed on the system. Even

if the entanglement between two AB rings manages to preserve the superposition at

an altered flux period, any form of external readout measurement (external coupling),

which is supposed to collapse the wavefunction of the network to provide a classical

result, does not need to be weak or brief. In fact strong and permanent external

perturbation to the isolated and entangled AB rings is desirable for a robust readout,

provided that the strength of the entanglement is stronger in cooperation with the

external perturbation.

The half-adder computing capability from two coupled AB rings is clear. The

four angular momentum pairings can be mapped into the four rules for addition of two

binary values: 00, 01, 10, and 11. Here the 00 pair indicates the angular momenta

of the two AB rings are both CW, and so on. This mapping can be arbitrarily

assigned and evaluated with flux values of the same magnitude. Such a circuit has

been shown recently by us [1]. The classical readout requires a test signal (an input)

to sample through the two coupled AB rings and the results (the outputs), namely

“sum” and “carry,”need to be correctly separated. That requires two terminals alone.

Furthermore, an additional third terminal is needed when the 00 operation case arises,
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since the Boolean rules require the test signal not to reach the “sum” or “carry”

terminals. Hence it must appear on the extra third terminal. Thus a half-adder is

composed of a simple structure of two coupled AB rings with three attached external

terminals for readouts, which is further characterized in Sec. 3.1. Such a half-adder

replaces between one and two dozen MOSFET transistors (depending on static or

dynamic implementation) used in current classical circuits. More broadly in Sec. 3,

we examine how weak and strong external perturbations affect the readout from a

quantum computing scheme that is implemented.

The demonstration of electron transmission through an AB ring with two

strongly coupled terminals was shown in the mid-1980’s [5]. This is the simplest form

of a quantum network connected to two chemical potential reservoirs. Even in this

form, there are three classes of electron transmission, depending on the locations of

the two terminals and the total number of atoms (sites) in the ring. Each class is like

a fundamental mode of a microwave waveguide. There is further a scaling relation

where a properly scaled up version of the ring will exhibit an identical transmission to

its smallest possible atomic sized ring [4]. Generalization of such quantum networks

to three and four terminals have been investigated for possible wave-computing using

the vector sum of two coherent inputs [34, 35].

Recently we tried to relate the qubit-concept based computing through a quan-

tum network-based framework. We showed that with three such strongly perturbed

external leads, a high-fidelity classical sequential readout is possible. In this paper

we will further show how (I): weak and strong entanglements along with (II): how

weak and strong external perturbations will affect the result for a classical readout

separately. Our investigation of these quantum networks is based on an exact and

non-tight-binding global node equation method formulated previously by one of these
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authors, and can be reviewed in the literature [4]. Finally, we summarize the differ-

ences between mainstream qubit-based computing and the approach for quantum

networks in Sec. 4.
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2. ANGULAR MOMENTUM ENTANGLEMENT IN QUANTUM
NETWORKS

If two AB rings are entangled together in a very weak manner, such as by

quantum point contact, then each loop can be treated as their own Hilbert spaces.

This leads to four possible system states |Aloop⟩⊗ |Bloop⟩, and is illustrated in Fig.

2.1(a) where the persistent current of the pair behaves similarly to that of a single

AB ring shown in Fig. 1.1, with superpositions exhibited at Φ = 0, ±0.5Φ0, ±Φ0,

and so on. Therefore with a point contact entanglement, the qubit model is still valid

for any combination of input fluxes.

Generally when two AB rings are touching one another, there is an entangle-

ment, or overlapping of the partial wavefunctions of the two rings. When two AB

rings are point-contacted (Fig. 2.1(a)), this is a minimum entanglement where a su-

perposition of the four states exists because the energy spectrum remains the same

as that of a single AB ring. As two rings become closer, the overlapping is increased

and there is a common path (one or two channels) such that the phase of the wave-

function can be modulated by two independent fluxes (Fig. 2.1(b)). This increases

the degree of entanglement, and is reflected by the lowering of the Fermi level, Ef ,

with the overlap of bonding states being pulled up, and the anti-bonding states being

pulled down, respectively, in energy space at one flux period. In isolated coupled

AB networks that only share a middle common path (or two), the entanglement is

much stronger with a broadened flux periodicity (dependent upon the geometry of

the network), as given by Eqs. 6-7 in Ref. [1]. The entanglement is considered at its

strongest when there is only a single common path, shown in the upper-left of Fig.

2.1(b). When the entanglement becomes this strong, the bonding and anti-bonding

states can be at equal energy for certain flux values within the first Brillouin zone and

when the applied fluxes to the loops are equal in magnitude [62]. At these Fermi level

crossing points between states, there is an inherent uncertainty in the direction of the
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Figure 2.1: Change of superposition capability as the strength of entanglement in-
creases. (a) Weak entanglement of the four possible groups for even and
odd AB rings, coupled by a single scattering site (point contact rings).
The superposition is preserved due to the band structure being unal-
tered from the single ring. (b) Strong entanglement for the two smallest
even/odd groups (4N , 4N + 3), either with a single center common path
(S) or a double (D). Generally the superposition is destroyed, but single
bonds which represent the strongest entanglement in quantum networks
can overlap the band states at Ef to a degree that also produces a super-
position (as in M4S). The applied fluxes are given as Φ = ϕ1 = ϕ2. Note
that the other two groups (4N +2, 4N +1) need not be investigated due
to scaling laws we have noted earlier. Thus they will behave qualitatively
similar to that of their respective sister group, though with a possible
flux shift.

persistent current flowing in the network (hence in a superposition), at |Φ| = 2
9
Φ0.

Superposition is also observed for single AB loops with no applied flux, which was

outlined in Sec. 1 (Fig. 1.1). It is important to note that for entanglements stronger

than a point contact situation, this Fermi level crossover behavior is only observed

in even-numbered rings (either groups M = 4N or 4N + 2 due to scaling laws) that
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are coupled by a single path (the strongest form). Since the charge density within

the common path is either zero at its midpoint, or its divergence is [62], the portions

of the persistent current in both rings must be flowing in the same direction of the

angular momentum. Physically, if one were to measure the current for one loop, there

would be no guarantee of a given direction. However, whatever the outcome for the

first loop, the second loop’s measurement is guaranteed to be identical with the first.

This is true even for Fermi level crossings and at the zone boundary. Therefore the

state of the system can be described by two Bell states,

|Ψ⟩ = α
∣∣ψ+

⟩
+ β

∣∣ψ−⟩ (II.2)

where |ψ+⟩ = 1√
2
(|00⟩ + |11⟩) and |ψ−⟩ = 1√

2
(|00⟩ − |11⟩). It is clear that as the de-

gree of entanglement between the coupled rings increases past the point contact stage,

there is no guarantee anymore of preserving all four possible states. We show that the

ring-to-ring interaction destroys the superposition for the weaker double bond cou-

plings, while moving to maximum entanglement (singe bond) will intuitively produce

a Bell situation, though only for networks that fall into an even-numbered classifi-

cation group. This provides a contrast with qubit-based quantum computing, where

superposition is assumed during entanglement. Quantum computing at a minimum

must be able to perform the algebraic operations first.
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3. EXTERNAL COUPLING STRENGTH CONSIDERATION

In qubit-based quantum computing, the typical approach is to attempt to

determine the state of the system without disturbing the internal state or super-

position, meaning a closed system basically. In other words, for a readout a weak

or indirect measurement is necessary. In the quantum network approach, external

perturbations for readouts are typically permanently attached and strong. In this

section we describe how varying the external coupling strengths for both weak and

strong entangled quantum rings can affect the readout of the computations. We de-

note the external perturbation strength with the coupling parameter ∆, which is the

cross-sectional area ratio of the terminal probe to the electron waveguides of the ring

itself. In the global node equation approach we have used in our calculations, ∆ can

be derived for an intersection site A connected to three other scattering sites (labeled

A1−3) by leads of a single lattice spacing as (see Fig. 3.1):

Figure 3.1: Lattice-structured quantum network which forms the basis for the global
node equation method. The boundary condition for conservation of mo-
mentum at A allow us to form a linear set of equations describing the
stationary states at each of the scattering sites.
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s1Ψ(A1) csc klAA1 = s1Ψ(A)[cot klAA1 − tan δAA1 ]e
−iθAA1

s2Ψ(A2) csc klAA2 = s2Ψ(A)[cot klAA2 − tan δAA2 ]e
−iθAA2

s3Ψ(A3) csc klAA3 = s3Ψ(A)[cot klAA3 − tan δAA3 ]e
−iθAA3 (II.3)

where cross sections s1 = s2 = s, s3 = s′, lengths lAA1 = lAA2 = lAA3 = l, and phase

factor θAAj
= 1

Φ0

∫ l

0
A(x′) · dx′. Satisfying conservation of current,

∑3
j=1 tan δAAj

=

0, with tan δAAj
= i

CAAj
−DAAj

CAAj
+DAAj

, where C and D are the outgoing and incoming

amplitudes along path AAj, respectively. If the external terminal is connected along

the non flux-modulated path lAA3 , then θAA3 = 0 and we can define ∆ = s′

s
. Rewriting

the localized linear set of equations in homogeneous form gives:

Ψ(A)[2 cot kl +∆tan δAA3 ]− csc kl
2∑

j=1

eiθAAjΨ(Aj) = 0 (II.4)

This is equivalent to the traditional S-matrix formulation shown by Büttiker [41].

Note that ∆ = 1 corresponds to maximum coupling while ∆ = 0 describes the

isolated unperturbed rings. If this approach is globally extended to each scattering

site in the network, a secular equation can be formed for the eigenenergies that will

lead to the calculations of the reflection and transmission amplitudes of the test signal

for given terminal sites [1].

3.1. STRONG ENTANGLEMENT WITH VARYING EXTERNAL PER-
TURBATION STRENGTHS

It is possible to construct a half-adder circuit with two AB rings entangled

by two shared center bond lengths, where all four pairing states can be satisfied

classically. This network presumes a strong and permanent perturbation, or ∆ = 1.

Quantum networks are understood to be of a waveguide nature. We have shown

previously how a test signal can be transported through multiple-terminal networks
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[1, 34, 35, 62]. Transport with a test signal for a three-terminal network can be

generally divided into three primary classes: dominant, half-sharing, or equal-sharing

between the output terminals. From the truth table for a half-adder, it is simple to

see that only a single output should be |1⟩ for any given flux combination. Therefore

a dominant class of transport is favorable for this form of computation. From our

calculations, we see that if the coupling parameter between the external terminals

and the rings begins to weaken, then the transport classification begins to change.

The domination for the sum and carry terminals begins to be weakened slowly into

a more distributed class. Therefore the ability to take a high-fidelity measurement

of the computation through the test signal is absent at weak coupling parameters,

leaving indistinguishable readout results. This is shown in Fig. 3.2.

3.2. WEAK ENTANGLEMENT WITH VARYING EXTERNAL PER-
TURBATION STRENGTHS

In Fig. 2.1(a), we show that for point-contact coupled AB loops, superposition

of states exist at |Φ| = 1
2
Φ0 and 0. This is the situation for a weakest entanglement.

The question is whether this can be accompanied by a weak external perturbation

to provide a classical readout. For comparison, we investigated the two weakest

entangled AB rings, where superposition of all four states exists before the attachment

of external terminals. Since there is no shared center path between the two partial

waves in each ring, the eigenenergies remain unchanged for applied fluxes ϕ1 = ±ϕ2.

This is due to the associated secular equation only having flux terms contained within

cosines [1]. The result is that the electron transport is sign-invariant for one of the

fluxes, and thus there are only two possible electron wavefunction output vectors

in the weakest entanglement, instead of four. For half-adder addition, this is not

desirable since there needs to be a total of three distinct output states. The results

are shown in Fig. 3.3. For the class of point-contacted AB rings, with an odd number
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Figure 3.2: Two strongly-coupled AB rings, beyond the point-contact situation, is
shown in the upper figures. When ϕ1 = ϕ2 = ±0.1Φ0 in (a), a test signal
from the sum terminal, results in a total reflection, so that the output
at the sum terminal ≈ 0.9, while the carry terminal output ≈ 0.1. The
two results are mapped into the Boolean algebra rules of addition for two
bits 1 and 0. This is shown in the bold solid curve when ∆ = 1 (strong
external coupling). The grayscale arrows indicate the progression as the
coupling is reduced. When ∆ is reduced, the results are no longer valid
because the sum/carry relation changes into different, less distinguishable
modes (∆ = 0.1 and 0.01). In (b) when ϕ1 = −ϕ2 = 0.1Φ0, the carry
terminal ≈ 0.9 while the sum terminal ≈ 0.1. This maps into the Boolean
algebra rules of addition for two bits 1 and 1. On the other hand when
ϕ1 = −ϕ2 = −0.1Φ0, both carry and sum terminals are low, and the
output goes to the third dump terminal (not shown). This maps into the
addition for two bits 0 and 0. The above statement is valid only at ∆ = 1,
the maximum external coupling situation. When ∆ is reduced to 0.1 or
0.01, the results are not valid as shown in the dotted curves. Thus a
workable half-adder we have shown here has uniform cross-sectional area
throughout the rings and the external leads.
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Figure 3.3: Weak entanglement versions of the half adder circuit. (a) Odd M3 and
even M4 point-contact circuits. (b) M3 point-contact network transport
as external terminal coupling is varied. The grayscale arrows indicate the
progression as the coupling is reduced. The third (dump) terminal in our
original work is not shown, since it only collects unwanted computations.
Note that the results are for all four equal-magnitude angular momentum
pairings, since the transport is sign-invariant for ϕ2. In ∆ = 1 situation,
it behaves like a quantum circulator [34]. As external terminals are weak-
ened, the transport approaches equal-distribution between the carry and
dump (not shown). Note the flux period for point-contact entanglements
are the same as for a single ring, Φ = Φ0.

