

Scholars' Mine

Masters Theses

Student Theses and Dissertations

Fall 2008

Performance of fire-damaged prestressed concrete bridges

Wendy LeAnn Moore

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Civil Engineering Commons

Department:

Recommended Citation

Moore, Wendy LeAnn, "Performance of fire-damaged prestressed concrete bridges" (2008). Masters Theses. 6778.

https://scholarsmine.mst.edu/masters_theses/6778

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

PERFORMANCE OF FIRE-DAMAGED PRESTRESSED CONCRETE BRIDGES

by

WENDY LEANN MOORE

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN CIVIL ENGINEERING

2008

Approved by

John J. Myers, Advisor David Rogers Yu-Ning (Louis) Ge

ABSTRACT

The purpose of this experimental program was to develop and analyze the effects of fire damage on prestressed concrete bridges. Flexural strength and serviceability of the bridge were measured by inputting fire damaged data into a parametric study spreadsheet consisting of a typical 3-span continuous prestressed concrete bridge.

Data was obtained by exposing two types of specimens to different levels of elevated temperatures and then cooling them at room temperature to simulate fire damage. The two specimen types were prestressing strands which were tested in tension and concrete blocks with a single prestressing strand embedded in the center, which were tested in pullout testing. The tension specimens provided information regarding the tensile strength and stiffness of the prestressing strand steel and the pullout testing gave an understanding regarding the bond properties.

Material specific results found that prestressing steel loses significant tensile strength upon exposure to temperatures greater than 500°F (260°C). The bond between the strands and concrete is affected almost immediately with considerable loss occurring at 500°F (260°C). For this bridge design it was found that depending on the location and burning duration of the fire, the structure can survive without losing significant capacity. This applies to both standard time-temperature curve fires and hydrocarbon fuel fires.

ACKNOWLEDGMENTS

I would like to personally thank Dr. John J. Myers for his advising regarding the research and completion of my master's degree.

In addition to his outstanding service to me as a graduate advisor, I would also like to thank Dr. Myers for his extensive time in assisting me in advising, course work and general guidance throughout my higher educational experience. For the last five years, Dr. Myers has been a valuable individual as a professor and advisor. His direction and experience has helped me make many of the significant decisions I have chosen throughout my time at the university.

I would also like to recognize and thank my committee members Dr. Ge and Dr. Rogers for their time and support.

I would like to give gratitude to Kenny Allison, Ron Haas, Jeff Bradshaw, Travis Hernandez, and Steve Gabel for their outstanding assistance, time and input of ideas during the research process.

Finally, I would like to thank my future husband Daniel Bailey, my parents Scott and Kim Moore and my brothers Craig and Derek Moore for their continuous support and motivation throughout my educational experience.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ACKNOWLEDGMENTS	iv
LIST OF ILLUSTRATIONS	X
LIST OF TABLES	xiv
NOMENCLATURE	xvi
SECTION	
1. INTRODUCTION	1
1.1. BACKGROUND	1
1.2. OBJECTIVE	2
1.3. SCOPE	2
1.4. OUTLINE	3
2. LITERATURE REVIEW	4
2.1. GENERAL	4
2.2. PRESTRESSED CONCRETE	4
2.2.1. History	4
2.2.2. Mechanical Properties	5
2.2.3. Manufacturing Process	5
2.3. TENSION TESTING	6
2.3.1. General	6
2.3.2. Prestressing Strands	6
2.4. PULLOUT TESTING	7
2.4.1. General Bond and Development	7
2.4.2. Pullout Test	8
2.4.3. Bond Stress.	8
2.4.3.1 ACI and AASHTO code provisions	9
2.4.3.2 FHWA code provisions	9
2.4.4. Effects Due to Varying Parameters	9
2.4.4.1 High strength concrete.	9

2.4.4.2 Strand type.	10
2.5. FIRE DAMAGED MATERIALS FOUND IN BRIDGES	10
2.5.1. Concrete	10
2.5.1.1 Compressive strength (f'_c) for normal strength concrete	11
2.5.1.2 Compressive strength (f'_c) for high strength concrete	15
2.5.1.3 Modulus of elasticity (E_c) of concrete	15
2.5.1.4 Physical changes	17
2.5.2. Mild Steel.	17
2.5.3. Prestressing Strands.	18
2.5.3.1 Tensile strength.	18
2.5.3.2 Modulus of elasticity	21
2.5.4. Steel and Concrete Bond Behavior	21
2.6. FIRE MODELS	23
2.6.1. Standard Fire Resistance Tests	23
2.6.2. Non-Standard Fires	24
2.6.2.1 Pool fires	24
2.6.2.2 Modeling	25
2.7. FIRE DAMAGED STRUCTURES	26
3. EXPERIMENTAL PROGRAM	28
3.1. TEST MATRIX	28
3.1.1. Tension Tests	28
3.1.1.1 Phase I	31
3.1.1.2 Phase II	32
3.1.2. Pullout Tests.	32
3.2. MATERIALS	34
3.2.1. Prestressing Strands	34
3.2.2. Concrete	35
3.3. DESCRIPTION OF SPECIMENS	36
3.3.1. Tension Specimens.	36
3.3.2. Pullout Specimens.	36
3.4. TEST SETUP	37

3.4.1. Furnace	37
3.4.2. Tension Tests	39
3.4.3. Pullout Tests	42
4. EXPERIMENTAL TEST RESULTS .	45
4.1. TENSION TESTS	45
4.1.1. Visual Observations	45
4.1.2. Test Results	46
4.1.3. Failure Mode	50
4.1.4. Discussion of Results	
4.1.4.1 Tensile strength	52
4.1.4.2 Modulus of elastici	ty56
4.1.4.3 Yield	57
4.1.4.4 Tensile strength at	elevated temperatures58
4.2. PULLOUT TESTS	59
4.2.1. Visual Observations	59
4.2.2. Test Results	62
4.2.3. Failure Mode	66
4.2.4. Discussion of Results	72
4.2.4.1 Bond capacity	72
4.2.4.2 Implications caused	d by loss in bond stress75
5. PARAMETRIC STUDY	77
5.1. DESIGN EXAMPLE	77
5.1.1. Design Properties	79
5.1.2. Load Factors	79
5.1.3. Loads	80
5.1.4. Reinforcement Details	80
5.2. TEMPERATURE PROFILE	82
5.2.1. Standard Time-Temperatur	re Curve
5.2.2. Non-Standard Fire	83
5.3. LOCATION OF FIRE	84

5.3.1. Fire Below the Bridge at the Critical Positive Moment Section at Midspan.	84
5.3.2. Fire Above the Bridge at Critical Negative Moment Sections	85
5.3.3. Fire Above the Bridge Between Girders	85
5.4. MATERIALS	85
5.4.1. Prestressing Strands	85
5.4.2. Concrete	85
5.4.2.1 Compressive strength	87
5.4.2.2 Modulus of elasticity and moment of inertia	88
5.4.3. Mild Reinforcing Steel.	89
5.5. HYDROCARBON POOL FIRE CALCULATIONS	90
5.6. ASSUMPTIONS	91
5.6.1. Fire Effects Entire Length of Girder Equally	91
5.6.2. Environmental Effects	91
5.7. STUDY RESULTS	92
5.7.1. Fire Below the Bridge at the Critical Positive Moment Section at Midspan	92
5.7.2. Fire Above the Bridge at Critical Negative Moment Sections	98
5.7.3. Fire Above the Bridge Between Girders	104
6. FIRE EXPOSED CASE STUDIES	109
6.1. GENERAL	109
6.2. U.S. ROUTE 7 BRIDGE (RIDGEFIELD, CT)	109
6.2.1. Accident	109
6.2.2. Parametric Study	110
6.2.3. Conclusions	110
6.3. PUYALLUP RIVER (TACOMA, WA)	115
6.3.1. Accident	115
6.3.2. Parametric Study	116
6.3.3. Conclusions	116
6.4. I-5 OVERPASS (LYNNWOOD, WA)	121
6.4.1. Accident.	121
6.4.2. Parametric Study	122

6.4.3. Conclusions	122
6.5. CASE STUDY DISCUSSION	126
7. CONCLUSIONS AND RECOMMENDATIONS	128
7.1. GENERAL	128
7.2. FIRE DAMAGED PRESTRESSING STEEL PROPERTIES	128
7.3. FIRE DAMAGED BOND PERFORMANCE	129
7.4. FIRE DAMAGED BRIDGE PERFORMANCE	130
7.5. FUTURE RECOMMENDATIONS	130
APPENDIX	132
BIBLIOGRAPHY	133
VITA	139

LIST OF ILLUSTRATIONS

		Page
Figure 2.1	Variation of steel stress with development length	7
Figure 2.2	Residual compressive strength vs. temperature for concrete	14
Figure 2.3	Residual strength vs. temperature for mild-reinforcing steel	18
Figure 2.4	Residual tensile strength of prestressing strands vs. temperature	21
Figure 2.5	ASTM E 119-08 Standard Time-Temperature Curve	23
Figure 2.6	Fire along the Bill Williams Bridge in Parker, Arizona due to an overturned diesel tanker	27
Figure 2.7	Damaged Norwalk Bridge near Ridgefield, Connecticut due to an overturned gasoline tanker	27
Figure 3.1	Schematic and actual view of coupon specimen	36
Figure 3.2	Schematic and actual view of pullout specimen	37
Figure 3.3	Cylindrical tube furnace	38
Figure 3.4	Typical heating setup	39
Figure 3.5	MT880 testing machine prior to tension tests	40
Figure 3.6	Tension test setup	40
Figure 3.7	Pullout test setup cage prior to testing.	42
Figure 3.8	Pullout test setup with specimen inside steel cage	43
Figure 3.9	Base of pullout cage which concrete block was pulled against	43
Figure 3.10	2 Enlarged view of pullout test setup with specimen inside steel cage	44
Figure 4.1	Strand exterior after exposure to 500°F (260°C)	45
Figure 4.2	Strand exterior after exposure to 800°F (427°C)	45
Figure 4.3	Strand exterior after exposure to 1000°F (538°F)	46
Figure 4.4	Strand exterior after exposure to 1200°F (649°F)	46
Figure 4.5	Strand exterior after exposure to 1300°F (704°C)	46
Figure 4.6	Typical stress-strain curve for tension testing	50
Figure 4.7	Typical failure mode of prestressing strand in tension	51
Figure 4.8	Residual ultimate tensile strength vs. temperature	53
Figure 4.9	Comparison of results with other previous research	53
Figure 4.10	O Comparison of cooling methods	54

Figure 4.11	Comparison of heat soak time	55
Figure 4.12	Residual modulus of elasticity vs. temperature	56
Figure 4.13	Stress vs. strain for 0.5 in. specimens of Phase I	57
Figure 4.14	Stress vs. strain for 0.375 in. specimens of Phase I	58
Figure 4.15	Comparison of tensile strength for prestressing strands at elevated temperatures and residual tensile strength of prestressing strands	59
Figure 4.16	Initial hairline cracking noted for each compressive strength	60
Figure 4.17	Examples of spalling noted after heating process	61
Figure 4.18	Classification of heat induced cracking	62
Figure 4.19	Pullout load vs. slip for a typical brittle failure	67
Figure 4.20	Pullout load vs. slip for a typical ductile failure	67
Figure 4.21	Typical failure modes for pullout testing	68
Figure 4.22	Comparison of bond stress vs. crack density for each specimen type of 11 ksi, 0.375 in. strands	70
Figure 4.23	Comparison of bond stress vs. crack density for each specimen type of 11 ksi, 0. 5 in. strands	70
Figure 4.24	Comparison of bond stress vs. crack density for each specimen type of 14 ksi, 0.375 in. strands	71
Figure 4.25	Comparison of bond stress vs. crack density for each specimen type of 14 ksi, 0. 5 in. strands	71
Figure 4.26	Average bond stress vs. temperature for 0.5 in. prestressing strands	73
Figure 4.27	Average bond stress vs. temperature for 0.375 in. prestressing strands	74
Figure 4.28	Percent of original bond stress capacity vs. temperature	75
Figure 4.29	Development length and required flexural section capacity for an undamaged and fire damaged girder	76
Figure 5.1	Design example bridge cross-section	77
Figure 5.2	Design example bridge longitudinal section	78
Figure 5.3	Design example composite girder cross-section	78
Figure 5.4	Schematic of strand harp location along half of the girder	80
_	Strand pattern for parametric study with 0.5 in. diameter, 7-wire, ow-relaxation prestressing strand	81
	Strand pattern for parametric study with 0.375 in. diameter, 7-wire, ow-relaxation prestressing strand	82

Figure 5.7	Verification of ABAQUS calibration to PCI published slab temperatures by Abrams and Gustaferro (1968)	84
Figure 5.8	Schematic of simplified I-beam used in temperature analysis	86
Figure 5.9	Schematic of bottom flange of I-beam with arbitrary concrete material layers indicated	87
Figure 5.10	Residual compressive strength of concrete vs. temperature	88
Figure 5.11	Temperature profile for half of the 0.5 in. girder cross-section for a 4 hour fire occurring below the bridge at the critical positive moment section at midspan	93
Figure 5.12	Positive moment section capacity vs. time exposed to fire	94
Figure 5.13	Negative moment section capacity vs. time exposed to fire	95
Figure 5.14	Deflection at midspan due to live load vs. time exposed to fire	96
Figure 5.15	Deflection at midspan due to self-weight vs. time exposed to fire	97
Figure 5.16	Stiffness loss of composite girder vs. time exposed to fire	98
Figure 5.17	Temperature profile for composite girder at critical negative moment sections	99
Figure 5.18	Positive moment section capacity vs. time exposed to fire	. 101
Figure 5.19	Negative moment section capacity vs. time exposed to fire	. 101
Figure 5.20	Stiffness loss of composite girder vs. time exposed to fire	. 102
Figure 5.21	Deflection at midspan due to live load vs. time exposed to fire	. 103
Figure 5.22	Deflection at midspan due to self-weight vs. time exposed to fire	. 103
Figure 5.23	Temperature profile along 12 in. (30.5 cm) width of deck after 4 hours of fire exposure	. 105
Figure 5.24	Deflection due to self-weight vs. time exposed to fire	
Figure 5.25	Deflection due to live load vs. time exposed to fire	. 106
Figure 5.26	Stiffness loss of composite girder vs. time exposed to fire	. 107
_	Aftermath of the bridge fire along U.S. Route 7 Bridge near Ridgefield, Connecticut	. 110
Figure 6.2	Temperature profile for fire on bridge deck	. 111
Figure 6.3	Positive moment section capacity before and after the fire	. 112
Figure 6.4	Negative moment section capacity before and after the fire	. 113
Figure 6.5	Deflection at midspan before and after the fire	. 114
Figure 6.6	Stiffness of composite section before and after the fire	. 114
Figure 6.7	Fire located below bridge near Tacoma, Washington	. 115

Figure 6.8	Damaged concrete located at the bottom of the girders	116
Figure 6.9	Temperature profile of bottom of girder after fire exposure of 2 hours	117
Figure 6.10	Positive moment section capacity before and after the fire	118
Figure 6.11	Negative moment section capacity before and after the fire	119
Figure 6.12	Deflection at midspan due to self-weight and live load before and after the fire	120
Figure 6.13	Stiffness of composite section before and after the fire	120
Figure 6.14	Bridge fire caused by a tractor trailer carrying gasoline which occurred on U.S. Interstate-5 near Lynnwood, Washington	121
Figure 6.15	Temperature profile for fire on bridge deck	123
Figure 6.16	Positive moment section capacity before and after fire	124
Figure 6.17	Negative moment section capacity before and after the fire	124
Figure 6.18	Deflection at midspan due to self-weight and live load before and after the fire	125
Figure 6.19	Stiffness of composite section before and after the fire	126

LIST OF TABLES

	Page
Table 3.1 Tension test matrix Phase I: 0.375 in. strand diameter	29
Table 3.2 Tension test matrix Phase I: 0.5 in. strand diameter	30
Table 3.3 Tension test matrix Phase II: 0.375 in. strand diameter	31
Table 3.4 Tension test matrix Phase II: 0.5 in. strand diameter	31
Table 3.5 Pullout test matrix for 11 ksi concrete specimens	33
Table 3.6 Pullout test matrix for 14 ksi concrete specimens	34
Table 3.7 Mechanical properties of prestressing strands	35
Table 3.8 Mix design and strength properties of concrete pullout specimens	35
Table 3.9 Testing properties of prestressing strands	41
Table 4.1 Test results Phase I: 0.375 in. strand diameter	47
Table 4.2 Test results Phase I: 0.5 in. strand diameter	48
Table 4.3 Test results Phase II: 0.375 in. strand diameter	49
Table 4.4 Test results Phase II: 0.5 in. strand diameter	49
Table 4.5 Test results 11 ksi: 0.5 in. strand diameter	63
Table 4.6 Test results 11 ksi: 0.375 in. strand diameter	64
Table 4.7 Test results 14 ksi: 0.5 in. strand diameter	65
Table 4.8 Test results 14 ksi: 0.375 in. strand diameter	66
Table 4.9 Average bond stress specification limits	73
Table 5.1 Assumed undamaged material properties	79
Table 5.2 Fire damaged girder compressive strength and non-composite moment of inertia values.	
Table 5.3 Fire damaged deck compressive strength and composite moment of inertia values.	100
Table 5.4 Damaged deck compressive strength and deck moment of inertia values	104
Table 6.1 Fire damaged deck compressive strength and composite moment of inertia values before and after the fire	111

Table 6.2	Fire damaged girder compressive strength and non-composite moment of inertia values before and after the fire	
Table 6.3	Fire damaged deck compressive strength and composite moment of inertia values before and after the fire	123

NOMENCLATURE

Symbol	Description
A_{ps}	Area of prestressing strand
d	Diameter of reinforcing bar or strand
D_{max}	Maximum diameter of an unconfined hydrocarbon pool spill
E_c	Modulus of elasticity of concrete
E_{cu}	Percent of residual modulus of elasticity for concrete
E_{ps}	Modulus of elasticity of prestressing steel
E_s	Modulus of elasticity of mild reinforcing steel
f_{c}	Compressive strength of concrete
f_{ps}	Stress in prestressing steel at nominal flexural strength
f_{pt}	Stress in prestressing strand prior to transfer of prestress
f_{pu}	Tensile strength of prestressing steel
f_{py}	Yield strength of prestressing steel
f_{se}	Effective stress in prestressing steel
f_u	Ratio of the ultimate prestressing steel tensile strength at a given
	temperature to the ultimate prestressing steel tensile strength
f_y	Yield strength of mild reinforcing steel
g	Acceleration of gravity
I_c	Moment of inertia of concrete
L	Embedment length of strand in pullout test specimen
$l_{\rm d}$	Development length of prestressing strand
$l_{ m f}$	Flexural length of prestressing strand
$l_{\rm t}$	Transfer length of prestressing strand
M_u	Factored moment at section
P	Maximum load applied during a pullout test
p_{ps}	Perimeter of prestressing strand
T	Temperature
u	Bond stress

V_L	Volume of an hydrocarbon pool spill
W_c	Unit weight of concrete
y	Liquid burning rate
y_t	Distance from the centroidal axis of gross section to tension face
ρ	Liquid fuel density
ν	Regression rate
ṁ"	Mass burning rate of fuel per unit area

1. INTRODUCTION

1.1. BACKGROUND

Bridges alone are the most effective way to move commerce across bodies of water or low-lying elevations. They provide means for trade and communication to travel across land quickly and efficiently. However, as with any structure there lies the risk of damage or destruction, which can be attributed to a number of sources. Natural disasters, such as a hurricane or tornado, accidents, such as spilled gasoline tankers, or terrorism are all possible and common causes for damage to a bridge's structural integrity. Often the damage due to extreme events to the bridge is quite severe keeping the bridge out of commission for a large extent of time.

In particular, fire damage is a common and severe cause of destruction caused by many different disasters. It is difficult to recover quickly from these incidents because very little is known regarding the extent of damage caused by a fire to a bridge. Accidents such as the Bill Williams River Bridge in Arizona as well as a number of exploding tankers in Iraq have brought to light the frequency of fire on bridges and the crippling results the damage has on society afterwards. The result is often a complete repair of the bridge which proves to be costly and creates problems with traffic flow. In some cases a trade route is completely closed requiring travelers to travel 100 miles (161 km) or more out of their way to reach their destination.

There are a number of studies which have been performed on prestressed concrete (PC) bridges following fire damage. However, this research is either limited to the exterior of the bridge or is performed by decomissioning the bridge and testing components of it in the lab. Internal observations and flexural strength testing cannot be performed on existing bridges. However, with an increase in the understanding of how fire and extreme temperature affect the bridge an educated decision on the structural integrity of the bridge will be able to be made without laboratory testing. This will result in fewer repairs and minimize the economic and commercial implications typically caused by fire damage.

1.2. OBJECTIVE

The objectives of this study include:

- To develop an understanding of bridge behavior after exposure to fire. Fire
 damage to bridges is a common occurrence, yet investigation of the fire is still
 very difficult and time consuming. With this research a clearer understanding
 regarding the serviceability and capacity of the structure will be obtained.
- 2. Determine properties for grade 270 seven-wire prestressing strands before and after exposure to elevated temperatures. This information will help to understand the extent of damage when strands are exposed to high temperatures.
- 3. Determine bond stress between concrete and grade 270 seven-wire prestressing strands after exposure to elevated temperatures.

1.3. SCOPE

Within this research an analysis was performed to understand how a typical prestressed concrete bridge would be affected by fire. Using a Prestressed-Precast Concrete Institute (PCI) design example and data obtained from laboratory testing and finite-element modeling (FEM), a parametric study was developed to analyze the loss of capacity to the structure after exposure to elevated temperatures.

Laboratory testing included two types of prestressing strand testing, tension and pullout. Tests were performed on strands which had been exposed to elevated temperatures and allowed to cool. The data obtained from the tension testing gave an understanding of the tensile strength and stiffness properties of the prestressing strands subjected to elevated temperatures. From the pullout testing, information was determined regarding the bond stress capacity of the prestressing strands and concrete.

Case studies were performed by applying data from actual events to the parametric study. An analysis was then performed to determine the capacity and structural integrity of the actual damaged bridge.

1.4. OUTLINE

This thesis is broken into seven parts. The first section, Introduction, contains background information, scope, objectives and outline. It introduces the information and explains what is included in the publication.

The second section is the Literature Review, which outlines all of the previous research performed on this particular topic.

Section three, Experimental Program, contains the test matrix, materials, specimens and test setup for the testing performed in this study.

The fourth section, Experimental Test Results, provides the results for the testing explained in section three.

Section five, Parametric Study, gives a detailed explanation of the parametric study performed including the design example chosen, material properties and assumptions. The results from this study are also provided for three different fire locations.

In section six, Case Studies, three bridge fire incidents are analyzed using the parametric study procedure given in section five.

Conclusions and Recommendations, section seven, is the final section in the thesis. This section gives final concluding remarks and recommendations regarding the information presented in the preceding six sections.

2. LITERATURE REVIEW

2.1. GENERAL

The materials of which prestressed concrete is made up has been widely studied over the last several hundred years. Due to the extensive research a strong understanding exists regarding the behavior and properties of these materials. However, there still exists important areas where research is needed. In particular, little is known regarding the behavior of materials exposed to elevated temperatures such as a fire.

2.2. PRESTRESSED CONCRETE

The use of cold-draw prestressing steel as reinforcement in concrete is common among bridge design throughout the world. This composite material is particularly useful for designs consisting of large spans where the dead load will cause significant cracking and deflection. Unlike mild steel reinforcement, prestressing steel is stressed and cause a compression force within the concrete. This prevents cracking and increases the structure's capacity. A prestressed concrete member will also have a longer life expectancy due to the prevention of cracks. Without cracks the steel will not be exposed to the environment and therefore will be at a reduced risk of corrosion. The increased capacity, ability to sustain longer spans, and durability make this type of material an advantageous choice of construction.

2.2.1. History. Prestressed concrete has been a developing technology since the late 1800s when P. H. Jackson invented a method that incorporated a tie rod to connect individual blocks (Nawy, 2006). Since this time the concept has evolved slowly with that of other construction practices.

In the 1900s two systems, the Freyssinet and Magnel, named by their inventors were developed which allowed bridges to be built faster than previous methods. These methods were incorporated into construction in Europe where consistent bridge damage was occurring due to World War II (Nawy, 2006.) Significant contributions were made by T.Y. Lin in the mid-1900s, with the most important being the simplification of the design process (Yang, 2003).

Today prestressed concrete is quite common and can be seen in bridges, office buildings, parking garages, stadiums and other structures. Research is ongoing, but extensive understanding of the mechanisms and behavior is already in place.

2.2.2. Mechanical Properties. Prestressing steel used in bridge applications consist of seven individual prestressing wires wrapped together to form one strand or tendon as described by ASTM A 416/A 416M-06. The terminology strand and tendon are used interchangeably to denote the individual steel wires wrapped together. Two grades of 7-wire strands are produced, grade 250 (1725) and grade 270 (1860) which have ultimate tensile strengths of 250 ksi (1725 MPa) and 270 ksi (1860 MPa) respectively. In addition to the seven-wire strand, two-wire and three-wire strands exist, but are uncommon in bridge design practice.

For each grade of strand there are also different types and sizes. The two types are low-relaxation and normal-relaxation. However, due to the progression of research and design the low-relaxation is used predominantly in construction and is the standard type mentioned in ASTM A416/A 416M-06. Sizes come in sixteenths of an inch and range from 0.25 in. (6.35 mm) to 0.6 in (15.24 mm) for grade 250 and 0.375 in. (9.53 mm) to 0.6 in. (15.24 mm) for grade 270 (ACI 318-05).

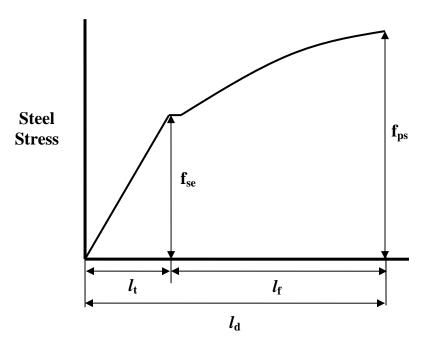
The ACI 318-05 Building Code specifies the modulus of elasticity to be either reported by the manufacturer or determined by tests. This value typically varies between 27,000 ksi (186 GPa) and 29,000 ksi (200 GPa) (Collins and Mitchell, 1997). AASHTO LRFD Bridge Design Specifications (1998) give the design value to be 28,500 ksi (197 GPa) for strands.

2.2.3. Manufacturing Process. Initially, prestressing wire starts out as hot-rolled rods. The rods are put through a process called "patenting" where they are passed through a furnace with different heat stages. From there the rods are cooled and the coldworking process begins. This involves pulling or drawing the rods through a series of dies. The cold-working process improves the mechanical properties of the steel while also shrinking the cross-sectional area into wire. The wires are then pulled through a

performing head where they are wrapped together to form the strand used in construction. The last step in the process consists of heating the strands to 650 °F (343 °C) to remove the residual stresses. This step is called "stress relieving". (Anderson, 1964)

The wire used for prestressing strands contains approximately 0.70 to 0.85 percent carbon. For hypoeuctectoid steels, which are steels that contain less than an approximate carbon content of 0.80 percent, the critical euctoid point is 1340 °F (727 °C). This is the critical temperature at which significant metallurgical transformations occur, such as deeper hardening, loss in toughness, and higher internal stresses. Within the temperatures leading up to the ecutoid point the start of these changes in structure begin to take place. Initial changes include loss of strength, ductility and metallurgical structure (United States Steel, 1971).

2.3. TENSION TESTING


- **2.3.1. General.** Tension tests for steel are all governed by ASTM E8-04 "Standard Test Methods for Tension Testing of Metallic Materials." This document provides specific detail as to how the test shall be performed and the results analyzed. ASTM A370-07a also provides information for all types of steel testing (tension, bend, hardness and impact) and gives specific guidelines based on different types of bar products (fasteners, round wire, multi-wire, etc.).
- **2.3.2. Prestressing Strands.** In addition to the general specifications for tension testing of steel, ASTM A 416/A 416M-06 and ASTM A370-07a Annex A7 have also been published as governing standards for the tension testing of seven-wire prestressing strands.

Within ASTM A370-07a Annex A7 a recommended procedure and apparatus are given. Due to the geometry of the strand, a specific method is not required and it is acceptable to employ a method of choice as long as the strand meets the minimum breaking strength given by ASTM A 416/A 416M-06. Guidelines for determining the yield strength and elongation are also given by both specifications.

2.4. PULLOUT TESTING

2.4.1. General Bond and Development. Bond testing can be performed in a number of ways. Typical specimens include pullout, beam-end, beam anchorage and splice (ACI 408R-03).

Bond consists of two different components, transfer length (l_t) and flexural length (l_f). The transfer length is the distance needed to develop the effective prestressing stress, f_{se} . The flexural length is the length needed after the transfer to maintain the concrete-steel bond. The sum of the transfer length and flexural length equals the total development length (l_d). A typical plot of the development length of a prestressing strand is given in Figure 2.1.

Distance from free end of strand

Figure 2.1 Variation of steel stress with development length (PCI Design Handbook, 2004)

2.4.2. Pullout Test. Pullout testing is one of the simplest methods used to evaluate bond strength behavior. A strand of interest is cast inside a concrete specimen. After curing, the concrete is positioned against a plate and the strand is pulled from the concrete. For this test, the area of the concrete bearing on the plate is placed in compression and the strand is in tension. In actuality, a concrete structure would be in tension and only the bearing surface of the strand would be in compression. Due to this occurrence, the test is only used to determine maximum bond stress and is, therefore, not recommended by ACI Committee 408 as a means of characterizing or calculating the development length.

With pullout testing, splitting is likely to occur if the compressive force is located at the steel-concrete surface. This can be prevented by moving the compressive force away from the steel-concrete surface, adding transverse reinforcement or increasing mass of concrete (Ferguson et al. 1954).

2.4.3. Bond Stress. Within the various codes requirements there are equations that specify development length. These equations for development length consist of two parts, flexural and transfer. Although the pullout test is not recommended for determining overall development length, it can be used to correlate the flexural and transfer lengths to bond stress.

Russell and Burns (1996) noted that the ACI and AASHTO code requirements were based on assumed bond stress values. Therefore, the equation for the bond stress could be developed by solving equilibrium on the strand. For a given code requirement for the development length Equation 2.1 can be used to determine the bond stress where f_{se} is the effective stress in the prestressing steel, f_{ps} is the stress in the prestressing steel at nominal flexure, d is the diameter of the bar, l_f is the flexural development length given by the code A_{ps} is the area of the strand and p_{ps} is the perimeter of the perimeter of the strand.

$$u = \frac{(f_{ps} - f_{se})A_{ps}}{I_f p_{ps}}$$
 Equation 2.1

Russell (1996) found that the transfer bond stress was higher than the flexural bond stress due to flexural cracking which occurs during loading and disrupts bonding, reducing overall bond strength.

2.4.3.1 ACI and AASHTO code provisions. The American Concrete Institute (ACI 318-05, 2005) and Association of State Highway and Transportation Officials (AASHTO, 1998) code give Equation 2.2 as the required development length for a prestressing strand.

$$l_d = l_t + l_f = \frac{f_{se}}{3}d + (f_{ps} - f_{se})d$$
 Equation 2.2

2.4.3.2 FHWA code provisions. The Federal Highway Administration (FHWA-RD-98-116, 1998) code provisions differ slightly from the ACI and AASHTO codes in that their equation for development length is a function of the steel as well as the compressive strength of the concrete. The equation is given as Equation 2.3. The equation is based on research of compressive strengths up to 10 ksi (68.9 MPa). FHWA requires that due to the limited research 10 ksi (68.9 MPa) should be used in the equation for all concrete compressive strengths greater than 10 ksi (68.9 MPa). This provides a conservative value based on existing research.

$$l_d = l_t + l_f = \left(\frac{4f_{pt}d}{f'_c} - 5\right) + \left(\frac{6.4(f_{ps} - f_{se})d}{f'_c} + 15\right)$$
 Equation 2.3

- **2.4.4. Effects Due to Varying Parameters.** The bond between concrete and prestressing strands is based on a number of various parameters. Several of these mechanisms have been researched and examined to understand how they affect the development length of prestressing strands.
- **2.4.4.1 High strength concrete.** The bond between prestressing strands and high strength concrete is of particular interest due to its wide use in prestressed concrete.

Chao (2005) performed pullout testing on prestressed blocks with 11 ksi (75.8 MPa) concrete and an embedment length of 4 in. (101.6 mm). Under monotonic loading it was reported that the 0.5 in. (12.7 mm) diameter strand produced an ultimate bond strength of 3800 lbs (16.9 kN). This was equivalent to an average bond stress of 440 psi (3.0 MPa).

A study performed by Steinberg and Lubbers (2003) examined bond behavior of prestressing strands and ultra-high performance concrete. Three average compressive strengths of 21 ksi (144 MPa), 20 ksi (137 MPa) and 19 ksi (131 MPa) were tested. The method of bond testing employed was pullout testing of concrete blocks. It was found that the bond increased significantly for ultrahigh-performance concrete specimens in comparison to conventional concrete of 4 ksi (27.6 MPa).

2.4.4.2 Strand type. Research has concluded that strand properties do play a role in the bond of the concrete and strand. Lane (1992) noted that the transfer length of epoxy-coated specimens was shorter than that of strands without epoxy.

It has been found that as the strand diameter increases the bond length also increases. Bond stress is inversely related to bond length and decreases as the strand diameter increases (Hanson and Karr, 1959; Lane, 1992; Martin and Scott, 1976).

2.5. FIRE DAMAGED MATERIALS FOUND IN BRIDGES

Materials which are commonly affected by bridge fires include the concrete, prestressing strands and mild steel reinforcement. The amount of information regarding the fire damage properties varies by material. Within this research residual properties of any material are defined as the property of the material after it has been heated and then cooled back to room temperature.

2.5.1. Concrete. Concrete damage caused by fire has been widely researched. A significant amount of data has been published which allows engineers to understand the compressive strength properties of concrete during and after fire exposure. The first known study of fire-damaged reinforced concrete was conducted in 1877 by Hyatt.

Hyatt was looking for a material that would be fire-resistant material and proposed the use of steel in conjunction with concrete. Through a series of tests, it was found that indeed the two materials worked well together and provided protection against fire.

2.5.1.1 Compressive strength (f'_c) for normal strength concrete. Significant research regarding actual concrete performance after exposure to elevated temperatures was first published by Malhotra (1956) who researched the effects of weight/cement ratio, curing conditions, loading, cooling and aggregate/cement ratio. The experimental program consisted of three small concrete cylinders for each variable at each temperature. Temperatures in his study ranged from 392°F-1112°F (200°C-600°C). Based on early testing, Malhotra found spalling to occur when a large variance in temperature existed between the exterior and center of specimen. As a solution the rate of heating was controlled and a maximum gradient of 212°F (100°C) was allowed to exist.

Conclusions obtained from Malhotra's work were that the water/cement ratio did not affect the compressive strength of the concrete, however the aggregate/cement ratio did. In addition, stressed specimens tested at elevated temperatures maintained a higher percent of residual stress than that of those who were tested at elevated temperatures and not stressed. Cooling caused the specimens to lose additional compressive strength.

Additional research by Zoldners (1960) compared different aggregate mixes exposed to elevated temperatures, slowly cooled and then tested in compression and flexure. Aggregates such as sandstone, gravel aggregate and expanded slag experienced an increase of compressive strength at lower temperatures, but later lost compressive strength as temperature increased. Limestone did not see this initial increase in compression, but did maintain the highest flexural strength of the aggregates.

Various aggregates were the primary interest for a study performed by Abrams (1968). For the experiment three types were examined; carbonate, siliceous and an expanded shale lightweight aggregate. A constant loss in compressive strength with temperature was found for all aggregates. The three types also followed the same trend up until 1000 °F (538 °C) at which the siliceous based concrete experienced a more significant loss in compressive strength for the remainder of the temperatures.

Also included with Abrams' study were the compressive strength properties of stressed and unstressed specimens at elevated temperatures. It was found that stressed

specimens at elevated temperatures produced higher compressive strengths than those of the same unstressed specimen as first noted by Malhotra. Also, unstressed residual compressive strengths were lower than compressive strength properties measured at elevated temperatures. These compressive strength properties for all tests were found true for all aggregates.

Another group of researchers, Harada et al. (1972), presented data based on types of aggregates. There findings for residual compressive strength were lower than that of Zoldners', but were based on different types of aggregate. The test program included aggregates from the Midori River (sedimentary rock), Tama River (sedimentary rock), Shirakwa (product of pyroxene-andesite, amphibolite, andesite), Shimazaki (pyroxene-andesite), Mt. Asama (siliceious rock), Yatsushiro (limestone), all located in Japan and the surrounding region. The data obtained from the test program produced average residual compressive strength values of 80 percent for 212°F (100°C), 75 percent for 572°F (300°C), and 60 percent for 842°F (450°C).

Weigler and Fischer (1972) studied the effects of different aggregate, different cements and different cooling methods. The results based on aggregate were similar to those obtained by Zoldners. For cement, Weigler and Fischer compared Portland Cement with blast-furnace cement. It was found that for unstressed concrete of different cement and aggregates the compressive residual strengths are similar.

In terms of cooling, Weigler and Fischer found that additional compressive strength loss occurred to the specimens which were cooled overtime at room temperature. Whereas specimens who were stored under water were able to recover some compressive strength as time progressed. Weigler and Fischer proposed an explanation to the phenomenon based on two main things. The first being the different thermal expansion coefficients within the mix which cause the concrete structure to be loosened. The second was the decomposition of the hydrated cement which continues to occur during cooling. Weigler and Fischer noted that specimens cooled in water were able to recover some compressive strength due to rehydration of the material.

More research based primarily on aggregate type was presented by Mohamedbhai (1983). His variables included fine aggregate from the rock formations of the island of Mauritius. Three types of sand were used; coral, basalt and a mixture of coral and basalt

of equal quantities. Ordinary Portland cement was used with the mix as well. After performing the experiment Mohamedbhai found the residual compressive strengths of these concretes to initially increase at a temperature of 212°F (100°C) and then gradually decrease thereafter. Overall the residual compressive strengths found for each aggregate were similar to that of the other researchers. Specifically the residual compressive strength of the coral sand mix was less than that of the basaltic mix.

In addition to residual strength properties, Mohamedbhai also confirmed found that the type of cooling (air-cooled or water-cooled) does not have an effect on the residual compressive strength of concrete heated up to temperatures of 752°F (400°C) as Wiegler and Fischer had earlier proposed. After 752°F (400°C), the water-cooled specimens had higher compressive strengths as compared to those cooled in air. Overtime (one to seven days) water-cooled specimens were able to recover some residual compressive strength, whereas air-cooled specimens continued to lose compressive strength. These results confirmed the work of Weigler and Fischer from previous years.

Hertz (1986) examined residual properties of concrete as well as the heating rate. A rate of 50°F (10°C) per minute and 34°F (1°C) per minute were compared. It was found that at lower temperatures the faster heating rate developed conservative residual compressive strengths versus that of the slower heating rate. However, at temperatures greater than 932°F (500°C), it was found that the faster heating rate to be slightly higher. Overall the values determined from both heating rates were consistent with that found by previous researchers.

Residual concrete compressive strengths of blended cements were analyzed by Papayianni and Vallasis (1991). Three pozzolanic materials: Santorin Earth, lignite fly ash from the area of Ptolemaida (Greece) and lignite fly ash from Megalopoli (Greece) were used to partially replace Portland cement. It was determined that concrete of blended cement mixes lose more compressive strength than the concrete of Portland cement reported by Abrams and Malhotra. This was said to be due to the large quantities of pozzolan pastes which decompose at 392°F (200°C).

Additional research was performed by a group of individuals whose report confirmed that compressive strength values for fire-damaged concrete are significantly higher for stressed specimens compared to unstressed specimens which is in agreement with Malhotra and Abrams (Chakrabarti et al., 1994). All specimens were found to regain approximately 80 percent of their undamaged compressive strength upon an elapsed period of cooling. This was said to be caused by the rehydration of concrete as described previously by Weigler and Fischer and Mohamedbhai.

Using data previously published, Kumar et al. (2003) developed a test program which analyzed the deflection and flexural strength of fire damaged beams. It was determined that reinforced concrete beams exposed to fire for 1 hour maintain 83 percent capacity and those exposed to fire for 2 hours maintain 50 percent.

The percent of original compressive strength of concrete versus temperature for the data presented can be seen in Figure 2.2. Various types of aggregate and cooling methods are given in the graphical representation.

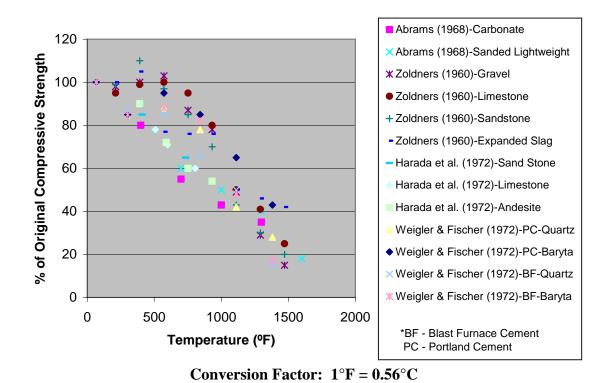


Figure 2.2 Residual compressive strength vs. temperature for concrete

2.5.1.2 Compressive strength (f'_c) for high strength concrete. Research has also been performed to understand how fire-damaged concrete properties of high strength concrete (HSC) compare with that of normal strength.

Noumowe et al. (1995) tested cylinders from two compressive strengths, 5.5 ksi (38.1 MPa) and 8.9 ksi (61.1 MPa). The specimens were then heated to temperatures of 302°F (150°C), 527°F (300°C), 842°F (450°C) and 932°F (500°C), cooled and then tested in compression and tension. It was found that in compression the two mixes performed similarly in strength loss, but that the 8.9 ksi (61.1 MPa) mix has slightly less residual direct tensile strength.

Chan et al. (1996) performed research where he tested concrete cubes of 4.1 ksi, 6.8 ksi, 11.0 ksi, 11.5 ksi and 13.6 ksi (76 MPa, 79 MPa, 94 MPa, 28 MPa and 47 MPa) in compression after exposing them to temperatures 752°F-2192°F (400°C-1200°C). Chan reported that the all mixes performed in a similar manner, but that at lower temperatures the higher strength mixes maintained slightly higher residual compressive strength values.

In similar testing, Luo et al. (2000) reported the high strength concrete to degenerate more severely. High strength was defined as concrete with compressive strengths in the range of 14.1 ksi (97.3 MPa) to 16.5 ksi (113.5 MPa). Based on mercury intrusion porosimetry, the porosity of both high strength and normal strength specimens was measured after heating. Luo determined that the difference between the microstructure of the two types of concrete became more significant after heating, due to the increase in cumulative pore volume by the high strength concrete mix. Noumowe and Chan's findings were also confirmed in that both normal and high strength concretes perform similarly in compression after heating.

2.5.1.3 Modulus of elasticity (E_c) **of concrete.** Often overlooked in firedamaged concrete research is the residual modulus of elasticity. Minimal research has been reported regarding this loss in stiffness as the temperature increases.

Papayianni and Valiasis (1991) performed testing on concrete to determine the residual modulus of elasticity in accordance to ASTM C496-71. The concrete examined contained pozzolanic materials as a partial replacement for Portland Cement. These materials included Santorin Earth, Ptolemaida and lignite fly ash as previously described

in Section 2.5.1.1. Specimens were exposed to temperatures of 392°F (200°C), 752°F (400°C), 1112°F (600°C) and 1472°F (800°C) and then cooled. Residual moduli of elasticity values were then found to be 70 percent, 25 percent, 10 percent and 5 percent respectively.

Nassif et al. (1994) analyzed the stress-strain curve for specimens heat treated below 878°F (470°C), but used a broader range of temperatures which allow the behavior of the concrete to be captured more accurately. The temperatures studied were 423°F (217°C), 464°F (240°C), 549°F (287°C), 608°F (320°C), 712°F (378°C), and 878°F (470°C) and then cooled back to 68°F (20°C). Specimens for this program were put through four load-unload cycles with a maximum stress of 625.7 psi (4.5 MPa). Based on the results a well-defined curve was plotted for the residual modulus of elasticity for temperatures up to 878°F (470°C), which was similar to that of Papayianni and Valiasis.

Research performed by a group of researchers examined residual modulus of elasticity for both normal and high strength concrete mixes (Chang et al., 2006). Their experimental matrix consisted of two compressive strength types, 5.8 ksi (40 MPa) and 3.9 ksi (27 MPa) in which eight (8) and four (4) specimens were tested per temperature respectively. The specimens were heated to a total of eight temperatures, 212°F (100°C), 392°F (200°C), 572°F (300°C), 752°F (400°C), 932°F (500°C), 1112°F (600°C), 1292°F (700°C) and 1472°F (800°C), as well as room temperature. Using the data obtained Equations 2.4 and 2.5 were developed which give the percent of residual modulus of elasticity for concrete E_{cu} , based on temperature T (in Celsius). The equation produced is similar to results obtained by Nassif and Papayianni and Valiasis.

$$E_{cu}(T) = -0.00165T + 1.003$$
 $68^{\circ}F < T \le 257^{\circ}F$ Equation 2.4

$$E_{cu}(T) = \frac{1}{1.2 + 18(0.0015T)^{4.5}}$$
 257°F < T \le 1472°F Equation 2.5

2.5.1.4 Physical changes. Color changes, cracking and spalling are all physical effects caused by elevated temperature exposure to concrete. The extent to which these effects occur varies based on the temperature and concrete mix.

Color change is often a common way to determine what temperature concrete has been exposed to. Concrete remains normal in color until it reaches 572°F (300°C) at which it turns pink. Between the temperatures of 572°F-1112° F (300°C-600°C) the aggregate maintains the pink color and darkens to a red. For the range of 1112°F-1742°F (600°C-950°C) the concrete changes to black through gray and then buff. It remains at buff for temperatures thereafter. Specifically the aggregates within the concrete change color as temperature increases. By examining a cross-section of the concrete the temperature depth can also be observed. This is true for all concretes, but some aggregates show better color responses than others. (Georgali and Tsakiridis, 2005)

Another important indicator of temperature in concrete is cracking. Cracking is based on two independent variables, temperature and compressive strength. Guise et al. (1996) determined based on compressive strengths of 8.3 ksi (56.9 MPa), 6.7 ksi (46.4 MPa) and 6.3 ksi (43.6 MPa) that the density of cracking will increase linearly as the temperature increases past a certain point. The point at which cracking will begin and the severity of it is dictated by the compressive strength. Guise et al. also reported that the crack density decreases as the compressive strength increases.

A more serious physical event caused by heating concrete is spalling. Spalling is the deterioration of concrete in large pieces. There are three types of spalling; local spalling ,which is when small pieces break away from the concrete, sloughing off, where medium pieces break away from the concrete, and explosive spalling, which is when large pieces dramatically break away from the concrete. Explosive spalling is most common in high strength concrete because of the low permeability and low porosity. (Ongah et al., 2003)

2.5.2. Mild Steel. The reported properties for grade 60 mild reinforcing steel can be seen in Figure 2.3 (Dias, 1992). The modulus of elasticity was found to remain the same for elevated temperatures despite the decrease in tensile strength (Edwards and Gamble, 1986).

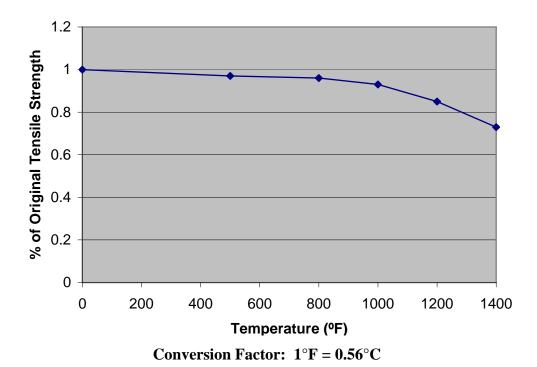


Figure 2.3 Residual strength vs. temperature for mild-reinforcing steel (Dias, 1992)

2.5.3. Prestressing Strands. In contrast to concrete, very little research has been performed to understand how elevated temperatures physically affect the properties of prestressing strands.

2.5.3.1 Tensile strength. Guyon (1953) reported the earliest known data regarding the tensile strength of prestressing strands (unreported strand type) expose to elevated temperatures. The research consisted of hot-stressed, hot-unstressed, coldstressed and cold-unstressed tests. Temperatures varied by test scenario, but no more than four temperatures were chosen per scenario. The type of strand also varied, 0.2 in. (5.08 mm) cold drawn, 0.2 in. (5.08 mm) rolled, and 0.1 in. (2.54 mm) cold drawn. From the testing performed it was found that for stressed specimens tested while heated there is an initial increase in tensile strength up to 302°F-482°F (150°C-250°C). Thereafter a significant loss of tensile strength occurs. For unstressed specimens tested after cooling, a constant loss in tensile strength occurs as temperature increases. However, the loss in tensile strength is smaller than that of the stressed specimens for temperatures of 572°F

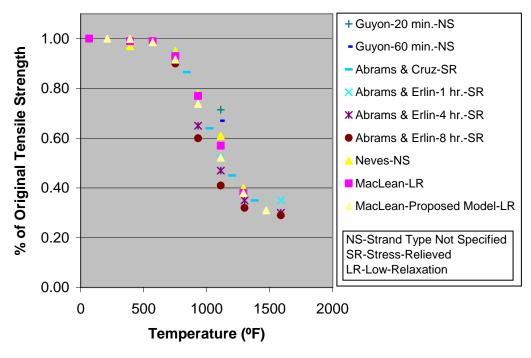
(300°C) and greater. For this test program the heat soak time was also varied. In these cases a greater loss of tensile strength was seen for specimens heated longer.

Abrams and Cruz (1961) performed an in-depth investigation of the behavior of 7-wire, stress-relieved prestressing strands and temperature. Further research for this topic was largely based on the results and conclusions developed by the two researchers. The test program consisted of three seven-wire strand sizes 0.25 in. (6.35 mm), 0.375 in. (22.23 mm), and 0.438 in (11.11 mm). During testing, failure modes were witnessed to be either a few wires breaking, followed by the remainder of the wires breaking singly or all the wires breaking at the same time. Abrams and Cruz noted that although the failure mode varied the data did not differ significantly; therefore the failure modes were acceptable.

Also addressed by the researchers was the rate of heating and cooling. By heating several strands up at various rates and then testing, it was determined that the failure was independent of the heating rate. For the cooling analysis several strands were also heated up and then allowed some to cool "fast" and "slow". Fast cooling was defined as removing the specimens and placing them under a stream of cold water for 10-20 seconds until they returned to normal temperature. Slow cooling was where the specimen was left in the furnace several hours until it reached normal temperature. Based on tension testing following cooling, it was found that the failure was also independent of the method of which it was cooled.

Abrams and Cruz also performed tension tests on specimens at elevated temperatures. It was found that the tensile strength sharply decreases at 200°F (93°C) and continues until reaching 5 percent residual tensile strength at 1400°F (1860°C).

In 1967 Abrams and Erlin performed a follow-up to the previous research where the effects due to exposure time were examined and hot and cold tensile strengths were compared. For this research 7-wire, stress-relieved prestressing strands were also tested. Exposure times tested were 1 hour, 4 hours and 8 hours. For these exposure times, the residual tensile strengths were found to slightly decrease as the exposure time increased. Overall the 8 hour exposure time produced at residual tensile strength of 90 percent, 60 percent, 41 percent, 32 percent and 29 percent at respective temperatures of 752°F (400°C), 932°F (500°C), 1112°F (600°C), 1300°F (704°C) and 1589°F (865°C). Despite


the extended exposure time, residual tensile strengths were approximately 40 percent higher than that of specimens tested at their respective elevated temperature.

Neves et al. (1996) heated a single wire which was cut from the center of the seven-wire prestressing strand. Temperatures examined were in increments of 212°F (100°C) from 392°F-1652°F (200°C-900°C). The specimens were held at their designated temperature for 60 minutes and then were cooled one of two ways, naturally in the furnace with the door opened or immediate immersion in a vessel containing water. The behavior of the tensile strength of the strands initially decreased as reported by Abrams and Guyon. However, at 1472°F (800°C) Neves reported an increase in tensile strength of 8 percent for the specimens cooled naturally in the furnace and an increase of 20 percent for the specimens cooled by water. This result is quite different from that reported by Abrams and Guyon. Neves proposed the increase in tensile strength was due to the differences in steel composition.

A recent study performed by MacLean (2007) replicated the procedure of Abrams and Neves' previous research. MacLean tested single wires cut from the center of sevenwire, low-relaxation prestressing strands. The wires were heated to temperature increments of 212°F (100°C) from 392°F-1652°F (200°C-700°C) and a control 68°F (20°C) and then were held at their designated temperature for 90 minutes. The specimens were then left in the furnace to cool. The results obtained were consistent with Abrams and Guyon. Based on the experimental data and data previously published Equation 2.6 was proposed as a method of determining the residual tensile strength of prestressing strands based on temperature, where T is in degrees Celsius and f_u is the ratio of the ultimate tensile strength at a given temperature T, to the ultimate tensile strength at 68°F (20°C).

$$f_u(T) = 0.25 + \frac{0.75}{1 + (T/550)^{6.5}}$$
 Equation 2.6

A summary of the published residual tensile strength of prestressing strands is shown in Figure 2.4. The notation NS, SR and LR refer to the type of strand. NS is for unspecified strands, SR is stress-relieved strands and LR is low-relaxation strands.

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

Figure 2.4 Residual tensile strength of prestressing strands vs. temperature

2.5.3.2 Modulus of elasticity. The modulus of elasticity was found to be independent of temperature. The property increased slightly as the temperature increased but then decreased back to the undamaged value near the end of testing (Holmes et al., 1982 and McLean, 2007).

2.5.4. Steel and Concrete Bond Behavior. Similarly to other materials and mechanisms, there is very little research regarding bond behavior of fire damaged specimens. The earliest known research is quite recent and minimal developments have been produced following this initial study.

In 1972 Harada et al. performed testing on concrete subjected to elevated temperatures. Within the experimental program the bond between reinforcing steel and concrete was examined as it was affected by elevated temperatures. The specimens consisted of concrete cylinders with reinforcing through the middle. They were heated to temperatures of 212°F (100°C), 572°F (300°C) and 842°F (450°C) and held for 72 hours.

It was found that the residual bond to be 44 percent for temperatures 212°F-572°F (100°C-300°C) and 10 percent for 842°F (450°C). It was concluded that bond strength is highly affected by temperature compared to compressive strength.

In 1991 LeClaire published a report regarding the bond strength of epoxy-coated prestressing strands exposed to elevated temperatures. The data was developed by performing pullout tests of specimens exposed to elevated temperatures of 70°F-200°F (21°C-93°C). It was determined from these tests that the bond begins to deteriorate at 125°F (52°C). Failure was found to occur between the epoxy and concrete for temperatures below 100°F (38°C). For temperatures 100°F-160°F (38°C-71°C) softening of the epoxy occurred and at temperatures greater than 175°F (79°C) the bond failure took place between the epoxy and the steel.

In response to LeClaire's work, the PCI Committee on Epoxy-Coated Strand (1993) released a report which stated that the bond could be lost if a temperature of 165°F (74°C) was reached at the location of the steel-concrete interface. It also noted that when concrete is exposed to higher temperatures, such as a fire, a complete loss in bond may result.

Following the PCI committee report, additional research was performed by Washer and the Federal Highway Administration in 1995. It was confirmed that bond failure begins to occur 160°F (71°C). At 145°F (63°C) initial softening of the epoxy was noticed which later led to the bond failure at higher temperatures.

Most recently researchers out of Taiwan, Chiang et al. (2000), sought to determine the bond strength after fire damage by means of acoustic inspection. Based on current research it was found that the acoustic wave velocity did indicate loss in bond strength due to elevated temperature and increasing time. However, researchers also noted that based on their current results it was inconclusive whether an analysis with acoustic wave velocity in conjunction with a time-temperature analysis is successful in the assessment of residual bond strength.

2.6. FIRE MODELS

2.6.1. Standard Fire Resistance Tests. Fire tests are performed based on ASTM E119-08, which dictates the temperature, specimen size and duration of the fire. This standard gives a time-temperature curve which can be seen in Figure 2.5. This is the standard to which almost all fire testing is performed by in the United States.

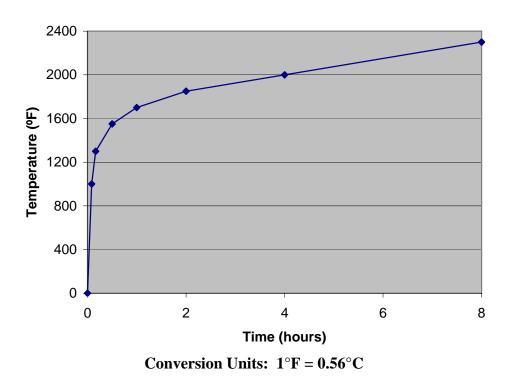


Figure 2.5 ASTM E 119-08 Standard Time-Temperature Curve

Based on the guidelines of ASTM E 119-08, a series of tests were performed on various types of beams at the Underwriters Laboratories and Portland Cement Association. This data which is published in the PCI's "Design for Fire Resistance of Precast Prestressed Concrete" (1989) design aid is used to develop temperature profiles

within concrete beams based on the member width and depth within the concrete. These profiles represent the temperature gradient of standard fires for various lengths of time.

For concrete slabs, the temperature profile is significantly different due to their continuous geometry. Abrams and Gustaferro (1968) used the ASTM E 119-08 standard time-temperature curve to determine the temperature profiles in slabs. The testing was performed on three types of aggregate, carbonate, siliceous and shale. Temperature within the concrete was measured by thermocouples at time increments of 1/2, 1, 2, 3, 4 hours. The shale was found to have the longest endurance periods followed by the carbonate and then siliceous. This data can also be used to determine the temperature profile within a concrete slab.

2.6.2. Non-Standard Fires. For fires that are caused by fuel or explosives the flame temperature will be higher and will occur more rapidly than that specified by the standard time-temperature curve. Due to the standard, there is no data that exists for these scenarios. Therefore hand calculation and computer modeling must be used to simulate these situations.

2.6.2.1 Pool fires. In the case that a fire is caused by a fuel spill, there are published guidelines for prediction of the size and duration of the fire. A series of equations have been developed which vary based on the type of chemical, surface of which it is spilled onto and confinement of spill. For an instantaneous unconfined spill, Equation 2.7 quantifies the maximum diameter, D_{max} , of the fire (Zalosh, 1984). For this equation, V_L is the volume of the spill, y is the liquid burning rate and g is acceleration of gravity. Values for the liquid burning rate are reported by the SFPE Handbook of Fire Protection Engineering (2^{nd} Ed., 1995).

$$D_{\text{max}} = 2\left(\frac{V_L^3 g}{y^2}\right)^{\frac{1}{8}}$$
 Equation 2.7

The length of time that a pool fire will burn can be determined by Equation 2.8, where ν is the regression rate. The regression rate is defined in Equation 2.9 where \dot{m}'' is the mass burning rate of fuel per unit area and ρ is the liquid fuel density (Iqbal and Salley, 2004).

$$t = \frac{4V_L}{\pi D^2 v}$$
 Equation 2.8

$$v = \frac{\dot{m}''}{\rho}$$
 Equation 2.9

Flame temperatures are difficult to measure due to the non-uniformity throughout the flame. Researchers however, have determined that the flame is made up of two main temperature regions, the lower region which is typically constant and the tip which decreases with distance up the plume. Temperatures within the lower region are typically around 1652°F (900°C) and within the tip are typically around 842°F (450°C). However, for larger pools the lower region may rise up 2192°F (1200°C). (Iqbal and Salley, 2004; Ingason, 1994; Qian and Saito, 1995). Average flame temperatures for selected fuels are reported by Iqbal and Salley (2004). Specifically, gasoline is reported to have an average flame temperature of 1879°F (1026°C).

Temperatures of actual bridge fires have also been recorded based on concrete color and melted objects. A gasoline fire near Ridgefield, Connecticut was estimated to have burned at a temperature of 4473°F (2467°C) (FHWA, 2007). In another fire in Tacoma, Washington, experts approximated the fire around 3000°F (1649°C) (*Aspire*, Spring 2008). These results indicate that there is often a significant difference between the average flame temperature and peak temperature.

2.6.2.2 Modeling. Recently, the use of modeling in the application of fire modeling has been quickly increasing. There is a constant competition to develop methods and products will which accurately and efficiently solve engineering problems. In particular the finite element modeling (FEM) of temperature profiles in concrete is quite often studied. Several methods have been produced but as of yet very little research has been performed to verify their accuracy for high temperatures.

One of the first models developed was by Wickstrom (1986). This model which is considered to be "very simple" used the data already developed from standard fire curves to predict the temperature profile within concrete. This method however, can only

be applied to structures exposed to temperatures within the standard time-temperature curve.

Another approach published by Wang and Tan (2005) used a method called the "Residual Area Method" to determine the temperature profile for concrete-encased I-sections. From this method, a series of formulas are given to calculate the critical temperature along the steel profile.

As part of a thermal behavior analysis of a FRP deck, Alnahhal et al. (2006) employed the use of ABAQUS, a finite element computer modeling software package. The result produced by ABAQUS was compared to actual testing on an existing bridge. The findings were that the results from both sources were quite similar and that the software was accurate in predicting the temperature within the concrete.

2.7. FIRE DAMAGED STRUCTURES

Data regarding the structural integrity of prestressed concrete bridges is limited to information obtained from damaged bridges. In some cases this information only includes the visual observations of a bridge following fire. In other cases the bridge is torn down and laboratory testing is performed to understand the material properties.

In recent bridge fire incidents, engineers have been able to inspect the bridge after fire and approve them to be in service upon minimal repairs. Despite the appearance of the fire, inspection indicated that the structural integrity was still acceptable. In particular the Bill Williams Bridge in Parker, Arizona (shown in Figure 2.6), the Northwest Expressway in Oklahoma City, Oklahoma and a bridge in Washington County, Oregon are all examples of bridges which were inspected and then reopened days later. Minimal repairs were performed on the bridges. (*Aspire*, Spring 2008).

In the case of laboratory testing of a damaged bridge, the bridge over the Norwalk River near Ridgefield, Connecticut (shown in Figure 2.7) gives significant insight on the fire-damaged properties of a prestressed concrete bridge. Upon damage the bridge was torn down and taken to the laboratory where it was examined more closely. It was determined that the flexural capacity of the beams exceeded their rate capacities and would have been sufficient in service following the fire. However, the long term

durability and integrity of the beams were in question due to the severe deterioration of the concrete. (FHWA, 2007)

Figure 2.6 Fire along the Bill Williams Bridge in Parker, Arizona due to an overturned diesel tanker (Aspire, Spring 2008)

Figure 2.7 Damaged Norwalk Bridge near Ridgefield, Connecticut due to an overturned gasoline tanker (FHWA, 2007)

3. EXPERIMENTAL PROGRAM

3.1. TEST MATRIX

For this experimental program, two different tests were performed, tension and pullout. Both tests were performed after the strands had been exposure to different levels of elevated temperature. The tension testing was used to analyze the tensile strength and stiffness properties of the prestressing strand after damage, while the pullout testing was performed to understand the bond between the strand and concrete after damage.

Seven-wire, uncoated, grade 270 ksi (1862 MPa), low-relaxation strands of two sizes, 0.5 in. (12.7 mm) and 0.375 in. (9.5 mm), were employed in testing. The same temperatures were used for both tension and pullout tests in order to obtain correlating results. The temperatures selected for the study were 500°F (260°C), 800°F (427°C), 1000°F (538°C), 1200°F (649°C), and 1300°F (704°C). In addition, control specimens were tested for each strand size. A control was defined as exposure to approximately 68°F (20°C). These temperatures were chosen because previous research shown in Section 2.5.3 has indicated reinforcing steel to experience significant loss in tensile strength soon after reaching 800°F (427°C). The upper limit was defined by the furnace's capability.

3.1.1. Tension Tests. Within the tension tests there were two phases of testing. Phase I was designed to understand the tensile strength of the strand at elevated temperatures. It also considered effects due to the method of cooling. Phase II of the experiment examined the tensile strength properties due to a shorter time of heat exposure (heat soak).

Test matrices for Phase I and II can be seen in Tables 3.1-3.4. The Specimen ID given in each table is given in the format of A-B-C-D-E, where the A designates the phase number, B designates the strand size, C specifies the temperature level, D gives the cooling method and E designates the replicate of that specimen set. The label B is used to designate strand size with "1" for 0.375 in. and "2" for 0.5 in. The C designation is given by numbers 1-6, which refer to the temperature levels beginning with the control as

"1" and continuing up to 1300°F (704°C) which is given as "6". The D designation for the cooling method is denoted by "1" for cooling outside the furnace and "2" for cooling inside the furnace.

