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ABSTRACT 

Even under service loads, reinforced concrete (RC) structures can develop cracks 

that result in excessive deflection of the structures and provide passages for moisture to 

corrode steel reinforcement. It is thus critical to develop a simple, cost-effective tool for 

real-time crack monitoring and associated corrosion detection that may affect the 

engineering maintenance of RC structures. The objectives of this study include: (1) to 

develop a die-cut manufacturing process of coaxial cables with spiral outer conductors, 

(2) to quantify the sensing properties of a miniaturized topology-based crack sensor, (3) 

to investigate the effectiveness of various sensor installation procedures in RC 

applications, and (4) to detect the distribution of corrosion in steel reinforcement. A new 

manufacturing process was developed to fabricate spirally-wrapped, miniaturized coaxial 

cables in the order of mm in diameter. To understand their performance and sensitivity, 

eight miniaturized sensors were fabricated and placed in seven RC concrete members that 

were tested under three-point loading. Various grout materials were also investigated to 

compare their effects on sensor sensitivity. Test results indicated that the miniaturized, 

die-cut coaxial cable sensors are more uniform and more sensitive to cracks than their 

early versions since the new manufacturing process can refine the topology of their outer 

conductors. Like embedment, surface attachment of a coaxial cable on a RC member can 

be effective with appropriate bonding agents such as Sikagrout materials. Preliminary 

tests by submerging coaxial cables into 3% and 5% NaCl solutions demonstrated that 

cable sensors can indicate the breaching of small holes on their outer conductor as a 

result of corrosion, potentially providing a promising technology for distributed corrosion 

detection.  
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NOMENCLATURE  

Symbol           Description         

ρ                    Reflection Coefficient 
 
V+/V-               The Ratio of the El. Field Strength of the Reflected Wave  
                        to that of the Incident Wave.           
 
Z+   Characteristic Impedances of the Sensor/Coaxial Cable Before the  
                        Discontinuity 
 
Z_  Characteristic Impedances of the Sensor/Coaxial Cableat the Discontinuity 
 
Z0   Caracteristic Impedance of the Transmition Line 
 
x  Distance to the discontinuity 
 
ν   The Propagation Velocity of the Signal Along the Sensing Line 
 
ε  Dielectric Constant  
 
μ    Permeability 
 
R   Per Unit Length Resistance 
 
G  Per Unit Length Conductance 
 
L   Per Unit Length Inductance 
 
Lgap Gap Inductance 
 
C   Per Unit Length Capacitance  
 
Zgap Gap Impedance 
 
∆V The apparent reflected voltage measured by the TDR or VNA 
 
t  Time required for the signal propagation forth and back from the 
                        discontinuity 
 
 
 
 



 

 

1. INTRODUCTION 

1.1. GENERAL 

Reinforced concrete (RC) is a widely used construction material in civil 

engineering. Despite its reputation as a generally durable material, a RC structure often 

experiences cracks or premature failures even under service loads when exposed to harsh 

environmental conditions. The aging deterioration of a RC structure is typically 

accompanied by the development of micro crack networks. The hairline cracks allow the 

salt-saturated meteoric water to penetrate through RC members, leading to the initiation 

of rebar corrosion followed by a significant loss of reinforcement cross-sectional area. In 

this case, not only the serviceability of a structure is compromised, but also the integrity 

of the structure may change as corrosion-induced stress continues to build up, resulting in 

premature collapse of the entire structure. Even if the presence of extensive cracking is 

tolerable from an engineering safety prospective, it often makes the public to lose 

confidence in the functionality of a structure. Therefore, it is of high importance to detect 

the initiation of a crack and monitor its continuing growth.  

Availability of a reliable Structural Health Monitoring (SHM) technology that is 

capable of performing high quality structural assessment and delivers this information to 

an engineering community at a desirable time is imperative. It is envisioned that with 

such techniques the weakened zones of structural elements (such as bridge decks, 

columns act.) can be detected at the earliest stages of structural deterioration. Thus the 

corresponding remediation and retrofit means can be applied to an in-service structure at 

a minimum financial cost. Moreover, the threat to the human lives caused by unexpected 

and catastrophic structural failures can be minimized drastically.   
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During the past decade, strenuous attempts were made by an engineering 

community to develop various strategies and tools in SHM. Currently most efforts were 

limited to the applications of discrete transducers, such as strain gauges and 

accelerometers, and the use of nondestructive techniques, such as ultrasonic tests, 

acoustic tests, and rebound hammer tests. To effectively monitor a large-scale civil 

engineering structure, a large number of discrete transducers must be deployed on the 

structure, which could be time consuming and cost ineffective in applications. The 

collected data may require extensive engineering interpretations to provide useful 

information for engineering designs. Nondestructive techniques are effective tools for the 

evaluation of a predetermined damage area, which may not be feasible if not impossible 

in practical applications. Furthermore, they can be used only for a physically accessible 

portion of the structure. Structural damage may be contributed by load combinations, 

material flaws and structural deteriorations due to environmental factors. In general, it 

can occur at any location of a structure. Therefore, it is desirable to develop a system of 

sensors that are distributed cover the strategically critical locations of the structure.  

Distributed sensing systems can be developed with the use of fiber optic sensors 

and coaxial cable sensors. A fiber Bragg gratings array and a Brillouin scattering time 

domain reflectometry have been employed to provide a set of distributed data, contrary to 

localized data by discrete transducers, and an overall picture of an existing structure. 

They have been proven to be light in weight and of relatively high accuracy (Bao et al., 

2001). They can be deployed over a long distance without significant loss in signal 

strength. They are particularly suitable for tensile strain measurements but less effective 

for shear strains. The spatial resolution of Brillouin scattering time domain reflectometry 
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fiber optic sensors is in the order of one meter. The potential drawback with fiber optic 

sensors is their fragile nature, which requires special cares in harsh construction 

environment of civil engineering structures. 

As a less expensive and more rugged alternative to the fiber optic sensing 

techniques, coaxial cables were used for crack detection and strain measurement based on 

the change in their cross section geometry (Lin et al., 1998). Recently a new generation 

of topology-based crack sensors was proposed and developed by Dr. Chen’s research 

group at Missouri University of Science and Technology or Missouri S&T (Chen et al., 

2003). They have been successfully applied into concrete structures using the electrical 

time domain reflectometry (ETDR) measurement principle for crack detection in concrete 

members. In this case, coaxial cables are used for both transmitting and sensing devices. 

When embedded or attached to an RC member, a coaxial cable is subjected to the cracks 

that develop along the RC member and its ETDR measurements provide information 

about the severity and location of cracks. The materials used to manufacture ETDR 

sensors are very rugged; the sensors are an ideal choice for civil engineering applications. 

New achievements in a material science brought an era of lighter and thinner 

materials that increasingly affected structural designs and rehabilitations in civil 

engineering. For example, fiber reinforced polymer (FRP) sheets have been widely used 

to externally strengthen the concrete members of existing buildings and bridges. In such 

an application, the safety of structures strongly depends upon the integrity of FRP sheets. 

In this case, the size of embedded sensors becomes critical in order to monitor the 

structural condition of FRP sheets.  
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1.2. OBJECTIVES 

The topology-based crack sensors developed at Missouri S&T have repeatedly 

demonstrated satisfactory performance in crack detection from the beginning (Mu, 2003) 

to more recent developments (Sun et al., 2009). Crack sensors were near surface 

embedded into small- and large-scale RC members, and successfully detected the onset 

of cracks and monitored their propagation under a gradually increasing load conditions in 

real time. 

This thesis further advances the development of ETDR crack sensors with coaxial 

cables in three ways: (1) improving the manufacturing process for more uniform sensors, 

(2) miniaturizing coaxial cables as ETDR sensors, and (3) investigating the effect of 

sensor attachment methods and media. The previous manual fabrication process of 

coaxial cables with spiral outer conductors is time consuming; it cannot guarantee the 

uniform performance of the crack sensors under the same loading condition. The 

presence of a pre-existing separation between two turns of adjacent spirals on the outer 

shield of a coaxial cable can affect the sensitivity and spatial resolution of the ETDR 

sensor. For crack detection in thin composite layers such as FRP sheets, the size of 

previous ETDR sensors must be reduced. Furthermore, the relative merits of surface 

attachment and near surface embedment of coaxial cables in applications with the uses of 

different bonding materials require further investigations.  

To address the above issues with crack detection and extend the application of 

ETDR sensors to corrosion detection, the main objectives set forth in this study include: 

1. To develop an automatic, die-cutting manufacturing process for ETDR sensors 

with coaxial cables, 
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2. To design and fabricate a miniaturized, distributed crack sensor with validation 

tests, 

3. To investigate the advantages and disadvantages of two installation procedures 

(embedment versus surface attachment) using various bonding materials, and 

4. To explore the feasibility of using coaxial cables as distributed sensors for 

corrosion detection in steel reinforcement of RC structures.  
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2. ETDR APPLICATIONS AS A REMOTE QUALITY ASSESSMENT TOOL 

The ETDR remote sensing technique has been successfully implemented in 

various fields. In the early 1950s, it was widely utilized in the field of telecommunication 

to locate discontinuities along a transmission line (Cerri et al., 2005). Since then, it has 

been successfully used as a remote electromagnetic sensing technique for damage 

detection. The ability to convert external disturbances of a transmission line into an 

electrical output signal makes this technique attractive in structural health monitoring. In 

general, the ETDR sensing methodology is based on the analysis of the reflected signal 

from an applied voltage pulse sent through the sensing line at any appreciable 

discontinuity points. A typical ETDR sensor/sensing line is a coaxial cable that can be 

characterized by its impedance. The spatial resolution of such a sensor is defined by the 

electrical properties of the dielectric layer between the inner and outer conductors of the 

coaxial cable sensor and the rise time of the incident signal. 

In the late 1980s, the ETDR methodology was suggested as a tool for soil water 

content and salinity measurements (Dalton and Genuchten, 1986). Later, Grozic et al. 

(2000) applied the Time Domain Reflectometry for volumetric water content of soils in 

loose gassy soils under static and cyclic loadings. In their research, Grozic et al. showed 

that the signal propagation velocity through the soil is indicative of the dielectric constant 

which in turn can be related to the volumetric soil water content. 

