
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Fall 2014 

Modeling and optimization of energy storage system for Modeling and optimization of energy storage system for 

microgrid microgrid 

Xin Qiu 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Electrical and Computer Engineering Commons 

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering 

Recommended Citation Recommended Citation 
Qiu, Xin, "Modeling and optimization of energy storage system for microgrid" (2014). Doctoral 
Dissertations. 2355. 
https://scholarsmine.mst.edu/doctoral_dissertations/2355 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2355?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2355&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


MODELING AND OPTIMIZATION OF ENERGY STORAGE SYSTEM FOR

MICROGRID

by

XIN QIU

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

2014

Approved
Dr. Mariesa L. Crow, Advisor

Dr. Jonathan W. Kimball
Dr. Pourya Shamsi
Dr. Mehdi Ferdowsi

Dr. Andrew Curtis Elmore



c© 2014

XIN QIU

All Rights Reserved



iii

PUBLICATION DISSERTATION OPTION

This dissertation has been prepared in publication format. Section 1.0, pages

1-16, has been added to supply background information for the remainder of the dis-

sertation. Paper 1, pages 17-45, is entitled “A Field Validated Model of a Vanadium

Redox Flow Battery for Microgrids”, and is accepted by the Institute of Electrical and

Electronics Engineers (IEEE) Transactions on Smart Grid, Vol. 5, Issue 5, Pages

1592-1601. Paper 2, pages 46-67, is entitled “A Balance-of-Plant Vanadium Redox

Battery System Model”, and is prepared in the style used by the IEEE Transactions

on Sustainable Energy as submitted on August 18, 2014. Paper 3, pages 68-90, is en-

titled “Heterogeneous Energy Storage Optimization for Microgrids”, and is prepared

in the style used by the IEEE Transactions on Smart Grid, as submitted on October

23, 2014.



iv

ABSTRACT

The vanadium redox flow battery (VRB) is well suited for the applications

of microgrid and renewable energy. This thesis will have a practical analysis of the

battery itself and its application in microgrid systems.

The first paper analyzes the VRB use in a microgrid system. The first part

of the paper develops a reduced order circuit model of the VRB and analyzes its

experimental performance efficiency during deployment. The statistical methods and

neural network approximation are used to estimate the system parameters. The sec-

ond part of the paper addresses the implementation issues of the VRB application in a

photovoltaic-based microgrid system. A new dc-dc converter was proposed to provide

improved charging performance. The paper was published on IEEE Transactions on

Smart Grid, Vol. 5, No. 4, July 2014.

The second paper studies VRB use within a microgrid system from a practical

perspective. A reduced order circuit model of the VRB is introduced that includes the

losses from the balance of plant including system and environmental controls. The

proposed model includes the circulation pumps and the HVAC system that regulates

the environment of the VRB enclosure. In this paper, the VRB model is extended to

include the ESS environmental controls to provide a model that provides a more real-

istic efficiency profile. The paper was submitted to IEEE Transactions on Sustainable

Energy.

Third paper discussed the optimal control strategy when VRB works with

other type of battery in a microgird system. The work in first paper is extended. A

high level control strategy is developed to coordinate a lead acid battery and a VRB

with reinforcement learning. The paper is to be submitted to IEEE Transactions on

Smart Grid.
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1. INTRODUCTION

According to the US Department of Energy, the smart grid generally refers to

the class of technologies being introduced to bring utility electricity delivery systems

into the 21st century, using autonomous control [1]. The smart grid concept is of-

ten predicated on the widespread evolution of autonomous microgrids. The main

envisioned features of the future distributed microgrid system include: automatic

controls for electric power at the customer side, a power distribution infrastructure

that encourages renewable energy development, local energy storage, and customer

loads that are capable of responding to changes in the grid. The smart microgrid of-

fers many benefits to utilities and consumers, mostly seen in improvements in energy

efficiency on the electricity grid.

MILITARY forward base camps depend almost entirely on electric power from

the local (indigenous) utility or from the camps diesel generators to supply their needs.

For tactical installations, this is a significant risk factor as electricity from local utili-

ties may be unreliable and prone to intermittent blackouts, which could compromise

critical mission facilities. Diesel generators rely on fuel, which must be transported

from storage to the point of use, and may be subject to transportation delays and

other competing, mission-critical demands. Integration of renewable energy and ad-

vanced energy storage technologies may mitigate the risks and uncertainties of FOB

electrical distribution systems. The proposed advanced base camp electrical power

system as figure 1.1 will include a distributed microgrid system that incorporates

capabilities to monitor and control the operation of distributed resources, including

solar, wind, utility grid, diesel, and energy storage units, to dispatch the available

resources to meet mission critical loads [2].

Energy storage technology is a critical aspect of future development of portable,

scalable microgrid technology. A variety of energy storage technologies have been
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extensively reviewed in [4, 5]. The authors discussed the chemical background, man-

ufacturing process, application feasibilies and economical potential etc. Current en-

ergy storage technologies such as lead acid batteries contain low energy density at a

high mass ratio, require considerable maintenance, and suffer from a limited useful

lifetime when deep-cycled on a daily basis [3]. Vanadium redox batteries (VRBs) have

recently emerged as a viable energy storage technology due to their high efficiency,

high scalability, fast response, long lifetime, and low maintenance requirements. The

introduction will talk about basic mechanism of a chemical battery, electrochemistry
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and structure of VRB, previous VRB models, a balance-plant view of VRB and het-

erogeneous energy storage optimization.

1.1. BATTERY ELECTROCHEMICAL PRINCIPLES

A battery is a device that can transform the chemical energy to electrical energy

or maybe the reverse way. The electrons are produced from the oxidation and reduc-

tion reaction that occurs in the battery. If decomposed to possibly smallest parts but

still representative of the battery operation mechanism, it is made up of several so

called cells connected in serial or parallel way. The cell is the term more commonly

referred to as when the electrochemical aspects of the battery are discussed [6].

Normally a cell can be separated into two half-cells for better analysis. Each

cell contains the chemical solution, namely electrolyte and an electrically conductive

material immersed in the electrolyte, namely electrode. There is a layer made up of

a membrane or a salt bridge, which splits and also intermediates the electrolytes. It

does not allow the electrons to pass but can partly or wholly transfer the ions between

the two electrolytes in terms of the battery application. The electrodes do not touch

each other and only has the electrical connection through the electrolyte. When the

chemical reaction starts, species from one half-cell will lose the electrons and another

gains them. The party losing the electrons has the oxidization with it and the gaining

the reduction. When combined together, the reaction is called reduction-oxidization

or simply redox. Moreover, the electrode where the anions (negatively charged ions)

go to is the anode or negative electrode and the one where the cations go to is the

cathode or positive electrode.

Figure 1.2 illustrates the cell operation during redox reaction. One copper bar

and one zinc bar are dipped in the sulfates of the respective metals. The electrolytes

are separated by a porous membrane. When the cell is discharging as figure 1.2 (a),

the electrons leave the anode that is oxidized and the cathode that is reduced gains

the electrons. Direct current is established to supply the load and movement of anions
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Figure 1.2. Illustration of the Cell Operation

and cations complete the circuit. The reaction at the anode half looks like

Zn→ Zn2+ + 2e (1)

The reaction at the cathode half is as

Cu2+ + 2e→ Cu (2)

The overall reaction is

Zn + Cu2+ → Cu + Zn2+ (3)

When the cell is being charged as Figure 1.2(b), the electron flows in the reversed di-

rection and the positions of anode and cathode are interchanged. The anode becomes

the positive electrode and the cathode becomes the negative one.

The reaction at the cathode half is

Zn→ Zn2+ + 2e (4)
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The reaction at the anode half is

Cu→ Cu2+ + 2e (5)

The total reaction is

Zn + Cu2+ → Cu + Zn2+ (6)

1.2. VRB ELECTROCHEMISTRY AND STRUCTURE

The chemical reactions occurs in the two VRB cell are as

V O+
2 + 2H+ + e− ⇔ V O2+ + H2O (7)

V 2+ ⇔ V 3+ + e− (8)

The total reaction is as

V 2+ + V O+
2 + 2H+ ⇔ V O2+ + V 3+ + H2O (9)

The VRB takes advantage of the vanadium ions that can exist in 4 valances so that

in each half reaction, vanadium ions only change in valence other than state and the

electrode does not take part in the reaction. One good thing about this is that there

is no deposit any more. Most of the active species are stored in the external tanks,

so electrolytes should be pumped in and out the battery cells continuously.

A vanadium redox battery has more components than a cell encapsulation, but

the key part of an VRB is still its cell stack. A cell stack contains several cells com-

pressed together to scale up the output voltage. Each cell has the structure as Figure

1.3, which includes bipolar plate, electrode, ion exchange membrane. Unlike most of

the conventional batteries and even redox flow batteries, the electrodes do not partic-

ipate in the chemical reaction and they are not considered as active species. Usually
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metals like Au, Sn, Ti or nonmetal like carbon make good material for electrodes.

Other desirable properties for electrodes include electrochemical reversibility, decent

conductivity and a sturdy structure which ease the electrolyte flow and mitigate the

polarization. The bipolar plate undertakes the compressive forces to seal the cell and

keep the electrodes felt in proper shape. It has winded channels embedded to provide

the channel for electrolyte solution and heat exchange fluid. The desired features of a

bipolar plate include adequate electrical conductivity, high mechanical performance

and strong chemical resistance to the acid solution. Normally, the plate material can

be either metal or conductive polymer like carbon-filled composite. Ion exchange

membrane is the pivotal part of the cell. It works as the divide between the positive

and negative electrolyte while the passage for the proton to move through to sustain

the electroneutrality of the electrolyte solutions. Due to its functions, an ion exchange
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Figure 1.4. VRB Cell Stack Assembly

membrane is expected to inhibit the vanadium from traversing and distinguish pro-

ton from other ions and transmit them at higher efficiency. Moreover, it should has

sufficient mechanical and chemical strength to resist the corrosion and oxidation [7].

Normally, a single cell would have reduction potential of around 1.5V, which

does not fit in most of the power system application. To make the battery practical,

multiple cells would be stacked up to push up the voltage and power output. A

possible cell assembly implement is shown as Figure 1.4. The bipolar plates, current

collectors and end plates are tightened by the bolts and nuts. This kind of structure

facilitates the potential further expansion of the stack. Just loosing the bolts and re-

tightening them, the room for the new cell would be created. The structure is derived

from a common fuel cell stack except for that instead of gaseous reactants, liquid

reactants flow through. For a traditional battery, the cell (stack) should be capable

of representing the most part of the physical structure and chemical mechanism; it

is not the case with the VRB though. The redox flow battery (RFB) needs far more

accessories to carry off the energy conversion and transmission. Figure 1.5 shows

a commercial VRB process assembly, which includes the stack module, electrolyte

solutions, electrolyte tanks, electrolyte circulation pumps, transport pipelines, heat
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exchanger, battery controller, AC-DC inverter and other components such as sensors,

relays and contactors. The tanks, electrolyte solution, circulation pumps and pipelines

constitute the loop of electrolyte recycling. The heat exchange will send out the

heat from the reaction from the battery cell. Sensors monitor the system states and

send the data to the controller, which can make diagnosis and control decision. The

controller also has a serial port as interface for the operators to read the system states.

The AC-DC inverter converts the battery DC voltage to AC voltage which can supply

the circulation pumps. The pumper driver is also included in the controller.