Table 3.1 Tension test matrix Phase I: 0.375 in. strand diameter

Specimen ID	Temperature, °F (°C)	Heat Soak Time, min	Cooling Method
1-1-1-1	Control	60	Outside Furnace
1-1-1-2	Control	60	Outside Furnace
1-1-1-3	Control	60	Outside Furnace
1-1-2-1-1	500 (260)	60	Outside Furnace
1-1-2-1-2	500 (260)	60	Outside Furnace
1-1-2-1-3	500 (260)	60	Outside Furnace
1-1-3-1-1	800 (427)	60	Outside Furnace
1-1-3-1-2	800 (427)	60	Outside Furnace
1-1-3-1-3	800 (427)	60	Outside Furnace
1-1-4-1-1	1000 (538)	60	Outside Furnace
1-1-4-1-2	1000 (538)	60	Outside Furnace
1-1-4-2-1	1000 (538)	60	Inside Furnace
1-1-4-2-2	1000 (538)	60	Inside Furnace
1-1-5-1-1	1200 (649)	60	Outside Furnace
1-1-5-1-2	1200 (649)	60	Outside Furnace
1-1-5-2-1	1200 (649)	60	Inside Furnace
1-1-5-2-2	1200 (649)	60	Inside Furnace
1-1-6-1-1	1300 (704)	60	Outside Furnace
1-1-6-1-2	1300 (704)	60	Outside Furnace
1-1-6-2-1	1300 (704)	60	Inside Furnace
1-1-6-2-2	1300 (704)	60	Inside Furnace

Table 3.2 Tension test matrix Phase I: 0.5 in. strand diameter

Specimen ID	Temperature, °F (°C)	Heat Soak Time, min	Cooling Method
1-2-1-1	Control	60	Outside Furnace
1-2-1-1-2	Control	60	Outside Furnace
1-2-1-1-3	Control	60	Outside Furnace
1-2-2-1-1	500 (260)	60	Outside Furnace
1-2-2-1-2	500 (260)	60	Outside Furnace
1-2-2-1-3	500 (260)	60	Outside Furnace
1-2-3-1-1	800 (427)	60	Outside Furnace
1-2-3-1-2	800 (427)	60	Outside Furnace
1-2-3-1-3	800 (427)	60	Outside Furnace
1-2-4-1-1	1000 (538)	60	Outside Furnace
1-2-4-1-2	1000 (538)	60	Outside Furnace
1-2-4-1-3	1000 (538)	60	Outside Furnace
1-2-4-2-1	1000 (538)	60	Inside Furnace
1-2-4-2-2	1000 (538)	60	Inside Furnace
1-2-4-2-3	1000 (538)	60	Inside Furnace
1-2-5-1-1	1200 (649)	60	Outside Furnace
1-2-5-1-2	1200 (649)	60	Outside Furnace
1-2-5-1-3	1200 (649)	60	Outside Furnace
1-2-5-2-1	1200 (649)	60	Inside Furnace
1-2-5-2-2	1200 (649)	60	Inside Furnace
1-2-5-2-3	1200 (649)	60	Inside Furnace
1-2-6-1-1	1300 (704)	60	Outside Furnace
1-2-6-1-2	1300 (704)	60	Outside Furnace
1-2-6-1-3	1300 (704)	60	Outside Furnace
1-2-6-2-1	1300 (704)	60	Inside Furnace
1-2-6-2-2	1300 (704)	60	Inside Furnace
1-2-6-2-3	1300 (704)	60	Inside Furnace

Table 3.3 Tension test matrix Phase II: 0.375 in. strand diameter

Specimen ID	Temperature, °F (°C)	Heat Soak Time, min	Cooling Method
2-1-4-1-1	1000 (538)	35	Outside Furnace
2-1-4-1-2	1000 (538)	35	Outside Furnace
2-1-4-1-3	1000 (538)	35	Outside Furnace
2-1-5-1-1	1200 (649)	35	Outside Furnace
2-1-5-1-2	1200 (649)	35	Outside Furnace
2-1-5-1-3	1200 (649)	35	Outside Furnace
2-1-6-1-1	1300 (704)	35	Outside Furnace
2-1-6-1-2	1300 (704)	35	Outside Furnace
2-1-6-1-3	1300 (704)	35	Outside Furnace

Table 3.4 Tension test matrix Phase II: 0.5 in. strand diameter

Specimen ID	Temperature, °F (°C)	Heat Soak Time, min	Cooling Method
2-2-4-1-1	1000 (538)	35	Outside Furnace
2-2-4-1-2	1000 (538)	35	Outside Furnace
2-2-4-1-3	1000 (538)	35	Outside Furnace
2-2-5-1-1	1200 (649)	35	Outside Furnace
2-2-5-1-2	1200 (649)	35	Outside Furnace
2-2-5-1-3	1200 (649)	35	Outside Furnace
2-2-6-1-1	1300 (704)	35	Outside Furnace
2-2-6-1-2	1300 (704)	35	Outside Furnace
2-2-6-1-3	1300 (704)	35	Outside Furnace

3.1.1.1 Phase I. For the control, 500°F (260°C) and 800°F (427°C), three (3) coupons per strand size were heated and tested. These specimens were cooled by removing them from the furnace. For the higher temperatures, 1000°F (538°C), 1200°F (649°C), and 1300°F (704°C), six (6) coupons were heated for the 0.5 in. diameter strands and four (4) were heated for the 0.375 in. diameter strands. The increase in

number of strands was to observe the effects due cooling. Three (3) of the 0.5 in. and two (2) of the 0.375 in. were cooled inside the furnace and the remaining three (3) 0.5 in. and two (2) 0.375 in. were cooled by removing them from the furnace. All strands were held at their specific temperature for 60 minutes. This particular length of time was chosen, because much of the research of the same type of testing used this time period (Abrams and Erlin, 1967; Neves et al., 1996).

3.1.1.2 Phase II. In addition to Phase I, additional testing was also performed where the specimens were held at their desired temperature for 35 minutes. The decrease in heat soak time was due to interest in the materials properties for specimens exposed to elevated temperatures for shorter periods of time. Research by Guyon (1953) indicated that property loss was lower for shorter periods of heat exposure.

For this phase, three (3) temperatures were studied, 1000°F (538°C), 1200°F (649°C) and 1300°F (704°C). Three (3) strands per temperature were tested for both the 0.5 in. and 0.375 in. size strands. The specimens were removed from the furnace and cooled naturally.

3.1.2. Pullout Tests. In the pullout testing, two different concrete mix designs mixes were used. The first batch of specimens used an 11 ksi (76 MPa) design mix and the second batch used a 14 ksi (97 MPa) design mix.

The Specimen ID given for each specimen is in the format of A-B-C-D, where the A designates compressive strength of the concrete, B designates the strand size, C designates the temperature level and D specifies the replicate of the specimen set. Similarly to the tension testing, B is used to designate strand size with 1 for 0.375 in. and 2 for 0.5. Also the temperature level designated by C is given by numbers 1-6, which refer to the temperature levels beginning with the control as 1 and continuing up to $1300^{\circ}F$ ($704^{\circ}C$) which is given as 6.

The test matrix for the 11 ksi specimens can be seen in Table 3.5. A total of thirty-six (36) concrete blocks were tested, eighteen (18) of 0.5 in. diameter and eighteen (18) of 0.375 in. diameter. For each temperature three (3) strands of each diameter were heated and tested. After the 60 minute period of heat exposure, these specimens were removed from the furnace and cooled naturally.

Table 3.5 Pullout test matrix for 11 ksi concrete specimens

0.375 in	0.375 in. Specimens		. Specimens
Specimen ID	Temperature, °F (°C)	Specimen ID	Temperature, °F (°C)
11-1-1-1	Control	11-2-1-1	Control
11-1-1-2	Control	11-2-1-2	Control
11-1-1-3	Control	11-2-1-3	Control
11-1-2-1	500 (260)	11-2-2-1	500 (260)
11-1-2-2	500 (260)	11-2-2-2	500 (260)
11-1-2-3	500 (260)	11-2-2-3	500 (260)
11-1-3-1	800 (427)	11-2-3-1	800 (427)
11-1-3-2	800 (427)	11-2-3-2	800 (427)
11-1-3-3	800 (427)	11-2-3-3	800 (427)
11-1-4-1	1000 (538)	11-2-4-1	1000 (538)
11-1-4-2	1000 (538)	11-2-4-2	1000 (538)
11-1-4-3	1000 (538)	11-2-4-3	1000 (538)
11-1-5-1	1200 (649)	11-2-5-1	1200 (649)
11-1-5-2	1200 (649)	11-2-5-2	1200 (649)
11-1-5-3	1200 (649)	11-2-5-3	1200 (649)
11-1-6-1	1300 (704)	11-2-6-1	1300 (704)
11-1-6-2	1300 (704)	11-2-6-2	1300 (704)
11-1-6-3	1300 (704)	11-2-6-3	1300 (704)

The 14 ksi specimens can be seen in Table 3.6. Thirty (30) concrete blocks were tested, eighteen (18) of 0.5 in. diameter and twelve (12) of 0.375 in. diameter. For this batch, three (3) 0.5 in. diameter specimens and two (2) 0.375 in. diameter specimens were heated for each temperature. Similarly, to the 11 ksi specimens, the 14 ksi specimens were cooled naturally outside of the furnace after the 60 minute heat soak period was completed.

Table 3.6 Pullout test matrix for 14 ksi concrete specimens

0.375 i	0.375 in. Specimens		. Specimens
Specimen ID	Temperature, °F (°C)	Specimen ID	Temperature, °F (°C)
14-1-1-1	Control	14-2-1-1	Control
14-1-1-2	Control	14-2-1-2	Control
14-1-2-1	500 (260)	14-2-1-3	Control
14-1-2-2	500 (260)	14-2-2-1	500 (260)
14-1-3-1	800 (427)	14-2-2-2	500 (260)
14-1-3-2	800 (427)	14-2-2-3	500 (260)
14-1-4-1	1000 (538)	14-2-3-1	800 (427)
14-1-4-2	1000 (538)	14-2-3-2	800 (427)
14-1-5-1	1200 (649)	14-2-3-3	800 (427)
14-1-5-2	1200 (649)	14-2-4-1	1000 (538)
14-1-6-1	1300 (704)	14-2-4-2	1000 (538)
14-1-6-2	1300 (704)	14-2-4-3	1000 (538)
		14-2-5-1	1200 (649)
		14-2-5-2	1200 (649)
		14-2-5-3	1200 (649)
		14-2-6-1	1300 (704)
		14-2-6-2	1300 (704)
		14-2-6-3	1300 (704)

3.2. MATERIALS

3.2.1. Prestressing Strands. The specimens selected for the experiment were uncoated seven-wire low-relaxation prestressing strands of grade 270 ksi (1862 MPa). Two (2) sizes of wires were used, 0.5 in. (12.7 mm) and 0.375 in. (9.53 mm), with cross-sectional areas of 0.153 in² and 0.085 in² respectively. The standard ASTM A 416/A 416M-06 provides required properties for this type of prestressing strand. In order for a

strand to be acceptable for use in construction and certified by its supplier the yield stress and minimum fracture strength must be met. These values are also used to verify testing procedures used in experimental research. These standard properties given by ASTM A 416/A 416M-06 are shown in Table 3.7.

Table 3.7 Mechanical properties of prestressing strands

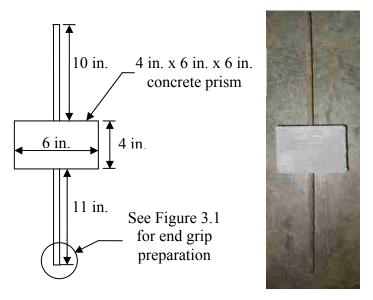
	Area, in² (mm²)	Yield Stress, ksi (MPa)	Fracture Stress, ksi (MPa)	Minimum Fracture Strength, lbf (kN)	Modulus of Elasticity, ksi (MPa)
0.5 in.	0.153	243	270	41,300	28,500
	(12.7)	(1675)	(1862)	(183.7)	(196,500)
0.375 in.	0.085	243	270	23,000	28,500
	(9.53)	(1675)	(1860)	(102.3)	(196,500)

3.2.2. Concrete. The pullout specimens were made up of two (2) different mix designs. These mix designs and reported compressive strengths at 7 days and the time of testing can be seen in Table 3.8.

Table 3.8 Mix design and strength properties of concrete pullout specimens

Mix Design Material Batch Weights	Batch 1 - lbs (N)	Batch 2 - lbs (N)
Portland Cement-Type III	47.0 (209.1)	109.7 (487.9)
Portland Cement Type I	-	94.0 (418.1)
Silica Fume	8.2 (36.5)	17.8 (79.2)
Coarse Aggregate	123.0 (547.1)	-
1/2" Clean Aggregate	49.2 (218.8)	218.9 (973.7)
3/8" Clean Aggregate	-	93.8 (417.2)
Manufactured Sand	-	51.2 (227.7)
Concrete Sand	-	261.1 (1161.3)
Fine Aggregate	149.7 (665.9)	-
Mix Water	28.2 (125.4)	66.1 (294.0)
HRWA (oz)	12.3 (54.7)	34.6 (153.9)
7-Day Strength - psi (MPa)	6,900 (47.6)	11,480 (79.2)
Strength During Testing - psi (MPa)	11,230 (77.4)	14,330 (98.8)

3.3. DESCRIPTION OF SPECIMENS


3.3.1. Tension Specimens. The coupon specimens were cut into lengths of 18 in. (457.2 mm), a value based on ASTM A416M-06, the grip length of the jaws, and the furnace dimensions. Nothing additional was applied or performed on the prestressing strands prior to exposure to elevated temperatures. A schematic and actual view of the specimen is given in Figure 3.1.

Conversion Units: 1 in. = 15.2 cm

Figure 3.1 Schematic and actual view of coupon specimen

3.3.2. Pullout Specimens. The pullout specimens consisted of a 25 in. (635 mm) prestressing strand cast in the center of a 6 in. x 6 in. x 4 in. (152.4 mm x 152.4 mm x 101.6 mm) concrete block. A length of 4 in. (101.6 mm) was embedded in the concrete. The remaining portion of the strand was exposed with 10 in. (254 mm) above and 11 in. (279.4 mm) below the concrete block. This concrete block geometry and embedment length was similar to experimental work by Chao (2005). This was done in order to compare and correlate experimental data with published results from Chao. A schematic and actual view of the specimen can be seen in Figure 3.2.

Conversion Units: 1 in. = 25.4 mm

Figure 3.2 Schematic and actual view of pullout specimen

3.4. TEST SETUP

3.4.1. Furnace. In order to simulate fire damage, the specimens were placed inside a cylindrical tube furnace and heated to their designated temperature at a rate of approximately 8°F/min (4.4°C/min). The temperature was measured by a thermocouple which was directly linked to the temperature controller.

For the first set of coupons, the temperature was increased until it reached its designated value and then held for 60 minutes, allowing a uniform temperature to be reached. The specimens that were to be cooled outside the furnace were then removed, placed at room temperature and allowed to cool. The furnace was turned off and the remaining specimens were left in furnace and cooled as the furnace naturally cooled down. The second set of coupons were heated in the same manner, but only held at their specific temperature for 35 minutes. They were cooled outside the furnace after their heat soak was completed. As discussed in Section 3.1.1, the heat soak time period of 60 minutes was based on previous research of similar tests (Abrams and Erlin, 1967; Neves et al., 1996) and the 35 minute period was chosen to research the affects caused by a shorter period of exposure time.

For the pullout specimens the exposed portions of the strand were wrapped in wool fiber and aluminum foil. This was done to protect the properties of the strand and ensure failure would occur between the bond of the strand and concrete before the steel fractured. These were also heated for 60 minutes at their specified temperature.

When heating the coupon specimens, all six of each temperature were placed in the furnace at the same time. The pullout specimens were heated two at a time due to the allowable space in the furnace. The furnace and heating setup can be seen in Figures 3.3 and 3.4. The white blocks shown in Figure 3.4 were oven bricks which were used elevate the coupon specimens in the furnace and keep them from touching one another during heating.

Figure 3.3 Cylindrical tube furnace

Figure 3.4 Typical heating setup

3.4.2. Tension Tests. Tensile testing was performed using a MTS880 machine as shown in Figure 3.5. Load, strain, and stroke were electronically recorded for each specimen. In order to achieve equal grip strength around the strands, a 3 in. (76.2 mm) long aluminum tube made of aluminum alloy 6061 with a thickness of 0.049 in. was placed on both ends of the coupon. For the 0.5 in. strands a 0.5 in. (12.7 mm) outside diameter, 0.527 in. (13.39 mm) inside diameter aluminum tube was used. The 0.375 in. strands employed a 0.625 in. (15.88) outside diameter, 0.402 in. (10.21 mm) inside diameter aluminum tube. This allowed the grips to squeeze the aluminum into the gaps between the individual wires and prevent slipping or premature fracture. A small weld was also placed at the ends of each specimen to ensure the strands were loaded uniformly. Gripping strength was set at 7.5 ksi (51.8 MPa) for the 0.5 in. specimens and 6 ksi (41.4 MPa) for the 0.375 in. specimens. A typical specimen placed in the MTS880 machine can be seen in Figure 3.6.

Figure 3.5 MT880 testing machine prior to tension tests

Figure 3.6 Tension test setup

The procedure for the coupon testing began by centering the specimen inside the testing machine. The specimen was loaded to an initial load of 10 percent of the minimum breaking strength as specified by ASTM A416M-06 and ASTM A307-07a. A Class-C extensometer was then placed on the strand and the gauge reading was set to 0.001 in./in. (0.0254 mm/mm). Loading rates for each strand diameter were selected to be 23 percent of the maximum acceptable load set by ASTM 370-07a. These values were based on the standard's allowable range and testing machine's capabilities. Initial loads and load rates can be seen in Table 3.9.

Table 3.9 Testing properties of prestressing strands

Strand Diameter	Initial Load	Loading Rate
in. (mm)	lbf (kN)	lbs/min (kN/min)
0.5 (12.7)	4,130 (18.4)	3,470 (15.44)
0.375 (9.5)	2,300 (10.2)	1,930 (8.59)

Loading continued until yielding took place. The extensometer was then removed in order to prevent damage to itself during fracture. For specimens unexposed to the furnace the yield was taken at an elongation of 1 percent which was recorded by the machine as a strain value of 0.01 in./in. (0.254 mm/mm). This procedure was in accordance with ASTM A416M-06. For the heat-exposed specimens yield occurred much sooner and the extensometer was removed once the curve on the computer clearly changed slope signifying a yield. During and after the removal of the extensometer, the loading continued and was completed when the specimen fractured. For certain cases, particularly the higher temperatures, a clear change in slope was not recognizable and therefore the extensometer was left on the specimen until failure.

3.4.3. Pullout Tests. There are no governing specifications regarding pullout testing for prestressing strands in bridge applications. Therefore, testing was performed in a similar fashion to that of an experiment performed by Chao (2005).

The testing procedure was performed on the same MTS880 machine used for tension testing. A steel pullout testing cage was loaded into the top grips of the machine as shown in Figures 3.7 and 3.8. The cage itself was 32 in. (81.3 cm) tall and 24 in. (61.0 cm) by 20 in. (50.8 cm) wide. A 1 in. (2.5 cm) wide plate shown in Figure 3.9 was welded onto the base of the cage for the perimeter of the concrete to bear on. The plate was located along the perimeter of the block to avoid splitting effects. As seen in Figure 3.10 the concrete specimen sat flat on the welded plate and the strand fit through the hole and was secured in the bottom grip of the MTS880. The specimens were monotonically loaded under stroke control at a rate of 0.001 in. slip per second (0.025 mm slip/second). Load and slip were recorded for the entire test until failure. Failure was taken at specimen fracture or if it did not fracture failure was taken at a slip of 3 in. (76.2 mm).

Figure 3.7 Pullout test setup cage prior to testing

Figure 3.8 Pullout test setup with specimen inside steel cage

Figure 3.9 Base of pullout cage which concrete block was pulled against

Figure 3.10 Enlarged view of pullout test setup with specimen inside steel cage

4. EXPERIMENTAL TEST RESULTS

4.1. TENSION TESTS

4.1.1. Visual Observations. Visual observations of the prestressing strands were made prior to testing and can be seen in Figures 4.1-4.5. Noticeable changes to the strand's appearance were first observed with the specimens exposed to 1000°F (538°C). These coupons' shiny appearance was replaced by a dark dull appearance which indicates the beginning of steel oxidation. The strands heated to 1200°F (649°C) were also found to be dull and in addition their exterior coating began to slightly flake off. Finally the specimens of 1300°F (704°C) showed significant flaking of the exterior and dullness. Note the shiny areas in Figure 4.5 are parts of the strand where the exterior flaked off after heating during transport. Coupons exposed to 500°F (260°C) and 800°F (427°C) remained the same as they were prior to heating, with an exterior characterized by a shiny appearance. These observations were the same for each temperature regardless of the type of cooling method or length of heat soak.

Figure 4.1 Strand exterior after exposure to 500°F (260°C)

Figure 4.2 Strand exterior after exposure to 800°F (427°C)

Figure 4.3 Strand exterior after exposure to 1000°F (538°F)

Figure 4.4 Strand exterior after exposure to 1200°F (649°F)

Figure 4.5 Strand exterior after exposure to 1300°F (704°C)

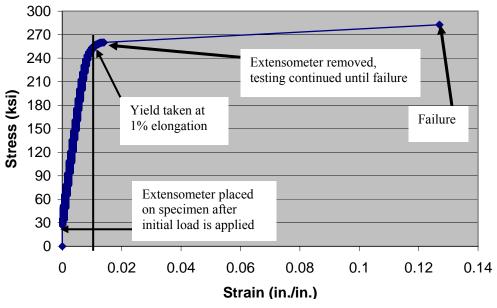
4.1.2. Test Results. The results of the tension tests are presented in this section. For each of the tests, stroke and load were recorded for the entire loading period. Strain was recorded until at least the yield point as discussed earlier. Tables 4.1-4.5 contain the yield stress, ultimate load, modulus of elasticity (abbreviated as "Modulus of E.") and the standard deviation for each of three previously mentioned properties.

Table 4.1 Test results Phase I: 0.375 in. strand diameter

Specimen	Yield Stress,	Ultimate Load,	Modulus of	Standard Deviation
ID	ksi (MPa)	kips (kN)	Elasticity,	A: Yield Stress
	A	В	ksi (MPa)	B: Ultimate Load
			C	C: Modulus of E.
1-1-1-1	253 (1,744)	24.0 (106.8)	24,413 (168,322)	A: 1.85 (12.8)
1-1-1-2	256 (1,765)	24.2 (107.6)	26,769 (184,566)	B: 0.10 (0.4)
1-1-1-3	257 (1,772)	24.3 (108.1)	26,513 (182,801)	C: 1,055.5 (7,277.4)
1-1-2-1-1	244 (1,682)	24.1 (107.2)	28,048 (193,384)	A: 0.91 (6.3)
1-1-2-1-2	246 (1,696)	24.1 (107.2)	27,821 (191,819)	B: 0.12 (0.5)
1-1-2-1-3	245 (1,689)	23.9 (106.3)	27,920 (192,502)	C: 92.9 (640.5)
1-1-3-1-1	212 (1,462)	21.1 (93.9)	26,966 (185,924)	A: 0.50 (3.4)
1-1-3-1-2	210 (1,448)	21.6 (96.1)	28,379 (195,666)	B: 0.20 (0.9)
1-1-3-1-3	211 (1,455)	21.5 (95.6)	28,354 (195,494)	C: 660.3 (4,552.6)
1-1-4-1-1	187 (1,289)	15.9 (70.7)	26,267 (181,105)	A: 0.31 (2.1)
1-1-4-1-2	186 (1,282)	15.8 (70.3)	27,211 (187,613)	B: 0.03 (0.1)
1-1-1-2	100 (1,202)	13.6 (70.3)	27,211 (107,013)	C: 472.0 (3,254.3)
1-1-4-2-1	185 (1,276)	15.7 (69.8)	24,994 (172,328)	A: 0.67 (4.6)
1-1-4-2-2	186 (1,282)	15.8 (70.3)	25,462 (175,554)	B: 0.06 (0.3) C: 234.0 (1,613.4)
1-1-5-1-1	119 (820)	10.1 (44.0)	24,280 (167,405)	A: 1.11 (7.7)
1-1-3-1-1	119 (820)	10.1 (44.9)	24,280 (107,403)	B: 0.09 (0.4)
1-1-5-1-2	117 (807)	9.9 (44.0)	27,242 (187,827)	C: 1,481.0 (10,211.1)
1-1-5-2-1	119 (820)	10.1 (44.9)	26,744 (184,393)	A: 0.12 (0.8)
	110 (020)	10.1.(1.1.0)		B: 0.01 (0.04)
1-1-5-2-2	119 (820)	10.1 (44.9)	25,735 (177,437)	C: 504.5 (3,478.4)
1-1-6-1-1	100 (689)	8.5 (37.8)	24,849 (171,328)	A: 1.09 (7.5)
1-1-6-1-2	102 (703)	8.7 (38.7)	24,494 (168,880)	B: 0.09 (0.4)
	` ′	` ′		C: 177.50 (1,223.8)
1-1-6-2-1	101 (696)	8.6 (38.3)	25,856 (178,271)	A: 0.27 (1.9) B: 0.02 (0.09)
1-1-6-2-2	101 (696)	8.6 (38.3)	25,147 (173,383)	C: 354.5 (2,444.2)

Table 4.2 Test results Phase I: 0.5 in. strand diameter

Specimen	Yield Stress,	Ultimate Load,	Modulus of	Standard Deviation
ID	ksi (MPa)	kips (kN)	Elasticity,	A: Yield Stress
	A	В	ksi (MPa)	B: Ultimate Load
			C	C: Modulus of E.
1-2-1-1-1	251 (1,731)	42.1 (187.3)	25,246 (174,065)	A: 1.15 (7.9)
1-2-1-1-2	251 (1,731)	43.2 (192.2)	25,464 (175,568)	B: 0.57 (2.5)
1-2-1-1-3	248 (1,710)	41.7 (185.5)	27,237 (187,793)	C: 772.2 (5324.1)
1-2-2-1-1	242 (1,669)	40.2 (178.8)	26,678 (183,938)	A: 1.24 (8.5)
1-2-2-1-2	244 (1,682)	41.4 (184.2)	27,164 (187,289)	B: 0.47 (2.1)
1-2-2-1-3	245 (1,689)	40.2 (178.8)	27,931 (192,578)	C: 446.7 (3,079.9)
1-2-3-1-1	232 (1,600)	37.6 (167.3)	26,329 (181,532)	A: 1.02 (7.03)
1-2-3-1-2	235 (1,620)	36.5 (162.4)	25,587 (176,416)	B: 0.41 (1.8)
1-2-3-1-3	235 (1,620)	37.3 (165.9)	26,799 (184,773)	C: 432.1 (2,979.2)
1-2-4-1-1	185 (1,276)	28.3 (125.9)	28,885 (199,155)	A: 0.80 (5.5)
1-2-4-1-2	186 (1,282)	28.4 (126.3)	26,995 (186,124)	B: 0.12 (0.5)
1-2-4-1-3	184 (1,269)	28.1 (125.0)	26,268 (181,112)	C: 955.2 (6,585.9)
1-2-4-2-1	192 (1,324)	29.4 (129.9)	25,568 (176,285)	A: 3.30 (22.8)
1-2-4-2-2	184 (1,269)	28.1 (125.0)	24,814 (171,087)	B: 0.50 (2.2)
1-2-4-2-3	191 (1,317)	29.2 (129.9)	23,735 (163,647)	C: 651.5 (4,491.9)
1-2-5-1-1	115 (793)	17.6 (78.3)	30,884 (212,938)	A: 2.12 (14.6)
1-2-5-1-2	110 (758)	16.9 (75.2)	26,260 (181,056)	B: 0.32 (1.4)
1-2-5-1-3	109 (752)	16.7 (74.3)	25,543 (176,113)	C: 2,049.8 (14,132.9)
1-2-5-2-1	105 (724)	16.1 (71.6)	23,260 (160,372)	A: 1.74 (12.0)
1-2-5-2-2	105 (724)	16.0 (71.2)	24,601 (169,618)	B: 0.27 (1.2)
1-2-5-2-3	109 (752)	16.7 (74.3)	21,230 (146,376)	C: 1,200.1 (8,274.4)
1-2-6-1-1	99 (683)	15.1 (67.2)	25,825 (178,057)	A: 3.16 (21.8)
1-2-6-1-2	97 (669)	14.8 (65.8)	25,005 (172,403)	B: 0.48 (2.1)
1-2-6-1-3	105 (724)	16.1 (71.6)	28,831 (198,783)	C: 1,424.4 (9,820.9)
1-2-6-2-1	102 (703)	15.6 (69.4)	22,928 (158,083)	A: 1.68 (11.6)
1-2-6-2-2	98 (676)	15.0 (66.7)	25,323 (174,596)	B: 0.26 (1.2)
1-2-6-2-3	97 (669)	14.9 (66.3)	22,974 (158,400)	C: 968.5 (6,677.6)


Table 4.3 Test results Phase II: 0.375 in. strand diameter

Specimen	Yield Stress,	Ultimate Load,	Modulus of	Standard Deviation
ID	ksi (MPa)	kips (kN)	Elasticity,	A: Yield Stress
	A	В	ksi (MPa)	B: Ultimate Load
			C	C: Modulus of E.
2-1-4-1-1	178 (1,227)	17.1 (76.1)	26,151 (180,305)	A: 0.95 (6.6)
2-1-4-1-2	180 (1,241)	17.4 (77.4)	26,541 (182,994)	B: 0.15 (0.7)
2-1-4-1-3	179 (1,234)	17.1 (76.1)	26,755 (184,469)	C: 250.1 (1,724.4)
2-1-5-1-1	177 (1,220)	16.0 (71.2)	28,183 (194,315)	A: 1.15 (7.9)
2-1-5-1-2	177 (1,220)	16.0 (71.2)	28,543 (196,797)	B: 0.12 (0.5)
2-1-5-1-3	180 (1,241)	15.7 (69.8)	28,504 (196,528)	C: 161.3 (1,112.1)
2-1-6-1-1	122 (841)	10.4 (46.3)	26,767 (184,552)	A: 0.88 (6.1)
2-1-6-1-2	120 (827)	10.2 (45.4)	28,345 (195,432)	B: 0.07 (0.3)
2-1-6-1-3	121 (834)	10.3 (45.8)	29,577 (203,926)	C: 1,150.1 (7,929.7)

Table 4.4 Test results Phase II: 0.5 in. strand diameter

Specimen	Yield Stress,	Ultimate Load,	Modulus of	Standard Deviation
ID	ksi (MPa)	kips (kN)	Elasticity,	A: Yield Stress
	A	В	ksi (MPa)	B: Ultimate Load
			C	C: Modulus of E.
2-2-4-1-1	182 (1,255)	31.0 (137.9)	28,716 (197,990)	A: 1.08 (7.4)
2-2-4-1-2	185 (1,276)	31.4 (139.7)	31,028 (213,931)	B: 0.17 (0.8)
2-2-4-1-3	183 (1,262)	31.2 (138.8)	29,767 (205,236)	C: 945.2 (6,516.9)
2-2-5-1-1	168 (1,158)	28.5 (126.8)	32,136 (221,570)	A: 1.18 (8.1)
2-2-5-1-2	167 (1,151)	28.6 (127.2)	28,971 (199,748)	B: 0.11 (0.5)
2-2-5-1-3	170 (1,172)	28.8 (128.1)	32,878 (226,686)	C: 1,694.2 (11,681.0)
2-2-6-1-1	123 (848)	18.8 (83.6)	31,007 (213,786)	A: 0.82 (5.7)
2-2-6-1-2	123 (848)	18.9 (84.1)	30,059 (207,250)	B: 0.12 (0.5)
2-2-6-1-3	122 (841)	18.6 (82.7)	31,273 (215,620)	C: 521.03 (3,592.4)

A typical stress-strain plot produced by a tension test is show in Figure 4.6. As described by the test procedure, the extensometer was attached after the initial load and then removed prior to failure. Yield was measured at 1 percent elongation as specified by ASTM A416M-06. The strain at failure was determined by stroke readings.

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$; 1 ksi = 6.9 MPa

Figure 4.6 Typical stress-strain curve for tension testing

4.1.3. Failure Mode. The failure modes of the strands were directly related to the heat damage experienced in the furnace. As the exposure temperature increased, the failure mode moved closer to the lower grip where the machine was pulling the strand. Due to the irregular shape of prestressing strands this type of failure is considered acceptable by ASTM A370-07a. The standard states in Note A7.3 "Specimens that break outside the extensometer or in the jaws and yet meet the minimum specified values are considered as meeting the mechanical property requirements of the product specification, regardless of what procedure of gripping has been used."

Specimens exposed to elevated temperatures were not expected to meet mechanical property requirements due to mechanical alterations by heat, however unexposed strands were used to verify acceptance of the testing method. These specimens failed in an acceptable manner stated by ASTM A370-07a by producing a yield greater than 243 ksi (1675 MPa) and a breaking strength greater than 270 ksi (1862 MPa). These specimens also failed in the center between the two jaws. Typical failure modes are shown in Figure 4.7.

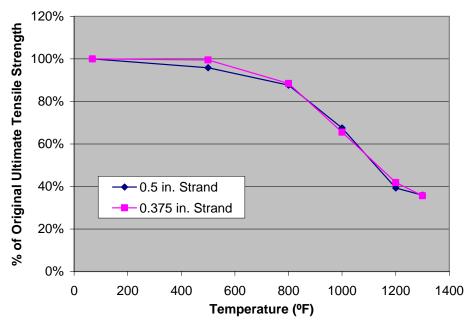


Figure 4.7 Typical failure mode of prestressing strand in tension

- **4.1.4. Discussion of Results.** From the test results several important observations can be made. Tensile strength, modulus of elasticity and yield strength are all specific properties which have been analyzed and reported in this section. Additional analysis and conclusions have been made regarding temperature level, size of strand, cooling method and heat exposure time.
- **4.1.4.1 Tensile strength.** The percent of original tensile strength vs. temperature for the specimens of Phase I (heated for 60 minutes) can be seen in Figure 4.8. The tensile strength of the strands decreases only 4 percent for the 0.5 in. strands and 1 percent for the 0.375 in. strands between the temperatures of 68°F (20°C) and 500°F (260°C). A slightly larger weakening occurs between the temperatures of 500°F (260°C) and 800°F (427°C) as there is an 8 percent and 11 percent decrease for the 0.5 in. and 0.375 in. strands, respectively. However, a significant loss in tensile strength occurs after 800°F (427°C). The curve begins a steep downward trend until it reaches 1200°F (649°C) where it starts to level off. For temperatures 800°F (427°C) to 1200°F (649°C) a total loss of 48 percent and 46 percent was experienced by the 0.5 in. and 0.375 in. strands respectively.

Based on Figure 4.8 it appears that the loss of tensile strength is proportional for both strand sizes. There is a small statistical difference between the strands sizes in the percent of ultimate tensile strength at 500°F (260°C), 1000°F (538°C) and 1200°F (649°C). However, there is no indication that the size of the steel has any effect on the residual tensile strength of the steel, because the strand with the highest residual tensile strength varied by temperature. If there was an increase in the specimen pool size it is likely that a statistical difference would not exist.

The previous published data explained in the Section 2.5.1 has been reprinted in Figure 4.9 with the addition of the experimental results from Phase I of this study. The current results are quite similar to that of previous research and can be assumed to be accurate.

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

Figure 4.8 Residual ultimate tensile strength vs. temperature

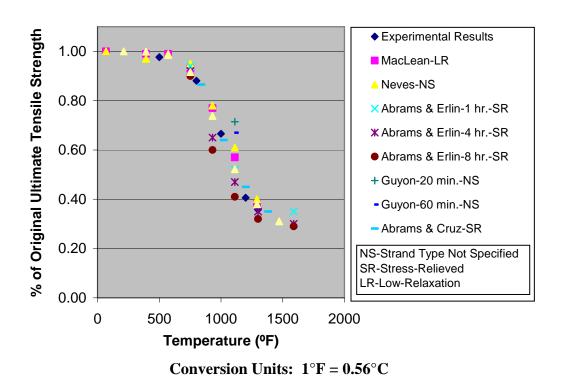


Figure 4.9 Comparison of results with other previous research

Figure 4.10 compares the ultimate tensile strength of the strands which were left to cool inside the furnace and those which were removed and cooled outside of the furnace. Statistically there is a small difference between strands cooled inside the furnace and strands cooled outside of the furnace. However, it is inconclusive which method produces higher tensile strengths, because for each temperature the cooling method which produced the highest tensile strength varied. For this experimental work, only two (2) specimens were used for the 0.375 in. strands and three (3) specimens for the 0.5 in. strands. If a larger pool of specimens were to be tested, the standard deviation may be lower. If this were to be true, Abrams and Cruz (1961) conclusions discussed in Section 2.5.3 regarding cooling methods could be confirmed.

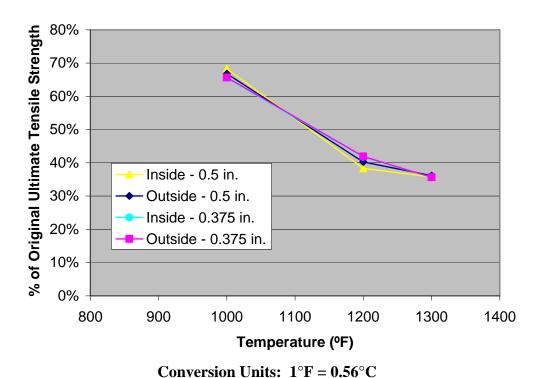


Figure 4.10 Comparison of cooling methods

The length of heat soak time is shown in Figure 4.11. At higher temperatures there is a greater loss in strength for specimens soaked for 60 minutes versus those only soaked for 35 minutes. For temperatures between 1000°F (538°C) and 1300°F (704°C), it appears to be more significant than the lower temperatures. However, there is still a measurable difference in strength loss.

The data obtained for the specimens soaked for 35 minutes is similar to that of Guyon who soaked specimens for 20 minutes. However, Guyon did not report the type of strand tested; therefore no direct correlation can be made. Also, Abrams and Erlin (1967) noted a difference in tensile strength due to the length of time the specimens were soaked. However, there study consisted of longer intervals (1 hour, 4 hours and 8 hours) which resulted in small variances.

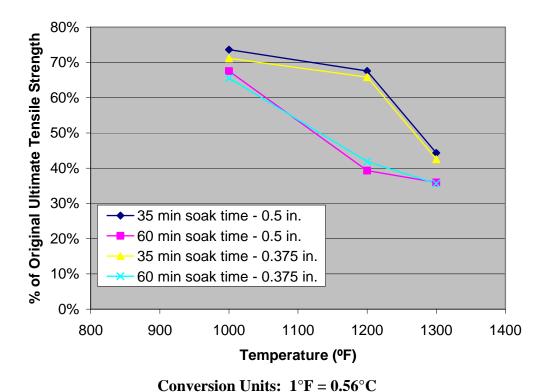


Figure 4.11 Comparison of heat soak time

4.1.4.2 Modulus of elasticity. The modulus of elasticity based on temperature exposure is given in Figure 4.12. The values for this property were determined by measuring the slope of the initial linear section of the plot.

This particular property was found to be fairly constant despite the increase in temperature. The values actually increased for temperatures of 500°F (260°C) and 800°F (427°C). They then decreased for the remaining elevated temperatures, but only to 97 percent of the original modulus value. This compares similarly to Holmes and MacLean. The behavior of the prestressing strand is much like that of mild steel which has also been found to not change after heating and cooling (Edwards, Gamble, 1986).

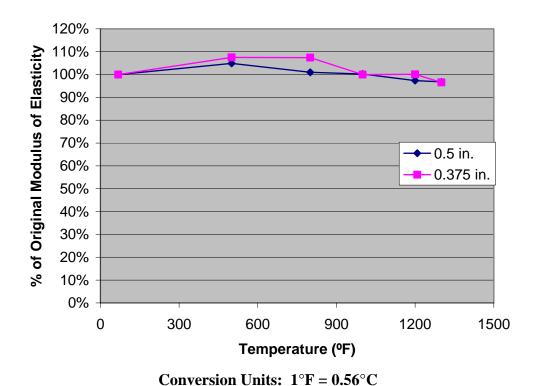


Figure 4.12 Residual modulus of elasticity vs. temperature

4.1.4.3 Yield. As discussed in Section 4.3.2, the yield strength which is defined by ASTM A416M-06 was to be taken at 1 percent elongation. However, for the specimens exposed to elevated temperatures, this elongation was not possible and the yield was taken at the point of significant slope change. Furthermore, for the higher temperatures a slope change was often unrecognizable and the yield was taken as the point of fracture.

In the case of the 0.5 in. strand heated to 800°F (427°C), the fracture occurred immediately after the yield with little tensile strength increase. Strands heated to temperatures above 800°F (427°C) fractured before an indication of yielding occurred. The 800°F (427°C) temperature mark is very close to the limit at which all non-linear behavior is lost. You will note from the stress-strain curves shown in Figures 4.13 and 4.14, that the 0.375 in. strand heated to 800°F (427°C) did exhibit some non-linearality, but at 1000°F (538°C) did not exhibit any. Therefore, the temperatures of 800°F-1000°F (427°C-538°C) are a critical temperature range for the strands in which all non-linear behavior is lost.

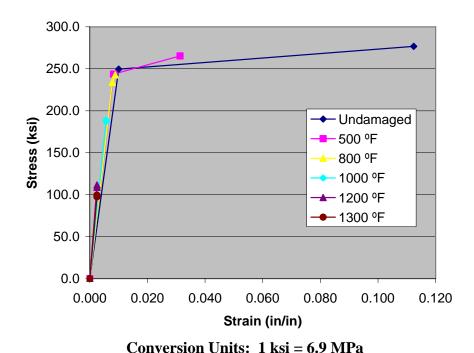
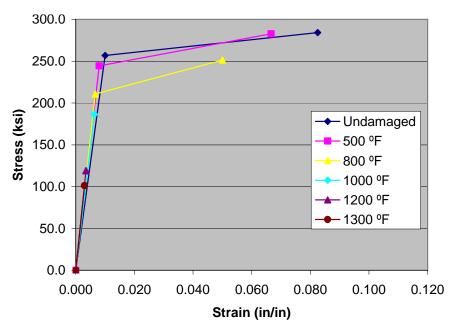



Figure 4.13 Stress vs. strain for 0.5 in. specimens of Phase I

Conversion Units: 1 ksi = 6.9 MPa

Figure 4.14 Stress vs. strain for 0.375 in. specimens of Phase I

The loss of non-linear behavior is directly related to the loss of ductility and prior indication of failure. Strands heated to the 800°F-1000°F (427°C-538°C) temperature range will still maintain over 65 percent of their undamaged tensile strength which is some applications will be sufficient. However, in addition they will also lose almost or all of their non-linear behavior becoming more brittle. Materials which fail without significant warning are normally avoided for use in structural components. Some sign of distress such as significant concrete cracking prior to failure is desirable, which means the loss of ductility in the reinforcing is highly undesirable.

4.1.4.4 Tensile strength at elevated temperatures. Another topic of interest is how the residual tensile strength of the strands compare with the tensile strength of the strands at elevated temperatures. In Figure 4.15, the experimental results from this study are compared with the tensile strength of prestressing strands at elevated temperatures reported by other researchers (PCI Design Handbook, 2004; Abrams and Cruz, 1961). It can be noted that there is a significant increase in tensile strength upon cooling for all

temperatures greater than 400°F (204°C). This observation was also reported by Abrams and Erlin (1967).

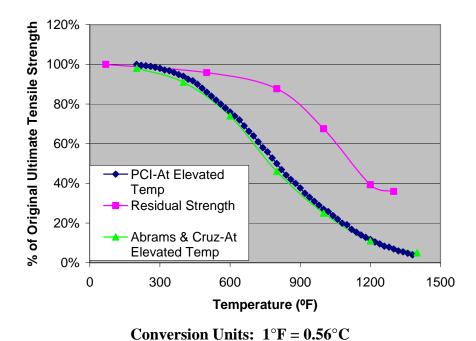


Figure 4.15 Comparison of tensile strength for prestressing strands at elevated temperatures and residual tensile strength of prestressing strands

4.2. PULLOUT TESTS

4.2.1. Visual Observations. After the concrete blocks were heated, visual observations were taken. For the 11 ksi concrete hairline cracking first occurred at 800°F (427°C). As the temperature increased, the cracks grew in size and in concentration. For the 14 ksi concrete, only one block out of the five heated to 800°F (427°C) had any observable cracks. For the block that exhibited cracking, the hairline cracking was

minimal. With increasing temperature, both concrete compressive strengths behaved similarly with an increasing number of cracks and crack size. Initial hairline cracking for both compressive strengths can be seen in Figure 4.16.

Figure 4.16 Initial hairline cracking noted for each compressive strength (left: 11 ksi, right: 14 ksi)

The observations regarding the occurrence of cracking and crack density are consistent with research reported by Guise et al. (1996) for concrete strengths of 8.3 ksi (56.9 MPa), 6.7 ksi (46.4 MPa) and 6.3 ksi (43.6 MPa). The experimental work for this study contributes new data to the research reported by Guise et al. Information obtained regarding concrete compressive strengths of 11 ksi and 14 ksi confirm conclusions by Guise et al. regarding the crack density behavior based on compressive strength, but for higher strengths than previously studied.

Some spalling was noticed during the heating process. In most cases the spalling was local with a few popouts occurring as shown in Figure 4.17 on the left. However, in one case a high compressive strength block heated to 1300°F (704°C) experienced spalling which fell between the categories of serious sloughing and explosive spalling. The physical damage is shown in Figure 4.16 on the right. This block was replaced by a new block for testing purposes.

Figure 4.17 Examples of spalling noted after heating process (left: local spalling, right: serious sloughing/explosive spalling)

Although the density of cracking and spalling increased with temperature, the amount of damage varied by temperature and for specimens within each temperature. For a particular temperature, one specimen would show very little cracking while a companion specimen had significant cracking. For this reason as well as to better understand the physical changes that affect the bond behavior, the specimens were ranked into four different cracking categories.

The first category titled "Undamaged" are blocks with zero to 4 cracks. The second ranking, "Mild" describes specimens which had a few cracks, typically around 10-20 percent on the top or bottom surface of the block. "Moderate" damage was considered to be specimens which had 20-40 percent cracking on the top or bottom surface, and "Severe" were specimens with more than 40 percent cracking and local spalling. The various categorized levels of damage can be seen visually in Figure 4.18.

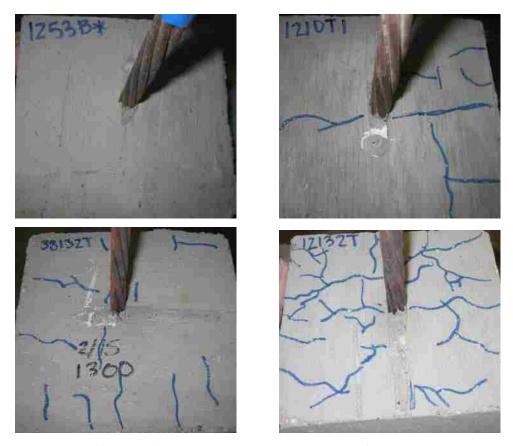


Figure 4.18 Classification of heat induced cracking (top left: Undamaged, top right: Mild, bottom left: Moderate, bottom right: Severe)

After heating color change was not initially recognizable for any of the concrete blocks because the main indicator, the aggregate, was not exposed. However, the aggregate of the block that underwent severe spalling was exposed after the incident and a slight pink discoloration was noted. Also during testing, color was visible after the failure of each specimen.

4.2.2. Test Results. For this type of bond testing, the critical property investigated is the bond stress, u. This value is calculated using Equation 4.1 where P is the maximum load, p_{ps} is the perimeter of the strand and L is the embedment length of the strand.

$$u = \frac{P}{p_{ps}L}$$
 Equation 4.1

The results from the pullout testing for the 11 ksi specimens are presented in Tables 4.5 and 4.6. For each specimen, the bond stress and crack rating determined prior to testing is reported. In addition, the average bond stress and standard deviation (abbreviated STD Dev) for each set of replicates is also given.

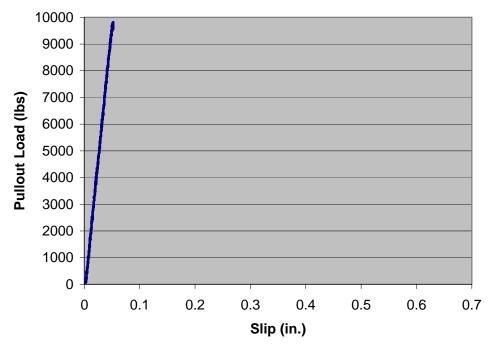
Table 4.5 Test results 11 ksi: 0.5 in. strand diameter

Specimen	Crack Rating	Bond Stress,	Statistical Analysis
		psi (MPa)	psi (MPa)
11-2-1-1	Undamaged	846.0 (5.83)	Average: 826.0 (5.70)
11-2-1-2	Undamaged	780.4 (5.38)	STD Dev: 33.1 (0.29)
11-2-1-3	Undamaged	854.4 (5.89)	51D DCV. 55.1 (0.27)
11-2-2-1	Undamaged	607.1 (4.19	Average: 654.9 (4.52)
11-2-2-2	Undamaged	697.2 (4.81)	STD Dev: 37.0 (0.26)
11-2-2-3	Undamaged	660.3 (4.55)	312 261. 37.0 (0.20)
11-2-3-1	Undamaged	424.6 (2.93)	Average: 318.8 (2.20) STD Dev: 75.5 (0.52)
11-2-3-2	Mild	253.7 (1.75)	
11-2-3-3	Mild	278.1 (1.92)	312 261. 73.3 (0.32)
11-2-4-1	Mild	121.7 (0.84)	Average: 158.9 (1.10) STD Dev: 35.2 (0.24)
11-2-4-2	Mild	206.1 (1.42)	
11-2-4-3	Mild	148.9 (1.03)	
11-2-5-1	Severe	128.1 (0.88)	Average: 151.6 (1.05) STD Dev: 17.1 (0.12)
11-2-5-2	Mild	168.5 (1.16)	
11-2-5-3	Moderate	158.1 (1.09)	
11-2-6-1	Moderate	190.9 (1.32)	Average: 154.9 (1.07) STD Dev: 45.7 (0.32)
11-2-6-2	Severe	90.4 (0.62)	
11-2-6-3	Moderate	183.3 (1.26)	

Table 4.6 Test results 11 ksi: 0.375 in. strand diameter

Specimen	Crack Rating	Bond Stress,	Statistical Analysis
		psi (MPa)	psi (MPa)
11-1-1-1	Undamaged	1,074.2 (7.41)	Average: 1,026.7 (7.08) STD Dev: 37.2 (0.26)
11-1-1-2	Undamaged	983.5 (6.78)	
11-1-1-3	Undamaged	1,022.4 (7.05)	312 201. 37.2 (0.20)
11-1-2-1	Undamaged	939.2 (6.48)	Average: 898.4 (6.2)
11-1-2-2	Undamaged	853.3 (5.88)	STD Dev: 35.2 (0.24)
11-1-2-3	Undamaged	902.9 (6.23)	31D Dev. 33.2 (0.24)
11-1-3-1	Undamaged	619.5 (4.27)	Average: 627.0 (4.3)
11-1-3-2	Undamaged	751.9 (5.18)	STD Dev: 99.0 (0.68)
11-1-3-3	Mild	509.6 (3.51)	
11-1-4-1	Mild	219.3 (1.51)	Average: 218.3 (1.5) STD Dev: 11.3 (0.08)
11-1-4-2	Mild	231.6 (1.60)	
11-1-4-3	Moderate	203.8 (1.41)	
11-1-5-1	Undamaged	272.7 (1.88)	Average: 216.3 (1.5) STD Dev: 65.5 (0.45)
11-1-5-2	Undamaged	250.3 (1.73)	
11-1-5-3	Mild	125.9 (0.87)	
11-1-6-1	Mild	232.1 (1.60)	Average: 199.6 (1.4) STD Dev: 31.8 (0.22)
11-1-6-2	Moderate	210.2 (1.45)	
11-1-6-3	Severe	156.4 (1.08)	

Shown in Tables 4.7 and 4.8 are the results for the 14 ksi specimens. As with the 11 ksi specimens, the bond stress and crack rating determined prior to testing is reported for each specimen and a statistical analysis was performed for each set of replicates.


Table 4.7 Test results 14 ksi: 0.5 in. strand diameter

Specimen	Crack Rating	Bond Stress,	Statistical Analysis
		psi (MPa)	psi (MPa)
14-2-1-1	Undamaged	1,084.6 (7.48)	Average: 1,099.5 (7.58) STD Dev: 53.7 (0.37)
14-2-1-2	Undamaged	1,171.4 (8.08)	
14-2-1-3	Undamaged	1,042.5 (7.19)	31D Dev. 33.7 (0.37)
14-2-2-1	Undamaged	918.9 (6.33)	Average: 990.7 (6.83)
14-2-2-2	Undamaged	1,007.3 (6.95)	STD Dev: 53.1 (0.37)
14-2-2-3	Undamaged	1,045.8 (7.21)	31.1 (0.37)
14-2-3-1	Undamaged	906.1 (6.25)	Average: 849.1 (5.85) STD Dev: 56.8 (0.39)
14-2-3-2	Undamaged	771.6 (5.32)	
14-2-3-3	Mild	869.7 (6.00)	312 261. 30.0 (0.37)
14-2-4-1	Mild	449.8 (3.10)	Average: 357.8 (2.47) STD Dev: 66.1 (0.46)
14-2-4-2	Moderate	297.8 (2.05)	
14-2-4-3	Mild	325.8 (2.25)	
14-2-5-1	Mild	274.1 (1.89)	Average: 273.1 (1.88) STD Dev: 20.6 (0.14)
14-2-5-2	Moderate	247.3 (1.71)	
14-2-5-3	Mild	297.8 (2.05)	
14-2-6-1	Moderate	219.7 (1.51)	Average: 225.6 (1.56) STD Dev: 11.3 (0.08)
14-2-6-2	Moderate	241.3 (1.66)	
14-2-6-3	Moderate	215.7 (1.49)	

Table 4.8 Test results 14 ksi: 0.375 in. strand diameter

Specimen	Crack Rating	Bond Stress,	Statistical Analysis
		psi (MPa)	psi (MPa)
14-1-1	Undamaged	1,307.3 (9.01)	Average: 1,273.2 (8.78)
14-1-1-2	Undamaged	1,239.0 (8.54)	STD Dev: 34.2 (0.24)
14-1-2-1	Undamaged	1,095.0 (7.55)	Average: 1,127.0 (7.77)
14-1-2-2	Undamaged	1,159.0 (7.99)	STD Dev: 32.0 (0.22)
14-1-3-1	Undamaged	1,043.8 (7.20)	Average: 1,017.1 (7.01)
14-1-3-2	Undamaged	990.4 (6.83)	STD Dev: 26.7 (0.18)
14-1-4-1	Mild	528.3 (3.28)	Average: 502.1 (3.46)
14-1-4-2	Mild	476.0 (3.28)	STD Dev: 26.2 (0.18)
14-1-5-1	Moderate	350.0 (2.41)	Average: 405.0 (2.79)
14-1-5-2	Mild	460.0 (3.17)	STD Dev: 55.0 (0.38)
14-1-6-1	Moderate	183.6 (1.27)	Average: 219.1 (1.51)
14-1-6-2	Mild	254.5 (1.75)	STD Dev: 35.5 (0.24)

4.2.3. Failure Mode. For the majority of the 0.5 in. undamaged and 500°F (260°C) 14 ksi specimens the failure was brittle upon initial slip. The load would increase rapidly up to the point of failure where the strand would then slip and the block would fracture into several pieces. This behavior can be seen graphically in Figure 4.19. In contrast, the majority of the 0.375 in. specimens which were undamaged and heated to 500°F (260°C) did not ever fracture and failure was taken at a slip of 3 in. (76.2 mm). This behavior is shown graphically in Figure 4.20.

Conversion Units: 1 lb = 4.5 N; 1 in. = 2.54 cm

Figure 4.19 Pullout load vs. slip for a typical brittle failure (Specimen 14-2-1-2)

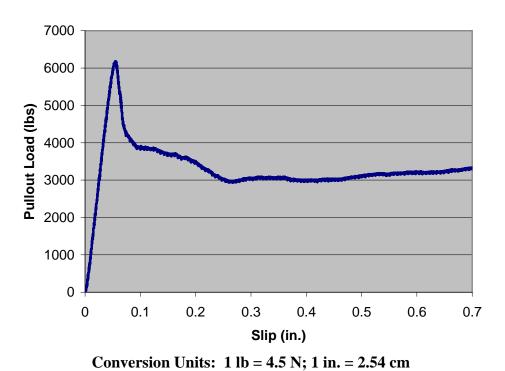


Figure 4.20 Pullout load vs. slip for a typical ductile failure (Specimen 11-1-1-2)

As the temperature decreased for the 14 ksi specimens, the 0.5 in. failure became ductile and the 0.375 in. specimens began to fail at similar levels and slip. After the initial slip, the bond remained and continued to take on load for a period of time before the block fractured. In cases where a specimen had a higher cracking rating than its companion specimens, failure occurred sooner and usually at a lower bond strength.

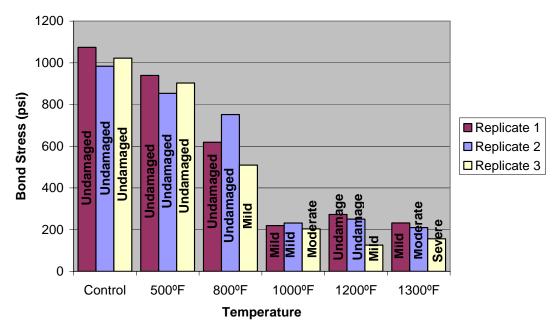
All of the 11 ksi specimens produced a ductile failure, despite the level of temperature exposure. Similarly to the 14 ksi blocks, several of the 0.375 in. control and 500°F (260°C) specimens never fractured and failure was taken at a slip of 3 in. (76.2 mm). However, for the 0.5 in. control and 500°F (260°C) specimens fracture occurred after significant slip. This failure also occurred for the remainder of all of the specimens and was similar to that of the 14 ksi blocks.

Figure 4.21 shows examples of the three different types of failure modes observed during testing. The lighter cracking lines shown in 4.21B indicate heat induced cracking. The darker defined lines indicate cracking which occurred at failure.



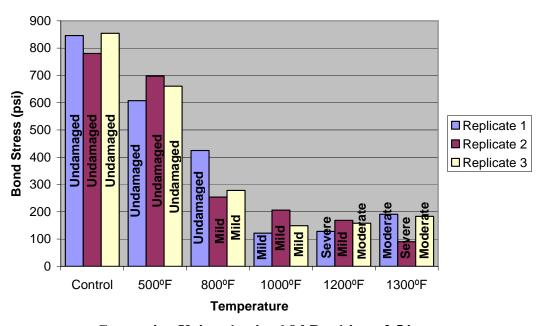
A. left: brittle failure, right: failure taken at 3 in. (76.2 mm) slip

Figure 4.21 Typical failure modes for pullout testing



B. left: ductile failure, right: ductile failure

Figure 4.21 Typical failure modes for pullout testing (cont.)


These modes of behavior are likely based on several factors. One cause may be the compressive strength of the concrete. As the strength of the concrete increases the ductility decreases. We see this in the behavior of the 14 ksi specimens which were undamaged or exposed to 500°F (260°C). These specimens exhibited a highly brittle failure. However, with the increase in heat exposure the compressive strength dropped (as explained in Section 2.5) and the failure became more ductile. Likewise, the 11-ksi specimens produced ductile failures throughout.

Another possible factor contributing to the failure mode behavior is the crack rating. Figures 4.22-4.25 compare the crack rating and bond stress for specimens of the same type. When comparing the replicates of the same type head to head, it can be seen that the majority of the specimen's performance was based on their crack rating. Further research where the crack density is more accurately quantified may lead to further understanding of how the crack density affects the bond stress performance. As previously mentioned, an analysis regarding the microstructure of the concrete after heating is also necessary to develop further conclusions regarding this relationship.

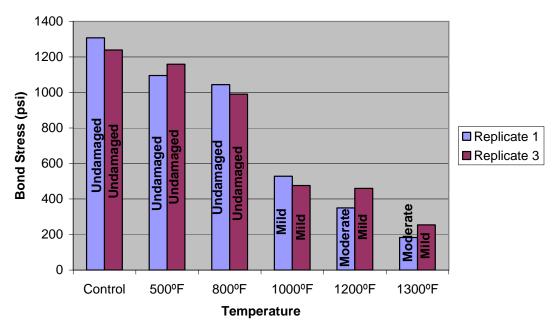

Conversion Units: 1 psi = 6.9 kPa; 1 in. = 2.54 cm

Figure 4.22 Comparison of bond stress vs. crack density for each specimen type of 11 ksi, 0.375 in. strands

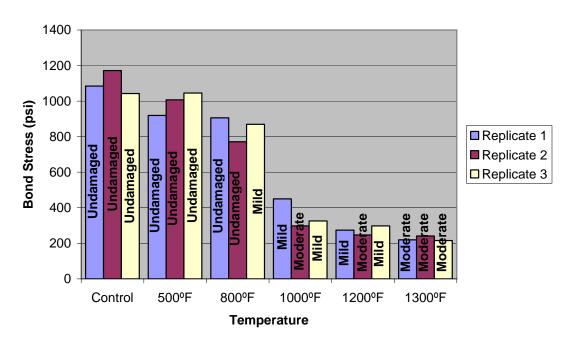

Conversion Units: 1 psi = 6.9 kPa; 1 in. = 2.54 cm

Figure 4.23 Comparison of bond stress vs. crack density for each specimen type of 11 ksi, 0.5 in. strands

Conversion Units: 1 psi = 6.9 kPa; 1 in. = 2.54 cm

Figure 4.24 Comparison of bond stress vs. crack density for each specimen type of 14 ksi, 0.375 in. strands

Conversion Units: 1 psi = 6.9 kPa; 1 in. = 2.54 cm

Figure 4.25 Comparison of bond stress vs. crack density for each specimen type of 14 ksi, 0.5 in. strands

- **4.2.4. Discussion of Results.** Unlike the tension testing portion of the research study there are a limited number of ways to report the pullout testing data. For this phase of work only the average bond stress can be calculated. However, with this information code verification and an understanding of bond capacity can be obtained.
- **4.2.4.1 Bond capacity.** As discussed earlier in Section 2.4.3, requirements have been established by ACI, AASHTO and FHWA for the expected development length of a prestressing strand. The flexural bond length within these equations can be related to pullout testing by converting the length to a stress. Using Equation 2.1, the average flexural bond stress can be determined for each code and compared to the experimental average bond stresses given in Section 4.2.2. The average bond stress limit specified by ACI/AASHTO and the FHWA are given in Equations 4.2 and 4.3 respectively. In order to calculate the bond stress limits, the effective stress in the steel was assumed to be 151 ksi (1041 MPa) which includes a 75 percent jacking stress and 20 percent total loss at service. The ultimate stress was taken as the average undamaged values (control specimens) measured during the tension testing of the experimental program. For 0.5 in. and 0.375 strands the ultimate stress was 284 ksi (1958 MPa) and 277 ksi (1910 MPa), respectively.

$$u = \frac{(f_{ps} - f_{se})A_{ps}}{(f_{ps} - f_{se})d}$$
 Equation 4.2

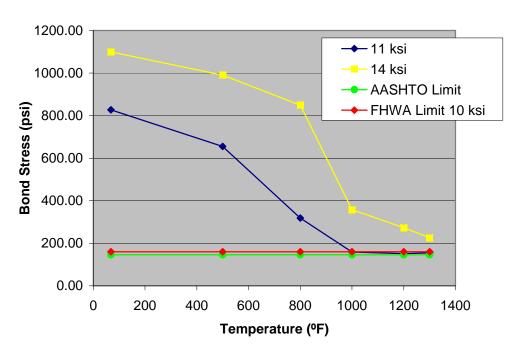

$$u = \frac{(f_{ps} - f_{se})A_{ps}}{p_{ps} \left(\frac{6.4(f_{ps} - f_{se})d}{f'_{c}} + 15\right)}$$
 Equation 4.3

Table 4.9 provides values for these limits based on 0.5 in. and 0.375 in. prestressing strands. As noted earlier, the FHWA recommends using 10 ksi (68.9 MPa) for concrete compressive strengths over 10 ksi (68.9 MPa) due to lack of establish data.

	ACI/AASHTO	FHWA	
	psi (kPa)	psi (kPa)	
0.5 in.	146.1 (1007)	160.4 (1106)	
0.375 in.	144.3 (995)	145.4 (1002)	

Table 4.9 Average bond stress specification limits

The average bond stress vs. temperature for each strand diameter is plotted in Figures 4.26 and 4.27. In addition, the specification limits are plotted in the same figure. It is difficult to see from the graph, but the only strand which does not meet the code requirements is the 0.5 in.-11 ksi strand heated to temperatures 1000°F-1300°F (538°C-704°C). The bond stress fails the limits set by FHWA. With the exception of that strand-concrete bond, the remaining specimens were above the specification despite temperature exposure.

Conversion Units: 1 psi = 6.9 kPa; $1^{\circ}\text{F} = 0.56^{\circ}\text{C}$

Figure 4.26 Average bond stress vs. temperature for 0.5 in. prestressing strands

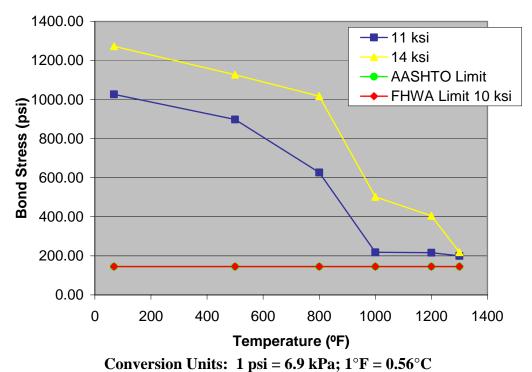
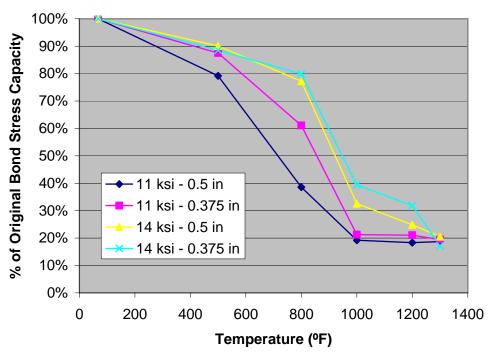



Figure 4.27 Average bond stress vs. temperature for 0.375 in. prestressing strands

Figure 4.28 compares the percent of original bond stress capacity vs. temperature for the four different specimen types. The stress for each type varies slightly, but the trend is quite similar for all four. The specimens with a compressive strength of 11 ksi appear to be the weakest in overall bond stress. For each compressive strength, the 0.375 in. specimens have a higher bond stress capacity than that of the 0.5 in. specimens of the same concrete which is consistent with previous work by Hanson and Karr (1959), Lane (1992) and Martin and Scott (1976).

Despite similar testing methods, the experimental values for bond stress are larger than that obtained by Chao. However, the pullout curves are similar in shape. Variations in bond stress capacity may be due to a number of details. One difference in testing may exist in the location of the compressive force while testing. Bond stresses will be significantly lower when splitting is not prevented (Ferguson et al. 1954). Chao also did

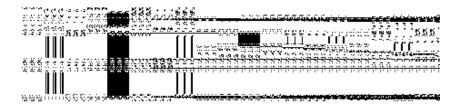
not indicate at which time the compressive strength of the concrete was determined. If it was not determined at the time of testing, the results may also vary significantly.

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

Figure 4.28 Percent of original bond stress capacity vs. temperature

4.2.4.2 Implications caused by loss in bond stress. The decrease in bond stress can prove to be significant to the structural capacity of a member. As the bond stress decreases the required length needed to develop a strand increases. Therefore, the required capacity may not be met along the entire length of the girder. As shown in Figure 4.29 for undamaged girder the strands are designed to develop close to the ends in order to provide adequate flexural section capacity. However, for a damaged member the required moment section capacity remains the same, but the development length

increases. If the length increases too much, there will be areas along the beam in which the strand is unable to carry the required capacity.


Figure 4.29 Development length and required flexural section capacity for an undamaged and fire damaged girder

5. PARAMETRIC STUDY

5.1. DESIGN EXAMPLE

The design example chosen for the parametric study is from Section 9.6 of the PCI Bridge Design Manual (1997). This particular example is the design of an interior AASHTO-PCI bulb-tee (BT-72) based on LFRD Bridge Design Specifications (1st Edition, 1994, and 1996 Interim). The bridge consists of three (3) spans with four (4) girders spaced 12 ft (3.7 m) on center. The 8 in. (203.2 mm) deck is designed to be composite for live load and includes a 0.5 in. (12.7 mm) wearing surface.