of atoms in each ring, labeled as M3, we found a gradual transport trend. The two

output states are slowly degraded from dominant transport at one terminal to a more

distributed situation. For the second class of two even point-contacted rings, M4, the

test signal is completely reflected across the entire flux period for all non-zero coupling

strengths (not shown), and is therefore not useful for computation. In summary,
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lowering the coupling strength between the external terminals and the network will

generally degrade the readouts to such a point where the computation can no longer

be reliably found or distinguished. Therefore there is no possibility of a classical

readout, even though the unperturbed coupled rings can exhibit a superposition of

states. This is because superposition of states holds true only in a closed system,

while readout possibility is from an open system only. In special cases where there

is total reflection of a test signal across the entire first Brillouin zone, this does not

hold true as changes in coupling strength have no effect on the output.
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4. CONCLUSIONS

In this paper, we show that as long as a single qubit, which is angular mo-

mentum based, can be established in a man-made atom, or an AB ring, quantum

computing can be made without the need to check the extent of entanglement for

superpositional flux qubits in order to guarantee the classical readouts. The super-

position nature of such networks is due to the fact that electron wavefunctions are

composed of coupled harmonic oscillators (in the global node equation) in an AB ring

and hence at the Brillouin zone boundary a switching of the direction of the angular

momentum can occur. Therefore the subsequent constructions for the entanglement

of two coupled AB rings to serve as a half-adder circuit as well as the required setup

for a classical readout do not necessarily follow the procedures outlined by earlier in-

vestigators. The existence of a superposition for qubits has long been assumed when

there is entanglement. This is required strictly for a closed system only. However,

our results lead us to believe that superposition of states may not be needed for

classical readout results because the readouts require an open system. Our findings

point out that there is an interplay between the entanglement (internal coupling)

and the external perturbation configuration (external coupling). The entanglement

can be provided in such a way that there is a loss of superposition while the exter-

nal connections are attached. We show indeed that classical readouts are possible

at the loss of superposition. The conventional wisdom of having a perfect internal

quantum computation scheme first (closed system) and then reading the result with

weak or indirect measurement, in order to keep the system closed, turn out not to be

valid in our quantum network example shown here and therefore is necessarily not

valid in the general situation. In general, attempting to sample a closed quantum

network in a superposition with a test signal results in a rejection of the probes with

complete reflection. We have shown that strong external perturbations can provide
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high-fidelity classical readouts, while weak perturbations generally switch the quan-

tum circuit from one class (dominant output) to another weaker (distributed output)

class that cannot provide any useful readouts. In quantum computing, as long as it is

qubit-based at the start, the internal couplings of qubits (the entanglement) and the

external couplings for collapsing the internal quantum state to a classical distribution

(the setup for readouts) are one integral part of a circuit that cannot be considered

separately. For robust classical measurements, a strong external perturbation must

be paired with a strong enough entanglement that can destroy the superposition of

the two qubits. Any other combination of external and internal couplings will not

lead to this desired computational output behavior.

While qubit-based quantum computing is shown to be able to perform so called

“massive parallel computing” as shown by Shor’s algorithm [11] for fast factorization,

a fundamental problem still exists at the very elementary level of simply adding two

n-bit binary strings together. This is analagous to performing the Fourier transform

in optical computing [3], which is a special case that a single lens gate can solve in

parallel. However this in no way implies that such parallelism can be extended to

general arithmetic logic operations that depend on addition-based Boolean algebra.

In quantum network theory, we show one possibility to integrate a quantum algo-

rithm with strong external perturbations so that high-fidelity classical measurement

is possible. In our scheme, superposition of angular momentum states can exist in

a closed system fashion, but needs to be collapsed in coordination with the readout

configuration in an open system. The coordination scheme we have demonstrated is

to strengthen the internal coupling, at a loss of superposition with the attachment of

strong externally coupled terminals to form said open system. Any other combina-

tion will not provide meaningful readout results in our model. In summary, a closed

system has been transformed into an open and useful system.
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ABSTRACT∗

We outline the procedure of extending the Thévenin equivalence principle for

classical electric circuits to reducing Aharonov-Bohm-based quantum networks into

equivalent models. With examples, we show from first principles how the require-

ments are related to the electron band structure’s Fermi level and the lattice spacing

of the network. Quantum networks of varying degrees of coupling strength from

four basic classifications of single and double entangled loops sharing symmetry and

highly-correlated band structures are used to demonstrate the concept. We show the

limitations of how the principle may be applied. Several classes of examples are given

and their equivalent forms are shown.

∗Published in Journal of Applied Physics 117 024308 (2015).
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1. INTRODUCTION

Quantum networks in the mesoscopic range have been well-studied over the

last few decades [5, 16, 17, 18, 19, 21, 22, 37, 39, 40, 41, 61], with more recent

work focusing on higher-order effects and topics such as spin transport due to their

potential development for quantum computation [20, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73]. Quantum networks consist of quasi-one-dimensional paths and nodes

connected together. Because of the existence of loops, the Aharonov-Bohm (AB)

effect can be applied to further modulate the phase of the electron wavefunction

along the paths where Schrödinger’s equation is satisfied. Over the last few years, we

have been investigating the behavior when a few AB rings are coupled for quantum

computing [1, 62, 74]. For this purpose, it is important to identify whether these

quantum networks have the potential to replace conventional electric circuits with

new ones based on the phase-modulation concept.

One area that has yet to be explored for these complex quantum networks is

the concept of equivalence. In classical circuits, such as the simple resistive network

shown in Fig. 1.1(a), Léon Thévenin famously showed in the 1800’s that it is pos-

sible to form a simpler equivalent version for part of the circuit [75]. The simplified

network preserves the total current and voltage difference being delivered to the un-

altered part of the circuit. This has long been a useful analysis tool in simplifying

complex electronic designs to better understand their behavior. We have recently

shown a quantum network-based processor utilizing symbolic substitution rules, not

superposition of flux qubits [76]. Therefore the question of extending Thévenin’s

theorem to quantum networks becomes an important means for simplification and

gaining physical insight about them. For a general classic circuit the system is lossy

and the transport is incoherent. Thus when forming an equivalent circuit, the equiv-

alent current being delivered to the unaltered part of the circuit in both models will



51

Figure 1.1: (a) Simple resistor network with a voltage source V s driving a load con-
nected at terminals a and b. (b) Thévenin equivalent model that delivers
an equal current through the terminals a and b to the same unaltered
load. V th is the open circuit voltage of the original network without the
load connected, and Rth is the equivalent output resistance.

be a scalar. However at the mesoscopic level, where ballistic transport and elastic

scattering are possible, the quantum circuits take into effect the magnitude and phase

of the electron wavefunction in relation to the band structure and chemical potential.

These can obviously differ between the original and equivalent models. In this work

we attempt to determine how these restrictions affect the possibility of finding such

equivalent networks.

The remainder of the paper is divided into three parts. Sec. 2 will define a

quantum network and its properties as well as outline the analytical model used in

our calculations. Sec. 3 is divided into three subsections, with the first describing the

general requirements that need to be met between two networks in order to satisfy

an equivalence. The remaining two subsections focus on determining which specific

quantum networks can meet this criteria based on their coupling strength. Finally

the results and observations are summarized in Sec. 4.
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2. PHYSICAL MODEL AND CALCULATION METHOD

Electron transport in AB-modulated networks can be modeled in a multiply-

connected space of uniform quasi-1D paths of length l interconnected by M nodes.

It is placed between two thermal reservoirs with a small chemical potential difference

µH −µL at infinity, which acts as the source and sink of the electron. There is also an

external magnetic flux Φ present, as shown in Fig. 2.1. In these quantum networks,

the well-known Landauer-Büttiker formula for conductance applies between any two

points in the network. In Fig. 2.1, nodes A and C are the elastic scatterers. The

system’s transport can be tuned by modifying the flux inside the loop, which alters

the phase of the electron wavefunction within the paths. The transport between any

two points i and j needs to satisfy the Büttiker symmetry principle Tij(Φ) = Tji(−Φ)

[43, 77].

Φ

μH μL

B

C

D

A

l

l lI O

Figure 2.1: Single symmetric two-terminal AB ring consisting of four nodes and lat-
tice spacing l, placed between terminals of chemical potential difference
µH − µL. H and L are the higher and lower potentials, respectively. A
magnetic flux Φ penetrates the loop, adding an additional phase factor to
the electron wavefunction. At each node (A,B,C,D), there is an associ-
ated node equation that relates the wavefunctions between other adjacent
nodes.

A brief formulation of the model will be presented here, with a more complete

description given in previous work [4]. The Schrödinger equation must be satisfied at

any point in the ring. For a single free electron situation, the solution between nodes

A and B can be given as

ΨAB(x) = [PABe
−ikx +QABe

ikx]e−iS(x)/~ (III.1)
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where ΨAB(0) = ΨAB(A), and ΨAB(l) = ΨAB(B). PAB and QAB are the complex

outgoing and incoming wave amplitudes from A in the path, respectively. S is a

phase factor introduced due to the magnetic vector potential A and is given by the

path integral

S(x)/~ =
e

~c

∫ x

0

A(x′) · dx′ =
x

r

[
Φ

Φ0

]
(III.2)

where x/r is the angular displacement and the elementary flux quantum Φ0 = hc/e.

A is connected to a total of three nodes: B, D, and I. A simplified set of equations

can then be formed as

Ψ(B) = Ψ(A)[cos kl − tan δAB sin kl]e−iϕ

Ψ(D) = Ψ(A)[cos kl − tan δAD sin kl]eiϕ

Ψ(I) = Ψ(A)[cos kl − tan δAI sin kl]

(III.3)

where ϕ = (2π/M)(Φ/Φ0). For a neighbor node j, tan δAj = i
PAj−QAj

PAj+QAj
and the

reflection coefficient RAj = (PAj/QAj). Conservation of probability current requires∑
j tan δAj = 0, and allows one to reduce the set of Eq. (III.3) into a single node

equation for A as

Ψ(A) [2 cos kl + tan δAI sin kl]− eiϕΨ(B)− e−iϕΨ(D) = 0. (III.4)

A similar node equation can be found for the other three nodes in the ring. To

calculate the energy spectrum, the isolated system is considered first (no terminals).

This fixes tan δAI = 0 in Eq. (III.4). The secular determinant for the four node

equations becomes

16 cos4 kl − 16 cos2 kl − 2 cos 4ϕ+ 2 = 0. (III.5)
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The four possible energy states En = k2n(h
2/8π2m) can then be found, with m being

the electron mass. The half-filled Fermi energy state EF at T = 0K is then used to

solve for the transport. The terminals are considered a perturbation to the system,

leading to the transmission and reflection coefficients. This is consistent with the

S-matrix results first reported by Büttiker, et al [41]. We have used this method to

study more complicated AB ring configurations in the past [34, 35].
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3. THÉVENIN EQUIVALENCE

3.1. REQUIREMENTS

There are four basic classes of AB rings, determined by the number of M

nodes in the ring: M = 4N , 4N + 2, 4N + 1, and 4N + 3, with N an integer.

More complicated quantum networks can then be formed by coupling these AB rings

together with different strengths and attaching several terminals. The key question is,

under what circumstances can these quantum networks be simplified like the classical

circuit example in Fig. 1.1? Clearly, if the state of a system and its equivalent form

need to be identical at a node, significant restrictions will be imposed. The band

structure becomes the first factor in determining whether or not a given network

can be substituted for another. The scaling relations for the transport in AB rings

investigated previously provide some insight [62]. For a symmetric ring such as the

example in Fig. 2.1, it is possible to scale the network by any integer factor and still

preserve the general band structure and hence the transport. The Fermi energy EF

and wavevector kF for both structures are identical. When attempting to replace a

portion of a quantum network with a simplified equivalent form, the node equations

(as in Eq. (III.4)) for the unaltered portion of the network need to be identical. Due

to these requirements, the correlation between the band structures of two different

networks needs to be strong but not necessarily identical. In general, they will need

to share some form of symmetry. Also, the correlation depends on the strength of

the coupling between the AB rings. Ideally, EF should be equal across the entire flux

period to have the highest likelihood of satisfying the equivalence. This is satisfied

by point-contact coupled rings and will be shown first. The following two subsections

are divided by coupling strength for the four basic classes of coupled AB rings.
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Figure 3.1: (a) Network diagram and energy band structure (in units of h2/8π2l2m)
for two M = 3 point-contacted loops. The dashed portion of the network
will be replaced with an equivalent form shown in (b). The output nodes
D and E remain unchanged. The lines in the band diagrams correspond
to the energy states computed from the secular determinants of each
network, similar to that of Eq. (III.5). Note that in (a) there are five
nodes and thus five energy states, two of which are flux invariant. In (b)
there are three nodes and three energy states, which are identical to the
flux dependent states in (a). The Fermi energies EF for both networks
are aligned across the entire flux period.

3.2. POINT-CONTACTED LOOPS

Point-contacted AB loops are a suitable starting point to demonstrate Thévenin

equivalence. They share an identical band structure with a single ring, only with ex-

tra flux-invariant states added. Even though the Fermi energies are equal, it is not

possible to meet the equivalence conditions across the entire flux range. We show an

equivalent circuit is only possible at a pair of flux values. Beginning with a network

consisting of odd point-contacted M = 3 rings belonging to the 4N + 3 class, shown

in Fig. 3.1, it can be shown that its Fermi energy is equivalent to that of a single ring.

This is due to the symmetry of the structure, though the point-contact causes the

transmission to be compressed into a narrower flux range due to a resonant tunneling

effect.