The ETDR methodology has been applied for monitoring the stability of various 

engineered and natural facilities. O’Connor and Murphy (1997) investigated the stability 

of crown pillars over abandoned mines. Yin et al. (2009) grouted coaxial cables into 
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zones that are prone to subsidence and landslide for a real time risk assessment of ground 

motions. Douding et al. (1987) quantified the type and magnitude of rock mass 

movement with the ETDR methodology. In their study, coaxial cables were grouted into 

rock and subjected to tension and shear loading. It was shown that the reflection 

coefficient from the ETDR measurements is linearly proportional to the applied load. 

By using the same concept, Khoshbakht and Lin (2006) demonstrated that the 

ETDR distributed moisture sensor was capable of measuring the variation of the moisture 

content in a concrete block. 

The idea to use coaxial cables as distributed strain sensors in civil engineering 

applications was proposed by Lin et al. (1998, 2003). They developed and experimentally 

validated a mechanical model to relate the loading effect (not strain effect seen in actual 

applications) on a coaxial cable to the electrical response of the ETDR cable sensor. 

Commercially available coaxial cables RG-174 were embedded into small-scale RC 

beams that were tested under a three-point loading scheme. The coaxial cables have an 

effective dielectric constant of 2.18 and, as strain sensors, have the maximum spatial 

resolution of 0.16 in (4.064 mm). It was observed that the ETDR signal can be used to 

pinpoint the deformation pattern of the tested beams and indicate the location of visible 

cracks. However, the details of the strain measurements were obscured due to the low 

signal-to-noise ratio of the sensor. In an attempt to improve the sensitivity of RG-174 

commercial cables, Lin et al. suggested to substitute the commonly used dielectric 

material (polyethylene or Teflon) with rubber to facilitate the geometric change of the 

sensor’s cross section. 
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The geometry-based design of cable sensors for strain measurements may be 

limited to certain sensitivity since the actual strain applied on the cable in engineering 

applications is small. Therefore, Dr. Chen’s research group initiated a new design of 

cable sensors with topology changes (Mu, 2002; McDaniel, 2004; Brower, 2007). These 

efforts have improved the performance of cable sensors for crack detection. Various 

parameters affecting the design and fabrication of coaxial cable sensors have been 

investigated systematically. 

The newly designed sensors have demonstrated greater potential to reflect the 

internal condition of a structural member of interest (Chen et al., 2004). In comparison 

with the sensor studied by Lin et al. (1998, 2003), the topology-based sensor has greater 

sensitivity (~ 50 times larger) (Chen et al., 2004). The topology-based distributed crack 

sensors can be used in real time to collect the crack data and information on RC members 

under dynamic loads such as earthquakes and blasts. 
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3. GENERAL CONCEPT OF TOPOLOGY BASED SENSORS 

3.1. OVERVIEW OF TRANSMISSION LINE THEORY 

Any structure designed to transfer energy between two points in space can be 

classified as a transmission line. This thesis concerns the transmission line formed 

between the inner and outer conductors of a coaxial cable that can guide an 

electromagnetic signal. The inner conductor is typically an interior wire while the outer 

conductor is a cylindrical shield. The space between the inner and the outer conductors is 

occupied by either air or a dielectric. The shield serves as a return path of a signal on the 

interior wire; it also assures no communication with the ambient media (Clayton, 1992).  

A transmission line can be viewed as a two port network with each port in turn 

consisting of two terminals as shown in Figure 3.1. The port on the left side of the 

schematic is a sending end and is typically connected to any circuit such as computer 

terminal operating in the transmission mode generating an output (generator) voltage. 

The other port, the right one, Figure  3.1 serves as a receiving end, and is usually 

connected to a load circuit or simply load, which can be a computer terminal operating in 

the receiving mode, as illustrated in Figure  3.1. 

The energy propagation through the transmission line is facilitated by means of 

electromagnetic waves propagated inside the coaxial cable. When a voltage source is 

provided between two conductors at the sending end of the transmission line, electrical 

current starts to flow within the inner surface of the shielding material and the outer 

surface of the inner conductor. That generates the electrical field in a radial direction 

between the inner and the outer conductors and the magnetic field represented by closed 

circular lines encompassing the inner conductor. The transmission line can be represented 
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by a continuous electrical circuit with two series elements per unit length - inductance (L) 

and resistance (R), and two shunt elements per unit length - capacitance (C) and 

conductance (G), which is defined over a unit length (δx) as illustrated in Figure 3.2. 

 
 
 
 

 

Figure  3.1. Coaxial transmission line 
 
 
 
 

 
Figure  3.2. Equivalent circuit model 

 
 
 
 

The per unit length resistance accounts for the electrical property of metallic 

conductors, measured in Ohms/m. It depends upon the conductors’ shape and the 
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frequency operation range. The inductance per unit length is defined by the magnetic 

field present along the transmission line measured in Henrys/m, which is characterized by 

the physical parameters of the line, such as shape and separation between the conductors. 

The transverse electrical field contributes to the per unit length capacitance, measured in 

Farads/m, and per unit length conductance, measured in Siemens/m. Hence the 

magnitude of per unit length capacitance depends on the properties of the dielectric 

material used and its thickness. The per unit length conductance accounts for the leakage 

of the charge between two conductors and, like the other electrical parameters of a 

transmission line, depends on the shape and materials used. 

One of the main parameters used to characterize a transmission line is its 

characteristic impedance Z. In any transmission line with a uniform coaxial cable, 

constant cross section and same material over its entire length, the characteristic 

impedance is a constant. Hence any discontinuity along a transmission line creates a local 

impedance change. In other words, when a voltage step pulse is sent through the 

transmission line, a fraction of the energy reflected back to the sending end at the 

discontinuity point. The reflected voltage depends upon the magnitude and the character 

of the discontinuity and can be quantified by a value known as reflection coefficient (Γ): 

 

      











ZZ
ZZ

V
V

 (3.1) 

 

in which V-/V+ represents a complex ratio of the electric field strength of the reflected 

wave to that of the incident wave, and Z+ and Z_ are the characteristic impedances of the 

sensor/coaxial cable before and after the discontinuity, respectively. The ETDR data is 
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acquired in a time domain at the voltage source end of a transmission line. The magnitude 

of the reflected voltage is recorded at a delayed time that represents the time elapsed 

between two points: the incident pulse launch and the reflected pulse arrival back to the 

recording device. Thus it is straightforward to determine the location of any discontinuity 

that generates the reflected wave. By using two way travel time, the distance between the 

two points can be calculated by: 

 

 

2
vtx   (3.2) 

 

in which t represents the time required for the signal propagation forward to and back 

from the discontinuity, and v is the propagation velocity of the signal along the sensing 

line, which depends on the dielectric constant (ε)  and permeability (μ), 

 

 1

r r

cv
  

   (3.3) 

 

where the subscript “r” indicates relative parameters. Typically the permeability is taken 

as unity and the dielectric constant of Teflon, often used as a dielectric material for 

coaxial cables, is approximately 2.1.  

 

3.2. TOPOLOGY BASED SENSOR 

Topology-based crack sensor developed at Missouri S&T is based on the 

mechanism of creating discontinuities at the connection areas of a spiral outer conductor 
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(Chen et al., 2004). It is a truly-distributed sensing device with high sensitivity and 

spatial resolution. It mainly differs from the previous designs by Lin (1998, 2003) in the 

constitution of the outer conductor of a coaxial cable. The previous designs were based 

on the change in cross-sectional geometry caused by externally applied loading, whereas 

the new designs by Chen et al. (2004) allow change in the current flow pattern as a result 

of the change in outer conductor topology. 

The new sensor is composed of concentrically arranged metallic inner and outer 

conductors and a dielectric between them. As shown in Figure 3.3, the outer conductor is 

formed by wrapping a metal sheet spiral around a dielectric layer. As an example, a 

prototype cable sensor of approximately 0.15 in. (4 mm) in diameter was used in Chen et 

al. (2004). The main requirement to the outer and inner conductor is that they must be 

manufactured with materials of high conductivity so that the current flow along the 

coaxial cable is not interrupted when connected to a measurement instrument. In this 

research, tin plated stainless steel (AMS–5606) and tin plated beryllium copper (ASTM–

B-194) were used. Tin plated products (spirals) were selected for their superior 

conductivity and shielding properties.  

 
 
 
 

 
Figure  3.3 Topology-based crack sensor 
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The dielectric layer can be made from solid polytetrafluoroethylene (PTFE). The 

fluorocarbon structure of PTFE is a durable, inert material ideal for civil engineering 

applications. Completely insoluble in most known solvents below 300°C, it has excellent 

thermal stability and unsurpassed electrical properties, including low dielectric loss, low 

dielectric constant and high dielectric strength. The rugged constituent components of a 

coaxial cable sensor make it attractive for structural health monitoring since it can 

survive harsh manufacturing and construction environments. The service life of cable 

sensors may be comparable to the design life span of civil engineering structures. 

The combination of materials and geometries allows the propagation of 

electromagnetic waves over relatively long distance in a coaxial cable sensor. The coaxial 

configuration of the sensor creates immunity to the electromagnetic interference with an 

ambient environment. As long as the outer conductor can be electrically viewed as a 

continuous cylinder, the sensor can be considered as a perfect transmission line. 

The spirally wrapped outer conductor was used in the topology-based coaxial 

cable sensors to replace the cylindrical outer conductor of commercial coaxial cables for 

enhanced sensors’ sensitivity to any small mechanical impact (Mu, 2003). To ensure 

electrical connectivity between the spiral edges and prevent them from separation before 

loading, a thin layer of copper coating or solder was applied on top of the outer conductor 

of a cable sensor to enhance the signal uniformity (Brower, 2007). In this way, when the 

sensor is subjected to either tension or flexure, the local separation between the spiral 

edges occurs, locally changing the characteristic impedance of the transmission line.  

As discussed previously, one of the main factors affecting the propagation mode 

is the characteristic impedance (Z0) of a transmission line. For a shield coaxial cable that 
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does not undergo any changes in its geometry and configuration, the characteristic 

impedance remains constant over the entire length of the transmission line. In this case, 

the characteristic impedance can be expressed as a function of distributed elements 

 

  0
R j LZ
G j C





 


 (3.4) 

 

where the four elements R, G, L, and C are defined before as illustrated in Figure  3.2. 