Reinforcement includes prestressing strands (located in girder) and mild steel reinforcement (located in deck). Longitudinal and cross-sectional views of the overall bridge and a cross-sectional view of the girder can be seen in Figures 5.1, 5.2 and 5.3. For this PCI bridge design example, two prestressing strand reinforcement details are discussed and analyzed. One design consists of only 0.5 in. strands and will throughout be referred to as the 0.5 in. design. The second design consists of only 0.375 in. strands and will throughout be referred to as the 0.375 design. The use of these two reinforcement designs gives a wider understanding of the effects of fire damage to prestressed concrete bridges. Reinforcement details and strand patterns will be further discussed within the section.

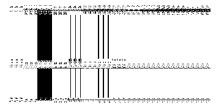

Conversion Units: 1 in. = 25.4 mm; 1 ft = 0.3 m

Figure 5.1 Design example bridge cross-section

Conversion Units: 1 in. = 25.4 mm; 1 ft = 0.3 m

Figure 5.2 Design example bridge longitudinal section

Conversion Units: 1 in. = 25.4 mm; 1 ft = 0.3 m

Figure 5.3 Design example composite girder cross-section

5.1.1. Design Properties. Table 5.1 summarizes the assumed undamaged properties of the materials. The values for concrete and mild steel reinforcement were utilized from the design example. The properties for the prestressing strands were taken directly from the strands tested in the laboratory.

Table 5.1 Assumed undamaged material properties

Concrete Properties				
	f'c, psi (MPa)	E _c , ksi (GPa)	
Cast-in-place slab	At 28 days: 4,000 (27.6)		At 28 days: 3,384 (23.3)	
Precast girders	At release: 5,500 (37.9)		At release: 4,496 (31.0)	
	At 28 days: 7	,000 (48.3)	At 28 days: 5,072 (35.0)	
Mild Steel Reinforcement Properties				
	f _y , psi (MPa)		E _s , ksi (GPa)	
Reinforcing Bars	60,000 (413.7)		29,000 (199.9)	
Prestressing Strand Properties (7-wire, low-relaxation)				
	f _{pu} , ksi (MPa)	f _{py} , ksi (MPa)	E _{ps} , ksi (GPa)	
0.5 in. Strands	276.8 (1908.5)	249.6 (1720.9)	25,982 (179.1)	
0.375 in. Strands	284.2 (1959.9)	256.8 (1770.6)	25,898 (178.6)	

5.1.2. Load Factors. Ultimate and nominal moment capacities were calculated using appropriate load resistance factors. Per LRFD 3.4.1 the ultimate bending moment was calculated using Equation 5.1. The resistance factor, φ , was taken as 1.00 as specified by LRFD Art. 5.5.4.2. (LRFD Bridge Design Specifications, 1998)

$$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$$
 Equation 5.1

In addition to load factors, reference within the parametric study is often made regarding the Required Actual Capacity. This term represents the load that is expected to be felt by the bridge and mathematically is the moment caused by the unfactored loads. This value is highly unconservative but is given as a point of reference throughout the analysis to provide some sense of bridge component of member failure.

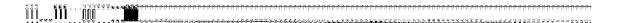
5.1.3. Loads. The self-weight reported in the analysis includes the weight of the girder, deck plus haunch, barrier, and future wearing surface. The live load was an HL-93 in accordance to the LRFD 3.6.1.2. This load consisted of a design truck with two 32 kip (143.3 kN) axle loads 14 ft to 30 ft (4.3 m to 9.1 m) apart and a front axle load of 8 kips (35.6 kN). In addition, a lane load of 0.64 kips/ft (9.34 kN/m) was included. The design truck load also contained a special dynamic allowance for fatigue. Live load deflection was calculated using the 0.8 truck plus lane load and the maximum moment caused by the live load determined during analysis.

5.1.4. Reinforcement Details. As previously explained two types of reinforcing were provided in the design. The mild steel reinforcement was located in the deck with a top mat of #4 bars at 12 in. (30.5 cm) on center and a bottom mat of #5 bars at 12 in. (30.5 cm) on center. In addition, two (2) #7 bars were placed between the #4 bars in the top of the deck at negative moment sections within the composite girder. In the opposite direction of the girders, the same top mat of #4 bars and bottom mat of #5 bars were placed to prevent temperature and shrinkage cracks.

In order to resist the stresses caused by the negative moment, twelve (12) strands were harped at 35.5 ft (10.8 m) from each end of the girder. The harping locations along the girder can be seen in Figure 5.4.

Conversion Units: 1 in. = 25.4 mm; 1 ft = 0.3 m

Figure 5.4 Schematic of strand harp location along half of the girder


As explained in earlier in Section 5.1, two different bridge designs containing different strand sizes were used in this study to gain a wider understanding of the affects caused by fire damage. Due to the capacity of the strands, the strand pattern for each diameter varied. For the 0.5 in. diameter size forty-four (44) 7-wire, low-relaxation strands were used in the pattern shown. For the 0.375 in. diameter strands, an additional twenty (20) 7-wire, low-relaxation strands were placed in the girder to provide adequate capacity. The strand patterns for the 0.5 in. and 0.375 in. strands can be seen in Figures 5.5 and 5.6 respectively.

Conversion Units: 1 in. = 25.4 mm

Figure 5.5 Strand pattern for parametric study with 0.5 in. diameter, 7-wire, low-relaxation prestressing strand

Conversion Units: 1 in. = 25.4 mm

Figure 5.6 Strand pattern for parametric study with 0.375 in. diameter, 7-wire, low-relaxation prestressing strand

5.2. TEMPERATURE PROFILE

The temperature profile is dependent on the concrete materials and geometry of the member. Ambient air, wind conditions, and type of concrete play a significant role in the depth and time it takes for heat to travel through the concrete. As discussed in Section 2.6, several methods have been developed to evaluate this temperature profile.

Using published data (PCI Design for Fire Resistance of Precast Prestressed Concrete, 1989; Abrams and Gustaferro, 1968) and computer modeling (ABAQUS, 2007), isotherm diagrams were developed for the seven (7) periods of time analyzed. These time periods of exposure were 0, 1/2, 1, 1-1/2, 2, 3 and 4 hours. These were chosen because they are based on the standard time-temperature curve given by ASTM E 119-08. Current research up to this point concerning temperature profiles is based on these time increments. By choosing these periods of time, the temperature within the

concrete could be directly related to published (PCI Design for Fire Resistance of Precast Prestressed Concrete, 1989; Abrams and Gustaferro, 1968) temperature plots.

5.2.1. Standard Time-Temperature Curve. For the parametric analysis the standard time-temperature curve was applied to the design example. Temperatures for these materials were obtained using the data performed by the Underwriters Laboratories and Portland Cement Association (PCI Design for Fire Resistance of Precast Prestressed Concrete, 1989) and Abrams and Gustaferro (1968) for beams and slabs respectively.

The published data for beams employed in the standard time-temperature analysis is for rectangular beams. The profiles developed from the data are based on rectangular cross-sections. For our I-beam case a conservative approach was taken and the beam was assumed to be rectangular in size with a width equal to bottom flange width. This assumption is conservative because clearly the temperature would be slightly lower due to the decreased thickness, surface area of the web, and increased temperature dissipation due to the reduced section mass.

5.2.2. Non-Standard Fire. In Section 6, several case studies are performed where higher temperatures than that specified by the standard time-temperature curve are evaluated. For that analysis a software program called ABAQUS (2007) was employed to output temperature profiles based on heat exposure and temperature.

The model was calibrated using the Abrams and Gustaferro's (1968) slab temperature profiles published in the PCI Design for Fire Resistance of Precast Prestressed Concrete, (1989). Figure 5.7 gives the temperature at various fire exposure times both the ABAQUS model and the published PCI data. The illustration shows that the ABAQUS model is indeed representative of the actual temperature within the concrete for a given period of time. A maximum error of 5 percent exists between PCI's data and the calibrated ABAQUS model. This 5 percent error is indicated by the standard deviation bars for each plotted curve.

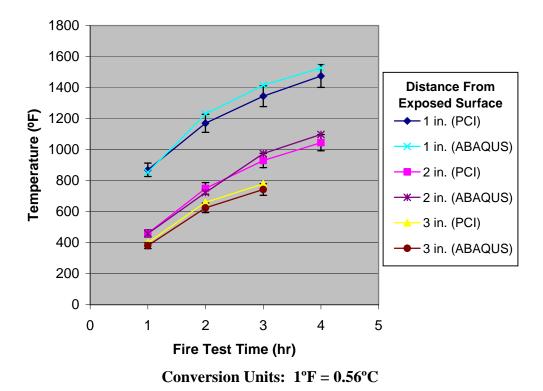


Figure 5.7 Verification of ABAQUS calibration to PCI published slab temperatures by Abrams and Gustaferro (1968)

5.3. LOCATION OF FIRE

The location of the fire also plays a significant role in the structural integrity of the bridge. In this study three locations were considered, below the bridge at the critical positive moment section at midspan, above the bridge at critical negative moment sections and above the deck between girders.

5.3.1. Fire Below the Bridge at the Critical Positive Moment Section at

Midspan. The most significant damage caused by a fire below a bridge would be one that occurs below the structure between supports. This is due to the location of the prestressing strands within the girder where the least amount of clear cover exists. As shown in Figures 5.4 and 5.5, all of the strands are located in the bottom of the girder for interior spans. Thus, an increase in temperature will significantly affect the properties of these strands closest to the fire source and the overall structural capacity.

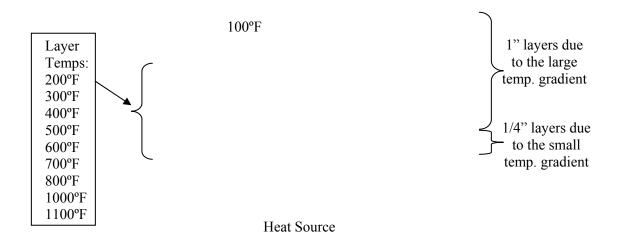
- 5.3.2. Fire Above the Bridge at Critical Negative Moment Sections. For negative moment sections the strand pattern configuration is slightly different than midspan (positive moment) locations. As shown in Figures 5.4 and 5.5 there are twelve (12) strands located in the top of the cross-section at the ends of the member. This end location also corresponds to the critical negative moment location. Consequently, a fire located directly above this girder will be closer in distance to these strands as well as the deck concrete, girder concrete and mild reinforcement. To estimate the damage caused at this location the composite action of the girder and deck were taken into consideration. The effective flange based on AASHTO 4.6.2.6.1 was calculated.
- **5.3.3. Fire Above the Bridge Between Girders.** In addition to the location at the negative moment sections, an investigation was performed for the deck between girders. For this location a 12 in. (304.8 mm) representative segment or strip of the deck was analyzed in the orthogonal direction to the girders. Flexural strength and deflection were characterized by the fire damage to the deck.

5.4. MATERIALS

For this design example the prestressed concrete bridge contained three materials, prestressing strands, concrete and mild steel reinforcement. As noted in Section 2.5 all of these materials experience property loss when exposed to high temperatures. Each of these losses were accounted for when performing the study.

- **5.4.1. Prestressing Strands.** Within the design example the prestressing strand property losses were characterized by layer. This allowed different material properties to be assigned to the strands based on temperature gradient. The temperature for a particular set of strands was taken as the temperature at the center of the strand layer. Assumed undamaged properties assigned to the prestressing steel were the undamaged values obtained during testing.
- **5.4.2. Concrete.** Similarly to the prestressing strands, the concrete properties were also determined by breaking the damage section into layers. Each layer was assessed a damaged value for each property based on the temperature for the particular location.

To determine the fire damaged properties for the concrete, the girder was first simplified to a simple I-beam as illustrated in Figure 5.8. Using the appropriate temperature profile (discussed in Section 5.2) the girder was then broken into layers based upon the gradient of the temperatures. For sections of the member where the difference in temperature was small compared to depth, smaller layers of 0.25 in. (6.35 mm) were used. Likewise for areas where the difference in temperature gradient was large, a layer height of 1 in. (25.4 mm) was used. A large difference in temperature gradient was defined as a 1 in. (25.4 mm) area where there was less than a difference of 100°F (37.8°C). Values for the concrete properties were accessed to the entire layer based on the temperature of the edge of the layer. A schematic of how the layers were applied to the temperature profile for a 1/2 hour below the bridge is shown in Figure 5.9.


......

Conversion Units: 1 in. = 25.4 mm; 1 ft = 0.3 m

Figure 5.8 Schematic of simplified I-beam used in temperature analysis

Fire Duration: 1/2 hour

Fire Location: Below the bridge at the critical positive moment sections **Heat Source Temperature:** 1550°F

Conversion Units: 1 in. = 25.4 mm; $1^{\circ}\text{F} = 0.56^{\circ}\text{C}$

Figure 5.9 Schematic of bottom flange of I-beam with arbitrary concrete material layers indicated

5.4.2.1 Compressive strength. Using the data discussed in Section 2.5.1, a best-fit curve was utilized to estimate the fire damaged compressive strength of the concrete. This line and the data are presented in Figure 5.10. The trend line approximation is given in Equation 5.1 and is also shown in Figure 5.10 with the R² value. The dotted line suggests a projected trend beyond current available published data.

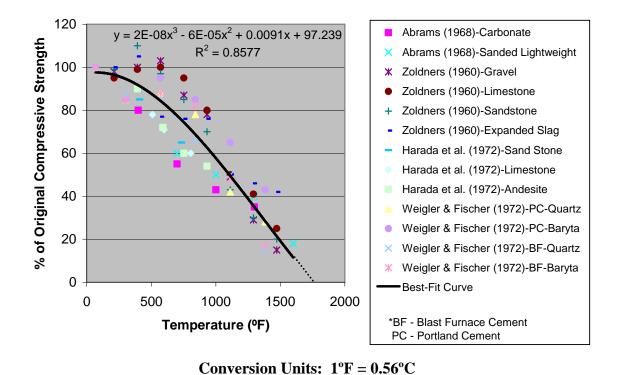


Figure 5.10 Residual compressive strength of concrete vs. temperature

$$y = 2*10^{-8} x^3 - 6*10^{-5} x^2 + 0.0091x + 97.239$$
 Equation 5.1

Based on the temperature of each layer, the residual compressive strength given by the best-fit curve was applied as a percentage of the original length of the layer. This length value was multiplied by the layer height to obtain an area. The total area for the damaged girder was calculated and divided by the area of the undamaged girder to determine a percent of original compressive strength for the member. This percentage was then multiplied by the appropriate f'_c in the design example to determine the damaged compressive strength. For the locations where the deck was only affected, the deck compressive strength was only altered. Likewise for the location where the girder was only damaged, the girder compressive strength at 28 days was altered.

5.4.2.2 Modulus of elasticity and moment of inertia. The damaged stiffness or stiffness loss due to fire was calculated much like that of the f'_c property, in that each

layer's I_c was determined by using published data of the residual E_c due to temperature. These values were given by Equations 2.4 and 2.5 (Chang et al., 2006). As noted in the literature view these equations all only valid up to 1472°F (800°C). However, the percentage of residual modulus given at 1472°F (800°C) is very small and can conservatively be taken as 0 percent. Therefore, for temperatures exceeding 1472°F (800°C), the modulus of elasticity values of the damaged concrete were assumed to be 0 percent.

In contrast to the compressive strength which was normalized using areas of each layer, the stiffness was based on the damaged moment of inertia value for each layer. The percent of original modulus of elasticity was multiplied by the moment of inertia for each layer. The values were then added together to obtain a total moment of inertia. The damaged I_c was then placed directly into the parametric study. The neutral axis determined from these calculations was also entered into the design example as the distance from the centroid to the extreme top fiber, y_t . The damaged moment of inertia included the overall fire damage effects caused to the stiffness. The value for the damaged modulus of elasticity was calculated using Equation 5.2 which is specified is given as LRFD Equation 5.4.2.4-1.

$$E_c = 33,000(W_c)^{1.5} \sqrt{f_c'}$$
 (psi) Equation 5.2

5.4.3. Mild Reinforcing Steel. In this particular bridge design, mild reinforcing steel was placed in the deck to resist the negative moment and provide structural support for the deck itself. As explained in Section 5.1.4, the reinforcing detail consisted of a top mat with #4 bars at 12 in. (30.48 cm) on center with two (2) #7 bars at 4 in. (10.16 cm) on center within each #4 bar space. The bottom mat design was #5 bars at 12 in. (30.48 cm) on center. In addition, a top mat of #4 bars at 12 in. (30.48 cm) on center and a bottom mat of #5 bars at 12 in. on center were placed in the deck in the orthogonal direction to the girders to prevent cracking due to temperature and shrinkage.

Previous data for grade 60 mild reinforcing steel discussed in Section 2.5.2 (Dias, 1992 and Edwards and Gamble, 1986) was used to correct the steel tensile strength for fire damage.

5.5. HYDROCARBON POOL FIRE CALCULATIONS

A typical cause for bridge fires is an accident involving a chemical spill. In the case of burning fuels or combustible liquids (referred to as hydrocarbon pool fires) the temperature is often higher than that of standard fires. The fire produced by these spills is characterized by the volume of the spill, leak rate, bridge geometry, bridge material which it flows onto, ambient temperature, wind conditions and type of chemical spilled. These characteristics dictate the size and extent of the fire.

Based on the given spill volume, type of chemical spilled and size of bridge, calculations can be made to determine the diameter of damage, duration of fire and temperature of fire. Using this calculated data, the damage to the prestressing strands, concrete and mild reinforcing steel can then be quantified.

In order to determine the properties of a fire caused by a chemical spill the diameter of the pool must be calculated first. The equation for the maximum diameter of an unconfined spill is given as Equation 2.7 in Section 2.6.2.1. The lesser of either the maximum diameter or the unconfined area is taken as the diameter. For the design example the bridge width is 42 ft (12.8 m) and will likely be taken as the diameter of the spill.

The diameter of a pool and duration of fire are inversely related. The smaller the size of the pool the longer the fire will burn and in turn cause higher temperatures to occur. Locations where the pool is allowed to grown exponentially result in shorter fires. This inverse relationship is caused by the thickness of the chemical.

Using the diameter, the duration can be calculated by using Equations 2.8 and 2.9 from Section 2.6.2.1. The mass burning rate and liquid density values in the equation are properties of the spilled chemical.

Flame temperatures are determined based on the material. For any given fire the temperature varies throughout the flame, therefore the temperature reported is average flame temperature. As noted in Section 2.6.2.1, the flame temperature can also vary upon size of the pool fire.

Published investigations (*Aspire*, Spring 2008; FHWA, 2007) of prior bridge fires indicated temperatures 1500°F-2000°F (816°C-1093°C) greater than the average flame temperature reported. Therefore, for this particular analysis the peak temperature or documented temperature (if provided) was used. In addition for studies in which the temperature was provided, an estimated temperature was used which represented the worst case scenario.

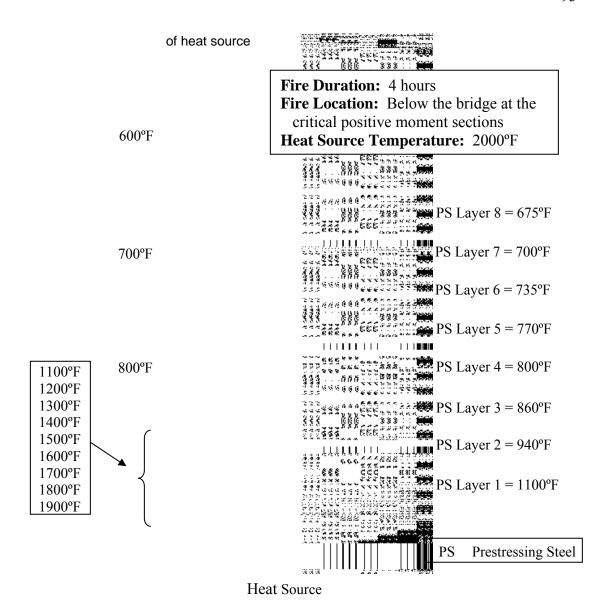
5.6. ASSUMPTIONS

Several assumptions were made to quantify the results of the parametric study. This was necessary to refine the study in combination with the uncertainty of the behavior of fire. Due to an infinite number of factors, a fire at the same location and of the same type may have a different response day to day. The assumptions made for this study are discussed further in the following sections.

5.6.1. Fire Effects Entire Length of Girder Equally. For this analysis the equations and methods used assume uniformity of member properties along the entire span. In the case of a fire, the member may only be damaged for a section or small portion of the span. However, in this study a worst case scenario was analyzed and the damage accrued at one point of the bridge was assumed to exist along the entire length of the girder.

5.6.2. Environmental Effects. Wind and ambient air were not included in the parametric study. Depending on the climate of a particular region and time of year, the fire behavior will be highly variable. For this study, the environment was assumed to be without wind and unaffected by the ambient temperature.

For case studies developed Section 6, information was obtained by calculations and engineer investigations performed during and after the fire. Reports did not indicate weather conditions during each fire, but various conditions would have obviously existed.


5.7. STUDY RESULTS

The following results in Section 5.7 are based on a standard fire (ASTM E 119-08) occurring to the PCI Bridge Design example specified in Section 5.1. Bridge design details, material properties and assumptions have been applied as detailed in Sections 5.1, 5.4 and 5.6 respectively. Results are provided for both 0.5 in. and 0.375 in. bridge designs. Because this section was based on standard fires, all temperature profiles were developed using published data (PCI Design for Fire Resistance of Precast Prestressed Concrete, 1989; and Abrams and Gustaferro, 1968). Non-standard fires involving hydrocarbon pool fires are addressed in Section 6 and are not included in the following results. Similarly, the ABAQUS software used to model non-standard fires was also not employed in the section.

5.7.1. Fire Below the Bridge at the Critical Positive Moment Section at

Midspan. As explained in Section 5.3, a fire occurring below a girder at midspan for this particular design example is critical because all of the prestressing strands are located in the bottom of the girder. The strand vulnerability will affect the moment capacity of the section as well as the serviceability behavior which are quantified by deflection.

Figure 5.11 shows a sample temperature profile based on PCI Design for Fire Resistance of Precast Prestressed Concrete (1989). This particular sample profile is for a fire occurring below the girder at the critical positive moment section after an exposure of 4 hours for a girder with 0.5 in. strands. The 4 hour exposure was the longest period of time examined and therefore the most severe case. You will note that all of the steel is significantly affected by the elevated temperatures. Based on the temperature profile, the fire damaged compressive strength and moment inertia values were calculated for each fire duration. These values can be seen in Table 5.2.

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

Figure 5.11 Temperature profile for half of the 0.5 in. girder cross-section for a 4 hour fire occurring below the bridge at the critical positive moment section at midspan

Table 5.2 Fire damaged girder compressive strength and non-composite moment of inertia values

	Undamaged	1/2	1	1-1/2	2	3	4
		hour	hour	hour	hour	hour	hour
f' _c (psi) (MPa)	7,000 (48.3)	6,790 (46.8)	6,570 (45.3)	6,410 (44.2)	6,170 (42.5)	5,800 (40.0)	5,460 (37.6)
I _c (in ⁴) (m ⁴)	539,947 (0.216)	482,740 (0.193)	440,915 (0.176)	412,327 (0.165)	363,218 (0.145)	322,319 (0.129)	211,427 (0.085)

Below the bridge at the critical positive moment section at midspan, the moment capacities show an immediate decrease in flexural strength upon initial fire exposure. Figures 5.12 and 5.13 illustrate the moment section capacity of the girders with exposure to fire time. From the figure it is clear that despite the undamaged moment capacity, each design (0.5 in. and 0.375 in.) behaved in a similar manner with time.

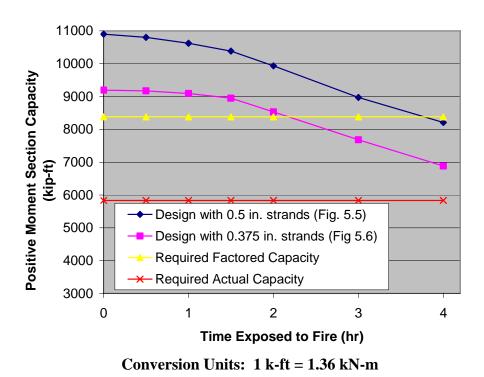


Figure 5.12 Positive moment section capacity vs. time exposed to fire

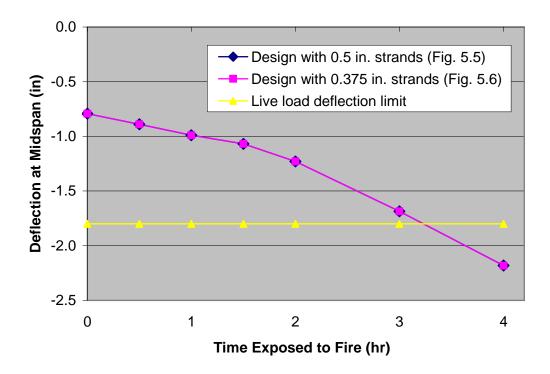
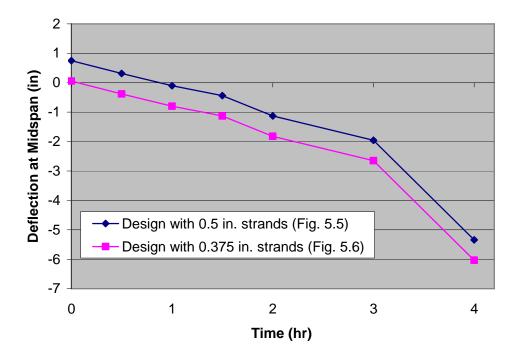

Conversion Units: 1 k-ft = 1.36 kN-m

Figure 5.13 Negative moment section capacity vs. time exposed to fire

In Figures 5.12 and 5.13, the "Factored Required Section Capacity" is the M_u in which engineers must meet to properly design the bridge per the LRFD Bridge Design Specifications (1998). The "Actual Required Section Capacity" is the unfactored moment which the girder will experience. As discussed in Section 5.1.2, this is an unconservative estimate used in this study as a point of reference. Overall the girder performs well up to a burning duration range of 2 to 3 hours. At that point the girder with 0.375 in. strands falls below the positive moment factored demand. The girder with 0.5 in. stands does not fail this limit until a fire of duration of 4 hours. However, despite the failure of these limits, the girders remain over 1000 kip-ft (1356 kN-m) above the actual moment section capacity expected to be felt by the girder.


Minimal negative moment section capacity is lost during the 4 hour duration. This is due to the location of the fire being away from the negative moment steel. The decrease in the capacity is due to the loss of concrete compressive strength and stiffness However, despite the small decrease in capacity the required factored capacity is still failed after 2 hours. This is mainly due to the small difference in undamaged capacity and the required capacity. In terms of the Required Actual Capacity limit, the negative moment remained over 1500 kip-ft (2035 kN-m) greater than the "Actual Required Capacity" at 4 hours.

Deflection due to self-weight and live load for the girders can be seen in Figures 5.14 and 5.15 respectively. After a fire duration of 1-2 hours the self-weight deflection is approximately 2 in. due to the decrease in stiffness of the member. After 2 hours, the deflection becomes quite severe, sagging close to 6 in. (152.4 mm). Failure of the live load and impact limit occurs between 3 and 4 hours for both girders.

Conversion Units: 1 in. = 25.4 mm

Figure 5.14 Deflection at midspan due to live load vs. time exposed to fire

Conversion Units: 1 in. = 25.4 mm

Figure 5.15 Deflection at midspan due to self-weight vs. time exposed to fire

In Figure 5.16, the loss in stiffness is illustrated for the composite girder. Although the non-composite section was directly affected by the fire, the composite section is presented so that all three locations can be easily compared. The non-composite section is used to calculate the composite section, therefore the loss in stiffness is still included with the composite section. Graphically, it can be seen that the stiffness begins to consistently decrease as the time of fire exposure increases. After only one hour, almost 20 percent of the stiffness is lost and an additional 14 percent is lost in the second hour. Subsequently, 17 percent and 10 percent are lost within the next two hours of burning. After 4 hours, only 41 percent of the original stiffness remains in the member. This remaining stiffness is located predominantly in the top of the member where the heat source is farthest away from the material.

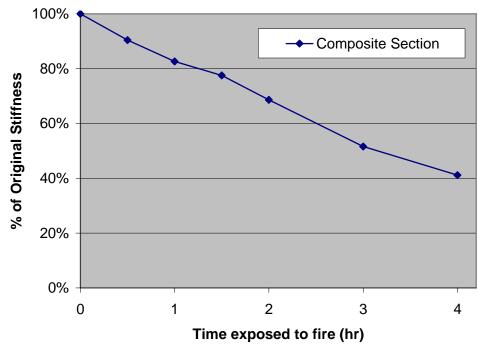


Figure 5.16 Stiffness loss of composite girder vs. time exposed to fire

Based on the results for the parametric study for a fire occurring below the bridge at the critical positive moment section capacity at midspan, it can be concluded that the bridge would be able to sustain service loads following a fire of short duration (1-2 hours). However, the deflection due to this length of burning will cause uneasiness among occupants and should be examined. It is recommended that visual observations are performed and the girders repaired accordingly to prevent durability issues. For fires occurring longer than 2 hours, the deflection would be too severe for service. In addition, the flexural capacity would not be adequate to satisfy the code mandated load factors given in Section 5.1.2. It is recommended that appropriate repairs are made before returning the bridge to service. This will include the possibility of building a new bridge.

5.7.2. Fire Above the Bridge at Critical Negative Moment Sections. For this location, the fire was applied to the top of the bridge at the critical negative moment section and analyzed using four different periods of time. A composite section was analyzed which included the 8 in. (20.32 cm) thick deck with an effective width of 111

in. (2.82 m). The mild steel reinforcement includes the top mat of #4 bars, the bottom mat of #5 bars and the additional #7 bars placed in the composite girder at negative moment sections as described by Section 5.1.4. The prestressing steel analyzed is the twelve (12) harped strands which were also previously explained in Section 5.1.4.

A temperature profile developed from Abrams and Gustaferro's (1968) slab profiles for the 4 hour case is illustrated in Figure 5.17. The temperature profile layers are shown in the deck by solid and dotted lines. The dotted lines shown in the profile represent data extrapolated from the published temperature plots. It is interesting to note, that even after 4 hours the fire does not affect the prestressing steel located in the top of the girder or the girder itself. The heat remains in the deck throughout the duration of the fire.

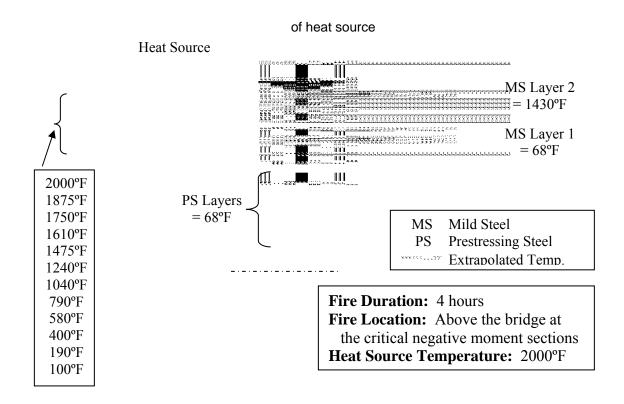


Figure 5.17 Temperature profile for composite girder at critical negative moment sections

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

The fire damaged properties for the bridge can be seen in Table 5.3. The f'_c given is the compressive strength of the deck, because it was the only component affected by the fire. The I_c value shown is the moment of inertia for the composite section, which was affected by the change in the moment of inertia of the deck.

Table 5.3 Fire damaged deck compressive strength and composite moment of inertia values

	Undamaged	1/2	1	1-1/2	2	3	4
		hour	hour	hour	hour	hour	hour
f' _c (psi) (MPa)	4,000 (27.6)	3,740 (25.8)	3,570 (24.6)	3,390 (23.4)	3,250 (22.4)	3,020 (20.8)	2,830 (19.5)
I _c (in ⁴) (m ⁴)	1,091,316 (0.437)	1,059,263 (0.424)	1,043,643 (0.417)	1,029,799 (0.412)	1,018,835 (0.408)	1,001,882 (0.401)	988,159 (0.395)

Figures 5.18 and 5.19 give the positive and moment section capacities for this parametric study. As suggested by the temperature profile results, the moment capacities are significantly less than the previous location, because the prestressing steel was not affected. The deck concrete and mild steel reinforcement are the only materials that experienced damage.

The positive moment section capacity remained nearly the same as the undamaged capacity, only decreasing slightly with time. This slight decrease is due to the decrease in the compressive strength of the deck concrete.

Due to the compromise of the mild steel properties, the negative moment capacity decreased significantly and failed the "Required Factored Capacity" after only 30 minutes of fire exposure. However, as before, this capacity remained much larger than the "Actual Required Capacity" which means the fire would not cause flexural collapse.

Figure 5.18 Positive moment section capacity vs. time exposed to fire

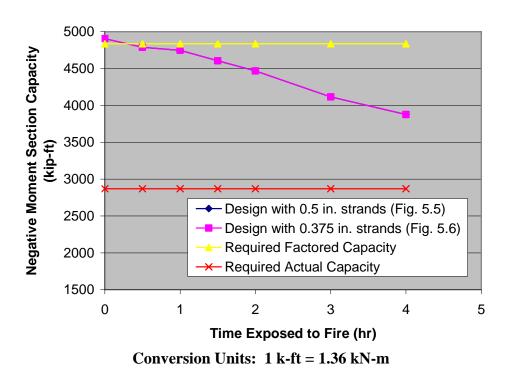


Figure 5.19 Negative moment section capacity vs. time exposed to fire

The loss in stiffness of the composite girder is given in Figure 5.20. There is considerable less stiffness loss accrued by a fire occurring at above the bridge at critical negative moment sections than a fire occurring below the bridge at critical positive moment sections as seen in Section 5.7.1. The overall loss in stiffness for this particular fire is above 90 percent throughout a 4 hour fire.

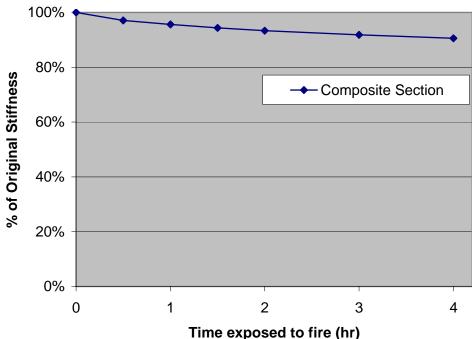
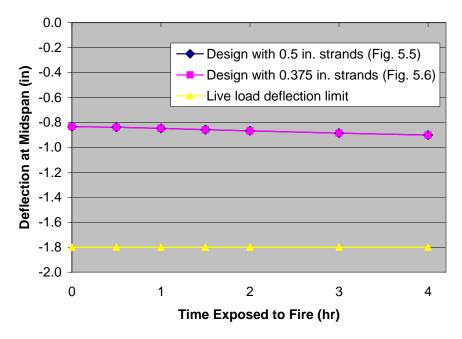



Figure 5.20 Stiffness loss of composite girder vs. time exposed to fire

The deflection due to live load and impact is due to the loss in deck stiffness. This increase is quite small, because the deck portion of the composite cross-section is also quite small. For the deflection due to self-weight, there is no increase in deflection, because the girder which carries the dead load is not damaged. Plots of both live load and impact deflection and self-weight deflection can be seen in Figures 5.21 and 5.22.

Conversion Units: 1 in. = 25.4 mm

Figure 5.21 Deflection at midspan due to live load vs. time exposed to fire

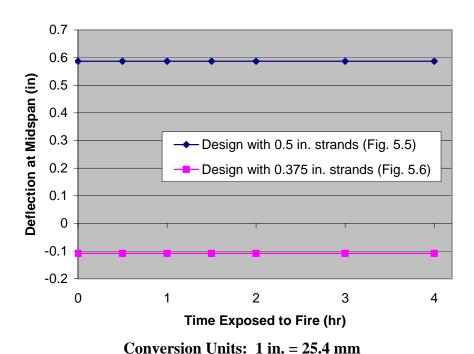


Figure 5.22 Deflection at midspan due to self-weight vs. time exposed to fire

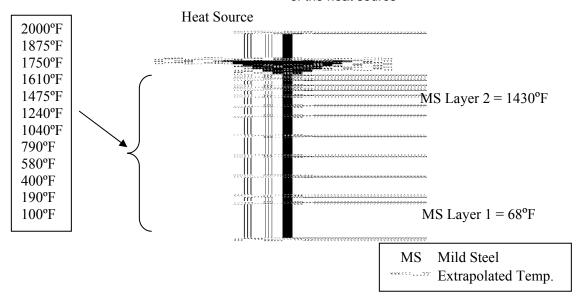
For a given fire at this location, it appears that the negative section capacity will be severely compromised. In addition, the deck surface will have severe issues of spalling and cracking which may lead to durability issues in the future. The bridge is not recommended for use until adequate section capacity is restored to the negative moment sections.

5.7.3. Fire Above the Bridge Between Girders. The final location examined in the parametric study is along the deck between girders. Initial concern existed regarding the structural integrity of the unsupported deck after fire in the opposite direction of the girders. To evaluate the effects of the fire along the bridge deck, an arbitrary 12 in. (30.5 cm) strip was selected and analyzed. In this direction mild steel reinforcement consisting of a top mat of #4 bars at 12 in. (30.5 cm) on center and a bottom mat of #5 bars at 12 in. (30.5 cm) on center is provided in the deck for temperature and shrinkage. Damaged property values for the compressive strength and moment of inertia are shown in Table 5.4. For this case the moment of inertia value only reflects the 12 in. (30.5 cm) strip analyzed.

Table 5.4 Damaged deck compressive strength and deck moment of inertia values

	Undamaged	1/2 hour	1 hour	1-1/2 hour	2 hour	3 hour	4 hour
f' _c (psi) (MPa)	4,000 (27.6)	3,740 (25.8)	3,570 (24.6)	3,390 (23.4)	3,250 (22.4)	3,020 (20.8)	2,830 (19.5)
I _c (in ⁴) (cm ⁴)	512 (21,309)	324 (13,485)	249 (10,363)	200 (8,324)	166 (6,909)	125 (5,203)	99 (4,120)

In addition to the damaged property values, the temperature profile is given in Figure 5.23. The temperature shown in this profile are the same as that shown in the composite temperature profile in Section 5.7.2. This is because in both cases the deck is the nearest to the heat source.


Fire Duration: 4 hours

Fire Location: Above the bridge

between girders

Heat Source Temperature: 2000°F

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

Figure 5.23 Temperature profile along 12 in. (30.5 cm) width of deck after 4 hours of fire exposure

As shown in Figure 5.24, a decrease in the self-weight deflection at midspan of approximately 0.3 in. (7.62 mm) takes place over a fire duration of 4 hours. The live load and impact illustrated in Figure 5.25 increases from approximately 0.15 in. (3.8 mm) to approximately 0.7 in. (17.8 mm) over the same time period. For previous locations these values for live load deflection would be acceptable, however, for this case the span is only 12 ft (3.7 m) and therefore the LRFD live load limit (l/800) is 0.18 in. (4.6 mm). Consequently, the limit is failed immediately with a deflection just greater than 0.2 in. after a half hour of fire exposure.

Figure 5.24 Deflection due to self-weight vs. time exposed to fire

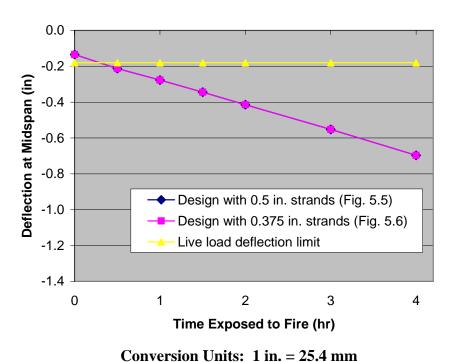


Figure 5.25 Deflection due to live load vs. time exposed to fire

The loss in stiffness is presented in Figure 5.26. The total stiffness loss after four hours of fire exposure is less than both the fire located below the bridge at critical positive moment sections and the fire located above the bridge at critical negative moment sections. This minimal stiffness loss is due to the small area affected by the fire. Because this fire is located above the bridge between girders, the deck is the only component of the structure affected. Therefore, a higher amount of stiffness is retained by the structure after fire exposure.

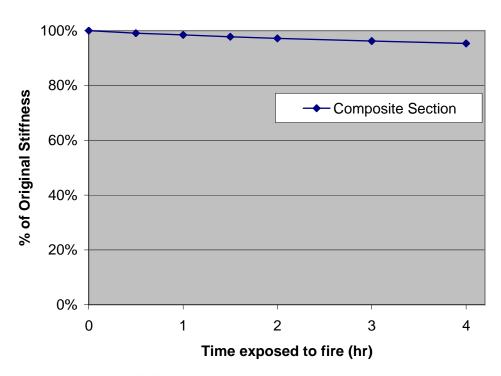


Figure 5.26 Stiffness loss of composite girder vs. time exposed to fire

Overall, it appears that the deck between spans would not perform suitably according to code limits. The deflection would cause problems for traffic crossing the bridge. In addition, severe spalling and cracking will occur which will lead to durability issues. Depending on the duration of fire exposure, the deflection may be minimal and after a detailed inspection and approval by a professional engineer the bridge could be

immediately opened. Realistically, this scenario of a fire occurring on the bridge deck between spans would be accompanied by additional fire along the bridge span and at negative moment sections. A situation such as that would need to be analyzed using this location and the other locations affected by the fire.

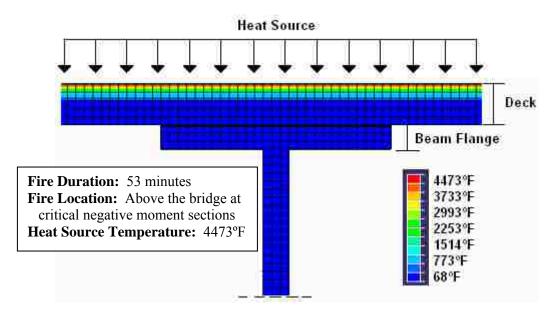
6. FIRE EXPOSED CASE STUDIES

6.1. GENERAL

Included in this section are three case studies of fire damaged prestressed concrete bridges. In each case study, reported information regarding the size, duration and temperature of the particular fire has been applied to the PCI Design example discussed in Section 5. Assumptions and procedures discussed in Section 5 were also applied to these case studies with the exception of the method of determining the temperature profile. In this section, the temperature profiles were developed using ABAQUS finite element modeling software, because each of the case studies involved a non-standard (hydrocarbon) fire and current published data (PCI Design for Fire Resistance of Precast Prestressed Concrete, 1989; and Abrams and Gustaferro, 1968) is only for standard fires. In addition, information and equations from Section 5.5 for hydrocarbon pool fires were also applied to these studies to determine the fire duration, size of fire and temperature, if this information had not already been documented.

6.2. U.S. ROUTE 7 BRIDGE (RIDGEFIELD, CT)

6.2.1. Accident. On July 12, 2005, a tanker carrying 8,000 gallons (30,300 liters) of unleaded gasoline overturned and caught fire on U.S. Route 7 Bridge. The accident occurred near Ridgefield, Connecticut over the Norwalk River. The bridge spanned 48 ft. (14.6 m) and held two lanes of traffic and two shoulder lanes. Initial observations noted "scaling of the concrete surface had occurred on the bottom flanges of all fifteen (15) beams as well as on the exterior faces of the fascia beams". This inspection led the Connecticut Department of Transportation to decide to replace the entire bridge. Based on the melting of the aluminum tanker truck, the temperature of the fire was estimated to be 4472°F (2467°C). Photos of the bridge and tanker after the fire can be seen in Figure 6.1. (FHWA, 2007)


Figure 6.1 Aftermath of the bridge fire along U.S. Route 7 Bridge near Ridgefield, Connecticut (FHWA, 2007)

6.2.2. Parametric Study. Using Equation 2.7, the maximum diameter of 331.7 ft. (101.10 m) was calculated for the tanker spill. However, the diameter was limited by the width of the bridge which is 42 ft. (12.8 m). Based on the actual diameter and the maximum diameter possible, the fire duration was determined to be 53 minutes. As explained in Section 2.6.2.1, the average flame temperature does not reflect the peak temperatures which occur within a flame. For this bridge fire, this is the case as the average flame temperature for gasoline is given as 1879°F (1026°C) but the visual observations at the site estimated the temperature to be 4473°F (2467°C). The observed value is expected to be more accurate due to actual observations performed by investigators. Due to this, the estimated value was used in the study evaluation.

An ABAQUS model was developed based upon the typical flame temperature and duration of fire. Simulating the actual fire, the theoretical model consisted of a fire on the deck of the bridge which burned for 53 minutes. Based on this input data, a temperature profile was developed and the bridge properties were applied to the study accordingly.

6.2.3. Conclusions. The temperature model obtained using ABAQUS is illustrated in Figure 6.2. Each element shown represents approximately 1.6 in. (40.64 mm) tall and 2 in. (50.8 mm) wide. The applied temperature of 4473°F (2467°C) was much greater than the 2000°F (1093°C) specified for 4 hours in the standard parametric study. However, despite the increase in temperature the depth the heat travels is quite

minimal. This is due to the short duration of the fire and the intensity at which the fire was applied. Normalized compressive strength and stiffness values are given in Table 6.1.

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

Figure 6.2 Temperature profile for fire on bridge deck (ABAQUS, 2007)

Table 6.1 Fire damaged deck compressive strength and composite moment of inertia values before and after the fire

	Before	After
f'_c (psi)	4,000	3,090
(MPa)	(27.6)	(21.3)
I_c (in ⁴)	1,091,316	1,025,013
(\mathbf{m}^4)	(0.437)	(0.410)

Using the temperatures output by the ABAQUS program, the moment capacities and deflections were calculated as previously described. Figure 6.3 shows the positive

moment section capacity for each girder, before and after the fire. You will note that very little positive capacity is lost during the fire. Again this loss is due to the loss of compressive strength of the concrete deck. The loss is small because the prestressing steel was not affected by the fire.

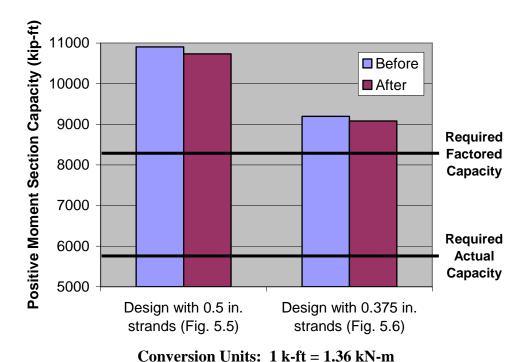
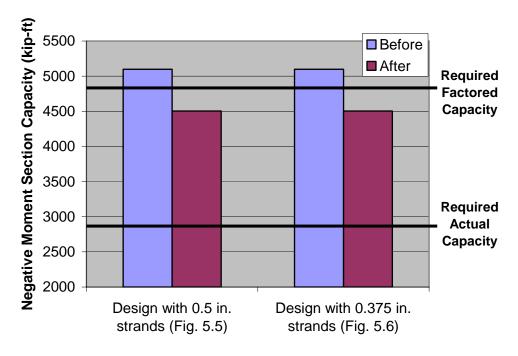
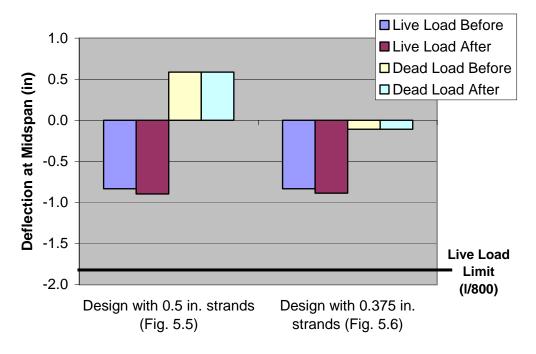



Figure 6.3 Positive moment section capacity before and after the fire


In contrast to the positive moment section capacity, the negative moment section capacity, shown in Figure 6.4, does experience significant loss due to the fire. The mild steel within the deck is severely affected by the intense heat and loses the majority of its tensile strength. In addition, the deck concrete itself is damaged resulting in a loss in compressive strength.

Conversion Units: 1 k-ft = 1.36 kN-m

Figure 6.4 Negative moment section capacity before and after the fire

The deflection and stiffness for the case study are shown in Figures 6.5 and 6.6 respectively. As seen with the parametric study in Section 5.7, a fire located above the bridge has little effect on the deflection. The deflections show a slight overall increase, but they remain above the live load limit. In terms of stiffness, a 6 percent loss in capacity occurred over the 53 minute fire duration period. This value is slightly higher than the loss in stiffness observed for the standard fire occurring above the bridge at critical negative moment sections. This particular standard fire, which was discussed in Section 5.7.2, experienced a loss of 4 percent after one hour. The higher loss occurring in this case study is due to the increase in temperature.

Conversion Units: 1 in. = 25.4 mm

Figure 6.5 Deflection at midspan before and after the fire

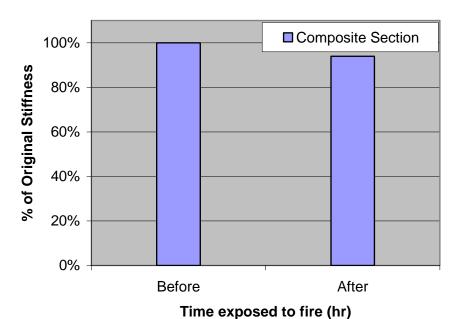


Figure 6.6 Stiffness of composite section before and after the fire

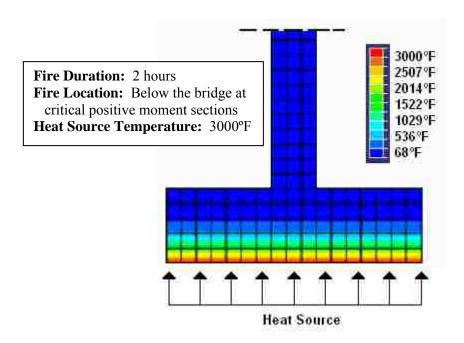
Based on the results for this study it would have been recommended that the negative moment sections be repaired and additional capacity restored before returning the bridge to service. Severe spalling and cracking along the deck will also need to be repaired in a timely manner.

6.3. PUYALLUP RIVER (TACOMA, WA)

6.3.1. Accident. In December of 2002, a fire occurred below a bridge which spanned the Puyallup River in Tacoma, Washington. The fire was caused by a railroad tanker carrying 30,000 gallons (113,600 liters) of methanol. The bridge spanned 147 ft. (44.8 m) and consisted of 15 girders spaced 5 ft. (1.5 m) on center. Due to the volume of chemical, the fire grew quickly and spread across the entire base of the bridge affecting all 15 girders. Investigators reported that the fire burned at an approximate peak temperature of 3000°F (1649°C) for 1 hour. Inspection showed no serious damage and the bridge was reopened the following day. Photos of during and after the fire can be seen in Figures 6.7 and 6.8.

Figure 6.7 Fire located below bridge near Tacoma, Washington (Aspire, Spring 2008)

Figure 6.8 Damaged concrete located at the bottom of the girders (location which was closet to heat source) (Aspire, Spring 2008)

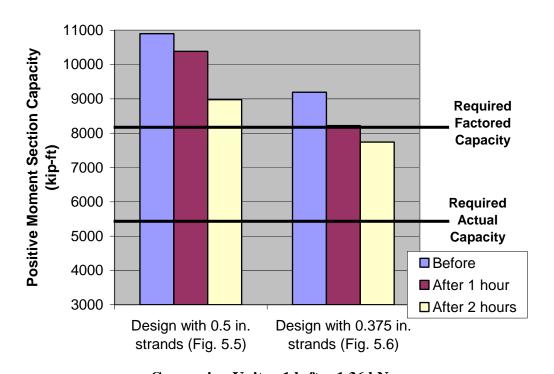

6.3.2. Parametric Study. For this particular fire, pool calculations are not valid because the fire occurred on objects below the bridge. Instead information used in the parametric study was obtained strictly from reports given by the Washington State Transportation Department. The temperature used in the study was 3000°F (1649°C), the approximate peak temperature reported by investigators. The actual burn duration that occurred is unclear, but the given information indicates it to be within 1-2 hours. For this case study both a 1 hour and 2 hour analysis were performed. This information was input into ABAQUS and than applied to the parametric study for fires below the bridge.

6.3.3. Conclusions. Based on the temperature profile output, the damaged compressive strength and moment of inertia of the concrete girder was determined. These values are reported in Table 6.2.

Table 6.2 Fire damaged girder compressive strength and non-composite moment of inertia values before and after the fire

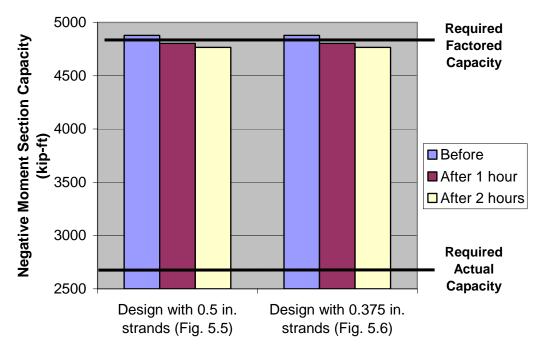
	Before	After 1 hour	After 2 hours
f'_c (psi)	7,000	5,020	4,400
(MPa)	(48.3)	(34.6)	(30.3)
I_c (in ⁴)	527,217	411,881	386,902
(\mathbf{m}^4)	(0.211)	(0.165)	(0.155)

The temperature profile output from ABAQUS for a burning duration for the most severe case of 2 hours is given in Figure 6.9. As previously noted, one element represents approximately 1.6 in. (40.6 mm) in height. The first layer of the prestressing steel for the 0.5 in. diameter strands is located at 2 in. (50.8 mm) from the bottom, which experiences a temperature of 1270°F (688°C). The second layer for that particular strand size is 4 in. (101.6 mm) from the bottom, at a temperature of 590°F (310°C). However, at a distance of 6 in. (152.5 mm), the location of the third layer, the temperature remains at the ambient level. Due to the short period of burning, the heat is unable to travel very deep into the girder and therefore only the first two layers of strands are damaged. For the 0.375 in. diameter girder, the rows of strands are spaced every 1.5 in. (38.1 mm) with the first row located 1.5 in. (38.1 mm) from the bottom of the girder. Therefore, these strands experienced higher temperatures than the other girder and are slightly more damaged than the 0.5 in. diameter strands.



Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

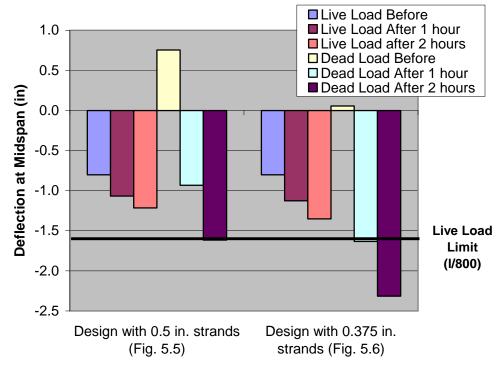
Figure 6.9 Temperature profile of bottom of girder after fire exposure of 2 hours (ABAQUS, 2007)


Using the temperatures output by the ABAQUS model, the moment capacities and deflections were calculated. As noted with the initial parametric study, a fire occurring below the bridge will cause the most severe damage to the structure at midspan. Therefore, to fully understand the severity of this particular fire this midspan location was chosen.

The moment section capacities of the bridge before and after the fire are given in Figures 6.10 and 6.11. For the girder with 0.5 in. diameter strands, adequate positive moment capacity is maintained throughout the 2 hour fire. The 0.375 in. diameter girder did not perform as well, failing to meet the "Required Factored Capacity" after 1 hour. The negative moment capacity for both girders was affected by the loss in compressive strength and stiffness of the concrete. Each experienced the same loss in capacity and failed the required factored limit after 1 hour. This limit failure is expected, because the undamaged capacity was only greater than the factored limit by 42 kip-ft (57 kN-m).

Conversion Units: 1 k-ft = 1.36 kN-m

Figure 6.10 Positive moment section capacity before and after the fire



Conversion Units: 1 k-ft = 1.36 kN-m

Figure 6.11 Negative moment section capacity before and after the fire

The deflection and stiffness for the bridge before and after the fire can be seen in Figures 6.12 and 6.13. A significant increase in self-weight deflection occurs due to the loss in stiffness and compressive strength of the concrete. Additional increase in deflection due to live load and impact also takes place.

For the stiffness a decrease of 89 percent of its original strength occurs after 1 hour and after 2 hours only 83 percent of its original strength is maintained. For this case study, the stiffness losses are slightly higher for the 1 hour exposure and almost exactly the same for the 2 hour exposure when compared to the standard fire discussed in Section 5.7.1. The standard fire examined experienced losses of 91 percent and 83 percent. As seen in the previous case study, the higher loss after 1 hour is due to the increase in temperature. However, as time progresses the values are more similar because it takes time for the heat to move through the concrete. Meanwhile the concrete near the heat source continues to become hotter until it is completely damaged.

Conversion Units: 1 in. = 25.4 mm

Figure 6.12 Deflection at midspan due to self-weight and live load before and after the fire

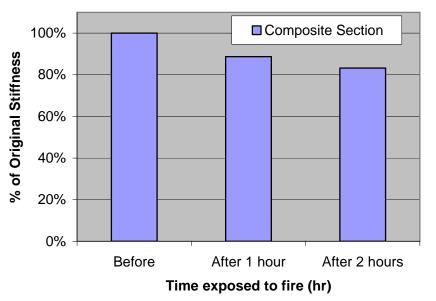


Figure 6.13 Stiffness of composite section before and after the fire

Based on the analyzed data, it is recommended that the bridge with 0.5 in. strands after exposure to either the 1 or 2 hour fire, be inspected and returned to service thereafter. For the bridge with 0.375 in. strands exposed to a 1 hour fire, the same recommendations apply. However, for an exposure of 2 hours the bridge should be repaired to increase the negative moment capacity before opening to the public.

6.4. I-5 OVERPASS (LYNNWOOD, WA)

6.4.1. Accident. A fiery tractor trailer accident occurred on July 12, 2003 on an U.S. Interstate-5 overpass which passed over 44th Street in Lynnwood, Washington. The truck was traveling northbound carrying 11,300 gallons (42,800 liters) of unleaded gasoline. The overpass consisted of a prestressed concrete structure with asphalt deck overlay. Photos of the fire and burned tractor trailer can be seen in Figure 6.14.

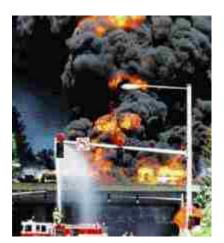
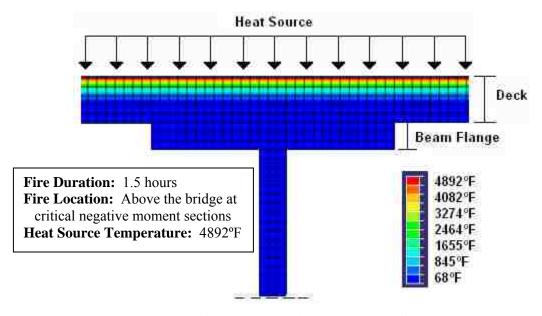


Figure 6.14 Bridge fire caused by a tractor trailer carrying gasoline which occurred on U.S. Interstate-5 near Lynnwood, Washington (Washington State Department of Transportation, 2003)

Immediately after the accident, the northbound lanes of the interstate were closed for 18 hours while emergency responders and engineers cleared the area and inspected the bridge. Brief assessments during the initial hours after the fire found the deck to be

"structurally sound" but significant areas of spalling and crumbling of concrete were noted. Crews worked throughout the night to patch the damaged concrete and the overpass was reopened the next morning. Planned long term repairs included the replacement of the deck overlay and the concrete railing. However, based on inspection there was no damage to the other structural members.

6.4.2. Parametric Study. The maximum unconfined diameter calculated for this fire was 378 ft (115 m). Due to the limiting width of the bridge actual diameter was taken as 42 ft (12.8 m). Using the 42 ft (12.8 m), the burning duration was determined to be 1.25 hours. This value is similar to reports by the Washington DOT estimated the fire to have burned for approximately 1.5 hours. For the analysis, a time of 1.5 hours was used to be conservative.


For this particular bridge fire there was no recorded information regarding the estimated flame temperature. Based on the information given in Section 2.6.2.1 it is clear that the temperature will be significantly higher than the reported average flame temperature for gasoline. Therefore an estimated temperature of 4892°F (2700°C) will be used for this study. This temperature was chosen due to the fire's similarity to the Connecticut bridge fire and the increased volume.

6.4.3. Conclusions. The compressive strength and moment of inertia values for the undamaged and damaged bridge can be seen in Table 6.3. In addition, the temperature profile is shown in Figure 6.15. Both the damaged concrete properties and temperature profile for this particular fire are quite similar to the case study for the Connecticut Bridge. The difference is that the fire occurred over a longer period of time and therefore produced higher temperatures.

It is interesting to note that despite the increase in time and temperature the concrete deck remained the only damaged component of the structure. This observation is similar to those made by members of the Washington DOT who determined the deck to be the only damaged structural component of the bridge.

Table 6.3 Fire damaged deck compressive strength and composite moment of inertia values before and after the fire

	Before	After
f' _c (psi)	4,000	2,950
(MPa)	(27.6)	(20.3)
I_c (in ⁴)	1,091,316	1,018,528
(\mathbf{m}^4)	(0.437)	(0.407)

Conversion Units: $1^{\circ}F = 0.56^{\circ}C$

Figure 6.15 Temperature profile for fire on bridge deck (ABAQUS, 2007)

The positive moment section capacity is shown in Figure 6.16. As seen in prior examples both the girder with the 0.5 in. strands and the girder with the 0.375 in. strands maintained adequate positive flexural capacity. However, due to the fire occurring on the deck the negative moment capacity (shown in Figure 6.17) was severely compromised. This loss in capacity is significantly higher than the losses seen in the Connecticut case study.

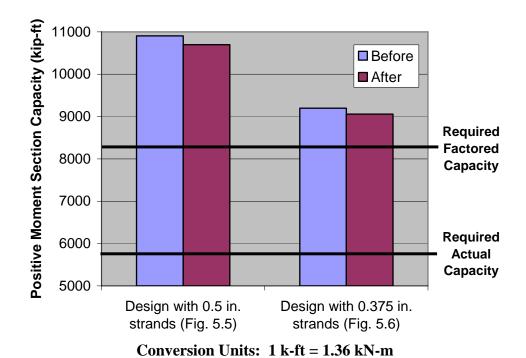


Figure 6.16 Positive moment section capacity before and after fire

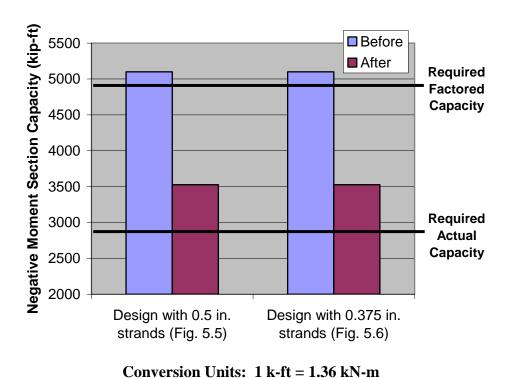


Figure 6.17 Negative moment section capacity before and after the fire

The results for deflection are given in Figure 6.18. As before, the deflection was not severely affected by the fire, because the girders which carry the bridge loads were not damaged by the fire. A slight increase in deflection did occur which was due to the decrease in stiffness and strength of the concrete.

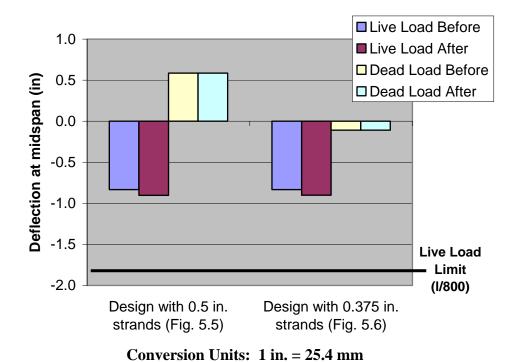


Figure 6.18 Deflection at midspan due to self-weight and live load before and after the fire

Stiffness losses for this case study are presented in Figure 6.19. As anticipated the stiffness loss was slightly greater (1 percent) than the loss which occurred in the Connecticut bridge fire. This is due to the increase in temperature and fire duration. However, in general these losses are not substantial and would not likely result in failure.

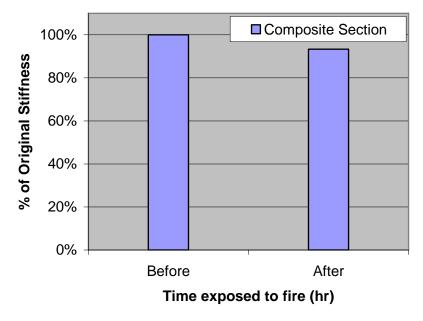


Figure 6.19 Stiffness of composite section before and after the fire

Given the results shown, it is recommended that the bridge remain closed until repairs can be made to the negative moment section regions. The overall deck will need repairs due to spalling and cracking. The replacement of the deck is one way in which the negative moment section capacity may be easily restored.

6.5. CASE STUDY DISCUSSION

Based on the results from all three case studies, it appears that overall the bridges performed fairly well despite high temperature exposure. The short period of time at which these temperatures were applied and the thermal properties of concrete prevented heat from traveling deep into the structure.

For all three case studies, the "Required Actual Section Capacity" was adequate. As noted earlier, this value is highly unconservative and should not be used as a design value. However, for reference purposes it can be noted that the capacities are within the multiplier range.

An important factor to note is that ACI 318-05 allows for up to 20 percent redistribution of the negative moment. If this were to be applied to the case studies, the bridge near Ridgefield, Connecticut and the bridge near Tacoma, Washington would

exceed the required factored capacity. This would also deem these bridges adequate and acceptable to be used by the public.

In addition to the loss in capacity and stiffness and increase in deflection, the bond between the concrete and steel exposed to high temperatures would also be reduced. As shown in Section 4, the bond is significantly reduced after exposure to temperatures of 500°F (260°C) or greater. However, for these particular case studies only a few layers of strands would be affected. The majority of the steel reinforcing located deeper into the member would retain the bond characteristics of a non-fire damaged strand after the fire.

As explained in Section 6.1, these case studies were developed by taking actual fire damaged bridge data and applying it to the PCI Bridge Design example. For this example, the undamaged negative moment section capacity was only 42 kip-ft (57 kN-m) greater than the "Required Factored Capacity". Had this value been slightly higher the bridge would have met the negative section capacity requirements for the first two case studies. Likewise, had the positive moment section capacity been smaller, failure of that criterion may have occurred. In addition, if the girder with 0.375 in. strands was designed with the same amount of capacity as the girder with 0.5 in. strands, it too would have behaved in the same manner as the 0.5 in. girder. Therefore, given a different design this bridge may or may not have met the capacities and deflections in the same manner.