If three terminals are attached, as shown in Fig. 3.1(a), a Thévenin equivalent

can be given in Fig. 3.1(b) where the left portion of the network is replaced with a
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single odd three-terminal ring. This happens to be a quantum circulator [34]. The

wavefunction magnitudes for nodes D and E in both networks are shown in Fig. 3.2,

with peaks at |Φ| = Φ0/4 with Fermi wavevector kF = π/2l. This value leads to the

cos kl term in Eq. (III.4) vanishing at each node. The two node equations at B and

C in the original network now only contain phase terms between the wavefunctions

at adjacent nodes. The remaining three node equations take on a similar form of the

equivalent single ring. The preserved part of the network does not necessarily have to

contain two output terminals. For instance, if either one of the output terminals were

removed to form a simpler two-terminal network, the Thévenin conditions would still

hold. The wavefunctions at D and E between the two networks do however vary

by a constant phase factor θ = π/3. This can be offset by preparing the incident

electron with a phase of θ to align the two network states. This means the inputs

for the two equivalent networks need to differ by θ in phase space to obtain complete

equivalence. Note that by scaling the number of nodes M in both rings by any odd

integer, the same equivalence can be maintained.

The second example is theM = 4N+1 class. The point-contactedM = 5 AB

rings are shown for the two-terminal situation in Fig. 3.3(a). It is possible to replace

the left side of the network with the smaller equivalent form of a single loop. In this

case four nodes (E,F ,G,H) are in the unaltered part of the network, one being the

output terminal. In this case, the Fermi energy levels between the two networks are

identical across the entire flux period. The Thévenin condition is again satisfied at

|Φ| = Φ0/4.

However for the even-numbered 4N or 4N+2 class, it is not possible to satisfy

the equivalence requirements since their Fermi levels are independent of the applied

flux. The incident electron is totally reflected to the input terminal, which does not

occur for even-numbered, single rings. Therefore none of the Thévenin conditions are

satisfied other than sharing the same lattice spacing l.
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Figure 3.2: Wavefunction magnitude of outputs D and E for the point-contacted net-
work and its equivalent model given in Fig. 3.1. While the Fermi energies
are equivalent across the entire period, the equivalence conditions are only
met at two flux values |Φ| = Φ0/4. This is indicated by the pair of arrows
and stars, with corresponding energy E = h2/32l2m. This is because
the cos kl terms vanish in the node equations since the Fermi wavevector
kF = π/2l. There is a phase shift of π/3 rad between the two networks
for both flux values at nodes D and E. To obtain complete equivalence,
the inputs at A in both networks need to differ by this constant phase.

3.3. STRONG COUPLED LOOPS

There are two types of strong coupling: the loops can share a single scattering

path, or they can share two. A single path is the strongest form. For a single path in

each of the four classes, the energy states that form the band structures are distorted

from those of a single ring. Another issue that complicates stronger coupling is that

the flux period becomes a rational number, not Φ0 [1]. However there are instances

where the Fermi levels happen to align with an equivalent single loop. The problem

is this may only be true for a single flux value, as opposed to a wide range. This gives

little flexibility in trying to meet the other Thévenin requirements such as matching

the wavefunctions and transmission in the preserved part of the circuit. Due to this,

forming an equivalent model from a network of loops coupled by single paths is not

possible.
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Figure 3.3: (a) Diagram of point-contacted M = 5 loops with an equivalent single
ring. (b) Energy band structures (in units of h2/8π2l2m) of both net-
works computed from their secular determinants, similar to Eq. (III.5).
(c) Wavefunction magnitude for the preserved nodes in each system.
The equivalence conditions are only met at two flux values |Φ| = Φ0/4,
indicated by the pair of arrows and stars, with corresponding energy
E = h2/32l2m. This is because the cos kl terms vanish in the node equa-
tions since the Fermi wavevector kF = π/2l. There is a phase difference
of ≈ 5/2 rad between the two networks for both flux values at nodes E,
F , G, and H. To obtain complete equivalence, the inputs at A in both
networks need to differ by this constant phase.

Since the strongest form of coupled AB rings is ruled out for equivalence,

we examine the coupled networks which share two center common paths. While

providing two paths for an electron to scatter, the energy levels are altered. In this

case, it is not possible to meet all equivalence conditions when the two applied fluxes

Φ1 = Φ2. However, an interesting pattern in the band structures for all four classes is

found when Φ1 = −Φ2. The Fermi levels for these coupled networks show similarities

to a single ring by scaling the value of the electron charge in the ring. In Fig. 3.4(b),
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Figure 3.4: (a) Diagram of two path coupled M = 5 loops with an equivalent single
ring. (b) Energy band structures (in units of h2/8π2l2m) of both networks
computed from their secular determinants, similar to Eq. (III.5). The
Fermi energies are equivalent in the range |Φ| ≤ 5Φ0/24, indicated by
the shaded region. (c) Wavefunction magnitude for the preserved nodes
in each system. All equivalence requirements are satisfied at the two
flux values ±5Φ0/24, indicated by the pair of arrows and stars. These
points correspond to the same energy as in the point-contact examples,
E = h2/32l2m. This is because the cos kl terms vanish in the node
equations since the Fermi wavevector kF = π/2l. The phase difference at
nodes E, F , and G between both networks is ≈ π2/4 rad for the arrow
flux values and ≈ 43/64 rad for the starred values. To obtain complete
equivalence, the inputs at B in both networks need to differ by these
constant phases.

the equivalent Fermi energy region is shown after the electron charge in a single ring

is adjusted. Note that when the applied fluxes are opposite in direction, the phase

modulation along the center common paths is no longer zero (compared to when the

applied fluxes are equal). This leads to a net persistent current flowing in the two
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Figure 3.5: (a) Diagram of two path coupled M = 6 loops with an equivalent single
ring. (b) Energy band structures (in units of h2/8π2l2m) of both networks
computed from their secular determinants, similar to Eq. (III.5). The
Fermi energies are equivalent between 6Φ0/35 ≤ |Φ| ≤ 6Φ0/14, indicated
by the two shaded regions. (c) Wavefunction magnitude for the preserved
nodes in each system. At the zone boundary all equivalence conditions are
met, which like the other examples corresponds to energy E = h2/32l2m.
This is because the cos kl terms vanish in the node equations since the
Fermi wavevector kF = π/2l. The phase difference at nodes F , G, H and
I between both networks is ≈ 2 rad for the arrow flux values and ≈ 15/8
rad for the starred values. To obtain complete equivalence, the inputs at
A in both networks need to differ by these constant phases.

common paths and indicates that the band structure must be similar to a single ring

(where persistent current is present in all paths).

By considering all possible terminal configurations, the smallest odd 4N + 3

(M = 3) and even 4N (M = 4) coupled networks are ruled out. While their Fermi

levels can be aligned by renormalizing the value of charge in the single rings, the

wavefunction distributions do not match for any terminal configuration. However for
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the smallest 4N +1 network (M = 5), which is larger than the previous two (M = 3,

M = 4), we can find all equivalence requirements satisfied. In the Fig. 3.4 example,

the Fermi levels can be aligned between the coupled network with period 5Φ0/6 and

a single M = 5 ring. The single ring has to be prepared with fractional charge 6e/5

to yield Φ′
0 = 5Φ0/6. This allows the Fermi energies to be equal in half of the flux

range |Φ| ≤ 5Φ0/24. If three terminals are attached as shown in Fig. 3.4(a), an exact

equivalence can be achieved at the boundaries of this region |Φ| = 5Φ0/24. The

transmission circulates between unity at each output, and occurs at the same Fermi

wavevector value as the point contact examples discussed previously, kF = π/2l. This

is not the only viable terminal configuration. By symmetry, one can rearrange the

output terminal from G to E while inverting the two flux directions and still satisfy

all the equivalence requirements.

The last example is for an even-numbered 4N +2 class represented by M = 6

and shown in Fig. 3.5(a), which happens to have particular regions that are able

to meet all equivalence conditions. The flux period of this network is 6Φ0/7. A

fractional charge of 7e/6 can be prepared in the single M = 6 ring to alter the flux

period and align the Fermi energies in the range 6Φ0/35 ≤ |Φ| ≤ 6Φ0/14 as shown

in Fig. 3.5(b). At the zone boundary |Φ| = 6Φ0/14, both networks fully transport

through terminal G. Note that the boundary of the equivalent network portion could

be extended to include nodes F and I if desired. The Fermi energy and wavevector

are consistent with the same values found in all the other examples presented. This

is clearly an interesting observation.
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4. CONCLUSION

We have shown there are possibilities to extend Thévenin’s theorem for clas-

sical electric circuits into the quantum network regime. For an equivalence to be

valid, the node equations for both networks need to be identical in the unaltered

part of the circuit. The requirements dictate that the two equivalent networks need

to have the same Fermi energies, attributable to the specific structures and applied

fluxes involved. In order for the band structures of two networks to be equivalent, and

hence suitable for such a transformation, there needs to be some form of symmetry or

scaling relation between the two respective networks. This requires the same lattice

spacing in both structures. We began with the concept of a single ring being scaled,

known to be valid from prior work. The idea was then extended to the four basic AB

ring classes, M = 4N , 4N +1, 4N +2, and 4N +3, at point-contact coupling. These

networks share identical band structures with that of a single ring of the same class

but with extra flux invariant states added. With the ability to look for an equivalence

across the entire flux period, several examples were identified. Only two classes of

rings exist where Thévenin’s principle can be applied, when M = 4N + 1 or 4N + 3.

For the even-numbered classes the Fermi energy levels are flux invariant. There is

total reflection for any input, making it impossible to find an equivalent network.

The Thévenin equivalent is valid up to where the inputs can differ by a constant

phase factor. If two point-contacted loops can satisfy all Thévenin requirements,

then it is reasonable to assume this can be extended to an arbitrarily large number

of point-contacted loops. This would simply reduce the valid flux range consistent

with multi-stage resonant tunneling.

We further investigated the four classes of coupled AB rings with varying

coupling strengths. Two cases are presented: a single path (strongest) and a weaker

double path. For double paths, the entanglement of the loops is still weak enough
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that the band structure is similar to a single ring if the two fluxes are opposite in

direction. If the fluxes are equal there will be no net persistent current flowing in

the shared center path, indicating the band structure will vary too greatly from the

single ring spectrum. This kind of coupling changes the flux period to be a fraction of

Φ0. To have any potential Thévenin equivalence, the Fermi level needs to be aligned

with that of a single ring. To achieve this, there must be a charge renormalization

(e → 7e/6, as an example). Only two suitable classes exist that meet all of the

equivalence requirements. They are the odd-numbered 4N + 1 and even-numbered

4N +2 classes. Consistent with the point-contact cases, the equivalence is only valid

at specific flux values and only for a few select terminal configurations. In the valid

instances presented, the Fermi energy is h2/32l2m with wavevector π/2l. This leads

to vanishing cos kl terms in the node equations for each network. The result is a more

simplified set of node equation relations that allow for an equivalence to be obtained.

In summary, the possibility to extend Thévenin’s equivalence principle to the

mesoscopic regime is limited to specific circumstances, as one would expect. Here

we have outlined what general requirements need to be met. For there to be any

possibility of reducing a complex network, the coupling strength between loops formed

needs to be weak. When the coupling becomes too strong, the band structure is

distorted away from that of a single ring. This then eliminates any possibility of

equivalence. With weaker coupling, there are class and terminal restrictions to meet

the necessary conditions. In this work, we have focused on exploring these restrictions

and providing examples that demonstrate the principle. For any general quantum

network, an equivalence may be possible if the portion of the network to be replaced

has weak coupling and no disorder.
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ABSTRACT∗

Ballistic transport through four Aharonov-Bohm ring quantum networks that

can satisfy all sixteen Boolean functions for two variables are reported here. A ring

is considered an input flux qubit, which can be tuned in cooperation with a terminal

configuration to satisfy the given rules for a function. Higher order functions require

coupling two rings (inputs) together, where the entanglement between the spin states

allow for a more complex set of rules to be satisfied. In order to achieve meaningful

readouts, the superposition of the qubit state(s) must be eliminated first even before

perturbing the system. The requirements for each of the four circuits are provided.

Some comparisons are made between other types of quantum architectures that focus

on Boolean algebra and sequential operations.

∗In preparation for Journal of Applied Physics (2015).
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1. INTRODUCTION

Transport in mesoscopic systems under the Aharonov-Bohm (AB) effect has

been well studied for the past few decades [5, 16, 17, 18, 19, 21, 22, 39, 40, 41,

61]. More recently, renewed interest in these quantum networks has focused on spin

transport and interference effects [64, 66, 67, 68, 69, 70, 72, 73]. This has been

in large response to quantum computing architectures that operate on the basis of

controlling quantum bits (qubits), which are in a superposition of |1⟩ and |0⟩ states.

This is often accomplished optically or electronically, through the spin basis of a

photon or electron. Unitary operations are performed on these input qubits to yield

a final state as a complete closed system. It then has to couple to an external

perturbation for measurement. The advantage of such a scheme is the potential for

massive parallel processing due to the superposition. Instead of a single well-defined

state of N bits, a superposed system of qubits can represent 2N states at once.

A significant amount of recent research has investigated such possible experimental

configurations [78, 79, 80, 81, 82, 83, 84]. Some examples have been Shor’s algorithm

for prime factorization [12], and solving a linear set of equations [13].