When the spirally-wrapped outer conductor of a topology-based sensor remains intact, it 

can be electrically viewed as a continuous hollow cylinder that shields the internal 

electromagnetic field from interference by ambient fields, which can be represented by 

Figure 3.1. At frequencies above 100 kHz, the effects of resistance (R) and conductance 

(G) become negligible and the transmission line becomes lossless as illustrated in Figure 

3.4. The magnitude of the characteristic impedance (Zo) is then affected mainly by 

inductance (L) and capacitance (C). In this case, Eq. (3.4) reduces to Eq. (3.5):  

 

 
 0

LZ
C

   (3.5) 

 

The inductance and capacitance of a coaxial cable are functions of the inner and 

outer conductor diameters, and the width of the spirals used for the outer conductor. 

 Therefore, any change in the configuration of a coaxial cable will affect the 

characteristic impedance. 
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Figure  3.4. Equivalent circuit of a lossless coaxial cable 

 
 
 
 

For example, as a cable sensor is subjected to an increasing external force, the 

spiral edges of its outer conductor start to separate, resulting in locally disturbed current 

lines as illustrated in Figure 3.5. The effect of spiral edge separation can be represented 

by an additional inductance, referred to as a lumped gap inductance (Lgap) shown in 

Figure  3.6.  

According to the transmission line theory of a lossless cable, energy sent to the 

line will travel away the source till it encounters the points of impedance change. At each 

location, a portion of energy will be bounced back to the source. The strength of the 

bounced-back signal depends on the effect of the gap inductance and can be characterized 

by the reflection coefficient that encrypts the information on the separation between 

spirals of the cable outer conductor. The distributed impedance which is influenced by 

the gap inductance in a transmission line is one of the key factors to improvement of the 

distributed crack sensor performance. 
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Figure  3.5  Current detour created by 
discontinuity on the outer conductor  

Figure  3.6. L-C equivalent circuit with a 
lumped gap inductance element 

 
 
 
 

According to Mu (2003) and Wang (2008), the gap inductance is affected by three 

parameters: the projection of separation length on the cross section plane of a cable, the 

turn density and the radius of the cable’s outer conductor. The sensitivity of a topology-

based sensor is a function of its characteristic impedance. The lower the impedance, the 

more easily the gap inductance can be detected (Mu, 2003). A crack sensor with a high 

density of spiral turns is expected to provide more accurate information about crack 

locations since it increases the probability that a crack will coincide with the spiral edges. 

In this study, one of the improvements made to the crack sensor was thus to significantly 

reduce the width of the outer conductor spirals.  

 

3.3. DATA AQUISITION  

For data acquisitions, either Time Domain Reflectometer (TDR) or Vector 

Network Analyzer (VNA) can be used for static measurements. The time domain 

acquisition is desirable since it is easy to relate any event happened in time to a certain 

special location, as indicated in Eq. (3.2). Compared to VNA, TDR is a more intuitive 

piece of equipment but has several disadvantages in applications. Its dynamic range is 
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almost twice lower, resulting in a noisier output signal. TDR launches a step pulse with a 

fast rising time (~35 ps) signal into the distributed crack sensor, and records the 

waveform (reflected voltage) bounced back to it by any discontinuity along the 

cable’s/sensor’s length, as schematically shown in Figure 3.7. Each discontinuity along 

the sensor creates a change in impedance which in turn results in a portion of voltage 

reflected back to the sampling head. The TDR sends a wide frequency range pulse into 

the sensing line and waits for the response. The reflected signal also contains a wide 

frequency range, which arrives at the TDR rapidly.  

 
 
 
 

 
Figure  3.7. TDR working principle 

 
 
 
 

On the other hand, the network VNA sends into the transmission line a single-

frequency signal each time within a pre-determined frequency range (100 KHz – 8.5 GHz 

in this study). The VNA has a built-in band pass filter that is applied to the reflected 

signal that can reduce the noise level. This process slows down the data acquisition, and 

is thus more applicable for static measurements.  



 

 

19 

The measurements with a VNA and relevant settings are explained as follows. 

The VNA measures S parameters in frequency domain, which are later converted into a 

time domain. For example, S11 quantifies the ratio of the reflected RF energy to the 

incident RF energy. Once the data was taken in frequency domain, its inverse Fourier 

Transform is performed by the VNA with commercial software. With appropriate built-in 

windowing and filtering in the VNA, a single phase of reflections from a high rise step 

input is obtained. In this study, data was acquired from miniature crack sensors with the 

commercial Agilent E5071C 8.5GHz Network Analyzer. 

 

3.4. WAVE BOUNCE DIAGRAM 

As indicated in Figure  3.7, a TDR receives the resultant of the incident and 

reflected voltages over time, which in turn can be converted to a special location along 

the sensing line where a fraction of the incident voltage was reflected back to the 

measurement unit. To understand the waveform produced by the TDR, the bounce 

diagram is discussed here. The bounce diagram is a two dimensional representation of the 

transient waves bouncing back and forth along a transmission line as shown in  

Figure 3.8. 

Each impedance discontinuity along a sensing line is characterized by a reflected 

coefficient that defines how much of the transient voltage is bounced back. Figure 3.8 

represents a transmission line with a i number of discontinuities and the signal traveling 

back to the monitoring point has to pass through all of them. At each point of the 

impedance change the portion of the voltage signal, is separated into the reflected wave 

and the wave that passes through the discontinuity. Thus the apparent, so called reflected 
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voltage seen at the receiver’s screen is the algebraic summation of the effects caused by 

the reflection at ith discontinuity and its subsequent transition through all the previously 

located discontinuities.  
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Figure  3.8 Bounce diagram 

 
 
 
 

Thus, by having a voltage wave form as an output, it is possible to back calculate 

the reflection coefficient and the impedance of the sensing line at each discontinuity. As 

seen in Figure 3.8, the apparent voltage sampled at the monitoring point is the algebraic 

summation of the effects caused by each discontinuity that the returning wave passes by. 

Thus, the true reflection coefficient can be found from the following equation: 
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where 1 1(1 )i i iV V     is the voltage of the propagating signal before the ith 

discontinuity, and iV  is the apparent reflected voltage measured by the TDR or VNA. 

After the true reflection coefficient is known, it is possible to obtain the characteristic 

impedance distributed profile from the following expression: 
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 (3.7) 

 

It is noted that Eq. (3.6) for i  accounts only for the effect of the primary 

reflections. It is quite obvious that the signal reflected back to the recording unit will be 

reflected again and again from all the discontinuities located on its way. This will 

continue indefinitely. Nevertheless the magnitudes of all the secondary reflections are 

exponentially smaller than the reflections of the first order and their effect of the apparent 

voltage is negligible. 
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4. MINIATURIZED SENSORS FOR CRACK DETECTION 

4.1. SPIRALLY WRAPPED OUTER CONDUCTOR 

In an attempt to enable the application of topology-based coaxial cable sensors in 

composite structures with layer configurations, the size of the sensors must be reduced. In 

this study, a target diameter of 0.067 in. (1.7 mm) of the miniature prototype sensor as 

shown in Figure 4.1 was considered, which is slightly less than half the diameter of the 

previous prototype of 1.5 in. (4 mm) in diameter (Mu, 2003). Similar to the previous 

prototype, a miniature coaxial cable sensor can be fabricated with spirally wrapped outer 

conductor spirals. The distance between two adjacent spirals, referred to pitch in this 

thesis, is also half that of the previous prototype as summarized in Table 4.1.  

 
 
 
 

 
Figure  4.1. Miniaturized crack sensor 

 
 
 
 

The miniature cable sensors were made with the following materials: Inner 

Conductor - solid silver plated copper clad steel, Outer Conductor - tin plated stainless 
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steel and beryllium copper, and Dielectric – PTFE. To simplify the manufacture process, 

commercially available flexible microwave HFE-100D cables were used. The jacket and 

the outer shielding of each cable were stripped away and substituted by the tin-plated 

stainless steel (beryllium copper) gasket. This material was selected for its superior 

spring memory, conductivity and shielding properties. Stainless steel also exhibits 

excellent corrosion resistance when exposed to humid or salt-fog environments. 

 
 
 
 

Table 4.1. Dimension comparison of two versions of crack sensors 
Diameter (in.) 

Prototype Sensor 
Inner Conductor Outer Conductor 

Pitch 
(in) 

Previous Version (Mu 2003) 0.02 0.15 0.14 
Miniaturized Version (this study) 0.02 0.067 0.07 

 
 
 

 
As pointed out above, the outer conductor is helically wrapped around Teflon. 

Due to the smooth nature of Teflon/dielectric’s surface, steel spirals can easily slide along 

the Teflon to ensure that spiral edges are in close contact. Once in place, the steel spirals 

were painted over with slippage copper-based high conductivity coating (Brower et al., 

2008). Each miniaturized crack sensor was terminated with a 50 Ohm impedance load to 

prevent a significant reflection from the sensor’s end.  

 

4.2. DIE CUT OUTER CONDUCTOR 

To improve the spatial resolution of sensors so that spiral edges are separated at 

exactly the same locations as cracks in applications, the pitch of the outer conductor of 

the sensors must be as small as practically can be. Any impedance discontinuities within 
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the sensors not associated with the cracks must be avoided. Equally important, to further 

enhance the uniformity of hand-made prototype cable sensors with spirally wrapped outer 

conductors coated with either manual or robotic soldering (Brower et al., 2008), a more 

automatic manufacture process needs to be developed. Any manufacturing flaws or spiral 

opening present in a coaxial cable causes the attenuation of a propagating signal due to 

the fringe effect of electromagnetic fields at each opening. Although less of a problem for 

a short distance, these flaws reduce the measurement distance with the sensors in 

applications. Soldering with coating does not guarantee a flawless cable due to difficult 

operations. Furthermore, with spirally wrapped outer conductors, relatively flexible cable 

sensors are susceptible to bending during handling and installation. For an exploratory 

study of corrosion detection, unwanted opening of outer conductor spirals may allow 

inward solution ingress that affects the test results. Therefore, it is imperative to develop 

a new manufacturing process for cable sensors and overcome the preceding 

disadvantages associated with the existing crack sensors. 

After several trials, a die-cut automatic manufacturing process is developed in this 

study. To facilitate the new process, UT-09C-35 semirigid coaxial cables with a 

characteristic impedance of 35 Ohm (www.microcoax.com) were selected. Their outer 

conductor is made of a continuous thin walled copper cylinder. The diameter and 

thickness of their outer conductors are 0.09 in. (2.29 mm) and 0.008 in. (0.2 m), 

respectively. The die-cut prototype sensor is shown in Figure 4.2.  