However, this analysis helps to understand the extent at which fires cause damage. The implications caused by a bridge fire can be quite expensive and time-consuming. Based on this information, engineers and inspectors will be able to make a more rapid evaluation regarding the fate of a bridge following fire.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1. GENERAL

The experimental program consisted of laboratory testing of fire damaged prestressing strands in tension and concrete-steel pullout specimens. The data obtained was then applied to a parametric study which examined the moment section capacity loss, deflection increase and stiffness loss caused by a fire for the standard time-temperature curve and three case studies of actual bridge fires.

7.2. FIRE DAMAGED PRESTRESSING STEEL PROPERTIES

Prestressing strand properties were evaluated after exposure to temperatures ranging between 68°F (20°C) to 1300°F (704°C) and then cooled either inside or outside the furnace. Exposure time periods analyzed included 35 minutes and 60 minutes of soak time in the furnace. Properties were determined by tension testing of the strands. Based on the experimental data, the following conclusions can be drawn:

- 1. There is significant loss in prestressing strand tensile strength upon exposure to elevated temperatures greater than 500°F (260°C). This significant loss for the increment of 500°F-800°F (260°C-427°C) is 9.6 percent and increases to 21.5 and 26.0 percent for respective temperatures increments between 800°F-1000°F (427°C-538°C) and 1000°F-1200°F (538°C-649°C). The final temperature range, 1200°F-1300°F (649°C-704°C), which is the smallest increment, experienced a tensile strength loss of 4.8 percent. A minimal tensile strength loss of 2.3 percent occurred at the initial temperature increment of 68°F-500°F (20°C-260°C).
- 2. The duration of exposure to elevated temperatures is critical in the residual tensile strength after cooling. Strands soaked at a temperature for 35 minutes performed better than those soaked for 60 minutes. A significant difference in performance of 6-25 percent was found for temperatures 1000°F-1300°F (538°C-704°C).
- 3. Regardless of the cooling method employed the prestressing strands behaved similarly, as first noted by Abrams and Cruz (1961).
- 4. The non-linear behavior of the prestressing steel is significantly affected upon reaching the critical temperature range of 800°F-1000°F (427°C-538°C). Within

these temperatures the steel becomes brittle, yielding at fracture or fracturing before yielding depending on the temperature exposure.

7.3. FIRE DAMAGED BOND PERFORMANCE

The bond performance of the prestressing strand and concrete was assessed by performing pullout testing on two different high-strength concrete mix designs. The specimens were heated to temperatures of 68°F (20°C) to 1300°F (704°C) and then tested upon cooling. The following conclusions were made based on the experimental data obtained.

- The failure of the pullout specimen was dependent on the heat induced cracking experienced prior to testing. Based on observations the bond stress was higher for specimens with fewer cracks.
- 2. Density of heat cracking was higher for the 11 ksi compressive strength specimens than the 14 ksi compressive strength specimens. This contributes to data publish by Guise (1996) for heat crack density of concrete compressive strengths between 6.3 ksi and 8.3 ksi (43.6 MPa and 56.9 MPa).
- 3. The bond stress of high-strength concrete decreases significantly with exposure to temperature. Beginning at 500°F (260°C) the average percent of original bond stress is 90 percent for 14 ksi specimens and 80 percent for 11 ksi specimens. Upon further increase in temperature it continues to lose strength at a steeper drop.
- 4. The 14 ksi strength concrete forms a stronger bond with the prestressing strand compared to the 11 ksi strength concrete. Bond stresses for both strand sizes of the 14 ksi strength concrete were greater than that of the 11 ksi strength concrete. However, the 14 ksi strength concrete produced a brittle failure at lower temperatures, whereas the 11 ksi strength concrete continually produced a ductile failure.
- 5. In addition to the mix design, the size of the strand also affects the bond stress. The test results show that the smaller diameter, 0.375 in., performed better for both concrete mixes compared to the 0.5 in. strand. This confirms reports noted by Hanson and Karr (1959), Lane (1992) and Martin and Scott (1976).

6. Despite bond behavior after temperature exposure the majority of the test results for the high strength concrete met current code requirements specified by ACI, AASHTO and FHWA. The only strand to not meet the specification was the 0.5 in.-11 ksi strand heated to temperatures 1000°F-1300°F (538°C-704°C).

7.4. FIRE DAMAGED BRIDGE PERFORMANCE

Based on an extensive parametric study for the ASTM standard time-temperature curve and actual case study information, the following conclusions have been developed.

- A fire that occurs below the bridge will have the most devastating affect on the
 positive moment section at midspan. This is due to the majority of the
 prestressing steel being located in the bottom of the girder and the small concrete
 cover between the heat source and the prestressing steel.
- 2. Fire occurring on an 8 in. (20.32 cm) thick bridge deck at temperatures of 4892°F (2700°C) or less will not penetrate the entire deck within 4 hours. Severe damage will be incurred by the deck which, depending on the design and location of the fire, may cause significant loss in negative moment capacity. However, the overall deflection and positive moment capacity will be affected minimally.
- 3. In the case of a typical standard fire for a bridge with a similar design to the discussed PCI Design example, the bridge will survive a fire below the bridge that burns for 2 hours or less and a fire above the bridge that burns for 3 hours of less.
- 4. For a typical hydrocarbon fire with a bridge design similar to the discussed PCI Design example, the bridge will survive a fire burn duration below the bridge of at least 1 hour and above the bridge of at least 1.5 hours.

7.5. FUTURE RECOMMENDATIONS

Based on the experimental program and test data obtained, several recommendations have been developed.

1. In this study the temperature was limited by the furnace's capabilities. Additional research should include an increase in the spread of data which includes temperatures greater than 1600°F (871°C). This would provide information

- regarding the effects of ultra-high temperature exposure which typically occurs with hydrocarbon fuel fires.
- 2. The information presented by the parametric study is beneficial, but should be validated by physical testing of an actual bridge with a known level of fire damaged properties. This larger scale testing may include girders, slabs, and or a prestressed concrete bridge.
- 3. In addition to increasing the scale of the study, special testing should be performed for hydrocarbon fires which are commonly the cause of bridge fires. This would include hotter temperatures held for various periods of time.
- 4. During the extensive literature review prepared for this thesis, no information regarding fire damage shear behavior of members was found. This topic is very important and should be investigated.
- 5. It was assumed that the internal temperature was uniform within the concrete pullout specimens after 60 minutes. Further testing should be performed where this internal temperature is constantly monitored by thermocouples.

APPENDIX

1. INTRODUCTION

Included with this thesis is a CD-ROM, which contains the PCI Design Example spreadsheet calculations for the parametric studies of the standard fire and case studies. The calculations are based on Section 9.6 of the PCI Bridge Design Manual (1997). The included files are in Adobe Acrobat format (pdf) and are outlined below.

2. CONTENTS

- 1. Parametric Study for a Fire Below the Bridge at the Critical Positive Moment Section at Midspan
- 2. Parametric Study for a Fire Above the Bridge at Critical Negative Moment Sections
- 3. Parametric Study for a Fire Above the Bridge Between Girders
- 4. Parametric Study for a Case Study of U.S. Route 7 Bridge (Ridgefield, CT)
- 5. Parametric Study for a Case Study of Puyallup River (Tacoma, WA)
- 6. Parametric Study for a Case Study of Interstate-5 (Lynnwood, WA)

BIBLIOGRAPHY

- Abrams, M.S. "Compressive Strength of Concrete at Temperatures to 1600°F," Temperature and Concrete: SP-25. Published by the American Concrete Institute, Detroit, MI. 1968, pp. 33-41.
- Abrams, M.S., Cruz, C.R. "Behavior of High Temperatures of Steel Strand for Prestressed Concrete," Journal of the PCA Research, V. 3, No. 3, Sept. 1961, pp. 8-19.
- Abrams, M.S., Erlin, B. "Estimating Post-Fire Strength and Exposure Temperature of Prestressting Steel by Metallographic Method," Journal of the PCA Research, V. 9, No. 3, Sept. 1967, pp. 23-33.
- Abrams, M.S., Gustaferro, A.H. "Fire Endurance of Concrete Slabs as Influenced by Thickness, Aggregate Type, and Moisture," Journal of the PCA Research and Development Laboratories, V.10, No. 2, 1968, pp. 9-24.
- ACI 318-05: Building Code Requirements for Structural Concrete," Published by the American Concrete Institute, Farmington Hills, MI.
- ACI Committee 408R-03: Bond and Development of Straight Reinforcing Bars in Tension," Published by the American Concrete Institute, Farmington Hills, MI.
- Alnahhal, W.I., Chiewanichakorn, M., Aref, A.J., Alampalli, S. "Temporal Thermal Behavior and Damage Simulations of FRP Deck," Journal of Bridge Engineering, July-Aug. 2006.
- American Association of State Highway and Transportation Officials (AASHTO).

 AASHTO LRFD Bridge Design Specifications. 2nd ed. Washington, D.C.: 1998.
- American Society for Testing and Materials International (ASTM A 370 07a).

 Standard Test Methods and Definitions for Mechanical Testing of Steel Products,
 American Society for Testing and Materials, West Conshohocken, PA, 2002.
- American Society for Testing and Materials International (ASTM A 416/A 416 06). Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete, American Society for Testing and Materials, West Conshohocken, PA, 2002.
- Anderson, W. R. (1964). "Steel for Prestressed Concrete." PCI Journal, V. 9, No. 2, pp. 109-117.

- Chakrabarti, S.C., Sharma, K.N., Mittal, A. "Residual Strength in Concrete after Exposure to Elevated Temperature," The Indian Concrete Journal. Dec. 1994, pp. 713-717.
- Chan, S., Peng, G., Chan, J. "Comparison Between High Strenth and Concrete and Normal Strength Concrete Subjected to High Temperature," Materials and Structures, V. 29, No. 10, Dec. 1996, pp. 616-619.
- Chiang, C.H., Tsai, C.L., Kan, Y.C. "Acoustic Inspection of Bond Strength of Steel-Reinforced Mortar After Exposure to Elevated Temperatures," Ultrasonics, V. 38, 2000, pp. 534-536.
- Chang, Y.F., Chen, Y.H., Sheu, M.S., Yao, G.C., "Residual stress-strain relationship for concrete after exposure to high temperatures," Cement and Concrete Research, V. 36, No. 10, Oct. 2006, pp. 1999-2005.
- Chao, S.H. 2005. Bond Characterization of Reinforcing Bars and Prestressing Strands in High Performance Fiber Reinforced Cementations Composites under Monotonic and Cyclic Loading," Ph.D. Dissertation, University of Michigan, Ann Arbor.
- Collins, M.P., Mitchell, D. Prestressed Concrete Structures. Ed. Response Publications Toronto & Montreal, Canada, 1997.
- Dias, W.P.S. "Some Properties of Hardened Cement Paste and Reinforcing Bars upon Cooling from Elevated Temperatures," Fire and Materials, V.16, No. 1, 1992, pp. 29-35.
- Division of Engineering Brown University. ABAQUS tutorial. 30 June 2008. http://www.engin.brown.edu/courses/en175/abaqustut/abaqustut.htm
- Edwards, W.T., Gamble, W.L., "Strength of Grade 60 Reinforcing Bars After Exposure to Fire Temperatures," Concrete International: Design & Construction, V. 8, No. 10, Oct. 1986, pp. 17-19.
- Ferguson, P., Turpin, R., Thompson, J., "Minimum Bar Spacing as a Function of Bond and Shear Strength," ACI Journal, Proceedings, V. 50, No. 10, June 1954, pp. 869-888.
- Georgali, B., Tsakiridis, P.E. "Microstructure of Fire-Damaged Concrete. A Case Study," Cement and Concrete Composites, V. 27, No. 2, Feb. 2005, pp. 255-259.
- Gosselin, Guy C. "Structural Fire Protection Predictive Methods," Building Science Insight 1987: Designing for Fire Safety, Canada, 1987.

- Graybeal, Benjamin A. "Flexural Capacity of Fire-Damaged Prestressed Concrete Box Beams," Federal Highway Administration, U.S. Department of Transportation, McLean, Virginia, February 2007.
- Guise, S.E., Short, N.R., Purkiss, J.A. "Petrographic and Colour Analysis for Assessment of Fire Damaged Concrete," Proceedings of the International Conference on Cement Microscopy, April 1996, pp. 365-372.
- Gustaferro, A.H., Martin, L.D. Design for Fire Resistance of Precast Prestressed Concrete. Chicago, Ill., Prestressed Concrete Institute, 1989.
- Guyon, Y. Prestressed Concrete. London: F.J. Parsons, Limited of London, Folkestone and Hastings, 1953.
- Hanson, N.W, Karr, P.H., "Flexural Bond Tests of Pretensioned Prestressed Beams," ACI Journal, Proceedings, V. 55, No. 7, Jan. 1959, pp. 783-802.
- Harada, T., Takeda, J., Yamane, S., Furumura, F. "Strength, Elasticity and Thermal Properties of Concrete Subjected to Elevated Temperatures," Concrete for Nuclear Reactors: SP-34. Published by the American Concrete Institute, Detroit, MI. 1972, pp. 377-406.
- Hertz, K.D. "Reinforcement Data for Fire Safety Design," Magazine of Concrete Research, V. 56, No. 8, 2004, pp. 456-459.
- Hertz, K.D. "Residual Properties of Concrete Heated Rapidly." Evaluation and Repair of Fire Damage to Concrete, SP 92," American Concrete Institute, Detroit, Michigan, 1986.
- Holmes, M., Anchor, R.D., Cook, G.M.E., Crook, R.N. "The Effect of Elevated Temperatures on the Strength Properties of Reinforcing and Prestressing Steels," The Structural Engineer, V. 60B, No. 1, Mar. 1982, pp. 7-13.
- Hyatt, T. "An account of some experiments with Portland-cement-concrete combined with iron, as a building material, with reference to economy of metal in construction, and for security against fire in the making of roofs, floors and walking surfaces," Chiswick Press, London 1877, 45 pp.
- Ingason, H. "Two Dimensional Rack Storage Fires," Proceedings of the Fourth International Symposium Fire Safety Science, 1994, pp.1209-1220.
- Iqbal, N., Salley, M.H., "Estimating Burning Characteristics of Liquid Pool Fire, Heat Release Rate, Burning Duration, and Flame Height," Fire Dynamics Tools (FDTs) Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program (NUREG-1805, Final Report), Chapter 3, December 2004, pp. 1-21.

- Kumar, A., Kumar, V., "Behaviour of RCC Beams after Exposure to Elevated Temperatures," IE (I) Journal CV, V. 84, November 2003, pp. 165-170.
- Lane, S., "A New Development Length Equation for Pretensioned Strands in Bridge Beams and Piles," Publication No. FHWA-RD-98-116, Federal Highway Administration, U.S. Department of Transportation, McLean, Virginia, February 2007.
- Lane, S.N. "Transfer Lengths in Rectangular Prestressed concrete Concentric Specimens," Public Roads, V. 56, No. 2, Sept. 1992, pp. 67-71.
- LeClaire, P.J. 1991. "The Effect of Temperature on the Bond Strength of Epoxy-Coated Prestressing Strand," Masters of Science Thesis, Department of Civil Engineering, University of Wisconsin-Milwaukee, Milwaukee.
- Luo, X. Sun, W., Chan, Y.N. "Residual Compressive Strength and Microstructure of High Performance Concrete After Exposure to High Temperature," Materials and Structures, V. 33, No. 5, June 2000, pp. 294-298.
- Mace, Tony. Personal Interview. 9 April 2008.
- MacLean, K. 2007. "Post-Fire Assessment of Unbonded Post-Tensioned Concrete Slabs: Strand Deterioration and Prestress Loss." Masters of Science Thesis, Department of Civil Engineering, Queen's University, Kingston, Ontario, Canada.
- Malhotra, H.L. "The Effect of Temperature on the Compressive Strength of Concrete," Magazine of Concrete Research, V. 7, No. 23, Aug. 1956, pp. 85-94.
- Martin, L.D., Scott, N.L. "Development of Prestressing Strands in Pretensioned Members," ACI Journal, Proceedings, V. 73, No. 8 Aug. 1976, pp. 453-456.
- McGannon, H.E. ed. The Making, Shaping and Treating of Steel. 9th ed. Pittsburg: United States Steel, 1971.
- Mohamedbhai, G.T.G., "The Residual Strength of Concrete Subjected to Elevated Temperatures," Concrete, Dec. 1983, pp. 22-27.
- Mudan, K. S., Croce, P. A., "Fire Hazard Calculations for Large Open Hydrocarbon Fires," SFPE Handbook of Fire Protection Engineering, P.J. DiNenno, Ed. Quincy, MA: The National Fire Protection Association Press, 1995, Chapter 3-11, p. 197-215.
- Nassif, A.Y., Burley, E., Rigden, S. "A New Quanitative Method of Assessing Fire Damage to Concrete Structures," Magazine of Concrete Research, V. 47, 1995, pp. 271-278.

- Nawy, Edward G. Prestressed Concrete: A Fundamental Approach. 5th ed. Saddle River, NJ: Pearson Prentice Hall, 2006.
- Neves, I.C., Rodrigues, J.P., Loureiro, A. "Mechanical Properties of Reinforcing and Prestressing Steels After Heating," Journal of Materials in Civil Engineering, Nov. 1996, pp. 189-194.
- Noumowe, A.N., Clastres, P. Debicki, G. "High Performance Concrete for Severe Thermal Conditions," Proceedings of the International Conference on Concrete under Severe Conditions, CONSEC '95, Sapporo, Japan, Aug. 1995.
- Ongah, R., Mendis, P., Sanjayan, J., "Performance of Normal and High-Strength Reinforced Concrete Walls I Fire," Proceedings of International conference on Advances in Structures (ASSCCA'03), Sydney, June 2003, pp. 643-649.
- Papayianni, J. Vallasis, T. "Residual Mechanical Properties of Heated Concrete Incorporating Different Pozzolanic Materials," Materials and Structures, V. 24, No. 4, Mar. 1991, pp. 115-121.
- Phan, Long T., Carino, Nicholas J., "Fire Performance of High Strength Concrete: Research Needs," Proceedings ASCE/SEI Structures Congress 2000, Building and Fire Research Laboratory, National Institute of Standards and Technology, 2000
- Precast/Prestressed Concrete Institute (PCI). Precast Prestressed Concrete Bridge Design Manual. 1st ed. 1997.
- Precast/Prestressed Concrete Institute (PCI), PCI Design Handbook, 6th ed. 2004.
- Precast/Prestressed Concrete Institute. "Guidelines for the Use of Epoxy-Coated Strands," PCI Journal, V.38, No. 4, 1993, pp.26-32.
- Qian, C., Saito, K., "Measurements of Pool-Fire Temperature Using IR Technique," Proceedings of Combustion Fundamentals and Applications, San Antonio, TX, April 1995, pp. 81-86.
- Russell, B., Burns, N., "Measured Transfer Lengths of 0.5 and 0.6 in. Strands in Pretensioned Concrete," PCI Journal, V. 41, No. 5, Sept.-Oct. 1996, pp. 44-65.
- Shutt, C.A. "Protecting Against Fire," ASPIRE: The Concrete Bridge Magazine, Spring 2008, pp. 18-22.
- Simulia. (2007). ABAQUS/Standard User's Manual Version 6.7 Simulia., Providence, R.I.

- Steinberg, E. Lubbers, A. "Bond of Prestressing Strands in UHPC," Proceedings of the PCI/FHWA International Symposium on High performance Concrete, Orlando, FL, Oct. 2003, pp. 1-15.
- Stoddard, R.B. "Evaluating Fire Damage," ASPIRE: The Concrete Bridge Magazine, Spring 2008, pp. 24-27.
- Wang, Z. Tan, K. "Residual Area Method for Heat Transfer Analysis of Concrete-Encased I-Sections in Fire," Engineering Structures, V.28, 2006, pp. 411-422.
- Washington State Department of Transportation, "WSDOT Weekly Report-Special Edition," 22 July 2003.
- Washer, G.A., "Performance of Epoxy-Coated Prestressing Strands at Elevated Temperatures," Public Roads, V. 59, No. 1, Summer 1995.
- Weigler, H. Fischer, R. "Influence of High Temperatures on Strength and Deformation of Concrete," Concrete for Nuclear Reactors: SP-34. Published by the American Concrete Institute, Detroit, MI. 1972, pp. 481-491.
- Wickstrom, U. "A Very Simple Method for Estimating Temperature in Fire Exposed Concrete Structures," Technical Report SP-RAPP 1986:45, Swedish National Testing Institute, 1986.
- Yang, Sarah. "T.Y. Lin, World Renowned Structural Engineer, Dies at Age 91." <u>UC Berkeley News</u> 18 Nov. 2003.
- Zalosh, Robert G. Industrial Fire Protection Engineering. West Sussex: John Wiley & Sons Ltd., 2003.
- Zoldners, N.G. "Effect of High Temperatures on Concretes Incorporating Different Aggregates," American Society for Testing Materials Proceedings, V. 60, 1960, pp. 1087-1108.

VITA

Wendy LeAnn Moore was born on September 20, 1984 in Burlington, Colorado. She completed her secondary education in Wellsville, Kansas where she graduated from Wellsville Senior High School in May 2003 as valedictorian of her class.

Following high school, she attended the University of Missouri-Rolla (now Missouri University of Science and Technology). As an undergraduate student, she was a member of the women's varsity cross country and track teams, Blue Key National Honor Society, Chi Epsilon, Student Athletic Advisory Committee, Missouri Miner Newspaper Staff, Phi Kappa Phi and Fellowship of Christian Athletes. Wendy graduated Magna Cum Laude with a Bachelor's of Science in Architectural Engineering in May 2007.

After her undergraduate studies, Wendy continued her education at Missouri University of Science and Technology attaining a Master's of Science in Civil Engineering with an emphasis in structural engineering in December 2008.

Location: Fire at Critical Positive Moment Sections

Beam Design: 1/2" Strand
Fire Exposure Status: Undamaged

Material Properties

CAST-IN-PLACE SLAB					
Actual Thickness $t_{as} = 8.0 \text{ in}$					
Wearing Surface	=	0.5 in			
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in			
Compressive Strength	f'c =	4 ksi			
Unit Weight	w _c =	150.0 pcf			
Stress factor of compression block	$\beta_1 =$	0.85			

BEAMS: AASHTO-PCI, BT-72 BULB-TEE						
Strength at release	f'ci =	5.5 ksi				
Strength at 28 days	f'c =	7 ksi				
Unit Weight	$w_c =$	150.0 pcf				
Overall Beam Length:						
@ end spans	L =	110 ft				
@ center span	L =	119 ft				
Design Spans:						
Non-composite beam @ end spans	L =	109 ft				
Non-composite beam @ center span	L =	118 ft				
Composite beam @ end spans	L =	110 ft				
Composite beam @ center span	L =	120 ft				
Beam Spacing	S =	12 ft				

PRESTI	RESSING STR	RANDS	
Diameter of	of single strand	d =	0.5 in
	of single strand	A =	0.153 in^2
Temperature of Layer			
li .	ayer 1 (bottom)		68.00 °F
	layer 2 layer 3	T = T =	68.00 °F 68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10 layer 11	T = T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 277 ksi la	ayer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10		
	·	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
N. 110	layer 14	f _{pu} =	277 ksi
Yield Strength	over 1 (bettern)	6 _	OEO kai
intial = 250 ksi la	ayer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	$f_{py} =$	250 ksi
	layer 8	$f_{py} =$	250 ksi
	layer 9	$f_{py} =$	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:		P7	
before transfer $\leq 0.75f_{pu}$ (initial = 202	2.5)		
· ·	ayer 1 (bottom)	f _{pi} =	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7		207.6 ksi
	layer 8	f _{pi} =	
	H-	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
			207 6 kgi
	layer 12	f _{pi} =	207.6 ksi
	layer 12 layer 13 layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, — тру (,	
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

E =	25982.0 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.7559 Transformed flange width 83.9 in = Transformed flange area 629.3 in^2 Transformed haunch width Transformed haunch area 15.9 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3	•	•	1.091.315 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,315 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	56,994.5 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant ОК Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК 1.5 Curvature in plans is less than 4°= OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	$t_s =$	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	K _a =	2,309,429.79 in^4

at center span:

$$DFM = 0.75 \cdot \left(\frac{S}{9.5}\right)^{16} * \left(\frac{S}{L_f}\right)^{0.1} * \left(\frac{K_g}{12 * F^{-0} L_f^2}\right)^{0.1}$$

DFM = 0.905 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{1.8} + \left(\frac{S}{L}\right)^{1.5} + \left(\frac{K_g}{12 * L * L_s^2}\right)^{9.5}$$

DFM = 0.614 lanes/beam

Distribution Factor for Shear Force

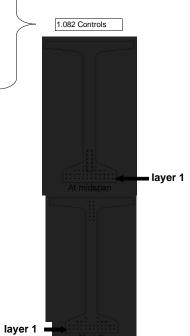
both end spans and center span:

$$DFF = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$


DFV = 0.840 lanes/beam

		At Midspan	At Ends		
from bottom	rom bottom No. of Distance from Bottom		No. of Distance from Botton		
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	-	
layer 6	2	12	-	-	
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
Harped Stra	nd Group (ir	cluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth

strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e. =	30.78 in

0.905 Controls

ELASTIC SHORTE				
assumed loss	=	9.00%		
Force per strand at transfer				
layer 1	=	28.9 kips		
layer 2		28.9 kips		
layer 3		28.9 kips		
layer 4		28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
	Г	at midspan	at endspan	
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	-
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{DES} =$	17.0 ksi		
layer 7	$\Delta f_{pES} =$	17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9	$\Delta f_{DES} =$		17.0 ksi	
	$\Delta f_{DES} =$		17.0 ksi	
layer 11			17.0 ksi	
layer 12			17.0 ksi	
	$\Delta f_{pES} =$		17.0 ksi	
	$\Delta f_{pES} =$		17.0 ksi	
	U/A 0.F			_
	IKAGE	6 E kai		
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	_	assume relative humidity = 70%
CREEP OF	CONCRE	TE		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying	$\Delta f_{cdp} =$	1.563 ksi		

CREEP OF	CONCR	ETE	
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdn} =$	1.563 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	24.3 ksi	24.3 ksi

loss due to relaxation after transfer		at midspan	at endspan
laye	$r \ 1 \ \Delta f_{pR2} =$	2.1 ksi	2.1 ksi
laye	r 2 Δf _{pR2} =	2.1 ksi	2.1 ksi
laye	$r 3 \Delta f_{pR2} =$	2.1 ksi	2.1 ksi
laye	$r 4 \Delta f_{pR2} =$	2.1 ksi	2.1 ksi
laye	$r 5 \Delta f_{pR2} =$	2.1 ksi	
laye	$r 6 \Delta f_{pR2} =$	2.1 ksi	
laye	$r 7 \Delta f_{pR2} =$	2.1 ksi	
laye	r 8 $\Delta f_{pR2} =$	2.1 ksi	
laye	r		2.1 ksi
layer	10 $\Delta f_{pR2} =$		2.1 ksi
layer	11 $\Delta f_{pR2} =$		2.1 ksi
layer	12 $\Delta f_{pR2} =$		2.1 ksi
layer	13 $\Delta f_{pR2} =$		2.1 ksi
layer	14 $\Delta f_{pR2} =$		2.1 ksi
	,		
TOTAL LOSS	ES AT TRA	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$	_		
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
	4	100.01.	400 01:

force per strand = f_{pt}^* strand area

ndons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer	1 f _{pt} =	190.6 ksi	190.6 ksi
layer	2 f _{pt} =	190.6 ksi	190.6 ksi
layer	3 f _{pt} =	190.6 ksi	190.6 ksi
layer	4 f _{pt} =	190.6 ksi	190.6 ksi
layer	5 f _{pt} =	190.6 ksi	
layer	6 f _{pt} =	190.6 ksi	
layer	7 f _{pt} =	190.6 ksi	
layer	8 f _{pt} =	190.6 ksi	
layer	9 f _{pt} =		190.6 ksi
layer 1	0 f _{pt} =		190.6 ksi
layer 1			190.6 ksi
layer 1	2 f _{pt} =		190.6 ksi
layer 1	3 f _{pt} =		190.6 ksi
layer 1	4 f _{pt} =		190.6 ksi
rand = f _{pt} *strand area		at midspan	at endspan
layer	1 =	29.2 kips	29.2 kips
layer	2 =	29.2 kips	29.2 kips
layer	3 =	29.2 kips	29.2 kips
layer	4 =	29.2 kips	29.2 kips
layer	5 =	29.2 kips	
layer	6 =	29.2 kips	
layer	7 =	29.2 kips	
layer	8 =	29.2 kips	
layer	9 =		29.2 kips
layer 1	0 =		29.2 kips
layer 1	1 =		29.2 kips
layer 1	2 =		29.2 kips
layer 1	3 =		29.2 kips
layer 1	4 =		29.2 kips
Total prestressing force after transfe	er P _i =	1284.8 kips	1284.8 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	
layer 9	% =		8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14	% =		8.2%
TOTAL LOSSES AT	SERVI	CE LOADS	
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$	49.9 ksi	
layer 6	$\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$		49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$		49.9 ksi
Stress in tendon after all losses = f _{pi} -Δf _{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi 157.7 ksi	157.7 ksi 157.7 ksi
lover 4	f _		
layer 4	f _{pe} =		137.7 K31
layer 5	f _{pe} =	157.7 ksi	137.7 KSI
layer 5 layer 6	f _{pe} =	157.7 ksi 157.7 ksi	107.7 KSI
layer 5 layer 6 layer 7	f _{pe} = f _{pe} = f _{pe} =	157.7 ksi 157.7 ksi 157.7 ksi	107.7 KSI
layer 5 layer 6 layer 7 layer 8	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	157.7 ksi 157.7 ksi	
layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} = f_{pe} = f$	157.7 ksi 157.7 ksi 157.7 ksi	157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	157.7 ksi 157.7 ksi 157.7 ksi	157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pe} = f_{pe} = f$	157.7 ksi 157.7 ksi 157.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	f _{pe} = f _{pe}	157.7 ksi 157.7 ksi 157.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	$f_{pe} = f_{pe} = f$	157.7 ksi 157.7 ksi 157.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$f_{pe} = f_{pe} = f$	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state	$f_{pe} = f_{pe} = f$	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13 layer 14 check prestressing stress limit at service limit state:	$\begin{aligned} f_{pe} &= \\ f_$	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 3*fpy	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2	$\begin{aligned} f_{pe} &= \\ e &= \\ \end{aligned}$	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 3*fpy 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3	$\begin{aligned} f_{pe} &= \\ \end{cases}$	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 3*fpy 199.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 2 layer 3 layer 3	$\begin{split} f_{po} &= \\ e &= \\ &= \\ &= \\ &= \\ &= \\ \end{split}$	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 3*fpy 199.7 ksi 199.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 2 layer 3 layer 4 layer 5	$\begin{aligned} f_{po} &= \\ e &= \\ &= \\ &= \\ \end{aligned}$	157.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 3 layer 3 layer 4 layer 5 layer 6	$\begin{split} f_{po} &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= $	157.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 2 layer 3 layer 4 layer 5	$\begin{split} f_{po} &= \\ f_{pe} &= \\ f_{pe} &= \\ f_{po} &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= $	157.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 2 layer 3 layer 4 layer 2 layer 3 layer 4	$\begin{split} f_{po} &= \\ f_$	157.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{array}{c} f_{po} = \\ f_{p$	157.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{po} = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	157.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 6 layer 7 layer 8 layer 9 layer 9	$\begin{array}{c} f_{po} = \\ f_{p$	157.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 6 layer 7 layer 8 layer 9 layer 9 layer 9 layer 9 layer 9 layer 9 layer 10 layer 11	$\begin{array}{c} f_{po} = \\ f_{p$	157.7 ksi 199.7 ksi	157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi 157.7 ksi

OK OK OK OK OK

OK OK OK OK OK

,			,			
torce	per	strand	$= I_{\alpha}$.^stra	na	area

		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
	_		

Total prestressing force after all losses P_{po} = 1061.6 kips 1061.6 kips

Final losses, $\% = (\Delta f_{pT})/(f_{pi})$

01/			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%
· · · · · · · · · · · · · · · · · · ·		·	

Stresses at Transfer

th cocco at Transition		
STRESS LIMITS FOR CO	ONCRET	ΓΕ
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	II	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	II	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

ок

οк

$$f_{i} = \frac{P_{i}}{A} - \frac{P_{i}e}{S_{i}} + \frac{M_{i}}{S_{i}} \qquad f_{b} = \frac{P_{i}}{A} + \frac{P_{i}e}{S_{b}} - \frac{M_{i}}{S_{b}}$$

$$= \frac{\text{at midspan}}{S_{b}} \qquad \text{at endspan}$$
Too stress at too fiber of beam $f_{i} = \frac{0.342 \text{ kg}}{S_{b}} = \frac{0.342 \text{ kg}}{S$

Top stress at top fiber of beam $f_t = 0.342 \text{ ksi}$ 0.342 ksi Bottom stress at bottom fiber of the beam $f_b = 3.021 \text{ ksi}$ 3.021 ksi

ending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips	
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi
Bottom stress at bottom fiber of the beam	$f_b =$	3.300 ksi	3.300 ksi
STRESSES A	T MIDS	PAN	
ending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	0.220 ksi	0.211 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi
HOLD-DOWN FOR	CES		

, _u		
layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	ı	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
laver 14	=	221.4 ksi

prestress force per strand before any losses:

U33 U 3.		
layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	II	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

F				
for the precast beam	=	3.150 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for deck	=	2.400 ksi		

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES A	T MIDSPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$J_t = \frac{P_{gs}}{A} - \frac{P_{gs}\theta}{S_t} + \frac{(M_g + i)}{S_t}$	$\frac{M_s}{S_{ty}} + \frac{(M_w + M_b)}{S_{ty}}$		
Due to permanent loads	f _{tg} = 2.041 ksi	2.041 ksi	ок
$f_{ig} = \frac{P_{yd}}{A} - \frac{P_{yd}e}{S_1} + \frac{(M_R + M_S)}{S_2} +$	$\frac{(M_{u_1} - M_b)}{S_{u_2}} + \frac{(M_{II,t1})}{S_{u_2}}$		
Due to permanent loads and transient loads	f _{tg} = 2.444 ksi	2.444 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ts} = \frac{(M_{vs})}{r}$	$\frac{+M_b}{S_m}$		
Due to permanent loads	f _{tc} = 0.042 ksi	0.042 ksi	ОК
$f_{tr} = \frac{(M_{\infty} + M_b + M_{EE+1})}{S_{tr}}$			
Due to permanent loads and transient loads	f _{tc} = 0.488 ksi	0.488 ksi	ОК
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{sp} = \frac{P_{se}}{A} + \frac{P_{se}e}{S_b} - \frac{(M_x + M_s)}{S_b} -$	$\frac{(\boldsymbol{M}_{w_t} + \boldsymbol{M}_b + 0.8^* \boldsymbol{M}_{U,t})}{S_{k_t}}$		
Load Combination Service III	f _b = -0.393 ksi	-0.393 ksi	ок

Strength Limit State

POSITIVE	MOMENT	SECTION

M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	8381.5 ft-kips
effective length factor for compression members		

layer 1 k = 0.28 layer 2 k = 0.28 0.28 layer 3 k = layer 4 k = 0.28 layer 5 k = 0.28 layer 6 k = layer 7 k = 0.28 0.28 layer 8 k = 0.28 layer 9 k = 0.28 layer 10 k = layer 11 k = 0.28 0.28 layer 12 k = 0.28 layer 13 k = 0.28 layer 14 k = 0.28 5.7 ft-kips c =

average	etrace	in	nrestressing	ctaal

layer 1	f _{ps} =	270.9 ksi
layer 2	$f_{ps} =$	270.9 ksi
layer 3	$f_{ps} =$	270.9 ksi
layer 4	$f_{ps} =$	270.9 ksi
layer 5	$f_{ps} =$	270.9 ksi
layer 6	$f_{ps} =$	270.9 ksi
layer 7	$f_{ps} =$	270.9 ksi
layer 8	$f_{ps} =$	270.9 ksi
layer 9	$f_{ps} =$	270.9 ksi
layer 10	$f_{ps} =$	270.9 ksi
layer 11	$f_{ps} =$	270.9 ksi
layer 12	$f_{ps} =$	270.9 ksi
layer 13	$f_{ps} =$	270.9 ksi
layer 14	$f_{ps} =$	270.9 ksi

ок ок

ок ок

nominal flexure resistance

	a =	4.87 in
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	10902.9 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips
		•

NEGATIVE MOMENT SECTION

$I_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	4837.2 ft-kips
	a =	5.73 in
	$\Phi M_n =$	4879.0 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

CRITICAL SECTION AT 0.59					
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ $V_u = 405.0 \text{ kips}$					
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips			
or					
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	364.8 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2877.0 ft-kips			
max shear	$V_u =$	405.0 kips			
max moment	M _u =	2877.0 ft-kips			
Shear depth	d _v =	73.19 in			
Applied factored normal force at the section	N _u =	0			
Angle of diagonal compressive stresses	Α –	36.00 °			

$\begin{array}{c|ccc} \text{Angle of diagonal compressive stresses} & \theta = & 36.00 \, ^{\circ} \\ \hline \textbf{STRAIN IN FLEXURAL TENSION REINFORCMENT} \\ \end{array}$

ار 	<u>₩_</u> 0.5 <i>N</i> _ 0.5 <i>Y</i> _ cot <i>θ</i>	.4 _{pe} .1 _{pe} < 0.002
-,	F,A,+ F,A.,	

		at midspan	at endspan
resultant compressive stress at centroid	f _{pc} =	0.994 ksi	0.994 ksi
effective stress in prestressing strand after all losse	s		

	-		
layer 1	f _{po} =	162.8 ksi	162.8 ksi
layer 2	f _{po} =	162.8 ksi	162.8 ksi
layer 3	f _{po} =	162.8 ksi	162.8 ksi
layer 4	f _{po} =	162.8 ksi	162.8 ksi
layer 5	f _{po} =	162.8 ksi	
layer 6	f _{po} =	162.8 ksi	
layer 7	f _{po} =	162.8 ksi	
layer 8	f _{po} =	162.8 ksi	
layer 9	$f_{po} =$		162.8 ksi
layer 10	f _{po} =		162.8 ksi
layer 11	f _{po} =		162.8 ksi
layer 12	$f_{po} =$		162.8 ksi
layer 13	f _{po} =		162.8 ksi
layer 14	f _{po} =		162.8 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
laver 14	ε _ν =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

		at midspan	at endspan
	$\Delta_p =$	3.97 in	3.97 in
	$\Delta_g =$	-1.49 in	
ſ	$\Delta_g =$	-1.27 in	
	$\Delta_s =$	-1.95 in	

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

$\Delta_{sw} =$	0.75 in

2.48 in 2.48 in Δ= Δ= 4.79 in 4.79 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -0.79 in

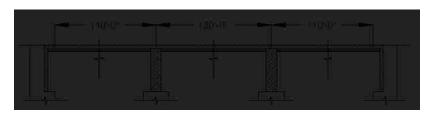
Deflection due to fire truck Total Deflection after fire with fire truck

-1.4447 in $\Delta_L =$ Δ= 3.2736 in

οк οк

Location: Fire at Critical Positive Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 1/2 Hour



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f' _{ci} =	5.5 ksi		
Strength at 28 days	f'c =	6.79 ksi		
Unit Weight	$W_c =$	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L=	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

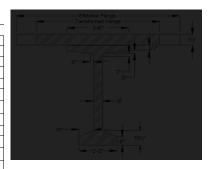
	Р	RESTRESSING ST	RANDS	
	Dia	ameter of single strand	d =	0.5 in
		Area of single strand	A =	0.153 in^2
Temperature of	Layer			T
		layer 1 (bottom)	T =	260.00 °F
		layer 2 layer 3	T = T =	180.00 °F 160.00 °F
		layer 4	T =	130.00 °F
		layer 5	T =	115.00 °F
		layer 6	T =	68.00 °F
		layer 7	T =	68.00 °F
		layer 8	T =	68.00 °F
		layer 9	T =	68.00 °F
		layer 10 layer 11	T = T =	68.00 °F 68.00 °F
		layer 12	T =	68.00 °F
		layer 13	T =	68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng	th	·		
intial =	277 ksi	layer 1 (bottom)	$f_{pu} =$	271 ksi
		layer 2	f _{pu} =	274 ksi
		layer 3	f _{pu} =	274 ksi
		layer 4	f _{pu} =	274 ksi
		layer 5	f _{pu} =	277 ksi
		layer 6	f _{pu} =	277 ksi
		layer 7	f _{pu} =	277 ksi
		layer 8	f _{pu} =	277 ksi
		layer 9		277 ksi
		-	f _{pu} =	
		layer 10	f _{pu} =	277 ksi
		layer 11	f _{pu} =	277 ksi
		layer 12	f _{pu} =	277 ksi
		layer 13	f _{pu} =	277 ksi
		layer 14	t _{pu} =	277 ksi
Yield Strength	0501			0.471
intial =	250 ksi	layer 1 (bottom)	f _{py} =	247 ksi
		layer 2	f _{py} =	247 ksi
		layer 3	f _{py} =	247 ksi
		layer 4	f _{py} =	250 ksi
		layer 5	f _{py} =	250 ksi
		layer 6	$f_{py} =$	250 ksi
		layer 7	$f_{py} =$	250 ksi
		layer 8	f _{py} =	250 ksi
		layer 9	$f_{py} =$	250 ksi
		layer 10	$f_{py} =$	250 ksi
		layer 11	f _{py} =	250 ksi
		layer 12	f _{py} =	250 ksi
		layer 13	f _{py} =	250 ksi
		layer 14	f _{py} =	250 ksi
Stress Limits:			F7	
before transfer	≤ 0.75f _{pu} (initi	al = 202.5)		
		layer 1 (bottom)	f _{pi} =	203.4 ksi
		layer 2	f _{pi} =	205.5 ksi
		layer 3	f _{pi} =	205.5 ksi
		layer 4	f _{pi} =	205.5 ksi
		layer 5	f _{pi} =	207.6 ksi
		layer 6	f _{pi} =	207.6 ksi
		layer 7	f _{pi} =	207.6 ksi
		layer 8		207.6 ksi
			f _{pi} =	
		layer 9	f _{pi} =	207.6 ksi
		layer 10	f _{pi} =	207.6 ksi
		layer 11	f _{pi} =	207.6 ksi
		layer 12	$f_{pi} =$	207.6 ksi
		layer 13 layer 14	$f_{pi} =$	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, — тру (,	
layer 1 (bottom)	f _{pe} =	197.7 ksi
layer 2	f _{pe} =	197.7 ksi
layer 3	f _{pe} =	197.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

E =	26761.5 ksi
E =	26501.6 ksi
E =	26501.6 ksi
E =	26241.8 ksi
E =	26241.8 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE I	BEAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l =	482,740 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	38.5 in
Distance from centroid to extreme top fiber	$y_t =$	33.5 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3834 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	4996 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.7675 Transformed flange width 85.2 in = Transformed flange area 639.0 in^2 Transformed haunch width Transformed haunch area 16.1 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	ı	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	38.50 in	29,529.5 in^3	230,732 in^4	482,740 in^4	713,471 in^4
Haunch	16.1 in^2	72.25 in	1,164.5 in^3	4,338 in^4	0.33 in^4	4,338 in^4
Deck	639.0 in^2	76.25 in	48,721.3 in^3	266,063 in^4	2,950 in^4	269,012 in^4
Total	1422.1 in^2		79,415.4 in^3			986,822 in^4

Total area of Composite Section	A _c =	1422 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	986,822 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	55.84 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	16.16 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	24.16 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	17,671.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	61,081.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	53.226.0 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant ОК Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК 1.5 Curvature in plans is less than 4°= OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3029
Longitudinal stiffness parameter	$K_g =$	2,199,990.66 in^4

at center span:

DFM = 0.901 lanes/beam

one design lane loaded:

$$DPM = 0.75 + \left(\frac{N}{14}\right)^{64} * \left(\frac{N}{L}\right)^{03} * \left(\frac{K_g}{12 * L * \varepsilon_{s,f}^3}\right)^{0}$$

DFM = 0.611 lanes/beam

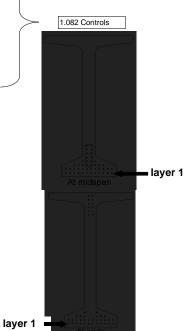
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 : \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	=
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
Harped Stra	ınd Group (i	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
e _c =	32.68 in

0.905 Controls

ELASTIC SHORTEI				
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1	=	28.3 kips	_	
layer 2	=	28.6 kips	_	
layer 3	=	28.6 kips	_	
layer 4	=	28.6 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips	_	
layer 9	=	28.9 kips	_	
layer 10	=	28.9 kips	_	
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips	_	
	Ī	at midspan	at endspan	7
Total prestressing force at release	P _i =	1257.2 kips	1258.4 kips	_
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		3.291 ksi	3.295 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	19.6 ksi	19.6 ksi	
layer 2		19.4 ksi	19.4 ksi	
layer 3	$\Delta f_{pES} =$	19.4 ksi	19.4 ksi	
	$\Delta f_{pES} =$	19.2 ksi	19.2 ksi	
layer 5	$\Delta f_{pES} =$	19.2 ksi		
layer 6	$\Delta f_{pES} =$	19.0 ksi		
layer 7	$\Delta f_{pES} =$	19.0 ksi		
	$\Delta f_{pES} =$	19.0 ksi		
layer 9	$\Delta f_{pES} =$		19.0 ksi	
layer 10	$\Delta f_{pES} =$		19.0 ksi	
layer 11			19.0 ksi	
layer 12			19.0 ksi	
layer 13	$\Delta f_{pES} =$		19.0 ksi	
layer 14	$\Delta f_{pES} =$		19.0 ksi	
CURIA	WAGE			_
	IKAGE	C E kai	<u> </u>	=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi		assume relative humidity =
CREEP OF	CONCRE	TE		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying	$\Delta f_{cdp} =$	1.850 ksi		_
prestressing force, calculated at the same section as $f_{\mbox{\scriptsize cgp}}$				

CREEP OF	CONCR	ETE	
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.850 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	26.5 ksi	26.6 ksi

loss due to relaxation after transfer		at midspan	at endspan
laye	$r 1 \Delta f_{pR2} =$	1.7 ksi	1.7 ksi
laye	r 2 Δf _{pR2} =	1.7 ksi	1.7 ksi
laye	$r 3 \Delta f_{pR2} =$	1.7 ksi	1.7 ksi
laye	r 4 Δf _{pR2} =	1.7 ksi	1.7 ksi
laye	r 5 Δf _{pR2} =	1.7 ksi	
laye	r 6 Δf _{pR2} =	1.7 ksi	
laye	r 7 Δf _{pR2} =	1.7 ksi	
laye	r 8 Δf _{pR2} =	1.7 ksi	
laye	r 9 Δf _{pR2} =		1.7 ksi
layer			1.7 ksi
layer	11 Δf _{pR2} =		1.7 ksi
layer	12 Δf _{pR2} =		1.7 ksi
layer	13 Δf _{pR2} =		1.7 ksi
layer	14 Δf _{pR2} =		1.7 ksi
TOTAL LOSS	EC AT TD	MOCED	
TOTAL LOSS	ES AL IKA	ANOFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan

force per strand = f_{pt}^* strand area

ndons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
laye	er 1 f _{pt} =	183.9 ksi	183.8 ksi
laye	er 2 f _{pt} =	186.1 ksi	186.1 ksi
laye	er 3 f _{pt} =	186.1 ksi	186.1 ksi
laye	er 4 f _{pt} =	186.3 ksi	186.3 ksi
laye	er 5 f _{pt} =	188.4 ksi	
laye	er 6 f _{pt} =	188.6 ksi	
laye	er 7 f _{pt} =	188.6 ksi	
laye	er 8 f _{pt} =	188.6 ksi	
laye	er 9 f _{pt} =		188.6 ksi
layer	10 f _{pt} =		188.6 ksi
layer	11 f _{pt} =		188.6 ksi
layer	12 f _{pt} =		188.6 ksi
layer	13 f _{pt} =		188.6 ksi
layer	14 f _{pt} =		188.6 ksi
rand = f _{pt} *strand area		at midspan	at endspan
laye	er 1 =	28.1 kips	28.1 kips
laye	er 2 =	28.5 kips	28.5 kips
laye	er 3 =	28.5 kips	28.5 kips
laye	er 4 =	28.5 kips	28.5 kips
laye	er 5 =	28.8 kips	
laye	er 6 =	28.9 kips	
laye	er 7 =	28.9 kips	
laye	er 8 =	28.9 kips	
laye	er 9 =		28.8 kips
layer	10 =		28.8 kips
layer	11 =		28.8 kips
layer	12 =		28.8 kips
layer	13 =		28.8 kips
layer	14 =		28.8 kips
Total prestressing force after trans	fer P _i =	1252.2 kips	1252.8 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	9.6%	9.6%
layer 2	% =	9.4%	9.5%
layer 3	% =	9.4%	9.5%
layer 4	% =	9.3%	9.4%
layer 5	% =	9.3%	
layer 6	% =	9.2%	
layer 7	% =	9.2%	
layer 8	% =	9.2%	
layer 9	% =		9.2%
layer 10	% =		9.2%
layer 11	% =		9.2%
layer 12	% =		9.2%
layer 13	% =		9.2%
layer 14	% =		9.2%
TOTAL LOSSES AT		CE LOADS	
Total Losses	U	at midspan	at endspan
layer 1	$\Delta f_{pT} =$	54.3 ksi	54.3 ksi
layer 2		54.1 ksi	54.1 ksi
layer 3	$\Delta f_{pT} = \Delta f_{pT} =$	54.1 ksi	54.1 ksi
layer 4		53.9 ksi	54.1 KSi 53.9 ksi
layer 5	$\Delta f_{pT} = $ $\Delta f_{-} = $	53.9 ksi	JJ.8 KSI
layer 6	$\Delta f_{pT} = \Delta f_{pT} =$	53.9 ksi	
layer 7		53.7 ksi	
	$\Delta f_{pT} =$ $\Delta f_{-} =$		
layer 8	$\Delta f_{pT} =$ $\Delta f_{-} =$	53.7 ksi	53.7 kgi
layer 9 layer 10	$\Delta f_{pT} =$ $\Delta f_{-} =$		53.7 ksi 53.7 ksi
· · · · · · · · · · · · · · · · · · ·	$\Delta f_{pT} =$ $\Delta f_{-} =$		
layer 11 layer 12	$\Delta f_{pT} =$ $\Delta f_{-} =$		53.7 ksi
	$\Delta f_{pT} =$		53.7 ksi
layer 13	$\Delta f_{pT} =$		53.7 ksi
layer 14	$\Delta f_{pT} =$	et midenen	53.7 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt} layer 1	6 _	at midspan	at endspan
lavel II			
	f _{pe} =	149.2 ksi	149.1 ksi
layer 2	f _{pe} =	151.4 ksi	151.4 ksi
layer 2 layer 3	f _{pe} = f _{pe} =	151.4 ksi 151.4 ksi	151.4 ksi 151.4 ksi
layer 2 layer 3 layer 4	f _{pe} = f _{pe} = f _{pe} =	151.4 ksi 151.4 ksi 151.6 ksi	151.4 ksi
layer 2 layer 3 layer 4 layer 5	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi	151.4 ksi 151.4 ksi
layer 2 layer 3 layer 4 layer 5 layer 6	$f_{pe} = f_{pe} = f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi	151.4 ksi 151.4 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$f_{pe} = f_{pe} = f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	f _{pe} = f _{pe}	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} = f_{pe} = f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pe} = f_{pe} = f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{aligned} f_{pe} &= \\ f_$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12	$\begin{aligned} f_{pe} &= \\ f_$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$\begin{aligned} f_{pe} &= \\ f_$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state:	$\begin{split} &f_{po} = \\ &f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state:	$\begin{split} f_{po} &= \\ f_$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2	$\begin{split} &f_{po} = \\ &f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 12 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3	$\begin{aligned} f_{po} &= \\ f_{pe} &= \\ f_{pe} &= \\ f_{po} &= \\ f_{po} &= \\ f_{po} &= \\ f_{pe} &= \\ f_$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.9 ksi 157.7 ksi 197.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 2 layer 3 layer 4	$\begin{split} &f_{po} = \\ &f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.9 ksi 197.7 ksi 197.7 ksi 197.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 3 layer 3 layer 4	$\begin{split} &f_{po} = \\ &f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.9 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 3	$\begin{split} &f_{po} = \\ &f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.9 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} &f_{po} = \\ &f$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi 197.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	fpe =	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 3 layer 3 layer 5 layer 6 layer 7 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{po} = \\ f_{p$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi 197.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 8 layer 9 layer 10	$\begin{array}{c} f_{po} = \\ f_{p$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 3 layer 3 layer 3 layer 3 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{po} = \\ f_{p$	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 8 layer 9 layer 10	$\begin{array}{c} f_{po} = \\ f_{pe} = \\ f_{p$	151.4 ksi 151.4 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 10	$\begin{array}{c} f_{po} = \\ f_{p$	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.7 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi 157.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi	151.4 ksi 151.4 ksi 151.6 ksi 151.6 ksi 153.9 ksi 153.9 ksi 153.9 ksi 153.9 ksi

OK OK OK OK OK OK OK

force	per	strand	$= f_{pe}$	*strand	area
-------	-----	--------	------------	---------	------

		at midspan	at endspan
layer 1	=	22.8 kips	22.8 kips
layer 2	=	23.2 kips	23.2 kips
layer 3	=	23.2 kips	23.2 kips
layer 4	=	23.2 kips	23.2 kips
layer 5	=	23.5 kips	
layer 6	=	23.5 kips	
layer 7	=	23.5 kips	
layer 8	=	23.5 kips	
layer 9	=		23.5 kips
layer 10	=		23.5 kips
layer 11	=		23.5 kips
layer 12	=		23.5 kips
layer 13	=		23.5 kips
layer 14	=		23.5 kips
		at midspan	at endspan

Total prestressing force after all losses $P_{pe} = 1018.3 \text{ kips}$ 1019.6 kips

Final losses, $\% = (\Delta f_{pT})/(f_{pi})$

layer 1	% =	26.7%	26.7%
layer 2	% =	26.6%	26.6%
layer 3	% =	26.6%	26.6%
layer 4	% =	26.5%	26.5%
layer 5	% =	26.5%	
layer 6	% =	26.4%	
layer 7	% =	26.4%	
layer 8	% =	26.4%	
layer 9	% =		26.4%
layer 10	% =		26.4%
layer 11	% =		26.4%
layer 12	% =		26.4%
layer 13	% =		26.4%
layer 14	% =		26.4%
Average final losses, %	% =	26.5%	26.5%

Stresses at Transfer

th cocco at Transition				
STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	18.99 in
Eccentricity at end of beam:	e =	17.95 in

Calcs for eccentricity (see 9.6.7.2)

ок

οк

$$f_{t} = \frac{P_{t}}{A} - \frac{P_{t}s}{S_{t}} + \frac{M_{J}}{S_{t}} \qquad \qquad f_{b} = \frac{P_{t}}{A} + \frac{P_{t}s}{S_{b}} - \frac{M_{J}}{S_{b}}$$

$$\frac{\text{at midspan}}{\text{Top stress at top fiber of beam}} \qquad \frac{\text{f}_{t}}{f_{b}} = \frac{0.181 \text{ ksi}}{3.146 \text{ ksi}} = \frac{0.182 \text{ ksi}}{3.146 \text{ ksi}}$$

STRESSES A	T HARP	POINT		
Bending moment due to beam weight at 0.3	M _g =	1188.0 ft-kips		
Top stress at top fiber of bean	n f _t =	-0.097 ksi	-0.097 ksi	ок
Bottom stress at bottom fiber of the bean	n f _b =	3.438 ksi	3.423 ksi	NOT OK
STRESSES	AT MIDS	PAN		
Bending moment due to beam weight at 0.5	M _g =	1414.3 ft-kips		
Top stress at top fiber of bean	n f _t =	0.075 ksi	0.079 ksi	ок
Bottom stress at bottom fiber of the bean	n f _b =	3.256 ksi	3.241 ksi	ок
HOLD-DOWN FO	RCES			
me stress in strand before losses = 0.8f,			_	

.o. _u		
layer 1	=	217.0 ksi
layer 2	=	219.2 ksi
layer 3	=	219.2 ksi
layer 4	=	219.2 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

103303.		
layer 1	=	33.2 kips
layer 2	=	33.5 kips
layer 3	=	33.5 kips
layer 4	=	33.5 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	II	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.21 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.056 ksi
for deck	=	1.800 ksi
Due to permanent and transient loads for load combination Service I		
for the precast beam	=	4.074 ksi
for deck	=	2.400 ksi

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MI	DSPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{gs}}{A} - \frac{P_{gs}\theta}{S_t} + \frac{(M_g + M_s)}{S_t}$	$+\frac{(M_{w}+M_{b})}{S_{ty}}$		
Due to permanent loads f_{tg}	1.946 ksi	1.945 ksi	0
$f_{xy} = \frac{P_{yx}}{A} - \frac{P_{yx}e}{S_1} + \frac{(M_x + M_y)}{S_y} + \frac{(M_x + M_y)}{S_y}$	$\frac{N_{\rm sg}-M_{\rm b})}{N_{\rm sg}} + \frac{(M_{\rm EX+1})}{N_{\rm sg}}$		
Due to permanent loads and transient loads f_{tg}	2.362 ksi	2.361 ksi	О
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ts} = \frac{(M_{us} + h)}{S_{ts}}$	<u>ld _e)</u>		
Due to permanent loads f_{tc}	0.045 ksi	0.045 ksi	0
$f_{w} = \frac{(M_{ws} + M_{\delta} + I)}{S_{w}}$	M_{H+1}		
Due to permanent loads and transient loads f_{tc} =	0.522 ksi	0.522 ksi	0
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{sy} = \frac{P_{ge}}{A} + \frac{P_{ge}\theta}{E_3} - \frac{(M_s + M_s)}{S_3} - \frac{(M_w)}{S_3}$	$\frac{(+M_b+0.8*M_{U+1})}{S_{bc}}$		
Load Combination Service III f _b =	-0.557 ksi	-0.552 ksi	0

Strength Limit State

POSITIVE MOMENT SECTION

| CSNA'+1 75(| L+|M)| | M_u = | M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.26
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.26
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	C =	5.7 ft-kins

layer 1	f _{ps} =	265.9 ksi
layer 2	$f_{ps} =$	268.6 ksi
layer 3	$f_{ps} =$	268.6 ksi
layer 4	$f_{ps} =$	268.6 ksi
layer 5	$f_{ps} =$	271.3 ksi
layer 6	$f_{ps} =$	271.3 ksi
layer 7	f _{ps} =	271.3 ksi
layer 8	$f_{ps} =$	271.3 ksi
layer 9	$f_{ps} =$	271.3 ksi
layer 10	$f_{ps} =$	271.3 ksi
layer 11	$f_{ps} =$	271.3 ksi
layer 12	$f_{ps} =$	271.3 ksi
layer 13	$f_{ps} =$	271.3 ksi
layer 14	f _{ps} =	271.3 ksi

ок ок

ок ок

153.8 ksi

nominal flexure resistance

	a =	4.82 in
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	10802.0 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NEGATIVE MOMENT SECTION

u = 1.25DC+1.5DW+1.75(LL+IM)	$M_u =$	4837.2 ft-kips
	a =	5.91 in
	$\Phi M_n =$	4873.1 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

2001g.i.		
CRITICAL SECTION	AT 0.59	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips
or		
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips
max shear	V _u =	405.0 kips
max moment	M _u =	2877.0 ft-kips
Shear depth	d _v =	73.19 in
Applied factored normal force at the section	N _u =	0
Angle of diagonal compressive stresses	θ =	36.00 °

diagonal compressive stresses $\theta = 36.00 \,^{\circ}$ STRAIN IN FLEXURAL TENSION REINFORCMENT

$\frac{M_{\bullet}}{d_{\bullet}}$	1 0.5 <i>M</i> _ 1 0.5 <i>V</i> _ cot <i>&</i>	A _{ps} j _{ps} < 0.002
-,-	F,A,+B,A,	

e siless ili piesilessilig silaliu aliel ali losse	3	
layer 1	f _{po} =	153.8 ksi
layer 2	f _{po} =	156.0 ksi
layer 3	f _{po} =	156.0 ksi
	ı	450.01

,	PO		
layer 2	f _{po} =	156.0 ksi	156.0 ksi
layer 3	f _{po} =	156.0 ksi	156.0 ksi
layer 4	f _{po} =	156.2 ksi	156.1 ksi
layer 5	f _{po} =	158.2 ksi	
layer 6	f _{po} =	158.4 ksi	
layer 7	f _{po} =	158.4 ksi	
layer 8	f _{po} =	158.4 ksi	
layer 9	$f_{po} =$		158.4 ksi
layer 10	f _{po} =		158.4 ksi
layer 11	$f_{po} =$		158.4 ksi
layer 12	$f_{po} =$		158.4 ksi
layer 13	f _{po} =		158.4 ksi
layer 14	f _{po} =		158.4 ksi

etrain in flavoral tancin							
	'n	tonois	irol	flow	in	otroin	-

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.66 in	
$\Delta_g =$	-1.45 in	
$\Delta_s =$	-2.21 in	

Deflection due to total self weight

Total Deflection at transfer

Total Deflection at erection

$\Delta_{sw} =$	0.31 in
-----------------	---------

2.31 in 2.31 in Δ= Δ= 4.47 in 4.47 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -0.89 in

οк

Deflection due to fire truck

Total Deflection after fire with fire truck

-1.6407 in $\Delta_L =$ Δ= 2.6409 in

οк

Location: Fire at Critical Positive Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 1 Hour

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f' _c =	4 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE						
Strength at release	f'ci =	5.5 ksi				
Strength at 28 days	f'c =	6.57 ksi				
Unit Weight	$w_c =$	150.0 pcf				
Overall Beam Length:						
@ end spans	L =	110 ft				
@ center span	L =	119 ft				
Design Spans:						
Non-composite beam @ end spans	L =	109 ft				
Non-composite beam @ center span	L =	118 ft				
Composite beam @ end spans	L =	110 ft				
Composite beam @ center span	L =	120 ft				
Beam Spacing	S =	12 ft				

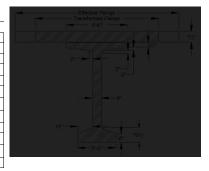
		PRESTRESSING STR	RANDS	
		Diameter of single strand	d =	0.5 in
		Area of single strand	A =	0.153 in^2
Temperature of	Layer			1
		layer 1 (bottom)	T =	530.00 °F
		layer 2	T =	340.00 °F 280.00 °F
		layer 3 layer 4	T = T =	255.00 °F
		layer 5	T =	230.00 °F
		layer 6	T =	205.00 °F
		layer 7	T =	190.00 °F
		layer 8	T =	180.00 °F
		layer 9	T =	68.00 °F
		layer 10 layer 11	T = T =	68.00 °F 68.00 °F
		layer 12	T=	68.00 °F
		layer 13	T =	68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng				I
intial =	277 ksi	layer 1 (bottom)	f _{pu} =	263 ksi
		layer 2	$f_{pu} =$	268 ksi
		layer 3	$f_{pu} =$	271 ksi
		layer 4	f _{pu} =	271 ksi
		layer 5	f _{pu} =	271 ksi
		layer 6	$f_{pu} =$	274 ksi
		layer 7	f _{pu} =	274 ksi
		layer 8	f _{pu} =	274 ksi
		layer 9	f _{pu} =	277 ksi
		layer 10	f _{pu} =	277 ksi
		layer 11	f _{pu} =	277 ksi
		layer 12	f _{pu} =	277 ksi
		layer 13	f _{pu} =	277 ksi
		layer 14	f _{pu} =	277 ksi
Yield Strength		,		
intial =	250 ksi	layer 1 (bottom)	f _{py} =	242 ksi
		layer 2	f _{py} =	225 ksi
		layer 3	f _{py} =	245 ksi
		layer 4	f _{py} =	245 ksi
		layer 5	f _{py} =	247 ksi
		layer 6	f _{py} =	247 ksi
		layer 7	f _{py} =	247 ksi
		layer 8	f _{py} =	247 ksi
		layer 9	f _{py} =	250 ksi
		layer 10	f _{py} =	250 ksi
		layer 11	f _{py} =	250 ksi
		layer 12	f _{py} =	250 ksi
		layer 13	f _{py} =	250 ksi
		layer 14	f _{py} =	250 ksi
Stress Limits:		10,01 14	Py	
before transfer	≤ 0.75f _{pu} (ini	tial = 202.5)		
	F= :	layer 1 (bottom)	$f_{pi} =$	197.2 ksi
		layer 2	f _{pi} =	201.4 ksi
		layer 3	f _{pi} =	203.4 ksi
		layer 4	f _{pi} =	203.4 ksi
		layer 5	f _{pi} =	203.4 ksi
		layer 6	f _{pi} =	205.5 ksi
		layer 7	f _{pi} =	205.5 ksi
		layer 8	f _{pi} =	205.5 ksi
		layer 9	f _{pi} =	207.6 ksi
		layer 10	f _{pi} =	207.6 ksi
		layer 11		207.6 ksi
			f _{pi} =	
		layer 12	f _{pi} =	207.6 ksi 207.6 ksi
		layer 13	f _{pi} =	201.0 KSI
		layer 14	$f_{pi} =$	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, ,	,	
layer 1 (bottom)	f _{pe} =	193.7 ksi
layer 2	f _{pe} =	179.7 ksi
layer 3	f _{pe} =	195.7 ksi
layer 4	f _{pe} =	195.7 ksi
layer 5	f _{pe} =	197.7 ksi
layer 6	f _{pe} =	197.7 ksi
layer 7	f _{pe} =	197.7 ksi
layer 8	f _{pe} =	197.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

layer 1 (bottom)	E =	27281.1 ksi
layer 2	E =	26761.5 ksi
layer 3	E =	26501.6 ksi
layer 4	E =	26501.6 ksi
layer 5	E =	26501.6 ksi
layer 6	E =	26501.6 ksi
layer 7	E =	26241.8 ksi
layer 8	E =	26241.8 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi


REINFORCING BARS

Yield Strength	$f_y =$	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	440,915 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	40.3 in				
Distance from centroid to extreme top fiber	$y_t =$	31.7 in				
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$						
cast-in-place concrete deck	E _{cs} =	3834 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	4914 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.7803 Transformed flange width 86.6 in = Transformed flange area 649.6 in^2 Transformed haunch width 32.8 in Transformed haunch area 16.4 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	40.31 in	30,917.8 in^3	212,814 in^4	440,915 in^4	653,729 in^4
Haunch	16.4 in^2	72.25 in	1,183.9 in^3	3,827 in^4	0.33 in^4	3,827 in^4
Deck	649.6 in^2	76.25 in	49,530.4 in^3	241,530 in^4	2,950 in^4	244,479 in^4
Total	1433.0 in^2		81,632.0 in^3			902,036 in^4