The primary application of spintronics is for calculations that are parallel in

nature. For example, Shor’s algorithm relies on the quantum Fourier transform. The

superposition of states is transformed repeatedly, wiping any periodicities along the

way to arrive at a result. There is no sequential dependence of one state (or its

result) with another. Obviously not all computing behaves this way. An example of

a purely sequential calculation would be N -bit addition, where there is a state-to-

state coupling due to the carry between bit positions. While Vedral et al. gave a

quantum description for addition in the 90s [85], to date no physical implementation

exists. There is clearly room in the quantum computation space to tackle sequential

computing. One example of this has been Quantum Cellular Automata (QCA) by
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Lent et al [86]. In this scheme, cells consist of quantum dots that electrons can

occupy. The well-defined polarization state of each cell acts as the binary bit, and

the system “computes” through a propagation of cell-to-cell Coulomb interactions.

All of the cell states are then updated by a set of rules and are ready for the next

cycle. Another more recent paradigm has been proposed which exploits the AB effect.

Instead of a cell, this scheme uses a single AB ring as the basic unit for computation

[34, 35]. This is shown in Fig. 1.1(a). The diameters are typically on the order

of a micron. The applied flux penetrating the ring acts as an input and varies the

phase of the electron wavefunction across a period equal to the universal flux quantum

Φ0 = hc/e. This can be used to control the transport in a network when terminals are

attached between reservoirs. More complicated calculations are achieved by coupling

two single rings together [1, 36, 62], as shown in Fig. 1.1(b)-(c). If the coupling is

strong the periodicity becomes a rational number. The “computing” mechanism itself

is a shared interaction between the applied flux(es) and the terminal configuration.

It was shown that a half-adder circuit was possible for two coupled rings (two flux

qubits), albeit at a loss of superposition. There are a total of sixteen Boolean logic

operations that can be performed on two binary bits. Strictly speaking, a logic device

set is considered functionally complete if it can compute {AND,OR,NOT}. These

are then used to construct logic gates for the other thirteen Boolean functions. In

this paper AB ring networks that satisfy all sixteen Boolean functions are reported.

This is accomplished with a single rule-based circuit for each function. They do not

require a buildup of simpler gates as in the truth-table approach for current design

methodologies.

In the remainder of the paper, a concise description of these networks and

their operation is given. Sec. 2 first provides the calculation methods used to analyze

the networks. This leads into Sec. 3, which describes four unique AB networks that

satisfy the sixteen Boolean functions. Sec. 4 discusses practical considerations in the
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Figure 1.1: Generalized AB ring configurations for (a) a single ring, (b) point-contact
coupling between two rings, and (c) two rings coupled by two center
common paths. The applied flux Φ penetrating the ring is assumed to be
positive pointing into the page. (l,m, n) represent the total path lengths
of the segment in units of lattice spacing a. The networks can be classified
by the number of nodes (open dots) M in each ring. There are scaling
relations (see Sec. 2) that describe how the properties of the networks
behave under a change in lattice spacing or M .

approach and methodology, as well as some of the pros and cons compared to other

implementations such as QCA. Lastly, concluding remarks are provided in Sec. 5.
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2. BASIC CALCULATIONS

In this section, a brief description of a node equation approach for calculating

the band structure and transport in AB networks will be given. A more complete

treatment is given in previous work [1, 4]. One-dimensional quantum networks, such

as those in Fig. 1.1, can be considered as a set of elastic scattering nodes intercon-

nected by uniform bonds of length a in a uniform background of positive charge. At

any point in the network the Schrödinger equation must be satisfied. In the pres-

ence of a magnetic field, the propagating electron inherits an additional phase factor.

For any point x, with neighbor at point j and path length lxj (in units of a), the

Schrödinger equation can relate the wavefunctions Ψ(x) and Ψ(j) between the two

points. If all neighbors j are considered, a Kirchhoff-like conservation equation for

the free electron can be formed as in Eq. (1) of Ref. [1]:

(∑
j

cot klxj − iD
)
Ψ(x)−

∑
j

csc klxje
iϕlxjΨ(j) = 0. (IV.1)

k is the wavevector, while ϕ is related to flux Φ and number of nodes M in the

loop/ring by ϕ = ±(2π/M)(Φ/Φ0). D is a perturbation term in relation to node x,

where D = 0 if no external terminal is attached, D = (1 − R)/(1 + R) if an input

(R is reflection amplitude), and D = −1 if an output. This form is similar to the de

Gennes-Alexander theory in superconducting networks [37].

In order to calculate the band structure, the isolated system must be con-

sidered first. All of the perturbation terms D in the node equations of Eq. (IV.1)

vanish. This leads to a set of N homogeneous equations, where N is the total num-

ber of nodes in the network. A secular equation can be formed, yielding N solutions

for the wavevector k by solving for the roots of the cosine terms. The eigenenergies

then become En = (~2k2n)/(2m), with m the electron mass. The Fermi energy EF

is then found in the half-filled situation at absolute zero. The persistent current I
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circulating in the ring is calculated by the relation I =
∑

n −c∂En/∂Φ, with n up to

EF [87]. To calculate the transport, terminals at a slight chemical potential gradient

are attached to perturb the isolated system. The node equations now have non-zero

D terms for at least two nodes, and are calculated at EF . By conservation, solving

for R leads to the transmission probability T = 1 − |R|2. In the Landauer-Büttiker

formulation [39, 40], linear transport is satisfied with conductance G being propor-

tional to T . Additionally, the symmetry principle of transport between two terminals

is satisfied [43, 77]. The node equation calculations for the transport are equivalent

to the S-matrix results of the same network [41].

There are four primary classes of AB rings, grouped by the number of nodes

in the ring. The two odd classes are (M = 3, 7, 11, ..) and (M = 5, 9, 13, ..). The

two even classes are (M = 4, 8, 12, ..) and (M = 6, 10, 14, ..). For any AB network,

there are scaling laws that allow a given network to be scaled up or down and still

preserve transport behavior. This has been investigated in earlier work [62]. The

lattice spacing a in a network can be scaled by any rational factor f and not affect

the transport. The cosine form factors in Eq. (IV.1) are scaled up as cos kflxj. This

of course reduces all k values by 1/f , and persistent current by 1/f 2. In addition to

scaling the lattice spacing, the path lengths (l,m, n) shown in Fig. 1.1 can be scaled

by an odd f . This changes the number of nodes in the ring(s). The transport is

preserved, but the persistent current is reduced by a factor now of 1/f . Odd scaling

always preserves the class of the ring. Even scaling is not viable in the general case

since scaling by an even factor can cause the resulting new network to fall into a

different class.
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3. LOGIC CIRCUITS

There are a total of sixteen Boolean operations for two binary variables. In

this section, it will be shown how four different AB ring networks of different classes

can satisfy all of these operations. The circuits themselves can be considered as flux

qubits, as shown in Fig. 3.1. They can be isolated, as in the single odd ring of panel

(a), entangled weakly (as in (b)), or entangled strongly (as in (c)-(d)). A terminal

configuration then perturbs the system to get a readout of the circuit. The challenge

to satisfying digital logic is to first identify the class of AB ring(s) that can be useful

for the given operation, and then find an appropriate terminal configuration and flux

values to give the correct readout. For two flux qubits Φ1 and Φ2, there are a total

of four input states: ↑↑, ↓↓, ↑↓, ↓↑. They are equal in magnitude but can differ in

spin. Any of the four classic binary states can be assigned to any state of the flux

qubits in the circuit. This is called “flux mapping.” The flux qubits individually

can be in a superposition at zero flux or the zone boundary. However, when two

rings are coupled there is entanglement. At the weakest point-contact coupling, the

superposition is unaffected. But at stronger coupling such as panels (c) and (d) in

Fig. 3.1, the superposition of states may be destroyed. There is an interplay between

the internal coupling of the AB networks and the terminal configuration, which is

necessary to measure the result classically [74]. In the following four subsections each

individual circuit is introduced, along with their Boolean functionality and operating

parameters.

3.1. CIRCUIT I: ODD M=3 RING

The first circuit is a simple single ring with three nodes. Terminal A is the

source (not to be confused with the flux input operands), and the drain outputs are

(B,C) as shown in Fig. 3.1(a). The node equations of the network, as discussed in
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AND , XOR , NOR , XNOR , NOT(X1) AND X2 ,

                         X1 AND NOT(X2)

1 2

1 2
1 2

Figure 3.1: The four AB ring circuits that form a complete logic set for the sixteen
Boolean operations on two binary variables X1 and X2. The operations
each circuit can compute are listed below them. The inputs are the
applied flux qubits to each ring. They are equal in magnitude but can
vary by spin. The terminals are then attached in a configuration satisfying
all the function rules for the four input flux states. A single ring (a) can be
used for the most simple operations that have an output dependent upon
only one of the inputs. (b) Point-contacted rings are suitable for functions
that require the same result for all inputs over a wide flux range. (c)-(d)
More complicated networks that strongly couple two rings together with
two shared paths. They are capable of more complex computations due to
the interaction effect between the spins. Note that while each individual
flux qubit starts out in a superposed state, this interaction may destroy
the superposition when bringing them together.

Sec. 2, lead to the secular equation

8 cos3 ka− 6 cos ka− 2 cos 3ϕ = 0. (IV.2)

The energy band structure and persistent current are shown in Fig. 3.2. There are

a total of three states (since there are three nodes), with the Fermi level EF as the

second lowest state in the half-filled situation. At zero flux, the Fermi level is sharply
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Table 3.1: Summary of the four Boolean functions that the single M = 3 ring of
Fig. 3.1(a) can perform. Due to only having a single flux input, the
circuit is limited to being able to perform logic operations where one of
the two inputs (X1, X2) are a “don’t care,” and thus is irrelevant to the
computation. The flux mappings for the input states (in units of Φ0) and
the transmission TB and TC for output terminals B and C are provided.

Boolean function |Φ(state = 0, 0)⟩ |0, 1⟩ |1, 0⟩ |1, 1⟩
NOT X1 |−0.25⟩ , TC = 1 |−0.25⟩ , TC = 1 |+0.25⟩ , TC = 0 |+0.25⟩ , TC = 0
NOT X2 |−0.25⟩ , TC = 1 |+0.25⟩ , TC = 0 |−0.25⟩ , TC = 1 |+0.25⟩ , TC = 0
COPY X1 |−0.25⟩ , TB = 0 |−0.25⟩ , TB = 0 |+0.25⟩ , TB = 1 |+0.25⟩ , TB = 1
COPY X2 |−0.25⟩ , TB = 0 |+0.25⟩ , TB = 1 |−0.25⟩ , TB = 0 |+0.25⟩ , TB = 1

pulled up to a degenerate state and thus the flux qubit (persistent current) is in a

superposition of spin-up or spin-down. However, at this flux, perturbing the system

to measure the outputs is not distinct because one terminal does not dominate the

transport. The electron wave is distributed at roughly 2/5 each between the two

outputs, with 1/5 being reflected. This is shown in Fig. 3.3, and is not suitable for a

useful readout of the circuit. By tuning the flux to ±Φ0/4, a dominant transmission

mode appears where the electron is fully transported to either B or C. So the loss of

superposition is required in order to get a strong readout. This now becomes useful

to perform Boolean logic. For two binary inputs X1 and X2, there are obviously

four input states. However, since the circuit only accepts one flux input, there are

limited applications to what it can process. Four Boolean operations have “don’t

care” logic, where the computation is dependent upon only one of the inputs: NOT

X1, NOT X2, COPY X1, and COPY X2. All of these cases have a flux mapping

that assigns each of the usual binary input states |0, 0⟩, |0, 1⟩, etc. for each function

to the magnitude and spin of the flux qubit. For example, a NOT function can be

achieved by measuring the transmission from terminals A to C. A flux input state

|0⟩ is set to |−Φ0/4⟩, and |1⟩ is set to |+Φ0/4⟩. This is what is referred to as “flux

mapping.” A summary of these functions and their operation in the circuit are given

in Table 3.1.
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Figure 3.2: Normalized eigenenergy (left) and persistent current (right) vs. flux

across the first Brillouin zone for the single M = 3 ring in Fig. 3.1(a).
At zero flux, the spin state is in a superposition. This is a manifestation
of the Fermi level EF (second lowest state) being pulled up to a corner
degeneracy with the excited state.

3.2. CIRCUIT II: EVEN POINT-CONTACTED M=4 RINGS

The second circuit is two even M = 4 rings that are coupled at point-contact,

as shown in Fig. 3.1(b). There are two terminals with the source at A and drain

output at F . There are two flux inputs to the circuit, denoted Φ1 and Φ2, that lead to

four possible states. The node equations for this network lead to the secular equation

256 cos7 ka− 384 cos5 ka

+(160− 16 cos 4ϕ1 − 16 cos 4ϕ2) cos
3 ka

+(8 cos 4ϕ1 + 8 cos 4ϕ2 − 16) cos ka = 0

(IV.3)
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Figure 3.3: Transmission results for the single ring network of Fig. 3.1(a) whose band
structure is depicted in Fig. 3.2. At |Φ| = Φ0/4 for the spin states, there
is perfect transmission to exactly one terminal. However, this comes at
a loss of superposition to get a meaningful readout. At superposition
(zero flux), the readout is not dominant and therefore the results of the
computation are unclear. With only a single input flux to work with, this
particular transmission behavior is useful for Boolean functions whose
outputs depend upon only one of the two inputs. Assigning an input |0⟩
or |1⟩ is done arbitrarily with a “flux mapping” that satisfies all of the
operation rules, as shown in Table 3.1. The flux operating points are
marked by bold dots.