The die was selected to cut the thread in such a way that the only about three forth 

of the outer conductor thickness is affected by the die cutting. In this way, the cable 

sensor remains shielded over its entire length and the current flow is not interrupted 
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unless it is loaded. At the same time, the grooves on its outer conductor make the cable 

much more susceptible to cracking under external loads. 

 
 
 
 

 
Figure  4.2. Die-cut crack sensor 

 
 
 
 
Since it is relatively rigid, the sensor remains its original shape during installation 

and uncontrolled bending is minimized. In addition, the die-cut sensor has a finely ribbed 

surface, promoting a better bond between the sensor and the host material in applications 

and eliminating their potential relative slippage or ambiguity in data interpretation. The 

baseline ETDR measurements of a spirally-wrapped and a die- cut crack sensor are 

compared in Figure 4.3 and Figure 4.4. As one can see, the waveform from the die-cut 

sensor has fewer aberrations caused by fabrication defects than that of the sensor with the 

spirally-wrapped outer conductor around its dielectric. 
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Figure  4.3. Baseline reading from the die-cut crack sensor 
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Figure  4.4. Baseline reading from the crack sensor with spirally-wrapped tin plated 

copper outer conductor 
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4.3. INSTALLATION PROCESS  

To evaluate the performance of miniaturized crack sensors, small-scale RC beams 

were tested under three point loading. For comparison, both miniaturized crack sensors 

and their previous prototypes were fabricated and installed into small-scale RC beams. 

For practical applications, unless crack sensors were embedded into a RC structure 

during casting, it is critically important to select right adhesive materials that can sustain 

various environmental and loading conditions but break as cracks in sensors’ host 

material penetrate through the adhesive materials. 

When a crack sensor is rigidly attached to a RC element, the stresses developed in 

the element are transferred directly to the sensor. Note that the crack sensor can only 

detect a crack that develops across it. Thus during the installation process, the orientation 

of expected cracking should be taken into considerations.  

All sensors were placed along the tension face of the tested beams. Each beam 

was instrumented with three (3) topology-based sensors. As shown in Figure  4.5, two 

sensors were embedded into 0.5 in deep precut grooves and one sensor was attached to 

the tension face of the beam along its center line. The goal of this study was to select the 

best way for installation of the above mentioned crack sensor. Two types of installation 

(embedded vs. surface attached) were compared. For each installation type, various types 

of adhesive materials are compared, including grouting (SikaGrout212), epoxy 

(HoldTight®102), structural resin (M_BRACE Saturant), and mortar with a weight 

mixture of 1 part of Portland cement, 0.5 part of hydrated lime (type S), and 3.5 to 4.5 

parts of masonry sands according to ASTM-C-144. The test matrix is given in Table 4.2. 
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Figure  4.5. Grouting procedure 

 
 
 
 

Table 4.2. Test matrix for installation methods and materials 
Embedded Surface Attached 

Be
am

 #
 

Si
ka

G
ro

ut
21

2 

M
or

ta
r 

I (
PC

) 

M
or

ta
r 

II
 

(P
C

_E
po

xy
) 

Si
ka

G
ro

ut
21

2 

H
ol

dT
ig

ht
®

10
2 

St
ru

ct
ur

al
 

R
es

in
 

2  xx   x  

3 xx    x  

4   xx   x 

5  xx    x 

6  xx     

7   xx  x  

8  xx  x   

9  xx  x   
 



 

 

29 

4.4. EXPERIMENTAL VALIDATION OF SENSOR PERFORMANCE 

Ten 36-inch long beams of 6”×6” cross section were designed for flexural failures 

with 4.5 ksi normal concrete and Grade 60 steel rebar. Four beam were reinforced with 

#3 and  six beams were reinforced with #4 rebar and all of them had #3 cross ties, as 

illustrated in Figure 4.6. For comparison, two embedded sensors, one miniaturized and 

one previous prototype (Type-1) by Mu (2003), were deployed at the symmetric locations 

as shown in Figure 4.6. 
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Figure  4.6. Test specimen and three-point flexure test setup 

 
 
 
 

The surface attached sensor was with miniaturized designs. All sensors were 

fabricated with spirally wrapped outer conductors with copper soldering since the die-cut 

manufacturing procedure was developed toward the end of this study. Copper coating 

atop the outer conductor of a cable sensor introduces additional friction between the 

sensor and RC member, creating strong bond between them.  

 A 200 kip Tinius Olsen Universal Testing Machine was used for all tests as 

shown in Figure 4.7. A gradually increasing load was applied at the 0.1 in/min crosshead 

displacement rate. At each 0.01 in interval at the compression face, a TDR signature was 
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recorded. A linear variable differential transformer (LVDT) was set up between the 

crosshead and the specimen platform of the test machine, giving the mid-span deflection 

of the beam. Data was acquired with an Agilent Technologies E-5071C 100 kHz - 8.5 

GHz Network Analyzer that was operated in the Time Domain Reflectometry (TDR) 

mode. 

 
 
 
 

 
Figure  4.7. Three-point bending test setup 
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5. EXPERIMENTAL VALIDATION OF CRACK SENSORS  

5.1. MINIATURIZED VERSUS PREVIOUS PROTOTYPE SENSORS 

The load-crosshead displacement curve of the Beam #2 is illustrated in Figure 5.1. 

It can be seen that the slope of the curve changes at 0.15 in crosshead displacement, 

indicating the upper limit of elastic behavior. Section of the curve bounded by 0.15 in 

corresponds to the behavior when tensile stresses at the bottom of the beam have 

gradually reached the tensile strength of the concrete. Most of the cracks have been 

developed in this region. It should be noted that the kinks on the curve are results of an 

applied load relaxation due to pauses taken to record TDR signatures from the sensors 

installed on the tested beam.  
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Figure  5.1. Load-displacement curve 
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Figure 5.2 compares the normalized waveforms acquired from the previously 

designed (Type-1) by Mu (2003) and the miniaturized sensor; both sensors were 

embedded into the grooves. Each curve reflects the impedance change caused by 

sequential 0.01 in (0.254 mm) crosshead displacement increments. The minimum crack 

that can be detected by naked eyes is approximately 0.0079 in. (0.2 mm) wide. According 

to the full wave simulations done by Sun et al. (2009), the minimum crack width 

detectable by the crack sensor is less than 0.1 mm. In the experiment described in Section 

4.4, the first noticeable impedance deviation was recorded in the middle portion of the 

beam at a crosshead displacement of 0.05 in (1.27 mm) while no cracks were observed on 

the tested beam surface. This phenomenon can be explained by the fact that the sensor 

can “feel” stresses developed in the surrounding concrete right before first crack 

develops. 

The TDR signature corresponding to a crosshead displacement of 0.06 in (1.53 

mm) included a prominent spike at 21.4 ns (19 in) from the left end of the beam. As soon 

as the first spike appeared, the beam was visually inspected and no apparent crack lines 

were observed at the surface. It suggests that the sensor was able to pick up a very 

beginning of the crack opening when its aperture is less than 0.0039 in. (0.1 mm). At the 

next increment of crosshead displacement, the first crack has been observed. That was 

followed by an impedance increase on the TDR signature that corresponds well to the 

physical location of the crack. At the crosshead displacement of 0.14 in (3.56 mm), the 

second spike was recorded at about 19.5ns (~13 in) from the left end of the sensor. That 

was immediately followed by the second crack development at 13.75 in from the left 

support of the beam, Figure 5.2.  
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Figure  5.2.  Crack pattern and TDR responses from the previously developed sensor 

(Type-1) and the miniaturized sensor (Type-2) 
 
 
 
 

As the load level continued to increase, the amplitude of the reflected voltage 

increased gradually. The spike, corresponding to the first appeared crack, progressed 

End of the sensor 
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more dramatically than that of the second one due to nonlinear stress redistribution after 

the first open crack. Since the sensor was embedded into the beam, the stress was directly 

transferred to the sensor.  

The TDR signatures from the previously developed and miniaturized sensors were 

compared. It is noticed that the pulses on the TDR waveforms recorded from the 

miniaturized sensor are slightly narrower (less area occupied under the local spike 

waveform) than those from the previously developed sensor. Therefore, the miniaturized 

crack sensor tends to provide more accurate information on the location of the cracks 

developing along the beam or have higher spatial resolution. It is also noted that the 

reflection coefficient detected by the miniaturized sensor for the crack developed at 13.75 

in from the left support is almost twice less than that of the one detected by the 

previously designed sensor. As mentioned previously, the characteristic impedance of the 

sensor significantly affects its sensitivity. Due to limitations of the commercial 

components used in this study, the characteristic impedance of the miniaturized sensor is 

50 Ohm, significantly larger than 15 Ohm for the previously designed crack sensor. As 

such, the sensitivities of the two sensors cannot be compared in a fair way.  

The miniaturized sensors are more sensitive to the stress concentration during the 

first stages of loading when that means that the miniaturized sensor, due to its refined 

geometry, begins to deform earlier than the previously designed sensor. Figure 5.3 

illustrates TDR signatures acquired at the same crosshead displacement from the 

miniaturized and previously designed sensors placed in one beam. It is obvious that the 

miniaturized sensor attached to the tension surface of the beam first detects concentration 
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of stresses at the mid-span region, while the previously designed sensor at that stress 

level has a high noise-to-signal ratio. 
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miniaturized sensors 
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5.2. EMBEDDED VERSUS SURFACE ATTACHED MINIATURIZED SENSORS 

Figures 5.4 through 5.21 show the TDR data recorded from the miniaturized 

sensors installed in Beams #2 to #7. In all figures, embedded sensors are marked as 

sensors #1 and #2, whereas all surface attached sensors are identified as sensor #3. 
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Figure  5.4. Crack pattern of Beam # 2 and TDR signatures from Sensor # 1: embedded 
with Portland cement 
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For better bond between the mortar grouting material and the host material, the 

installation grooves were pretreated with primer. As shown in Figure 5.4 and Figure 5.5, 

the embedded sensors provided the waveforms that are in general agreement with the 

crack patterns observed on the tested beam. All visible cracks have been clearly identified 

by the spikes on the TDR waveforms. The progression of cracks and the widening 

aperture of the spiral separation are shown by the increasing magnitude of the reflection 

coefficient and the locally increasing area under the TDR signature. Note that the 

connection for Sensor #1 was slightly loose during the test, resulting in a signal 

disturbance up to the first 2.5 ns. 