Total area of Composite Section	A _c =	1433 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	902,036 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	56.97 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	15.03 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	23.03 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	15,834.3 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	60,004.6 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	50.191.5 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight w_{beam} = 0.799 k/f 8 in. deck weight w_{deck}= 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant Number of beams is not less than four $N_0 = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang t$ OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft $X_a =$ distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant OK Number of beams is not less than four N_b = OK Beams are parallel and approximately of the same stiffness Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$ OK OK 1.5 Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.2816
Longitudinal stiffness parameter	K _a =	2,110,453.24 in^4

at center span:

DFM = 0.897 lanes/beam

one design lane loaded:

$$DFM = 0.75 - \left(\frac{S}{14}\right)^{14} * \left(\frac{S}{L}\right)^{13} * \left(\frac{K_y}{12 * L^2 * \xi_y^2}\right)^{0.1}$$

0.609 lanes/beam

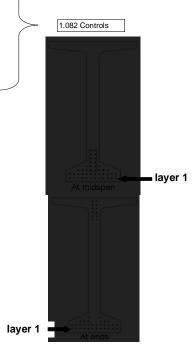
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	=
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	- 2 62	
layer 11	-	-	2 64	
layer 12	-	-	2 66	
layer 13	-	-	2 68	
layer 14	-	-	2	70
Harped Stra	and Group (ir	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
	24.40 in

0.905 Controls

ELASTIC SHORTE				
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1		27.5 kips		
layer 2		28.0 kips		
layer 3		28.3 kips		
layer 4		28.3 kips		
layer 5		28.3 kips		
layer 6		28.6 kips		
layer 7	=	28.6 kips		
layer 8		28.6 kips		
layer 9		28.9 kips		
layer 10		28.9 kips		
layer 11	=	28.9 kips		
layer 12		28.9 kips		
layer 13		28.9 kips		
layer 14	=	28.9 kips		
		at midspan	at endspan	7
Total prestressing force at release	P _i =	1233.8 kips	1239.2 kips	
, ,		1233.0 Kips	1239.2 KIPS	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		3.632 ksi	3.654 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	22.0 ksi	22.2 ksi	
layer 2	$\Delta f_{pES} =$	21.6 ksi	21.7 ksi	
layer 3	$\Delta f_{pES} =$	21.4 ksi	21.5 ksi	
layer 4	$\Delta f_{pES} =$	21.4 ksi	21.5 ksi	
layer 5	$\Delta f_{pES} =$	21.4 ksi		
layer 6	$\Delta f_{pES} =$	21.4 ksi		
layer 7	$\Delta f_{pES} =$	21.2 ksi		
	$\Delta f_{pES} =$	21.2 ksi		
layer 9	$\Delta f_{pES} =$		21.1 ksi	
layer 10	$\Delta f_{pES} =$		21.1 ksi	
layer 11	$\Delta f_{pES} =$		21.1 ksi	
layer 12	$\Delta f_{pES} =$		21.1 ksi	
layer 13	$\Delta f_{pES} =$		21.1 ksi	
layer 14	$\Delta f_{pES} =$		21.1 ksi	
SHRIN	IKAGE			_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	─	assume relative humidity =
CREEP OF	CONCRET	E		_
		_		_
Change of stresses at center of gravity of prestressing due to				

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdo} =$	2.133 ksi		
at midspan at endspan				
loss due to creep	$\Delta f_{pCR} =$	28.7 ksi	28.9 ksi	

RELAXATION	OF PRES	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	1.2 ksi	1.2 ksi
	layer 2	$\Delta f_{pR2} =$	1.3 ksi	1.3 ksi
	layer 3	$\Delta f_{pR2} =$	1.3 ksi	1.3 ksi
	layer 4		1.3 ksi	1.3 ksi
	layer 5	$\Delta f_{pR2} =$	1.3 ksi	
	layer 6	$\Delta f_{pR2} =$	1.3 ksi	
		$\Delta f_{pR2} =$	1.3 ksi	
	layer 8	$\Delta f_{pR2} =$	1.3 ksi	
	layer 9	$\Delta f_{pR2} =$		1.4 ksi
	layer 10	$\Delta f_{pR2} =$		1.4 ksi
	layer 11	$\Delta f_{pR2} =$		1.4 ksi
	layer 12	$\Delta f_{pR2} =$		1.4 ksi
	layer 13	$\Delta f_{pR2} =$		1.4 ksi
	layer 14			1.4 ksi
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$				
			at midspan	at endspan
	layer 1	f _{pt} =	at midspan 175.2 ksi	at endspan 175.0 ksi
	layer 1 layer 2	f _{pt} = f _{pt} =		
	-		175.2 ksi	175.0 ksi
	layer 2	f _{pt} =	175.2 ksi 179.8 ksi	175.0 ksi 179.6 ksi
	layer 2 layer 3	f _{pt} =	175.2 ksi 179.8 ksi 182.0 ksi	175.0 ksi 179.6 ksi 181.9 ksi
	layer 2 layer 3 layer 4	$f_{pt} = f_{pt} = f_{pt} = f_{pt} = f_{pt} = f_{pt}$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi	175.0 ksi 179.6 ksi 181.9 ksi
	layer 2 layer 3 layer 4 layer 5	$f_{pt} = f_{pt} = f$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi	175.0 ksi 179.6 ksi 181.9 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6	$f_{pt} = f_{pt} = f$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi	175.0 ksi 179.6 ksi 181.9 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$f_{pt} = f_{pt} = f$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi	175.0 ksi 179.6 ksi 181.9 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$f_{pt} = f_{pt} = f$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi	175.0 ksi 179.6 ksi 181.9 ksi 181.9 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{aligned} f_{pt} &= \\ \end{aligned}$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi	175.0 ksi 179.6 ksi 181.9 ksi 181.9 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{aligned} f_{pt} &= \\ f_$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi	175.0 ksi 179.6 ksi 181.9 ksi 181.9 ksi 186.5 ksi 186.5 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{aligned} f_{pt} &= \\ f_$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi	175.0 ksi 179.6 ksi 181.9 ksi 181.9 ksi 186.5 ksi 186.5 ksi 186.5 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{aligned} f_{pt} &= \\ f_$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi	179.6 ksi 181.9 ksi 181.9 ksi 186.5 ksi 186.5 ksi 186.5 ksi 186.5 ksi
force per strand = f _{pt} *strand area	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	f _{pt} = f _{pt}	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi	175.0 ksi 179.6 ksi 181.9 ksi 181.9 ksi 186.5 ksi 186.5 ksi 186.5 ksi 186.5 ksi 186.5 ksi
force per strand = f _{pt} *strand area	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175.2 ksi 179.8 ksi 182.0 ksi 182.0 ksi 182.0 ksi 184.1 ksi 184.3 ksi 184.3 ksi	175.0 ksi 179.6 ksi 181.9 ksi 181.9 ksi 186.5 ksi 186.5 ksi 186.5 ksi 186.5 ksi 186.5 ksi 186.5 ksi

layer 2

layer 3

layer 4

layer 5

layer 6

layer 7 layer 8 layer 9 layer 10

layer 11

layer 12

layer 13

layer 14

=

=

=

27.5 kips

27.9 kips

27.9 kips

27.9 kips

28.2 kips 28.2 kips 28.2 kips

1211.4 kips

27.5 kips

27.8 kips

27.8 kips

28.5 kips 28.5 kips

28.5 kips 28.5 kips

28.5 kips

28.5 kips

1216.0 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
laye	er 1 % =	11.2%	11.2%
laye		10.7%	10.8%
laye		10.5%	10.6%
laye		10.5%	10.6%
laye	er 5 % =	10.5%	
laye	er 6 % =	10.4%	
laye	er 7 % =	10.3%	
laye	er 8 % =	10.3%	
laye	er 9 % =		10.2%
layer	10 % =		10.2%
layer	11 %=		10.2%
layer	12 %=		10.2%
layer	13 % =		10.2%
layer	14 % =		10.2%
TOTAL LOSSES	AT SERVI	CE LOADS	
Total Losses		at midspan	at endspan
laye	er 1 $\Delta f_{pT} =$	58.4 ksi	58.6 ksi
laye		58.0 ksi	58.1 ksi
laye		57.8 ksi	57.9 ksi
laye		57.8 ksi	57.9 ksi
laye		57.8 ksi	
laye	-	57.8 ksi	
laye		57.6 ksi	
laye		57.6 ksi	
laye			57.5 ksi
layer	14 Δf _{pT} =		57.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
laye	er 1 f _{pe} =	138.8 ksi	138.7 ksi
laye	er 2 f _{pe} =	143.4 ksi	143.2 ksi
laye	er 3 f _{pe} =	145.6 ksi	145.5 ksi
laye	er 4 f _{pe} =	145.6 ksi	145.5 ksi
laye	er 5 f _{pe} =	145.6 ksi	
laye	er 6 f _{pe} =	147.7 ksi	
laye	er 7 f _{pe} =	147.9 ksi	
laye	er8 f _{pe} =	4.4= 6.1.1	
	- pe	147.9 ksi	
laye		147.9 ksi	150.1 ksi
layer layer	er 9 f _{pe} =	147.9 ksi	150.1 ksi 150.1 ksi
	er 9	147.9 KSI	
layer	er 9	147.9 KSI	150.1 ksi
layer layer	er 9	147.9 KSI	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer	$f_{pe} = 10$ $f_{pe} = 11$ $f_{pe} = 11$ $f_{pe} = 12$ $f_{pe} = 13$ $f_{pe} = 13$	14/.9 KSI	150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer layer	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer check prestressing stress limit at service limit st laye	er 9 $f_{pe} =$ 10 $f_{pe} =$ 11 $f_{pe} =$ 12 $f_{pe} =$ 13 $f_{pe} =$ 14 $f_{pe} =$ ate: fpe ≤ 0.8	3*fpy 193.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer layer check prestressing stress limit at service limit st	er 9 $f_{pe} =$ 10 $f_{pe} =$ 11 $f_{pe} =$ 12 $f_{pe} =$ 13 $f_{pe} =$ 14 $f_{pe} =$ ate: $f_{pe} \le 0.8$	3*fpy	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer check prestressing stress limit at service limit st laye	er 9 $f_{pe} =$ 10 $f_{pe} =$ 11 $f_{pe} =$ 12 $f_{pe} =$ 13 $f_{pe} =$ 14 $f_{pe} =$ ate: $fpe \le 0.8$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer check prestressing stress limit at service limit st laye laye	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3*fpy 193.7 ksi 179.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer check prestressing stress limit at service limit st laye laye laye	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer check prestressing stress limit at service limit st laye laye laye laye laye	$\begin{array}{lll} \text{er } g & \text{f}_{pe} = \\ 10 & \text{f}_{pe} = \\ 11 & \text{f}_{pe} = \\ 12 & \text{f}_{pe} = \\ 13 & \text{f}_{pe} = \\ 14 & \text{f}_{pe} = \\ 14 & \text{f}_{pe} = \\ 14 & \text{er } 1 = \\ 12 & \text{er } 1 = \\ 13 & \text{er } 1 = \\ 14 & e$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 197.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer check prestressing stress limit at service limit st laye laye laye	$\begin{array}{lll} \text{er } g & \text{f}_{pe} = \\ 10 & \text{f}_{pe} = \\ 11 & \text{f}_{pe} = \\ 12 & \text{f}_{pe} = \\ 13 & \text{f}_{pe} = \\ 14 & \text{f}_{pe} = \\ 14 & \text{f}_{pe} = \\ 14 & \text{er } 1 = \\ 12 & \text{er } 1 = \\ 13 & \text{er } 1 = \\ 14 & e$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer check prestressing stress limit at service limit st laye laye laye laye laye	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 197.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer layer layer layer check prestressing stress limit at service limit st laye layer layer layer layer layer layer	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 197.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer layer layer layer check prestressing stress limit at service limit st laye laye laye laye laye	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer layer layer check prestressing stress limit at service limit st laye laye laye laye laye laye	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer layer layer check prestressing stress limit at service limit st laye laye laye laye laye laye laye laye	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi
layer layer layer layer layer check prestressing stress limit at service limit st laye layer	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3*fpy 193.7 ksi 179.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi	150.1 ksi 150.1 ksi 150.1 ksi 150.1 ksi

OK OK OK OK

OK OK OK

OK OK OK OK OK

force p	oer:	strand	$= f_{ne}$	*strand	area
---------	------	--------	------------	---------	------

		at midspan	at endspan
layer 1	=	21.2 kips	21.2 kips
layer 2	=	21.9 kips	21.9 kips
layer 3	=	22.3 kips	22.3 kips
layer 4	=	22.3 kips	22.3 kips
layer 5	=	22.3 kips	
layer 6	=	22.6 kips	
layer 7	=	22.6 kips	
layer 8	=	22.6 kips	
layer 9	=		23.0 kips
layer 10	=		23.0 kips
layer 11	=		23.0 kips
layer 12	=		23.0 kips
layer 13	=		23.0 kips
layer 14	=		23.0 kips
		at midspan	at endspan

Total prestressing force after all losses $P_{pe} = 965.7 \text{ kips}$ 971.2 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$

i)			
layer 1	% =	29.6%	29.7%
layer 2	% =	29.4%	29.5%
layer 3	% =	29.3%	29.4%
layer 4	% =	29.3%	29.4%
layer 5	% =	29.3%	
layer 6	% =	29.3%	
layer 7	% =	29.2%	
layer 8	% =	29.2%	
layer 9	% =		29.2%
layer 10	% =		29.2%
layer 11	% =		29.2%
layer 12	% =		29.2%
layer 13	% =		29.2%
layer 14	% =		29.2%
Average final losses, %	% =	29.3%	29.3%
		•	

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	f _{ci} =	3.300 ksi	
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	II	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	20.80 in
Eccentricity at end of beam:	e =	19.76 in

Calcs for eccentricity (see 9.6.7.2)

οк

ок

$$f_{t} = \frac{P_{i}}{A} - \frac{P_{i}e}{S_{t}} + \frac{M_{g}}{S_{t}} \qquad \qquad f_{b} = \frac{P_{i}}{A} + \frac{P_{g}e}{S_{b}} - \frac{M_{g}}{S_{b}}$$

$$\frac{\text{at midspan}}{S_{b}} \qquad \frac{\text{at endspan}}{S_{b}}$$
Top stress at top fiber of beam $\frac{f_{t}}{f_{b}} = \frac{0.036 \text{ ksi}}{3.235 \text{ ksi}} = \frac{0.036 \text{ ksi}}{3.235 \text{ ksi}}$

=		POINT	HARP I	STRESSES AT	
-		1188.0 ft-kips	$M_g =$	Bending moment due to beam weight at 0.3L	
ок	-0.210 ksi	-0.206 ksi	$f_t =$	Top stress at top fiber of beam	
NOT OK	3.442 ksi	3.506 ksi	f _b =	Bottom stress at bottom fiber of the beam	
-	STRESSES AT MIDSPAN				
=		1414.3 ft-kips	M _g =	Bending moment due to beam weight at 0.5L	
ок	-0.034 ksi	-0.050 ksi	$f_t =$	Top stress at top fiber of beam	
NOT OK	3.260 ksi	3.324 ksi	f _b =	Bottom stress at bottom fiber of the beam	
-	HOLD-DOWN FORCES				

assume stress in strand before losses = 0.8f₁₁

.or _u		
layer 1	=	210.4 ksi
layer 2	=	214.8 ksi
layer 3	=	217.0 ksi
layer 4	=	217.0 ksi
layer 5	=	217.0 ksi
layer 6	Ш	219.2 ksi
layer 7	=	219.2 ksi
layer 8	=	219.2 ksi
layer 9	Ш	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	II	221.4 ksi
layer 13	II	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

03303.		
layer 1	=	32.2 kips
layer 2	=	32.9 kips
layer 3	=	33.2 kips
layer 4	=	33.2 kips
layer 5	=	33.2 kips
layer 6	II	33.5 kips
layer 7	=	33.5 kips
layer 8	=	33.5 kips
layer 9	II	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	II	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °
		,

Hold-down force/strand

layer 1	=	4.2 kips/strand
layer 2	=	4.3 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	52.59 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.957 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	3.942 ksi		
for deck	=	2.400 ksi		

Tension:

Load Combination Service III

for the precast beam	=	-0.015 ksi

STRESSES AT MI	<u>DSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{ps}}{A} - \frac{P_{ps}g}{S_t} + \frac{(M_S + M_S)}{S_t}$	$\frac{(M_{w}+M_{\phi})}{2}$		
A S_{i} S_{i}			
Due to permanent loads f_{tg} =	1.877 ksi	1.871 ksi	O
$f_{rg} = \frac{P_{pe}}{A} - \frac{P_{pe}c}{S_r} + \frac{(M_R + M_s)}{S_r} + \frac{(M_R - M_s)}{S_r}$	(M_{LC+1})		
$J_{rg} = \frac{1}{A} - \frac{1}{S_r} + \frac{1}{S_r} + \frac{1}{S_r}$			
Due to permanent loads and transient loads f_{tg}	2.300 ksi	2.294 ksi	O
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ts} = \frac{(M_{to} + I)}{S_{ts}}$	<u>M,)</u>		
Due to permanent loads f_{tc} =	0.048 ksi	0.048 ksi	0
$f_{w} = \frac{(M_{ws} + M_{b} + M_{b})}{S_{w}}$	<u>M _{II+1})</u>		
Due to permanent loads and transient loads f_{tc} =	0.554 ksi	0.554 ksi	O
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1j} = \frac{P_{yx}}{A} + \frac{P_{yx}e}{S_{3}} - \frac{(M_{x} + M_{y})}{S_{3}} - \frac{(M_{w})}{S_{3}}$	$+M_b+0.3*M_{25-1}$		
$S_{ij} = A \cdot S_{ij} \qquad S_{ij} = S_{ij}$	\mathcal{B}_{lr}		
Load Combination Service III f _b =	-0.772 ksi	-0.753 ksi	O

S<u>trength Limit State</u>

POSITIVE	MOMENT	SECTION

M _u = 1.25DC+1.5DW+1.75(LL+IM)	$M_u =$	8381.5 ft-kips		
effective length factor for compression members				
lavor 1	k =	0.24		

layer 1	k =	0.24
layer 2	k =	0.41
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.26
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	C =	5.6 ft-kips

average stress in prestressing steel

layer 1	$f_{ps} =$	258.3 ksi
layer 2	$f_{ps} =$	263.7 ksi
layer 3	$f_{ps} =$	266.4 ksi
layer 4	f _{ps} =	266.4 ksi
layer 5	$f_{ps} =$	266.4 ksi
layer 6	$f_{ps} =$	269.1 ksi
layer 7	f _{ps} =	269.1 ksi
layer 8	f _{ps} =	269.1 ksi
layer 9	$f_{ps} =$	271.9 ksi
layer 10	f _{ps} =	271.9 ksi
layer 11	f _{ps} =	271.9 ksi
layer 12	$f_{ps} =$	271.9 ksi
layer 13	f _{ps} =	271.9 ksi
layer 14	f _{ps} =	271.9 ksi

ok ok

OK OK

nominal flexure resistance

	a =	4.72 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	10622.3 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NEGATIVE MOMENT SECTION

$I_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	4837.2 ft-kips
	a =	6.11 in
	$\Phi M_n =$	4866.5 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

CRITICAL SECTION AT 0.59				
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		

Applied factored normal force at the section Angle of diagonal compressive stresses $\theta = 36.00^{\circ}$ STRAIN IN FLEXURAL TENSION REINFORCMENT

$\frac{M_{a}}{\epsilon}$	1 0.5 M _a 1 0.5 M _a cot #	$A_{pe}f_{pe}$ < 0.002
~	F.A. + E.A	

all losse	5		
layer 1	f _{po} =	143.0 ksi	142.8 ksi
layer 2	f _{po} =	147.4 ksi	147.3 ksi
layer 3	f _{po} =	149.7 ksi	149.6 ksi
layer 4	f _{po} =	149.7 ksi	149.6 ksi
layer 5	f _{po} =	149.7 ksi	
layer 6	f _{po} =	151.8 ksi	
layer 7	f _{po} =	151.9 ksi	
layer 8	f _{po} =	151.9 ksi	
layer 9	f _{po} =		154.1 ksi
layer 10	f _{po} =		154.1 ksi
layer 11	f _{po} =		154.1 ksi
layer 12	f _{po} =		154.1 ksi
layer 13	f _{po} =		154.1 ksi
layer 14	f _{po} =		154.1 ksi

atrain	:	flaso	 tangian

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	ε _x =	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
layer 14	ε, =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.82 in	
$\Delta_g =$	-1.61 in	
$\Delta_s =$	-2.46 in	

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

-0.10 in $\Delta_{sw} =$

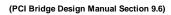
2.15 in 2.15 in Δ= Δ= 4.17 in 4.17 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -0.99 in

ок

Deflection due to fire truck

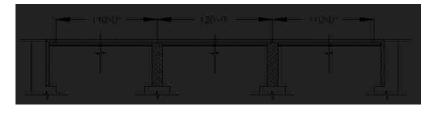

Total Deflection after fire with fire truck

$\Delta_L =$	-1.8262 in
Δ =	2.0422 in

NOT OK

Location: Fire at Critical Positive Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 1-1/2 Hour



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f' _c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

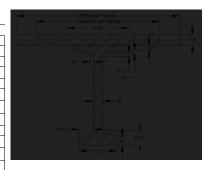
BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f' _c =	6.41 ksi			
Unit Weight	$W_c =$	150.0 pcf			
Overall Beam Length:					
@ end spans	L=	110 ft			
@ center span	L =	119 ft			
Design Spans:	Design Spans:				
Non-composite beam @ end spans	L=	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L=	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

	F	RESTRESSING ST	RANDS	
		ameter of single strand	d =	0.5 in
		Area of single strand	A =	0.153 in^2
Temperature of	Layer			
		layer 1 (bottom)	T =	700.00 °F
		layer 2 layer 3	T = T =	470.00 °F 375.00 °F
		layer 4	T =	345.00 °F
		layer 5	T =	300.00 °F
		layer 6	T =	280.00 °F
		layer 7	T =	260.00 °F
		layer 8 layer 9	T = T =	245.00 °F 68.00 °F
		layer 10	T =	68.00 °F
		layer 11	T =	68.00 °F
		layer 12	T =	68.00 °F
		layer 13	T = T =	68.00 °F 68.00 °F
Ultimate Strengt	h	layer 14	1=	06.00 F
intial =	 277 ksi	layer 1 (bottom)	f _{pu} =	249 ksi
		layer 2	f _{pu} =	266 ksi
		layer 3	f _{pu} =	268 ksi
		layer 4	f _{pu} =	268 ksi
		layer 5	f _{pu} =	271 ksi
		layer 6	f _{pu} =	271 ksi
		layer 7	f _{pu} =	271 ksi
		layer 8	f _{pu} =	271 ksi
		layer 9	f _{pu} =	277 ksi
		layer 10	f _{pu} =	277 ksi
		layer 11	f _{pu} =	277 ksi
		layer 12	f _{pu} =	277 ksi
		layer 13	f _{pu} =	277 ksi
		layer 14	f _{pu} =	277 ksi
Yield Strength				
intial =	250 ksi	layer 1 (bottom)	$f_{py} =$	227 ksi
		layer 2	$f_{py} =$	245 ksi
		layer 3	$f_{py} =$	245 ksi
		layer 4	$f_{py} =$	245 ksi
		layer 5	$f_{py} =$	247 ksi
		layer 6	$f_{py} =$	247 ksi
		layer 7	f _{py} =	247 ksi
		layer 8	f _{py} =	247 ksi
		layer 9	f _{py} =	250 ksi
		layer 10	f _{py} =	250 ksi
		layer 11	f _{py} =	250 ksi
		layer 12	f _{py} =	250 ksi
		layer 13	f _{py} =	250 ksi
Ctuese ! !!t		layer 14	f _{py} =	250 ksi
Stress Limits: before transfer ≤	0.75f (init	al = 202 5)		
Solote dansiel 3	· o. r or _{pu} (mile	*	f -	186.8 ksi
		layer 1 (bottom) layer 2	f _{pi} =	199.3 ksi
		layer 3	f _{pi} =	201.4 ksi
		layer 4	$f_{pi} = f_{pi} =$	201.4 ksi
		layer 5	f _{pi} =	203.4 ksi
		layer 6	f _{pi} =	203.4 ksi
		layer 7	f _{pi} =	203.4 ksi
		layer 8	f _{pi} =	203.4 ksi
		layer 9	f _{pi} =	207.6 ksi
		layer 10	f _{pi} =	207.6 ksi
		layer 11	f _{pi} =	207.6 ksi
		layer 12	f _{pi} =	207.6 ksi
		layer 13	f _{pi} =	207.6 ksi
		layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, ,	,	
layer 1 (bottom)	f _{pe} =	181.7 ksi
layer 2	f _{pe} =	195.7 ksi
layer 3	f _{pe} =	195.7 ksi
layer 4	f _{pe} =	195.7 ksi
layer 5	f _{pe} =	197.7 ksi
layer 6	f _{pe} =	197.7 ksi
layer 7	f _{pe} =	197.7 ksi
layer 8	f _{pe} =	197.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi


E =	26501.6 ksi
E =	27281.1 ksi
E =	26761.5 ksi
E =	26761.5 ksi
E =	26761.5 ksi
E =	26501.6 ksi
E =	26501.6 ksi
E =	26501.6 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

REINFORCING BARSYield Strength $f_y =$ 57.6 ksiModulus of ElasticityE =29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
a of temperature and shrinkage steel (12" width)	A.=	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE E	NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2					
Overall depth of beam	H =	72.0 in					
Moment of Inertia	I=	412,327 in^4					
Distance from centroid to extreme bottom fiber	$y_b =$	41.5 in					
Distance from centroid to extreme top fiber	$y_t =$	30.5 in					
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3					
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3					
Weight	$W_t =$	799.0 plf					
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$							
cast-in-place concrete deck	E _{cs} =	3834 ksi					
precast beam at release	E _{ci} =	4496 ksi					
precast beam at service loads	E _c =	4854 ksi					

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.7900 Transformed flange width 87.7 in = Transformed flange area 657.6 in^2 Transformed haunch width Transformed haunch area 16.6 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b^{)2}$
Beam	767.0 in^2	41.52 in	31,845.8 in^3	201,319 in^4	412,327 in^4	613,646 in^4
Haunch	16.6 in^2	72.25 in	1,198.6 in^3	3,502 in^4	0.33 in^4	3,502 in^4
Deck	657.6 in^2	76.25 in	50,144.7 in^3	225,779 in^4	2,950 in^4	228,728 in^4
Total	1441.2 in^2		83.189.1 in^3		•	845,877 in^4

Total area of Composite Section	A _c =	1441 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	845,877 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	57.72 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	14.28 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	22.28 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	14,654.5 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	59,239.7 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	48.063.2 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight w_{beam} = 0.799 k/f 8 in. deck weight w_{deck}= 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft $X_a =$ distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant OK Number of beams is not less than four N_b = OK Beams are parallel and approximately of the same stiffness Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$ OK OK 1.5 Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.2659
Longitudinal stiffness parameter	K _n =	2,048,407.27 in^4

at center span:

DFM = 0.895 lanes/beam

one design lane loaded:

$$DFM = 0.75 - \left(\frac{N}{14}\right)^{3.4} + \left(\frac{N}{L}\right)^{3.3} + \left(\frac{K_y}{12 * L * e_y^3}\right)^{0.3}$$

0.607 lanes/beam

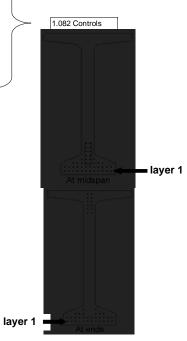
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan			At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
•				
Harped Stra	nd Group (ir	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - $y_{bs})$

y _{bs} =	5.82 in
9 -	35.70 in

0.905 Controls

Sasumed loss = 9.00%	
layer 1	
layer 2	
layer 3	
layer 4	
layer 5	
layer 6	
layer 7	
layer 8	
layer 9	
layer 10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
layer 12 = 28.9 kips layer 13 = 28.9 kips layer 14 = 28.9 kips at midspan at endspan Total prestressing force at release P _i = 1206.8 kips 1215.2 kips Sum of concrete stresses at the center of gravity of prestressing tendors due to prestressing force at transfer and the self-weight f _{cop} = 3.859 ksi 3.896 ksi	
layer 13 = 28.9 kips layer 14 = 28.9 kips at midspan at endspan Total prestressing force at release P _i = 1206.8 kips 1215.2 kips Sum of concrete stresses at the center of gravity of prestressing tendors due to prestressing force at transfer and the self-weight f _{cop} = 3.859 ksi 3.896 ksi	
layer 14 = 28.9 kips at midspan at endspan Total prestressing force at release P _i = 1206.8 kips 1215.2 kips Sum of concrete stresses at the center of gravity of prestressing tendors due to prestressing force at transfer and the self-weight f _{cop} = 3.859 ksi 3.896 ksi	
Total prestressing force at release $P_i = 1206.8 \text{ kips}$ 1215.2 kips Sum of concrete stresses at the center of gravity of prestressing tendors due to prestressing force at transfer and the self-weight $f_{cop} = 3.859 \text{ ksi}$ 3.896 ksi	
Total prestressing force at release $P_i = 1206.8 \text{ kips}$ 1215.2 kips Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight $f_{cop} = 3.859 \text{ ksi}$ 3.896 ksi	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight $f_{cop} = 3.859 \text{ ksi}$ 3.896 ksi	
of the member at sections of maximum moment	
Loss due to shortening at midspan at endspan	
layer 1 $\Delta f_{pES} =$ 22.7 ksi 23.0 ksi	
layer 2 $\Delta f_{pES} = 23.4 \text{ ksi}$ 23.6 ksi	
layer 3 $\Delta f_{pES} =$ 23.0 ksi 23.2 ksi	
layer 4 $\Delta f_{PES} = 23.0 \text{ ksi}$ 23.2 ksi	
layer 5 $\Delta f_{pES} = 23.0 \text{ ksi}$	
layer 6 $\Delta f_{pES} = 22.7 \text{ ksi}$	
layer 7 $\Delta f_{pES} = 22.7 \text{ ksi}$	
layer 8 $\Delta f_{pES} = 22.7 \text{ ksi}$	
layer 9 $\Delta f_{pES} =$ 22.5 ksi	
layer 10 $\Delta f_{pES} =$ 22.5 ksi	
layer 11 $\Delta f_{pES} =$ 22.5 ksi	
layer 12 $\Delta f_{pES} =$ 22.5 ksi	
layer 13 $\Delta f_{pES} =$ 22.5 ksi	
layer 14 $\Delta f_{PES} =$ 22.5 ksi	
SHRINKAGE	
	lative humidity = 7
CREEP OF CONCRETE	
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying $\Delta f_{cnh} = 2.358 \text{ ksi}$	

CREEP OF CONCRETE						
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as $f_{\rm cgp}$	$\Delta f_{cdo} =$	2.358 ksi				
		at midspan	at endspan			
loss due to creep	$\Delta f_{pCR} =$	29.8 ksi	30.2 ksi			

	OFFICE	TKESSIN	IG STRANDS	-t andone
loss due to relaxation after transfer	1	A 4	at midspan	at endspar
	layer 1	$\Delta f_{pR2} =$	1.1 ksi	1.1 ksi
	layer 2	$\Delta f_{pR2} =$	1.0 ksi	1.0 ksi
	layer 3	$\Delta f_{pR2} =$	1.1 ksi	1.0 ksi
	layer 4	$\Delta f_{pR2} =$	1.1 ksi	1.0 ksi
	layer 5	$\Delta f_{pR2} =$	1.1 ksi	
	layer 6	$\Delta f_{pR2} =$	1.1 ksi	
	layer 7	$\Delta f_{pR2} =$	1.1 ksi	
	layer 8	$\Delta f_{pR2} =$	1.1 ksi	
	layer 9	$\Delta f_{pR2} =$		1.1 ksi
	layer 10	-		1.1 ksi
	layer 11	$\Delta f_{pR2} =$		1.1 ksi
	layer 12	$\Delta f_{pR2} =$		1.1 ksi
	layer 13	$\Delta f_{pR2} =$		1.1 ksi
	layer 14	$\Delta f_{pR2} =$		1.1 ksi
TOTAL	LOSSES	AT TRAN	ISFER	
total loss $\Delta f_{\text{DES}} = \Delta f_{\text{Di}}$	LOUGE	AI IIIAI	IOI LIK	
stress in tendons after transfer $f_{\text{ot}} = f_{\text{pi}} - \Delta f_{\text{c}}$	ni	Г	at midspan	at endspar
F. F.	layer 1	f _{pt} =	164.1 ksi	163.9 ksi
	layer 2	f _{pt} =	175.9 ksi	175.7 ksi
	layer 3	f _{pt} =	178.4 ksi	178.2 ksi
	layer 4	f _{pt} =	178.4 ksi	178.2 ksi
	layer 5	f _{pt} =	180.5 ksi	
	layer 6	f _{pt} =	180.7 ksi	
	layer 7	f _{pt} =	180.7 ksi	
	layer 8	f _{pt} =	180.7 ksi	
	layer 9	f _{pt} =		185.1 ksi
	layer 10	f _{pt} =		185.1 ksi
	layer 11	f _{pt} =		185.1 ksi
	layer 12	f _{pt} =		185.1 ksi
	layer 13	f _{pt} =		185.1 ksi
	layer 14	f _{pt} =		185.1 ksi
force per strand = f_{pt}^* strand area	•		at midspan	at endspa
	layer 1	=	25.1 kips	25.1 kips
	layer 2	=	26.9 kips	26.9 kips
	layer 3	=	27.3 kips	27.3 kips
	layer 4	=	27.3 kips	27.3 kips
	layer 5	=	27.6 kips	
	layer 6	=	27.6 kips	
	layer 7	=	27.6 kips	
	layer 8	=	27.6 kips	
	layer 9	=		28.3 kips
	layer	- 1		20.5 Kips
	layer 10	=		28.3 kips

layer 11

layer 12

layer 13 = layer 14 = Total prestressing force after transfer P_i =

28.3 kips

28.3 kips

28.3 kips 28.3 kips

1182.0 kips

1172.4 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$			at midspan	at endspan
la	ayer 1	% =	12.2%	12.3%
	ayer 2	% =	11.7%	11.9%
	ayer 3	% =	11.4%	11.5%
	ayer 4	% =	11.4%	11.5%
la	ayer 5	% =	11.3%	
la	ayer 6	% =	11.2%	
	ayer 7	% =	11.2%	
	ayer 8	% =	11.2%	
la	ayer 9	% =		10.8%
	er 10	% =		10.8%
lay	/er 11	% =		10.8%
	/er 12	% =		10.8%
	/er 13	% =		10.8%
	er 14/	% =		10.8%
TOTAL LOSSI			CE LOADS	
Total Losses			at midspan	at endspan
	ayer 1	$\Delta f_{pT} =$	60.1 ksi	60.4 ksi
	ayer 2	$\Delta f_{pT} =$	60.8 ksi	61.0 ksi
	ayer 3	$\Delta f_{pT} =$	60.4 ksi	60.6 ksi
	ayer 4	$\Delta f_{pT} =$	60.4 ksi	60.6 ksi
	ayer 5	$\Delta f_{pT} =$	60.4 ksi	
	ayer 6	$\Delta f_{pT} =$	60.1 ksi	
	ayer 7	$\Delta f_{pT} =$	60.1 ksi	
	ayer 8	$\Delta f_{pT} =$	60.1 ksi	
	ayer 9	$\Delta f_{DT} =$		59.9 ksi
	er 10	$\Delta f_{pT} =$		59.9 ksi
	/er 11	$\Delta f_{pT} =$		59.9 ksi
	/er 12	$\Delta f_{pT} =$		59.9 ksi
	/er 13	$\Delta f_{pT} =$		59.9 ksi
	/er 14	$\Delta f_{pT} =$		59.9 ksi
Stress in tendon after all losses = f _{pi} -Δf _{pt}		ρ.	at midspan	at endspan
	ayer 1	f _{pe} =	126.7 ksi	126.5 ksi
	ayer 2	f _{pe} =	138.5 ksi	138.3 ksi
	ayer 3	f _{pe} =	141.0 ksi	140.8 ksi
	ayer 4	f _{pe} =	141.0 ksi	140.8 ksi
	ayer 5	f _{pe} =	143.1 ksi	
	ayer 6	f _{pe} =	143.3 ksi	
	ayer 7	f _{pe} =	143.3 ksi	
	ayer 8	f _{pe} =	143.3 ksi	
	ayer 9	f _{pe} =		147.7 ksi
	er 10	f _{pe} =		147.7 ksi
	/er 11	f _{pe} =		147.7 ksi
	/er 12	f _{pe} =		147.7 ksi
•	/er 13	f _{pe} =		147.7 ksi
	/er 14	f _{pe} =		147.7 ksi
check prestressing stress limit at service limit			r*fpy	1
-	ayer 1	=	181.7 ksi	
	ayer 2	=	195.7 ksi	7
	ayer 3	=	195.7 ksi	┪
			195.7 ksi	┪
la		=		
la Ia	ayer 4	=		
la la la	ayer 4 ayer 5	=	197.7 ksi	
la la la la	ayer 4 ayer 5 ayer 6	=	197.7 ksi 197.7 ksi	
la la la la la	ayer 4 ayer 5 ayer 6 ayer 7	=	197.7 ksi 197.7 ksi 197.7 ksi	
le le le le le	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8	= = = = = = = = = = = = = = = = = = = =	197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi	
le le le le le le	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9	= = = =	197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi	
la la la la lay	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9 ver 10	= = = = = =	197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi	
la la la la lay lay	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9 ver 10 ver 11	= = = = = =	197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	
la la la la lay lay lay	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9 /er 10 /er 11	= = = = = = = = = = = = = = = = = = = =	197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	
la la la la lay lay lay	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9 ver 10 ver 11	= = = = = =	197.7 ksi 197.7 ksi 197.7 ksi 197.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	

OK OK OK OK

OK OK OK

OK OK OK OK OK

,			,			
torce	per	strand	$= I_{\alpha}$.^stra	na	area

		at midspan	at endspan
layer 1	=	19.4 kips	19.4 kips
layer 2	=	21.2 kips	21.2 kips
layer 3	=	21.6 kips	21.5 kips
layer 4	=	21.6 kips	21.5 kips
layer 5	=	21.9 kips	
layer 6	=	21.9 kips	
layer 7	=	21.9 kips	
layer 8	=	21.9 kips	
layer 9	=		22.6 kips
layer 10	=		22.6 kips
layer 11	=		22.6 kips
layer 12	=		22.6 kips
layer 13	=		22.6 kips
layer 14	=		22.6 kips
•		at midspan	at endspan

Total prestressing force after all losses $P_{pe} = 921.1 \text{ kips}$ 929.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$

layer 1	% =	32.2%	32.3%
layer 2	% =	32.5%	32.7%
layer 3	% =	32.3%	32.4%
layer 4	% =	32.3%	32.4%
layer 5	% =	32.3%	
layer 6	% =	32.2%	
layer 7	% =	32.2%	
layer 8	% =	32.2%	
layer 9	% =		32.1%
layer 10	% =		32.1%
layer 11	% =		32.1%
layer 12	% =		32.1%

 layer 13
 % =
 32.1%

 layer 14
 % =
 32.1%

 Average final losses, %
 % =
 32.3%
 32.2%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	$f_{ci} =$	3.300 ksi	
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*\f'_ci	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	II	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	22.01 in
Eccentricity at end of beam:	e =	20.97 in

Calcs for eccentricity (see 9.6.7.2)

οк

ок

$$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t} \qquad \qquad f_\delta = \frac{P_i}{A} + \frac{P_i e}{S_\delta} - \frac{M_g}{S_\delta}$$

$$\frac{\text{at midspan}}{\text{Top stress at top fiber of beam}} \qquad \frac{\text{f}_t}{f_b} = \frac{-0.054 \text{ ksi}}{3.260 \text{ ksi}} \qquad \frac{-0.055 \text{ ksi}}{3.260 \text{ ksi}}$$

STRESSES AT HARP POINT				
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	-0.261 ksi	-0.271 ksi	ok
Bottom stress at bottom fiber of the beam	f _b =	3.506 ksi	3.415 ksi	NOT OK
STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	-0.120 ksi	-0.095 ksi	ok
Bottom stress at bottom fiber of the beam	f _b =	3.324 ksi	3.232 ksi	NOT OK
HOLD-DOWN FORCES				

assume stress in strand before losses = 0.8f₁₁

,.o. _u		
layer 1	=	199.3 ksi
layer 2	=	212.6 ksi
layer 3	II	214.8 ksi
layer 4	=	214.8 ksi
layer 5	=	217.0 ksi
layer 6	II	217.0 ksi
layer 7	=	217.0 ksi
layer 8	II	217.0 ksi
layer 9	II	221.4 ksi
layer 10	II	221.4 ksi
layer 11	II	221.4 ksi
layer 12	II	221.4 ksi
layer 13	II	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

03303.		
layer 1	=	30.5 kips
layer 2	=	32.5 kips
layer 3	=	32.9 kips
layer 4	=	32.9 kips
layer 5	=	33.2 kips
layer 6	=	33.2 kips
layer 7	=	33.2 kips
layer 8	=	33.2 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.0 kips/strand
layer 2	=	4.3 kips/strand
layer 3	=	4.3 kips/strand
layer 4	=	4.3 kips/strand
layer 5	II	4.4 kips/strand
layer 6	II	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	II	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	II	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	ı	4.4 kips/strand
Total hold-down force	=	52.14 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.885 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	3.846 ksi	
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

-0.015 ksi for the precast beam =

STRESSES AT MID	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{yd}}{A} - \frac{P_{yd}\theta}{S_t} + \frac{(\mathcal{U}_g + \lambda \delta_s)}{S_t} + \dots$	$\frac{(M_w + M_b)}{S_{tg}}$		
Due to permanent loads f _{tg} =	1.846 ksi	1.838 ksi	ок
$f_{rg} = \frac{P_{pe}}{A} - \frac{P_{pe}c}{S_r} + \frac{(M_R + M_S)}{S_r} + \frac{(M_{\pi})}{S_r}$	$\frac{+M_{s})}{g} + \frac{(M_{LI,+1})}{\Sigma_{ig}}$		
Due to permanent loads and transient loads $f_{tg} =$	2.275 ksi	2.266 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(\boldsymbol{M}_{tr} + \boldsymbol{M}_{b})}{S_{tr}}$			
Due to permanent loads $f_{tc} =$	0.050 ksi	0.050 ksi	ок
$f_{x} = \frac{(M_{xx} + M_{b} + M_{LL+1})}{S_{xx}}$			
Due to permanent loads and transient loads $f_{tc} =$	0.578 ksi	0.578 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1q} = \frac{P_{ye}}{A} + \frac{P_{we}e}{S_3} - \frac{(M_g + M_g)}{S_3} - \frac{(M_{we} + M_g)}{S_3}$	$-M_b + 0.3*M_{2L+1})$		
$I_{ij} = I_{ij} = I_{ij} = I_{ij} = I_{ij} = I_{ij}$	S _{Ic}		
Load Combination Service III f _b =	-0.974 ksi	-0.943 ksi	ок

Strength Limit State

POSITIVE	MOMENT	SECTION
PUSITIVE	INICINIEI	SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips effective length factor for compression members

layer 1	K =	0.26
layer 2	k =	0.24
layer 3	k =	0.26
layer 4	k =	0.26
layer 5	k =	0.26
layer 6	k =	0.26
layer 7	k =	0.26
layer 8	k =	0.26
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	C =	5.5 ft-kips

average stress in prestressing steel

layer 1	f _{ps} =	244.4 ksi
layer 2	f _{ps} =	260.7 ksi
layer 3	$f_{ps} =$	263.4 ksi
layer 4	$f_{ps} =$	263.4 ksi
layer 5	f _{ps} =	266.1 ksi
layer 6	$f_{ps} =$	266.1 ksi
layer 7	f _{ps} =	266.1 ksi
layer 8	f _{ps} =	266.1 ksi
layer 9	$f_{ps} =$	271.6 ksi
layer 10	f _{ps} =	271.6 ksi
layer 11	$f_{ps} =$	271.6 ksi
layer 12	$f_{ps} =$	271.6 ksi
layer 13	f _{ps} =	271.6 ksi
layer 14	f _{ps} =	271.6 ksi

OK OK

OK OK

nominal flexure resistance

	a =	4.64 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	10386.7 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NEGATIVE MOMENT SECTION

= 1.25DC+1.5DW+1.75(LL+IM)	M _u =	4837.2 ft-kips
	a =	6.26 in
	$\Phi M_n =$	4861.4 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

Design					
CRITICAL SECTION AT 0.59					
V _u = 1.25DC+1.5DW+1.75(LL+IM)	$V_u =$	405.0 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips			
or					
V _u = 1.25DC+1.5DW+1.75(LL+IM)	$V_u =$	364.8 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2877.0 ft-kips			
max shear	V _u =	405.0 kips			
max moment	$M_u =$	2877.0 ft-kips			
Shear depth	d _v =	73.19 in			
Applied factored normal force at the section	N., =	0			

Angle of diagonal compressive stresses $\theta = 36.00^{\circ}$ STRAIN IN FLEXURAL TENSION REINFORCMENT

- -	$\frac{M_a}{d_s} + 0.5 N_a + 0.5 N_s \cot \theta$	<i>A_{pe}j_{pe}</i> ≤ 0.002
٦-	F, A, + E, A,,	20.002

layer 1	$f_{po} =$	130.3 ksi	130.1 ksi
layer 2	f _{po} =	142.2 ksi	142.0 ksi
layer 3	f _{po} =	144.7 ksi	144.5 ksi
layer 4	f _{po} =	144.7 ksi	144.5 ksi
layer 5	f _{po} =	146.8 ksi	
layer 6	f _{po} =	147.0 ksi	
layer 7	f _{po} =	147.0 ksi	
layer 8	$f_{po} =$	147.0 ksi	
layer 9	$f_{po} =$		151.3 ksi
layer 10	f _{po} =		151.3 ksi
layer 11	f _{po} =		151.3 ksi
layer 12	$f_{po} =$		151.3 ksi
layer 13	f _{po} =		151.3 ksi
layer 14	f _{po} =		151.3 ksi

atrain	:	flaso	 tangian

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	ε _x =	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.94 in	
$\Delta_g =$	-1.74 in	
$\Delta_s =$	-2.66 in	

Deflection due to total self weight

-0.44 in $\Delta_{sw} =$

Total Deflection at transfer Total Deflection at erection

2.02 in 2.02 in Δ= Δ= 3.92 in 3.92 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -1.07 in

ок

Deflection due to fire truck

Total Deflection after fire with fire truck

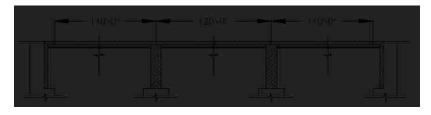
$\Delta_L =$	-1.9771 in
Δ =	1.5553 in

NOT OK

Location: Fire at Critical Positive Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 2 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	4 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	6.17 ksi		
Unit Weight	$W_c =$	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

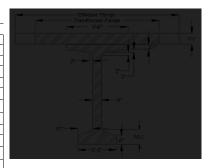
F	PRESTRESSING ST	RANDS	
	iameter of single strand	d =	0.5 in
-	Area of single strand	A =	0.153 in^2
Temperature of Layer	layer 1 (bottom)	T =	870.00 °F
	layer 2	T =	630.00 °F
	layer 3	T =	495.00 °F
	layer 4	<u>T</u> =	470.00 °F
	layer 5 layer 6	T = T =	440.00 °F
	layer 7	T =	400.00 °F 375.00 °F
	layer 8	T =	350.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11 layer 12	T = T =	68.00 °F 68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 277 ksi	layer 1 (bottom)	f _{pu} =	224 ksi
	layer 2	f _{pu} =	255 ksi
	layer 3	f _{pu} =	266 ksi
	layer 4	f _{pu} =	266 ksi
	layer 5	f _{pu} =	266 ksi
	layer 6	f _{pu} =	268 ksi
	layer 7	f _{pu} =	268 ksi
	layer 8	f _{pu} =	268 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
Yield Strength	layer 14	f _{pu} =	277 ksi
intial = 250 ksi	layer 1 (bottom)	f _{py} =	202 ksi
	layer 2	f _{py} =	232 ksi
	layer 3	f _{py} =	245 ksi
	layer 4	f _{py} =	245 ksi
	layer 5	f _{py} =	245 ksi
	layer 6	f _{pv} =	245 ksi
	layer 7	f _{py} =	245 ksi
	layer 8	f _{py} =	247 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:	ii-I 000 5)		
before transfer ≤ 0.75f _{pu} (init	i i		400.01
	layer 1 (bottom)	f _{pi} =	168.2 ksi
	layer 2	f _{pi} =	191.0 ksi
	layer 3	f _{pi} =	199.3 ksi
	layer 4	f _{pi} =	199.3 ksi
	layer 5	f _{pi} =	199.3 ksi
	layer 6	f _{pi} =	201.4 ksi
	layer 7 layer 8	f _{pi} =	201.4 ksi
	·	f _{pi} =	201.4 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10 layer 11	f _{pi} =	207.6 ksi 207.6 ksi
		f _{pi} =	
	layer 12	f _{pi} =	207.6 ksi 207.6 ksi
	layer 13 layer 14	f _{pi} =	207.6 KSI 207.6 KSi
	layer 14	f _{pi} =	201.0 NSI

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, P) (
layer 1 (bottom)	f _{pe} =	161.7 ksi
layer 2	f _{pe} =	185.7 ksi
layer 3	f _{pe} =	195.7 ksi
layer 4	f _{pe} =	195.7 ksi
layer 5	f _{pe} =	195.7 ksi
layer 6	f _{pe} =	195.7 ksi
layer 7	f _{pe} =	195.7 ksi
layer 8	f _{pe} =	197.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{ne} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

layer 1 (bottom)	E =	26241.8 ksi
layer 2	E =	26761.5 ksi
layer 3	E =	27281.1 ksi
layer 4	E =	27281.1 ksi
layer 5	E =	27021.3 ksi
layer 6	E =	27021.3 ksi
layer 7	E =	26761.5 ksi
layer 8	E =	26761.5 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi	
Modulus of Elasticity	E =	29000.0 ksi	

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM			
Area of cross-section of beam	A =	767.0 in^2	
Overall depth of beam	H =	72.0 in	
Moment of Inertia	I=	363,218 in^4	
Distance from centroid to extreme bottom fiber	y _b =	43.7 in	
Distance from centroid to extreme top fiber	y _t =	28.3 in	
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3	
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3	
Weight	$W_t =$	799.0 plf	
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$			
cast-in-place concrete deck	E _{cs} =	3834 ksi	
precast beam at release	E _{ci} =	4496 ksi	
precast beam at service loads	E _c =	4762 ksi	

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_c n = 0.8052 Transformed flange width 89.4 in = Transformed flange area 670.3 in^2 Transformed haunch width 33.8 in Transformed haunch area 16.9 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	ı	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	43.67 in	33,494.9 in^3	180,716 in^4	363,218 in^4	543,934 in^4
Haunch	16.9 in^2	72.25 in	1,221.6 in^3	2,960 in^4	0.33 in^4	2,960 in^4
Deck	670.3 in^2	76.25 in	51,110.7 in^3	199,002 in^4	2,950 in^4	201,951 in^4
Total	1454.2 in^2		85.827.2 in^3		•	748.845 in^4

Total area of Composite Section	A _c =	1454 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	748,845 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	59.02 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	12.98 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	20.98 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	12,688.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	57,690.9 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	44,329.5 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck}= 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips P_{live}= Fire truck live load back load (Point B) 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft $x_a =$ distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant OK Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$ OK ОК 1.5 Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.2420
Longitudinal stiffness parameter	K _a =	1,948,702.11 in^4

at center span: DFM = 0.891 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{X}{14}\right)^{0.4} * \left(\frac{X}{L}\right)^{0.3} * \left(\frac{X_{s}}{12*L*e_{s}^{2}}\right)^{0.1}$$

$$| DFM = |$$

0.604 lanes/beam

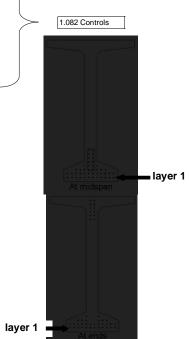
Distribution Factor for Shear Force

both end spans and center span:

$$DHV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan	At Ends No. of Distance from Bottom		
from bottom	No. of	Distance from Bottom			
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	=	
layer 6	2	12	-	-	
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	=	2	70	
Harped Stra	ınd Group (ir	ncluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6					
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e =	37.85 in

0.905 Controls

ELASTIC SHORTE	NING			
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1	=	23.4 kips		
layer 2	=	26.6 kips		
layer 3	=	27.7 kips		
layer 4	=	27.7 kips		
layer 5	=	27.7 kips		
layer 6	=	28.0 kips		
layer 7	=	28.0 kips		
layer 8	=	28.0 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
	H			_
		at midspan	at endspan	
Total prestressing force at release	P _i =	1155.8 kips	1168.4 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	4.327 ksi	4.393 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	25.3 ksi	25.6 ksi	
layer 2	$\Delta f_{pES} =$	25.8 ksi	26.1 ksi	
layer 3	$\Delta f_{pES} =$	26.3 ksi	26.7 ksi	
layer 4	$\Delta f_{pES} =$	26.3 ksi	26.7 ksi	
layer 5	$\Delta f_{pES} =$	26.0 ksi		
layer 6	$\Delta f_{pES} =$	00.01.		
	-ipES -	26.0 ksi		
layer 7		25.8 ksi		
layer 7	$\Delta f_{pES} =$			
•	$\Delta f_{pES} = \Delta f_{pES} =$	25.8 ksi	25.4 ksi	
layer 8	$\Delta f_{pES} = $ $\Delta f_{pES} = $ $\Delta f_{pES} = $	25.8 ksi	25.4 ksi 25.4 ksi	
layer 8 layer 9	$\Delta f_{pES} = $ $\Delta f_{pES} = $ $\Delta f_{pES} = $	25.8 ksi		
layer 8 layer 9 layer 10	$\Delta f_{pES} =$	25.8 ksi	25.4 ksi	
layer 8 layer 9 layer 10 layer 11	$\begin{array}{l} \Delta f_{pES} = \\ \end{array}$	25.8 ksi	25.4 ksi 25.4 ksi	
layer 8 layer 9 layer 10 layer 11 layer 12	$\begin{split} \Delta f_{pES} &= \\ \Delta $	25.8 ksi	25.4 ksi 25.4 ksi 25.4 ksi	
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	$\begin{split} \Delta f_{pES} &= \\ \Delta $	25.8 ksi	25.4 ksi 25.4 ksi 25.4 ksi 25.4 ksi	
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	$\begin{split} \Delta f_{pES} &= \\ \Delta $	25.8 ksi	25.4 ksi 25.4 ksi 25.4 ksi 25.4 ksi	
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$\begin{split} &\Delta f_{pES} = \\ \end{split}$	25.8 ksi	25.4 ksi 25.4 ksi 25.4 ksi 25.4 ksi	assume relative humidity = 70%
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 SHRIN Shrinkage = (17-0.15*Relative Humidity)	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES}$	25.8 ksi 25.8 ksi 6.5 ksi	25.4 ksi 25.4 ksi 25.4 ksi 25.4 ksi	assume relative humidity = 70%
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 SHRIN Shrinkage = (17-0.15*Relative Humidity) CREEP OF	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES}$	25.8 ksi 25.8 ksi 6.5 ksi	25.4 ksi 25.4 ksi 25.4 ksi 25.4 ksi	assume relative humidity = 70%
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 SHRIN Shrinkage = (17-0.15*Relative Humidity)	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES}$	25.8 ksi 25.8 ksi 6.5 ksi	25.4 ksi 25.4 ksi 25.4 ksi 25.4 ksi	assume relative humidity = 70%

at midspan 32.1 ksi

loss due to creep $\Delta f_{pCR} =$

at endspan 32.9 ksi

RELAXATION OF PRESTRESSING STRANDS loss due to relaxation after transfer at endspan 0.7 ksi 0.6 ksi 0.6 ksi 0.5 ksi 0.5 ksi 0.5 ksi 0.5 ksi 0.5 ksi 0.6 ksi TOTAL LOSSES AT TRANSFER total loss $\Delta f_{pES} = \Delta f_{pi}$

stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$

force per strand = f_{pt}^* strand area

dons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 2	f _{pt} =	142.9 ksi	142.5 ksi
layer 2	2 f _{pt} =	165.2 ksi	164.8 ksi
layer 3	$f_{pt} =$	173.0 ksi	172.6 ksi
layer 4	4 f _{pt} =	173.0 ksi	172.6 ksi
layer 5	f _{pt} =	173.3 ksi	
layer 6	f _{pt} =	175.4 ksi	
layer 7	$f_{pt} =$	175.6 ksi	
layer 8	$f_{pt} =$	175.6 ksi	
layer 9	f _{pt} =		182.2 ksi
layer 10	f _{pt} =		182.2 ksi
layer 1	f _{pt} =		182.2 ksi
layer 12	2 f _{pt} =		182.2 ksi
layer 13	$f_{pt} =$		182.2 ksi
layer 14	1 f _{pt} =		182.2 ksi
and = f _{pt} *strand area		at midspan	at endspan
layer '	1 =	21.9 kips	21.8 kips
layer 2	2 =	25.3 kips	25.2 kips
layer 3	3 =	26.5 kips	26.4 kips
layer 4	4 =	26.5 kips	26.4 kips
layer 5	5 =	26.5 kips	
layer 6	6 =	26.8 kips	
layer 7	7 =	26.9 kips	
layer 8	3 =	26.9 kips	
layer 9	=		27.9 kips
layer 10) =		27.9 kips
layer 1	1 =		27.9 kips
layer 12	2 =		27.9 kips
layer 13	3 =		27.9 kips
layer 14	4 =		27.9 kips
Total prestressing force after transfe	r P _i =	1098.6 kips	1110.0 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	15.0%	15.2%
layer 2	% =	13.5%	13.7%
layer 3	% =	13.2%	13.4%
layer 4	% =	13.2%	13.4%
layer 5	% =	13.0%	
layer 6	% =	12.9%	
layer 7	% =	12.8%	
layer 8	% =	12.8%	
layer 9	% =		12.2%
layer 10	% =		12.2%
layer 11	% =		12.2%
layer 12	% =		12.2%
layer 13	% =		12.2%
layer 14	% =		12.2%
TOTAL LOSSES A	T SERVI	CE LOADS	
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	64.5 ksi	64.9 ksi
layer 2	$\Delta f_{pT} =$	65.0 ksi	65.4 ksi
layer 3	$\Delta f_{pT} =$	65.5 ksi	65.9 ksi
layer 4	$\Delta f_{pT} =$	65.5 ksi	65.9 ksi
layer 5	$\Delta f_{pT} =$	65.3 ksi	
layer 6	$\Delta f_{pT} =$	65.3 ksi	
layer 7	$\Delta f_{pT} =$	65.0 ksi	
layer 8	$\Delta f_{pT} =$	65.0 ksi	
layer 9	$\Delta f_{pT} =$		64.6 ksi
layer 10	$\Delta f_{pT} =$		64.6 ksi
layer 11	$\Delta f_{pT} =$		64.6 ksi
layer 12	$\Delta f_{pT} =$		64.6 ksi
layer 13	$\Delta f_{pT} =$		64.6 ksi
layer 14	$\Delta f_{pT} =$		64.6 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	103.6 ksi	103.3 ksi
layer 2	f _{pe} =	126.0 ksi	125.6 ksi
layer 3	f _{pe} =	133.8 ksi	133.4 ksi
layer 4	f _{pe} =	133.8 ksi	133.4 ksi
layer 5	f _{pe} =	134.0 ksi	
layer 6	f _{pe} =	136.1 ksi	
layer 7	f _{pe} =	136.4 ksi	
layer 8	f _{pe} =	136.4 ksi	
layer 9	f _{pe} =		143.0 ksi
layer 10	f _{pe} =		143.0 ksi
.,	þe		
layer 11	f _{pe} =		143.0 ksi
	-		143.0 ksi
layer 11	f _{pe} =		143.0 ksi 143.0 ksi
layer 11 layer 12	f _{pe} = f _{pe} = f _{pe} =		143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state:	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	3*fpy	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1	$f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = 0.8$	161.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2	$f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = 0.8$	161.7 ksi 185.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3	$f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = 0.8$	161.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2	$f_{pe} = f_{pe} = f$	161.7 ksi 185.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3	$f_{pe} = f_{pe} = f$	161.7 ksi 185.7 ksi 195.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3	$f_{pe} = f_{pe} = f$	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state. layer 1 layer 2 layer 3 layer 4	$f_{pe} = f_{pe} = f$	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state. layer 1 layer 2 layer 3 layer 4 layer 5	$f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = f_{pe} = 0.8$ $= = = = = = = = = = = = = = = = = = = $	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state. layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{array}{c} f_{pe} = \\ \vdots \\ f_{pe} = \\ \vdots \\$	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state. layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{array}{c} f_{pe} = \\ \vdots \\ f_{pe} = \\ \vdots \\$	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state. layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 7	$\begin{array}{c} f_{pe} = \\ \vdots \\ f_{pe} = \\ \vdots \\$	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9	f _{pe} = c f _{pe}	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 199.7 ksi	143.0 ksi 143.0 ksi
layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	f _{pe} = c fpe ≤ 0.8 = = = = = = = = = = = = = = = = = = =	161.7 ksi 185.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 195.7 ksi 197.7 ksi 199.7 ksi	143.0 ksi 143.0 ksi

OK

force p	oer:	strand	$= f_{ne}$	*strand	area
---------	------	--------	------------	---------	------

		at midspan	at endspan
layer 1	=	15.9 kips	15.8 kips
layer 2	=	19.3 kips	19.2 kips
layer 3	=	20.5 kips	20.4 kips
layer 4	=	20.5 kips	20.4 kips
layer 5	=	20.5 kips	
layer 6	=	20.8 kips	
layer 7	=	20.9 kips	
layer 8	=	20.9 kips	
layer 9	=		21.9 kips
layer 10	=		21.9 kips
layer 11	=		21.9 kips
layer 12	=		21.9 kips
layer 13	=		21.9 kips
layer 14	=		21.9 kips
		at midspan	at endspan
	,		

Total prestressing force after all losses $P_{pe} = 833.3 \text{ kips}$ 845.9 kips

Final losses, $\% = (\Delta f_{pT})/(f_{pi})$

<i>(</i>)			
layer 1	% =	38.4%	38.6%
layer 2	% =	38.7%	38.9%
layer 3	% =	39.0%	39.2%
layer 4	% =	39.0%	39.2%
layer 5	% =	38.8%	
layer 6	% =	38.8%	
layer 7	% =	38.7%	
layer 8	% =	38.7%	
layer 9	% =		38.4%
layer 10	% =		38.4%
layer 11	% =		38.4%
layer 12	% =		38.4%
layer 13	% =		38.4%
layer 14	% =		38.4%
Average final losses, %	% =	38.7%	38.7%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	f _{ci} =	3.300 ksi	
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION Transfer Length = 60*(strand diameter) =

2.5 ft Bending moment at transfer length M_g = 116.4 ft-kips center of 12 strands to top fiber of beam at the end 7.00 in = 11.00 in center of 12 strands to bottom fiber of beam at the harp point = center of 12 strands and top fiber of beam at transfer length 10.78 in = center of gravity of 32 strands and bottom fiber of beam 3.88 in center of gravity of all strands and the bottom fiber of beam at 19.51 in = center of gravity of all strands and the bottom fiber of beam at the 20.55 in Eccentricity of the strand group at transfer length: 24.16 in $e_h =$ Eccentricity at end of beam: 23.12 in e =

Calcs for eccentricity (see 9.6.7.2)

ок

ок

STRESSES AT	HARP	POINT		
Bending moment due to beam weight at 0.3L	M _g =	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	-0.340 ksi	-0.353 ksi	OK
Bottom stress at bottom fiber of the beam	f _b =	3.484 ksi	3.308 ksi	NOT OK
STRESSES A	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	-0.229 ksi	-0.177 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	3.302 ksi	3.126 ksi	NOT OK
HOLD-DOWN FOR	CES	1		
me stress in strand before losses = 0.8f			_	

.or _u		
layer 1	=	179.4 ksi
layer 2	=	203.7 ksi
layer 3	=	212.6 ksi
layer 4	=	212.6 ksi
layer 5	=	212.6 ksi
layer 6	=	214.8 ksi
layer 7	=	214.8 ksi
layer 8	=	214.8 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

03303.		
layer 1	=	27.4 kips
layer 2	=	31.2 kips
layer 3	=	32.5 kips
layer 4	=	32.5 kips
layer 5	=	32.5 kips
layer 6	=	32.9 kips
layer 7	=	32.9 kips
layer 8	=	32.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	3.6 kips/strand
layer 2	=	4.1 kips/strand
layer 3	=	4.3 kips/strand
layer 4	=	4.3 kips/strand
layer 5	=	4.3 kips/strand
layer 6	=	4.3 kips/strand
layer 7	=	4.3 kips/strand
layer 8	=	4.3 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	51.52 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.777 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	3.702 ksi		
for deck	=	2.400 ksi		

Tension:

Load Combination Service III

for the precast beam = -0.015 ksi

STRESSES AT N	<u>IIDSPAN</u>	
Compression stresses at top fiber of beam	at midspan at endspan	
$f_t = \frac{P_{gst}}{A} - \frac{P_{gst}\theta}{S_t} + \frac{(M_g + M_s)}{S_t}$	$+\frac{(\boldsymbol{M}_{w}+\boldsymbol{M}_{1})}{S_{t_{2}}}$	
Due to permanent loads f _{tg}	= 1.820 ksi 1.806 ksi	ок
$f_{xy} = \frac{P_{yx}}{A} - \frac{P_{yx}c}{S_x} + \frac{(M_x + M_y)}{S_x} + \frac{(M_y + M_y)}{S_x}$	$\frac{M_{nn}+M_{n}}{S_{nn}}+\frac{(M_{EL+1})}{S_{nn}}$	
1 '3	= 2.260 ksi 2.246 ksi at midspan at endspan	ок
Compression stresses at top fiber of deck $f_{\it kc} = \frac{(M_{\it kc} + S_{\it kc})}{S_{\it kc}}$		
Due to permanent loads f _{tc}	= 0.054 ksi 0.054 ksi	ок
$f_{x} = \frac{(M_{yz} + M_{z} + M_{z})}{S_{xz}}$	+ M _{EL+1})	
Due to permanent loads and transient loads ftc	= 0.627 ksi 0.627 ksi	ок
Tension stresses at top fiber of deck	at midspan at endspan	
$f_{sp} = \frac{P_{se}}{A} + \frac{P_{se}e}{S_b} - \frac{(M_x + M_z)}{S_b} - \frac{(M_z + M_z)}{S_b}$	$\frac{I_{xx} + M_x + 0.8 * M_{xx,x}}{\mathcal{L}_{b}}$	
Load Combination Service III f _b	= -1.419 ksi -1.371 ksi	ок