The energy band structure and persistent current are shown in Fig. 3.4. There are a

total of seven states, with the Fermi level residing at the fourth lowest level. This state

is of importance because it is flux-invariant across the entire Brillouin zone. This is a

manifestation of the point-contact’s weak entanglement of the flux qubits, where the

band structure is identical to a single M = 4 ring with three extra invariant states

added. The secular equation has no interacting flux cosine terms. This indicates

that whether the input states of Φ1 = Φ2 or Φ1 = −Φ2 are considered, the energy
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Figure 3.4: Normalized eigenenergy (left) and persistent current (right) vs. the four
input flux states, denoted by (Φ1,Φ2), across the first Brillouin zone for
the two point-contactedM = 4 rings in Fig. 3.1(b). Only the two spin-up
and spin-down Φ1 = Φ2 = Φ states are shown, since the two Φ1 = −Φ2

states are identical due to the secular equation’s non-interacting cosine
terms. The Fermi level EF (fourth lowest state) is flux invariant across
the entire period. At zero flux, the spin state is in a superposition. This
is a manifestation of the three-fold degeneracy, with the third energy level
of the ground state being pulled up to a corner with EF and the excited
state.

spectrum and persistent current are the same. At zero flux there is a three-fold

degeneracy at the Fermi level. The third lowest state, part of the total ground state

energy, is sharply pulled up leading to a superposed persistent current. Across the

entire zone, there is complete reflection of the source input wave. In this instance

the transport is the same regardless of whether the system is in a superposition or

not. There are two useful Boolean operations that can take advantage of this circuit:

0/CLEAR, and 1/UNITY . Both of these functions yield the same value regardless

of the four input combinations. The output F will be used to measure CLEAR, and
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the reflected wave will be used to measure UNITY . This can be accomplished with

the use of a quantum circulator at the source [34]. The flux mappings for the input

states can be any arbitrary values, but still need to be equal in magnitude. Taking

power into consideration, as in a solenoidal setup for the fluxes, choosing a small flux

operating point is desirable.

3.3. CIRCUIT III: DOUBLE-BONDED M=4 RINGS
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Figure 3.5: Normalized eigenenergy (top) and persistent current (bottom) vs. the
four input flux states, denoted by (Φ1,Φ2), across the first zone for the
two double-bonded M = 4 rings in Fig. 3.1(c)-(d). The periodicity is no
longer Φ0, but a rational number due to the circulating vector potentials.
While superposition is preserved at zero flux when the fluxes differ, it is
destroyed due to the strong interaction when Φ1 = Φ2. There is a clear
pulling-up and down of the bonding and anti-bonding states, respectively.
Having a strong entanglement of the spins is crucial to being able to
perform more complex Boolean operations.

The third circuit is two even M = 4 rings that are coupled together sharing

two bonds, as shown in Fig. 3.1(c). There are three terminals with the source at A
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Figure 3.6: Transmission results for the two double-bonded M = 4 rings in Fig.
3.1(c), whose band structure is depicted in Fig. 3.5, vs. the four input
flux states. Due to the strong entanglement among the spin states when
Φ1 = Φ2 = ±0.1Φ0, terminal C can be useful when only one of the
four input states needs to have a low result. Assigning the input states
{|0, 0⟩ .. |1, 1⟩} is done arbitrarily with a “flux mapping” that satisfies all
of the operation rules, as shown in Table 3.2. The flux operating points
are marked by bold dots.

and drain outputs at (B,C). There are two flux inputs to the circuit, denoted Φ1

and Φ2, that lead to four possible states. The node equations for this network lead

to the secular equation

256 cos6 ka− 320 cos4 ka

+ [96− 16 cos(4ϕ1 − ϕ2)− 16 cos(4ϕ2 − ϕ1)] cos
2 ka

+4 [cos(4ϕ1 − ϕ2) + cos(4ϕ2 − ϕ1)]

−2 cos 3(ϕ1 + ϕ2)− 6 = 0.

(IV.4)
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The energy band structure and persistent current are shown in Fig. 3.5. There are a

total of six states with the Fermi level residing at the third lowest level. The cosine

terms in the secular equation now have interaction between the fluxes, indicating a

stronger entanglement than a point-contact situation. The periodicity of the system

is altered, which for Φ1 = Φ2 becomes a rational number (4/3)Φ0. This is due

to a change in topology where the circulating vector potentials interact along the

center path. There is a pulling up of the bonding states, and pulling down of the

anti-bonding states. Note that the superposition, which existed before the two rings

were merged, is now destroyed even at zero flux. For the case of Φ1 = −Φ2, the

periodicity is (4/5)Φ0. The entanglement for this case is less strong, resulting in the

band structure being less distorted from the general shape of a single ring. A portion

of the Fermi level is flux-invariant, where |Φ| > (17/64)Φ0. A superposition at zero

flux however does exist when the fluxes differ in spin and is a manifestation of slightly

weaker entanglement. This is because when the spins are equal, the net persistent

current flowing in the center common path is zero. A quarter of each ring therefore has

no current. When the spins differ, the current is now doubled along this center path.

Since the stronger coupling alters the band structure from that of a single ring, the

transport through this three-terminal network is also more complex as a result of the

interaction. This is shown in Fig. 3.6. Three terminals allow for an additional path

to transmit (or dump) to, and is useful to ensure another specified output receives a

low transmission. This is used to satisfy all the function rules. At small flux values,

the transport is dominant through the network to one of the two outputs B or C.

This allows more complicated Boolean logic to be computed. If output C is chosen,

the following four operations are possible: OR, NAND, X1 ≥ X2, and X2 ≥ X1.

Taking for example the function OR, there is only a single input state |0, 0⟩ that has

an output of zero. Clearly output C satisfies this for the four different flux states

at |Φ| = 0.1Φ0, with high outputs for three states and a single state with very low
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Table 3.2: Summary of the four Boolean functions that the double-bonded M = 4
network of Fig. 3.1(c) can perform. The flux mappings (in units of Φ0)
for the input states and the transmission TC for output terminal C are
provided.

Boolean function |Φ1,Φ2(state = 0, 0)⟩ |0, 1⟩ |1, 0⟩ |1, 1⟩
X1 OR X2 |+0.1,−0.1⟩ , TC = 0.1 |−0.1,+0.1⟩ , TC = 0.95 |−0.1,−0.1⟩ , TC = 0.95 |+0.1,+0.1⟩ , TC = 0.9
X1 NAND X2 |−0.1,−0.1⟩ , TC = 0.95 |−0.1,+0.1⟩ , TC = 0.95 |+0.1,+0.1⟩ , TC = 0.9 |+0.1,−0.1⟩ , TC = 0.1
X1 ≥ X2 |−0.1,−0.1⟩ , TC = 0.95 |+0.1,−0.1⟩ , TC = 0.1 |−0.1,+0.1⟩ , TC = 0.95 |+0.1,+0.1⟩ , TC = 0.9
X2 ≥ X1 |−0.1,−0.1⟩ , TC = 0.95 |−0.1,+0.1⟩ , TC = 0.95 |+0.1,−0.1⟩ , TC = 0.1 |+0.1,+0.1⟩ , TC = 0.9
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Figure 3.7: Transmission results for the two double-bonded M = 4 rings in Fig.
3.1(d), whose band structure is depicted in Fig. 3.5, vs. the four input
flux states. Due to the strong entanglement among the spin states when
Φ1 = Φ2 = ±0.1Φ0, it can be useful when only two of the four input
states need to have a result of high or low (R2). It can also be useful
when only one of the input states needs a high result (B). Assigning
the input states {|0, 0⟩ .. |1, 1⟩} is done arbitrarily with a “flux mapping”
that satisfies all of the operation rules, as shown in Table 3.3. The flux
operating points are marked by bold dots.

transmission. A summary of these four functions and their operation in the circuit

are given in Table 3.2.

3.4. CIRCUIT IV: ALTERNATE DOUBLE-BONDED M=4 RINGS

The final circuit is similar to the last, with two even M = 4 rings that are

coupled together sharing two bonds. This is shown in Fig. 3.1(d). There are three
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Table 3.3: Summary of the four Boolean functions that the double-bonded M = 4
network of Fig. 3.1(d) can perform. The flux mappings (in units of Φ0) for
the input states, the transmission TB for output terminal B, and reflection
R2 are provided. Here R2 refers to source terminal A.

Boolean function |Φ1,Φ2(state = 0, 0)⟩ |0, 1⟩ |1, 0⟩ |1, 1⟩
X1 AND X2 |+0.1,+0.1⟩ , TB = 0.05 |−0.1,+0.1⟩ , TB = 0.02 |−0.1,−0.1⟩ , TB = 0.02 |+0.1,−0.1⟩ , TB = 0.9
X1 XOR X2 |−0.1,+0.1⟩ , R2 = 0.1 |+0.1,+0.1⟩ , R2 = 0.9 |−0.1,−0.1⟩ , R2 = 0.9 |+0.1,−0.1⟩ , R2 = 0.1
X1 NOR X2 |+0.1,−0.1⟩ , TB = 0.9 |−0.1,+0.1⟩ , TB = 0.02 |−0.1,−0.1⟩ , TB = 0.02 |+0.1,+0.1⟩ , TB = 0.05
X1 XNOR X2 |−0.1,−0.1⟩ , R2 = 0.9 |−0.1,+0.1⟩ , R2 = 0.1 |+0.1,−0.1⟩ , R2 = 0.1 |+0.1,+0.1⟩ , R2 = 0.9
X1 AND NOT (X2) |−0.1,−0.1⟩ , TB = 0.02 |−0.1,+0.1⟩ , TB = 0.02 |+0.1,−0.1⟩ , TB = 0.9 |+0.1,+0.1⟩ , TB = 0.05
NOT (X1) AND X2 |−0.1,−0.1⟩ , TB = 0.02 |+0.1,−0.1⟩ , TB = 0.9 |−0.1,+0.1⟩ , TB = 0.02 |+0.1,+0.1⟩ , TB = 0.05

terminals with the source at A and drain outputs at (B,F ). There are two flux inputs

to the circuit, denoted Φ1 and Φ2, again used for the four input states. The secular

equation is identical to the circuit of the previous subsection, given in Eq. (IV.4).

Therefore the band structure and persistent current properties are identical between

the two circuits, and differ by the external perturbation’s terminal arrangement. The

transport, as shown in Fig. 3.7, shows a very important capability. For the four input

flux states with magnitude 0.1Φ0, the source terminal has very dominant reflection

for two input states, and very low reflection for the other two. No other AB network

in any of the classes has a terminal configuration with this quality. This circuit

has been studied before for performing half-adder addition [1]. Half-adder addition

incorporates two Boolean functions, XOR (exclusive OR) for a sum bit, and AND for

a carry bit. However this circuit is capable of performing four additional operations:

NOR, XNOR, NOT (X1) AND X2, and lastly X1 AND NOT (X2). A summary of

these six functions and their operation in the circuit are given in Table 3.3.
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4. PRACTICAL CONSIDERATIONS

It is important to discuss some of the limitations to the toy-model (lowest-order

mode) calculations provided here. In this single-particle calculation for perturbing the

AB network, terminals are considered as reservoirs at infinity with a slight chemical

potential difference: EF + δ, and EF − δ. In this context, we settle for an electron

being perfectly incident at the source terminal. The main challenge is in fabricating

the devices themselves. There have been many recent interesting developments in

fabricating AB rings [6, 88, 89, 90]. Self-assembly methods have been reported [91],

as well as the AB effect being demonstrated in the quantum Hall effect (QHE) regime

[92]. However, having a defect-free ring with perfectly spaced scattering sites is not

achievable. Moreover, the terminals themselves that measure the circuit have their

own associated parasitics. The resulting inelastic scattering and localization will lead

to a reduction in transmission. To deal with this dispersion, any practical device will

need to have a low noise floor and a large ratio between measured logical outputs

|1⟩ and |0⟩. In this work, a rough factor of 9 is calculated between states. The

experimental basis for measuring AB oscillations in a metal ring has existed since

the 80s [5]. More recent experimental setups have focused on 2DEG (electron gas)

heterostructures with diameters less than a couple microns. In one experiment, an

AB ring constructed from InGaAs/InAlAs with a radius of 650nm was studied [6]. At

T = 400mK, the AB oscillation period corresponded to flux density ∆B = 2.5mT .

The phase coherence length was estimated to be 3µm. A recent different approach

involved a planar Si:P dopant ring [7]. The ring had an 85nm diameter and at

T = 100mK yielded a phase coherence length of ≈ 100nm. The AB oscillation

period was found to be ∆B ≈ 670mT . The width of the rings are kept small relative

to the diameter. The circuits presented here that are coupled strongly and share two

center paths could be physically represented as a single channel that is twice as wide
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as the rest of the ring. An extra third terminal would then be a minor modification

to the setup.

Another challenge for coupled rings is being able to individually address the

input flux states to each ring. Experimentally, this would be similar to the QHE.

Since the fluxes are always equal in magnitude, a 3D architecture could be employed

with embedded current-controlled solenoids. Another possibility is the use of nano-

magnets [8]. The “switching” of input states could then be driven by conventional

microelectronics. It is generally desirable to fabricate devices to use less area and

consume as little power as possible. In general, a ring that is enlarged in area can

provide a larger flux for a fixed magnetic field. On the other hand, this extra area

adds to cost and can lead to coherence problems if sized too large. Thus there is a

tradeoff between these two competing goals.

Current microelectronics have very hard limitations due to parasitics intro-

duced by the interconnects. These effects severely hamper switching time and power

consumption for synchronous systems, in large part due to the capacitive elements

charging and discharging. The QCA architecture mitigates this problem since the

propagation of the signal states is through the Coulomb interaction between cells.