The same adhesive material was used to install the second embedded sensor. As 

shown in Figure 5.5 all cracks were detected fairly well. The waveform patterns from the 

first sensor, Figure 5.4, and the second sensor, Figure 5.5, are quite similar, which can be 

used to cross verify the accuracy of the information yielded by both sensors. The 

waveforms also indicate additional spikes at about 6 ns and 7.3 ns, suggesting the 

presence of smaller cracks of width less than 0.0039 in. (0.1 mm) that were not detected 

during the visual inspection.  

On the other hand, the surface attached sensor with HoldTight®102 adhesives 

behaved differently. As shown in Figure 5.6, the crack pattern within the adhesives is 

different from that of the RC beam. The surface attached sensor appeared to respond to 

the cracks in the beam and the adhesives, giving the TDR waveforms that quite differ 

from the crack pattern on the beam. Thus the surface attachment with HoldTight®102 is 

ineffective to transfer the cracks from the beam to the sensor. 
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Figure  5.5. Crack pattern of Beam # 2 and TDR signatures from Sensor # 2:  
embedded with Portland cement 

 
 
 
 

Figure 5.8 and Figure 5.9 illustrate the crack patterns and the TDR waveforms 

acquired from Beam #3 with two embedded crack sensors that were installed with 

SikaGrout 212 adhesives. As indicated in Figure 5.8, the correlation between the crack 

pattern within the beam and Sensor #1 response is considered to be satisfactory. All 

significant cracks were detected correspondingly.  
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Figure  5.6. Crack pattern of Beam # 2 and TDR signatures from Sensor # 3: surface 
attached with HoldTight 

 
 
 
 
In addition, the surface attached sensor is also susceptible to spalling as evidenced 

at midspan of the beam in Figure 5.7. 

Sometimes along a beam peripheral, cracks terminate before reaching the layers 

of the sensor installation. For Beam #3, such situations occurred at approximately 8.3 in 

and 27.7 in from the left support, the zones marked by dotted lines in Figure 5.8. The 

embedded sensor experienced tension stresses, thus initiating local spiral separations as 

seen in Figure 5.8 at 3.3 and 8.5 ns.  
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Figure  5.7 HoldTight 102 spalling at the midspan of Beam # 2 
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Figure  5.8. Crack pattern of Beam # 3 and TDR signatures from Sensor # 1: 
embedded with SikaGrout 212 
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Figure  5.9. Crack pattern of Beam # 3 and TDR signatures from Sensor # 2: embedded 

with SikaGrout 212 
 
 
 
 

The second embedded sensor was damaged during the installation. As shown in 

Figure 5.9, the TDR signatures completely missed the crack distribution. For a remote 

structural health monitoring, it is critical to understand how the crack sensor response 

should look like. In the case of the normalized data, a sensor attached to the tension face 

of a structure should have most of the positive reflected signatures above the 

time/location axis. The damaged sensor can also be identified by incoherent waveforms 

over time as seen in Figure 5.9. 
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Sensor #3 was surface attached to Beam #3 with Hold Tight ® 102 adhesives. As 

shown in Figure 5.10 and Figure 5.11, the adhesives delaminated at midspan. The crack 

patterns on the beam and the sensor are different. The surface attached sensor tended to 

respond to the crack patterns from both materials and is thus ineffective. 

 
 
 
 

 

Figure  5.10. Crack pattern difference between Beam # 3 and Sensor # 3 and delamination 
of HoldTight 102 adhesives at midspan 

 
 
 
 
The crack patterns developed on the surface of Beam #4 together with the 

waveforms acquired from the miniaturized crack sensors are illustrated in Figure 5.12 

and Figure 5.13. To enhance attraction between grouting and the host materials, the 

grooves molded on the tension face of the beam were brushed with the primer. The 

sensors were grouted with the mortar. During the beam transportation, one of the 

embedded sensors was damaged. As seen in Figure 5.12, location of all cracks within the 

beam is reflected fairly accurately by the TDR signatures. In addition, the sensor suggests 

the presence of the crack zones missed by visual inspection. 
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Figure  5.11. Crack pattern of Beam # 3 and TDR signatures from Sensor # 3: 
surface attached with HoldTight 102 adhesives 
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Figure  5.12. Crack pattern of Beam # 4 and TDR signatures from Sensor # 1: 
embedded with mortar 
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For the surface attachment on Beam #4, M_BRACE Saturant was used. A thin 

layer was poured over the sensor as shown in Figure 5.13. The adhesives, similar to 

HoldTight102, behaved differently than the concrete in tension. It appeared to be more 

tension resistant and eventually developed fewer but wider cracks than the tension face of 

the concrete beam. Thus the surface attached sensor was affected by the differential 

behavior of the concrete and the adhesive which resulted in an erroneous data,  

Figure 5.13.  
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Figure  5.13. Crack pattern of Beam # 4 and TDR signatures from Sensor # 3: surface 

attached with structural resin (M_BRACE Saturant) 
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The close-up view of the middle section of the beam is shown in Figure 5.14. In 

this case, no delamination is observed of the structural epoxy (M_BRACE Saturant). 

However the fact that the sensor does not respond to the crack pattern within the 

structural element itself suggests that the adhesive material cannot be used for the crack 

sensor surface attachment. 

 
 
 
 

 
Figure  5.14. Crack pattern difference between Beam # 4 and Sensor # 3 

 
 
 
 

 For Beam #5, the embedded sensors were installed with mortar and the surface 

attachment was done using structural epoxy (M_BRACE Saturant). Figure 5.15–Figure 

5.17 illustrate the crack patterns and the normalized TDR waveforms acquired 

sequentially under gradually increasing loading on the beam. As indicated Figure 5.15 

and Figure 5.16, Sensors #1 and #2 can detect the cracks on the beam accurately. The 

connection of the first sensor was loose with an exceptionally large reflection originated 

there. It resulted in a less energy sent through the sensor. Nevertheless it behaved 

adequately. The series of the reflections within the first and third nanoseconds Figure 

5.15, are caused by the higher stresses within the beam at the corresponding location. 
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 There were cracks observed on the side surface of the beam that had not reached 

at the tension fibers of the beam where the sensor was grouted.  The fact that all visually 

available cracks were identified correctly, suggests that the additional spikes on the TDR 

signatures (at 6.5 s and 7 ns) are produced by smaller cracks that were not visually seen 

on the beam’s surface, Figure 5.16. 
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Figure  5.15. Crack pattern of Beam # 5 and TDR signatures from Sensor # 1: embedded 
with mortar 
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It can be seen from Figure 5.17 that the surface attached sensor detected three 

possible cracking zones on the tension face of the beam whereas the structural resin 

exhibits only one immense discontinuity at the midspan of the beam. This suggests that 

the adhesive material improves the overall behavior of the beam and is not suitable for 

the surface attachment of sensors, since it has higher tensile strength than the concrete 

used in the beam. 

For Beam #6, two sensors were embedded with mortar. Figure 5.18 and Figure 

5.19 indicate that all visually detected cracks were correctly detected by the sensors. 
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Figure  5.16. Crack pattern of Beam # 5 and TDR signatures from Sensor # 2: embedded 
with mortar 
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Figure  5.17. Crack pattern of Beam # 5 and TDR signatures from Sensor # 3: 
 surface attached with structural epoxy (M_BRACE Saturant) 

 
 
 
 

 The area where the crack had not reached the crack sensor location by the end of 

the test is marked by the red ellipse. This is where the tensile stresses within the beam 

compelled the separation of the spiral edges in the outer conductor of the sensor, resulting 

in additional inductance and hence the series of reflections at this location, Figure 5.18.  

As shown in Figure 5.19, the second embedded sensor detected all the cracks 

except the one marked by the yellow line. The exception was due to the fact that the 

crack changed direction before it reached to the groove and the sensor as shown in  

Figure 5.20, the crack continued to grow along the groove but never crossed the sensor 
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Figure  5.18. Crack pattern of Beam # 6 and TDR signatures from Sensor # 1: 
embedded with mortar 

 
 

 
 

For Bean #7, one embedded sensor was installed with mortar, and one surface 

attached sensor was installed with HoldTight®102. Figure 5.21  presents the crack 

pattern and TDR signatures from the embedded and the surface attached sensors. It can 

be seen from Figure 5.21 that the embedded sensor successfully detected all visible 

cracks. 
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Figure  5.19. Crack pattern of Beam # 6 and TDR signatures from Sensor # 1: 
embedded with mortar 

 
 
 
 
 

 
Figure  5.20. Close-up view of the crack pattern within the midspan of the tension face of 

the Beam # 6 
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Figure  5.21. Crack pattern of Beam # 7 and TDR signatures from the Beam # 7 from   
(a) embedded sensor, and (b) surface attached sensor 
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 However, the surface attached sensor mainly detected the crack pattern on the adhesives, 

which is quite different from that of the beam. Therefore, the surface attachment is not 

recommended. 

 

5.3. CONCLUSIONS 

The comparison between the previously developed crack sensor and the 

miniaturized sensor has shown that the refined geometry of the miniaturized sensor can 

improve spatial resolution in crack detection. Due to limitation with commercially 

available parts, the sensitivity comparison cannot be made on a common basis of equal 

characteristic impedances. Nevertheless, the waveforms obtained under ambient 

conditions indicate that the energy reflected by the previously designed sensor is almost 

twice higher than that of the miniaturized sensor. Despite the higher impedance, the 

miniaturized sensors thus yielded satisfactory results, successfully detecting all cracks of 

0.1 mm or wider. Moreover, they can identify cracks that are invisible to naked eyes 

during visual inspections. This suggests that the sensitivity of the miniaturized sensor is 

quite satisfactory. Note that, if deemed necessary, the characteristic impedance of a 

miniaturized sensor can be lowered by reducing the distance between the inner and the 

outer conductor. 

By comparing TDR signatures acquired from sensors with different installations, 

it can be concluded that the surface attached sensor detected the upcoming crack earlier 

than that embedded into a host structure such as RC beams. This general trend is 

consistent with the structural mechanics theory since the extreme fiber of a beam, where 

surface attached sensors are located, is subjected to cracking first. However, surface 
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attached sensors are susceptible to spalling and delamination from the beam. More 

importantly, in most cases, the surface attached sensor appeared to experience a stress 

condition combining the effects of crack patterns both in the beam and the adhesive 

material. Among various installation materials, SikaGrout 212 can ensure a good bond of 

surface attached sensors with the beam. The sensors attached with SikaGrout 212 

appeared more responsive to the cracking patterns than other adhesives such as 

HoldTight®102 and M_BRACE structural epoxy since they exhibit higher tensile 

strength than the normal weight concrete and tend to inhibit deformation of the outer 

conductor of the sensors. This resulted in a delayed response to the crack propagation. 