1.3. PREVIOUS VRB MODELS

VRB is a synergy product of the knowledge from electrochemistry, electricity

and mechanics. Each component supports and interacts with each other to make

a workable system. A good model should be able to illustrates the process of each

MonitorMonitor
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Tank
+
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Figure 1.5. VRB Process Assembly
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subsystem and also combine all of them to make a complete and conherent system.

Cell stack is the core of the VRB, which covered the electrochemical regards. The

other important subsystem is the electrolyte delivery, which includes the eletrolyte,

the storage tank and the circulation pump. A comprehensive model is proposed in

[8], which consists of an electrochemical part handling the cell stack and a mechanical

part covering the pipeline and the pump. Various ion concentrations determine the

component states. The author went through all the details extensively so that the

model is capable of explaining the major aspects of the VRB system.

For the application to the power system, however, the model from [8] does not

quite fit in. First, the modeling procedure requires the knowledge of the dimensions

and structure of several parts and its analysis with finite element method (FEM). Its

not practical for the VRB users to measure the part dimensions. The need for the

FEM also weakens the feasibility and universality of the modeling technique. When

the VRB is part of a electrical power system, one cares more about its performance on

the load leveling capability, the power quality regulation and its efficiency. The model

would be more straightforward and compatible with other electrical components if it

is converted to an electrical circuit. Chahwan et al offered one simple model which

meets the above mentioned expectations [9]. In the model, all the battery elements

are converted to electrical circuit components. As shown in Figure 1.6 , a controlled

voltage source characterizes the cell stack dynamics and the control input is the state

of charge of the VRB. The variety of losses is modeled by resistors and a current

source. The cell stack is the place where the reaction happens and therefore the

source of the energy. It determines the maximum terminal voltage and the power

output. Deemed as a voltage source, the open circuit voltage and thevenin equivalent

resistance have to be evaluated.

The open circuit voltage is the electromotive force, which is the equilibrium

potential difference of the electrodes when there is no current through the cell. The

equilibrium potential is calculated by Nernst equation. As for VRB, at the anode,
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the equations look like

E+ = E+′ +
RT

nF
ln
CV O+

2
C2

H+

CV O2+

(10)

At the cathode

E− = E−′ +
RT

nF
ln
CV 3+

CV 2+

(11)

The overall electromotive force is

E = E+ − E− = E0 +
RT

nF
ln

[
CV O+

2
C2

H+

CV O2+

CV 2+

CV 3+

]
(12)

(12) where E+′ and E−′ are the standard reduction potentials of each half cell, 1.0V

and -0.26V respectively. R is the universal gas constant. T is the absolute tempera-

ture. n is the transferred electrons per mole of reacting species ( n=1 for VRB) and

F is Faradays constant [10].



11

The state of charge ( SOC ) can be defined as the proportion of low valence

vanadium ions to the total, denoted by the concentration, the formula is

SOC =
CV 2+

CV 2+ + CV 3+

=
CV O+

2

CV O+
2

+ CV O+
2

(13)

Take equation (13) to (12), the equation (12) becomes

E = E+ − E− = E0 +
RT

nF
ln

[
SOC2C2

H+

(1− SOC)2

]
(14)

To eliminate the dependency on the ion concentration, two simplifications are made.

First, the proton concentration is neglected, which will cause a little discrepancy

between the model and the experiment data [10]. Second, the state of charge is

redefined in the practical manner which replaces the concentration with the actual

energy. The new SOC formula is as

SOCt+∆t = SOCt + ∆SOC

∆SOC =
∆E

EC

=
PS∆t

EC

(15)

where ∆t is the simulation time step, Ps is the power output of the cell stack or

the voltage source before the impedance, Ec is the total energy capacity of the VRB

measured in the unit of . The open circuit voltage now looks like

E = E+ − E− = E0 +
RT

nF
ln

[
SOC2

(1− SOC)2

]
(16)

When the VRB runs with the load, the battery terminal voltage diverges from the

open circuit voltage. It is caused by a variety of losses. The loss within the stack is

denoted by Rreaction . The one between the stack terminal and the load is denoted by

Rresistive . There is also the parasitic load modeled by the controlled current source.

Rresistive consists of resistance on the terminal wire and terminal connection. Rreaction
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includes more elements, including activation polarization, concentration polarization

and ohmic polarization [6]. The explanations are listed as follows.

• The activation polarization is the extra voltage to initiate and continue the

chemical reaction and electron transfer.

• The concentration polarization is due to the concentration difference between

the electrode area and the bulk solution.

• The ohmic polarization represents sum of the resistance of the bipolar plates,

electrode, ion selective membrane, electrolyte and the active mass in the elec-

trolyte and so on.

Normally, the evaluation of the above mentioned losses relies on the experiment

because the mathematical approach is very complex even if the physical parameters

of the battery are known.

In [9], the parasitic loss is characterized by a fixed resistance and a current

source whose value is calculated by equation (17)

Ipump = 1.011
Istack
SOC

(17)

From the experiment, it was observed that the circulation pumps do not operate in the

linear way described above. The model also overlooks the fact that VRB has to work

optimally under the temperature between 5◦C to 40◦C . The air-conditioner that

might be turned on should also be taken into consideration as part of the parasitic

loss. The detailed analysis of the parasitic load is one of the major contributions of

this dissertation.

1.4. A BALANCE-OF-PLANT VIEW OF VRB

One of the most important parameters in microgrid operation is the ability to

predict the power and energy characteristics of any energy storage system. To achieve
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optimal use of renewable energy resources and energy storage, the energy storage sys-

tem must be modeled accurately. This not only includes modeling of current-voltage

characteristics, but must also include all parasitic loads, where the term “parasitic

load” refers to the power consumed by the system under no load. The parasitic

load includes the power consumption of the ESS balance of plant systems, including

the circulation pumps, the heating, ventilation, and air conditioning (HVAC) unit,

controllers, and sensors.

In most applications, the VRB is deployed in a standalone enclosure so that the

operating temperature can be more closely regulated. Different storage devices have

different operating ranges. For example, a valve-regulated lead acid (VRLA) battery

has an operating range between 20◦C and 45◦C, whereas the VRB has an operating

range between 5◦C and 30◦C [11]. Therefore, the environmental modeling and control

for these two ESS are quite different.

There is little information in the open literature regarding modeling of ESS en-

closure environments. However, there has been numerous studies to predict building

energy consumption and these can be extended to enclosure HVAC analysis. Current

approaches can be divided into two categories: thermology methods and empirical

methods.

The thermology method considers the thermal state variation of each component

and their influence upon each other. Partial differential equations or other similar

mathematical functions are typically used depending on how precise the modeling

is intended. Common inputs to these models include weather conditions, building

material and structure, human activity, and the HVAC system.

Empirical methods are used when only a generalized output of the system model

is required, such as energy consumption, rather than detailed model characteristics.

An empirical method can be used to correlate the desired output to the effective input

variables if the intermediate processes are not required. Empirical models based on

artificial neural networks (ANN) have been widely researched and applied to energy
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consumption related problems [12]. The ANN modeling method is attractive due to

its ability to handle model nonlinearities and self-adaption attributes.

In this dissertation, we revise the circuit model of the VRB and present an ANN-

based model specifically designed for estimating the parasitic energy consumption

of the balance of plant including the enclosure environment and the HVAC. This

enhanced model of the VRB energy storage system can be used to better estimate

on-site performance when connected to a microgrid.

1.5. HETEROGENEOUS ENERGY STORAGE OPTIMIZATION

The flexible structure and large penetration of distributed energy resources

(DER) in microgrids give rise to different operation and control strategies than those

of the traditional power systems [13]. Having a diversity of resources in a microgrid is

more economic, more secure, and sustainable than relying on a single technology re-

source; therefore, the future microgrid will most likely rely on a mixture of renewable

and nonrenewable types of distributed generation (DG) as well as energy storage. In

the future distribution microgrid, multiple types of DG technology and energy storage

systems will be connected simultaneously. But coordinating multiple energy storage

types can be challenging due to their differences in response times, control mechanics,

and charging/discharging efficiencies. The resource variability from the distributed

solar PV and wind turbines makes it even harder to manage energy balance. Most

research to date has considered only a single energy storage technology at a time

and assumes that they operate similarly. However, different types of energy storage

technologies have different capabilities, which can be highly beneficial if they are co-

ordinated properly, so that one type of energy storage characteristics complements

the others. Due to the combination of renewable energy variation and the uncertainty

of local loads, energy storage becomes attractive for maintaining a high and relatively

constant load factor and reliable consumer service.



15

A microgrid with only one energy storage system (ESS) has the advantage of

simplicity of control, but may suffer from low efficiency and degradation of lifetime

by forcing the ESS to accommodate all power and energy needs. For example, in

[14] it was shown that a commercial charge controller designed for lead-acid batteries

could not exploit the full potential capability of the deployed VRB, especially at low

loads. A microgrid with multiple identical ESS can provide more flexibility, but the

individual units may still suffer from many of the same constraints. By introducing

multiple types of ESS, a wide range of operating conditions can be met at increased

efficiencies. However, heterogeneous ESS suffer from the challenges of incompatible

charge controllers, different power/energy versus efficiency characteristics, and dif-

ferent response rates. This result leads to the supposition that the deployment of a

variety of ESS could potentially provide better efficiency and reliability if properly

interleaved and controlled.

Microgrid control can be divided hierarchically into low level and high level

controls. Low level control includes regulating the voltage, current and frequency of

the power grid and is typically achieved at the power electronics interface. Higher

level controls set the control references for the lower level, based on a variety of

considerations such as maintaining an energy reserve, maximizing the overall system

efficiency, or optimizing the local power production based on the market price if net

metering is presumed.

Most commercially available battery controllers use a form of charge control in

which the current input/output of the battery is determined by the bus voltage. In

this approach, all batteries connected to the same bus will charge and discharge iden-

tically regardless of their individual characteristics. However, to achieve heterogenous

control, each ESS must be regulated individually based on a control specific to the

capacity, SOC, and type of storage system in use.

Higher level control governs the microgrid power and energy management (PEM).

In addition to delivering operational orders to the components, such as synchroniza-
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tion in the grid-tied mode or frequency regulation in the stand-alone mode, load-

source matching, voltage and frequency regulation, and fault management, the high

level control also sets the long term goals and determines the proper operational strat-

egy. The strategies may include minimization of the overall power losses, fuel costs,

or power import from the main grid, among others. Due to the different structure and

composition from the traditional power grid, microgrid PEM faces other challenges

and difficulties [13]. One of the major challenges is the small scale and volatility of

the energy resources, which often requires a considerable level of prediction in the op-

timization process. Off-line optimization such as dynamic programming (DP) can be

algorithmically complex and thorough, but suffers from the inaccuracies inherent in

predicting behavior. An online optimization can react to new information, but must

be computationally efficient to run in real-time. Reinforcement learning (RL) in its

simplest form can solve the Markov Decision Process (MDP) problem by DP but has

a “learning” part of which DP is incapable. There are several RL applications that

have been proposed for power system optimization. For example, [15] implemented a

multiple object reinforcement learning method to minimize the fuel cost and enhance

the voltage stability at the same time. In [16], a multi agent system was proposed

to decrease the power losses of a microgrid, but the battery constraints were not

very rigid and allowed uncontrolled charging between the batteries. In this thesis,

we propose an interconnection topology and an RL-based algorithm to optimize the

coordination of different ESS in a microgrid.
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A Field Validated Model of a Vanadium Redox Flow Battery for Microgrids

Xin Qiu, Tu A. Nguyen, Joe D. Guggenberger∗, M. L. Crow, IEEE Fellow, and A.