Strength Limit State

POSITIVE MOMENT SECTION

OF A SEW 41 75(I.L.+IM) | Mu = | M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.28
layer 2	k =	0.26
layer 3	k =	0.24
layer 4	k =	0.24
layer 5	k =	0.24
layer 6	k =	0.26
layer 7	k =	0.26
layer 8	k =	0.24
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	c =	5.2 ft-kips

average stress in prestressing steel

layer 1	f _{ps} =	219.8 ksi
layer 2	f _{ps} =	249.7 ksi
layer 3	$f_{ps} =$	260.5 ksi
layer 4	$f_{ps} =$	260.5 ksi
layer 5	$f_{ps} =$	260.5 ksi
layer 6	$f_{ps} =$	263.3 ksi
layer 7	$f_{ps} =$	263.3 ksi
layer 8	$f_{ps} =$	263.3 ksi
layer 9	$f_{ps} =$	271.4 ksi
layer 10	$f_{ps} =$	271.4 ksi
layer 11	$f_{ps} =$	271.4 ksi
layer 12	$f_{ps} =$	271.4 ksi
layer 13	f _{ps} =	271.4 ksi
layer 14	f _{ps} =	271.4 ksi

ок ок

ок ок

nominal flexure resistance

	a =	4.45 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9936.1 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NEGATIVE MOMENT SECTION

= 1.25DC+1.5DW+1.75(LL+IM)	$M_u =$	4837.2 ft-kips
	a =	6.50 in
	$\Phi M_n =$	4853.4 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

CRITICAL SECTION AT 0.59						
V _u = 1.25DC+1.5DW+1.75(LL+IM) V _u = 405.0 kips						
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips				
or						
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	364.8 kips				
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips				
max shear	$V_u =$	405.0 kips				
max moment	$M_u =$	2877.0 ft-kips				
Shear depth	d _v =	73.19 in				
Applied factored normal force at the section	N _u =	0				
Angle of diagonal compressive stresses	Α_	36 00 °				

$\begin{tabular}{ll} Angle of diagonal compressive stresses & $\theta = $$ 36.00 \ ^{\circ}$ \\ \hline STRAIN IN FLEXURAL TENSION REINFORCMENT \\ \end{tabular}$

e -	$\frac{M_u}{d_v} + 0.5 N_u + 0.5 Y_u \cot \theta$	<i>A_{pe}f_{pe}</i> ≤ 0.002	
~-	$F_1A_1+F_2A_2$		

		at midspan	at endspan
resultant compressive stress at centroid	f _{pc} =	0.526 ksi	0.528 ksi
effective stress in prestressing strand after all losses	5		

layer 1	f _{po} =	106.5 ksi	106.2 ksi
layer 2	f _{po} =	128.9 ksi	128.6 ksi
layer 3	f _{po} =	136.8 ksi	136.4 ksi
layer 4	f _{po} =	136.8 ksi	136.4 ksi
layer 5	f _{po} =	137.0 ksi	
layer 6	f _{po} =	139.1 ksi	
layer 7	f _{po} =	139.3 ksi	
layer 8	f _{po} =	139.3 ksi	
layer 9	$f_{po} =$		145.8 ksi
layer 10	f _{po} =		145.8 ksi
layer 11	f _{po} =		145.8 ksi
layer 12	f _{po} =		145.8 ksi
layer 13	f _{po} =		145.8 ksi
layer 14	f _{po} =		145.8 ksi

atrain	:	flaso	 tangian

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-2.21 in	
$\Delta_g =$	-2.02 in	
$\Delta_s =$	-3.08 in	

Deflection due to total self weight

 $\Delta_{\text{sw}} = -1.13 \text{ in}$

Total Deflection at transfer Total Deflection at erection

Δ =	1.76 in	1.76 in
Δ =	3.42 in	3.42 in

Live load deflection limit = span/800 Deflection due to live load and impact = -1.80 in Δ_L = -1.23 in

Deflection due to fire truck

Total Deflection after fire with fire truck

 $\Delta_L = -2.2876 \text{ in}$ $\Delta = 0.5529 \text{ in}$

NOT OK

ок

Location: Fire at Critical Positive Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 3 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB					
Actual Thickness	t _{as} =	8.0 in			
Wearing Surface	=	0.5 in			
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in			
Compressive Strength	f'c =	4 ksi			
Unit Weight	w _c =	150.0 pcf			
Stress factor of compression block	$\beta_1 =$	0.85			

BEAMS: AASHTO-PCI, BT-72 BULB-TEE						
Strength at release	f'ci =	5.5 ksi				
Strength at 28 days	f'c =	5.80 ksi				
Unit Weight	$W_c =$	150.0 pcf				
Overall Beam Length:						
@ end spans	L =	110 ft				
@ center span	L =	119 ft				
Design Spans:						
Non-composite beam @ end spans	L =	109 ft				
Non-composite beam @ center span	L =	118 ft				
Composite beam @ end spans	L =	110 ft				
Composite beam @ center span	L =	120 ft				
Beam Spacing	S =	12 ft				

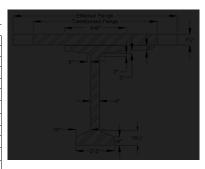
	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
Temperature of Layer	layer 1 (bottom)	T =	1030.00 °F
	layer 2	T =	840.00 °F
	layer 3	T =	755.00 °F
	layer 4	T =	698.00 °F
	layer 5 layer 6	T = T =	650.00 °F 610.00 °F
	layer 7	T =	565.00 °F
	layer 8	T =	530.00 °F
	layer 9	T =	68.00 °F
	layer 10 layer 11	T = T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength	laura 4 (h. 244 - 22)		470 [:
intial = 277 ksi		f _{pu} =	172 ksi
	layer 2	f _{pu} =	230 ksi
	layer 3	f _{pu} =	246 ksi 249 ksi
	layer 4 layer 5	f _{pu} =	249 KSi 255 ksi
	layer 6	f _{pu} =	257 ksi
	layer 7	f _{pu} =	260 ksi
	layer 8	f _{pu} =	263 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
	layer 14	f _{pu} =	277 ksi
Yield Strength			
intial = 250 ksi	, , ,	f _{py} =	172 ksi
	layer 2	f _{py} =	212 ksi
	layer 3	f _{py} =	222 ksi
	layer 4	f _{py} =	227 ksi
	layer 5	f _{py} =	230 ksi
	layer 6	f _{py} =	235 ksi
	layer 7	f _{py} =	240 ksi
	layer 8 layer 9	f _{py} =	242 ksi 250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	$f_{py} = f_{py} =$	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:		.,	
before transfer ≤ 0.75f _{pu}			
	layer 1 (bottom)	$f_{pi} =$	128.7 ksi
	layer 2	f _{pi} =	172.3 ksi
	layer 3	f _{pi} =	184.8 ksi
	layer 4	f _{pi} =	186.8 ksi
	layer 5	f _{pi} =	191.0 ksi
	layer 6	f _{pi} =	193.1 ksi
	layer 7	f _{pi} =	195.1 ksi
	layer 8	f _{pi} =	197.2 ksi
	layer 9 layer 10	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi 207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi
	layor 14	-pi -	200101

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, P) (,	
layer 1 (bottom)	f _{pe} =	137.8 ksi
layer 2	f _{pe} =	169.7 ksi
layer 3	f _{pe} =	177.7 ksi
layer 4	f _{pe} =	181.7 ksi
layer 5	f _{pe} =	183.7 ksi
layer 6	f _{pe} =	187.7 ksi
layer 7	f _{pe} =	191.7 ksi
layer 8	f _{pe} =	193.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{ne} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

E =	25982.0 ksi
E =	26241.8 ksi
E =	26501.6 ksi
E =	26501.6 ksi
E =	26761.5 ksi
E =	27021.3 ksi
E =	27021.3 ksi
E =	27281.1 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi		
Modulus of Elasticity	E =	29000.0 ksi		

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l=	322,319 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	50.7 in			
Distance from centroid to extreme top fiber	$y_t =$	21.3 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3834 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	4617 ksi			

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_c n = 0.8305 Transformed flange width 92.2 in = Transformed flange area 691.4 in^2 Transformed haunch width 34.9 in Transformed haunch area 17.4 in^2

*min	٠f	thron	aritaria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	50.74 in	38,917.6 in^3	114,248 in^4	322,319 in^4	436,566 in^4
Haunch	17.4 in^2	72.25 in	1,260.0 in^3	1,510 in^4	0.33 in^4	1,510 in^4
Deck	691.4 in^2	76.25 in	52,715.7 in^3	122,392 in^4	2,950 in^4	125,341 in^4
Total	1475.8 in^2		92.893.3 in^3		•	563.418 in^4

Total area of Composite Section	A _c =	1476 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	563,418 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	62.94 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	9.06 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	17.06 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	8,951.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,219.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	39,779.1 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck}= 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live}= 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft $x_a =$ distance from nearest edge to point B 39.8 ft $X_b =$

RFD Specifications: Art. 4.6.2.2.1							
Width of Deck Constant		OK					
Number of beams is not less than four N_b =	4	ОК					
Beams are parallel and approximately of the same stiffness		OK					
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK					
Curvature in plans is less than 4°=	0	OK					

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.2042
Longitudinal stiffness parameter	K _a =	1,840,120.45 in^4

at center span: DFM = 0.886 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{S_0}{12*L*t_0^3}\right)^{0.1}$$

DFM = 0.601 lanes/beam

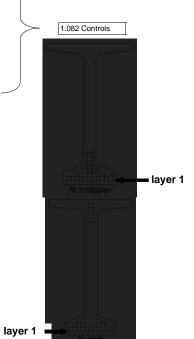
Distribution Factor for Shear Force

both end spans and center span:

$$DHV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan		Midspan At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	-	
layer 6	2	12	-	-	
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
Harped Stra	ınd Group (iı	ncluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
e -	44 92 in

0.905 Controls

ELASTIC SHORTENIN	IG		_	
	=	9.00%		
Force per strand at transfer			_	
· -	=	17.9 kips		
· · · · · · · · · · · · · · · · · · ·	=	24.0 kips		
· -	=	25.7 kips		
layer 4	=	26.0 kips		
	=	26.6 kips		
· -	=	26.9 kips		
	=	27.2 kips		
	=	27.5 kips		
-	=	28.9 kips		
-	=	28.9 kips		
-	=	28.9 kips	_	
*	=	28.9 kips		
· · · · · · · · · · · · · · · · · · ·	=	28.9 kips		
layer 14	=	28.9 kips		
	-		1	
	_	at midspan	at endspan	
Total prestressing force at release P	P _i =	1028.8 kips	1055.8 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	:gp =	5.457 ksi	5.661 ksi	
Loss due to shortening		at midspan	at endspan	
	pES =	31.5 ksi	32.7 ksi	
layer 2 Δf _p		31.8 ksi	33.0 ksi	
layer 3 Δf _p		32.2 ksi	33.4 ksi	
layer 4 Δf _p		32.2 ksi	33.4 ksi	
layer 5 Δf _p		32.5 ksi		
layer 6 Δf _p		32.8 ksi		
	pES =	32.8 ksi		
layer 8 Δf _p		33.1 ksi		
layer 9 Δf _p			32.7 ksi	
layer 10 Δf _p			32.7 ksi	
layer 11 Δf _p			32.7 ksi	
layer 12 Δf _p			32.7 ksi	
layer 13 Δf _p			32.7 ksi	
layer 14 Δf _p	pES =		32.7 ksi	
				=
SHRINKA		0.51 :	1 4	
Shrinkage = $(17-0.15*Relative Humidity)$ Δf_p	pSR =	6.5 ksi		assume relative humidity = 70%
				_
CREEP OF COM	NCRE	E		
CREEP OF COI Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying Δf_r .	NCRE	I E		=

CREEP OF CONCRETE					
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdn} =$	3.802 ksi			
		at midspan	at endspan		
loss due to creep	$\Delta f_{pCR} =$	38.9 ksi	41.3 ksi		

loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	-0.5 ksi	-0.6 ksi
	layer 2	$\Delta f_{pR2} =$	-0.5 ksi	-0.7 ksi
	layer 3	$\Delta f_{pR2} =$	-0.6 ksi	-0.7 ksi
	layer 4	$\Delta f_{pR2} =$	-0.6 ksi	-0.7 ksi
	layer 5	$\Delta f_{pR2} =$	-0.6 ksi	
	layer 6	$\Delta f_{pR2} =$	-0.7 ksi	
	layer 7	$\Delta f_{pR2} =$	-0.7 ksi	
	layer 8	$\Delta f_{pR2} =$	-0.7 ksi	
	layer 9	$\Delta f_{pR2} =$		-0.6 ksi
	layer 10			-0.6 ksi
	layer 11	$\Delta f_{pR2} =$		-0.6 ksi
	layer 12	$\Delta f_{pR2} =$		-0.6 ksi
	layer 13	$\Delta f_{pR2} =$		-0.6 ksi
	layer 14	$\Delta f_{pR2} =$		-0.6 ksi
ТОТ	AL LOSSES	AT TRAN	ISFER	

stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$

force per strand = f_{pt} *strand area

dons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	97.2 ksi	96.0 ksi
layer 2	F-	140.5 ksi	139.3 ksi
layer 3	F-	152.6 ksi	151.4 ksi
layer 4		154.7 ksi	153.5 ksi
layer 5		158.5 ksi	
layer 6		160.3 ksi	
layer 7		162.4 ksi	
layer 8	F-	164.1 ksi	
layer 9			174.9 ksi
layer 10			174.9 ksi
layer 11	F-		174.9 ksi
layer 12			174.9 ksi
layer 13			174.9 ksi
layer 14	F-		174.9 ksi
and = f _{pt} *strand area		at midspan	at endspan
layer 1	=	14.9 kips	14.7 kips
layer 2	=	21.5 kips	21.3 kips
layer 3	=	23.3 kips	23.2 kips
layer 4	=	23.7 kips	23.5 kips
layer 5	=	24.3 kips	
layer 6	=	24.5 kips	
layer 7	=	24.8 kips	
layer 8	=	25.1 kips	
layer 9	=		26.8 kips
layer 10	=		26.8 kips
layer 11	=		26.8 kips
layer 12	=		26.8 kips
layer 13	=		26.8 kips
layer 14	=		26.8 kips
Total prestressing force after transfer	P _i =	915.4 kips	939.8 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	24.5%	25.4%
layer 2	% =	18.5%	19.2%
layer 3	% =	17.4%	18.1%
layer 4	% =	17.2%	17.9%
layer 5	% =	17.0%	
layer 6	% =	17.0%	
layer 7	% =	16.8%	
layer 8	% =	16.8%	
layer 9	% =		15.8%
layer 10	% =		15.8%
layer 11	% =		15.8%
layer 12	% =		15.8%
layer 13	% =		15.8%
layer 14	% =		15.8%
TOTAL LOSSES A	T SERVI	CE LOADS	
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	76.4 ksi	77.6 ksi
layer 2	-	76.7 ksi	77.9 ksi
layer 3	-	77.0 ksi	78.2 ksi
layer 4	$\Delta f_{pT} =$	77.0 ksi	78.2 ksi
layer 5	$\Delta f_{pT} =$	77.3 ksi	
layer 6	$\Delta f_{pT} =$	77.7 ksi	
layer 7	$\Delta f_{pT} =$	77.7 ksi	
layer 8	$\Delta f_{pT} =$	78.0 ksi	
layer 9	$\Delta f_{pT} =$		77.6 ksi
layer 10	$\Delta f_{pT} =$		77.6 ksi
layer 11	$\Delta f_{pT} =$		77.6 ksi
layer 12	$\Delta f_{pT} =$		77.6 ksi
layer 13	$\Delta f_{pT} =$		77.6 ksi
layer 14	$\Delta f_{pT} =$		77.6 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	52.3 ksi	51.1 ksi
layer 2	f _{pe} =	95.6 ksi	94.4 ksi
layer 3	f _{pe} =	107.7 ksi	106.5 ksi
layer 4	f _{pe} =	109.8 ksi	108.6 ksi
layer 5	f _{pe} =	113.7 ksi	
layer 6	f _{pe} =	115.4 ksi	
layer 7	f _{pe} =	117.5 ksi	
layer 8	f _{pe} =	119.2 ksi	
layer 9	f _{pe} =		130.0 ksi
layer 10	f _{pe} =		130.0 ksi
layer 11	f _{pe} =		130.0 ksi
layer 12	f _{pe} =		130.0 ksi
layer 13			130.0 ksi
layer 14			130.0 ksi
check prestressing stress limit at service limit state	: fpe ≤ 0.8	8*fpy	
layer 1		137.8 ksi	
layer 2	=	169.7 ksi	
layer 3	=	177.7 ksi	
layer 4	=	181.7 ksi	
layer 5	=	183.7 ksi	
layer 6		187.7 ksi	7
layer 7	=	191.7 ksi	7
layer 8	=	193.7 ksi	7
layer 9		199.7 ksi	٦
		199.7 ksi	٦
layer 10			7
layer 10 layer 11	=	199.7 ksi	
		199.7 ksi 199.7 ksi	-
layer 11	=		_

OK OK OK OK

OK OK

OK OK OK

ok ok

,			,			
torce	per	strand	$= I_{\alpha}$.^stra	na	area

		at midspan	at endspan
layer 1	=	8.0 kips	7.8 kips
layer 2	=	14.6 kips	14.4 kips
layer 3	=	16.5 kips	16.3 kips
layer 4	=	16.8 kips	16.6 kips
layer 5	=	17.4 kips	
layer 6	=	17.7 kips	
layer 7	=	18.0 kips	
layer 8	=	18.2 kips	
layer 9	=		19.9 kips
layer 10	=		19.9 kips
layer 11	=		19.9 kips
layer 12	=		19.9 kips
layer 13	=		19.9 kips
layer 14	=		19.9 kips
		at midspan	at endspan
0.1	ם	040.01.	007.01.

Total prestressing force after all losses P_{pe} = 613.2 kips 637.0 kips Final losses, $\% = (\Delta f_{pT})/(f_{pi})$

''			
layer 1	% =	59.4%	60.3%
layer 2	% =	59.6%	60.5%
layer 3	% =	59.8%	60.8%
layer 4	% =	59.8%	60.8%
layer 5	% =	60.1%	
layer 6	% =	60.3%	
layer 7	% =	60.3%	
layer 8	% =	60.6%	
layer 9	% =		60.3%
layer 10	% =		60.3%
layer 11	% =		60.3%
layer 12	% =		60.3%
layer 13	% =		60.3%
layer 14	% =		60.3%
Average final losses, %	% =	60.0%	60.4%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION Transfer Length = 60*(strand diameter) 2.5 ft Bending moment at transfer length $M_g =$ 116.4 ft-kips

center of 12 strands to top fiber of beam at the en 7.00 in = 11.00 in center of 12 strands to bottom fiber of beam at the harp poin = center of 12 strands and top fiber of beam at transfer length 10.78 in = center of gravity of 32 strands and bottom fiber of beam 3.88 in center of gravity of all strands and the bottom fiber of beam at 19.51 in = transfer length center of gravity of all strands and the bottom fiber of beam at the 20.55 in Eccentricity of the strand group at transfer length: 31.23 in $e_h =$ 30.19 in

Calcs for eccentricity (see 9.6.7.2)

Eccentricity at end of beam:
$$f_{i} = \frac{P_{i}}{A} - \frac{P_{i}e}{S_{i}} + \frac{M_{s}}{S_{i}}$$

$$f_{\phi} = \frac{P_i}{A} + \frac{P_i \sigma}{S_{\phi}} - \frac{M_s}{S_{\phi}}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.570 ksi	-0.587 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.402 ksi	3.402 ksi

e =

ΟK NOT OK

		POINT	HARP	STRESSES AT
		1188.0 ft-kips	M _g =	Bending moment due to beam weight at 0.3L
ок	-0.588 ksi	-0.549 ksi	f _t =	Top stress at top fiber of beam
NOT OF	3.100 ksi	3.484 ksi	f _b =	Bottom stress at bottom fiber of the beam
		PAN	AT MIDS	STRESSES A
		1414.3 ft-kips	M _g =	Bending moment due to beam weight at 0.5L
ок	-0.412 ksi	-0.555 ksi	$f_t =$	Top stress at top fiber of beam
NOT OF	2.918 ksi	3.302 ksi	f _b =	Bottom stress at bottom fiber of the beam
<u>.</u>			CES	HOLD-DOWN FOR

assume stress in strand before losses = 0.8f

.or _u		
layer 1	=	137.3 ksi
layer 2	=	183.8 ksi
layer 3	=	197.1 ksi
layer 4	=	199.3 ksi
layer 5	=	203.7 ksi
layer 6	=	205.9 ksi
layer 7	=	208.2 ksi
layer 8	=	210.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

03303.		
layer 1	=	21.0 kips
layer 2	=	28.1 kips
layer 3	=	30.2 kips
layer 4	=	30.5 kips
layer 5	=	31.2 kips
layer 6	=	31.5 kips
layer 7	=	31.8 kips
layer 8	=	32.2 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	ı	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.8 kips/strand
layer 2	=	3.7 kips/strand
layer 3	=	4.0 kips/strand
layer 4	=	4.0 kips/strand
layer 5	=	4.1 kips/strand
layer 6	=	4.1 kips/strand
layer 7	=	4.2 kips/strand
layer 8	=	4.2 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	49.21 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.610 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	3.480 ksi		
for deck	=	2.400 ksi		

Tension:

Load Combination Service III

-0.014 ksi for the precast beam =

STRESSES AT MIL	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{ys}}{A} - \frac{P_{ys}\sigma}{S_t} + \frac{(M_g + M_s)}{S_t} + $	$\frac{(M_w + M_{,})}{S_{t_{\overline{s}}}}$		
Due to permanent loads $f_{tg} =$	1.789 ksi	1.751 ksi	ок
$f_{tg} = \frac{P_{yt}}{A} - \frac{P_{yt}c}{S_z} + \frac{(M_x + M_z)}{S_z} + \frac{(M_w}{S_z}$	$\left(\frac{1+M_b}{N_{ty}}\right) + \frac{\left(M_{LL+1}\right)}{N_{ty}}$		
Due to permanent loads and transient loads $f_{tg} =$	2.197 ksi	2.159 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ts} = \frac{(M_{wo} + 1)}{S_{ts}}$	<u>f_a)</u>		
Due to permanent loads $f_{tc} =$	0.061 ksi	0.061 ksi	OK
$f_{x} = \frac{(M_{w} + M_{\delta} + M_{\delta})}{S_{x}}$	<u> ((141) </u>		
Due to permanent loads and transient loads $f_{tc} =$	0.699 ksi	0.699 ksi	ОК
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1q} = \frac{P_{gg}}{A} + \frac{P_{gg}\rho}{S_{g}} - \frac{(M_{g} + M_{g})}{S_{g}} - \frac{(M_{gg} + M_{g})}{S_{g}}$	$\frac{+M_t + 0.8*M_{max}}{\mathcal{E}_{k}}$		
Load Combination Service III $f_b =$	-2.722 ksi	-2.619 ksi	ок

Strength Limit State

D 0 0 1 1 1 1 1		
POSITIVE	MOMENI	SECTION

1 GOTTIVE MIGHERIT GEOTICIT					
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	8381.5 ft-kips			
effective length factor for compression members					
layer 1	k =	0.07			

iayei i	κ=	0.07
layer 2	k =	0.23
layer 3	k =	0.28
layer 4	k =	0.26
layer 5	k =	0.28
layer 6	k =	0.26
layer 7	k =	0.24
layer 8	k =	0.24
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	c =	4.7 ft-kips

average stress in prestressing steel

layer 1	f _{ps} =	170.8 ksi
layer 2	$f_{ps} =$	228.7 ksi
layer 3	$f_{ps} =$	245.2 ksi
layer 4	$f_{ps} =$	248.0 ksi
layer 5	$f_{ps} =$	253.5 ksi
layer 6	$f_{ps} =$	256.2 ksi
layer 7	$f_{ps} =$	259.0 ksi
layer 8	$f_{ps} =$	261.7 ksi
layer 9	$f_{ps} =$	275.5 ksi
layer 10	$f_{ps} =$	275.5 ksi
layer 11	$f_{ps} =$	275.5 ksi
layer 12	$f_{ps} =$	275.5 ksi
layer 13	f _{ps} =	275.5 ksi
layer 14	f _{ps} =	275.5 ksi

OK OK

ок ок

nominal flexure resistance

	a =	3.98 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	8970.1 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NEGATIVE MOMENT SECTION

$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	4837.2 ft-kips
	a =	6.92 in
	$\Phi M_n =$	4839.6 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

CRITICAL SECTION	AT 0.59	
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips
or		
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips
max shear	$V_u =$	405.0 kips
max moment	M _u =	2877.0 ft-kips
Shear depth	d _v =	73.19 in
Applied factored normal force at the section	N _u =	0
Angle of diagonal compressive stresses	0	36 00 °

$\begin{tabular}{ll} Angle of diagonal compressive stresses & $\theta = $$ 36.00 \ ^{\circ}$ \\ \hline STRAIN IN FLEXURAL TENSION REINFORCMENT \\ \end{tabular}$

$\frac{M_u}{d_v} + 0.5 N_u + 0.5 V_u \cot \theta$	$A_{p,c}f_{p,c} \le 0.002$
S,A,+E,A,	20.002

layer 1	f _{po} =	54.3 ksi	53.1 ksi
layer 2	f _{po} =	97.6 ksi	96.4 ksi
layer 3	f _{po} =	109.7 ksi	108.5 ksi
layer 4	f _{po} =	111.8 ksi	110.6 ksi
layer 5	f _{po} =	115.7 ksi	
layer 6	f _{po} =	117.5 ksi	
layer 7	f _{po} =	119.5 ksi	
layer 8	f _{po} =	121.3 ksi	
layer 9	$f_{po} =$		132.0 ksi
layer 10	f _{po} =		132.0 ksi
layer 11	f _{po} =		132.0 ksi
layer 12	$f_{po} =$		132.0 ksi
layer 13	f _{po} =		132.0 ksi
layer 14	f _{po} =		132.0 ksi

etrain in flavoral tancin							
	'n	tonois	irol	flow	in	otroin	-

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-2.49 in	
$\Delta_g =$	-2.34 in	
$\Delta_s =$	-3.58 in	

-1.96 in

Deflection due to total self weight

 $\Delta_{sw} =$

Total Deflection at transfer Total Deflection at erection

Δ =	1.48 in	1.48 in
Δ =	2.81 in	2.81 in

Live load deflection limit = span/800 Deflection due to live load and impact $\Delta_{L} = -1.80 \text{ in}$ $\Delta_{L} = -1.69 \text{ in}$

ок

Deflection due to fire truck

Total Deflection after fire with fire truck

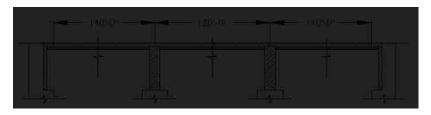
 $\Delta_{L} = -2.6588 \text{ in}$ $\Delta = -0.6454 \text{ in}$

NOT OK

Location: Fire at Critical Positive Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 4 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

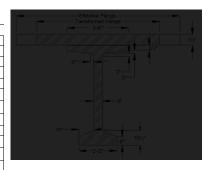
CAST-IN-PLACE S	LAB	
Actual Thickness	t _{as} =	8.0 in
Wearing Surface	=	0.5 in
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in
Compressive Strength	f'c =	4 ksi
Unit Weight	w _c =	150.0 pcf
Stress factor of compression block	$\beta_1 =$	0.85

BEAMS: AASHTO-PCI, BT-	72 BULE	3-TEE
Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	5.46 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING ST	PANDS	
	iameter of single strand	d =	0.5 in
5	Area of single strand		0.153 in^2
Temperature of Layer	3		
	layer 1 (bottom)	T =	1100.00 °F
	layer 2	T =	940.00 °F
	layer 3 layer 4	T = T =	860.00 °F 800.00 °F
	layer 5	T =	770.00 °F
	layer 6	T =	735.00 °F
	layer 7	T =	700.00 °F
	layer 8	T =	675.00 °F
	layer 9 layer 10	T = T =	68.00 °F 68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
Lillainn and Change with	layer 14	T =	68.00 °F
Ultimate Strength intial = 277 ksi	layor 1 (hottom)	f _	147 kai
intial = 277 ksi	layer 1 (bottom)	f _{pu} =	147 ksi
	layer 2	f _{pu} =	205 ksi 227 ksi
	layer 3	f _{pu} =	227 ksi
	layer 4	f _{pu} =	244 ksi 246 ksi
	layer 5	f _{pu} =	246 ksi
	layer 6	f _{pu} =	
	layer 7 layer 8	f _{pu} =	249 ksi 252 ksi
		f _{pu} =	
	layer 9	f _{pu} =	277 ksi 277 ksi
	layer 10 layer 11	f _{pu} =	277 ksi
	layer 12		277 ksi
	layer 13	f _{pu} =	277 ksi
	layer 14	f _{pu} =	277 ksi
Yield Strength	layer 14	t _{pu} =	211 K31
intial = 250 ksi	layer 1 (bottom)	f _{py} =	150 ksi
	layer 2	f _{py} =	197 ksi
	layer 3	f _{py} =	205 ksi
	layer 4	f _{py} =	217 ksi
	layer 5	f _{py} =	220 ksi
	layer 6	f _{py} =	225 ksi
	layer 7	f _{py} =	227 ksi
	layer 8	f _{py} =	230 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:			
before transfer ≤ 0.75f _{pu} (ini			Г
	layer 1 (bottom)	f _{pi} =	110.0 ksi
	layer 2	f _{pi} =	153.6 ksi
	layer 3	f _{pi} =	170.2 ksi
	layer 4	f _{pi} =	182.7 ksi
	layer 5	f _{pi} =	184.8 ksi
	layer 6		184.8 ksi
	layer 7	f _{pi} =	186.8 ksi
	layer 8	f _{pi} =	188.9 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all	losses) ≤ 0.80f _{py} (initia	I = 194.4)	
	layer 1 (bottom)	f _{pe} =	119.8 ksi
	layer 2	f _{pe} =	157.7 ksi
	layer 3	f _{pe} =	163.7 ksi
	layer 4	f _{pe} =	173.7 ksi
	layer 5	f _{pe} =	175.7 ksi
	layer 6	f _{pe} =	179.7 ksi
	layer 7	f _{pe} =	181.7 ksi
	layer 8	f _{pe} =	183.7 ksi
	layer 9	f _{pe} =	199.7 ksi
	layer 10	$f_{pe} =$	199.7 ksi
	layer 11	f _{pe} =	199.7 ksi
	layer 12	f _{pe} =	199.7 ksi
	layer 13	f _{pe} =	199.7 ksi
	layer 14	f _{pe} =	199.7 ksi
Modulus of Elasticity			
intial = 25982 ksi	layer 1 (bottom)	E =	25722.2 ksi

er 1 (bottom)	E =	25722.2 ksi
layer 2	E =	26241.8 ksi
layer 3	E =	26241.8 ksi
layer 4	E =	26241.8 ksi
layer 5	E =	26241.8 ksi
layer 6	E =	26501.6 ksi
layer 7	E =	26501.6 ksi
layer 8	E =	26761.5 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
rea of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE I	BEAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l =	211,427 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	51.1 in
Distance from centroid to extreme top fiber	$y_t =$	20.9 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3834 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	4480 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in b_f = Modular Ratio = E_{cs}/E_{c} n = 0.8559 Transformed flange width 95.0 in = Transformed flange area 712.6 in^2 Transformed haunch width Transformed haunch area 18.0 in^2

l				
*min	of ti	ree	crite	ria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	51.13 in	39,216.7 in^3	114,274 in^4	211,427 in^4	325,701 in^4
Haunch	18.0 in^2	72.25 in	1,298.6 in^3	1,428 in^4	0.33 in^4	1,429 in^4
Deck	712.6 in^2	76.25 in	54,332.3 in^3	118,832 in^4	2,950 in^4	121,781 in^4
Total	1497.5 in^2		94.847.6 in^3			448.911 in^4

Total area of Composite Section	A _c =	1498 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	448,911 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	63.34 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	8.66 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	16.66 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	7,087.8 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	51,814.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	31,473.9 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A) P_{live}= 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant ОК Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК 1.5 Curvature in plans is less than 4°= OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.1683
Longitudinal stiffness parameter	K _q =	1,655,812.84 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{6.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_{\rm F}}{12 + L + L_{\rm T}^2}\right)^{0.1}$$

DFM = 0.877 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{N}{14}\right)^{1.4} * \left(\frac{N}{L}\right)^{0.3} * \left(\frac{K_g}{12 * L * E_g^3}\right)^{0.1}$$

DFM = 0.596 lanes/beam

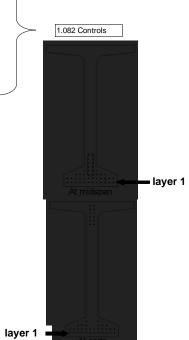
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan	At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	-	
layer 6	2	12	-	-	
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
Harped Stra	ınd Group (iı	ncluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
ρ =	45 31 in

0.905 Controls

ELASTIC SHORTE	NING			
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1	=	15.3 kips		
layer 2	=	21.4 kips		
layer 3	=	23.7 kips		
layer 4	=	25.4 kips		
layer 5	=	25.7 kips		
layer 6	=	25.7 kips		
layer 7	=	26.0 kips		
layer 8	=	26.3 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
	_			7
Total annatures; an force of colors	В	at midspan	at endspan	
Total prestressing force at release	P _i =	939.0 kips	980.2 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	6.766 ksi	7.220 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	38.7 ksi	41.3 ksi	
layer 2	$\Delta f_{pES} =$	39.5 ksi	42.1 ksi	
layer 3	$\Delta f_{pES} =$	39.5 ksi	42.1 ksi	
layer 4	$\Delta f_{pES} =$	39.5 ksi	42.1 ksi	
layer 5	$\Delta f_{pES} =$	39.5 ksi		
layer 6	$\Delta f_{pES} =$	39.9 ksi		
layer 7	$\Delta f_{pES} =$	39.9 ksi		
layer 8	$\Delta f_{pES} =$	40.3 ksi		
layer 9	$\Delta f_{pES} =$		41.7 ksi	
layer 10	$\Delta f_{pES} =$		41.7 ksi	
layer 11	$\Delta f_{pES} =$		41.7 ksi	
layer 12			41.7 ksi	
layer 13	$\Delta f_{pES} =$		41.7 ksi	
layer 14			41.7 ksi	
				_
SHRIN	IKAGE			_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity =
CREEP OF	CONCRE	ГЕ		=
Change of stresses at center of gravity of prestressing due to	5 5 C.C	- -		_
permanent loads except the loads acting at time of applying	$\Delta f_{cdp} =$	5.779 ksi	1	

CREEP OF	CONCR	ETE	
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f_{cgp}	$\Delta f_{cdn} =$	5.779 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	40.7 ksi	46.2 ksi

RELAXATION (OF PRES	STRESS	ING STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	-1.5 ksi	-1.8 ksi
	layer 2	$\Delta f_{pR2} =$	-1.6 ksi	-1.9 ksi
	layer 3	$\Delta f_{pR2} =$	-1.6 ksi	-1.9 ksi
	layer 4	$\Delta f_{pR2} =$	-1.6 ksi	-1.9 ksi
	layer 5	$\Delta f_{pR2} =$	-1.6 ksi	
	layer 6		-1.6 ksi	
	layer 7	$\Delta f_{pR2} =$	-1.6 ksi	
	layer 8	$\Delta f_{pR2} =$	-1.7 ksi	
	layer 9	$\Delta f_{pR2} =$		-1.8 ksi
	layer 10			-1.8 ksi
	layer 11	$\Delta f_{pR2} =$		-1.8 ksi
	layer 12	$\Delta f_{pR2} =$		-1.8 ksi
	layer 13			-1.8 ksi
	layer 14	$\Delta f_{pR2} =$		-1.8 ksi
TOTAL I	OSSES	AT TRA	ANSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$				
stress in tendons after transfer $f_{\text{pt}} = f_{\text{pi}} - \Delta f_{\text{pi}}$			at midspan	at endspar
br hi hi	layer 1	f _{pt} =	71.3 ksi	68.7 ksi
	layer 2	f _{pt} =	114.1 ksi	111.5 ksi
	lover 2	f _	120.7 kgi	100 1 kgi

force per strand = f_{pt} *strand area

idons after transfer ipt - ipi-dipi		at illiuspali	at enuspair
layer 1	f _{pt} =	71.3 ksi	68.7 ksi
layer 2	f _{pt} =	114.1 ksi	111.5 ksi
layer 3	f _{pt} =	130.7 ksi	128.1 ksi
layer 4		143.2 ksi	140.5 ksi
layer 5	$f_{pt} =$	145.3 ksi	
layer 6	$f_{pt} =$	144.9 ksi	
layer 7	f _{pt} =	147.0 ksi	
layer 8		148.6 ksi	
layer 9	$f_{pt} =$		165.9 ksi
layer 10	$f_{pt} =$		165.9 ksi
layer 11	$f_{pt} =$		165.9 ksi
layer 12	$f_{pt} =$		165.9 ksi
layer 13	$f_{pt} =$		165.9 ksi
layer 14	$f_{pt} =$		165.9 ksi
rand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	10.9 kips	10.5 kips
layer 2	=	17.5 kips	17.1 kips
layer 3	=	20.0 kips	19.6 kips
layer 4	=	21.9 kips	21.5 kips
layer 5	=	22.2 kips	
layer 6	=	22.2 kips	
layer 7	=	22.5 kips	
layer 8	=	22.7 kips	
layer 9	=		25.4 kips
layer 10	=		25.4 kips
layer 11	=		25.4 kips
layer 12	=		25.4 kips
layer 13	=	-	25.4 kips
layer 14	=		25.4 kips
Total prestressing force after transfer	P _i =	767.6 kips	796.6 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	35.2%	37.5%
layer 2	% =	25.7%	27.4%
layer 3	% =	23.2%	24.8%
layer 4	% =	21.6%	23.1%
layer 5	% =	21.4%	
layer 6	% =	21.6%	
layer 7	% =	21.3%	
layer 8	% =	21.3%	
layer 9	% =	=110,10	20.1%
layer 10	% =		20.1%
layer 11	% =		20.1%
layer 12	% =		20.1%
layer 13	% =		20.1%
layer 14	% =		20.1%
TOTAL LOSSES A		CELOADS	20.176
	JERVI		at andonen
Total Losses	A.f.	at midspan	at endspan
layer 1	$\Delta f_{pT} =$	84.5 ksi	87.1 ksi
layer 2	$\Delta f_{pT} =$	85.3 ksi	87.9 ksi
layer 3	$\Delta f_{pT} =$	85.3 ksi	87.9 ksi
layer 4	$\Delta f_{pT} =$	85.3 ksi	87.9 ksi
layer 5	$\Delta f_{pT} =$	85.3 ksi	
layer 6	$\Delta f_{pT} =$	85.6 ksi	
layer 7	$\Delta f_{pT} =$	85.6 ksi	
layer 8	$\Delta f_{pT} =$	86.0 ksi	
layer 9	$\Delta f_{pT} =$		87.5 ksi
layer 10	$\Delta f_{pT} =$		87.5 ksi
layer 11	$\Delta f_{pT} =$		87.5 ksi
layer 12	$\Delta f_{pT} =$		87.5 ksi
layer 13	$\Delta f_{pT} =$		87.5 ksi
layer 14	$\Delta f_{pT} =$		87.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	25.6 ksi	23.0 ksi
layer 2	f _{pe} =	68.4 ksi	65.7 ksi
layer 3	f _{pe} =	85.0 ksi	82.3 ksi
layer 4	f _{pe} =	97.4 ksi	94.8 ksi
layer 5	f _{pe} =	99.5 ksi	
1 0	f -	99.1 ksi	
layer 6	t _{pe} =		
layer 6 layer 7		101.2 ksi	
	f _{pe} =		
layer 7	f _{pe} =	101.2 ksi	120.1 ksi
layer 7 layer 8	f _{pe} =	101.2 ksi	120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	101.2 ksi	
layer 7 layer 8 layer 9 layer 10	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	101.2 ksi	120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pe} = f_{pe} = f$	101.2 ksi	120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	$f_{pe} = f_{pe} = f$	101.2 ksi	120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$f_{pe} = f_{pe} = f$	101.2 ksi 102.9 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state	$f_{pe} = f_{pe} = f$	101.2 ksi 102.9 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1	$f_{pe} = f_{pe} = f$	101.2 ksi 102.9 ksi 8*fpy	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1	$\begin{split} f_{pe} &= \\ \vdots &= \\ = &= \\ \end{split}$	101.2 ksi 102.9 ksi 8°fpy 119.8 ksi 157.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 13 layer 13 layer 14 check prestressing stress limit at service limit state. layer 1 layer 2 layer 3	$\begin{aligned} f_{pe} &= \\ e &= \\ &= \\ &= \\ &= \\ &= \end{aligned}$	101.2 ksi 102.9 ksi 3°fpy 119.8 ksi 157.7 ksi 163.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 2 layer 3 layer 3	$\begin{split} f_{pe} &= \\ : fpe &\leq 0.8 \end{split}$	101.2 ksi 102.9 ksi 3°fpy 119.8 ksi 157.7 ksi 163.7 ksi 173.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit tates layer 2 layer 3 layer 4 layer 2	$\begin{array}{c} f_{pe} = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	101.2 ksi 102.9 ksi 102.9 ksi 3*fpy 119.8 ksi 157.7 ksi 163.7 ksi 173.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit tates layer 2 layer 2 layer 3 layer 4 layer 3	$\begin{split} f_{pe} &= \\ e &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &=$	101.2 ksi 102.9 ksi 102.9 ksi 3*fpy 119.8 ksi 157.7 ksi 163.7 ksi 173.7 ksi 175.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13 check prestressing stress limit at service limit states layer 2 layer 2 layer 3 layer 4 layer 3 layer 4 layer 5 layer 6	$\begin{split} f_{pe} &= \\ c $	101.2 ksi 102.9 ksi 102.9 ksi 8*fpy 119.8 ksi 157.7 ksi 163.7 ksi 173.7 ksi 175.7 ksi 179.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 3 layer 4 layer 5 layer 5 layer 6 layer 7 layer 8	$f_{pe} = f_{pe} = f$	101.2 ksi 102.9 ksi 102.9 ksi 102.9 ksi 119.8 ksi 157.7 ksi 163.7 ksi 175.7 ksi 175.7 ksi 179.7 ksi 181.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 7	$f_{pe} = f_{pe} = f$	101.2 ksi 102.9 ksi 102.9 ksi 102.9 ksi 119.8 ksi 157.7 ksi 163.7 ksi 173.7 ksi 179.7 ksi 181.7 ksi 183.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 7 layer 7 layer 8	f _{pe} = = = = = = = = = = = = = =	101.2 ksi 102.9 ksi 102.9 ksi 102.9 ksi 119.8 ksi 157.7 ksi 163.7 ksi 175.7 ksi 179.7 ksi 181.7 ksi 183.7 ksi 199.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 7 layer 7 layer 8 layer 9 layer 9 layer 9 layer 10 layer 10	f _{pe} = = = = = = = = = = = = = = = = = = =	101.2 ksi 102.9 ksi 102.9 ksi 102.9 ksi 119.8 ksi 157.7 ksi 163.7 ksi 175.7 ksi 179.7 ksi 181.7 ksi 183.7 ksi 199.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9 layer 10 layer 11 layer 11	f _{pe} = constant =	101.2 ksi 102.9 ksi 102.9 ksi 102.9 ksi 119.8 ksi 157.7 ksi 163.7 ksi 175.7 ksi 179.7 ksi 181.7 ksi 183.7 ksi 199.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi
layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9 layer 10 layer 10	f _{pe} = = = = = = = = = = = = = = = = = = =	101.2 ksi 102.9 ksi 102.9 ksi 102.9 ksi 119.8 ksi 157.7 ksi 163.7 ksi 175.7 ksi 179.7 ksi 181.7 ksi 183.7 ksi 199.7 ksi	120.1 ksi 120.1 ksi 120.1 ksi 120.1 ksi

OK OK OK OK OK OK OK

,			,			
torce	per	strand	$= I_{\alpha}$.^stra	na	area

	at midspan	at endspan
=	3.9 kips	3.5 kips
=	10.5 kips	10.1 kips
=	13.0 kips	12.6 kips
=	14.9 kips	14.5 kips
=	15.2 kips	
=	15.2 kips	
=	15.5 kips	
=	15.7 kips	
=		18.4 kips
	at midspan	at endspan
	= = = = = = = = = = = = = = = = = = = =	= 3.9 kips = 10.5 kips = 13.0 kips = 14.9 kips = 15.2 kips = 15.2 kips = 15.5 kips = 15.7 kips = 15.7 kips = 15.7 kips

Total prestressing force after all losses $P_{pe} = 459.3 \text{ kips}$ 487.9 kips

Final	Incepe	% -	$(\Delta f_{DT})/(f_{Di})$	
rillai	105565,	70 =	(ΔI _D T)/(I _{Di})	

layer 1	% =	76.8%	79.1%
layer 2	% =	77.5%	79.9%
layer 3	% =	77.5%	79.9%
layer 4	% =	77.5%	79.9%
layer 5	% =	77.5%	
layer 6	% =	77.8%	
layer 7	% =	77.8%	
layer 8	% =	78.2%	
layer 9	% =		79.5%
layer 10	% =		79.5%
layer 11	% =		79.5%
layer 12	% =		79.5%
layer 13	% =		79.5%
layer 14	% =		79.5%
Average final losses, %	% =	77.6%	79.6%
layer 10 layer 11 layer 12 layer 13 layer 14	% = % = % = % = % =	77.6%	79.5% 79.5% 79.5% 79.5% 79.5%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*\f'_a	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	II	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	31.62 in
Eccentricity at end of beam:	e =	30.58 in

Bottom stress at bottom fiber of the beam

Calcs for eccentricity (see 9.6.7.2)

$$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M f_g}{S_t} \qquad \qquad f_b = \frac{P_i}{A} + \frac{P_i e}{S_b} - \frac{M f_g}{S_b}$$

$$= \frac{\text{at midspan}}{\text{Top stress at top fiber of beam}} \qquad \frac{\text{at endspan}}{f_t} = \frac{-0.482 \text{ ksi}}{-0.504 \text{ ksi}} - \frac{10.504 \text{ ksi}}{-0.504 \text{ ksi}}$$

f_b =

3.121 ksi

OK OK

3.121 ksi

Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	-0.330 ksi	-0.378 ksi	
Bottom stress at bottom fiber of the beam	f _b =	3.121 ksi	2.503 ksi	
STRESSES A	AT MIDSF	PAN	<u> </u>	
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	-0.434 ksi	-0.201 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.939 ksi	2.321 ksi	
HOLD-DOWN FOR	CES			

.or _u		
layer 1	=	117.4 ksi
layer 2	=	163.9 ksi
layer 3	=	181.6 ksi
layer 4	=	194.9 ksi
layer 5	=	197.1 ksi
layer 6	=	197.1 ksi
layer 7	=	199.3 ksi
layer 8	=	201.5 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

103303.		
layer 1	=	18.0 kips
layer 2	=	25.1 kips
layer 3	=	27.8 kips
layer 4	=	29.8 kips
layer 5	=	30.2 kips
layer 6	=	30.2 kips
layer 7	=	30.5 kips
layer 8	=	30.8 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	II	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.4 kips/strand
layer 2	=	3.3 kips/strand
layer 3	=	3.6 kips/strand
layer 4	=	3.9 kips/strand
layer 5	=	4.0 kips/strand
layer 6	=	4.0 kips/strand
layer 7	=	4.0 kips/strand
layer 8	=	4.0 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	47.07 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.457 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	3.276 ksi		
for deck	=	2.400 ksi		

Tension:

Load Combination Service III

-0.014 ksi for the precast beam =

STRESSES AT MII	<u>DSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{ps}}{A} - \frac{P_{ps}\rho}{S_t} + \frac{(M_g + M_s)}{S_t} + \frac{(M_g + M_s)}{S_t}$	$+\frac{(M_w + M_b)}{S_{ty}}$		
Due to permanent loads $f_{tg} =$	2.033 ksi	1.986 ksi	0
$f_{rg} = \frac{P_{pd}}{A} - \frac{P_{pd}F}{S_z} + \frac{(M_R + M_S)}{S_z} + \frac{(M_w + M_S)}{S_z}$	$\frac{1}{N_{eq}} - M_{b} + \frac{(M_{fX+1})}{N_{eq}}$		
Due to permanent loads and transient loads $f_{tg} =$	2.523 ksi	2.476 ksi	0
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{vs} + h)}{S_{tr}}$	<u>d _a)</u>		
Due to permanent loads $f_{tc} =$	0.077 ksi	0.077 ksi	C
$f_{rr} = \frac{(M_{ws} + M_{\delta} + M_{\delta})}{S_{rr}}$	M _{EE+1})		
Due to permanent loads and transient loads $f_{tc} =$	0.883 ksi	0.883 ksi	0
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{sp} = \frac{P_{pe}}{A} + \frac{P_{pe}\theta}{R_b} - \frac{(M_x + M_z)}{S_b} - \frac{(M_{uv} + M_z)}{S_b}$	$\frac{+M_b+0.8*M_{(t,+1)}}{S_{br}}$		
Load Combination Service III f _b =	-4.041 ksi	-3.917 ksi	0

Strength Limit State

DOSITIVE	MOMENT	SECTION
PUSITIVE	INICINIEINI	SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.04
layer 2	k =	0.15
layer 3	k =	0.28
layer 4	k =	0.30
layer 5	k =	0.30
layer 6	k =	0.26
layer 7	k =	0.26
layer 8	k =	0.26
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	c =	4.3 ft-kips

average stress i	in	prestressing	steel
------------------	----	--------------	-------

layer 1	f _{ps} =	146.4 ksi
layer 2	$f_{ps} =$	204.4 ksi
layer 3	$f_{ps} =$	226.5 ksi
layer 4	f _{ps} =	243.0 ksi
layer 5	$f_{ps} =$	245.8 ksi
layer 6	$f_{ps} =$	245.8 ksi
layer 7	f _{ps} =	248.6 ksi
layer 8	$f_{ps} =$	251.3 ksi
layer 9	$f_{ps} =$	276.2 ksi
layer 10	f _{ps} =	276.2 ksi
layer 11	$f_{ps} =$	276.2 ksi
layer 12	$f_{ps} =$	276.2 ksi
layer 13	f _{ps} =	276.2 ksi
layer 14	f _{ps} =	276.2 ksi

nominal flexure resistance

	a =	3.65 in			
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	8210.1 ft-kips			
M=DC+W+LL+IM	M =	5833.6 ft-kips			
A-11 /- 14 - 14 - 14 - 14 - 14 - 14 - 14					

NOT OK OK

NEGATIVE MOMENT SECTION

1.25DC+1.5DW+1.75(LL+IM)	$M_u =$	4837.2 ft-kips
	a =	7.35 in
	$\Phi M_n =$	4825.3 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

NOT OK OK

Shear Design

ai Design		
CRITICAL SECTION A	AT 0.59	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips
		•
max shear	$V_u =$	405.0 kips
max moment	$M_u =$	2877.0 ft-kips
Shear depth	d _v =	73.19 in
Applied factored normal force at the section	$N_u =$	0
Angle of diagonal compressive stresses	θ =	36.00 °

STRAIN IN FLEXURAL TENSION REINFORCMENT

e =	$\frac{M_a}{d_a} + 0.5 N_a + 0.5 V_a \cot \theta$	A _{ps} , f _{ps} < 0.002
-,-	3,4,+8,4,	

resultant compressive stress at centroid effective stress in prestressing strand after all losses

 $\begin{array}{c|cccc} & \textbf{at midspan} & \textbf{at endspan} \\ \hline f_{pc} = & 0.193 \text{ ksi} & 0.175 \text{ ksi} \\ \end{array}$

layer 1	f _{po} =	26.7 ksi	24.0 ksi
layer 2	f _{po} =	69.5 ksi	66.7 ksi
layer 3	f _{po} =	86.1 ksi	83.4 ksi
layer 4	$f_{po} =$	98.6 ksi	95.8 ksi
layer 5	$f_{po} =$	100.6 ksi	
layer 6	f _{po} =	100.3 ksi	
layer 7	$f_{po} =$	102.3 ksi	
layer 8	$f_{po} =$	104.0 ksi	
layer 9	$f_{po} =$		121.1 ksi
layer 10	f _{po} =		121.1 ksi
layer 11	f _{po} =		121.1 ksi
layer 12	$f_{po} =$		121.1 ksi
layer 13	$f_{po} =$		121.1 ksi
layer 14	f _{po} =		121.1 ksi

atrain	:	flaso	 tangian

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	ε _x =	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	ε _x =	0.002000	
layer 9	ε _x =		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _× =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-3.79 in	
$\Delta_g =$	-3.68 in	
$\Delta_s =$	-5.63 in	

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

$\Delta_{sw} = -5.34 \text{ in}$	
----------------------------------	--

0.18 in 0.18 in Δ= Δ = 0.34 in 0.34 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -2.18 in

NOT OK

Deflection due to fire truck

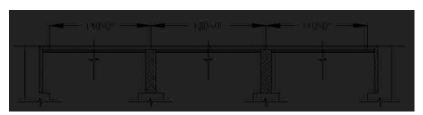
Total Deflection after fire with fire truck

$\Delta_L =$	-4.1776 in
Δ =	-5.5481 in

NOT OK

Location: Fire at Critical Positive Moment Sections

Beam Design: 3/8" Strand
Fire Exposure Status: Undamaged



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	7 ksi		
Unit Weight	w _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

P	RESTRESSING STR	RANDS	
	ameter of single strand	d =	0.4 in
T	Area of single strand	A =	0.085 in^2
Temperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 1 (bottom)	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5 layer 6	T = T =	68.00 °F
	layer 7	T =	68.00 °F 68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	<u>T = </u>	68.00 °F
	layer 11 layer 12	T = T =	68.00 °F 68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength	1		
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi 284 ksi
	layer 7 layer 8	f _{pu} =	284 ksi
	layer 9		284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	,	P.	
intial = 257 ksi	layer 1 (bottom)	$f_{py} =$	257 ksi
	layer 2	$f_{py} =$	257 ksi
	layer 3	$f_{py} =$	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13 layer 14	f _{py} =	257 ksi 257 ksi
Stress Limits:	layer 14	f _{py} =	231 K31
before transfer ≤ 0.75f _{pu} (initi	al = 202.5)		
ha ,	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	$f_{pi} =$	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	1 40	£	
	layer 13 layer 14	f _{pi} =	213.2 ksi 213.2 ksi

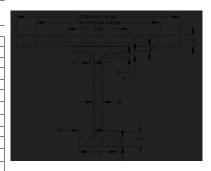
at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

layer

- py (- /	
1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi
layer 13	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

1000 ocotional i ropertico		
NON-COMPOSITE I	BEAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l=	539,947 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in
Distance from centroid to extreme top fiber	$y_t =$	35.4 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3834 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	5072 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_c n = 0.7559 Transformed flange width 83.9 in = Transformed flange area 629.3 in^2 Transformed haunch width 31.7 in Transformed haunch area 15.9 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77,204.1 in^3		•	1,091,315 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,315 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme top fiber slab	S _{tr} =	56.994.5 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft $x_a =$ distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant OK Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$ OK ОК 1.5 Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	K _a =	2,309,429.79 in^4

at center span: DFM = 0.905 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{x}{14}\right)^{0.4} * \left(\frac{x}{L}\right)^{0.3} * \left(\frac{x_0}{12*L*e_s^3}\right)^{0.3}$$

DFM = 0.614 lanes/beam

Distribution Factor for Shear Force

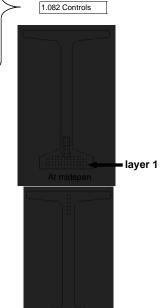
both end spans and center span:

$$DHV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$


DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
•	64		64	
Harped Stra	ind Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.44 in
e _c =	31.16 in

layer 1

0.905 Controls

ELASTIC SHORTE	NING			
assumed loss	=	6.00%		
Force per strand at transfer			<u> </u>	
layer 1	=	17.0 kips		
layer 2	=	17.0 kips		
layer 3	=	17.0 kips		
layer 4	=	17.0 kips		
layer 5	=	17.0 kips		
layer 6	=	17.0 kips		
layer 7	=	17.0 kips		
layer 8	=	17.0 kips		
layer 9	=	17.0 kips		
layer 10		17.0 kips		
layer 11	=	17.0 kips		
layer 12		17.0 kips		
layer 13	=	17.0 kips		
layer 14	=	17.0 kips		
		at midspan	at endspan	
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.412 ksi	2.307 ksi	
oss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi	
layer 2		13.9 ksi	13.3 ksi	
layer 3		13.9 ksi	13.3 ksi	
layer 4		13.9 ksi	13.3 ksi	
layer 5		13.9 ksi	13.3 ksi	7
	$\Delta f_{pES} =$	13.9 ksi		
layer 7		13.9 ksi		
layer 8	$\Delta f_{pES} =$	13.9 ksi		
	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi	
layer 10	$\Delta f_{pES} =$		13.3 ksi	
layer 11	$\Delta f_{pES} =$		13.3 ksi	
layer 12	$\Delta f_{pES} =$		13.3 ksi	
layer 13			13.3 ksi	
layer 14	$\Delta f_{pES} =$		13.3 ksi	
SHRII	NKAGE			_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	T .	assume relative humidity = 70%

CREEP OF CONCRETE			
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdn} =$	1.582 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	17.9 ksi	16.6 ksi

RELAXATION OF PRESTRESSING STRANDS loss due to relaxation after transfer at endspan 2.9 ksi TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$

stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$

force per strand = f_{pt}^* strand area

dons after transfer f _{pt} = f _{pi} -∆f _{pi}		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
and = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%
TOTAL LOSSES AT	SERVI	CE LOADS	1
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{DT} =$	41.1 ksi	40.5 ksi
layer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 3	$\Delta f_{DT} =$	41.1 ksi	40.5 ksi
layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 6	$\Delta f_{pT} =$	41.1 ksi	
layer 7	$\Delta f_{pT} =$	41.1 ksi	
layer 8	$\Delta f_{pT} =$	41.1 ksi	1
layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 10	$\Delta f_{pT} =$	-	40.5 ksi
layer 11	$\Delta f_{pT} =$		40.5 ksi
layer 12	$\Delta f_{pT} =$		40.5 ksi
layer 13	$\Delta f_{pT} =$		40.5 ksi
layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	172.0 ksi	172.6 ksi
layer 2	f _{pe} =	172.0 ksi	
idyor Z	pe -	112.0101	172.6 ksi
layer 3		172.0 ksi	172.6 ksi 172.6 ksi
	f _{pe} =		
layer 3 layer 4	f _{pe} = f _{pe} =	172.0 ksi	172.6 ksi
layer 3 layer 4 layer 5	f _{pe} = f _{pe} = f _{pe} =	172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7	$f_{pe} = f_{pe} = f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} = f_{pe} = f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} = f_{pe} = f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pe} = f_{pe} = f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{split} f_{pe} &= \\ \end{split}$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12	$\begin{split} f_{pe} &= \\ f_$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13	$\begin{aligned} f_{pe} &= \\ f_$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state:	$\begin{split} &f_{pe} = \\ &f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state:	$\begin{split} &f_{po} = \\ &f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 1 layer 1	$\begin{split} &f_{po} = \\ &f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 205.4 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 1 layer 2 layer 3	$\begin{split} &f_{po} = \\ &f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 20 ksi 20 ksi 20 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 1 layer 1 layer 2 layer 3 layer 4	$\begin{split} &f_{po} = \\ &f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 205.4 ksi 205.4 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 3 layer 4	$\begin{split} &f_{po} = \\ &f$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 1 layer 1 layer 1 layer 1 layer 1	$\begin{array}{c} f_{po} = \\ f_{p$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{array}{c} f_{po} = \\ f_{p$	172.0 ksi 172.4 ksi 172.0 ksi 172.4 ksi 172.5 ksi 172.6 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{array}{c} f_{po} = \\ f_{p$	172.0 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{po} = \\ f_{p$	172.0 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{array}{c} f_{po} = \\ f_{p$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9 layer 10 layer 10 layer 10	$\begin{array}{c} f_{po} = \\ f_{po} = \\ f_{po} = \\ f_{pe} = \\ f_{pe} = \\ f_{pe} = \\ f_{po} = \\ f_{pe} = \\ f_{pe} = \\ f_{pe} = \\ f_{pe} = \\ f_{po} = \\ f_{p$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 6 layer 7 layer 9 layer 9 layer 9 layer 10 layer 10 layer 11 layer 12	fpo = = = = = = = = = = = = = = = = = = =	172.0 ksi 172.4 ksi 172.0 ksi 172.4 ksi 172.5 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.7 ksi 172.8	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 9	$\begin{array}{c} f_{po} = \\ f_{po} = \\ f_{po} = \\ f_{pe} = \\ f_{pe} = \\ f_{pe} = \\ f_{po} = \\ f_{pe} = \\ f_{pe} = \\ f_{pe} = \\ f_{pe} = \\ f_{po} = \\ f_{p$	172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 172.0 ksi 205.4 ksi	172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi 172.6 ksi

OK

force	nor	otrond	_ f	.*strand	oroo
torce	per	strand	= T ₀	.^strand	area

		at midspan	at endspan
layer 1	=	14.6 kips	14.7 kips
layer 2	=	14.6 kips	14.7 kips
layer 3	=	14.6 kips	14.7 kips
layer 4	=	14.6 kips	14.7 kips
layer 5	=	14.6 kips	14.7 kips
layer 6	=	14.6 kips	
layer 7	=	14.6 kips	
layer 8	=	14.6 kips	
layer 9	=	14.6 kips	14.7 kips
layer 10	=		14.7 kips
layer 11	=		14.7 kips
layer 12	=		14.7 kips
layer 13	=		14.7 kips
layer 14	=		14.7 kips
		at midspan	at endspan
	n	005.71:	000 4 1 :

Total prestressing force after all losses $P_{pe} = 935.7 \text{ kips}$ 939.1 kips Final losses, $\% = (\Delta f_{p7})/(f_{pi})$

17			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	f _{ci} =	3.300 ksi	
Tension			
t bonded reinforcement = -0.0948*√f'ci ≤ -0.2	=	-0.200 ksi	

Tension		
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION Transfer Length = 60*(strand diameter) 1.9 ft Bending moment at transfer length $M_g =$ 87.7 ft-kips center of 12 strands to top fiber of beam at the end 7.00 in = 11.00 in center of 12 strands to bottom fiber of beam at the harp point = center of 12 strands and top fiber of beam at transfer length 9.84 in = center of gravity of 32 strands and bottom fiber of beam 3.98 in center of gravity of all strands and the bottom fiber of beam at 15.24 in = center of gravity of all strands and the bottom fiber of beam at the 15.30 in Eccentricity of the strand group at transfer length: 21.36 in $e_h =$

Eccentricity at end of beam: e = 21.30 in $\frac{P_i}{A} - \frac{P_i e}{S_*} + \frac{M_g}{S_*}$ $f_* = \frac{P_i}{A} + \frac{P_i e}{S_*} - \frac{M_g}{S_*}$

 $\begin{tabular}{c|cccc} \textbf{at midspan} & \textbf{at endspan} \\ \hline Top stress at top fiber of beam & f_t = & -0.017 \ ksi & -0.017 \ ksi \\ \hline Bottom stress at bottom fiber of the beam & f_b = & 2.906 \ ksi & 2.906 \ ksi \\ \hline \end{tabular}$

Calcs for eccentricity (see 9.6.7.2)

ок

ок

STRESSES AT	HARP I	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi	
Bottom stress at bottom fiber of the beam	$f_b =$	2.736 ksi	2.621 ksi	
STRESSES A	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	0.320 ksi	0.345 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

.0.0		
layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	=	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	=	227.4 ksi
layer 8	=	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
laver 14	=	227.4 ksi

prestress force per strand before any losses:

U33 U 3.		
layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	4.200 ksi	
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES A	T MIDS	PAN		
Compression stresses at top fiber of beam		at midspan	at endspan	
$f_t = \frac{P_{ys}}{A} - \frac{P_{ys}\rho}{S_t} + \frac{(M_y + A_y)\rho}{S_t}$	<u>M,)</u> + ($\frac{M_{\tau_2} + M_{\delta})}{S_{ty}}$		
Due to permanent loads	$f_{tg} =$	2.105 ksi	2.102 ksi	ок
$f_{ty} = \frac{P_{yt}}{A} - \frac{P_{yt}c}{S_z} + \frac{(M_x + M_z)}{S_z} +$	+ (M _{un} +	$\frac{-M_b)}{s} + \frac{(M_{ELs1})}{S_{ij}}$		
Due to permanent loads and transient loads	f _{tg} =	2.508 ksi	2.505 ksi	ок
Compression stresses at top fiber of deck		at midspan	at endspan	
$f_{ts} = \frac{(M_{ts})}{2}$, + 142 ₈ S ₂₆	<u>,)</u>		
Due to permanent loads	f _{tc} =	0.042 ksi	0.042 ksi	ок
$f_{w} = \frac{(M_{w} + h)}{h}$	d _a + M _d S' ₂₆	_{(Z+1})		
Due to permanent loads and transient loads	f _{tc} =	0.488 ksi	0.488 ksi	ок
Tension stresses at top fiber of deck		at midspan	at endspan	
$f_{eg} = \frac{P_{ge}}{A} + \frac{P_{ge}e}{S_b} - \frac{(M_g + M_g)}{S_b} - $	(M ₂₁ +	$\frac{M_z + 0.8*M_{E,1}}{\mathcal{L}_{k}}$		
Load Combination Service III	f _b =	-0.793 ksi	-0.782 ksi	ок

Strength Limit State

POSITIVE	MOMENI	SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.27
layer 2	k =	0.27
layer 3	k =	0.27
layer 4	k =	0.27
layer 5	k =	0.27
layer 6	k =	0.27
layer 7	k =	0.27
layer 8	k =	0.27
layer 9	k =	0.27
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	c =	4.6 ft-kips

layer 1	f _{ps} =	279.4 ksi
layer 2	f _{ps} =	279.4 ksi
layer 3	$f_{ps} =$	279.4 ksi
layer 4	$f_{ps} =$	279.4 ksi
layer 5	$f_{ps} =$	279.4 ksi
layer 6	$f_{ps} =$	279.4 ksi
layer 7	$f_{ps} =$	279.4 ksi
layer 8	f _{ps} =	279.4 ksi
layer 9	$f_{ps} =$	279.4 ksi
layer 10	$f_{ps} =$	279.4 ksi
layer 11	f _{ps} =	279.4 ksi
layer 12	$f_{ps} =$	279.4 ksi
layer 13	f _{ps} =	279.4 ksi
layer 14	f _{ps} =	279.4 ksi