The general criterion for the selection of installation adhesives is to ensure that 

the selected adhesives have the same or less tensile strength than the structural member of 

interest. In practical applications, mortar grouting is recommended for sensor embedment 

and SikaGrout 212 is recommended for the surface attachment of sensors. To enhance the 

bond between the host and the adhesive materials primer can be introduced.  
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6. CABLE SENSORS FOR CORROSION DETECTION 

6.1. INTRODUCTION 

Corrosion processes in steel reinforced structures can result in structural 

deficiency and with time create a threat to human lives. According to the Strategic 

Highway Research Program (SHRP) of the U.S. National Research Council, the average 

annual cost of corrosion by the end of 1989 was about $8.3 billion (Koch, et al., 2001). 

By the end of 2000, the U.S. annual cost of corrosion was estimated from 325 to 1000 

million of EURO per year. This only accounts for the direct cost from the highway bridge 

infrastructure deficiency due to corrosion. The indirect cost coming from traffic delays 

and lost productivity can be up to ten times greater. Prompt retrofit and effective 

maintenance can extend the structures’ live span at much less expenses. Corrosion 

monitoring techniques can provide realistic information on the location and the severity 

of corrosion that are crucial for the development of an effective structural preservation 

strategy.  

 

6.2. CORROSION MONITORING AND DETECTION 

Corrosion is a naturally occurring process commonly recognized as deterioration 

of ferrous material when it reacts with the environment. Commercially available 

techniques for corrosion monitoring and detection are in the form of nondestructive test 

and evaluation. They are limited to local operations and time consuming to cover a wide 

area associated with large-scale civil infrastructures.  

  Among various nondestructive evaluation tools are half-cell potential tests, linear 

polarization tests, macro-cell current measurements, concrete resistance & resistivity 
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measurements, and electrochemical impedance spectroscopy tests. Some of these 

methods require costly equipment and certain interpretation skills. To the best of our 

knowledge, none of the above techniques is designed for real time quality assessment. 

In this study, the crack sensor developed at Missouri S&T is proposed as a 

distributed sensor for real time corrosion monitoring.  Implementation of the proposed 

technology may ease the pressure on bridge owners restrained with the federal budget by 

allowing the timely remediation with the minimal financial and labor expense. Cable 

sensors, as discussed in Section 3, are instrumented such that the location of a 

discontinuity developed along its length can be easily detected. When a sensor is placed 

in an immediate vicinity to the steel reinforcement, it is subjected to the same chemical 

processes as the steel reinforcement. In this case, corrosion pitting is expected to develop 

on the sensor exactly at the same location as in the rebar. Thus coaxial cable sensors 

expect to be an effective tool for active corrosion zones detection within RC members.  

 A series of laboratory tests were conducted to explore the feasibility of using 

coaxial cables as corrosion monitoring devices. Nine sensors were manufactured and 

placed in the artificially created corrosive environment and observed over the time. To 

induce accelerated corrosion, 3% and 5% NaCl solutions were used. Based on the test 

results, the proposed distributed sensor is capable of delivering fairly accurate 

information on the location of a discontinuity along the sensor caused by the corrosion 

pitting. Forensic study was also conducted to confirm some of the observations. In order 

to test corrosion sensors in application conditions, 27 cable sensors were prepared and 

placed into RC beams. The beams have been placed in a salty sand bath and are currently 

under continuing tests. ETDR readings will be taken from the corrosion sensors in the 
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duration of tests and any signs of corrosion will be monitored over the time. The 

corrosion test results of the RC beams will be reported in a future document.  

 

6.3. REINFORCED BAR CORROSION 

One of the main reasons why many RC structures become structurally inadequate 

in the U.S. National Bridge Inventory is steel reinforcement corrosion that is followed by 

concrete degradation caused by the high tensile stress exerted by expanding corrosion 

products around the steel. Figure 6.1 briefly illustrates the corrosion process of steel rebar 

in a concrete block due to deicing salt. 

 
 
 
 

 
Figure  6.1. Schematics of rebar corrosion in a concrete block 

 
 
 
 
Concrete in its nature is a porous media with a relatively high pH level (~12.5). 

At the early stage of concrete, all voids within it are filled with an electrolyte primarily 

made of potassium and sodium hydroxides. When reinforcing steel is subjected to an 

alkaline environment, its surface typically gets covered with a thick and adherent iron 

oxide film. This passive film protects reinforcement from further degradation. As the 
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concrete gets carbonized over time from the atmosphere and infiltrated with deicing salts 

(mainly NaCl), the alkali in concrete is neutralized and the pH level is lowered, leading to 

a breakdown of the protective iron oxide coating and the beginning of corrosion.  

Corrosion rate is controlled by several factors: availability of moisture, 

concentration of corrosive agents (salts and access of oxygen) and temperature. The 

oxidation process forms a residue that does not firmly adhere to the surface of the steel 

and flakes off easily causing reinforcement expansion. That imposes radial stresses on the 

surrounding concrete and indirectly instigates formation of micro cracks. The cracking 

provides more intense ingress of carbon saturated meteoric moisture and corrosion rate 

progressively accelerates. Extensive oxidation within steel reinforced members 

eventually weakens RC structures.   

 

6.4. CORROSION SENSOR 

The implementation of a distributed crack sensor has been proven to deliver fairly 

accurate information on the location of a discontinuity, particularly a crack crossing the 

sensor embedded within a RC member. This happens because the transverse crack creates 

a foot print on the outer conductor of the sensor.  

Since the corrosion process within a reinforced structural member can result in the 

formation of a corrosion pit along the embedded sensor, it (the sensor) presumably can 

also be used for location of the zones with active corrosion processes within RC 

members. As shown by Brower (2007), the vicinity of a metal rod has little or no effect 

on the quality of data provided by the sensor. Thus, from the point of view of 

electromagnetic interference, the sensor can be safely placed fairly close to the rebar, 
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such that both of them are subjected to the same corrosion environment (corrosive 

agents).  As alkalinity of concrete goes down, corrosion pits are expected to appear on the 

sensor’s surface and on the surface of reinforcement. With laboratory calibration, the 

measured sensor corrosion rate can be related to the corrosion process of steel 

reinforcement. The sensor used in this study has its outer conductor made of beryllium 

copper which is susceptible to oxidation processes in a carbonized and chloride 

concentrated environment. When copper cover undergoes pitting corrosion, the electrical 

uniformity of the outer conductor is interrupted. As a result impedance of the sensor at 

the corrosion affected spots starts to increase gradually with the increasing size of the 

corrosion pit. This phenomenon can be dissolved into the location of a weakened section 

and degree of rebar deterioration caused by corrosion. To validate the hypothesis that 

crack sensors can detect corrosion, a proof-of-concept corrosion test was conducted. 

 

6.5. CORROSION TEST DESCRIPTION 

 The preliminary corrosion tests were conducted in an aqueous environment. The 

metal exposure to a high humidity environment is known to accelerate the oxidation 

process. The other factors affecting the rate of corrosion are the presence of salts and 

temperature. The presence of the dissolved salts improves the conductivity of the aqueous 

solution and increases the rate of electrochemical corrosion.  

Two sets of experiments were conducted. In the first test series, three prototype 

corrosion sensors were placed into 3% wt NaCl in distilled water solution (Montemor et 

al., 2000). The sensors were made as described in Section 3 except that the stainless steel 

outer conductor with the following copper coating was used. In the second test series, 
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nine sensors were prepared with the beryllium plated copper outer conductor for a faster 

corrosion reaction in comparison with the first test series. The sensors were placed into 

distilled water, 3% and 5% NaCl solutions. Different solution compositions were used to 

better control the corrosion processes. Both experiments were conducted at a constant 

room temperature (~75°F). For the data acquisition, Time Domain Reflectometer (TDR) 

(Agilent Infiniium DCA-J 86100C) and Network Analyzer (E5071C, 100 kHz-8.5GHz) 

were used. 

6.5.1. The First Test Series. TDR signatures were collected at the time when the 

sensors were submerged and every fifth day of a week after beginning of the test. The 

TDR signatures are presented in Figure 6.2.  
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Figure  6.2. TDR signatures taken at every fifth day after beginning of the corrosion test 
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It can be seen from Figure 6.2 that the overall impedance gradually increases with 

the passage of time. The results can be explained by the fact that the connectivity at spiral 

edges of the outer conductor decreases as the thin copper coating layer gradually 

dissolves in the oxidation process. The TDR signatures clearly indicate the SMA 

connector region and the air/solution interface where most of the oxidation took place. 

The photo illustrates the condition of a corroded cable. 

Since the stainless steel was used as the material for the outer conductor, the 

corrosion took place only within the copper coating layer atop the outer conductor. This 

means that immediately after the coating layer is completely corroded away, the sensor 

becomes corrosion insensitive. During the test of other cables, the connectors were 

loosened. No data was taken from the other cables. 

6.5.2. The Second Test Series. To avoid the loose connector problem, all sensors 

were placed in the specially prepared casings as shown in Figure 6.3. These casings kept 

the sensors remain still during the test and data acquisition. 

 
 
   
 

  
Figure  6.3. Crack/corrosion sensors encased into rigid frame to prevent connector 

loosening and sensor bending 
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Since the sensors were prepared manually, there is a possibility of embedded 

defects, such as zones of poorly soldered spiral edges of the outer conductor. That may 

lead to the solution ingress into the space between the conductor and the dielectric of a 

sensor at the beginning of the experiment, which can alter the electrical characteristics of 

the sensor. To eliminate this potential effect, three sensors were placed into distilled 

water. The other three sensors were placed into 3%NaCl solution. For the accelerated 

reaction, the remaining three sensors were submerged into 5%NaCl solution.  

For various measurements, the VNA-E5071C (100 kHz-8.5GHz) was utilized 

during tests. The reflection coefficient (ρ) as a function of time (ns) was taken in the time 

domain mode. For normalization, the waveform acquired at the moment when the sensors 

were immersed is subtracted from each of the followed measurements. Figure 6.4 and 

Figure 6.5 present the normalized reflection coefficient and corrosion information of two 

sensors that were placed into 3% and 5% NaCl solutions, respectively. Note that the 

cables significantly below the air/solution interface were not corroded due mainly to lack 

of oxygen. Therefore, that part of the cables is not shown in Figures 6.4 and 6.5.  