C. Elmore∗

Department of Electrical and Computer Engineering

∗Department of Geological Engineering

Missouri University of Science and Technology, Rolla, MO 65401

Abstract

The vanadium redox flow battery (VRB) is well-suited for applications

with renewable energy devices. This paper presents a practical analysis of

the VRB for use in a microgrid system. The first part of the paper develops

a reduced order circuit model of the VRB and analyzes its experimental

performance efficiency during deployment. The model parameters of the

various VRB system components were estimated from experimental field

data. The parasitic losses of the circulation pumps power consumption

were predicted during different operating situations. The second part of

the paper addresses the implementation issues of the VRB application in a

photovoltaic-based microgrid system. Commercially available chargers de-

signed for lead-acid battery systems were shown to be non-optimal for

VRB systems and a new dc-dc converter control was proposed to provide

improved charging performance. The system model was validated with field-

obtained experimental data.

Index Terms

microgrid, renewable energy, energy storage, vanadium redox battery,

efficiency characterization
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I. Introduction

According to the US Department of Energy, the “smart grid” generally refers

to the class of technologies being introduced to bring utility electricity delivery

systems into the 21st century, using autonomous control [1]. The smart grid concept

is often predicated on the widespread evolution of autonomous microgrids. The main

envisioned features of the future distributed microgrid system include: automatic

controls for electric power at the customer side, a power distribution infrastructure

that encourages renewable energy development, local energy storage, and customer

loads that are capable of responding to changes in the grid. The smart microgrid

offers many benefits to utilities and consumers, mostly seen in improvements in energy

efficiency on the electricity grid.

Energy storage technology is a critical aspect of future development of portable,

scalable microgrid technology. Current energy storage technologies such as lead acid

batteries contain low energy density at a high mass ratio, require considerable mainte-

nance, and suffer from a limited useful lifetime when deep-cycled on a daily basis [2].

Vanadium redox batteries (VRBs) have recently emerged as a viable energy storage

technology due to their high efficiency, high scalability, fast response, long lifetime,

and low maintenance requirements.

A. VRB characteristics

For a microgrid system, the energy storage system must be capable of high power

and long duration. Pumped hydro energy storage (PHES) or compressed air energy

storage (CAES) also provide high power and long duration, but they have the draw-

back of being site-dependent. Li-on batteries are also a promising technology due

to high efficiency, energy density, and a low self-discharge rate. However, they are

more cost effective for transportation applications and less cost effective for grid-scale

applications [3], [4]. VRBs are good candidates to fill the void for high power and

energy dense applications due to a number of favorable characteristics inherent to

their electrochemical structure:
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TABLE I:
Economical characteristics of energy storage system

PH CAES LA Li-on VRB
Capital Cost ($/kW) 600-2000 400-800 300-600 1200-4000 500-1500
Capital Cost ($/kWh) 5-100 2-50 200-400 600-2500 175-1000

The VRB differs from traditional battery storage in that the amount of energy it

can store is independent of its power rating and is determined by the concentration

of the ions in the electrolyte. The size of the VRB stack determines the power rating,

whereas the amount of electrolyte determines the energy rating [5], [6]. This power-

energy rating decoupling allows for greater flexibility in application and physical

footprint. The energy capacity of a fixed stack can be increased “on the fly” by

simply adding more electrolyte with limited impact on the footprint and control

of the overall system. The power density and energy density of lead acid and Li-ion

batteries, by contrast, are not independent and an upgrade in energy capacity requires

a complete overhaul of the existing electrical and physical system to accommodate.

Furthermore, the VRB can be stored either fully charged or fully discharged for long

periods of time without degradation.

A unique feature of the VRB is that the state-of-charge is exactly determined by

the amount of electrolyte remaining. This can be directly quantified by measuring

the voltage of a reference cell. This ability to accurately track the SOC is a signifi-

cant advantage over lead-acid or Li-ion batteries in which the SOC is approximated

based on voltage levels or tracking historical charge/discharge cycles. The accurate

quantification of the VRB SOC enables finer control of energy management which

results in a larger range of operation without concern of over-charge or over-discharge

resulting in damage to the battery [7], [8].

Flow batteries have a fast response rate due to the speed of the chemical redox

reaction in the VRB stack. It typically requires less than 1 ms to track a step change

in load, which makes it a an ideal energy storage system to maintain power quality [5].



20

Some of the first applications of VRBs have been to stabilize wind turbine generator

output, by injecting or absorbing active power in antipathy with the turbine output

power [9].

The VRB is comparable in cost to several of the energy storage systems currently

available. Because of the independent power and energy rating of the VRB, both

costs must be considered when comparing various technologies. Table I summarizes

typical costs of several energy storage types [10]–[12]. The VRB is a relatively new

commercially available energy storage system and it is expected that the costs will

decrease in the future as they become more prevalent.

B. Contributions

One of the most important parameters in microgrid operation is the ability to

predict the power and energy characteristics of any energy storage system. To achieve

optimal use of renewable energy resources and energy storage, the energy storage sys-

tem must be modeled accurately. This not only includes modeling of current-voltage

(IV ) characteristics, but must also include all parasitic and power consumption of

the HVAC. The term “parasitic load” refers to the power consumed by the system

under no load. The parasitic load usually includes the power consumption of the

auxiliary systems including the heating, ventilation and air conditioning (HVAC),

controllers, and sensors. Furthermore, the energy storage operation must be modeled

in conjunction with the particular renewable resource with which it will be used.

Several VRB modeling techniques have been presented in the literature [8], [13].

A physical model is proposed in [13], which consists of both an electrochemical

model for the cell stack in which various ion concentrations determine the component

states and a mechanical model for the pipeline and the pump. In [8], the VRB

system is converted to an equivalent circuit, with the pump treated as a current

source and the losses are modeled as resistances. The circuit representation is more

computationally efficient and provides reasonable accuracy, therefore we have used

the circuit representation as our base VRB model. In this paper, we further simplify

the equivalent circuit, estimate the circuit parameters through measured
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field data, and incorporate an additional component to account for parasitic

losses to better estimate round-trip efficiency. The modeling work presented in

this paper builds on the modeling efforts presented in [14] in which the VRB efficiency

is empirically characterized based on known climatic operating conditions and load

requirements. The vanadium redox battery has been advertised as having an 80%

efficiency [15], but this figure does not accurately reflect the round-trip efficiency nor

does it account for the parasitic losses caused by the circulation pumps and control

unit.

Additionally, most commercially available charging systems have been designed

for lead acid batteries and when used with other energy storage devices may further

adversely affect the efficiency of the system. For this reason, we propose a new

four-quadrant charger and a master-slave control strategy for the charger

to improve the VRB efficiency performance.

II. Microgrid System Description

The microgrid system used to obtain the field data was a standalone system

deployed at Fort Leonard Wood, Missouri (latitude 37.71◦, longitude 92.15◦). The

system, shown in Fig. 1, includes a 6 kW photovoltaic (PV) array consisting of 30

× 200 W solar panels (Brightwatts - BI-156-200W-G27V) connected to two Out-

back FlexMax 80 charge controllers which charged a 5 kW/20 kWhr VRB (Prudent

Energy). The system was loaded with two pumps, two condensors, several resistive

heating elements, and an HVAC system.

TABLE II:
VRB operating data

Rated power 5 kW
Rated energy 20 kWh
Maximum voltage 56.5 V
Minimum voltage 42 V
Maximum current 140 A
Minimum current 125 A
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Fig. 1: Field microgrid system illustrating solar panels, loads, and hybrid energy-
storage system with battery and VRB

A 38-cell Prudent Energy VRB rated 5 kW/20 kWh is used for energy storage.

Table II gives the basic VRB rated operating data. The capacity range of the VRB

is specified as 20kWh at a SOC of 73% and 0kWh at a SOC of 20%. It can be

charged to a maximum voltage of 56.5 V and discharged to a minimum voltage of

42 V. The VRB energy storage system is self-contained in an enclosure and includes

the electrolyte tanks, cell stacks, pumps, and controllers. The enclosure temperature

is regulated between 10◦ C and 30◦ C via an external heating, ventilation, and air

conditioning (HVAC) system.

The system is instrumented to measure environmental data including solar inso-

lation and temperature as well as the voltage and current parameters necessary for

monitoring, controlling its operation and characterizing its performance. Operational
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Fig. 2: Microgrid system performance in May 2013 illustrating PV array, VRB, and
load powers

data was are recorded using Campbell Scientific Model CR3000 and CR1000 datalog-

gers which sample every 5 seconds and average the values over a 1 minute window.

The system was designed to be part of a modular military forward operating

base (FOB) system that could operate independently, or as part of an integrated

system of microgrids. Although the field validation used data obtained from military

base operation, it can be generalized to civilian operation since the loads (pumps,

compressors, heating elements, and HVAC) are applicable in multiple situations.

The measured performance for the month of May 2013 is shown in Figure 2. The

upper trace is the power from the PV array, the lower trace is the power from the

VRB (negative indicates charging), and the middle black trace is the load power.

During this period, the system is serving a 2 kW (peak) load. A typical day is shown

in the inset to provide greater detail. Note that the upper trace, which indicates the

power from the PV panel, indicates that the PV power serves both the load (middle

trace) and charges the VRB (lower trace). The effects of the two compressors can

be clearly seen in the load trace as they switch on and off throughout the day. At

night, the power from the PV array goes to zero (indicated by the flat line trace)

and the VRB then discharges (becomes positive) to satisfy the load demand. The
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data obtained from the microgrid performance will be used to validate the models

developed and presented in the following sections.

III. The Vanadium Redox Battery

The vanadium redox battery (VRB) is an electrical energy storage system based

on the vanadium-based redox regenerative fuel cell that converts chemical energy

into electrical energy. VRBs are a rechargeable battery that consist of an assembly of

power cells that requires two electrolytes separated by a proton exchange membrane

[7], [16]. A proton exchange membrane separates the solution contained in the power

cell where electrolytes are oxidized or reduced. A proton exchange membrane is

intended to separate the positive and negative electrolyte solutions while allowing

the passage of the charged ions [17]. Without this component, the chemical reaction

to transform the energy cannot occur in a meaningful way. The direction of the

oxidization reaction determines whether the battery is charging or discharging.

MonitorMonitor

Battery Controller

Inverter

Pump Pump

Cell Stack

Reference Cell Stack

Heat Exchanger Heat Exchanger

Negative 
Electrolyte 

Tank

Positive 
Electrolyte 

Tank
+

_

Fig. 3: VRB energy storage system schematic showing physical components

A VRB energy storage system is shown in Fig. 3. The VRB consists of the pri-

mary cell stack, two electrolyte tanks (one positive and one negative polarity), two

circulation pumps to move the electrolyte through the cell stack, a reference cell

stack for monitoring and control, two heat exchangers, instrumentation and control.
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The inverter is used to electrically interface the VRB with the external DC system.

Several detailed VRB models have been developed to describe the performance of

the VRB [8], [13].

Fig. 4 shows the detailed and the proposed simplified electrical circuits for the VRB.

Due to the response time exhibited by the dynamics of the PV array and loads, a VRB

model on the order of micro-seconds is sufficient. Therefore the electrode capacitor

in the detailed model can be neglected and the two resistors can be merged into a

single resistor. The parasitic loss block of the detailed model has been replaced with

a single controlled current to further simplify analysis. For the simplified model, it

is necessary to determine the stack voltage, the equivalent resistance (Rth), and the

parasitic losses as functions of the state of charge (SOC) and the stack current. The

field data collected for analysis include the battery terminal voltage (Vt), terminal

current (It), the stack voltage (Vs), and the VRB electrolyte pump current (Ip).