OK OK

ок ок

at endspan

0.911 ksi

nominal flexure resistance

	a =	3.94 in		
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9193.8 ft-kips		
M=DC+W+LL+IM	M =	5833.6 ft-kips		

NEGATIVE MOMENT SECTION

M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	4837.2 ft-kips
	a =	5.73 in
	$\Phi M_n =$	4879.0 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

CRITICAL SECTION AT 0.59					
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips			
or					
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	364.8 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2877.0 ft-kips			
max shear	$V_u =$	405.0 kips			
max moment	$M_u =$	2877.0 ft-kips			
Shear depth	d _v =	73.19 in			
Applied factored normal force at the section	N _u =	0			
A 4 -	_	00.00.0			

Angle of diagonal compressive stresses θ = 36.00 ° STRAIN IN FLEXURAL TENSION REINFORCMENT

$ \frac{M_n}{d_n} $	1 0.5 <i>M</i> _a 1 0.5 <i>V</i> _a cot <i>⊕</i>	<i>A_{pe}f_{pe}</i> ≤ 0.002
	S, A, + E, A_	20.002

layer 1	$f_{po} =$	176.7 ksi	177.3 ksi
layer 2	f _{po} =	176.7 ksi	177.3 ksi
layer 3	f _{po} =	176.7 ksi	177.3 ksi
layer 4	f _{po} =	176.7 ksi	177.3 ksi
layer 5	f _{po} =	176.7 ksi	
layer 6	f _{po} =	176.7 ksi	
layer 7	f _{po} =	176.7 ksi	
layer 8	$f_{po} =$	176.7 ksi	
layer 9	$f_{po} =$		177.3 ksi
layer 10	f _{po} =		177.3 ksi
layer 11	$f_{po} =$		177.3 ksi
layer 12	$f_{po} =$		177.3 ksi
layer 13	f _{po} =		177.3 ksi
laver 14	f_ =		177.3 ksi

atrain	:	flaso	 tangian

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.27 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

$\Delta_{sw} =$	0.05 in

1.79 in 1.81 in Δ= Δ= 3.54 in 3.57 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -0.79 in

ок

ок

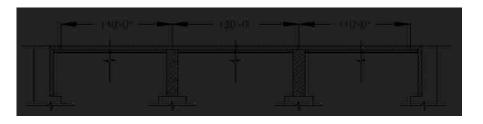
Deflection due to fire truck

Total Deflection after fire with fire truck

$\Delta_L =$	-1.4447 in
Δ =	1.8832 in

Location: Fire at Critical Positive Moment Sections

Beam Design: 3/8" Strand
Fire Exposure Status: 1/2 Hour



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	4 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f' _{ci} =	5.5 ksi		
Strength at 28 days	f'c =	6.79 ksi		
Unit Weight	W _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

	PRESTRESSING STI	SUNDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	3 · · · ·		
	layer 1 (bottom)	T =	260.00 °F
	layer 2	T =	185.00 °F
	layer 3	T =	165.00 °F
	layer 4 layer 5	T = T =	150.00 °F 130.00 °F
	layer 6	T =	115.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T = T =	68.00 °F
	layer 13 layer 14	T =	68.00 °F 68.00 °F
Ultimate Strength	layer 14		00.00 1
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	-	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{pu} =	284 ksi
	layer 13	f _{pu} =	
Yield Strength	layer 14	f _{pu} =	284 ksi
intial = 257 ksi	layer 1 (bottom)	f _{py} =	252 ksi
india 207 Noi	layer 2	f _{py} =	254 ksi
	layer 3	f _{py} =	254 ksi
	layer 4	f _{py} =	254 ksi
	layer 5		254 ksi
	layer 6	f _{py} =	257 ksi
	· ·	f _{py} =	
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
Strace Limite:	layer 14	f _{py} =	257 ksi
Stress Limits: before transfer ≤ 0.75f _{pu} (ir	nitial - 202 5)		
boloic transier = 0.701pu (II		f -	213 2 kai
	layer 1 (bottom) layer 2	f _{pi} =	213.2 ksi
	•	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14	$f_{pi} =$	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

layer

F) '		
1 (bottom)	$f_{pe} =$	201.3 ksi
layer 2	f _{pe} =	203.4 ksi
layer 3	f _{pe} =	203.4 ksi
layer 4	f _{pe} =	203.4 ksi
layer 5	$f_{pe} =$	203.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	$f_{pe} =$	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
laver 14	f _{ne} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	26674.9 ksi
layer 2	E =	26416.0 ksi
layer 3	E =	26416.0 ksi
layer 4	E =	26157.0 ksi
layer 5	E =	26157.0 ksi
layer 6	E =	26157.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
laver 14	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H	72.0 in		
Moment of Inertia	l =	482,740 in^4		
Distance from centroid to extreme bottom fiber	y _b =	38.5 in		
Distance from centroid to extreme top fiber	y _t =	33.5 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	4996 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7675
Transformed flange width	=	85.2 in
Transformed flange area	II	639.0 in^2
Transformed haunch width	=	32.2 in
Transformed haunch area	=	16.1 in^2

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	38.48 in	29,514.2 in^3	230,977 in^4	482,740 in^4	713,717 in^4
Haunch	16.1 in^2	72.25 in	1,164.5 in^3	4,344 in^4	0.33 in^4	4,344 in^4
Deck	639.0 in^2	76.25 in	48,721.3 in^3	266,344 in^4	2,950 in^4	269,294 in^4
Total	1422.1 in^2		79,400.0 in^3			987,355 in^4

*min of three criteria

_		
Total area of Composite Section	$A_c =$	1422 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	987,355 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	55.83 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	16.17 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	24.17 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	17,683.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	61,074.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	53,230.9 in^3

Shear Forces and Bending Moments

DEAD I	LOADS
--------	-------

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft

LRFD Specifications: Art. 4.6.2.2.1

D Optionidation 7 tt. 4.0.2.2.1					
Width of Deck Constant		OK			
Number of beams is not less than four N_b =	4	OK			
Beams are parallel and approximately of the same stiffness		OK			
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK			
Curvature in plans is less than 4°=	0	OK			

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3029
Longitudinal stiffness parameter	K _q =	2,199,990.66 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_{J}}{12*L*t_{J}^{3}}\right)^{0.1}$$

DFM = 0.901 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_z}{12 * L^* t_z^3}\right)^{0.1}$$

DFM = 0.611 lanes/beam

Distribution Factor for Shear Force

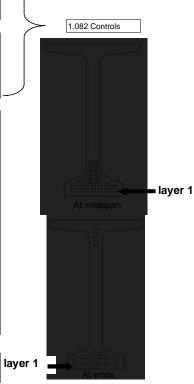
both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$


DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Str	and Group (ii	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth

strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	33.04 in

0.905 Controls

Prestress Losses

Prestress Losses ELASTIC SHORTE	NING		_	
assumed loss	=	6.00%		
Force per strand at transfer	1			
layer 1	=	17.0 kips		
layer 2	=	17.0 kips		
layer 3	=	17.0 kips		
layer 4	=	17.0 kips		
layer 5	II	17.0 kips		
layer 6	=	17.0 kips		
layer 7	=	17.0 kips		
layer 8	=	17.0 kips		
layer 9	=	17.0 kips		
layer 10	=	17.0 kips		
layer 11	=	17.0 kips		
layer 12	=	17.0 kips		
layer 13	=	17.0 kips		
layer 14	=	17.0 kips		
	Г			٦
	_	at midspan	at endspan	
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.737 ksi	2.616 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	16.2 ksi	15.5 ksi	
layer 2	$\Delta f_{pES} =$	16.1 ksi	15.4 ksi	
layer 3	$\Delta f_{pES} =$	16.1 ksi	15.4 ksi	
layer 4	$\Delta f_{pES} =$	15.9 ksi	15.2 ksi	
layer 5	$\Delta f_{pES} =$	15.9 ksi	15.2 ksi	
layer 6	$\Delta f_{pES} =$	15.9 ksi		
layer 7	$\Delta f_{pES} =$	15.8 ksi		
layer 8	$\Delta f_{pES} =$	15.8 ksi		
layer 9	$\Delta f_{pES} =$	15.8 ksi	15.1 ksi	
layer 10			15.1 ksi	
layer 11	$\Delta f_{pES} =$		15.1 ksi	
layer 12	F=0		15.1 ksi	
layer 13			15.1 ksi	
layer 14	$\Delta f_{pES} =$		15.1 ksi	
				=
	IKAGE			=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi		assume relative humidity = 70%
CREEP OF	CONCRE	TF		
Change of stresses at center of gravity of prestressing due to				=
permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.870 ksi		
permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as $f_{\rm cgp}$	ΔI _{cdp} =	at midspan	at endspan	7

19.8 ksi

18.3 ksi

loss due to creep $\Delta f_{pCR} =$

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 2	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 3	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 4	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 5	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 6	$\Delta f_{pR2} =$	2.5 ksi	
layer 7	$\Delta f_{pR2} =$	2.5 ksi	
layer 8	$\Delta f_{pR2} =$	2.5 ksi	
layer 9	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 10	$\Delta f_{pR2} =$		2.6 ksi
layer 11	$\Delta f_{pR2} =$		2.6 ksi
layer 12	$\Delta f_{pR2} =$		2.6 ksi
layer 13	$\Delta f_{pR2} =$		2.6 ksi
layer 14	$\Delta f_{pR2} =$		2.6 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$

ES - Δipi				
ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$	_		at midspan	at endspan
	layer 1	$f_{pt} =$	196.9 ksi	197.6 ksi
	layer 2	$f_{pt} =$	197.1 ksi	197.8 ksi
	layer 3	f _{pt} =	197.1 ksi	197.8 ksi
	layer 4	f _{pt} =	197.2 ksi	197.9 ksi
	layer 5	$f_{pt} =$	197.2 ksi	197.9 ksi
	layer 6	$f_{pt} =$	197.2 ksi	
	layer 7	f _{pt} =	197.4 ksi	
	layer 8	f _{pt} =	197.4 ksi	
	layer 9	f _{pt} =	197.4 ksi	198.1 ksi
	layer 10	$f_{pt} =$		198.1 ksi
	layer 11	f _{pt} =		198.1 ksi
	layer 12	f _{pt} =		198.1 ksi
	layer 13	$f_{pt} =$		198.1 ksi
	layer 14	$f_{pt} =$		198.1 ksi
nd = f _{pt} *strand area	_		at midspan	at endspan
	layer 1	=	16.7 kips	16.8 kips
	layer 2	=	16.8 kips	16.8 kips
	layer 3	=	16.8 kips	16.8 kips
	layer 4	=	16.8 kips	16.8 kips
	layer 5	=	16.8 kips	16.8 kips
	layer 6	=	16.8 kips	
	layer 7	=	16.8 kips	
	layer 8	=	16.8 kips	
	layer 9	=	16.8 kips	16.8 kips
	layer 10	=		16.8 kips
	layer 11	=		16.8 kips
	layer 12	=		16.8 kips
	layer 13	=		16.8 kips
	layer 14	=		16.8 kips
Total prestressing force after	r transfer	P _i =	1040.2 kips	1041.6 kips

force per strand = f_{pt} *strand area

Initial loss = $(\Delta f_{pi})/(f_{pi})$			at midspan	at endspan
	layer 1	% =	7.6%	7.3%
	layer 2	% =	7.5%	7.2%
	layer 3	% =	7.5%	7.2%
	layer 4	% =	7.5%	7.1%
	layer 5	% =	7.5%	7.1%
	layer 6	% =	7.5%	
	layer 7	% =	7.4%	
	layer 8	% =	7.4%	
	layer 9	% =	7.4%	7.1%
	layer 10	% =		7.1%
	layer 11	% =		7.1%
	layer 12	% =		7.1%
	layer 13	% =		7.1%
	layer 14			7.1%
	OSSES A	T SERVI	CE LOADS	
Total Losses	Ī		at midspan	at endspan
	layer 1	$\Delta f_{pT} =$	45.0 ksi	44.2 ksi
	layer 2	$\Delta f_{pT} =$	44.8 ksi	44.1 ksi
	layer 3	$\Delta f_{pT} =$	44.8 ksi	44.1 ksi
	layer 4	$\Delta f_{pT} =$	44.7 ksi	43.9 ksi
	layer 5		44.7 ksi	43.9 ksi
	layer 6	$\Delta f_{pT} =$	44.7 ksi	
	layer 7	$\Delta f_{pT} =$	44.5 ksi	
	layer 8		44.5 ksi	
	layer 9	$\Delta f_{pT} =$	44.5 ksi	43.8 ksi
	layer 10	$\Delta f_{pT} =$		43.8 ksi
	layer 11	$\Delta f_{pT} =$		43.8 ksi
	layer 12	$\Delta f_{pT} =$		43.8 ksi
	layer 13			43.8 ksi
	layer 14	$\Delta f_{pT} =$		43.8 ksi
Ctunes in tenden aften all lances	- '	рі	-4 *	
Stress in tendon after all losses = f_{pi} - Δf_{pt}	ا مدرسا		at midspan	at endspan
Stress in tendon after all losses = f_{pi} - Δf_{pt}	layer 1	f _{pe} =	168.2 ksi	at endspan 168.9 ksi
Stress in tendon after all losses = $f_{pi}\text{-}\Delta f_{pt}$	layer 2	f _{pe} =	168.2 ksi 168.3 ksi	at endspan 168.9 ksi 169.1 ksi
Stress in tendon after all losses = $f_{pi^*}\Delta f_{pt}$	layer 2 layer 3	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$	168.2 ksi 168.3 ksi 168.3 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi
Stress in tendon after all losses = $f_{pi^*}\Delta f_{pt}$	layer 2 layer 3 layer 4	$f_{pe} = f_{pe} = f_{pe}$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi 169.2 ksi
Stress in tendon after all losses = $f_{pi}\text{-}\Delta f_{pt}$	layer 2 layer 3 layer 4 layer 5	$f_{pe} = f_{pe} = f$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi
Stress in tendon after all losses = $f_{pi}\text{-}\Delta f_{pt}$	layer 2 layer 3 layer 4 layer 5 layer 6	$f_{pe} =$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi 169.2 ksi
Stress in tendon after all losses = $f_{pi}\text{-}\Delta f_{pt}$	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$f_{pe} = f_{pe} = f$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi 169.2 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$f_{pe} = f_{pe} = f$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi 169.2 ksi 169.2 ksi
Stress in tendon after all losses = f_{pl} - Δf_{pt}	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} = f_{pe} = f$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi
Stress in tendon after all losses = f_{pl} - Δf_{pt}	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} = f_{pe} = f$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi
Stress in tendon after all losses = f_{pl} - Δf_{pt}	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pe} = f_{pe} = f$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi
Stress in tendon after all losses = f_{pl} - Δf_{pt}	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
Stress in tendon after all losses = f_{pl} - Δf_{pt}	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 168.7 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 2	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 201.3 ksi 203.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 2 layer 3	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 201.3 ksi 203.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 203.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 203.4 ksi 205.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 14 limit state: layer 2 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 203.4 ksi 205.4 ksi 205.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
Stress in tendon after all losses = $f_{\text{pl}}\text{-}\Delta f_{\text{pt}}$ check prestressing stress limit at service	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 2 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 10	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi
	layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 2 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{array}{c} f_{pe} = \\ f_{p$	168.2 ksi 168.3 ksi 168.3 ksi 168.5 ksi 168.5 ksi 168.5 ksi 168.7 ksi 168.7 ksi 168.7 ksi 203.4 ksi 203.4 ksi 203.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	at endspan 168.9 ksi 169.1 ksi 169.2 ksi 169.2 ksi 169.2 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi 169.4 ksi

ок ок ок ок ok ok ok ок ок ок ок ок ок ок

ок

force	ner	stranc	= f.	.*sti	rand	area

		at midspan	at endspan
layer 1	=	14.3 kips	14.4 kips
layer 2	=	14.3 kips	14.4 kips
layer 3	=	14.3 kips	14.4 kips
layer 4	=	14.3 kips	14.4 kips
layer 5	=	14.3 kips	14.4 kips
layer 6	=	14.3 kips	
layer 7	=	14.3 kips	
layer 8	=	14.3 kips	
layer 9	=	14.3 kips	14.4 kips
layer 10	=		14.4 kips
layer 11	=		14.4 kips
layer 12	=		14.4 kips
layer 13	=		14.4 kips
layer 14	=		14.4 kips
•		at midspan	at endspan
all loccoc	P -	016 0 kins	010 0 kine

Total prestressing force after all losses P_{pe} = 919.9 kips 916.0 kips

Final losses	$\% = (\Delta f_{pT})/(f_{pi})$

% =	21.1%	20.8%
% =	21.0%	20.7%
% =	21.0%	20.7%
% =	20.9%	20.6%
% =	20.9%	20.6%
% =	20.9%	
% =	20.9%	
% =	20.9%	
% =	20.9%	20.5%
% =		20.5%
% =		20.5%
% =		20.5%
% =		20.5%
% =		20.5%
% =	21.0%	20.6%
	% = % = % = % = % = % = % = % = % = % =	% = 21.0% % = 21.0% % = 20.9% % = 20.9%

Stresses at Transfer		
STRESS LIMITS FOR CO	ONCRET	Έ
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in
Eccentricity of the strand group at transfer length:	e _h =	23.24 in
Eccentricity at end of beam:	e =	23.18 in

Calcs for eccentricity (see 9.6.7.2)

ок ок

5	$-\frac{P_i}{I}$	P_i e	M_{\bullet}
J2	\overline{A}	S,	<u>S,</u>

$$f_{\bullet} = \frac{P_{i}}{A} + \frac{P_{i}s}{S_{\bullet}} - \frac{M_{s}}{S_{\bullet}}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.143 ksi	-0.143 ksi
Bottom stress at bottom fiber of the beam	$f_b =$	3.043 ksi	3.043 ksi

STRESSES AT	T HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	0.052 ksi	0.051 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.873 ksi	2.710 ksi	
STRESSES A	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.188 ksi	0.227 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.691 ksi	2.528 ksi	
LIOLD DOWN FOR	000	•		

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	227.4 ksi
layer 2	II	227.4 ksi
layer 3	=	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	=	227.4 ksi
layer 8	II	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	II	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	II	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	II	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.45 kips

Due to permanent

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.056 ksi
for deck	=	1.800 ksi
and transient loads for load combination Service I		
for the precast beam	=	4.074 ksi

2.400 ksi

Tension:

Load Combination Service III

for the precast beam -0.016 ksi

for deck =

STRESSES AT M	IIDSPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{z} = \frac{P_{yo}}{A} - \frac{P_{yo}s}{S_{y}} + \frac{(M_{z} + M_{z})}{S_{y}}$	$+\frac{(M_{\infty}+M_{\delta})}{S_{n}}$		
Due to permanent loads f _{tg}	= 2.008 ksi	2.005 ksi	
$f_{ij} = \frac{P_{pr}}{A} - \frac{P_{pr}P}{S_{t}} + \frac{(M_{s} + M_{s})}{S_{t}} + \frac{(M_{s} + M_{s})}{S_{t}}$	$\frac{I_{y_0} + M_{\phi}}{S_{i_{\overline{x}}}} + \frac{(M_{LX_{11}})}{S_{i_{\overline{x}}}}$		
Due to permanent loads and transient loads f _{tg}	= 2.424 ksi	2.421 ksi	
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{ws} + \frac{1}{Z_{tr}})}{Z_{tr}}$	<u>M,)</u>		
Due to permanent loads f_{tc}	= 0.045 ksi	0.045 ksi	
$f_{ss} = \frac{\langle M_{us} + M_{s} + S_{ss} \rangle}{S_{ss}}$	M_{LL+1}		
Due to permanent loads and transient loads ftc	= 0.522 ksi	0.522 ksi	
Tension stresses at top fiber of deck	at midspan	at endspan	
$J_{ij} = \frac{P_{ji}}{A} + \frac{P_{ji}\theta}{S_b} - \frac{(M_J + M_S)}{S_b} - \frac{(M_J + M_S)}{S_b}$	$S_{L} + M_{\delta} + 0.8 * M_{H+1}$		
Load Combination Service III f _b	= -0.891 ksi	-0.877 ksi	

Strength Limit State

POSITIVE MOMENT SECTION					
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 8381.5$ ft-kips					
effective length factor for compression members		•			
layer 1	k =	0.31			
layer 2	k =	0.29			
layer 3	k =	0.29			
layer 4	k =	0.29			
layer 5	k =	0.29			
layer 6	k =	0.27			
layer 7	k =	0.27			
layer 8	k =	0.27			
layer 9	k =	0.27			
layer 10	k =	0.27			
layer 11	k =	0.27			
layer 12	k =	0.27			
layer 13	k =	0.27			
layer 14	k =	0.27			
	c =	4.6 ft-kips			

average	etrace	in	nrac	traccina	ctool	

layer 1	f _{ps} =	278.7 ksi
layer 2	$f_{ps} =$	278.7 ksi
layer 3	$f_{ps} =$	278.7 ksi
layer 4	$f_{ps} =$	278.7 ksi
layer 5	$f_{ps} =$	278.7 ksi
layer 6	$f_{ps} =$	278.7 ksi
layer 7	$f_{ps} =$	278.7 ksi
layer 8	$f_{ps} =$	278.7 ksi
layer 9	$f_{ps} =$	278.7 ksi
layer 10	$f_{ps} =$	278.7 ksi
layer 11	$f_{ps} =$	278.7 ksi
layer 12	$f_{ps} =$	278.7 ksi
layer 13	f _{ps} =	278.7 ksi
layer 14	f _{ps} =	278.7 ksi

nominal flexure resistance

NEGATIVE MOMENT	COTION	1	
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9173.3 ft-kips	ок
	a =	3.94 in	

NEGATIVE MOMENT SECTION

.25DC+1.5DW+1.75(LL+IM)	M _u =	4837.2 ft-kips
	a =	5.91 in
	$\Phi M_n =$	4873.1 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

CRITICAL	SECTION	AT 0 50	a

$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips
or		

 $V_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

$V_u =$	364.8 kips
M _u =	-2877.0 ft-kips

ok ok

 $\begin{array}{ccc} \text{max shear} & V_u = & 405.0 \text{ kips} \\ \text{max moment} & M_u = & 2877.0 \text{ ft-kips} \\ \text{Shear depth} & d_v = & 73.19 \text{ in} \\ \text{Applied factored normal force at the section} & N_u = & 0 \\ \text{Angle of diagonal compressive stresses} & \theta = & 36.00 \,^{\circ} \end{array}$

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\epsilon_{x} - \frac{\frac{M_{x}}{d_{x}} + 0.5N_{x} + 0.5V_{x} \cot \theta - A_{pe}f_{po}}{B_{x}A_{x} + E_{y}A_{po}} \le 0.002$

resultant compressive stress at centroid effective stress in prestressing strand after all losses

		at midspan	at endspan
	f _{pc} =	0.811 ksi	0.813 ksi
all losses			
layer 1	f _{po} =	172.5 ksi	173.2 ksi

layer 1	$T_{po} =$	1/2.5 KSI	1/3.2 ksi
layer 2	f _{po} =	172.6 ksi	173.4 ksi
layer 3	f _{po} =	172.6 ksi	173.4 ksi
layer 4	$f_{po} =$	172.7 ksi	173.5 ksi
layer 5	$f_{po} =$	172.7 ksi	
layer 6	f _{po} =	172.7 ksi	
layer 7	f _{po} =	172.9 ksi	
layer 8	$f_{po} =$	172.9 ksi	
layer 9	$f_{po} =$		173.6 ksi
layer 10	f _{po} =		173.6 ksi
layer 11	f _{po} =		173.6 ksi
layer 12	$f_{po} =$		173.6 ksi
layer 13	$f_{po} =$		173.6 ksi
layer 14	f _{po} =		173.6 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\epsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.66 in	
$\Delta_g =$	-1.45 in	
$\Delta_s =$	-2.21 in	

Deflection due to total self weight

Δ_{sw} = -0.38 in

Total Deflection at transfer Total Deflection at erection

Δ =	1.61 in	1.63 in
Δ =	3.22 in	3.25 in

Live load deflection limit = span/800 Deflection due to live load and impact

Total Deflection after fire with fire truck

-1.80 in $\Delta_L =$ -0.89 in

Deflection due to fire truck

Δ = 1.2505 in

-1.6407 in $\Delta_L =$

οк

oĸ

Location: Fire at Critical Positive Moment Sections

Beam Design: 3/8" Strand Fire Exposure Status: 1 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	4 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f' _{ci} =	5.5 ksi		
Strength at 28 days	f'c =	6.57 ksi		
Unit Weight	w _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

	PRESTRESSING STI	PANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	J		
	layer 1 (bottom)	T =	530.00 °F
	layer 2	T =	360.00 °F
	layer 3	T =	295.00 °F
	layer 4 layer 5	T = T =	275.00 °F 255.00 °F
	layer 6	T =	230.00 °F
	layer 7	T =	205.00 °F
	layer 8	T =	190.00 °F
	layer 9	T =	180.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T = T =	68.00 °F
	layer 13 layer 14	T =	68.00 °F 68.00 °F
Ultimate Strength	layer 14		00.00 1
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	279 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	-	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	•	f _{pu} =	
Yield Strength	layer 14	f _{pu} =	284 ksi
intial = 257 ksi	layer 1 (bottom)	f _{py} =	236 ksi
milar = 207 Kor	layer 2	f _{py} =	249 ksi
	layer 3	f _{py} =	249 ksi
	layer 4	f _{py} =	252 ksi
	layer 5		252 ksi
	layer 6	f _{py} =	252 ksi
		f _{py} =	
	layer 7	f _{py} =	254 ksi
	layer 8	f _{py} =	254 ksi
	layer 9	f _{py} =	254 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
Strace Limite:	layer 14	f _{py} =	257 ksi
Stress Limits: before transfer ≤ 0.75f _{pu} (ini	tial - 202 5)		
boloic transier = 0.73ipu (IIII		f -	208 0 kgi
	layer 1 (bottom) layer 2	f _{pi} =	208.9 ksi
	•	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14	$f_{pi} =$	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

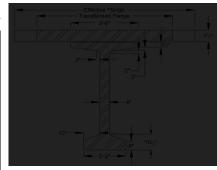
layer

F) 1		
1 (bottom)	f _{pe} =	189.0 ksi
layer 2	f _{pe} =	199.3 ksi
layer 3	f _{pe} =	199.3 ksi
layer 4	f _{pe} =	201.3 ksi
layer 5	f _{pe} =	201.3 ksi
layer 6	f _{pe} =	201.3 ksi
layer 7	f _{pe} =	203.4 ksi
layer 8	f _{pe} =	203.4 ksi
layer 9	f _{pe} =	203.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
laver 14	f _{ne} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

ayer 1 (bottom)	E =	27969.8 ksi
layer 2	E =	27192.9 ksi
layer 3	E =	26933.9 ksi
layer 4	E =	26933.9 ksi
layer 5	E =	26674.9 ksi
layer 6	E =	26674.9 ksi
layer 7	E =	26416.0 ksi
layer 8	E =	26416.0 ksi
layer 9	E =	26416.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi


REINFORCING BARS

KEIN OKONO BAKO				
Yield Strength	f _y =	57.6 ksi		
Modulus of Flasticity	F -	29000 0 ksi		

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	440,915 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	40.3 in				
Distance from centroid to extreme top fiber	y _t =	31.7 in				
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$						
cast-in-place concrete deck	$E_{cs} =$	3834 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	4914 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_c	n =	0.7803
Transformed flange width	=	86.6 in
Transformed flange area	II	649.6 in^2
Transformed haunch width	=	32.8 in
Transformed haunch area	=	16.4 in^2

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	40.31 in	30,917.8 in^3	212,814 in^4	440,915 in^4	653,729 in^4
Haunch	16.4 in^2	72.25 in	1,183.9 in^3	3,827 in^4	0.33 in^4	3,827 in^4
Deck	649.6 in^2	76.25 in	49,530.4 in^3	241,530 in^4	2,950 in^4	244,479 in^4
Total	1433.0 in^2		81,632.0 in^3			902,036 in^4

_		
Total area of Composite Section	$A_c =$	1433 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	902,036 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	56.97 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	15.03 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	23.03 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	15,834.3 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	60,004.6 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	50,191.5 in^3

Shear Forces and Bending Moments

		DS.

 $\begin{array}{lll} \text{Beam self-weight} & \text{W_{beam}=$} & 0.799 \text{ k/f} \\ \text{8 in. deck weight} & \text{W_{deck}=$} & 1.200 \text{ k/f} \\ \text{$1/2$ in. haunch weight} & \text{W_{haunch}=$} & 0.022 \text{ k/f} \\ \end{array}$

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant		OK	
Number of beams is not less than four N_b =	4	OK	
Beams are parallel and approximately of the same stiffness		OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.2816
Longitudinal stiffness parameter	K _g =	2,110,453.24 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_{J}}{12*L*t_{3}^{2}}\right)^{0.1}$$

DFM = 0.897 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_z}{12*L*t_z^3}\right)^{0.1}$$

DFM = 0.609 lanes/beam

Distribution Factor for Shear Force

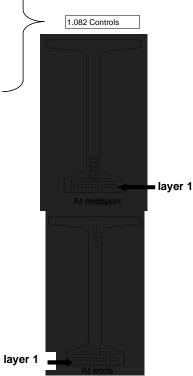
both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$


DFV = 0.840 lanes/beam

	At Midspan			At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8		14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12		-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Str	and Group (ir	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth

strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	34.87 in

0.905 Controls

ELASTIC SHORTE	NING		_	
assumed loss	=	6.00%		
Force per strand at transfer			_	
layer 1	=	16.7 kips		
layer 2	=	17.0 kips		
layer 3	=	17.0 kips		
layer 4	=	17.0 kips		
layer 5	=	17.0 kips		
layer 6	=	17.0 kips		
layer 7	=	17.0 kips		
layer 8	=	17.0 kips		
layer 9		17.0 kips		
layer 10	=	17.0 kips		
layer 11	=	17.0 kips		
layer 12		17.0 kips		
layer 13		17.0 kips		
layer 14	=	17.0 kips		
				٦
-		at midspan	at endspan	
Total prestressing force at release	P _i =	1083.8 kips	1049.8 kips	
Sum of concrete stresses at the center of gravity of prestressing endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cap} =	3.082 ksi	2.944 ksi	
Loss due to shortening		at midspan	at endspan	_
layer 1	$\Delta f_{pES} =$	19.2 ksi	18.3 ksi	
layer 2	$\Delta f_{pES} =$	18.6 ksi	17.8 ksi	
layer 3	$\Delta f_{pES} =$	18.5 ksi	17.6 ksi	
layer 4	$\Delta f_{pES} =$	18.5 ksi	17.6 ksi	
layer 5	$\Delta f_{pES} =$	18.3 ksi	17.5 ksi	
layer 6	$\Delta f_{pES} =$	18.3 ksi		
layer 7	$\Delta f_{pES} =$	18.1 ksi		
layer 8	$\Delta f_{pES} =$	18.1 ksi		
layer 9	$\Delta f_{pES} =$	18.1 ksi	17.3 ksi	
layer 10	$\Delta f_{pES} =$		17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12	$\Delta f_{pES} =$		17.0 ksi	
layer 13	$\Delta f_{pES} =$		17.0 ksi	
layer 14	$\Delta f_{pES} =$		17.0 ksi	
				_
	IKAGE			_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	_ —	assume relative humidity = 70
CREEP OF	CONCRET	E		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{coo}	$\Delta f_{cdp} =$	2.156 ksi		
presuressing rorce, calculated at the same section as r _{cgp}				_
presuressing roice, calculated at the same section as T _{ogp}	A.f.	at midspan	at endspan	

21.9 ksi

20.2 ksi

loss due to creep $\Delta f_{pCR} =$

RELAXATION OF PRESTRESSING STRANDS					
loss due to relaxation after transfer			at midspan	at endspan	
	layer 1	$\Delta f_{pR2} =$	2.0 ksi	2.1 ksi	
	layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.2 ksi	
	layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.2 ksi	
	layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.2 ksi	
	layer 5	$\Delta f_{pR2} =$	2.1 ksi	2.2 ksi	
	layer 6	$\Delta f_{pR2} =$	2.1 ksi		
	layer 7	$\Delta f_{pR2} =$	2.1 ksi		
	layer 8	$\Delta f_{pR2} =$	2.1 ksi		
	layer 9	$\Delta f_{pR2} =$	2.1 ksi	2.2 ksi	
	layer 10	$\Delta f_{pR2} =$		2.3 ksi	
	layer 11	$\Delta f_{pR2} =$		2.3 ksi	
	layer 12	$\Delta f_{pR2} =$		2.3 ksi	
	layer 13	$\Delta f_{pR2} =$		2.3 ksi	
	layer 14	$\Delta f_{pR2} =$		2.3 ksi	

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$

		at midspan	at endspan
layer 1	$f_{pt} =$	189.7 ksi	190.6 ksi
layer 2	$f_{pt} =$	194.5 ksi	195.3 ksi
layer 3	$f_{pt} =$	194.7 ksi	195.5 ksi
layer 4	$f_{pt} =$	194.7 ksi	195.5 ksi
layer 5	$f_{pt} =$	194.9 ksi	195.7 ksi
layer 6	$f_{pt} =$	194.9 ksi	
layer 7	$f_{pt} =$	195.0 ksi	
layer 8	$f_{pt} =$	195.0 ksi	
layer 9	$f_{pt} =$	195.0 ksi	195.9 ksi
layer 10	$f_{pt} =$		196.2 ksi
layer 11	$f_{pt} =$		196.2 ksi
layer 12	$f_{pt} =$		196.2 ksi
layer 13	$f_{pt} =$		196.2 ksi
layer 14	$f_{pt} =$		196.2 ksi
		at midspan	at endspan
layer 1	=	at midspan 16.1 kips	at endspan 16.2 kips
layer 1 layer 2	=		•
		16.1 kips	16.2 kips
layer 2	=	16.1 kips 16.5 kips	16.2 kips 16.6 kips
layer 2 layer 3	=	16.1 kips 16.5 kips 16.5 kips	16.2 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4	= =	16.1 kips 16.5 kips 16.5 kips 16.5 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4 layer 5	= = =	16.1 kips 16.5 kips 16.5 kips 16.5 kips 16.6 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4 layer 5 layer 6	= = = = =	16.1 kips 16.5 kips 16.5 kips 16.5 kips 16.6 kips 16.6 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	= = = = =	16.1 kips 16.5 kips 16.5 kips 16.5 kips 16.6 kips 16.6 kips 16.6 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	= = = = = =	16.1 kips 16.5 kips 16.5 kips 16.5 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	= = = = = = = =	16.1 kips 16.5 kips 16.5 kips 16.5 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	= = = = = = = = =	16.1 kips 16.5 kips 16.5 kips 16.5 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips
layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = = = = = = =	16.1 kips 16.5 kips 16.5 kips 16.5 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips	16.2 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips 16.6 kips 16.7 kips 16.7 kips

1018.4 kips

1024.6 kips

force per strand = f_{pt} *strand area

Total prestressing force after transfer $P_i =$

Initial loss = $(\Delta f_{pi})/(f_{pi})$			at midspan	at endspan
	layer 1	% =	9.2%	8.8%
	layer 2	% =	8.7%	8.4%
	layer 3	% =	8.7%	8.3%
	layer 4	% =	8.7%	8.3%
	layer 5	% =	8.6%	8.2%
	layer 6	% =	8.6%	
	layer 7	% =	8.5%	
	layer 8	% =	8.5%	
	layer 9	% =	8.5%	8.1%
	layer 10	% =		8.0%
	layer 11	% =		8.0%
	layer 12	% =		8.0%
	layer 13	% =		8.0%
	layer 14	% =		8.0%
TOTAL LO	SSES A	T SERVI	CE LOADS	
Total Losses	_		at midspan	at endspan
	layer 1	$\Delta f_{pT} =$	49.6 ksi	48.7 ksi
	layer 2	$\Delta f_{pT} =$	49.0 ksi	48.2 ksi
	layer 3	$\Delta f_{pT} =$	48.9 ksi	48.0 ksi
	layer 4	$\Delta f_{pT} =$	48.9 ksi	48.0 ksi
	layer 5	$\Delta f_{pT} =$	48.7 ksi	47.9 ksi
	layer 6	$\Delta f_{pT} =$	48.7 ksi	
	layer 7	$\Delta f_{pT} =$	48.5 ksi	
	layer 8	$\Delta f_{pT} =$	48.5 ksi	
	layer 9	$\Delta f_{pT} =$	48.5 ksi	47.7 ksi
	layer 10	$\Delta f_{pT} =$		47.3 ksi
	layer 11	$\Delta f_{pT} =$		47.3 ksi
	layer 12	$\Delta f_{pT} =$		47.3 ksi
	layer 13	$\Delta f_{pT} =$		47.3 ksi
	layer 14	$\Delta f_{pT} =$		47.3 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	159.3 ksi	160.2 ksi
	layer 2	f _	164.1 kg	
	layer 2	f _{pe} =	164.1 ksi	165.0 ksi
	layer 3	f _{pe} =	164.1 ksi	165.0 ksi 165.1 ksi
	- 1			
	layer 3	f _{pe} =	164.3 ksi	165.1 ksi
	layer 3 layer 4	f _{pe} =	164.3 ksi 164.3 ksi	165.1 ksi 165.1 ksi
	layer 3 layer 4 layer 5	f _{pe} = f _{pe} = f _{pe} =	164.3 ksi 164.3 ksi 164.5 ksi	165.1 ksi 165.1 ksi
	layer 3 layer 4 layer 5 layer 6	$f_{pe} = f_{pe} = f$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi	165.1 ksi 165.1 ksi
	layer 3 layer 4 layer 5 layer 6 layer 7	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi	165.1 ksi 165.1 ksi
	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$f_{pe} = f_{pe} = f$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi
	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} = f_{pe} = f$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.3 ksi
	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$f_{pe} =$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.5 ksi
	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pe} =$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi
	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	$f_{pe} =$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lii	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$\begin{split} f_{pe} &= \\ f_$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lin	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$\begin{split} f_{pe} &= \\ f_$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lin	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state:	$\begin{split} f_{pe} &= \\ f_$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lin	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state:	$\begin{array}{c} f_{pe} = \\ f_{p$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lin	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 2	$\begin{array}{c} f_{pe} = \\ \\ f_{pe} = \\ $	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.8 ksi 164.9 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lin	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 1 layer 2 layer 3	$\begin{array}{c} f_{pe} = \\ \\ f_{pe} = \\ $	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.8 ksi 194.9 ksi 199.3 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lir	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 1 layer 2 layer 3 layer 4	$\begin{array}{c} f_{pe} = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ \end{array}$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.3 ksi 199.3 ksi 199.3 ksi 199.3 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lir	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{array}{c} f_{pe} = \\ f_{p$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.3 ksi 199.3 ksi 199.3 ksi 199.3 ksi 201.3 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lin	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{array}{c} f_{pe} = \\ f_{p$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.8 ksi 164.9 ksi 164.1 ksi 164.1 ksi 164.1 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lir	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{array}{c} f_{pe} = \\ \\ = \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.8 ksi 164.9 ksi 164.1 ksi 164.1 ksi 164.1 ksi 164.2 ksi 164.3 ksi 199.3 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 203.4 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lir	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 2 layer 3 layer 3 layer 4 layer 5 layer 6 layer 6 layer 7	$\begin{array}{c} f_{pe} = \\ \\ = \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ \\ = \\ $	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.8 ksi 164.9 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 203.4 ksi 203.4 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lir	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 2 layer 3 layer 4 layer 5 layer 6 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{pe} = \\ f_{p$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.8 ksi 164.9 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 203.4 ksi 203.4 ksi 203.4 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lir	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9	$\begin{array}{c} f_{pe} = \\ f_{p$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.3 ksi 164.4 ksi 164.5 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi
check prestressing stress limit at service lir	layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 mit state: layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9 layer 10 layer 10	$\begin{array}{c} f_{pe} = \\ f_{p$	164.3 ksi 164.3 ksi 164.5 ksi 164.5 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.7 ksi 164.3 ksi 164.4 ksi 164.5 ksi 164.7 ksi	165.1 ksi 165.1 ksi 165.3 ksi 165.5 ksi 165.8 ksi 165.8 ksi 165.8 ksi

ок ок ок ок ok ok ok ок ок ок ок ок ок ок

ок

force	ner	strand	= f.	.*sti	rand	area

		at midspan	at endspan
layer 1	=	13.5 kips	13.6 kips
layer 2	=	14.0 kips	14.0 kips
layer 3	=	14.0 kips	14.0 kips
layer 4	=	14.0 kips	14.0 kips
layer 5	=	14.0 kips	14.0 kips
layer 6	=	14.0 kips	
layer 7	=	14.0 kips	
layer 8	=	14.0 kips	
layer 9	=	14.0 kips	14.1 kips
layer 10	=		14.1 kips
layer 11	=		14.1 kips
layer 12	=		14.1 kips
layer 13	=		14.1 kips
layer 14	=		14.1 kips
		at midspan	at endspan
all loccoc	Р –	887 Q kins	802 0 kine

Total prestressing force after all losses P_{pe} = 892.9 kips

Final losses, %	$= (\Delta f_{DT})/(f_{Di})$
-----------------	------------------------------

layer 1	% =	23.7%	23.3%
layer 2	% =	23.5%	23.1%
layer 3	% =	23.4%	23.0%
layer 4	% =	23.4%	23.0%
layer 5	% =	23.3%	22.9%
layer 6	% =	23.3%	
layer 7	% =	23.2%	
layer 8	% =	23.2%	
layer 9	% =	23.2%	22.8%
layer 10	% =		22.7%
layer 11	% =		22.7%
layer 12	% =		22.7%
layer 13	% =		22.7%
layer 14	% =		22.7%
losses, %	% =	23.4%	22.9%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE

Average final

OTREGO EMMITOTOR GORGRETE						
Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi				
Tension						
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi				
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi				

STRESSES AT TRANSFER LENGTH SECTION

011120020 711 1117 HOLEN 22		
Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	II	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	ı	15.30 in
Eccentricity of the strand group at transfer length:	e _h =	25.07 in
Eccentricity at end of beam:	e =	25.01 in

Calcs for eccentricity (see 9.6.7.2)

ок οк

$$f_t = \frac{P_t}{A} - \frac{P_t \sigma}{S_t} + \frac{M_g}{S_t}$$

$$f_{s} = \frac{P_{i}}{A} - \frac{P_{i}e}{S_{s}} + \frac{M_{g}}{S_{s}} \qquad \qquad f_{\phi} = \frac{P_{i}}{A} + \frac{P_{i}e}{S_{\phi}} - \frac{M_{g}}{S_{\phi}}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.259 ksi	-0.261 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.164 ksi	3.164 ksi

T HARP I	POINT		
$M_g =$	1188.0 ft-kips		
f _t =	-0.051 ksi	-0.057 ksi	
f _b =	2.991 ksi	2.776 ksi	
AT MIDS	PAN	_	
$M_g =$	1414.3 ft-kips		
$f_t =$	0.063 ksi	0.119 ksi	
f _b =	2.809 ksi	2.594 ksi	
	$\begin{aligned} & M_{g} = \\ & f_{t} = \\ & f_{b} = \\ & \mathbf{AT\ MIDS} \\ & M_{g} = \\ & f_{t} = \end{aligned}$	$f_{t} = -0.051 \text{ ksi}$ $f_{b} = 2.991 \text{ ksi}$ AT MIDSPAN $M_{g} = 1414.3 \text{ ft-kips}$ $f_{t} = 0.063 \text{ ksi}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	222.8 ksi
layer 2	=	227.4 ksi
layer 3	II	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	II	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

=	18.9 kips
=	19.3 kips
Ψ =	7.2 °
	= = = = = = = = = = = = = = = = = = =

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	II	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.957 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	3.942 ksi	

2.400 ksi

Tension:

Load Combination Service III

for the precast beam -0.015 ksi

for deck =

STRESSES AT MI	DSPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{z} = \frac{P_{yx}}{A} - \frac{P_{yx}B}{S_{y}} + \frac{(M_{x} + M_{z})}{S_{y}}$	$+\frac{(M_{\infty}+M_{\bullet})}{S_{r_{2}}}$		
Due to permanent loads f_{tg}	1.927 ksi	1.922 ksi	
$f_{tg} = \frac{P_{pr}}{A} - \frac{P_{pr}P}{S_{r}} + \frac{(M_{g} + M_{s})}{S_{r}} + \frac{(M_{g} + M_{s})}{S_{r}}$	$\frac{S_{tx} + M_{\phi}}{S_{tx}} + \frac{(M_{LE,1})}{S_{tx}}$		
Due to permanent loads and transient loads f _{tg} =	2.350 ksi	2.345 ksi	
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{ws} + x)}{S_{tr}}$	<u>(12 ,)</u>		
Due to permanent loads f_{tc}	0.048 ksi	0.048 ksi	
$f_{\mathbf{z}} = \frac{(\boldsymbol{M}_{\mathbf{w}} + \boldsymbol{M}_{\boldsymbol{z}} + \boldsymbol{N}_{\boldsymbol{z}} + \boldsymbol{N}_{\boldsymbol{z}})}{S_{\mathbf{z}}}$	$M_{LL+1}\rangle$		
Due to permanent loads and transient loads f_{tc}	0.554 ksi	0.554 ksi	
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ig} = \frac{P_{gs}}{A} + \frac{P_{gs}s}{S_s} - \frac{(M_g + M_s)}{S_s} - \frac{(M_w}{S_s}$	$S_{L} + M_{\delta} + 0.8*M_{LL+1}$		
Load Combination Service III f _b =	-1.031 ksi	-1.013 ksi	

Strength Limit State

POSITIVE MOMENT SECTION						
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 8381.5 \text{ ft-kips}$					
effective length factor for compression members						
layer 1	k =	0.38				
layer 2	k =	0.33				
layer 3	k =	0.33				
layer 4	k =	0.31				
layer 5	k =	0.31				
layer 6	k =	0.31				
layer 7	k =	0.29				
layer 8	k =	0.29				
layer 9	k =	0.29				
layer 10	k =	0.27				
layer 11	k =	0.27				
layer 12	k =	0.27				
layer 13	k =	0.27				
layer 14	k =	0.27				
	C =	4.6 ft-kips				

	atrono	:-	prestressing steel	
average	stress	ın	prestressing steel	

layer 1	f _{ps} =	271.9 ksi
layer 2	$f_{ps} =$	277.5 ksi
layer 3	$f_{ps} =$	277.5 ksi
layer 4	$f_{ps} =$	277.5 ksi
layer 5	$f_{ps} =$	277.5 ksi
layer 6	$f_{ps} =$	277.5 ksi
layer 7	$f_{ps} =$	277.5 ksi
layer 8	$f_{ps} =$	277.5 ksi
layer 9	$f_{ps} =$	277.5 ksi
layer 10	$f_{ps} =$	277.5 ksi
layer 11	f _{ps} =	277.5 ksi
layer 12	f _{ps} =	277.5 ksi
layer 13	f _{ps} =	277.5 ksi
layer 14	f _{ps} =	277.5 ksi

nominal flexure resistance

$M_r = \Phi M_n, \ \Phi = 1.00$	Ψivi _n =	9091.4 ft-kips	ок
M=DC+W+LL+IM	M =	5833.6 ft-kips	OK
NEGATIVE MOMENT	COTION		

NEGATIVE MOMENT SECTION

I.25DC+1.5DW+1.75(LL+IM)	$M_u =$	4837.2 ft-kips
	a =	6.11 in
	$\Phi M_n =$	4866.5 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

CRITICAL SECTION AT 0.59

V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips

 $V_{u} \\$

$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2877.0 ft-kips

max shear 405.0 kips max moment $M_u =$ 2877.0 ft-kips Shear depth 73.19 in d_v = Applied factored normal force at the section N_u = 0

Angle of diagonal compressive stresses $\theta = 36.00 \,^\circ$ STRAIN IN FLEXURAL TENSION REINFORCMENT

resultant compressive stress at centroid effective stress in prestressing strand after

	, ,-		
		at midspan	at endspan
	f _{pc} =	0.716 ksi	0.718 ksi
r all losses			
layer 1	f _{po} =	163.4 ksi	164.3 ksi
layer 2	f _{po} =	168.1 ksi	168.9 ksi

οк ок

layer 1	$T_{po} =$	163.4 KSI	164.3 KSI
layer 2	f _{po} =	168.1 ksi	168.9 ksi
layer 3	f _{po} =	168.2 ksi	169.1 ksi
layer 4	$f_{po} =$	168.2 ksi	169.1 ksi
layer 5	$f_{po} =$	168.4 ksi	
layer 6	f _{po} =	168.4 ksi	
layer 7	f _{po} =	168.5 ksi	
layer 8	$f_{po} =$	168.5 ksi	
layer 9	$f_{po} =$		169.3 ksi
layer 10	f _{po} =		169.6 ksi
layer 11	f _{po} =		169.6 ksi
layer 12	$f_{po} =$		169.6 ksi
layer 13	$f_{po} =$		169.6 ksi
layer 14	f _{po} =		169.6 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	·
layer 6	$\epsilon_x =$	0.002000	
layer 7	ε _x =	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.82 in	
$\Delta_g =$	-1.61 in	
$\Delta_s =$	-2.46 in	

Deflection due to total self weight

 $\Delta_{\rm sw} = -0.80 \ {\rm in}$

Total Deflection at transfer Total Deflection at erection

Δ =	1.45 in	1.47 in
Δ =	2.92 in	2.95 in

Live load deflection limit = span/800 Deflection due to live load and impact

Deflection due to fire truck

Total Deflection after fire with fire truck

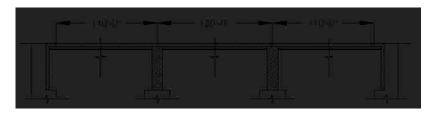
 $\Delta_{L} =$ -1.8262 in $\Delta =$ 0.6518 in

ок

NOT OK

Location: Fire at Critical Positive Moment Sections

Beam Design: 3/8" Strand
Fire Exposure Status: 1-1/2 Hour



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	4 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	6.41 ksi			
Unit Weight	$w_c =$	150.0 pcf			
Overall Beam Length:					
@ end spans L = 110 ft					
@ center span	L =	119 ft			
Design Spans:					
Non-composite beam @ end spans	L =	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L =	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

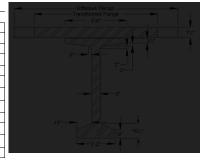
	F	RESTRESSING ST	RANDS	
	Di	ameter of single strand	d =	0.4 in
		Area of single strand	A =	0.085 in^2
Temperature of	Layer		-	700.00.05
		layer 1 (bottom) layer 2	T = T =	700.00 °F 500.00 °F
		layer 3	T =	400.00 °F
		layer 4	T =	370.00 °F
		layer 5	T =	345.00 °F
		layer 6	T =	300.00 °F
		layer 7	T =	280.00 °F
		layer 8	T =	260.00 °F
		layer 9 layer 10	T = T =	245.00 °F 68.00 °F
		layer 11	T =	68.00 °F
		layer 12	T =	68.00 °F
		layer 13	T =	68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng		4		004 I:
intial =	284 ksi	layer 1 (bottom)	f _{pu} =	261 ksi
		layer 2	f _{pu} =	281 ksi
		layer 3	f _{pu} =	284 ksi
		layer 4	f _{pu} =	284 ksi
		layer 5	f _{pu} =	284 ksi
		layer 6	f _{pu} =	284 ksi
		layer 7	f _{pu} =	284 ksi
		layer 8	f _{pu} =	284 ksi
		layer 9	f _{pu} =	284 ksi
		layer 10	f _{pu} =	284 ksi
		layer 11	f _{pu} =	284 ksi
		layer 12	f _{pu} =	284 ksi
		layer 13	f _{pu} =	284 ksi
		layer 14	f _{pu} =	284 ksi
Yield Strength	0571			2041 :
intial =	257 ksi	layer 1 (bottom)	f _{py} =	221 ksi
		layer 2	f _{py} =	244 ksi
		layer 3	f _{py} =	247 ksi
		layer 4	f _{py} =	249 ksi
		layer 5	f _{py} =	249 ksi
		layer 6	f _{py} =	252 ksi
		layer 7	f _{py} =	252 ksi
		layer 8	f _{py} =	252 ksi
		layer 9	f _{py} =	252 ksi
		layer 10	f _{py} =	257 ksi
		layer 11	f _{py} =	257 ksi
		layer 12	f _{py} =	257 ksi
		layer 13	f _{py} =	257 ksi
		layer 14	f _{py} =	257 ksi
Stress Limits:	< 0.7E4 /:-:4	ial – 202 5)		
before transfer	unii _{pu} اد، ن	· ·	4	400 4 !!
		layer 1 (bottom)	f _{pi} =	196.1 ksi
		layer 2	τ _{pi} =	211.0 ksi
		layer 3	f _{pi} =	213.2 ksi
		layer 4	f _{pi} =	213.2 ksi
		layer 5	f _{pi} =	213.2 ksi
		layer 6	f _{pi} =	213.2 ksi
		layer 7	f _{pi} =	213.2 ksi
		layer 8	f _{pi} =	213.2 ksi
		layer 9	f _{pi} =	213.2 ksi
		layer 10	f _{pi} =	213.2 ksi
		layer 11	f _{pi} =	213.2 ksi
		layer 12	f _{pi} =	213.2 ksi
		layer 13	f _{pi} =	213.2 ksi
		layer 14	f _{pi} =	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, ,	. ,	
layer 1 (bottom)	f _{pe} =	176.7 ksi
layer 2	f _{pe} =	195.2 ksi
layer 3	f _{pe} =	197.2 ksi
layer 4	f _{pe} =	199.3 ksi
layer 5	f _{pe} =	199.3 ksi
layer 6	f _{pe} =	201.3 ksi
layer 7	f _{pe} =	201.3 ksi
layer 8	f _{pe} =	201.3 ksi
layer 9	f _{pe} =	201.3 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	27710.9 ksi
layer 2	E =	27710.9 ksi
layer 3	E =	27451.9 ksi
layer 4	E =	27192.9 ksi
layer 5	E =	27192.9 ksi
layer 6	E =	26933.9 ksi
layer 7	E =	26933.9 ksi
layer 8	E =	26674.9 ksi
layer 9	E =	26674.9 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM Area of cross-section of beam Overall depth of beam Moment of Inertia I = 412,327 in/4 Distance from centroid to extreme bottom fiber $y_b = 41.5$ in Section modulus for the extreme top fiber $y_t = 30.5$ in Section modulus for the extreme top fiber $y_t = 30.5$ in Section modulus for the extreme top fiber $y_t = 30.5$ in Section modulus for the extreme top fiber $y_t = 30.5$ in Section modulus for the extreme top fiber $y_t = 30.5$ in				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	412,327 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	41.5 in		
Distance from centroid to extreme top fiber	$y_t =$	30.5 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	4854 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.7900 Transformed flange width 87.7 in = Transformed flange area 657.6 in^2 Transformed haunch width Transformed haunch area 16.6 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	41.52 in	31,845.8 in^3	201,319 in^4	412,327 in^4	613,646 in^4
Haunch	16.6 in^2	72.25 in	1,198.6 in^3	3,502 in^4	0.33 in^4	3,502 in^4
Deck	657.6 in^2	76.25 in	50,144.7 in^3	225,779 in^4	2,950 in^4	228,728 in^4
Total	1441.2 in^2		83,189.1 in^3			845,877 in^4

Total area of Composite Section	A _c =	1441 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	845,877 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	57.72 in
Distance from centroid to extreme \underline{top} fiber of beam	y _{tg} =	14.28 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	22.28 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	14,654.5 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	59,239.7 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	48,063.2 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant ОК Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК 1.5 Curvature in plans is less than 4°= OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.2659
Longitudinal stiffness parameter	K _a =	2.048.407.27 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{6.6} + \left(\frac{S^{-0.2}}{L_{J}}\right)^{0.2} + \left(\frac{K_{g}}{12 + L * t_{1}^{2}}\right)^{0.1}$$

DFM = 0.895 lanes/beam

one design lane loaded:

$$DPM = 0.75 + \left(\frac{N}{14}\right)^{64} * \left(\frac{N}{L}\right)^{03} * \left(\frac{K_g}{12*L*E_g^3}\right)^{0.1}$$

DFM = 0.607 lanes/beam

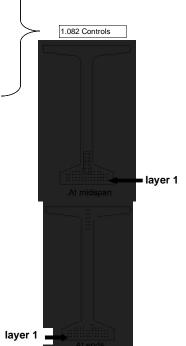
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Mic			At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Stra	ınd Group (i	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
0 -	26 00 in

0.905 Controls

Force per strand at transfer	6.00% 15.7 kips 16.9 kips 17.0 kips	at endspan 1034.4 kips 3.154 ksi at endspan 19.4 ksi	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.9 kips 17.0 k	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.9 kips 17.0 k	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 3.306 kips 17.0 kips	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 3.306 kips 17.0 kips	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 3.306 kips 17.0	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 3.306 kips 1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 3.306 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 3.306 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 17.0 kips 17.0 kips 17.0 kips 17.0 kips 17.0 kips at midspan 1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 17.0 kips 17.0 kips 17.0 kips at midspan 1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 kips 17.0 kips at midspan 1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
	at midspan 1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
Total prestressing force at release $P_{i} = \\ Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment \\ Loss \ due \ to \ shortening \\ layer \ 1 \\ layer \ 2 \\ \Delta f_{pES} = \\ layer \ 3 \\ \Delta f_{pES} = \\ layer \ 4 \\ \Delta f_{pES} = \\ L$	at midspan 1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	1068.4 kips 3.306 ksi at midspan 20.4 ksi	1034.4 kips 3.154 ksi at endspan	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	3.306 ksi at midspan 20.4 ksi	3.154 ksi at endspan	
$\begin{array}{c} \text{layer 1} & \Delta f_{\text{pES}} = \\ \text{layer 2} & \Delta f_{\text{pES}} = \\ \text{layer 3} & \Delta f_{\text{pES}} = \\ \text{layer 4} & \Delta f_{\text{pES}} = \end{array}$	20.4 ksi		
$\begin{array}{c} \text{layer 2} & \Delta f_{\text{pES}} = \\ \text{layer 3} & \Delta f_{\text{pES}} = \\ \text{layer 4} & \Delta f_{\text{pES}} = \end{array}$		19.4 ksi	
layer 3 $\Delta f_{pES} =$ layer 4 $\Delta f_{pES} =$			
layer 4 $\Delta f_{pES} =$	20.4 ksi	19.4 ksi	
*	20.2 ksi	19.3 ksi	
layer 5 Δf _{pES} =	20.0 ksi	19.1 ksi	
	20.0 ksi	19.1 ksi	
layer 6 $\Delta f_{pES} =$	19.8 ksi		
layer 7 $\Delta f_{pES} =$	19.8 ksi		
layer 8 $\Delta f_{pES} =$	19.6 ksi		_
layer 9 $\Delta f_{pES} =$	19.6 ksi	18.7 ksi	
layer 10 $\Delta f_{pES} =$		18.2 ksi	
layer 11 $\Delta f_{pES} =$		18.2 ksi	
layer 12 $\Delta f_{pES} =$		18.2 ksi	4
layer 13 $\Delta f_{pES} =$		18.2 ksi	
layer 14 Δf _{pES} =		18.2 ksi	
SHRINKAGE			=
Shrinkage = $(17-0.15^*Relative Humidity)$ $\Delta f_{pSR} =$	6.5 ksi		assume relative humidity = 70%
CREEP OF CONCRET	F		=
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying $\Delta f_{crin} =$	-		_

CREEP OF	CONCR	ETE	
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdn} =$	2.383 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	23.0 ksi	21.2 ksi

RELAXATION OF PRESTRESSING STRANDS loss due to relaxation after transfer at endspan layer 1 $\Delta f_{pR2} =$ 1.8 ksi 1.9 ksi 1.8 ksi 1.9 ksi 1.8 ksi 1.9 ksi 1.9 ksi 1.8 ksi 1.9 ksi 1.8 ksi 1.9 ksi 1.9 ksi 1.9 ksi 1.9 ksi 2.0 ksi 2.0 ksi 2.0 ksi 2.0 ksi 2.0 ksi 2.0 ksi TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$

stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$

force per strand = f_{pt}*strand area

i .		at midspan	at endspan
layer 1	$f_{pt} =$	175.7 ksi	176.7 ksi
layer 2	$f_{pt} =$	190.6 ksi	191.6 ksi
layer 3	$f_{pt} =$	193.0 ksi	193.9 ksi
layer 4	f _{pt} =	193.2 ksi	194.1 ksi
layer 5	$f_{pt} =$	193.2 ksi	194.1 ksi
layer 6	$f_{pt} =$	193.3 ksi	
layer 7	$f_{pt} =$	193.3 ksi	
layer 8	$f_{pt} =$	193.5 ksi	
layer 9	$f_{pt} =$	193.5 ksi	194.4 ksi
layer 10	$f_{pt} =$		195.0 ksi
layer 11	f _{pt} =		195.0 ksi
layer 12	f _{pt} =		195.0 ksi
layer 13	$f_{pt} =$		195.0 ksi
layer 14	$f_{pt} =$		195.0 ksi
		at midspan	at endspan
layer 1	=	14.9 kips	15.0 kips
layer 2	=	16.2 kips	16.3 kips
layer 3	=	16.4 kips	16.5 kips
layer 4	=	16.4 kips	16.5 kips
layer 5	=	16.4 kips	16.5 kips
layer 6	=	16.4 kips	
layer 7	=	16.4 kips	
layer 8	=	16.5 kips	
layer 9	=	16.5 kips	16.5 kips
layer 10	=		16.6 kips
layer 11	=		16.6 kips
layer 12	=		16.6 kips
layer 13	=		16.6 kips
layer 14	=		16.6 kips
er transfer	P _i =	993.2 kips	1000.2 kips

Total prestressing force after transfer $P_i =$

Initial loss = $(\Delta f_{pi})/(f_{pi})$			at midspan	at endspan
	layer 1	% =	10.4%	9.9%
	layer 2	% =	9.7%	9.2%
	layer 3	% =	9.5%	9.0%
	layer 4	% =	9.4%	9.0%
	layer 5	% =	9.4%	9.0%
	layer 6	% =	9.3%	
	layer 7	% =	9.3%	
	layer 8	% =	9.2%	
	layer 9	% =	9.2%	8.8%
			9.270	
	layer 10	% =		8.5%
	layer 11	% =		8.5%
	layer 12	% =		8.5%
	layer 13	% =		8.5%
	layer 14	% =		8.5%
TOTAL LO	SSES AT	SERVI	CE LOADS	
otal Losses			at midspan	at endspan
	layer 1	$\Delta f_{pT} =$	51.7 ksi	50.7 ksi
	layer 2	$\Delta f_{pT} =$	51.7 ksi	50.7 ksi
	layer 3	$\Delta f_{DT} =$	51.5 ksi	50.5 ksi
	layer 4	$\Delta f_{pT} =$	51.3 ksi	50.4 ksi
	layer 5	$\Delta f_{pT} =$	51.3 ksi	50.4 ksi
				JU.4 K3I
	layer 6	$\Delta f_{pT} =$	51.1 ksi	
	layer 7	$\Delta f_{pT} =$	51.1 ksi	+
	layer 8	$\Delta f_{pT} =$	50.9 ksi	
	layer 9	$\Delta f_{pT} =$	50.9 ksi	50.0 ksi
	layer 10	$\Delta f_{pT} =$		49.5 ksi
	layer 11	$\Delta f_{pT} =$		49.5 ksi
	layer 12	$\Delta f_{pT} =$		49.5 ksi
	layer 13	$\Delta f_{pT} =$		49.5 ksi
	layer 14	$\Delta f_{pT} =$		49.5 ksi
tress in tendon after all losses = f_{pi} - Δf_{pt}	-		at midspan	at endspan
F F	layer 1	f _{pe} =	144.4 ksi	145.4 ksi
	layer 2	f _{pe} =	159.4 ksi	160.3 ksi
	layer 3	f _{pe} =	161.7 ksi	162.6 ksi
	layer 4	f _{pe} =	161.9 ksi	162.8 ksi
	layer 5		161.9 ksi	162.8 ksi
		f _{pe} =		102.0 KSI
	layer 6	f _{pe} =	162.1 ksi	
	layer 7	f _{pe} =	162.1 ksi	
	layer 8	f _{pe} =	162.3 ksi	
	layer 9	f _		
		f _{pe} =	162.3 ksi	163.2 ksi
	layer 10	f _{pe} =	162.3 ksi	163.2 ksi 163.7 ksi
			162.3 ksi	
	layer 10	f _{pe} =	162.3 ksi	163.7 ksi
	layer 10 layer 11	f _{pe} = f _{pe} =	162.3 ksi	163.7 ksi 163.7 ksi
	layer 10 layer 11 layer 12 layer 13	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$	162.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14	$f_{pe} = f_{pe} = f$		163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state:	$f_{pe} = f_{pe} \le 0.8$	3*fpy	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1	$f_{pe} = f_{pe} \le 0.8$	3*fpy 176.7 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2	$f_{pe} = f_{pe} \le 0.8$	3*fpy 176.7 ksi 195.2 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3	$f_{pe} = f_{pe} \le 0.8$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4	$f_{pe} = f_{pe} \le 0.8$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5	$f_{pe} = f_{pe} = f$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$f_{pe} = f_{pe} \le 0.8$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$f_{pe} = f_{pe} = f$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{split} f_{po} &= \\ f_{pe} &= \\ 0.8 \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
heck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{split} f_{pe} &= \\ 0.8 \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{array}{c} f_{pe} = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{po} = \\ f_{po} = \\ f_{po} = \\ f_{po} = \\ f_{pe} = \\ f_{p$	176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 201.4 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
neck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9	$\begin{array}{c} f_{po} = \\ f_{pe} = \\ f_{pe} = \\ f_{po} = \\ f_{pe} = \\ f_{p$	3*fpy 176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 201.4 ksi 205.4 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi
heck prestressing stress limit at service	layer 10 layer 11 layer 12 layer 13 layer 14 limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} f_{po} = \\ f_{po} = \\ f_{po} = \\ f_{po} = \\ f_{pe} = \\ f_{p$	176.7 ksi 195.2 ksi 197.2 ksi 199.3 ksi 199.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 201.3 ksi 201.4 ksi	163.7 ksi 163.7 ksi 163.7 ksi 163.7 ksi