As shown in Figures 6.4 and 6.5, the corrosion of the cable can be divided into 

three zones in terms of corrosion rates.  

I. Immediately below the air/solution (A/S) interface  

This portion of the sensor underwent the most vigorous corrosion. The yellowish 

residue caused by corrosion can be seen throughout this zone. Well-developed corrosion 

pits can be observed on the surface of the sensors placed into the 5%NaCl solution. 

II. Immediately above the air/solution (A/S) interface - intense capillary action 
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Capillary forces drag the corrosive solution above the A/S interface, thus 

oxidizing the beryllium plated cupper. The more intense supply of oxygen contributes to 

the process of corrosion. Due to water evaporation, salt crystals precipitate on the surface 

of the cable.  

III. Further above the air/solution (A/S) interface - weak capillary action 

With the increasing distance from the A/S interface, the attractive forces between 

water molecules become weaker and the amount of solution dragged upward decreases. 

Nevertheless a small amount of NaCl solution still reaches that zone. As the solution 

moves up, the salt concentration increases while the water evaporates. Accordingly, the 

precipitation in this zone takes place more rapidly than the corrosion process. 
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Figure  6.4. Normalized signatures and images of the sensor placed into 3% NaCl solution 
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Figure  6.5. Normalized signatures and images of the sensor placed into 5% NaCl solution 

 
 
 
 
Figure 6.4 indicates that the characteristic impedance of the sensor tends to 

increase over time. One of the reasons for this phenomenon is due to the constantly 

degrading condition of the outer conductor. Corrosion together with the salt precipitation 

along the spiral edges introduces an additional inductance, thus increasing impedance 

gradually. In Zone I, the corrosion process dominates this phenomenon. The outer 

conductor starts to corrode from the coil edges, causing the spiral separation. The sensors 

were hand manufactured; some degrees of imperfection are likely present. Solder used to 

provide electrical connectivity between spiral edges of the outer conductor may be 

unevenly applied, causing non uniform corrosion along the submerged portion of the 

cable. Therefore, several pulses can be seen in the reflection coefficient readings. 
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As indicated in Figure 6.5, the more aggressive environment (5% NaCl) resulted 

in the formation of a relatively large (to the cable’s size) corrosion pit toward the end of 

the sensor. This possibly changed from the originally open termination to a different 

condition of the sensor. As conductive moisture seeps into the end of the cable, it creates 

gradually increasing load at the sensor’s end. That can explain the rapidly drifting up 

signatures in Figure 6.5. The second possible explanation is the increasing losses due to 

water ingress into the cable. The third possible explanation is the gradually increasing 

inductance as salt precipitations at spiral edges of the sensor slowly push the spirals apart. 

 Figure 6.6 presents the normalized reflection coefficients of the sensor placed into 

distilled water that were measured during the corrosion tests. 
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Figure  6.6. Normalized signatures and images of the sensor placed into distilled water 
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As one can see, the changes in the ETDR signatures are small and negligible. 

These results confirm that the impedance change indicated by Figures 6.4 and 6.5 is 

caused by the corrosion and salt precipitation processes instead of water ingress 

underneath the outer conductor. The end conditions of the cable did not undergo any 

changes during the experiment. 

 

6.6. FORENSIC STUDY 

In this study it was hypothesized that the impedance gradual increase is caused by 

two reasons. One is the relatively uniform separation between spiral edges caused by salt 

crystal precipitations. The other is the appearing of corrosion pits on the outer conductor. 

To validate the hypothesis, the tested sensors were disassembled and their outer 

conductors were carefully scrutinized under microscope (AVEN Digital Mighty Scope 

1.3M). Figure 6.7 presents the condition of the outer conductors of several cables after 

the completion of corrosion tests. 

It can be seen from Figure 6.7 that the outer conductor became thinner uniformly 

and more brittle during the tests. In Zone I, the presence of small (less than a millimeter) 

holes was evidenced. These observations validate the previous hypothesis.    

The corrosion experiment indicates that the sensor can be used to locate the areas 

weakened by oxidation processes when embedded in steel reinforced structures. To 

simplify the data interpretation, the unwanted effects caused by separation of the spiral 

edges as a result of salt crystal precipitations can be eliminated by replacing spirally 

wrapped outer conductor with cylindrical copper outer conductor as shown in Figure 6.8.  
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Figure  6.7. Outer conductor condition after a corrosion test 

 
 
 
 

 
Figure  6.8. Proposed cable structure for corrosion monitoring 

 
 
 
 
For practical applications, corrosion sensors must be durable and functional throughout 

the design life span of civil engineering structures. The signal propagation in a coaxial 
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cable can be interrupted when corrosion develops radially around the cable sensor 

surface. In this case, the cable can no longer be used as a transmitting device for further 

monitoring of corrosion processes. To overcome this issue, each sensor was helically 

covered with corrosion resistant paints as illustrated in Figure 6.9. In this way, the 

painted portion of the cable expects to maintain its conductive characteristics for the 

duration of in-service structural members, allowing continuous corrosion monitoring. 

 

 

 
Figure  6.9. Corrosion resistant helical paints over a coaxial cable sensor 

 
 
 
 

To validate the performance of corrosion sensors in application environments, 27 

prototype corrosion sensors as shown in Figure 6.9 were fabricated and installed in 

proximity and parallel with steel reinforcement of 27 RC beams. The beams were placed 

in a salty sand bath and exposed to an accelerated corrosion environment. Each sensor 

will be used to monitor the corrosion process of its nearby parallel rebar with the VNA 

for the duration of corrosion tests. Finally, at the completion of the corrosion tests, each 

beam will be broken and the steel bars will be inspected for the location of corrosion pits. 

The visual inspection results will be compared with the data obtained from the sensors to 

draw conclusions on the sensor performance.  
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7. CONCLUDING REMARKS 

The first part of this thesis is aimed at developing a miniaturized crack sensor 

with a controllable manufacturing process of coaxial cables, whose diameter is as small 

as one half of the previous prototype sensors. In comparison with the previous prototype, 

experimental data indicated that the miniaturized sensor has higher sensitivity and spatial 

resolution to the stress distribution and the localization of cracks. For effective 

deployments, both installation methods and adhesive materials were investigated for 

reinforced concrete applications. A surface attached crack sensor can detect cracks earlier 

than a corresponding embedded sensor in a RC member. It is also easier to install without 

the need of cutting a groove in field applications. For surface attachment of sensors, it is 

recommended that SikaGrout 212 be used as adhesive materials. For embedment of 

sensors, mortar is recommended as bonding agents. 

The second portion of this thesis is a first attempt to use crack sensors for 

corrosion monitoring. The preliminary results obtained in this study indicated that coaxial 

cables function as promising distributed corrosion sensors for real time assessment of 

both aging and new RC structures. However, further tests and validations of corrosion 

sensors are required prior to actual implementation of the proposed technology.  
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APPENDIX A. 

DATA AND RESULTS FROM THREE-POINT BENDING TEST 
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Figure A.1. Beam # 2_ PC -primer pretreated _ Hold Tight ® 102 

Sensor#1 
Sensor#3 

Sensor#2 



 

 

71 

 

 

 

 

 
Figure A.2. Beam # 3_ Sika Grout 212_ Hold Tight ® 102 
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Figure A.3. Beam#4_ PC- Primer Pretreated _ Structural Epoxy 
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Figure A.4. Beam#5_ PC (mortar) _ Structural Epoxy 

 

Sensor#1 
Sensor#3 

Sensor#2 



 

 

74 

 

 

   

                              

 
Figure A.5. Beam#6_ PC (mortar)_ none 
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Figure A.7. Beam#8_  PC (mortar)_ SikaGrout 212  
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Sensor-2 (Embedded) 
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Sensor-3 (Surface Mounted)  
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Figure A.8. Beam # 9 (L1) _ PC (mortar) _ Sika Grout 212 

 



 

 

77 

 

 

 

 

 

 

 

 

APENDIX B. 

GEOMETRICAL MODEL AND SIMULATIONS OF CRACK SENSORS 
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8. B.1. SIMULATIONS 

B.1.1. GENERAL CONCEPT 

To perform a comprehensive optimization of coaxial cable sensors for various 

applications, accurate and realistic simulations of a coaxial cable is necessary. With a 

high fidelity model, the parameters of a cable sensor can be tested numerically to further 

the understanding of its behavior under different conditions. Simulation results can 

replace part of the time consuming and expensive experiments. 

Figure B.1 presents a flow chart with three main steps to simulate the time-

domain response of a cable sensor. First, a geometrical representation of the sensor (a 

model) is created. Since direct time-domain calculations are very time consuming, a full 

wave frequency domain method is used to get S-parameters. Scattering parameters or S-

parameters (the elements of a scattering matrix or S-matrix) describe the electrical 

behaviors of linear electrical networks under various steady state stimuli by electrical 

signals. An equivalent circuit is then generated for the lumped element ADS model to get 

the time-domain response of the cable. For full-wave simulations, an electromagnetic 

simulation package, EMCoS Virtual Antenna Lab (EMCoS Ltd., EMCoS Antenna 

VirtualLab, Version 1.0), was used. 

The model is represented by a spiral wrapped around a center rode on a certain 

distance. The loops of the spiral have small gaps between them. The surface of a spiral is 

created by the triangles with common edges. The return current in the model can flow 

from one triangle to another across the mutual edge and it cannot jump from one spiral to 

another. In order to create a model with connected loops, the loops across the gaps are 

connected by conductive segments. 
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Figure B.1. Simulation flow chart 

 
 
 
 

Current can flow in both triangles in the spiral and through the rods. When all 

gaps are connected by segments (rods), the structure behaves as a coaxial cable with a 

solid outer conductor. A gap in the outer conductor can be simulated by removing some 

rods between spirals, as illustrated in Figure B.2. 

 
 
 
 

 
Figure B.2. Geometrical model of a coaxial cable sensor 

  
 
 
 

Full-wave MoM Model of the Cable 

S-Parameters s2p-file 

TDR simulation in circuit system simulator 
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A source is attached from one end of the cable structure (Figure B.3) and a 50 

Ohm load is attached from the other end (Figure B.4). The complete model of the cable is 

shown in Figure B.5. 

 
 
 
 

 
Figure B.3. Source simulation 

 
Figure B.4. Termination simulation 

 
 
 
 

 
Figure B.5. The complete model of a coaxial cable sensor in EMC Studio 
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Surface current distribution for 1 MHz frequency is presented in Figure B.6. 