Data was collected for a five month period. During the day, the PV arrays supplied

the load and any excess energy was used to charge the VRB. During the night,

the VRB supplied the load. This VRB performance characterization provides im-

proved accuracy and confidence during the energy management of the microgrid.

Furthermore, it allows performance prediction as a function of external environmental

features so that the system can be deployed with confidence at various latitudes and

longitudes.

Fig. 5 shows the load, PV, and VRB powers over a representative 200 hour (8 day)

period during the five month data collection period. Fig. 6 shows the state of charge

measured during the same period. Negative VRB power indicates that the VRB is

drawing power (charging), thus:

PV Power + VRB Power = Load Power (1)

A couple of observations can be made regarding the data set. Note that the power

from the PV panels is varying significantly during the study period and on day 6

drops significantly. Therefore as the VRB discharges to meet the load, the SOC drops
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Fig. 4: VRB electrical circuits

dramatically as well (Fig. 6). When the SOC drops below 20%, the load is disengaged

until there is sufficient PV power available to meet both the load and VRB charging

again. The effect of the HVAC (air conditioning) can be seen in the load profile,

where the load is higher in the warmer hours of late afternoon.
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IV. VRB modeling and parameter estimation

The data described in the previous section will be used in this section to estimate

the parameters of the simplified model of Fig. 4(b).
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A. Stack voltage

The open circuit voltage (E) of a single cell can be found from the Nernst equation

[13], [18]

E = E0 +
RT

F
ln

(
CV O+

2
(CH+)2CV 2+

CV O2+CV 3+

)
(2)

where E0 is the free Gibbs potential, R is the universal gas constant, T is the absolute

temperature, F is the Faraday constant and CX denotes the concentration of the X

ions. The concentrations of vanadium ions are

CV 2+ = CV O+
2

= CV SOC (3)

CV 3+ = CV O2+ = CV (1− SOC) (4)

where CV is the total concentration of all vanadium ions. The stack voltage VS is E

times the number of cells in the stack. The single cell voltage can also be approximated

by [19]

E = E0 +
RT

F
ln

(
SOC

1− SOC

)
(5)

The SOC varies as the stack power (Pstack) changes:

SOCk+1 = SOCk + ∆SOC (6)

where the subscript k denotes time interval, and

∆SOC =
∆E

Ecapacity

=
Pstack∆t

Ecapacity

(7)

where Ecapacity is the total energy capacity of the VRB. In the model of Fig. 4(b),

the ideal current source models the parasitic losses due to the circulation pumps and

the controller. The VRB is controlled to remain in a linear operating range between

a SOC of 20% and 90% as shown in Fig. 7 [20], therefore (5) can be expressed as

E = k0 + k1SOC (8)
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where k0 and k1 can be estimated from the voltage/SOC curve at a given temperature.

For example, from the VRB data, when the SOC is in the range of [0.2→ 0.9], the

linear regression fit for ln( SOC
1−SOC

) is E = 4.75SOC − 2.38, with an R2 of 0.99.

Fig. 7: Open circuit voltage as a function of SOC at T = 35◦C

B. Equivalent resistance

The instantaneous resistance at any time k can be estimated as

Rth,k =
Vt,k − Vs,k

Is,k
=

Vt,k − Vs,k

It,k − Ip,k
(9)

where Vt,k and Vs,k are the terminal and stack voltages at time k respectively, and

Is,k, It,k, and Ip,k are the stack, terminal, and parasitic currents at time k respec-

tively. A general equivalent resistance can be obtained by averaging the instantaneous

resistances over the number of measurements N :

Rth =
1

N

N∑

k=1

Rth,k (10)

C. Parasitic losses

The VRB is most efficient during heavy operation and its efficiency decreases under

low load current. This is due primarily to the parasitic losses caused by the two
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electrolyte circulation pumps and the controller. While the controller power draw is

relatively constant, the power consumption of the two pumps is directly related to

the rate at which the electrolyte is moved through the stack, the pump efficiencies,

and the pressure drop [13], [18]. A detailed model of the hydraulic circuit requires

finite element analysis, but for electrical efficiency analysis an electrical circuit model

is needed. An inverter transforms the DC voltage of the stack to AC to supply the

centrifugal pump motor. Fig. 8 shows a motor control loop. If there is a large step

Inverter Motor VRBGc1 Gc2

Iref

V

Vref

I

++_ _

Fig. 8: Pump control loop

change in load, the VRB response depends on the motor pick-up speed and the

concentration of the electrolyte. The pump speed is associated with the VRB SOC

and in the deployed system, it is a five stage gear pump [14]. Gear staging is a

function of both SOC and VRB output power and is consistent during both charge

and discharge periods. The parasitic current for the 0-30% SOC region is shown in

Fig. 9. The parasitic current has a discontinuous increase at 20A due to a gear change

in pump speed. In addition, the parasitic current also has a discontinuous increase at

75A (not shown). We developed a two-layer neural network to perform the function

approximation of the parasitic loss. Fig. 10 shows the comparison between the field

test data and the estimated parasitic current using the neural network model. The

relative similarity of the measured and estimated currents in Fig. 10 validates the

neural network approximation and the use of the proposed simplified model. Although

the model provides reasonable tracking of the parasitic current, it performs less well in

the region immediately preceding a step change in current, such as from 3500 to 4800

minutes. In this region, it is probable that the neural network is over anticipating the

step change in parasitic current due to the boundary conditions and reacts too quickly

in some cases. The response could be improved by using a more complex neural

network structure or a larger training set, but we felt that the results were sufficiently
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accurate for our modeling purposes since we are characterizing performance regions

and not dynamic responses.

Using the estimated model, the parasitic pump current can be expressed as both

a function of SOC and stack current as shown in Fig. 11. The two discontinuities at

20A and 75A are clearly visible. It is also apparent that as the SOC increases, the

parasitic pump current increases as well.
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V. System Efficiency Analysis

In the VRB, the charge and discharge cycles have similar efficiencies [20], therefore

only the charging efficiency will be discussed. In the absence of parasitics, the VRB

efficiency is dominated by the resistive losses due to Rth given in (10) and is therefore

nearly linear with the stack current. Without considering the parasitic losses, the SOC

has little impact on the efficiency of the system. However, field tests have shown that

due to the parasitic losses, the SOC does become an influential factor. Fig. 12 shows

the VRB charging efficiency as a function of both SOC and stack current. Note that at

low currents, the efficiency decreases dramatically due to the pump current. Once the

VRB is engaged, the pump will draw at least 200W regardless of VRB throughput.

The VRB is most efficient when loaded at about 75% capacity. This also validates the

assertion that the VRB can attain nearly 80% charging efficiency, but not necessarily

across all operating conditions.
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VI. VRB Operation in Microgrids with Photovoltaics

Unlike lead acid batteries, the VRB has a relatively stable output voltage during

charge and discharge. This positive feature actually causes problems in the field when

deployed with most (if not all) commercially available inverters and battery charge

controllers. In this section, we first discuss the effect of commercial charge controllers

on the efficiency of the VRB and then propose a new control strategy suitable for

use in microgrids.

A. Charge control

Most charge controllers regulate charging according to a three-stage regime to

prevent damage from over-charging. A typical three-stage charging profile is shown

in Fig. 13. These stages are:

• Bulk: when the battery voltage is lower than the absorb setpoint voltage, the

MPPT/charge controller tracks the maximum PV power and charges the battery

with the maximum current. The absorb voltage level can be set by the user within

a pre-defined range.
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• Absorb: when the battery voltage reaches the absorb voltage set point, the

MPPT/charge controller regulates the battery voltage and charges the battery

at a constant voltage.

• Float: when the battery is fully charged, the voltage is decreased and the current

is maintained at a small value to account for leakage. This is often known as

“trickle charge.” A quiescent battery will typically remain in float as long as the

battery is connected to the charger.

This charging scheme is used in the vast majority of commercially available charge

controllers. The drawback to using this particular charging regime with a VRB is

that the lead acid battery voltage set points do not map well to the chemistry of

the VRB. With lead acid batteries, the charging current is reduced going from bulk

to absorb to protect the battery; however, this is unnecessary with the VRB, which

is designed to handle a much higher charging current. The charge controller will

prematurely limit the charging current on the VRB. This impact is shown in Fig. 14

which indicates the large region of available PV power which is not being harvested

due to the maximum current constraint. Furthermore, if the VRB is set on float (very

low current charge) then it will be very inefficient since this is the poorest operating

mode of the VRB.
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B. Proposed microgrid charge control

Another implementation concern is the low efficiency of the VRB during light load.

This concern may be further exascerbated if multiple VRBs are deployed and they

jointly share the load, further lowering their individual efficiencies. For this reason,

it is important to design charge controllers such that the load is allocated between

storage devices in such as way as to maximize the efficiency. To improve the overall

system efficiency, we introduce a master-slave control scheme suitable for hybrid

energy storage systems to control the power sharing between devices.

Power sharing on a DC bus requires a multi-module parallel converter system.

Various converter topologies and their control techniques have been developed for

several applications [21]-[25]. However, none of these works specifically implemented

organized current sharing to maximize the overall microgrid system efficiency. We

expand on these earlier works to propose both a design and control to

maximize the system efficiency. In our proposed design, the multi-module system

is modeled (without loss of generality) as individual converters whose outputs feed



36

the same DC bus. One of the converters is designated as the master, while the others

are the slave units. The master unit regulates the bus voltage and the slave units

regulate the current output of their attached storage device. If the master device goes

offline (intentionally or unintentionally disconnected), then a new master is elected

from among the slave units [26]. An external controller collects information from the

solar panels, the load, optimizes the current distribution among the converters, and

issues the control settings.

The microgrid system of Fig. 15 is modeled in PSCAD (version 4.3) with two

PV panels, a VRB, and a battery is used to illustrate the master-slave control. The

battery is modeled as in [27]. Three scenarios are introduced to validate the proposed

control: a load change, a power sharing change, and a master-slave exchange.

1) Load Change: In the example shown in Fig. 16, the insolation is relatively

constant and both PV arrays output the same power. The load resistance is tuned

such that the initial load is 3 kW. The DC bus voltage is 48 V. The VRB is assigned

to be the master unit and the battery is the slave. This means that the battery

will be assigned to absorb (i.e. charge) 2 kW regardless of load power and the the

VRB (as the master) will follow any load changes. This scenario would be suitable

for situations in which it is desirable to have the battery charge at a rate which

guarantees maximum efficiency of the battery. Note that as the load is reduced from

3 kW to 1 kW, the VRB assumes the entire change in load current as seen in Fig.

16(b) and the battery current remains unchanged. in spite of the current control,

there is little effect on the voltages and after a short transient, the DC bus voltage

returns to 48V.

At first consideration, this result may seem unremarkable, but this scenario is not

possible with current commercially available charge controllers. With most charge

controllers, a battery’s charge and discharge response are governed solely by the DC

bus voltage and cannot be independently commanded. As a result, two batteries

in parallel cannot charge and/or discharge independently of each other. With the
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proposed control structure, each energy storage system can be regulated to charge (or

discharge) in its most efficient region with only the master performing load following.