The system operates in the ground state after a relaxation due to input boundary

conditions perturbing the system. This is to negate dissipative effects with the envi-

ronment. While the AB effect approach also computes in the ground state (provided

the energy gap is sufficiently large), since charge is transported there is no escaping

some of these parasitic issues. The measured outputs need to somehow be converted

back to a flux input. This likely will consume more power than QCA arrays due to

the dynamic power and charge leakage in some of the circuits with ≈ 10% transmis-

sion as a “low” output. However, it could potentially be faster for the higher order

logic operations. QCA still requires an array of cells, while the quantum network

approach proposed here requires at most two rings. Additionally, AB rings can be
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further implemented in a cellular automata framework [76]. One major advantage

the AB approach has over other schemes is that the perturbation of the system it-

self is an integral part of the computation. While other methods may try to keep

from disturbing the system, the interplay between the flux states and terminals here

provides the computing mechanism for the circuit.
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5. CONCLUSION

In this work, quantum networks of AB rings have been explored for sequen-

tial computing. They can potentially be used for replacing classical electronics in

a smaller space. Here the focus has been to construct circuits that can perform all

sixteen possible Boolean operations on two inputs. There is a total of four circuits

necessary to form the entire logic set and have been shown. The inputs are the flux

qubits, which can exist in a superposed state. Simple logic functions such as NOT

can be computed with only a single AB ring. Higher-order logic such as ≥ (implica-

tion) requires two rings that are coupled, leading to an interaction between the spin

states. A three-terminal configuration is necessary to perform these operations, as it

provides the “switching” capability to satisfy each of the output rules. The terminal

locations are adjusted in cooperation with tuning the flux. It is this interplay that

actually performs the computing. While the isolated ring starts in a superposed state,

the superposition must be collapsed first before any measurement for strong readouts.

For coupled AB rings the possibility of superposition depends on the entanglement

strength. Traditional transistor design for logic circuits relies on a truth table. When

more complicated logic is needed, such as XOR, a buildup from more simple gates

such as NOT is used. In the quantum network approach presented, there is no need

for such a buildup. All of the Boolean functions can be achieved with a single fun-

damental circuit. At most, two AB rings are necessary. Discounting speedup due to

decreased dimensions, the simplification of the circuit logic alone will lead to faster

calculations for any sequential operation. The circuits can be resized, consistent with

the scaling laws. While there are drawbacks, there are numerous advantages that

this architecture potentially offers. This paper has focused on highlighting them and

creating a blueprint for future work.
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SECTION

2. CONCLUSIONS

The purpose of this dissertation was to undertake a more in-depth examination

of Aharonov-Bohm ring quantum networks from an electronic engineering perspec-

tive. While much of the applied physics research in the field has focused on building

AB devices from new materials and measuring their effects, very little work has been

done in the area of circuit applications. Interferometer-type devices have been shown

to be very powerful from a logic perspective since optical-based computing was in-

troduced. As spintronic qubit-based quantum computing has struggled to become

relevant from a sequential computing point of view, there is a large vacuum for a

next-generation type of nanoelectronic architecture that is a natural evolution from

our current CMOS technology and fabrication processes. Quantum networks have

the potential to fit very well in this void due to their charge-based operation, and

fabrication techniques that are not exotic since they are related to well-known super-

conducting devices that have been around for decades now. Low temperature on the

order of hundreds of mK is a requirement for these effects to be observed and not be

washed out by the thermal noise, though this is a requirement for all nanoelectronic

architectures. The biggest issue to date, how to generate the magnetic fluxes in a

compact and practical manner, is just now beginning to be resolved with the advent

of nanomagnetic components that can be integrated on-substrate.

The first part of this dissertation focused primarily on how to characterize

the fundamental modes for the various coupled quantum network classes, then relate

them to higher-order scaled-up versions that will more closely mimic a fabricated

device at the nanoscale. The assumptions were such that the electron waveguides

are defect-free, so the partial waves elastically scatter, and the lattice is perfectly
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ordered to prevent localization of the electron wave. The scaling is related to a

classical rectangular waveguide where the transverse electric (TE) and transverse

magnetic (TM) modes are characterized by the indices m,n. These indices relate how

many half-integer wavelengths can fit within the waveguide, with the fundamental

mode being one of the side lengths a or b. So the lowest-order mode corresponds

to the largest size. In a quantum network, this is reversed. The minimum division

of spacing is the atomic spacing l, and the lowest-order mode corresponds to the

smallest fundamental network within its even or odd classification group. The higher

order modes are then scaled up by odd integer factors whose transport behaviors are

identical to their fundamental mode. There is an inherent finiteness on the number

of nodes M in the network, and one cannot assume the M → ∞ limit. This is no

different than the finiteness of length for the rectangular waveguide propagation of

different modes. So a mesoscopic ring consists of many 1D rings embedded within it

and behaves like a TEmn or TMmn class at a high frequency mode or at a higher-

order division of the side lengths. To demonstrate the lowest-order mode, the ring

must be divided down by the atomic spacing, hence fewer 1D rings. Three distinctive

classes of AB rings can then be demonstrated separately. When considering two

coupled rings, there are distinct charge distribution behaviors for the eigenmodes in

the different classes of networks. For a closed system, there can be two groups: even

or odd. In general, even classes of networks tend to want to store more charge in

the center common path. This can be adjusted by increasingly tuning the applied

magnetic flux to deplete the path. However, odd classes demonstrate an opposite

behavior of rejecting the storage of charge in the center path, unless tuned to a small

flux range. In both situations, less than a uniform bond charge is achieved when

averaging across the entire flux period. When a closed quantum network is opened

(perturbed) by attaching terminals, there is a charge redistribution in the network.

Normally when two rings are coupled, the electron wavefunction is spread out more.
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This is at the expense of an additional scattering path which causes the forward

transmission to generally suffer, leading to Anderson localization for the transport.

These observations create an interesting paradox between the bond charge and the

transport. Generally as the center path charge increases, the transport tends to

improve. As the charge decreases, the transport tends to be reduced or the favorable

transmission is restricted to a narrower flux range. Since coupled quantum networks

have the ability to store charge in their shared common paths, the ability to accurately

measure the circuit to determine whether a majority of charge is present or not could

be useful as a memory element.

The second portion of the dissertation made a comparison of the quantum net-

work model with two main concepts from spintronics: internal coupling interaction

(entanglement) and external coupling (perturbation). In spintronics, it is expected

that all of the qubits present in the system are entangled together and in a super-

position of states. The interaction then between the qubits is one of the inherent

mechanisms that provides the massive parallel computing potential. At the same

time, the system has to be very weakly or indirectly measured, or else the system’s

wavefunction collapses into one well-defined classical state. Both components are

considered as separate processes, with no restrictions of one to the other. The pa-

per started with a simple quantum network (single ring) in a superposition state,

and then coupled it together with another ring. At zero flux, the network is in a

superposition of the four possible states. However attempting to measure the sys-

tem produced an uncomputable result, with the test signal being completely reflected.

The entanglement was further adjusted (bond strength) at the same time the external

terminal coupling was tuned. While weak internal coupling preserves the superposi-

tion, stronger internal coupling largely destroys it. The observations were that out

of the four possibilities of strong and weak internal/external couplings, only a single

combination, strong internal (no superposition) and external coupling, was able to
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adequately measure a computation result decisively. This finding was juxtaposed

against the requirements commonly accepted for spintronics. The takeaway is that

having a perfect quantum computation in a closed system first followed by reading

the result turn out not to be valid for quantum networks, and therefore cannot be

valid in the general case. An interplay is found between the internal coupling and

the terminal configuration setup in order to observe valid logic circuit behavior.

The third segment of the dissertation was to take the standard quantum net-

work model of ballistic transport, and then adapt the well-known Thévenin theorem

principles to them. The motivation was originally to see if two phase coherent inputs

could produce an equivalent circuit where the amplified transmission was greater

than two. This consisted of analyzing the most basic quantum network unit, a single

ring, and comparing its various classes to various coupling configurations for multi-

ring networks. In typical classical electronic circuits, the equivalent configuration

requirements are more relaxed due to the scalar nature of electric potential and cur-

rent. However in quantum transport, the wave nature of the electron restrictions are

considerably more severe. The equivalence must match the vector nature of the wave-

function, which is highly-correlated to the electron band structure and the topology

of the network. In other words, the number and configuration of the scattering nodes

in the network directly determine the band structure. The energy and hence the

wavevectors must be the same between the equivalent models. In order to achieve

this, only models that share symmetry or classifications can be considered. At the

equivalent nodes, the state of the electron must be equal up to an arbitrary phase

factor. In the general case the theorem does not hold, but some special case examples

were provided that were able to match the requirements.

Finally, the dissertation finishes up by presenting a minimal functionally com-

plete set of quantum network gate circuits that are able to represent all sixteen of
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the Boolean algebra functions for two input variables. This was achieved by search-

ing through all the possible two-ring coupling and terminal configurations to end up

with four distinct circuits. A flux mapping scheme was employed to match each of

the four logical input states with a particular input flux state that produced the de-

sired charge transport behavior at the output terminal. Each individual circuit was

then able to perform different logic operations by simply changing the flux mapping

when necessary. The significance of the results are important because not only has

the AB-based quantum network architecture been shown to do higher-order com-

putation such as addition, it is also equally-capable of performing the lowest-level

algebraic operations. This indicates that, at a minimum, quantum networks can log-

ically form any device that current transistor-based logic can. This is in contrast

to other quantum computing schemes, that struggle with the algebraic operations.

The quantum network scheme for producing these was contrasted with some other

emerging architectures such as the Quantum Cellular Automata (QCA). The major

advantage quantum networks enjoy is that it is able to perform many of the more

complex Boolean functions with simply two rings. The phase modulation concept

and interaction between the rings provides the computing mechanism.

Quantum network-based technologies have a bright future ahead as the mate-

rial science research and fabrication processes continue to advance. With the recent

results of electrically long coherence lengths at reasonably achievable low tempera-

tures, there is room to grow this field in the experimental space. Clearly quantum

networks are ideally suited for sequential computing and generalized tasks. It is not

intended to replace the more specialized applications of spintronics, which is aimed

at highly-parallel tasks where there is no internal state-state coupling (i.e. a carry

bit operation). Both can exist in the same space, but the quantum network model is
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the correct platform for gaining general-purpose speedup by using quantum mechan-

ical principles. This dissertation work has paved some of the core groundwork and

concepts that can be advanced upon by researchers in the future.



APPENDIX A

NODE EQUATION DERIVATIONS FOR TRANSPORT
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This appendix is meant to be a more complete set of derivations for the original

theory proposed in Ref. [4]. Traditionally, quantum transport through any multiply-

connected space is calculated through the scattering (S) matrix approach. For a

simple network, such as single AB ring with two external terminals (two node prob-

lem), this approach is preferable. However, for more complicated networks, more

nodes are involved. This is reminiscent of how classical linear circuit systems are

solved. In the classical circuit theory, a given node in a circuit is associated with a

linear equation based on the conservation of current (Kirchoff current law, or KCL).

Therefore a corresponding quantum Kirchoff current law can be developed by re-

formulating the traditional S-matrix approach. In addition, one can further impose

the uncertainty principle at each node for a generalization of the conservation. It is

interesting to note that our node equation approach maps a quantum network into

coupled and flux-modulated harmonic oscillators for the given topology. This will be

further developed in this section.

A quantum network can be considered as a topology made up of nodes and

bond lengths which connect those that are adjacent. In each bond length of cross

section s, the Schrödinger equation must be satisfied. In the 8-node ring of Fig.

1.1(b), a node located at x = m is connected with nodes m + 1, m − 1,... through

bond lengths xm,m+1, xm,m−1,... with cross section sm,m+1, sm,m−1,... respectively.

Along the bond length xm,m+1, for example, the generalized 1D time-independent

solution in the presence of a magnetic field is given as:

ĤΨn(x) =

[
1

2me

(
−i~∇− e

c
A
)2

+ eV (x)

]
Ψn(x) = EnΨ(x) (A.1)

where Ĥ is the Hamiltonian operator, En are the eigenenergies for the system, and

V (x) is the periodic potential term for the lattice sites. The value of x = m is located

at node m, with positive x directed outward toward the other nodes node m+1, and
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so on. The classical current conservation (KCL) at node m requires:

∑
α

Im,mα = 0 (A.2)

In the case of the free electron (non-interaction) situation, we can assume ∀x : V (x) =

0. With this in mind, the general solution to Eq. (A.1) for the wavefunction between

nodes m and mα in the quantum network becomes:

Ψm,mα(x) = [Am,mαe
−ikx +Bm,mαe

ikx]e−iSm,mα (x)/~ (A.3)

where A and B are complex amplitudes, and eigenfunctions Ψn(x) = e±iknx. Note

that the eigenfunctions are of the exact form as the field-free Hamiltonian ĤFF =

−~2∇2/2me, but an additional phase factor Sm,mα(x)/~ is now introduced for the

wavefunction solution between the two nodes. Its origination can be explained due

to the electromagnetic potential functions A and V not being unique, and hence

can be transformed by using an arbitrary scalar function. If we transform from the

field-free case (A = 0), ĤFF undergoes a unitary gauge transformation into Ĥ given

in Eq. (A.1) as ÛĤFF Û
−1 = Ĥ, where Û is given as:

Û = ei
e
~
∫
V dt−A

c
·dl (A.4)

with scalar potential V assumed to be zero. Any wavefunction solution Ψm,mα(x) for

ĤFF is then simply transformed as:

ÛΨm,mα(x) = Ψm,mα(x)e
−iSm,mα (x)/~ (A.5)

The phase factor Sm,mα can be defined via the relation B = ∇ × A and help from

Stoke’s theorem (
∮
S
B·dS′ =

∮
C
A·dl) by the presence of a tangential vector potential
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A(x) in the case of a general closed loop as:

Sm,mα(x)/~ =
e

~c

∫ x

m

A(x′) · dx′ =
x

r

[
Φ

Φ0

]
(A.6)

where x/r is the angular displacement in radians, and Φ0 = hc/e in CGS units. This

phenomena is known as the Aharonov-Bohm effect. With this settled, we can rewrite

the wavefunction solution further:

Ψm,mα(x) = [(Am,mα+Bm,mα)cos(kx)−i(Am,mα−Bm,mα)sin(kx)]e
−iSm,mα (x)/~ (A.7)

Dividing through by (Am,mα +Bm,mα) will yield:

Ψm,mα(x) = Ψm,mα(m)[cos(kx) + tanδm,mαsin(kx)]e
−iSm,mα (x)/~ (A.8)

where we introduce the reflection coefficient Rm,mα = Am,mα/Bm,mα facing m as:

tanδm,mα = i

[
Bm,mα − Am,mα

Bm,mα + Am,mα

]
= i

[
1−Rm,mα

1 +Rm,mα

]
(A.9)

With all terms now introduced, we may turn our attention back to the KCL condition

of Eq. (A.2) for a moment. Since Im,mα = sm,mαJm,mα , where Jm,mα is the classical

current density within the bond and sm,mα is the cross-sectional area, we can extend

this concept to the quantum regime by introducing the probability current density:

jm,mα(x) =
~

2mei
[Ψ∗(x)∇Ψ(x)−Ψ(x)∇Ψ∗(x)] (A.10)

We can redefine Eqs. (A.3-A.8) generally as:

Ψm,mα(x) = ψm,mα(x)e
−iSm,mα (x)/~ (A.11)
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Therefore we are able to express Eq. (A.10) at m with use of the product rule as:

jm,mα(m) =
~

2mei

[
ψ∗
m,mα

(m)eiSm,mα (m)/~(e−iSm,mα (m)/~ψ′
m,mα

(m)

− i

~
ψm,mα(m)e−iSm,mα (m)/~S ′

m,mα
(m))

−ψm,mα(m)e−iSm,mα (m)/~(eiSm,mα (m)/~ψ∗′
m,mα

(m)

+
i

~
ψ∗
m,mα

(m)eiSm,mα (m)/~S ′
m,mα

(m))
]

=
−~
2mei

[ i
~
ψm,mα(m)ψ∗

m,mα
(m)S ′

m,mα
(m)

+
i

~
ψm,mα(x)ψ

∗
m,mα

(m)S ′
m,mα

(m)
]

=
−ρ(m)

me

S ′
m,mα

(m) (A.12)

where ρ(m) = ψm,mα(m)ψ∗
m,mα

(m) and is defined as the electron density. S ′ is said

to be the momentum since the momentum operator is defined as p̂ = −i~∇. By

considering a coupling strength parameter ∆m,mα as the ratio between the cross-

sectional areas, we can now write a quantum mechanical version of KCL for the

probability current as the conservation of momentum:

∑
α

∆m,mαjm,mα(m) =
∑
α

∆m,mα

−ρ(m)

me

S ′
m,mα

(m) = 0 (A.13)

The next task is to use this KCL expression to write a simpler set of relations that

can help lead to the solution for the wavefunction at all M sites in the network. If

we consider Eq. (A.10) again, it can be simplified in a slightly different way. If we

divide by Ψm,mα(x)Ψ
∗
m,mα

(x) it is possible to rewrite the KCL condition at node m

as:

~
2mei

∑
α

∆m,mα

[
Ψ′

m,mα
(m)

Ψm,mα(m)
−

Ψ∗′
m,mα

(m)

Ψ∗
m,mα

(m)

]
= 0 (A.14)
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By substituting Eq. (A.8) and going through a lot of manipulation, a simplified

equation can be written as:

∑
α

∆m,mα

[
i

~
S ′
m,mα

(m)− ktanδm,mα

]
= 0 (A.15)

Since we already know from Eq. (A.13) that the momenta terms zero out on their

own, we can now conclude the necessary condition that:

∑
α

∆m,mαtanδm,mα = 0 (A.16)

Eq. (A.15) holds up to the limit of uncertainty for the momenta of the partial waves

at the site. In general, the spatial derivatives must be characterized as:

∑
α

∆m,mαΨ
′
m,mα

(m) = λδmΨ(m) (A.17)

where λδm represents a delta potential. In our calculations, we can assume that this

potential is zero. Now we are finally in the position to write a primary node equation.

By starting with Eq. (A.8), we can sum over all the connected neighbors mα of m

and enforce the KCL condition of Eq. (A.16):

∑
α

∆m,mαΨm,mα(mα)e
iSm,mα (l)/~ = (∆m,m−1 +∆m,m+1)Ψ(m)cos(kl) (A.18)

where l = xm,α is the constant lattice spacing between sites m and mα. If we settle

for all coupling coefficients ∆m,mα = 1, then Eq. (A.18) can be simplified to a node

equation connecting a given node point (m) with its neighbors:

2cos(kl)Ψ(m)− e−iϕΨ(m− 1)− eiϕΨ(m+ 1) = 0 (A.19)
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where ϕ = (2π/M)(Φ/Φ0) and M is the number of sites in the AB ring. This general

solution is valid for any of the sites in the ring not connected to the external leads

(x = in, x = out). At these locations the boundary conditions need to account for

the extra scattering path, with phase factors ϕ = 0 since they are outside the flux

enclosed area of the AB ring. If we consider the cross sections of the ring to all

be s and only the leads being of different thickness s′, then ∆m,mα = 1 except for

∆in,lead = ∆out,lead = s′/s. This allows us to form:

[2cos(kl)−∆in,leadtanδin,leadsin(kl)] Ψ(in)− eiϕΨ(in+ 1)− e−iϕΨ(in− 1) = 0

[2cos(kl)−∆out,leadtanδout,leadsin(kl)] Ψ(out)− e−iϕΨ(out− 1)− eiϕΨ(out+ 1) = 0

(A.20)

Since path xin,lead is treated as the input channel, then tanδin,lead = i(1−Rin,lead)/(1+

Rin,lead) describes the reflected component. The path xout,lead is considered as the

output lead, therefore it is possible to impose a Bloch condition such that only an

outgoing wave exists: tanδout,lead = −i.

Now that the nodal equation approach has been fully developed, we can then

proceed to developing the techniques for determining the transport: the local 1D

Green’s function approach, and the global node equation method. Both of these will

be outlined in the following subsequent sections. Note that other physical models

are possible to formulate with the node equation formulation, such as a single-band

model where a potential is present, or semiconductor model. The form factor F in

our calculations would change to accommodate the new lattice conditions. We focus

on the free-electron model because it is the simplest, and gives a good approximation

of the behavior.
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THE SIMPLEST QUANTUM NETWORK: TWOTERMINAL AB RING

The node equation approach is indeed a partial-wave solution of the scattering

event at the nodal point, just like a classical network where at each wire there is a

partial current. Thus our node equation method accounts for the scattering events

at each site through partial wave decomposition. This partial wave scattering will

lead to Anderson localization as the number of scattering events is increased. Let

us begin by considering the Hamiltonian of Eq. (A.1) again. In deriving the nodal

formulations of the previous section, we have yet to consider the eigenenergies. Before

we do so, we need to more precisely describe the vector potential A. If a symmetric

gauge is chosen, i.e. A = 1
2
B × r, then A is entirely azimuthal. This is reflected in

Eq. (A.6). This allow us to define in the polar notation:

A =
Φ

2πr
ϕ̂ (A.21)

If we consider that our eigenfunctions Ψn(x) = e±iknx can also be written in polar

form in terms of angular momenta n as Ψn(ϕ) = e±inϕ, we can simply expand the

Hamiltonian to get the eigenenergies:

ĤΨn(x) =
1

2me

[
−~2

r2
∂2

∂ϕ2
+
i~eΦ
r2cπ

∂

∂ϕ
+

e2Φ2

4c2π2r2

]
Ψn(ϕ)

=
1

2me

[
n2~2

r2
− n

~eΦ
cπr2

+
e2Φ2

4c2π2r2

]
Ψn(ϕ)

=
~2

2mer2

(
n− Φ

Φ0

)2

Ψn(ϕ) (A.22)
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Figure A.1: Band structure (left) within the first Brillouin zone for the M = 8 AB
ring of Fig. 1.1(b). The corresponding persistent current is shown on
the right. Note that since the ground state energy is periodic, so is the
persistent current.

where kn = (2π/Ml)(n − Φ
Φ0
), Ml = 2πr and n = 1, 2, ...M . This allows us to write

the normalized eigenenergies and eigenfunctions as:

En =
2~2π2

meM2l2

(
n− Φ

Φ0

)2

(A.23)

Ψn(m) =
1√
M
e±i 2π

M
mn (A.24)

In Fig. A.1 we plot the eigenenergies for the M = 8 AB ring as shown in Fig. 1.1(b).

Naturally the band structure, and therefore the ground state energy, is periodic with

respect to Φ0, so as the energy levels within the band change by a single flux quantum,

the angular momentum must also change by a single unit in order to stay at the same

level.
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The eigenenergies are important because they lead to the calculation of the

persistent currents. The persistent current has been shown to be calculated as a

function of the ground state energy and flux as [40]:

I = −c∂EG

∂Φ
(A.25)

where EG is the ground state energy, or the sum of the energy levels up to the half-

filled (Fermi level) situation. To see why this works, let us consider the polar form

again. If we calculate the expectation value of this operator ⟨Ψn| − c∂EG

∂Φ
|Ψn⟩ within

the entire ring, we find:

∫ 2π

0

−cΨ∗
n(ϕ)

∂EG

∂Φ
Ψn(ϕ)rdϕ =

∫ 2π

0

−cΨ∗
n(ϕ)

∂Ĥ

∂A

∂A

∂Φ
Ψn(ϕ)rdϕ (A.26)

assuming our wavefunctions are normalized, we can further simplify by:

− c
∂EG

∂Φ
=

∫ 2π

0

−c 1

me

(
−i~∇− e

c
A
)(

−e
2πrc

)
Ψ∗

n(ϕ)Ψn(ϕ)rdϕ = I (A.27)

since the integrand is the current density (velocity times charge density), and hence

integrating over the entire ring must then obviously yield the total current. In Fig.

A.1 we plot the persistent current corresponding to the band structure under consid-

eration. It is important to note that when an extra electron is added to the network,

there is a phase shift of Φ0/2. This causes the current to change sign. Just as the

energy is periodic, the persistent current is also periodic with respect to the flux

quantum since the angular momentum shifts by a single number to remain in the

ground state.

With the energy and current now defined, it is possible to move on to calcu-

lating the transport for a simple two-terminal ring. We can use a Green’s function
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method, or perturbation method, to calculate the response of the system to an in-

coming electron on one of the leads. From the KCL relations we found previously,

we can generally express for each site m in the network (assuming m+1 is clockwise,

and flux is pointing into the page):

2FΨ(m)− e−iϕΨ(m− 1)− eiϕΨ(m+ 1) = f(m) (A.28)

where form factor (matrix element) F = cos(kl) and m = 1, 2, ...M and:

f(m) = δm,in[Ψ(leadin)− FΨ(in)] + δm,out[Ψ(leadout)− FΨ(out)] (A.29)

with perturbation terms corresponding to the wavefunctions at the leads:

Ψ(leadin) =

[
F + i

(
1−R

1 +R

)
sin(kl)

]
Ψ(in)

Ψ(leadout) = [F − isin(kl)] Ψ(out) (A.30)

If we introduce a Green’s function operator g into Eq. (A.28), we can write the

general solution as:

2Fg(m,m′)− e−iϕg(m− 1,m′)− eiϕg(m+ 1,m′) = δm,m′ (A.31)

Mathews and Walker [93] outline the general construction of the Green’s function for

a Hermitian operator. We will follow this approach. Generally the system can be

written as:

2F |Ψ⟩ − L |Ψ⟩ = |f⟩ (A.32)

where L is the Hermitian matrix describing the phase relations for the M node

equations, and |Ψ⟩ = |Ψ(1),Ψ(2), ..Ψ(M)⟩ is the state describing the wavefunction

at each node. If we expand |Ψ⟩ and |f⟩ in the eigenstates previously found in Eq.
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(A.24), we end up with the result:

∑
n

2cn(F − λn) |Ψn⟩ =
∑
n

dn |Ψn⟩ (A.33)

where λn = cos2π
M
(n−Φ/Φ0) are the known eigenvalues for L. The expansion coeffi-

cients cn can then be written as:

cn =
dn

2(F − λn)
=

1

2(F − λn)

∑
m′

Ψ∗
n(m

′)f(m′) (A.34)

by taking an inner product to produce the coefficient dn. Now that cn is known, we

can write the expansion for Ψ(m):

Ψ(m) =
∑
n

Ψn(m)

2(F − λn)

∑
m′

Ψ∗
n(m

′)f(m′) (A.35)

Therefore the wavefunction solution can be written as:

Ψ(m) =
M∑

m′=1

g(m,m′)f(m′) (A.36)

and the Green’s function can be explicitly written to be:

g(m,m′) =
1

2M

M∑
n=1

e±i 2πn
M

(m−m′)

F − cos2π
M

(n− Φ/Φ0)
(A.37)

For calculating the transport, we care only about the wavefunction solutions where

the leads connect to the ring, i.e. Ψ(in) and Ψ(out). We can therefore directly apply
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Eq. (A.36):

Ψ(in) = g(in, in)

[
i

(
1−R

1 +R

)
sin(kl)

]
Ψ(in)− g(in, out) [isin(kl)] Ψ(out)

Ψ(out) = g(out, in)

[
i

(
1−R

1 +R

)
sin(kl)

]
Ψ(in)− g(out, out) [isin(kl)] Ψ(out)

(A.38)

This allows one to construct a homogeneous set of linear equations in matrix form.