Effect of discontinuity can be clearly seen. Red color represents high current density. 

Current Distribution Arrow Plot can be used to visualize the current flow 

direction as shown in Figure B.7. 

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure B.6. Current distribution across the gap 
 
 
 
 
 

 
Figure B.7. Current Distribution Arrow Plot 

 

30 cm long cable with 1-loop discontinuity in the center 
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In the normal state of a cable when loops are connected with conductive elements, 

current flows along the cable. In case of discontinuity, current is forced to take detour by 

spiral shield. This affects S-parameters of the cable as illustrated in Figure B.8 – B.10.  

 
 
 
 

 
Figure B.8. Transmission coefficient 
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Figure B.9. Reflection coefficient 

 
 
 
 

 
Figure B.10. Transmission coefficient 
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Therefore, any change in S-parameters matrix is detectable in TDR simulations 

using the ADS model as shown in Figure B.11. The model assumes that the source 

(TDR) has a rise time of 34 ps. TDR is connected to the block created based on the 

simulated S-parameters via 50 Ohm impedance.  

 
 
 
 

 
Figure B.11. ADS model of the setup with TDR and the sensor 

 
 

 

 

As shown in Figure B.12 for the TDR simulations, the peak that represents the 

gap in the cable is not well distinguishable. There are following reasons and ways to 

improve the simulation. The main reason is that the full wave simulation uses a frequency 

range up to 5 GHz. The wavelength at 5 GHz is around 15 cm. This means that much 

higher frequencies must be used to “feel” the gap. 
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Figure B.12. TDR simulations with ADS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crack sensor 
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APPENDIX C. 

GEOMETRICAL MODEL GENERATION CODE IN C# 
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namespace NastranCableGenerator 

{ 

    public partial class Form1 : Form 

    { 

        public Form1() 

        { 

            InitializeComponent(); 

        } 

 

        private void buttonGenerate_Click(object sender, EventArgs e) 

        { 

            GenerateSpiral(); 

            return; 

            double cable_length; 

            double cable_diameter; 

            double spiral_pitch; 

            double spiral_width; 

            int circular_approximation; 

 

            cable_length = Convert.ToDouble(textBoxLength.Text); 

            cable_diameter = Convert.ToDouble(textBoxDiameter.Text); 

            spiral_pitch = Convert.ToDouble(textBoxPitch.Text); 

            spiral_width = Convert.ToDouble(textBoxWidth.Text); 

            circular_approximation = Convert.ToInt32(textBoxApproximation.Text); 

 

            double pitch_angle; 

            pitch_angle = Math.Tan((spiral_pitch / 2.0) / cable_diameter); 

            //pitch_angle = pitch_angle * 180.0 / Math.PI; 

            double width_along_cable; 

            width_along_cable = spiral_width / Math.Cos(pitch_angle); 

 

            double step_angle = 360.00/Convert.ToDouble(circular_approximation); 

            step_angle = step_angle / 180.0 * Math.PI; 

 

            //Prepare to create Spiral. 

 

            double NumberOfTurnes = cable_length / spiral_pitch; 
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            int NumberOfSteps = Convert.ToInt32(NumberOfTurnes * 

Convert.ToDouble(circular_approximation)); 

            double StepSize = cable_length / NumberOfSteps; 

 

            Vector3D Vector_1, Vector_X; 

 

            Vector_1.X = 0.0; 

            Vector_1.Y = 0.0; 

            Vector_1.Z = cable_diameter/2.0; 

 

            Vector_X.X = 1.0; 

            Vector_X.Y = 0.0; 

            Vector_X.Z = 0.0; 

 

            List<Vector3D> Pos = new List<Vector3D>(); 

           

            for (int i = 0; i <= NumberOfSteps; i++) 

            { 

                              

                Vector_1 = Vector3D.RotateVectorAroundVector(Vector_X, Vector_1, 

step_angle*Convert.ToDouble(i)); 

                Vector3D tmpVector = Vector_1; 

                tmpVector.X = StepSize*Convert.ToDouble(i); 

                Pos.Add(tmpVector); 

 

                tmpVector.X = StepSize * Convert.ToDouble(i) + width_along_cable; 

                Pos.Add(tmpVector); 

 

            } 

 

            

                 TextWriter tw = new StreamWriter("nastran.nas"); 

                 string ToWrite; 

 

                 for(int i = 0; i < Pos.Count; i++) 

                 { 

                     //cable_diameter.ToString(); 
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                     ToWrite = CreateNode(i+1, Pos[i].X, Pos[i].Y, Pos[i].Z); 

                           

                     tw.Write(ToWrite); 

                 } 

 

                 for (int i = 0; i < Pos.Count - circular_approximation; i += circular_approximation) 

                 { 

 

                     for (int j = 0; j < circular_approximation-1; j+=2) 

                     { 

                         ToWrite = CreateTriangle(j + i + 1, j + i + 1, j + i + 3, j + i + 2); //1 3 2  

                         tw.Write(ToWrite); 

 

                         ToWrite = CreateTriangle(j + i + 2, j + i + 2, j + i + 3, j + i + 4); //2 3 4 

                         tw.Write(ToWrite); 

                     } 

 

                     ToWrite = CreateTriangle(i + circular_approximation - 1, i + circular_approximation - 1, i + 

1, i + circular_approximation * 2); //2 3 4 

                     tw.Write(ToWrite); 

 

                     ToWrite = CreateTriangle(i + circular_approximation , i + circular_approximation, i + 1, i + 

2); //2 3 4 

                     tw.Write(ToWrite); 

 

                 } 

               

                 //ToWrite = CreateTriangle(1234, 123, 1, 23); 

 

                 tw.Write("ENDDATA"); 

                

                tw.Close(); 

        

    } 

 

        private string CreateNode(int id, double X, double Y, double Z) 



 

 

90 

        { 

                     string nX = String.Format("{0,7:0.00}", X);// X.ToString("G6"); 

                     string nY = String.Format("{0,7:0.00}", Y);//Y.ToString("G6"); 

                     string nZ = String.Format("{0,7:0.00}", Z);//Z.ToString("G6"); 

 

                     string s_id;// = id.ToString(); 

 

                     //GRID           1       0 0.55352 0.69243  0.8866 

 

                    s_id = String.Format("{0,5}", id);  

 

            string signX = " ", signY = " ", signZ = " "; 

         

            string res_string; 

 

            res_string = "GRID       " + s_id + "       0" + signX + nX  + signY + nY  + signZ + nZ + "\n"; 

 

            return res_string; 

 

        } 

 

        private string CreateTriangle(int id, int n1, double n2, double n3) 

        { 

 

            //CTRIA3         1     200       4      13     147 

 

            string res_string; 

 

            string s_id = String.Format("{0,5}", id); 

 

            res_string = "CTRIA3     " + s_id + "     200" + String.Format("{0,8}", n1) + 

                                        String.Format("{0,8}", n2) + String.Format("{0,8}", n3) + "\n"; 

               

            return res_string; 

        } 

 

        void GenerateSpiral() 



 

 

91 

        { 

            double cable_length = Convert.ToDouble(textBoxLength.Text); 

            double cable_diameter = Convert.ToDouble(textBoxDiameter.Text); 

            double spiral_pitch = Convert.ToDouble(textBoxPitch.Text); 

            double spiral_width = Convert.ToDouble(textBoxWidth.Text); 

            double circular_approximation = Convert.ToInt32(textBoxApproximation.Text); 

 

            Vector3D axe = new Vector3D(1.0, 0.0, 0.0); 

            Vector3D vec = new Vector3D(0.0, 0.0, cable_diameter / 2.0); 

 

            List<Vector3D> spiral1 = new List<Vector3D>(); 

            List<Vector3D> spiral2 = new List<Vector3D>(); 

             

            double step = spiral_pitch / circular_approximation; 

 

            step = cable_length/Math.Round(cable_length / step); 

 

            double angle = Math.PI * 2.0 * (step / spiral_pitch); 

 

            double N = Math.Floor(cable_length - spiral_width) / step; 

            Vector3D origin = new Vector3D(0.0, 0.0, 0.0); 

            for (int i=0;i<=N;i++) 

            { 

                vec = Vector3D.RotateVectorAroundVector(axe, vec, angle); 

                spiral1.Add(origin + vec); 

                spiral2.Add(origin + vec + (new Vector3D(spiral_width, 0, 0))); 

                origin.X += step; 

            } 

 

            TextWriter tw = new StreamWriter("nastran.nas"); 

            string ToWrite; 

            int n = 0; 

            for (int i = 0; i < spiral1.Count; i++) 

            { 

                //cable_diameter.ToString(); 

 

                ToWrite = CreateNode(++n, spiral1[i].X, spiral1[i].Y, spiral1[i].Z); 
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                tw.Write(ToWrite); 

            } 

 

            for (int i = 0; i < spiral2.Count; i++) 

            { 

                //cable_diameter.ToString(); 

 

                ToWrite = CreateNode(++n, spiral2[i].X, spiral2[i].Y, spiral2[i].Z); 

 

                tw.Write(ToWrite); 

            } 

 

            n = 0; 

            for (int i = 0; i < spiral1.Count-1; i++ ) 

            { 

                ToWrite = CreateTriangle(++n,i+1,i+2,i+spiral1.Count+1); //1 3 2  

                tw.Write(ToWrite); 

 

                ToWrite = CreateTriangle(++n, i + 2, i + spiral1.Count + 2, i + spiral1.Count + 1); //2 3 4 

                tw.Write(ToWrite); 

            } 

 

            int nTurns = (int) Math.Floor(cable_length / spiral_pitch); 

            n = 0; 

            for (int i = 0; i < spiral1.Count - (int)circular_approximation; i++) 

            { 

                ToWrite = CreateRod(++n, i + spiral1.Count + 1, i + (int)circular_approximation+1); 

                tw.Write(ToWrite); 

            } 

 

            tw.Close();     

        } 

 

        private string CreateRod(int id, int n1, int n2) 

        { 

            //CROD           1       1     926     929 
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            string res_string; 

 

            string s_id = String.Format("{0,5}", id); 

 

            res_string = "CROD       " + s_id + "       1" + String.Format("{0,8}", n1) + 

                                        String.Format("{0,8}", n2) + "\n"; 

 

            return res_string; 

        } 

}; 

 

} 
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