2) Change in Power Share: In this example, the PV arrays output the same power

as previously, except the load resistance is tuned to absorb 1.5 kW. In this scenario,

the battery is the slave and is commanded to absorb 2 kW (charging). At 1.02s, the
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Fig. 16: Response to a step change in load

battery is commanded to reduce its charging power to 1kW as shown in Fig. 17. Since

the load remains constant at 2kW, the resulting change in power draw is assumed

by the master (the VRB). As in the previous example, the DC bus voltage returns

quickly to 48 V. This example illustrates the charge/discharge independence of the

two energy storage units. Even though the load remains constant, the slave unit can

be commanded independently to change its state. This capability is not possible with

currently available charge controllers.

3) Master-Slave Exchange: In this example, the PV arrays output the same power

as previously and the load is tuned to absorb 1.5 kW. The battery is initially
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commanded to absorb 1kW. The master and slave exchange roles such that the

VRB becomes the slave unit and the battery is the master. The VRB is commanded

to absorb 1kW as the slave unit, therefore the battery (as the master) must assume

the load-following role. This example illustrates that the master role is independent

of the physical device and that either energy storage device can assume the role as

illustrated in Fig. 18. This capability is useful if one of the units either faults or is

removed from service; one of the other units in the microgrid can assume the role

of the master for seamless operation. This is another capability that it not available

with current commercially available charge controllers.
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Fig. 18: Response to master-slave exchange

VII. Conclusions

This paper outlined three primary contributions:

• A simplified electrical model of the VRB was introduced in which the parasitic

pump current was characterized as a function of the VRB state of charge and

the stack current. The modeled current was experimentally validated against

the measured current. The VRB equivalent resistance was also experimentally

obtained.

• The VRB system efficiency was expressed as a function of stack current and VRB

state of charge. It was noted that the VRB could attain the near 80% advertised
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efficiency over about 50% of the operating range, but drastically dropped for low

charging rates.

• It was shown that current commercially available charge controllers typically

sold with PV systems are not well-suited for use with VRBs. To counter this

effect, a new master-slave control was proposed such that two or more energy

storage systems can be used and controlled independently. This functionality is

currently not available. This approach was shown to perform as expected through

the implementation of three different scenarios.
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Abstract

The vanadium redox flow battery (VRB) is well-suited for renewable

energy applications. It has many attributes which make it an excellent

choice for bulk power applications. However, as with all energy storage

systems, the energy storage device must consider the balance of plant in

computing performance efficiencies. This paper studies VRB use within a

microgrid system from a practical perspective. A reduced order circuit model

of the VRB is introduced that includes the losses from the balance of plant

including system and environmental controls. Experimental field data are

collected to estimate the key parameters of the VRB system. The proposed

model includes the circulation pumps and the HVAC system that regulates

the environment of the VRB enclosure. In this paper, the VRB model is

extended to include the ESS environmental controls to provide a model that

provides a more realistic efficiency profile.

Index Terms

microgrid, renewable energy, energy storage, vanadium redox battery,

efficiency characterization
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I. Introduction

According to the US Department of Energy, the “smart grid” generally refers to

the class of techniques being introduced to bring utility electricity delivery system

into the 21st century using autonomous control. One of the primary objectives of

smart grid technologies is to improve the efficiency of the electricity grid [1].

Energy storage is an important part of the future microgrid technology, trending

to be more portable, sustainable, and scalable. Conventional batteries such as lead

acid units suffer from limited life span, low energy density and high maintenance

frequency [2]. As opposed to current storage technologies, flow batteries are receiving

more interest due to their high efficiency, high scalability, fast response, long life,

and low maintenance requirements. The vanadium redox battery (VRB) is the one of

the more recently developed flow batteries. Moreover, the VRB has the advantages

of independent power rating and energy capacity, and direct indication of state of

charge [3], [4].

One of the most important parameters in microgrid operation is the ability to

predict the power and energy characteristics of any energy storage system. To achieve

optimal use of renewable energy resources and energy storage, the energy storage sys-

tem must be modeled accurately. This not only includes modeling of current-voltage

characteristics, but must also include all parasitic loads, where the term “parasitic

load” refers to the power consumed by the system under no load. The parasitic

load includes the power consumption of the ESS balance of plant systems, including

the circulation pumps, the heating, ventilation, and air conditioning (HVAC) unit,

controllers, and sensors.

Several VRB modeling techniques have been presented in the literature [5], [6]. Ref-

erence [5] proposed a physical approach and [6] converts the VRB into a more straight-

forward equivalent circuit. To study the efficiency performance of a commercial VRB

system, [7] developed a circuit model which has more accurate characterization of

the circulation pumps. In most applications, the VRB is deployed in a standalone

enclosure so that the operating temperature can be more closely regulated. Different
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storage devices have different operating ranges. For example, a valve-regulated lead

acid (VRLA) battery has an operating range between 20◦C and 45◦C, whereas the

VRB has an operating range between 5◦C and 30◦C [8]. Therefore, the environmental

modeling and control for these two ESS are quite different.

There is little information in the open literature regarding modeling of ESS en-

closure environments. However, there has been numerous studies to predict build-

ing energy consumption and these can be extended to enclosure HVAC analysis.

Current approaches can be divided into two categories: thermology methods and

empirical methods. The thermology method considers the thermal state variation of

each component and their influence upon each other. Partial differential equations or

other similar mathematical functions are typically used depending on how precise the

modeling is intended. Common inputs to these models include weather conditions,

building material and structure, human activity, and the HVAC system. A typical

example is the heat balance method proposed by ASHRAE [9]. This methods focuses

on the building components including walls, the interior air, and the heat transfer

through including conduction, convection and radiation. The thermology method can

give the user a thorough understanding of the system, but it suffers from several dis-

advantages that limit its extensive application. First of all, it requires large amounts

of geometry or material information and considerable expertise to implement. The

total thermal process is divided into several solvable subsystems for analysis and for

each subsystem, a large number of temperature and heat sensors have to be deployed

for data collection. The HVAC itself contains numerous components including a

condenser, compressor, accumulator and evaporator, all of which are challenging to

model. Furthermore, the model is difficult to calibrate to different operating scenarios

(i.e. seasonal changes) [10].

Emperical methods are used when only a generalized output of the system model is

required, such as energy consumption, rather than detailed model characteristics. An

empirical method can be used to correlate the desired output to the effective input

variables if the intermediate processes are not required. Emperical models based on
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artificial neural networks (ANN) have been widely researched and applied to energy

consumption related problems [11]. The ANN modeling method is attractive due

to its ability to handle model nonlinearities and self-adaption attributes. References

[12], [13] developed an ANN model to predict heating or cooling loads of a building.

The results obtained from the ANN were sufficient to identify the necessary heat

gain from the HVAC to maintain the room temperature. This approach is useful for

HVAC sizing, but does not provide an accurate indication of the energy consumption

of a specific HVAC. An ANN parameterization and training algorithm to forecast

long term or short term power consumption was proposed in [14], [15], although the

authors’ validation tests focused only on large areas or building groups.

In this paper, we revise the circuit model of the VRB and present an

ANN-based model specifically designed for estimating the parasitic energy

consumption of the balance of plant including the enclosure environment

and the HVAC. This enhanced model of the VRB energy storage system

can be used to better estimate on-site performance when connected to a

microgrid.

II. The Vanadium Redox Battery

The vanadium redox battery (VRB) is an electrical energy storage system based

on the vanadium-based redox regenerative fuel cell that converts chemical energy into

electrical energy. The VRB is a rechargeable battery that consists of an assembly of

power cells that requires two electrolytes separated by a proton exchange membrane.

A proton exchange membrane separates the solution contained in the power cell where

electrolytes are oxidized or reduced. The proton exchange membrane separates the

positive and negative electrolytes while allowing the passage of the ions [16]. The

direction of the oxidization determines whether the battery is charging or discharging.

A VRB energy storage system is shown in Fig. 1. The VRB consists of the primary

cell stack, two electrolyte tanks (one positive polarity and one negative polarity),

two circulation pumps to move the electrolyte through the cell stack, a reference cell
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Fig. 1: VRB energy storage system

stack for monitoring and control, two heat exchangers, instrumentation, and control.

Several VRB models have been developed [5], [6].

Fig. 2 shows the detailed and the proposed empirical electrical circuits for the

VRB. The detailed model captures the electrical behavior of the standalone VRB

under ideal environmental conditions [6]. We propose several modifications to this

circuit model. Firstly, due to the response time exhibited by the dynamics of the PV

array and loads, a VRB model on the order of micro-seconds is sufficient. Therefore

the electrode capacitor in the detailed model can be neglected and the two resistors

can be merged into a single resistor. One current source represents the parasitic load

of circulation pumps and control unit (P&C) and the other current source represents

the environmental controls (HVAC). To accurately model the output voltage and

current, it is necessary to estimate the stack voltage, the equivalent resistance (Rth),

and the parasitic losses. The ANN is trained using collected field data that include

the battery terminal voltage (Vt), terminal current (It), the stack voltage (Vs), HVAC

current (Ih) and the VRB electrolyte pump current (Ip).
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Fig. 2: VRB electrical circuits

III. Microgrid system description

The microgrid system used to obtain the field data was a standalone system

deployed at Fort Leonard Wood, Missouri (latitude 37.71◦, longitude 92.15◦). The

system, shown in Fig. 3, includes a 6 kW photovoltaic (PV) array (Brightwatts - BI-

156-200W-G27V) connected in two parallel strings through maximum power point

charge controllers (Outback FlexMax 80) to charge a 5 kW/20 kWhr VRB (Prudent

Energy). The PV array and VRB are connected through circuit breakers to a 48

VDC bus. The 48 VDC bus is connected through an inverter to a 240 VAC bus. The

enclosure environmental controls draw their power from the AC bus and not from the

VRB directly. The system served various loads, including pumps and heating elements
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on both the AC and DC buses to emulate actual operational load behavior. The

system was designed to be part of a modular military forward operating base system

that could operate independently, or as part of an integrated system of microgrids.

Although the field validation used data obtained from military base operation, it can

be generalized to civilian operation since the loads are typical of multiple situations.

Table I provides the VRB ratings. The VRB energy storage system is self-contained

in an enclosure and includes the electrolyte tanks, cell stacks, pumps, and controllers.

The system is instrumented to measure environmental data including solar inso-

lation and temperature as well as the voltage and current parameters necessary for

monitoring, controlling its operation and characterizing its performance. Operational

data was collected from June 2011 through October 2011. Data was collected every

5 seconds and averaged over a 1 minute window throughout operation. A seven day

sample of data is shown in Fig. 4. During the day, the PV arrays supplied the load
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TABLE I:
VRB operating data

Rated power 5 kW
Rated energy 20 kWh
Maximum voltage 57 V
Minimum voltage 42 V
Maximum current 140 A
Minimum current 125 A

and any excess energy was used to charge the VRB. During the night, the VRB

supplied the load. When the VRB power is negative, this indicates that the VRB is

charging (absorbing power), thus:

PV Power + VRB Power = Load Power (1)

Fig. 4: Load (black line), PV (dashed line), and VRB (grey line) power during data
collection period

IV. Enclosure and HVAC

Environmental controls are required for the VRB energy storage system to operate

properly. Freezing temperatures can hinder electrolyte flow, whereas high tempera-

tures can damage the VRB membrane, cause the V2O5 to precipitate, and cause

overheating of the electrical equipment [16]. In this system, the VRB enclosure
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temperature is regulated between 10◦C and 30◦C by a built-in HVAC system that

includes a cooling-heating air conditioner and ventilation fans. The temperature

control scheme is:

• Heating is ON when the enclosure temperature is lower than 10◦C.