Setting the secular equation to zero will yield the non-trivial solutions, and hence

the reflection coefficient R. The transmission probability T , or |Ψ(out)|2, can then

be found by the simple relation T = 1− |R|2. To simplify the expression slightly, we

can write g(in, in) = g(out, out) = g(0), g(out, in) = g(out − in), and g(in, out) =

g∗(out− in) since the Green’s function is symmetric. We find for any arbitrary sized

ring M = L+N ,

R =
(1− F 2)[|g(L)|2 − g2(0)]− 1

(1− F 2)[|g(L)|2 − g2(0)] + i2
√
1− F 2g(0) + 1

(A.39)

T = 4[sin2Lβ + sin2Nβ + 2sin(Lβ)sin(Nβ)cos
2πΦ

Φ0

]
/

(
4[sin2Lβ + sin2Nβ + 2sin(Lβ)sin(Nβ)cos

2πΦ

Φ0

]

+[sin(Lβ)sin(Nβ)− 2(cos
2πΦ

Φ0

− cosMβ)]2
)

(A.40)

where β = kl. For a symmetric ring, where L = N , we can simplify this result into:

T =
4
[
sinMβ

2
cosπΦ

Φ0

]2
[−5

4
cosMβ + cosπΦ

Φ0
+ 1

4
]2 + sin2Mβ

(A.41)
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Now that the transmission have been firmly established, we can finally relate it to

the overall conductance G of the channel by the well-known Landauer formula:

G(E) =
e2

π~
T (E) (A.42)

where E is the total energy of the system. In our calculations, we assume we are at

the Fermi energy EF at T = 0K.



APPENDIX B

MATLAB CODE FOR TWO COUPLED AB RINGS
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MAIN FUNCTION

function [T,R]=solution(l,m,n,bond,input,outputs,spin)

%INPUT PARAMETERS

%l,m,n are lattice spacings for left,right,center

%bond is either ’s’ or ’d’, single or double

%input is the terminal number of input

%ter 1 is at bottom of left ring, numbering then clockwise

%outputs are ter numbers, can be [1 2..]

%spin is ’eq’ or ’op’

clear all;

close all;

clc;

%determine flux period

if strcmp(spin,’op’)

q=floor(1000*0.5*(l+n)/(l+2*n));

else

q=floor(1000*0.5*(l+n)/(l));

end

z=0.001*q; %normalization constant

%determine total number of atoms in network

if strcmp(bond,’d’)

atoms=(l-1)+(m-1)+2*n;
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else

atoms=(l-1)+(m-1)+(n+1);

end

M1=(l-1)+(n+1); %atoms in left ring

M2=(m-1)+(n+1); %atoms in right ring

%determine fermi level

f=ceil(atoms/2);

%intialize vectors

phi=zeros(1,2*q+1);

r=zeros(atoms,2*q+1);

k=zeros(atoms,2*q+1);

E=zeros(atoms,2*q+1);

T=zeros(atoms+1,2*q+1);

%compute general matrix and eigen energy coefficients

[matrix,coEff,X,phi1,phi2]=equations(l,m,n,bond);

coEff=matlabFunction(coEff);

%expansion by minors to calculate wave functions and R

syms X;

waveArray=expansion(matrix,X,input,outputs);

waveArray=matlabFunction(waveArray);
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%begin varying the flux

for inc=1:2*q+1

%calculating the fluxes

phi(inc)=-z+z*(inc-1)/q;

p1=(2*pi*phi(inc))/M1;

p2=(2*pi*phi(inc))/M2;

if strcmp(spin,’op’)

p2=-1*p2;

end

%substitute numerical vals for the symbolic vars

newCoeff=coEff(p1,p2);

r(:,inc)=sort(roots(newCoeff));

k(:,inc)=sort(acos(r(:,inc)));

E(:,inc)=sort(abs(k(:,inc)).∧2);

%define the cos for wave vector k at fermi level

%substitute the numerical values for the symbolic vars

newWaveArray=waveArray(cos(k(f,inc)),p1,p2);

%calculate P(transmission Input->Node)

Waves(:,inc)=newWaveArray;

T(outputs,inc)=abs(newWaveArray(outputs)).∧2;

R(inc)=newWaveArray(atoms+1);
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disp(inc);

end

figure(1);

colordef white;

plot(phi,E(1,:),’k:’,’LineWidth’,2); hold on;

plot(phi,E(2,:),’k’,’LineWidth’,2); hold on;

plot(phi,E(3,:),’k–’,’LineWidth’,2); hold on;

plot(phi,E(4,:),’k’,’LineWidth’,6); hold on;

plot(phi,E(5,:),’k:’,’LineWidth’,3); hold on;

plot(phi,E(6,:),’k’,’LineWidth’,3); hold on;

plot(phi,E(7,:),’k–’,’LineWidth’,3); hold on;

plot(phi,E(8,:),’k’,’LineWidth’,4); hold on;

grid on;

set(gca,’XMinorTick’,’on’);

xlabel(’Normalized Magnetic Flux’);

ylabel(’Normalized Energy’);

legend(’1’,’2’,’3’,’E′
F ,

′ 5′,′ 6′,′ 7′,′ 8′);

figure(2);

for in =1:(length(phi)-1)

Etot(in)=2*E(1,in)+2*E(2,in)+2*E(3,in)+2*E(4,in);

Etd(in)=2*E(1,(in+1))+2*E(2,(in+1))+2*E(3,(in+1))+2*E(4,(in+1));

I(in)=-(Etd(in)-Etot(in))/0.001;

end

x = -z:.001:(z-.001);
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plot(x,I,’b-’,’LineWidth’,2);

ylabel(’Normalized Persistent Current’);

xlabel(’Normalized Magnetic Flux’);

axis([-z z -10 10]);

set(gca,’XMinorTick’,’on’);

grid on;

figure(3);

plot(phi,T(outputs,:),’LineWidth’,2); hold on;

plot(phi,abs(R).∧2,’k’,’LineWidth’,2); hold on;

grid on;

axis([-z z 0 1]);

set(gca,’XMinorTick’,’on’);

xlabel(’ormalized Magnetic Flux’);

ylabel(’ransmission Probability’);

figure(4);

plot(phi,abs(Waves(5,:)),’k–’,’LineWidth’,2); hold on;

plot(phi,abs(Waves(6,:)),’k’,’LineWidth’,2); hold on;

plot(phi,abs(Waves(7,:)),’k:’,’LineWidth’,2); hold on;

grid on;

set(gca,’XMinorTick’,’on’);

xlabel(’Normalized Magnetic Flux’);

ylabel(’Wavefunction Magnitude’);
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SUPPLEMENTAL FUNCTION: NODE EQUATION SETUP

function [matrix,coeff,X,phi1,phi2]=equations(l,m,n,bond)

syms X phi1 phi2;

P1=-exp(j*(phi1));

P2=-exp(-j*(phi1));

P3=-exp(j*(phi2));

P4=-exp(-j*(phi2));

P5=-exp(j*(phi1-phi2));

P6=-exp(j*(phi2-phi1));

if strcmp(bond,’d’)

matrix=sym(zeros((l-1)+(m-1)+2*n));

else

matrix=sym(zeros((l-1)+(m-1)+(n+1)));

end

%fill left ring rows

for i=1:(l-1)

matrix(i,i)=2*X;

matrix(i,i+1)=P1;

if i==1

matrix(i,l+m)=P2;

else

matrix(i,i-1)=P2;
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end

end

%fill right ring rows

for i=l+1:l+m-1

matrix(i,i)=2*X;

matrix(i,i+1)=P3;

matrix(i,i-1)=P4;

end

%fill top and bottom nodes of common path rows

if strcmp(bond,’d’)

matrix(l,l)=4*X;

matrix(l+m,l+m)=4*X;

else

matrix(l,l)=3*X;

matrix(l+m,l+m)=3*X;

end

matrix(l,l-1)=P2;

matrix(l,l+1)=P3;

matrix(l+m,1)=P1;

matrix(l+m,l+m-1)=P4;

if n==1

if strcmp(bond,’d’)

matrix(l,l+m)=2*P5;

matrix(l+m,l)=2*P6;

else
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matrix(l,l+m)=P5;

matrix(l+m,l)=P6;

end

%fill middle nodes in common path rows

else %n > 1

if strcmp(bond,’d’)

%fill in phases for common paths at bottom end

matrix(l+m,l+m+1)=P6;

matrix(l+m,l+m+2)=P6;

%top end

matrix(l,(l-1)+(m-1)+2*n-1)=P5;

matrix(l,(l-1)+(m-1)+2*n)=P5;

for i=l+m+1:2:(l-1)+(m-1)+2*n-1

matrix(i,i)=2*X;

if i==l+m+1

%other attached nodes first

matrix(i,i-1)=P5;

matrix(i,i+2)=P6;
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%node to its right in other path

matrix(i+1,i+1)=2*X;

matrix(i+1,i-1)=P5;

matrix(i+1,i+3)=P6;

elseif i==(l-1)+(m-1)+2*n-1

%other attached nodes first

matrix(i,l)=P6;

matrix(i,i-2)=P5;

%node to its right in other path

matrix(i+1,i+1)=2*X;

matrix(i+1,l)=P6;

matrix(i+1,i-1)=P5;

else

matrix(i,i+2)=P6;

matrix(i,i-2)=P5;

matrix(i+1,i+1)=2*X;

matrix(i+1,i+3)=P6;

matrix(i+1,i-1)=P5;

end

end

else
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%bottom end

matrix(l+m,l+m+1)=P6;

%top end

matrix(l,(l-1)+(m-1)+(n+1))=P5;

for i=l+m+1:(l-1)+(m-1)+(n+1)

matrix(i,i)=2*X;

matrix(i,i-1)=P5;

if i==(l-1)+(m-1)+(n+1)

matrix(i,l)=P6;

else

matrix(i,i+1)=P6;

end

end

end

end

%compute the det, extract polynomial coefficients

Det=simplify(det(matrix));

[c,t]=coeffs(Det,X);

coeff=sym(zeros(1,(l-1)+(m-1)+(n+1)+1));
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for i=1:length(t)

%zero power

if t(i)==1

if strcmp(bond,’d’)

coeff((l-1)+(m-1)+2*n+1)=c(i);

else

coeff((l-1)+(m-1)+(n+1)+1)=c(i);

end

else

if strcmp(bond,’d’)

coeff((l-1)+(m-1)+2*n+1-coeffs(diff(t(i))))=c(i);

else

coeff((l-1)+(m-1)+(n+1)+1-coeffs(diff(t(i))))=c(i);

end

end

end

SUPPLEMENTAL FUNCTION: TERMINAL EXPANSION BYMINORS

function ret=expansion(matrix,x,input,outputs)

%EXPANSION BY MINORS FOR CALC OF WAVE FUNCTIONS

%input arguments: matrix - general matrix w/o terminals

% x - cos(ka) at fermi level

% input - terminal number of the input

% outputs - vector holding output terminal numbers

%output arguments: ret - vector holding wave functions numbered in
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%successive order, with Reflected wave at end

%Need to use these for the find/nnz’s that can’t accept symbols

%Convert the symbols into double’s with double(sym(matrix(...))

X=1;

phi1=1;

phi2=1;

%apply the output terminals to matrix

for i=1:nnz(outputs)

matrix(outputs(i),outputs(i))=matrix(outputs(i),outputs(i))+1i*sqrt(1-x.∧2);

end

%determine dimensions of original matrix

[rows,cols]=size(matrix);

%find the non zeros in the input’s row

nonZeros=find(double(subs(matrix(input,:))));

%define subMatrices vector

subMatrices=sym(zeros(rows-1,(cols-1)*nnz(double(subs(matrix(input,:))))));

for y=1:nnz(double(subs(matrix(input,:))))

%get the subMatrix

tempMatrix=matrix;

tempMatrix(input,:)=[];
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tempMatrix(:,nonZeros(y))=[];

%add it into the vector space

subMatrices(1:rows-1,((cols-1)*(y-1)+1):((cols-1)*(y-1)+(cols-1)))=tempMatrix;

end

%now calculate D and R

num=0; %temp variable

%sum up the expansion by minor terms

for i=1:nnz(double(subs(matrix(input,:))))

%omit the input terminal cell

if nonZeros(i) =input

%check to see if we’re adding or subtracting

if mod(nonZeros(i),2)==0

num=num-matrix(input,nonZeros(i))*det(subMatrices(1:(rows-1),...

((cols-1)*(i-1)+1):(cols-1)*(i)));

else

num=num+matrix(input,nonZeros(i))*det(subMatrices(1:(rows-1),...

((cols-1)*(i-1)+1):(cols-1)*(i)));

end

end

end

%if the input is odd, flip the sign of the sum of terms

if mod(input,2) =0
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num=-1*num;

end

D=((num/(det(subMatrices(1:(rows-1),((cols-1)*(find(nonZeros==input)-1)+1)...

:(cols-1)*(find(nonZeros==input))))))-matrix(input,input))*1i/sqrt(1-x.2);

R=(1-D)/(1+D);

%now calculate wave functions

waveInput=1+R;

V=matrix(:,input);

V(input,:)=[];

V=-1*V;

%solve nullSpace A*x=V for x with A \ V command

nullSpace=(subMatrices(1:(rows-1),((cols-1)*(find(nonZeros==input)-1)+1)...

:(cols-1)*(find(nonZeros==input)))) \ V;

%create a vector to hold all wave functions, with R in last cell

waveArray=sym(zeros(rows+1,1));

waveArray(rows+1)=R;

waveArray(input)=waveInput;

for i=1:rows-1

if i >= input

waveArray(i+1)=waveInput*nullSpace(i);
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elseif i < input

waveArray(i)=waveInput*nullSpace(i);

end

end

%return the waveArray

ret=waveArray;
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[76] C.H. Wu and C.A. Cain. A non-qubit quantum adder as one-dimensional cellular
automaton. Physica E, 59:243–247, 2014.



127
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