• Fans are ON when the enclosure temperature is between 25◦C and 30◦C.

• Cooling is ON when the enclosure temperature is greater than 30◦C.

To better estimate the behavior of the HVAC, the thermal characteristics of the

enclosure must first be developed. Although an ANN-based model will ultimately be

developed, it is illustrative to first consider the fundamental principles of the physical

model of the system to better understand the impact of various parameters.

A. Heat transfer and heat balance of the enclosure

Fig. 5 shows the VRB enclosure from the field microgrid system. The enclosure

was provided by the manufacturer. The enclosure is augmented with additional

insulation and insolation shielding to better regulate internal temperatures. The

enclosure specifications are given in Table II.

Fig. 5: VRB enclosure

Fig. 6 shows the thermal elements involved in the heat balancing process of the

enclosure. There are three influences on the heat transfer of the external surface of the
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TABLE II:
VRB enclosure parameters

Exterior dimension 3.92m×2.23m×2.36m
Interior dimension 3.80m×2.10m×2.20m
Weight excluding VRB 1900kg
Weight including VRB 6300kg
Exterior cover 0.8mm thick aluminum sheeting
Interior cover 0.8mm thick aluminum sheeting
Inner insulation layer 50mm expanded polystyrene

enclosure: absorbed insolation, convection to outside air, and long wave (i.e. infrared)

radiation.

1) Absorbed Insolation: The insolation absorption depends on the solar flux that

impinges on the enclosure and the absorptivity rate of the enclosure surface. The

incident solar flux is composed of the direct-beam radiation, which is traveling in a

straight line from the sun, the diffuse radiation, which is solar energy scattered by

the molecules and suspensoids in the atmosphere, and the reflected radiation, which

is reflected from the surrounding surfaces [19]. After the location and geometry of

the enclosure is known, it is not difficult to calculate the clear sky solar insolation,

but the clear sky solar insolation does not include any weather effects. To address

the impact of the actual weather, the actual insolation is measured by a pyranometer

in the field and will be used as the reference for further calculations. Any shading of

the enclosure from the surroundings will also be included. Therefore the actual solar

radiation that strikes the enclosure will be used as an input to the ANN model. The

absorptivity of the surface is hard to estimate but remains relatively constant, so it

will be an internal parameter of the ANN model rather than explicitly quantified.

2) Convection: Convection is one mode of heat transfer, caused by the random

motion of the air. Forced convection is air movement caused by an external influence

such as the wind or a fan. Natural convection is air movement caused by inherent

factors, such as buoyancy. In most applications, both forced and natural convection

happen simultaneously in varied proportions [19]. The heat transfer rate by convec-
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tion is given by
dQconv

dt
= hAs(Ts − T∞) (2)

where h is the convection heat transfer coefficient (W◦C/m2), As is the heat transfer

surface area (m2), Ts is the temperature of the surface (◦C), and T∞ is the temperature

of the air sufficiently far from the surface (◦C).

Eq. (2) is deceptively simple. In practice, each of the coefficients are multivalued

functions of external parameters. The transfer coefficient h depends on a variety of
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TABLE III:
HVAC parameters

Model KFR-35GW/E1(DBP)
Horsepower 1.5
Cooling capacity 3500W
Cooling power 1100W
Heating capacity 4500W
Heating power 1400W

variables including the air fluidity properties and surface roughness and geometry.

If the enclosure resides in a turbulent air environment, it will be extremely difficult

to estimate this parameter. For buildings, the usual approach is to correlate the

coefficients to the wind speed at the target location by experiment or numerical

simulation [20]. It is therefore reasonable to use the ambient temperatures and wind

properties as inputs to the ANN process to predict the correlations.

3) Long wave radiation: The long wave radiation is the radiation which governs

the heat exchange among terrestrial objects such as the earth and buildings [19].

The net radiation exchange on a surface can be described by

E = εsrσT
4
sr − εsσT 4

s (3)

where εsr is the emissivity coefficient of the surroundings and εs denotes the surface

emissivity. The constant σ is the Stefan-Boltzmann’s constant and T is the absolute

temperature. The thermal dynamics of the enclosure shell and the inside air will be

incorporated into the ANN model. There are, however, several elements need to be

considered separately.

Sensible heat gain indicates how much heat the HVAC has to remove to maintain

the target temperature, thus adding to the parasitic load. The HVAC specifications

are given in Table III. The inside air temperature and humidity both play parts in

the sensible heat gain qs such that:

qs = 1.2(1.006 + 1.84W )Qs∆T (4)
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where 1.006 (kJ/(kg ·K)) is the specific heat of dry air, W is the humidity ratio, 1.84

(kJ/(kg ·K)) is the specific heat of water vapor, ∆T is the temperature difference,

and Qs is the air flow [9].

Additionally, the internal source convection can be caused by the heat emitted by

VRB itself and other devices, such as the controllers and sensors. The heat is roughly

proportional to the load of the microgrid system, therefore the load demand may be

an adequate input parameter.

B. Input variable selection

The previous section outlined the primary physical characteristics that may have

an impact on the VRB efficiency and power output. These identified parameters

will be used as initial candidates in constructing the input set to the ANN model.

However, not all of the parameters may have significant influence on the output

and their inclusion may serve to add to the computational burden. For example,

for a multilayer perceptron (MLP), the dimension of the internal ANN weighting

matrix is affected by the size of the input, therefore during each training round a

large number of matrix elements are calculated and updated. The size of the training

data is required to increase exponentially with the model dimensionality to maintain

enough confidence [22].

Furthermore, if any of the parameters are redundant (they affect the output in

a similar qualitative manner), then combinations of these parameters may lead to

convergence to a local optimum [21] as opposed to the desired global optimum.

Therefore for these reasons, it is prudent to conduct a sensitivity analysis to determine

which of the parameters have the largest influence and neglect those parameters with

marginal influence. Therefore, we attempt to rank the elements of the input set in

terms of their influence on the desired output.

Influence is determined by the relevance and independence of the elements of

the input set. An input can be relevant to the model output, but its indepen-

dence diminishes if it highly correlates with other input, thus making it less useful.

In [23], the “minimal-redundancy-maximal-relevance” (mRMR) criterion is proposed
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to quantitatively weigh the importance of the variables. The mRMR index used here

is defined as the difference between a relevance term and a redundancy term:

mRMRi = d(i, t)− 1

n

∑

j∈S
d(i, j), i ∈ ΩS (5)

The first term, d(i, t), measures the parameter relevance, which is the distance corre-

lation between the ith input and the target t where i is in the entire set of parameters

Ω but not in S, which is the set of already selected inputs. The second term measures

the redundancy and is the average of the distance correlation between the ith and

the jth input in set S.

Using the min-max criterion, the set of possible input parameters can be searched

and selected in an incremental manner. For example, if the input set S has n pa-

rameters, then the (n+ 1)st input parameter added to the set must have the highest

mRMR.

The input candidates and their denotation are listed in Table IV. To remove

the circular discontinuity, the hour of the day hr is transformed to cos( π
12
hr) and

sin( π
12
hr). The other variables are normalized to the range of [0 1].

TABLE IV:
Input candidates

Input symbol

Surface insolation si
Ambient temperature amb temp
Sine value of hour hrsin
Cosine value of hour hrcos
Humidity hum
Wind velocity wv
Wind direction wd
Enclosure internal temperature in temp
Load power p load
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TABLE V:
Input relevance and mRMR rank

Variable d(i, t) relevance mRMR
rank rank

amb temp 0.76 1 1
si 0.62 2 2
hrsin 0.55 3 4
hum 0.46 4 6
wv 0.43 5 5
hrcos 0.38 6 7
in temp 0.28 7 8
p load 0.24 8 3
wd 0.15 9 9

Table V summarizes the input importance ranking when only relevance is consid-

ered and also when both relevance and redundancy (mRMR) are considered. Several

interesting observations can be made regarding the rankings given in Table V.

• Ambient temperature (amb temp) and surface insolation (si) are the two most

important input variables.

• The enclosure inside temperature in temp is dependent on several factors, there-

fore its redundancy is high which leads to a relatively low mRMR ranking. It is

a good candidate to neglect.

• hrsin ranked higher than hrcos, which indicates that hrsin contains more time

information than hrcos. hrcos is a good candidate to neglect.

• The load has low distance correlation to the target, but has a high mRMR rank.

This indicates that the load power has low correlation with other input variables,

and should not be neglected.

C. ANN structure

A multi-layer perceptron (MLP) type ANN is chosen. The MLP structure is straight-

forward and uses back propagation as a training method. It has been successfully used

to forecast long term and short term energy consumption [24], [25], [26]. The hourly
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Fig. 7: Simulation result of 7 day and 14 day window

energy consumption of the HVAC is the desired output of the ANN. The ANN has

the following structure:

• Network architecture: multilayer perceptron

• Data allocation: sliding window method

• Input variables: hour of the day, solar insolation, humidity, ambient temperature,

wind velocity, load power consumption

• Output variable: HVAC hourly energy consumption

• Number of hidden layers: 1

• Number of hidden neurons: 7

• Activation functions: hyperbolic tangent
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(a) With hrcos removed
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(b) With hum removed
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(c) With wv removed
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(d) With hrsin removed

Fig. 8: Simulation result of 7 day prediction with inputs incrementally removed

V. Model results

Fig. 7 provides a comparison of the predicted HVAC load and the actual HVAC

load for a period of 4 days using two different training sets of 7 days (Fig. 7(a))

and 14 days (Fig. 7(b)). For this set of results, all inputs are used. The accuracy of

the results is evaluated by the coefficient of variation (CV) and the mean bias error

(MBE). For the 7-day window, CV=0.4229 and MBE=0.0006 and for the 14-day

window, CV=0.3846 and MBE=0.1072. Distributions with CV < 1 are considered

to be low-variance, therefore both training sets are considered to be appropriate.

However, since the MBE of the 7-day training set is much smaller than the 14-day

training set, a 7-day training set is better suited. This is probably due to greater

variations in weather over longer periods of time.

To improve computational efficiency, the number of inputs is reduced. To see the

significance of each input, the number of inputs is decremented with the lowest
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mRMR removed first. Fig. 8 shows the result and Table VI gives the CV and MBE

values. As expected, error increases when effective inputs are ruled out one by one.

This effect is shown in Fig. 8. Even with four of the inputs removed, the results are

still relatively accurate.

TABLE VI:
CV and MBE values

Input removed CV MBE
none 0.4229 0.0006
hum 0.4275 -0.0177
hrcos 0.4928 -0.0218
wv 0.4578 0.0600
hrsin 0.5346 0.1888

VI. Conclusions

To deploy energy storage within a microgrid with confidence, the impact of the

balance of plant of the ESS must be considered. It is necessary to be accurately model

all parasitic losses in the system. One of the largest components of the parasitic

losses are those losses associated with environment controls required to keep the

electrochemical reaction within its safe and effective operating region. Due to the

difficulty in deriving a mathematical model for the environmental control losses, we

have proposed a heuristic ANN-based model. The simulation results indicate that the

ANN model can effectively predict the HVAC losses when trained with an appropriate

set of representative data. In the future, the model will need to be adaptively updated

to incorporate seasonal changes in solar insolation and temperature.
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Abstract

In future microgrids, it will be common for different types of energy

storage systems to coexist on the grid. Because each storage system has

different capabilities and capacities, they will complement each other and

be able to achieve more efficient and reliable results than if only a single

type of system were used. However, integrating multiple types of storage

comes with several implementation challenges. Existing control techniques

used to charge and discharge different technologies are not sufficient to

accommodate the electrochemical (or mechanical) differences. In this paper,

we propose an interconnection topology and a reinforcement learning-based

algorithm to optimize the coordination of different ESS in a microgrid.

I. Introduction

The flexible structure and large penetration of distributed energy resources (DER)

in microgrids give rise to different operation and control strategies than those of the

traditional power systems [1]. Having a diversity of resources in a microgrid is more

economic, more secure, and sustainable than relying on a single technology resource;

therefore, the future microgrid will most likely rely on a mixture of renewable and

nonrenewable types of distributed generation (DG) as well as energy storage. In the

future distribution microgrid, multiple types of DG technology and energy storage

systems will be connected simultaneously. But coordinating multiple energy storage
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types can be challenging due to their differences in response times, control mechanics,

and charging/discharging efficiencies. The resource variability from the distributed

solar PV and wind turbines makes it even harder to manage energy balance. Most

research to date has considered only a single energy storage technology at a time

and assumes that they operate similarly. However, different types of energy storage

technologies have different capabilities, which can be highly beneficial if they are

coordinated properly, so that one type of energy storage characteristics complements

the others. Due to the combination of renewable energy variation and the uncertainty

of local loads, energy storage becomes attractive for maintaining a high and relatively

constant load factor and reliable consumer service.

A variety of battery types can be expected to be deployed in the modern microgrid,

each of them having advantages and disadvantages. Traditional lead acid batteries

have the advantage of low cost but suffer from a limited useful lifetime when deep-

cycled on a daily basis and low energy density at a high mass ratio [2]. Pumped

hydro energy storage or compressed air energy storage also provide high power and

long duration, but they have the drawback of site-dependence. Li-on batteries are

a promising technology due to their high efficiency, energy density, and a low self-

discharge rate. However, they are more cost effective for transportation applications

and less for grid-scale applications [3, 4]. For these reasons, flow batteries, and

specifically Vanadium redox batteries (VRB), are good candidates to fill the void

for high power and energy dense applications due to their favorable characteristics

such as independent energy capacity and power output, accurate measurement of

state of charge and fast response time.

A microgrid with only one energy storage system (ESS) has the advantage of

simplicity of control, but may suffer from low efficiency and degradation of lifetime

by forcing the ESS to accommodate all power and energy needs. For example, in

[5] it was shown that a commercial charge controller designed for lead-acid batteries

could not exploit the full potential capability of the deployed VRB, especially at low

loads. A microgrid with multiple identical ESS can provide more flexibility, but the
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Fig. 1: Field Microgrid System

individual units may still suffer from many of the same constraints. By introducing

multiple types of ESS, a wide range of operating conditions can be met at increased

efficiencies. However, heterogeneous ESS suffer from the challenges of incompatible

charge controllers, different power/energy versus efficiency characteristics, and dif-

ferent response rates. This result leads to the supposition that the deployment of a

variety of ESS could potentially provide better efficiency and reliability if properly

interleaved and controlled.

Microgrid control can be divided hierarchically into low level and high level con-

trols. Low level control includes regulating the voltage, current and frequency of the

power grid and is typically achieved at the power electronics interface. For instance,

the maximum power point tracker (MPPT), which is often used to optimize the power

output of solar panels or wind turbine generators, controls the current flow. Higher

level controls set the control references for the lower level, based on a variety of
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considerations such as maintaining an energy reserve, maximizing the overall system

efficiency, or optimizing the local power production based on the market price if net

metering is presumed.

Most commercially available battery controllers use a form of charge control in

which the current input/output of the battery is determined by the bus voltage. In

this approach, all batteries connected to the same bus will charge and discharge iden-

tically regardless of their individual characteristics. However, to achieve heterogenous

control, each ESS must be regulated individually based on a control specific to the

capacity, SOC, and type of storage system in use. Two types of converter topologies

have been proposed to accomplish this specialized controls: multi-input converters

and parallel converters [6–9]. The problematic issue with multi-input converters is

that the centralized input limit the geographic freedom in which to locate the batter-

ies. Moreover, once the converter is deployed, it is hard for it to accept new batteries

or to exchange one battery type with another. The multi-module parallel converter

system is a more flexible and expandable choice, but these converters potentially

suffer from stability concerns [10].

Higher level control governs the microgrid power and energy management (PEM).

In addition to delivering operational orders to the components, such as synchroniza-

tion in the grid-tied mode or frequency regulation in the stand-alone mode, load-

source matching, voltage and frequency regulation, and fault management, the high

level control also sets the long term goals and determines the proper operational strat-

egy. The strategies may include minimization of the overall power losses, fuel costs,

or power import from the main grid, among others. Due to the different structure and

composition from the traditional power grid, microgrid PEM faces other challenges

and difficulties [1]. One of the major challenges is the small scale and volatility of

the energy resources, which often requires a considerable level of prediction in the

optimization process. Off-line optimization such as dynamic programming (DP) can

be algorithmically complex and thorough, but suffers from the inaccuracies inherent

in predicting behavior. An online optimization can react to new information, but must
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be computationally efficient to run in real-time. Reinforcement learning (RL) in its

simplest form can solve the Markov Decision Process (MDP) problem by DP but has

a “learning” part of which DP is incapable. There are several RL applications that

have been proposed for power system optimization. For example, [11] implemented a

multiple object reinforcement learning method to minimize the fuel cost and enhance

the voltage stability at the same time. In [12], a multi agent system was proposed

to decrease the power losses of a microgrid, but the battery constraints were not

very rigid and allowed uncontrolled charging between the batteries. In this paper,

we propose an interconnection topology and an RL-based algorithm to

optimize the coordination of different ESS in a microgrid.

II. Microgrid System Description

The microgrid system used to obtain the field data was the standalone system

shown in Fig. 1 deployed at Fort Leonard Wood, Missouri (latitude 37.71◦, longitude

-92.15◦). The system, shown in Fig. 1, included a 6 kW photovoltaic (PV) array

consisting of 30 × 200 W solar panels (Brightwatts - BI-156-200W-G27V) connected

to two Outback FlexMax 80 charge controllers which charged a 5 kW/20 kWhr VRB

(Prudent Energy). The system was loaded with two pumps, several resistive heating

elements, and an HVAC system. A 38-cell Prudent Energy VRB rated 5 kW/20 kWh

is used for energy storage.

The system is instrumented to measure environmental data including solar inso-

lation and temperature as well as the voltage and current parameters necessary for

monitoring, controlling its operation and characterizing its performance. Operational

data was are recorded using Campbell Scientific Model CR3000 and CR1000 datalog-

gers which sample every 5 seconds and average the values over a 1 minute window.

The system was designed to be part of a modular military forward operating

base (FOB) system that could operate independently, or as part of an integrated

system of microgrids. Although the field validation used data obtained from military

base operation, it can be generalized to civilian operation since the loads (pumps,

compressors, heating elements, and HVAC) are applicable in multiple situations.
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III. Battery Characteristics

A. The vanadium-redox battery

From the VRB circuit shown in Fig. 2 (derived in [5, 13]), the operational power

loss of the VRB can be calculated

Ploss = I2sRth + |VtIp| (1)

where Is is the stack current, Rth is the equivalent resistance, Vt is the terminal

voltage, and Ip is the parasitic current.

+
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Cell 
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+

_

It
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Fig. 2: VRB electrical circuit

The discharge efficiency of the VRB at 50% SOC is shown in Fig. 3 [14]. The

slight dip in the curve is due to the point at which the pump moving the electrolyte

through the stack changes speed due to the increase in output power requirement.

B. The lead acid battery

The charging and discharging efficiencies can be estimated from Perkert’s law [15]:

η = I1−pc
Cp

Crated
(2)
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where I (A) is the discharge current, Crated (AHr) is the rated capacity at a certain

discharge time Trated (hr), pc is Peukert’s coefficient and Cp is Peukert’s capacity. For

a leadacid battery, the value of pc is typically between 1.1 and 1.3.

By definition Peukert’s capacity is calculated by:

Cp = IpcT =

(
Crated
Trated

)pc
Trated (3)

Since the Peukert’s capacity is a constant, the Peukert’s coefficient can be derived

from:

pc =
ln(T2)− ln(T1)

ln(I1)− ln(I2)
(4)

where I1 and I2 are discharge currents at discharge times of T1 and T2, which are

normally provided by the battery specification.

The ampere-hour counting method is used to estimate the state of charge of the

battery [16]. The SOC is then approximated by:

SOC = SOCt0 +
1

Crated

∫ t

t0

(I − Iloss)dτ (5)

where SOCt0 is the initial state of charge and Iloss is the current of loss.
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The power loss is calculated by the efficiency and terminal power into the battery

Ploss = Pterm(1− η) (6)

Based on the previous discussion of the battery models, their efficiencies at 50%

state of charge are calculated and shown in Fig. 4. Note that lead acid batteries are
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Fig. 4: Battery efficiencies at 50% SOC

most efficient at low powers [17], whereas VRBs are most efficient at high powers.

A similar comparison exists for charging as well. By coordinating the charge and

discharge between batteries, the optimal system efficiency can be achieved, whereas

relying on one type of battery only is less efficient.

C. Battery-Photovoltaics Charging and Discharging Algorithms

Most charge controllers regulate charging current according to a three-stage regime

to prevent damage to the battery from over-charging. A typical three-stage charging

profile is shown in Fig. 5. These stages are:

• Bulk: when the battery voltage is lower than the absorb voltage, the MPPT/charge

controller tracks the maximum PV power and charges the battery with the

maximum current. The absorb voltage level can be set by the user within a

pre-defined range.
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• Absorb: when the battery voltage reaches the absorb voltage set point, the

MPPT/charge controller regulates the battery voltage and charges the battery

at a constant voltage.

• Float: when the battery is fully charged, the voltage is decreased and the current

is maintained at a small value to account for leakage. This is often known as

“trickle charge.” A quiescent battery will typically remain in float as long as

power is applied to the charger.

This charging scheme is used in the vast majority of commercially available charge

controllers.

The drawback to using this particular charging algorithm with a non-lead acid

battery, such as a VRB, is that the lead acid battery voltage set points do not map

well to the chemistry of other ESS. For example, the charging current is reduced going

from bulk to absorb to protect the lead-acid batteries; however, this is unnecessary

with a VRB, which is designed to handle a much higher charging current. The charge

controller will prematurely limit the charging current on the VRB. Furthermore, if

the VRB is set on float (very low current charge) then it will be very inefficient since

this is the poorest operating mode of the VRB due to the ESS parasitics [14].
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D. Charge Controller Topology

We will use lead acid batteries and VRB systems in this paper because they

have dissimilar characteristics and can only be used together effectively if controlled

independently. As noted earlier, a coordinated charge control strategy could maximize

the operational efficiency of the combined ESS. One interconnection topology for
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the microgrid is shown in Fig. 6 in which each ESS is connected through its own

inverter to the system. This is the most flexible topology since it allows for each

ESS to operate at optimum voltage as well. Power sharing on a DC bus requires

a multi-module parallel converter system. Various converter topologies and their

control techniques have been developed for several applications [18]-[22]. However,

none of these works specifically implemented organized current sharing to maximize

the overall system efficiency. We expand on these earlier works to propose both a

design and control to maximize the system efficiency. In the parallel converter system,

one of the converters is designated as the master while the others are the slave units.

The master unit regulates the bus voltage and the slave units regulate the current

output of their attached storage device. If the master device goes offline (intentionally

or unintentionally disconnected), then a new master is elected from among the slave

units. An external high level controller collects information from the solar panels,

the load, optimizes the current distribution among the converters, and issues the

control settings. A high level control strategy is required to coordinate and optimize

the multiple ESS by continuously choosing the most appropriate battery to charge

or discharge at any given time based on its own performance characteristics.

IV. Problem Formulation with Reinforcement Learning

Reinforcement learning consists of artificial intelligent techniques that enable an

agent to perceive the environment and act optimally. The agent will make the best

decisions in a time series from a long term perspective rather than from limited

information at specific moments. The learning process involves the agent, the en-

vironment, and the interaction between them. The agent takes an action based on

the current states and its prior experience with the environment. The action then

receives feedback signal, or reward, that indicates the goodness of the action and is

added to the cumulative record.

The state, action, transition probability, and reward make the essential elements

of a finite Markov Decision Process (MDP)-tuple
(
S,A, P a

s,s′ , R
a
s,s′
)
, where S and A

are the finite sets of state and action and P a
s,s′ is the probability of the next state s′
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in which the current state s and action a are provided [23]:

P a
s,s′ = Pr(st+1 = s′|st = s, at = a) (7)

Ra
s,s′ is the expected reward given the next state s′ with current state s and action a

Ra
s,s′ = E(rt+1 = s′|st = s, at = a, st+1 = s′) (8)

The value function and action-value (Q value) function are used to evaluate the

goodness of a state. The value function is:

Uπ(s) = Eπ(Rt|st = s) = E

( ∞∑

k=0

γkrt+k+1|st = s

)
(9)

where π is the policy, which directs the agent at each state and γ is the discount

factor within the range of [0 1]. The discount factor determines whether or not the

method favors immediate or delayed rewards. The value function is the expected total

reward if the agent starts from s following the policy of π. Derived from its definition,

the value function can also be calculated in a more straightforward way as:

Uπ(s) =
∑

a

π(s, a)
∑

s′

P a
s,s′
[
Ra
s,s′ + γUπ(s′)

]
(10)

The action-value function is given by

Qπ(s, a) = Eπ(Rt|st = s, at = a)

= Eπ

( ∞∑

k=0

γkrt+k+1||st = s, at = a

)
(11)

which can also be rewritten as

Qπ(s, a) =
∑

s′

P a
s,s′
[
Ra
s,s′ + γUπ(s′)

]
(12)

Linear programming or dynamic programming can solve the MDP problem, but

these solution methods require knowledge of the transition probabilities and value

functions [24]. When these are unknown, reinforcement learning can provide a so-

lution approach. The agent will learn these values by simulation and stochastic
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approximation, so that the policy mapping can still be accomplished. Of all of the

learning methods, the Q-learning method is the most widely used due to its simpler

implementation and model free characteristics [23]. The action value function is

renewed each time the agent interacts with the environment, such that

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

α′
Q(s′, a′)

]
(13)

It has been proven that for any finite MDP, the Q-learning approach will converge

to the optimal policy [25]:

π(s) = argmax
a
Q(s, a) (14)

The target of the optimization is to decreases the power losses on energy storage

system in the long term. In order to achieve this goal, the agent will try to learn the

rational sequence to apply the batteries at a overall higher efficiency. The VRB and

lead acid battery modules will be components that the agent controls. The power flow

through the batteries will be the difference between the MPPT-based solar power and

the load power. As a by-product of the Q-learning method, the load and solar powers

do not have to be modeled and therefore actual sampled field data will be used in

this development.

• State space – The first two components of the state vector are the SOC of the

VRB and the lead acid battery. For simplicity and lower dimensionality, the

SOC is discretized into three ranges: [0 0.33), [0.33 0.67) and [0.67 1]. The third

component is the terminal power of battery group, divided into two ranges. The

range division point is where the two battery efficiency curves intersect each

other, which is set to 1.2 kW in this study.

S : {SOCvrb, SOCla, Pd}

• Action space – The action space consists of the instructions to turn on or off the

batteries.

A : {Avrb, Ala}
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• Instant reward – Generally, the combined battery system power losses would be

used to calculate the instant reward. If the battery is available (within SOC and

power rating ranges), the reward is defined as the losses on that battery given

the terminal power. Otherwise, the reward is defined as the terminal power. Thus

the agent is punished to a greater extent if a particular battery is needed but

not available.

R :




−|Ploss| if the battery is available

−|Pd| otherwise

There are several constraints the system must comply with:

• The battery module assumes the power difference between the power source and

the load

Pbatt = Ps − Pload

• The batteries must remain within the allowable state of charge

SOCmin < SOCbatt < SOCmax

• The battery must be charged or discharged within its power rating





Pd,min < Pbatt < Pd,max

Pc,min < Pbatt < Pc,max

The step by step algorithm is given in Algorithm 1.

V. Results and Discussion

Table I provides the basic VRB rated operating data. The capacity range of the

Prudent Energy VRB is specified as 20kWh at a SOC of 73% and 0kWh at a SOC of

20%. It can be charged to a maximum voltage of 56.5 V and discharged to a minimum

voltage of 42 V. The lead acid battery module is composed of the 4 PVX-1080T in

series. PVX-1080T is from SunXtender and its parameters can be found in Table II.
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Algorithm 1 Q-learning for batteries

procedure
Initialize the model of VRB and lead acid battery;
Import the data of the source and the load power;
Parameterize the agent;
Initialize the Q(s, a) table;

Observe s
repeat

Pick the battery to allocate based on s and Q table,
using ε-greedy selection method;
Observe the power loss, calculate the reward r;
Update Q(s, a);
s← s′;

until end of operation

TABLE I:
VRB operating data

Rated power 5 kW
Rated energy 20 kWh
Maximum voltage 59 V
Minimum voltage 42 V
Maximum current 140 A
Minimum current 125 A

The solar power data were sampled at the point after the MPPT. The solar power

was sampled every 5 seconds and averaged over a 1 minute time window. The load

data is collected in a similar way. The difference between the PV power and load

(Pdiff ) is shown in Fig. 7. When the power is positive, the PV panels are producing

more than the load requires and the batteries can charge. When the power is negative,

TABLE II:
Lead-Acid PVX-1080T operating data

Voltage 12V
Nominal capacity, 24 hour rate 108Ahr
Maximum current 540A
Perkeut’s coefficient 1.15
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TABLE III:
Learning parameters

Learning rate (α) 0.01
Discount rate (γ) 0.98
ε (ε-greedy) 0.9
Q table dimension 3× 3× 2

the batteries must discharge to satisfy the load. In this example, the average of Pdiff >

0 which indicates that the PV panels are sized sufficiently large to fully charge the

batteries most days. With the battery characteristics and sampling rate considered,

the time horizon of the reinforcement learning is also discretized by minutes. The

other learning parameters are shown in Table III. The first approach to scheduling
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Fig. 7: The power demand of the battery module over 3 typical days

the batteries’ charge and discharge periods is a ”greedy” method, in which the battery

with the highest efficiency (based on SOC) at any decision point (every ten minutes)

is selected to be charged or discharged (depending on whether Pdiff is positive or

negative). The scheduling of the lead-acid and VRB are shown in Fig. 8. Note that the

lead-acid battery (light gray) is the first to discharge, because at low powers it is more

efficient than the VRB. During the morning, when the PV power becomes available,

the VRB is the first to charge because it is more efficient at high charge rates. Fig.
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Fig. 8: Charge and Discharge of the Greedy Method

9 shows the results of the proposed Q-learning method. In this case, the VRB and

the lead-acid (LA) battery charge and discharge in a non-discernible pattern that

is governed by the Q-learning method. At first consideration, this may not appear

to provide superior performance, but it does indeed lead to lower system losses by

increasing the overall efficiency of the combined VRB-LA system. The power losses
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Fig. 9: Charge and Discharge of the Q-Learning Method

of the battery configurations are shown in Fig. 10. Note that as a standalone system,

the LA battery is more efficient in this application than the VRB. However, by
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Fig. 10: Losses of different energy storage operating scenarios

combining the lead-acid batteries with the VRB, the efficiency of the hybrid system

is improved and the power losses are lowered. Furthermore, by implementing the

Q-learning method, the losses are the lowest (designated as Q-Hybrid in Fig. 10).

Note that as time increases, the losses also decrease because the system ”learns” and

gradually adjusts the scheduling algorithm to maximize the reward function.

The superiority of the Q-learning algorithm can be seen most effectively when

considering days in which the PV power is variable. Consider the greedy scheduling

of the day shown in Fig. 11. The greedy method chooses the LA battery first, then

switches to the VRB when the power increases. When the PV power drops it switches

back to the LA, then back to the VRB when the PV increases. The unfortunate part

of this approach is that the VRB is already fully charged when the PV power peaks

and the LA battery must be charged. Thus the LA is charged at high power and low

efficiency, whereas it would have been better to charge the VRB at high power when

it is most efficient.

Contrast the greedy method with the Q-learning method scheduling shown in Fig.

12. In this figure, it can be observed that the Q-learning method effectively delays

much of the VRB charging until later in the day, thus charging it at higher power

when it is more efficient and front loads the lead-acid during lower power charging.
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Fig. 11: Charge and Discharge of the Greedy Method - variable PV
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Fig. 12: Charge and Discharge of the Q-learning Method - variable PV

VI. Conclusion

It was shown that commercially available charge controllers typically sold with

PV systems are not well-suited for use with energy storage systems other than lead-

acid batteries. To counter this effect, a new master-slave control was proposed such

that two or more heterogeneous energy storage systems can be used and controlled.

A reinforcement learning strategy is proposed to coordinate different batteries in a

microgrid. By controlling the charge and discharge periods of the different battery
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systems, better system efficiency can be achieved. It was shown that a hybrid system

can exploit the differences in operation between the two storage types to achieve

better efficiency than either of the battery systems alone. Although the reinforcement

learning strategy approach was applied to a hybrid system of two batteries, the

methodology can be generalized to handle multiple types of batteries as long as their

efficiency profiles are known.
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SECTION

2. CONCLUSIONS

To deploy energy storage within a microgrid with confidence, it is necessary

to accurately model all parasitic losses in the system, including the impact of the

balance of plant of the ESS. One of the parasitic loss is the circulation pump of

VRB. It was characterized as a function of the VRB state of charge and the stack

current. The modeled current was experimentally validated against the measured

current. The VRB equivalent resistance was also experimentally obtained. Another

major parasitic loss is associated with environment controls required to keep the

electrochemical reaction within its safe and effective operating region. Due to the

difficulty in deriving a mathematical model for the environmental control losses, we

have proposed a heuristic ANN-based model. The simulation results indicate that the

ANN model can effectively predict the HVAC losses when trained with an appropriate

set of representative data. In the future, the model will need to be adaptively updated

to incorporate seasonal changes in solar insolation and temperature.

It was also shown that commercially available charge controllers typically sold

with PV systems are not well-suited for use with energy storage systems other than

lead-acid batteries. To counter this effect, a new master-slave control was proposed

such that two or more heterogeneous energy storage systems can be used and con-

trolled. A reinforcement learning strategy is proposed to coordinate different batteries

in a microgrid. By controlling the charge and discharge periods of the different battery

systems, better system efficiency can be achieved. It was shown that a hybrid sys-

tem can exploit the differences in operation between the two storage types to achieve

better efficiency than either of the battery systems alone. Although the reinforce-

ment learning strategy approach was applied to a hybrid system of two batteries, the
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methodology can be generalized to handle multiple types of batteries as long as their

efficiency profiles are known.
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