OK OK OK OK OK OK OK

force	per	strand	$= f_{pe}$	*strand	area
-------	-----	--------	------------	---------	------

		at midspan	at endspan
layer 1	=	12.3 kips	12.4 kips
layer 2	=	13.5 kips	13.6 kips
layer 3	=	13.7 kips	13.8 kips
layer 4	=	13.8 kips	13.8 kips
layer 5	=	13.8 kips	13.8 kips
layer 6	=	13.8 kips	
layer 7	=	13.8 kips	
layer 8	=	13.8 kips	
layer 9	=	13.8 kips	13.9 kips
layer 10	=		13.9 kips
layer 11	=		13.9 kips
layer 12	=		13.9 kips
layer 13	=		13.9 kips
layer 14	=		13.9 kips
•		at midspan	at endspan

Total prestressing force after all losses $P_{pe} = 856.8 \text{ kips}$ 862.5 kips

Final	Incepe	% -	$(\Delta f_{DT})/(f_{Di})$	
rillai	105565,	70 =	(ΔI _D T)/(I _{Di})	

% =	00.00/	
/o =	26.3%	25.9%
% =	26.3%	25.9%
% =	26.2%	25.8%
% =	26.1%	25.7%
% =	26.1%	25.7%
% =	26.1%	
% =	26.1%	
% =	26.0%	
% =	26.0%	25.5%
% =		25.2%
% =		25.2%
% =		25.2%
% =		25.2%
% =		25.2%
% =	26.1%	25.5%
	% = % = % = % = % = % = % = % = % = % =	% = 26.3% % = 26.2% % = 26.1% % = 26.1% % = 26.1% % = 26.1% % = 26.0% % = 26.0% % = 26.0% % = 26.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	II	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in
Eccentricity of the strand group at transfer length:	e _h =	26.28 in
Eccentricity at end of beam:	e =	26.22 in

Calcs for eccentricity (see 9.6.7.2)

ок

οк

$$f_{t} = \frac{P_{t}}{A} - \frac{P_{t}e}{S_{t}} + \frac{M_{y}}{S_{t}} \qquad \qquad f_{\theta} = \frac{P_{t}}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}e}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}e}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}e}{S_{\theta}} - \frac{M_{y}e}{S_{\theta}} - \frac{M_{y}e}{S_{\theta}} \qquad \qquad \text{at endspan}$$

$$= \frac{1}{A} + \frac{P_{y}e}{S_{\theta}} - \frac{M_{y}e}{S_{\theta}} -$$

STRESSES AT	HARP I	POINT		
Bending moment due to beam weight at 0.3L	M _g =	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	-0.105 ksi	-0.112 ksi	
Bottom stress at bottom fiber of the beam	f _b =	3.022 ksi	2.768 ksi	
STRESSES A	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	-0.006 ksi	0.064 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.840 ksi	2.586 ksi	
HOLD-DOWN FOR	CES			
me stress in strand before losses = 0.8f,			_	

.o.u		
layer 1	=	209.2 ksi
layer 2	=	225.1 ksi
layer 3	=	227.4 ksi
layer 4	=	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	=	227.4 ksi
layer 8	=	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
laver 14	=	227.4 ksi

prestress force per strand before any losses:

103303.		
layer 1	=	17.8 kips
layer 2	=	19.1 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.3 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.885 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	3.846 ksi	
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

-0.015 ksi for the precast beam =

STRESSES AT MII	<u>DSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{y,t}}{A} - \frac{P_{y,t}}{S_t} + \frac{(M_g + M_s)}{S_t} + \frac{(M_g + M_s)}{S_t}$	$+\frac{(M_{w}+M_{b})}{S_{ty}}$		
Due to permanent loads $f_{tg} =$	1.890 ksi	1.884 ksi	0
$f_{tg} = \frac{P_{pd}}{A} - \frac{P_{pd}F}{S_z} + \frac{(M_R + M_J)}{S_z} + \frac{(M_w + M_J)}{S_z}$	$\frac{1}{N_{\overline{q}}} + \frac{(M_{IZ+1})}{N_{\overline{q}}}$		
Due to permanent loads and transient loads $f_{tg} =$	2.319 ksi	2.313 ksi	0
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{vs} + h)}{S_{tr}}$	<u>d ,)</u>		
Due to permanent loads $f_{tc} =$	0.050 ksi	0.050 ksi	0
$f_{tr} = \frac{(M_{\infty} + M_{\delta} + M_{\delta})}{S_{tr}}$	M _{EE+1})		
Due to permanent loads and transient loads $f_{tc} =$	0.578 ksi	0.578 ksi	0
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{sp} = \frac{P_{pe}}{A} + \frac{P_{pe}\theta}{R_b} - \frac{(M_x + M_z)}{S_b} - \frac{(M_{uv} + M_z)}{S_b}$	$\frac{+M_b+0.8*M_{CL+1}}{S_{bc}}$		
Load Combination Service III f _b =	-1.190 ksi	-1.169 ksi	0

Strength Limit State

POSITIVE MOMENT SECTION

| CSNA'+1 75(| L+|M)| M_u = | M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.39
layer 2	k =	0.35
layer 3	k =	0.35
layer 4	k =	0.33
layer 5	k =	0.33
layer 6	k =	0.31
layer 7	k =	0.31
layer 8	k =	0.31
layer 9	k =	0.31
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	C =	4.5 ft-kips

average stress in prestressing	steel
--------------------------------	-------

layer 1	f _{ps} =	255.3 ksi
layer 2	$f_{ps} =$	274.7 ksi
layer 3	$f_{ps} =$	277.5 ksi
layer 4	$f_{ps} =$	277.5 ksi
layer 5	$f_{ps} =$	277.5 ksi
layer 6	$f_{ps} =$	277.5 ksi
layer 7	$f_{ps} =$	277.5 ksi
layer 8	$f_{ps} =$	277.5 ksi
layer 9	$f_{ps} =$	277.5 ksi
layer 10	$f_{ps} =$	277.5 ksi
layer 11	$f_{ps} =$	277.5 ksi
layer 12	$f_{ps} =$	277.5 ksi
layer 13	f _{ps} =	277.5 ksi
layer 14	f _{ps} =	277.5 ksi

ок ок

ок ок

at endspan

0.646 ksi

nominal flexure resistance

	a =	3.85 in	
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	8948.7 ft-kips	
M=DC+W+LL+IM	M =	5833.6 ft-kips	
NEG ATIVE MANAGEMENT OF STREET			

NEGATIVE MOMENT SECTION

.25DC+1.5DW+1.75(LL+IM)	$M_u =$	4837.2 ft-kips
	a =	6.26 in
	$\Phi M_n =$	4861.4 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

. 200.g					
CRITICAL SECTION AT 0.59					
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips			
or					
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips			
max shear	$V_u =$	405.0 kips			
max moment	M _u =	2877.0 ft-kips			
Shear depth	d _v =	73.19 in			
Applied factored normal force at the section	N _u =	0			
A 1 6 P 1 2 4	^	00.00.0			

Angle of diagonal compressive stresses $\theta = 36.00 \,^{\circ}$ STRAIN IN FLEXURAL TENSION REINFORCMENT

<u>M</u> ,	- 1 0.5 <i>N</i> _ 1 0.5 <i>Y</i> _ cot <i>&</i>	A _{pe} , j _{pe} < 0.002
-,	3,4,+8,4.	

layer 1	f _{po} =	148.1 ksi	149.1 ksi
layer 2	$f_{po} =$	163.0 ksi	164.0 ksi
layer 3	f _{po} =	165.3 ksi	166.3 ksi
layer 4	f _{po} =	165.5 ksi	166.4 ksi
layer 5	f _{po} =	165.5 ksi	
layer 6	f _{po} =	165.6 ksi	
layer 7	f _{po} =	165.6 ksi	
layer 8	f _{po} =	165.8 ksi	
lover 0	£		100 7 kg

at midspan

0.644 ksi

layer 8	f _{po} =	165.8 ksi	
layer 9	f _{po} =		166.7 ksi
layer 10	f _{po} =		167.1 ksi
layer 11	f _{po} =		167.1 ksi
layer 12	$f_{po} =$		167.1 ksi
layer 13	f _{po} =		167.1 ksi
layer 14	f _{po} =		167.1 ksi

etrain in flavoral tancin							
	'n	tonois	irol	flow	in	otroin	-

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.94 in	
$\Delta_g =$	-1.74 in	
$\Delta_s =$	-2.66 in	

Deflection due to total self weight

-1.13 in $\Delta_{sw} =$

Total Deflection at transfer Total Deflection at erection

Δ =	1.33 in	1.35 in
Δ =	2.67 in	2.71 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -1.07 in

οк

Deflection due to fire truck

Total Deflection after fire with fire truck

$\Delta_L =$	-1.9771 in
Δ =	0.1649 in

NOT OK

Location: Fire at Critical Positive Moment Sections

Beam Design: 3/8" Strand Fire Exposure Status: 2 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f' _c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f' _{ci} =	5.5 ksi		
Strength at 28 days	f' _c =	6.17 ksi		
Unit Weight	$w_c =$	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

		PRESTRESSING STR	RANDS	
		Diameter of single strand	d =	0.375 in
		Area of single strand	A =	0.085 in^2
Temperature of	Layer	ı		1
		layer 1 (bottom)	T =	870.00 °F
		layer 2 layer 3	T =	680.00 °F 560.00 °F
		layer 4	T = T =	490.00 °F
		layer 5	T =	470.00 °F
		layer 6	T =	440.00 °F
		layer 7	T =	400.00 °F
		layer 8	T =	375.00 °F
		layer 9	T =	350.00 °F
		layer 10 layer 11	T = T =	68.00 °F 68.00 °F
		layer 12	T=	68.00 °F
		layer 13	T =	68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng		ı		I
intial =	284 ksi	layer 1 (bottom)	f _{pu} =	230 ksi
		layer 2	$f_{pu} =$	259 ksi
		layer 3	$f_{pu} =$	276 ksi
		layer 4	$f_{pu} =$	281 ksi
		layer 5	f _{pu} =	281 ksi
		layer 6	f _{pu} =	281 ksi
		layer 7	f _{pu} =	284 ksi
		layer 8	f _{pu} =	284 ksi
		layer 9	f _{pu} =	284 ksi
		layer 10	f _{pu} =	284 ksi
		layer 11	f _{pu} =	284 ksi
		layer 12	f _{pu} =	284 ksi
		layer 13	f _{pu} =	284 ksi
		layer 14	f _{pu} =	284 ksi
Yield Strength		.,.	pu	
intial =	257 ksi	layer 1 (bottom)	f _{py} =	203 ksi
		layer 2	f _{py} =	223 ksi
		layer 3	f _{py} =	236 ksi
		layer 4	f _{py} =	244 ksi
		layer 5	f _{py} =	244 ksi
		layer 6	f _{pv} =	247 ksi
		layer 7	f _{pv} =	247 ksi
		layer 8	f _{pv} =	249 ksi
		layer 9	f _{py} =	249 ksi
		layer 10	f _{py} =	257 ksi
		layer 11	f _{py} =	257 ksi
		layer 12	f _{py} =	257 ksi
		layer 13	f _{py} =	257 ksi
		layer 14	f _{py} =	257 ksi
Stress Limits:		layor 14	-ру —	201 101
before transfer :	≤ 0.75f _{ni} (in	itial = 202.5)		
	pu .	layer 1 (bottom)	$f_{pi} =$	172.7 ksi
		layer 2	f _{pi} =	194.0 ksi
		layer 3	f _{pi} =	206.8 ksi
		layer 4	f _{pi} =	211.0 ksi
		layer 5	f _{pi} =	211.0 ksi
		layer 6	f _{pi} =	211.0 ksi
		layer 7	f _{pi} =	213.2 ksi
		layer 8	f _{pi} =	213.2 ksi
		layer 9	f _{pi} =	213.2 ksi
		layer 10	f _{pi} =	213.2 ksi
		layer 11	f _{pi} =	213.2 ksi
		layer 12	f _{pi} =	213.2 ksi
		layer 13 layer 14	$f_{pi} = f_{pi} = f_{pi}$	213.2 ksi 213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, ,	,	
layer 1 (bottom)	f _{pe} =	162.3 ksi
layer 2	f _{pe} =	178.7 ksi
layer 3	f _{pe} =	189.0 ksi
layer 4	f _{pe} =	195.2 ksi
layer 5	f _{pe} =	195.2 ksi
layer 6	f _{pe} =	197.2 ksi
layer 7	f _{pe} =	197.2 ksi
layer 8	f _{pe} =	199.3 ksi
layer 9	f _{pe} =	199.3 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	27192.9 ksi
layer 2	E =	27710.9 ksi
layer 3	E =	27710.9 ksi
layer 4	E =	27710.9 ksi
layer 5	E =	27710.9 ksi
layer 6	E =	27451.9 ksi
layer 7	E =	26933.9 ksi
layer 8	E =	27192.9 ksi
layer 9	E =	27192.9 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

oss scottorial i roperties		
NON-COMPOSITE I	BEAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l =	363,218 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	43.7 in
Distance from centroid to extreme top fiber	$y_t =$	28.3 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3834 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	4762 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.8052 Transformed flange width 89.4 in = Transformed flange area 670.3 in^2 Transformed haunch width 33.8 in Transformed haunch area 16.9 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	43.67 in	33,494.9 in^3	180,716 in^4	363,218 in^4	543,934 in^4
Haunch	16.9 in^2	72.25 in	1,221.6 in^3	2,960 in^4	0.33 in^4	2,960 in^4
Deck	670.3 in^2	76.25 in	51,110.7 in^3	199,002 in^4	2,950 in^4	201,951 in^4
Total	1454.2 in^2		85.827.2 in^3		•	748.845 in^4

Total area of Composite Section	A _c =	1454 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	748,845 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	59.02 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	12.98 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	20.98 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	12,688.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	57,690.9 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	44.329.5 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A) P_{live} = 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips distance between two loads 19.2 ft distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant OK Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.2420
Longitudinal stiffness parameter	K _a =	1,948,702.11 in^4

at center span: DFM = 0.891 lanes/beam

one design lane loaded:

$$DPM = 0.75 + \left(\frac{S}{14}\right)^{64} * \left(\frac{S}{L}\right)^{03} * \left(\frac{K_g}{12 * L * \varepsilon_s^3}\right)^{0.5}$$

DFM = 0.604 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 : \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Stra	ind Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.44 in
e _c =	38.23 in

0.905 Controls

assumed loss = 6.00% Force per strand at transfer layer 1
layer 1 = 13.8 kips layer 2 = 15.5 kips layer 3 = 16.5 kips layer 4 = 16.9 kips layer 5 = 16.9 kips layer 6 = 16.9 kips layer 7 = 17.0 kips
layer 2 = 15.5 kips layer 3 = 16.5 kips layer 4 = 16.9 kips layer 5 = 16.9 kips layer 6 = 16.9 kips layer 7 = 17.0 kips
layer 3 = 16.5 kips layer 4 = 16.9 kips layer 5 = 16.9 kips layer 6 = 16.9 kips layer 7 = 17.0 kips
layer 4 = 16.9 kips layer 5 = 16.9 kips layer 6 = 16.9 kips layer 7 = 17.0 kips
layer 5 = 16.9 kips layer 6 = 16.9 kips layer 7 = 17.0 kips
layer 6 = 16.9 kips layer 7 = 17.0 kips
layer 7 = 17.0 kips
· · · · · · · · · · · · · · · · · · ·
layer 8 = 17.0 kips
layer 9 = 17.0 kips
layer 10 = 17.0 kips
layer 11 = 17.0 kips
layer 12 = 17.0 kips
layer 13 = 17.0 kips
layer 14 = 17.0 kips
at midspan at endspan
Total prestressing force at release P_i = 1013.6 kips 980.4 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment
Loss due to shortening at midspan at endspan
layer 1 $\Delta f_{pES} = 22.0 \text{ ksi}$ 21.0 ksi
layer 2 $\Delta f_{pES} = 22.5 \text{ ksi}$ 21.4 ksi
layer 3 $\Delta f_{pES} =$ 22.5 ksi 21.4 ksi
layer 4 $\Delta f_{pES} = 22.5 \text{ ksi}$ 21.4 ksi
layer 5 $\Delta f_{pES} = 22.5 \text{ ksi}$ 21.4 ksi
layer 6 $\Delta f_{pES} = 22.2 \text{ ksi}$
layer 7 $\Delta f_{pES} = 21.8 \text{ ksi}$
layer 8 $\Delta f_{pES} = 22.0 \text{ ksi}$
layer 9 $\Delta f_{pES} = 22.0 \text{ ksi}$ 21.0 ksi
layer 10 $\Delta f_{pES} =$ 20.0 ksi
layer 11 $\Delta f_{pES} =$ 20.0 ksi
layer 12 $\Delta f_{pES} =$ 20.0 ksi
layer 13 $\Delta f_{pES} =$ 20.0 ksi
layer 14 $\Delta f_{pES} =$ 20.0 ksi
SHRINKAGE
Shrinkage = (17-0.15*Relative Humidity) $\Delta f_{pSR} = 6.5 \text{ ksi}$ assume relative humidity =

CREEP OF CONCRETE			
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	2.859 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	23.7 ksi	21.6 ksi

RELAXATION (OF PRES	SIKESSI	NG STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	1.5 ksi	1.7 ksi
	layer 2	$\Delta f_{pR2} =$	1.5 ksi	1.6 ksi
	layer 3	$\Delta f_{pR2} =$	1.5 ksi	1.6 ksi
	layer 4	$\Delta f_{pR2} =$	1.5 ksi	1.6 ksi
	layer 5	$\Delta f_{pR2} =$	1.5 ksi	1.6 ksi
	layer 6	$\Delta f_{pR2} =$	1.5 ksi	
	layer 7	$\Delta f_{pR2} =$	1.6 ksi	
	layer 8	$\Delta f_{pR2} =$	1.5 ksi	
	layer 9	$\Delta f_{pR2} =$	1.5 ksi	1.7 ksi
	layer 10	$\Delta f_{pR2} =$		1.8 ksi
	layer 11	$\Delta f_{pR2} =$		1.8 ksi
	layer 12	$\Delta f_{pR2} =$		1.8 ksi
	layer 13	$\Delta f_{pR2} =$		1.8 ksi
	layer 14	$\Delta f_{pR2} =$		1.8 ksi
TOTAL I	LOSSES	AT TRA	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$		_		
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$			at midspan	at endspan
	layer 1	$f_{pt} =$	150.6 ksi	151.7 ksi
	layer 2	$f_{pt} =$	171.5 ksi	172.6 ksi
	layer 3	$f_{pt} =$	184.3 ksi	185.4 ksi
	layer 4	$f_{pt} =$	188.6 ksi	189.6 ksi
	layer 5	$f_{pt} =$	188.6 ksi	189.6 ksi
	layer 6	$f_{pt} =$	188.8 ksi	
	layer 7	$f_{pt} =$	191.3 ksi	
	layer 8	$f_{pt} =$	191.1 ksi	
	layer 9	$f_{pt} =$	191.1 ksi	192.2 ksi
	layer 10	$f_{pt} =$		193.2 ksi
	layer 11	$f_{pt} =$		193.2 ksi
	layer 12	$f_{pt} =$		193.2 ksi
	layer 13	$f_{pt} =$		193.2 ksi
	layer 14	$f_{pt} =$		193.2 ksi
force per strand = f _{pt} *strand area	•		at midspan	at endspan
	layer 1	=	12.8 kips	12.9 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	15.7 kips	15.8 kips
	layer 4	=	16.0 kips	16.1 kips
			16 O kina	46.4 kino
	layer 5	=	16.0 kips	16.1 kips

layer 6 layer 7 layer 8 layer 9

layer 11

layer 12

layer 13

layer 14

Total prestressing force after transfer

=

=

= P_i = 16.0 kips 16.3 kips 16.2 kips

16.2 kips

924.4 kips

16.3 kips 16.4 kips

16.4 kips

16.4 kips

16.4 kips

16.4 kips

933.0 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	12.8%	12.1%
layer 2	% =	11.6%	11.0%
layer 3	% =	10.9%	10.3%
layer 4	% =	10.6%	10.1%
layer 5	% =	10.6%	10.1%
layer 6	% =	10.5%	
layer 7	% =	10.2%	
layer 8	% =	10.3%	
layer 9	% =	10.3%	9.8%
layer 10	% =		9.4%
layer 11	% =		9.4%
layer 12	% =		9.4%
layer 13	% =		9.4%
layer 14	% =		9.4%
TOTAL LOSSES AT		CE LOADS	
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	53.8 ksi	52.7 ksi
layer 2	$\Delta f_{pT} =$	54.2 ksi	53.1 ksi
layer 3	$\Delta f_{pT} =$	54.2 ksi	53.1 ksi
layer 4	$\Delta f_{pT} =$	54.2 ksi	53.1 ksi
layer 5	$\Delta f_{pT} =$	54.2 ksi	53.1 ksi
layer 6	$\Delta f_{pT} =$ $\Delta f_{pT} =$	54.2 ksi 54.0 ksi	JJ. I KSI
layer 7	$\Delta f_{pT} =$	53.6 ksi	
layer 8	$\Delta f_{pT} =$ $\Delta f_{pT} =$	53.8 ksi	
layer 9	_	53.8 ksi	52.7 ksi
layer 10	$\Delta f_{pT} =$	33.0 KSI	
· · · · · · · · · · · · · · · · · · ·	$\Delta f_{pT} =$		51.7 ksi
layer 11	$\Delta f_{pT} =$		51.7 ksi
layer 12	Δf _{pT} =		51.7 ksi
layer 13	$\Delta f_{pT} =$		51.7 ksi
layer 14	$\Delta f_{pT} =$	at midenan	51.7 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt} layer 1	f _	at midspan 118.9 ksi	at endspan 119.9 ksi
	f _{pe} =		140.8 ksi
layer 2	f _{pe} =	139.8 ksi	
layer 3	f _{pe} =	152.5 ksi	153.6 ksi
layer 4	f _{pe} =	156.8 ksi	157.9 ksi
layer 5	f _{pe} =	156.8 ksi	157.9 ksi
layer 6	f _{pe} =	157.0 ksi	
layer 7	f _{pe} =	159.6 ksi	
layer 8	t _{pe} =	159.4 ksi	100.41.
layer 9	f _{pe} =	159.4 ksi	160.4 ksi
layer 10	f _{pe} =		161.4 ksi
layer 11	f _{pe} =		161.4 ksi
layer 12	f _{pe} =		161.4 ksi
layer 13	f _{pe} =		161.4 ksi
layer 14	f _{pe} =))**	161.4 ksi
check prestressing stress limit at service limit state:			7
layer 1	=	162.3 ksi	_
layer 2	=	178.7 ksi	_
layer 3	=	189.0 ksi	_
1 4	=	195.2 ksi	_
layer 4	=	195.2 ksi	
layer 5		197.2 ksi	
layer 5 layer 6	=		1
layer 5 layer 6 layer 7	=	197.2 ksi	
layer 5 layer 6 layer 7 layer 8		197.2 ksi 199.3 ksi	
layer 5 layer 6 layer 7	=		
layer 5 layer 6 layer 7 layer 8	=	199.3 ksi	
layer 5 layer 6 layer 7 layer 8 layer 9	= = =	199.3 ksi 199.3 ksi	
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	= = = =	199.3 ksi 199.3 ksi 205.4 ksi	
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = =	199.3 ksi 199.3 ksi 205.4 ksi 205.4 ksi	

OK

,			,			
torce	per	strand	$= I_{\alpha}$.^stra	na	area

		at midspan	at endspan
layer 1	=	10.1 kips	10.2 kips
layer 2	=	11.9 kips	12.0 kips
layer 3	=	13.0 kips	13.1 kips
layer 4	=	13.3 kips	13.4 kips
layer 5	=	13.3 kips	13.4 kips
layer 6	=	13.3 kips	
layer 7	=	13.6 kips	
layer 8	=	13.5 kips	
layer 9	=	13.5 kips	13.6 kips
layer 10	=		13.7 kips
layer 11	=		13.7 kips
layer 12	=		13.7 kips
layer 13	=		13.7 kips
layer 14	=		13.7 kips
-		at midspan	at endspan

Total prestressing force after all losses $P_{pe} = 783.9 \text{ kips}$ 791.8 kips

E:	0.1	/AC \//C \
Final losses,	% =	$(\Delta I_{DT})/(I_{Di})$

layer 1	% =	31.2%	30.5%
layer 2	% =	31.4%	30.8%
layer 3	% =	31.4%	30.8%
layer 4	% =	31.4%	30.8%
layer 5	% =	31.4%	30.8%
layer 6	% =	31.3%	
layer 7	% =	31.0%	
layer 8	% =	31.2%	
layer 9	% =	31.2%	30.5%
layer 10	% =		30.0%
layer 11	% =		30.0%
layer 12	% =		30.0%
layer 13	% =		30.0%
layer 14	% =		30.0%
Average final losses, %	% =	31.3%	30.4%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*\f'ci	-	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in
Eccentricity of the strand group at transfer length:	$e_h =$	28.43 in
Eccentricity at end of beam:	e =	28.37 in

Calcs for eccentricity (see 9.6.7.2)

οк

ок

$$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_F}{S_t} \qquad \qquad f_t = \frac{P_i}{A} + \frac{P_i e}{S_b} - \frac{M_F}{S_b}$$

$$= \frac{\text{at midspan}}{\text{Top stress at top fiber of beam}} \qquad \frac{\text{at endspan}}{f_t} = \frac{-0.431 \text{ ksi}}{-0.435 \text{ ksi}} \qquad \frac{-0.435 \text{ ksi}}{3.183 \text{ ksi}}$$
Bottom stress at bottom fiber of the beam

Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips	
Top stress at top fiber of beam	$f_t =$	-0.162 ksi	-0.172 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.964 ksi	2.652 ksi
STRESSES A	T MIDS	PAN	
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	-0.091 ksi	0.004 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.782 ksi	2.470 ksi
HOLD-DOWN FOR	CES	1	•
ne stress in strand before losses = 0.8f,			_

or _u		
layer 1	=	184.2 ksi
layer 2	=	206.9 ksi
layer 3	II	220.5 ksi
layer 4	=	225.1 ksi
layer 5	=	225.1 ksi
layer 6	II	225.1 ksi
layer 7	=	227.4 ksi
layer 8	=	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	II	227.4 ksi
layer 12	II	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

05565.		
layer 1	=	15.7 kips
layer 2	=	17.6 kips
layer 3	II	18.7 kips
layer 4	=	19.1 kips
layer 5	=	19.1 kips
layer 6	II	19.1 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	II	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	II	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.1 kips/strand
layer 2	=	2.3 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	II	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	II	2.5 kips/strand
layer 12	II	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.15 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.777 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	3.702 ksi	
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

for the precast beam	=	-0.015 ksi

STRESSES AT MII	<u>OSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{yd}}{A} - \frac{P_{yd}}{S_t} + \frac{(M_g + M_s)}{S_t}$	$\frac{(M_w + M_b)}{S_{ty}}$		
Due to permanent loads f_{tg}	1.858 ksi	1.848 ksi	ок
$f_{rg} = \frac{P_{pe}}{A} - \frac{P_{pe}e}{S_z} + \frac{(M_x + M_y)}{S_x} + \frac{(M_w + M_y)}{S_x}$	$\frac{1-M_b}{N_{ag}} + \frac{(M_{IL+1})}{N_{ag}}$		
Due to permanent loads and transient loads f _{tg} =	2.298 ksi	2.288 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ss} = \frac{(M_{so} + h)}{S_{ss}}$	<u>(,)</u>		
Due to permanent loads f_{tc} =	0.054 ksi	0.054 ksi	ок
$f_{w} = \frac{(M_{ws} + M_{\delta} + I)}{S_{w}}$	M _{EE+1})		
Due to permanent loads and transient loads f_{tc} =	0.627 ksi	0.627 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ty} = \frac{P_{yx}}{A} - \frac{P_{yx}e}{S_{t}} - \frac{(M_{x} + M_{z})}{S_{h}} - \frac{(M_{yx} + M_{z})}{S_{h}} - $	$+M_b - 0.8*M_{\rm grad}$		
$S_{\eta} = \frac{1}{A} - \frac{1}{S_{l}} - \frac{1}{S_{b}} - \frac{1}{S_{b}}$	S _b ,		
Load Combination Service III f _b =	-1.589 ksi	-1.558 ksi	ок

Strength Limit State

POSITIVE MOMENT SECTION

$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	8381.5 ft-kips
effective length factor for compression members		
layer 1	k =	0.32
layer 2	k =	0.35
layer 3	k =	0.37
layer 4	k =	0.35
layer 5	k =	0.35
layer 6	k =	0.33
layer 7	k =	0.35
layer 8	k =	0.33
layer 9	k =	0.33
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27

c =

4.3 ft-kips

average stress in prestressing steel

layer 1	f _{ps} =	226.0 ksi
layer 2	$f_{ps} =$	253.9 ksi
layer 3	$f_{ps} =$	270.6 ksi
layer 4	f _{ps} =	276.2 ksi
layer 5	$f_{ps} =$	276.2 ksi
layer 6	$f_{ps} =$	276.2 ksi
layer 7	$f_{ps} =$	279.0 ksi
layer 8	$f_{ps} =$	279.0 ksi
layer 9	$f_{ps} =$	279.0 ksi
layer 10	$f_{ps} =$	279.0 ksi
layer 11	$f_{ps} =$	279.0 ksi
layer 12	$f_{ps} =$	279.0 ksi
layer 13	$f_{ps} =$	279.0 ksi
layer 14	f _{ps} =	279.0 ksi

ок ок

ок ок

nominal flexure resistance

	a =	3.65 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	8530.6 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NEGATIVE MOMENT SECTION

M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	4837.2 ft-kips
	a =	6.50 in
	$\Phi M_n =$	4853.4 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

Shear Design

_ cc.g				
CRITICAL SECTION AT 0.59				
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	M _u =	2877.0 ft-kips		
Shear depth	d _v =	73.19 in		
Applied factored normal force at the section	N _u =	0		
	•			

Angle of diagonal compressive stresses $\theta = 36.00^{\circ}$ STRAIN IN FLEXURAL TENSION REINFORCMENT

OTTO AND IN THE PERSONAL TENDROIS IN CROSSES	
$E = \frac{M_A}{a_v} + 0.5M_A + 0.5V_A \cot \theta - A_{pe} I_{pe}$ $= 0.002$	
$E,A,+E,A_{p}$	

		at midspan	at endspan
resultant compressive stress at centroid	f _{pc} =	0.515 ksi	0.517 ksi
effective stress in prestressing strand after all losses	S		
Г			

layer 1	f _{po} =	121.8 ksi	122.9 ksi
layer 2	f _{po} =	142.7 ksi	143.8 ksi
layer 3	f _{po} =	155.5 ksi	156.6 ksi
layer 4	f _{po} =	159.8 ksi	160.9 ksi
layer 5	f _{po} =	159.8 ksi	
layer 6	f _{po} =	160.0 ksi	
layer 7	f _{po} =	162.5 ksi	
layer 8	f _{po} =	162.3 ksi	
layer 9	$f_{po} =$		163.4 ksi
layer 10	f _{po} =		164.2 ksi
layer 11	f _{po} =		164.2 ksi
layer 12	$f_{po} =$		164.2 ksi
layer 13	f _{po} =		164.2 ksi
layer 14	f _{no} =		164.2 ksi

atrain	:	flaso	 tangian

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	ε _x =	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	ε _x =		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	ε _x =		0.002000
layer 14	ε, =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-2.21 in	
$\Delta_g =$	-2.02 in	
$\Delta_s =$	-3.08 in	

Deflection due to total self weight

 Δ_{sw} = -1.82 in

Total Deflection at transfer Total Deflection at erection

Δ =	1.07 in	1.09 in
Δ =	2.16 in	2.20 in

Live load deflection limit = span/800 Deflection due to live load and impact $\Delta_{L} = -1.80 \text{ in}$ $\Delta_{L} = -1.23 \text{ in}$

Deflection due to live load and imp

 $\Delta_L =$ -1.23 in

Deflection due to fire truck

Total Deflection after fire with fire truck

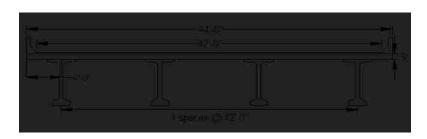
 $\Delta_{L} = -2.2876 \text{ in}$ $\Delta = -0.8375 \text{ in}$

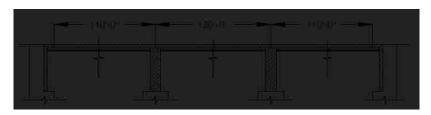
NOT OK

ок

Location: Fire at Critical Positive Moment Sections

Beam Design: 3/8" Strand Fire Exposure Status: 3 Hour





Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	5.80 ksi		
Unit Weight	$W_c =$	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

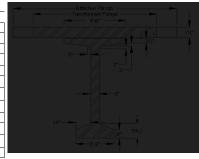
	F	PRESTRESSING ST	RANDS	
	D	iameter of single strand	d =	0.375 in
		Area of single strand	A =	0.085 in^2
Temperature of	Layer		-	1000 00 05
		layer 1 (bottom) layer 2	T = T =	1030.00 °F 870.00 °F
		layer 3	T =	790.00 °F
		layer 4	T =	750.00 °F
		layer 5	T =	698.00 °F
		layer 6	T =	650.00 °F
		layer 7	T =	610.00 °F
		layer 8	T =	565.00 °F
		layer 9 layer 10	T = T =	530.00 °F 68.00 °F
		layer 11	T =	68.00 °F
		layer 12	T =	68.00 °F
		layer 13	T =	68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng				I
intial =	284 ksi	layer 1 (bottom)	f _{pu} =	176 ksi
		layer 2	f _{pu} =	230 ksi
		layer 3	f _{pu} =	253 ksi
		layer 4	f _{pu} =	256 ksi
		layer 5	f _{pu} =	261 ksi
		layer 6	f _{pu} =	267 ksi
		layer 7	f _{pu} =	273 ksi
		layer 8	f _{pu} =	276 ksi
		layer 9	f _{pu} =	279 ksi
		layer 10	f _{pu} =	284 ksi
		layer 11	f _{pu} =	284 ksi
		layer 12	f _{pu} =	284 ksi
		layer 13	f _{pu} =	284 ksi
		layer 14	f _{pu} =	284 ksi
Yield Strength		layor 14	·pu —	201101
intial =	257 ksi	layer 1 (bottom)	f _{py} =	175 ksi
	207 1101	layer 2	f _{py} =	203 ksi
		layer 3	f _{py} =	213 ksi
		layer 4	f _{py} =	216 ksi
		layer 5	f _{pv} =	221 ksi
		layer 6	f _{py} =	229 ksi
		layer 7		234 ksi
			f _{py} =	
		layer 8	f _{py} =	236 ksi
		layer 9	f _{py} =	239 ksi
		layer 10	f _{py} =	257 ksi
		layer 11	f _{py} =	257 ksi
		layer 12	f _{py} =	257 ksi
		layer 13	f _{py} =	257 ksi
		layer 14	f _{py} =	257 ksi
Stress Limits:	< 0.754 (i.e.i	:-I 000 F)		
pefore transfer :	≥ U./5f _{pu} (INIf	· ·		100 5 : :
		layer 1 (bottom)	f _{pi} =	132.2 ksi
		layer 2	f _{pi} =	172.7 ksi
		layer 3	f _{pi} =	189.7 ksi
		layer 4	f _{pi} =	191.8 ksi
		layer 5	f _{pi} =	196.1 ksi
		layer 6	$f_{pi} =$	200.4 ksi
		layer 7	$f_{pi} =$	204.6 ksi
		layer 8	$f_{pi} =$	206.8 ksi
		layer 9	f _{pi} =	208.9 ksi
		layer 10	f _{pi} =	213.2 ksi
		layer 11	f _{pi} =	213.2 ksi
		layer 12	f _{pi} =	213.2 ksi
		layer 13	f _{pi} =	213.2 ksi
			f _{pi} =	213.2 ksi
		layer 14		

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, ,	. ,	
layer 1 (bottom)	f _{pe} =	139.7 ksi
layer 2	f _{pe} =	162.3 ksi
layer 3	f _{pe} =	170.5 ksi
layer 4	f _{pe} =	172.6 ksi
layer 5	f _{pe} =	176.7 ksi
layer 6	f _{pe} =	182.8 ksi
layer 7	f _{pe} =	187.0 ksi
layer 8	f _{pe} =	189.0 ksi
layer 9	f _{pe} =	191.1 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	27192.9 ksi
layer 3	E =	27710.9 ksi
layer 4	E =	27710.9 ksi
layer 5	E =	27710.9 ksi
layer 6	E =	27710.9 ksi
layer 7	E =	27710.9 ksi
layer 8	E =	27710.9 ksi
layer 9	E =	27710.9 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	$f_y =$	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

oss scottonar r roperties		
NON-COMPOSITE I	BEAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l=	322,319 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	50.7 in
Distance from centroid to extreme top fiber	$y_t =$	21.3 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3834 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	4617 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in b_f = Modular Ratio = E_{cs}/E_c n = 0.8305 Transformed flange width 92.2 in = Transformed flange area 691.4 in^2 Transformed haunch width 34.9 in Transformed haunch area 17.4 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	50.74 in	38,917.6 in^3	114,248 in^4	322,319 in^4	436,566 in^4
Haunch	17.4 in^2	72.25 in	1,260.0 in^3	1,510 in^4	0.33 in^4	1,510 in^4
Deck	691.4 in^2	76.25 in	52,715.7 in^3	122,392 in^4	2,950 in^4	125,341 in^4
Total	1475.8 in^2		92.893.3 in^3		•	563.418 in^4

Total area of Composite Section	A _c =	1476 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	563,418 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	62.94 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	9.06 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	17.06 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	8,951.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,219.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	39,779.1 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight $W_{beam} = 8$ in. deck weight $W_{deck} =$ 0.799 k/f 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS

P_{live} = 48.0 kips Fire truck live load front load (Point A) P_{live} = Fire truck live load back load (Point B) 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft $x_a =$ distance from nearest edge to point B 39.8 ft $x_b =$

LRF

RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	ОК
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	ок
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.2042
Longitudinal stiffness parameter	K _a =	1,840,120.45 in^4

at center span: DFM = 0.886 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{x}{14}\right)^{0.4} * \left(\frac{x}{L}\right)^{0.3} * \left(\frac{X_{s}}{12*L*s_{s}^{3}}\right)^{0.3}$$

DFM = 0.601 lanes/beam

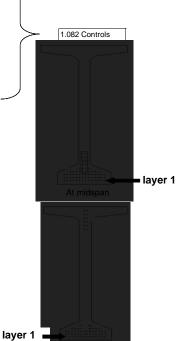
Distribution Factor for Shear Force

both end spans and center span:

$$DHV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 : \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
•	64		64	
Harped Stra	ınd Group (ir	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.44 in
e _c =	45.30 in

0.905 Controls

ELASTIC SHORTEI	NING			
assumed loss	=	6.00%		
Force per strand at transfer			_	
layer 1	=	10.6 kips		
layer 2	=	13.8 kips		
layer 3	=	15.2 kips	_	
layer 4	=	15.3 kips		
layer 5	=	15.7 kips		
layer 6	=	16.0 kips		
layer 7	=	16.3 kips		
layer 8	=	16.5 kips		
layer 9	=	16.7 kips		
layer 10	=	17.0 kips		
layer 11 layer 12	=	17.0 kips 17.0 kips	_	
layer 13	=	17.0 kips	_	
layer 14	=	17.0 kips	_	
layer 14	-	17.0 Kips		
		at midspan	at endspan	
Total prestressing force at release	P _i =	901.2 kips	880.2 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	4.568 ksi	4.407 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	26.3 ksi	25.4 ksi	
layer 2	$\Delta f_{pES} =$	27.6 ksi	26.7 ksi	
layer 3		28.2 ksi	27.2 ksi	
layer 4		28.2 ksi	27.2 ksi	
layer 5		28.2 ksi	27.2 ksi	
layer 6	F	28.2 ksi		
layer 7	$\Delta f_{pES} =$	28.2 ksi		
layer 8		28.2 ksi		
layer 9	F	28.2 ksi	27.2 ksi	
layer 10			25.4 ksi	
layer 11	$\Delta f_{pES} =$		25.4 ksi	
layer 12	F		25.4 ksi	
layer 13			25.4 ksi	
layer 14	$\Delta f_{pES} =$		25.4 ksi	
SHRIN	KAGE			_
Shrinkage = (17-0.15*Relative Humidity)	Δf _{pSR} =	6.5 ksi	14	assume relative humidity
omminage = (17-0.15 Relative Flammary)	—·рък —	0.0 101		accurre relative numbers
				_
CREEP OF	CONCRET	Έ		
CREEP OF Change of stresses at center of gravity of prestressing due to	CONCRET	E		_

CREEP OF CONCRETE					
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f_{cgp}	$\Delta f_{cdp} =$	3.833 ksi			
		at midspan	at endspan		
loss due to creep	$\Delta f_{pCR} =$	28.0 ksi	26.0 ksi		

RELAXATION OF PRESTRESSING STRANDS loss due to relaxation after transfer at endspan 0.8 ksi 0.9 ksi 0.6 ksi 0.7 ksi 0.6 ksi 0.7 ksi 0.6 ksi 0.7 ksi 0.6 ksi 0.7 ksi 0.6 ksi 0.6 ksi 0.6 ksi 0.6 ksi 0.7 ksi 0.9 ksi 0.9 ksi 0.9 ksi 0.9 ksi 0.9 ksi TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$

stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$

force per strand = f_{pt}^* strand area

dons after transfer f _{pt} = f _{pi} -∆f _{pi}		at midspan	at endspan
layer 1	f _{pt} =	105.8 ksi	106.8 ksi
layer 2	f _{pt} =	145.0 ksi	146.0 ksi
layer 3	f _{pt} =	161.6 ksi	162.5 ksi
layer 4	f _{pt} =	163.7 ksi	164.7 ksi
layer 5	f _{pt} =	167.9 ksi	168.9 ksi
layer 6	f _{pt} =	172.2 ksi	
layer 7	f _{pt} =	176.5 ksi	
layer 8	f _{pt} =	178.6 ksi	
layer 9	f _{pt} =	180.7 ksi	181.7 ksi
layer 10	f _{pt} =		187.8 ksi
layer 11	f _{pt} =		187.8 ksi
layer 12	f _{pt} =		187.8 ksi
layer 13	f _{pt} =		187.8 ksi
layer 14	f _{pt} =		187.8 ksi
and = f _{pt} *strand area		at midspan	at endspan
layer 1	=	9.0 kips	9.1 kips
layer 2	=	12.3 kips	12.4 kips
layer 3	=	13.7 kips	13.8 kips
layer 4	=	13.9 kips	14.0 kips
layer 5	=	14.3 kips	14.4 kips
layer 6	=	14.6 kips	
layer 7	=	15.0 kips	
layer 8	=	15.2 kips	
layer 9	=	15.4 kips	15.4 kips
layer 10	=		16.0 kips
layer 11	=		16.0 kips
layer 12	=		16.0 kips
layer 13	=		16.0 kips
layer 14	=		16.0 kips
Total prestressing force after transfer	P _i =	775.8 kips	797.0 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	19.9%	19.2%
layer 2	% =	16.0%	15.4%
layer 3	% =	14.8%	14.3%
layer 4	% =	14.7%	14.2%
layer 5	% =	14.4%	13.8%
layer 6	% =	14.1%	
layer 7	% =	13.8%	
layer 8	% =	13.6%	
layer 9	% =	13.5%	13.0%
layer 10	% =	10.070	11.9%
layer 11	% =		11.9%
layer 12	% =		11.9%
layer 13	% =		11.9%
layer 14	% =		11.9%
TOTAL LOSSES AT		CELOADS	
Total Losses	OLIVII	at midspan	at endspan
layer 1	Λf –	61.6 ksi	60.6 ksi
· · · · · · · · · · · · · · · · · · ·	$\Delta f_{pT} =$ $\Delta f_{-} =$		
layer 2	$\Delta f_{pT} =$	62.9 ksi	61.9 ksi
layer 3	$\Delta f_{pT} =$	63.4 ksi	62.4 ksi
layer 4	$\Delta f_{pT} =$	63.4 ksi	62.4 ksi
layer 5	$\Delta f_{pT} =$	63.4 ksi	62.4 ksi
layer 6	$\Delta f_{pT} =$	63.4 ksi	
layer 7	$\Delta f_{pT} =$	63.4 ksi	
layer 8	$\Delta f_{pT} =$	63.4 ksi	00.41
layer 9	$\Delta f_{pT} =$	63.4 ksi	62.4 ksi
layer 10	$\Delta f_{pT} =$		60.6 ksi
layer 11	$\Delta f_{pT} =$		60.6 ksi
layer 12	$\Delta f_{pT} =$		60.6 ksi
layer 13	$\Delta f_{pT} =$		60.6 ksi
layer 14	$\Delta f_{pT} =$		60.6 ksi
Stress in tendon after all losses = f _{pi} -Δf _{pt}		at midspan	at endspan
layer 1	f _{pe} =	70.6 ksi	71.5 ksi
layer 2	f _{pe} =	109.8 ksi	110.7 ksi
layer 3	f _{pe} =	126.3 ksi	127.3 ksi
layer 4	f _{pe} =	128.4 ksi	129.4 ksi
layer 5	f _{pe} =	132.7 ksi	133.7 ksi
layer 6	f _{pe} =	137.0 ksi	
	f _{pe} =	141.2 ksi	
layer 7			
layer 8	f _{pe} =	143.4 ksi	
layer 8 layer 9	f _{pe} =	143.4 ksi 145.5 ksi	146.5 ksi
layer 8 layer 9 layer 10	f _{pe} = f _{pe} = f _{pe} =		152.5 ksi
layer 8 layer 9 layer 10 layer 11	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$		152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12	$f_{pe} = f_{pe} = f$		152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	$f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$ $f_{pe} =$		152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	$f_{pe} = f_{pe} = f$	145.5 ksi	152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state:	$f_{pe} = f_{pe} = f$	145.5 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1	$f_{pe} = f_{pe} = f$	145.5 ksi 2*fpy 139.7 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 1	$f_{pe} = f_{pe} \le 0.8$	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3	$f_{pe} = f_{pe} \le 0.8$	145.5 ksi 2*fpy 139.7 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 1	$f_{pe} = f_{pe} = f$	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{aligned} f_{pe} &= \\ &= \\ &= \\ &= \end{aligned}$	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi 170.5 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4	$\begin{aligned} f_{pe} &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ \end{aligned}$	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 2 layer 3 layer 4 layer 5	$\begin{aligned} f_{pe} &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= $	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi 176.7 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13 check prestressing stress limit at service limit state: layer 2 layer 2 layer 3 layer 4 layer 4	$\begin{split} &f_{po} = \\ &f_{po} = \\ &f_{pe} = \\ &f$	145.5 ksi 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi 176.7 ksi 182.8 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 2 layer 3 layer 3 layer 4 layer 5 layer 6	$\begin{aligned} f_{po} &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= $	145.5 ksi 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi 176.7 ksi 182.8 ksi 187.0 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} &f_{po} = \\ &f$	145.5 ksi 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi 176.7 ksi 182.8 ksi 187.0 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{split} &f_{po} = \\ &f$	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi 176.7 ksi 182.8 ksi 187.0 ksi 189.0 ksi 191.1 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9	$\begin{split} &f_{po} = \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\ &= \\$	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi 176.7 ksi 182.8 ksi 187.0 ksi 189.0 ksi 191.1 ksi 205.4 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi
layer 8 layer 9 layer 10 layer 11 layer 11 layer 13 layer 14 check prestressing stress limit at service limit state: layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 9 layer 10 layer 10	$\begin{array}{c} f_{po} = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	145.5 ksi 3*fpy 139.7 ksi 162.3 ksi 170.5 ksi 172.6 ksi 176.7 ksi 182.8 ksi 187.0 ksi 189.0 ksi 191.1 ksi 205.4 ksi 205.4 ksi	152.5 ksi 152.5 ksi 152.5 ksi 152.5 ksi

OK

		-4		*	
torce	per	strang	$= I_{\alpha}$.*stran	n area

		at midspan	at endspan
layer 1	=	6.0 kips	6.1 kips
layer 2	=	9.3 kips	9.4 kips
layer 3	=	10.7 kips	10.8 kips
layer 4	=	10.9 kips	11.0 kips
layer 5	=	11.3 kips	11.4 kips
layer 6	=	11.6 kips	
layer 7	=	12.0 kips	
layer 8	=	12.2 kips	
layer 9	=	12.4 kips	12.5 kips
layer 10	=		13.0 kips
layer 11	=		13.0 kips
layer 12	=		13.0 kips
layer 13	=		13.0 kips
layer 14	=		13.0 kips
•		at midspan	at endspan
	ם	C4E C Lin -	000 7 1:

Total prestressing force after all losses P_{pe} = 615.6 kips 633.7 kips

Final losses, $\% = (\Delta f_{pT})/(f_{pi})$

17			
layer 1	% =	46.6%	45.9%
layer 2	% =	47.6%	46.8%
layer 3	% =	48.0%	47.2%
layer 4	% =	48.0%	47.2%
layer 5	% =	48.0%	47.2%
layer 6	% =	48.0%	
layer 7	% =	48.0%	
layer 8	% =	48.0%	
layer 9	% =	48.0%	47.2%
layer 10	% =		45.9%
layer 11	% =		45.9%
layer 12	% =		45.9%
layer 13	% =		45.9%
layer 14	% =		45.9%
Average final losses, %	% =	47.8%	46.5%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = 0.6f'ci	f _{ci} =	3.300 ksi			
Tension					

without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$ -0.200 ksi with bonded auxiliary reinforcement = --0.22*\f'ci -0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

STRESSES AT TRANSPER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	$M_g =$	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	II	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in		
Eccentricity of the strand group at transfer length:	e _h =	35.50 in		
Eccentricity at end of heam:	ρ =	35 44 in		

Calcs for eccentricity (see 9.6.7.2)

$$f_{i} = \frac{P_{i}}{A} - \frac{P_{i}e}{S_{t}} + \frac{M_{s}}{S_{t}} \qquad f_{\phi} = \frac{P_{i}}{A} + \frac{P_{i}e}{S_{\phi}} - \frac{M_{s}}{S_{\phi}}$$

$$f_b = \frac{P_i}{A} + \frac{P_i \sigma}{S_b} - \frac{M_g}{S_b}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.706 ksi	-0.727 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.249 ksi	3.249 ksi

ок ок

STRESSES AT	HARP	POINT	
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips	
Top stress at top fiber of beam	$f_t =$	-0.343 ksi	-0.378 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.956 ksi	2.504 ksi
STRESSES A	T MIDS	PAN	
sending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	-0.372 ksi	-0.202 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.774 ksi	2.322 ksi
HOLD-DOWN FOR	CES		

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

.0.0		
layer 1	=	141.0 ksi
layer 2	=	184.2 ksi
layer 3	=	202.4 ksi
layer 4	=	204.6 ksi
layer 5	=	209.2 ksi
layer 6	=	213.7 ksi
layer 7	=	218.3 ksi
layer 8	=	220.5 ksi
layer 9	=	222.8 ksi
layer 10	=	227.4 ksi
layer 11	ı	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
laver 14	=	227.4 ksi

prestress force per strand before any losses:

03363.		
layer 1	=	12.0 kips
layer 2	=	15.7 kips
layer 3	=	17.2 kips
layer 4	=	17.4 kips
layer 5	=	17.8 kips
layer 6	=	18.2 kips
layer 7	=	18.6 kips
layer 8	=	18.7 kips
layer 9	=	18.9 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	1.6 kips/strand
layer 2	=	2.1 kips/strand
layer 3	=	2.3 kips/strand
layer 4	=	2.3 kips/strand
layer 5	=	2.3 kips/strand
layer 6	=	2.4 kips/strand
layer 7	=	2.4 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	28.32 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.610 ksi
for deck	=	1.800 ksi
Due to permanent and transient loads for le	oad comb	ination Service I
for the precast beam	=	3.480 ksi
for deck	=	2.400 ksi

Tension:

Load Combination Service III

-0.014 ksi for the precast beam =

STRESSES AT MID	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{yx}}{A} - \frac{P_{yx}p}{S_t} + \frac{(M_x + M_t)}{S_t} +$	$\frac{(M_{\tau_0}+M_{\delta})}{S_{ty}}$		
Due to permanent loads $f_{tg} =$	1.770 ksi	1.741 ksi	ок
$f_{tg} = \frac{P_{pt}}{A} - \frac{P_{pt}c}{S_t} + \frac{(M_B + M_A)}{S_t} + \frac{(M_{un}}{S_t}$	$\frac{+M_b)}{s_y} + \frac{(M_{EL+1})}{S_y}$		
Due to permanent loads and transient loads f _{tg} =	2.178 ksi	2.149 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{u} = \frac{(M_{wo} + M)}{S_{w}}$	<u>a)</u>		
Due to permanent loads $f_{tc} =$	0.061 ksi	0.061 ksi	ок
$f_{x} = \frac{(M_{xs} + M_{\delta} + M_{\delta})}{S_{x}}$	<u>rr+1)</u>		
Due to permanent loads and transient loads f _{tc} =	0.699 ksi	0.699 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{xy} = \frac{P_{ye}}{A} + \frac{P_{ye}e}{S_1} - \frac{(M_x + M_z)}{S_1} - \frac{(M_{xx} - M_z)}{S_2}$	$-M_t + 0.8*M_{max})$		
$S_{ij} = \frac{1}{A} + \frac{1}{S_{ij}} = \frac{1}{S_{ij}} = \frac{1}{S_{ij}}$	$\mathcal{Z}_{\mathbf{k}}$		
Load Combination Service III f _b =	-2.695 ksi	-2.617 ksi	ок

Strength Limit State

	POSITIVE	MOMENT	SECTION
--	----------	--------	---------

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips $M_{ij} = 1.2500 \cdot 1.02 \cdot 1.00$ effective length factor for compression members layer 1 k = 1.000

layer i	κ =	0.10
layer 2	k =	0.32
layer 3	k =	0.39
layer 4	k =	0.39
layer 5	k =	0.39
layer 6	k =	0.37
layer 7	k =	0.37
layer 8	k =	0.37
layer 9	k =	0.37
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	c =	3.8 ft-kips

average	etrace	in	nrestressing	ctaal

layer 1	f _{ps} =	175.3 ksi
layer 2	f _{ps} =	229.0 ksi
layer 3	$f_{ps} =$	251.7 ksi
layer 4	$f_{ps} =$	254.5 ksi
layer 5	f _{ps} =	260.2 ksi
layer 6	f _{ps} =	265.8 ksi
layer 7	$f_{ps} =$	271.5 ksi
layer 8	f _{ps} =	274.3 ksi
layer 9	$f_{ps} =$	277.1 ksi
layer 10	$f_{ps} =$	282.8 ksi
layer 11	f _{ps} =	282.8 ksi
layer 12	$f_{ps} =$	282.8 ksi
layer 13	f _{ps} =	282.8 ksi
layer 14	f _{ps} =	282.8 ksi

nominal flexure resistance

	a =	3.24 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	7682.2 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips
A = 13 /= A A A A A = 1 A		

NOT OK OK

NEGATIVE MOMENT SECTION

= 1.25DC+1.5DW+1.75(LL+IM)	$M_u =$	4837.2 ft-kips
	a =	6.92 in
	$\Phi M_n =$	4839.6 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

ok ok

Shear Design

ar Design					
CRITICAL SECTION AT 0.59					
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips			
or					
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips			
max shear	$V_u =$	405.0 kips			
max moment	$M_u =$	2877.0 ft-kips			
Shear depth	d _v =	73.19 in			
Applied factored normal force at the section	$N_u =$	0			
Angle of diagonal compressive stresses	θ =	36.00°			

STRAIN IN FLEXURAL TENSION REINFORCMENT

$-\frac{M_{\parallel}}{d_{\uparrow}}$	1 0.5 <i>M</i> _a 1 0.5 <i>V</i> _a cot <i>θ</i>	<i>A_{pe} f_{pe}</i> ≤ 0.002	
	$E,A,+E,A_{a}$		

resultant compressive stress at centroid effective stress in prestressing strand after all losses

	at midspan	at endspan
=	0.348 ksi	0.349 ksi

layer 1	$f_{po} =$	72.5 ksi	73.5 ksi
layer 2	$f_{po} =$	111.8 ksi	112.8 ksi
layer 3	f _{po} =	128.4 ksi	129.4 ksi
layer 4	f _{po} =	130.5 ksi	131.5 ksi
layer 5	$f_{po} =$	134.8 ksi	
layer 6	f _{po} =	139.0 ksi	
layer 7	$f_{po} =$	143.3 ksi	
layer 8	$f_{po} =$	145.4 ksi	
layer 9	$f_{po} =$		148.6 ksi
layer 10	f _{po} =		154.5 ksi
layer 11	$f_{po} =$		154.5 ksi
layer 12	f _{po} =	·	154.5 ksi
layer 13	f _{po} =		154.5 ksi
layer 14	f _{po} =		154.5 ksi

etrain in flavoral tancin							
	'n	tonois	irol	flow	in	otroin	-

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-2.49 in	
$\Delta_g =$	-2.34 in	
$\Delta_s =$	-3.58 in	

Deflection due to total self weight

 $\Delta_{\rm sw}$ = -2.65 in

Total Deflection at transfer Total Deflection at erection

Δ =	0.79 in	0.81 in
Δ =	1.56 in	1.59 in

Live load deflection limit = span/800 Deflection due to live load and impact = -1.80 in Δ_L = -1.69 in

Deflection due to fire truck

Total Deflection after fire with fire truck

$\Delta_L =$	-2.6588 in
Δ =	-2.0358 in

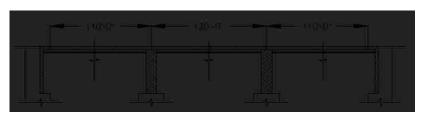
ок

NOT OK

Location: Fire at Critical Positive Moment Sections

Beam Design: 3/8" Strand Fire Exposure Status: 4 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f' _c =	4 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	5.46 ksi		
Unit Weight	$w_c =$	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L=	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

		PRESTRESSING STR	RANDS	
		Diameter of single strand	d =	0.375 in
		Area of single strand		0.085 in^2
Temperature of	Layer	layer 1 (battom)	_	1100 00 °F
		layer 1 (bottom) layer 2	T = T =	1100.00 °F 980.00 °F
		layer 3	T =	890.00 °F
		layer 4	T =	850.00 °F
		layer 5	T =	800.00 °F
		layer 6 layer 7	T = T =	770.00 °F 735.00 °F
		layer 8	T=	700.00 °F
		layer 9	T =	675.00 °F
		layer 10	T =	68.00 °F
		layer 11 layer 12	T = T =	68.00 °F
		layer 13	T =	68.00 °F 68.00 °F
		layer 14	T =	68.00 °F
Ultimate Strengt			,	
intial =	284 ksi	layer 1 (bottom)	f _{pu} =	151 ksi
		layer 2	f _{pu} =	193 ksi
		layer 3	f _{pu} =	225 ksi
		layer 4	f _{pu} =	236 ksi
		layer 5	f _{pu} =	250 ksi
		layer 6	f _{pu} =	256 ksi
		layer 7	f _{pu} =	259 ksi
		layer 8	f _{pu} =	264 ksi
		layer 9	f _{pu} =	267 ksi
		layer 10	f _{pu} =	284 ksi
		layer 11 layer 12	f _{pu} =	284 ksi 284 ksi
		layer 13	f _{pu} =	284 ksi
		layer 14	f _{pu} =	284 ksi
Yield Strength		layer 14	f _{pu} =	204 KSI
intial =	257 ksi	layer 1 (bottom)	f _{py} =	154 ksi
		layer 2	f _{py} =	190 ksi
		layer 3	f _{py} =	200 ksi
		layer 4	f _{py} =	205 ksi
		layer 5	f _{py} =	211 ksi
		layer 6	f _{py} =	213 ksi
		layer 7	f _{py} =	216 ksi
		layer 8	f _{py} =	247 ksi
		layer 9	$f_{py} =$	226 ksi
		layer 10	f _{py} =	257 ksi
		layer 11	$f_{py} =$	257 ksi
		layer 12	$f_{py} =$	257 ksi
		layer 13	f _{py} =	257 ksi
Ctures I imites		layer 14	f _{py} =	257 ksi
Stress Limits: before transfer ≤	: 0.75f (i	nitial = 202 5)		
	ри (-	layer 1 (bottom)	f _{pi} =	113.0 ksi
		layer 2		144.9 ksi
		layer 3	f _{pi} =	168.4 ksi
		layer 4	f _{pi} =	176.9 ksi
		layer 5	f _{pi} =	187.6 ksi
		layer 6	f _{pi} =	191.8 ksi
		layer 7	f _{pi} =	194.0 ksi
		layer 8	f _{pi} =	198.2 ksi
		layer 9	f _{pi} =	200.4 ksi
		layer 10	f _{pi} =	213.2 ksi
		layer 11	f _{pi} =	213.2 ksi
		layer 12	f _{pi} =	213.2 ksi
		layer 13	$f_{pi} =$	213.2 ksi
		layer 14	$f_{pi} =$	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

/ py (- ,	
layer 1 (bottom)	f _{pe} =	123.3 ksi
layer 2	f _{pe} =	152.0 ksi
layer 3	f _{pe} =	160.2 ksi
layer 4	f _{pe} =	164.4 ksi
layer 5	f _{pe} =	168.5 ksi
layer 6	f _{pe} =	170.5 ksi
layer 7	f _{pe} =	172.6 ksi
layer 8	f _{pe} =	197.2 ksi
layer 9	f _{pe} =	180.8 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	26157.0 ksi
layer 3	E =	26933.9 ksi
layer 4	E =	27451.9 ksi
layer 5	E =	27710.9 ksi
layer 6	E =	27710.9 ksi
layer 7	E =	27710.9 ksi
layer 8	E =	27710.9 ksi
layer 9	E =	27710.9 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

033-3ectional i roperties		
NON-COMPOSITE E	BEAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l=	211,427 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	51.1 in
Distance from centroid to extreme top fiber	$y_t =$	20.9 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3834 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	4480 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in b_f = Modular Ratio = E_{cs}/E_c n = 0.8559 Transformed flange width 95.0 in = Transformed flange area 712.6 in^2 Transformed haunch width Transformed haunch area 18.0 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	51.14 in	39,224.4 in^3	114,183 in^4	211,427 in^4	325,610 in^4
Haunch	18.0 in^2	72.25 in	1,298.6 in^3	1,427 in^4	0.33 in^4	1,427 in^4
Deck	712.6 in^2	76.25 in	54,332.3 in^3	118,738 in^4	2,950 in^4	121,687 in^4
Total	1497.5 in^2		94,855.3 in^3		•	448,724 in^4

Total area of Composite Section	A _c =	1498 in^2
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	448,724 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	63.34 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	8.66 in
Distance from centroid to extreme top fiber of slab	$y_{tc} =$	16.66 in
Section modulus for the extreme bottom fiber of beam	$S_{bc} =$	7,084.2 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	51,823.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	31.470.4 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight w_{beam} = 0.799 k/f 8 in. deck weight w_{deck}= 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant Number of beams is not less than four $N_0 = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang, d_e \le 3.0 ft, d_e = Roadway part of the overhang t$ OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A) P_{live}= 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft $X_a =$ distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant OK Number of beams is not less than four N_b = OK Beams are parallel and approximately of the same stiffness Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$ OK 1.5 OK Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.1683
Longitudinal stiffness parameter	K _a =	1,655,812.84 in^4

at center span: DFM = 0.877 lanes/beam

one design lane loaded:

$$DFM = 0.75 - \left(\frac{S}{14}\right)^{14} * \left(\frac{S}{L}\right)^{13} * \left(\frac{K_g}{12 * L * L_g^3}\right)^{01}$$

0.596 lanes/beam

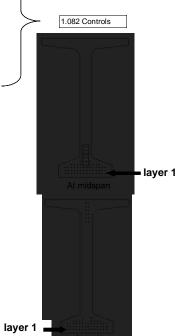
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 : \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom		
layer 1	14	2	14	2		
layer 2	14	3.5	14	3.5		
layer 3	14	5	14	5		
layer 4	10	6.5	8	6.5		
layer 5	4	8	2	8		
layer 6	2	10	-	-		
layer 7	2	12	-	-		
layer 8	2	14	-	-		
layer 9	2	16	2	60		
layer 10	-	=	2	62		
layer 11	-	=	2	64		
layer 12	-	=	2	66		
layer 13	-	=	2	68		
layer 14	-	=	2	70		
	64		64			
Harped Stra	and Group (in	cluded in above totals)				
layer 3	2	6				
layer 4	2	8				
layer 5	2	10				
layer 6	2	12				
layer 7	2	14				
layer 8	2	16				

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.44 in
e _c =	45.70 in

0.905 Controls

ELASTIC SHORTE	NING			
assumed loss	=	6.00%		
Force per strand at transfer				
layer 1	=	9.0 kips		
layer 2	=	11.6 kips		
layer 3	=	13.5 kips		
layer 4	=	14.1 kips		
layer 5	=	15.0 kips		
layer 6	=	15.3 kips		
layer 7	=	15.5 kips		
layer 8	=	15.8 kips		
layer 9	=	16.0 kips		
layer 10	=	17.0 kips		
layer 11	=	17.0 kips		
layer 12	=	17.0 kips		
layer 13	=	17.0 kips		
layer 14	=	17.0 kips		
	-			7
		at midspan	at endspan	
Total prestressing force at release	P _i =	803.6 kips	792.2 kips	_
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	5.379 ksi	5.252 ksi	
Loss due to shortening		at midspan	at endspan	1
layer 1	$\Delta f_{pES} =$	31.0 ksi	30.3 ksi	1
layer 2	$\Delta f_{pES} =$	31.3 ksi	30.6 ksi	1
layer 3	$\Delta f_{pES} =$	32.2 ksi	31.5 ksi	
layer 4	$\Delta f_{pES} =$	32.8 ksi	32.1 ksi	
layer 5	$\Delta f_{pES} =$	33.2 ksi	32.4 ksi	
layer 6	$\Delta f_{pES} =$	33.2 ksi		
layer 7	$\Delta f_{pES} =$	33.2 ksi		
layer 8	$\Delta f_{pES} =$	33.2 ksi		
layer 9	$\Delta f_{pES} =$	33.2 ksi	32.4 ksi	
	$\Delta f_{pES} =$		30.3 ksi	
	$\Delta f_{pES} =$		30.3 ksi	
layer 12			30.3 ksi	
layer 13			30.3 ksi	
layer 14	$\Delta f_{pES} =$		30.3 ksi	
				=
	IKAGE		1 .	=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi		assume relative humidity = 70%
	001100=			-
CREEP OF		I E		-
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{egp}		5.828 ksi		7
		at midspan	at endspan	
loss due to creep	Λf –	23.8 ksi	22.2 ksi	

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdn} =$	5.828 ksi		
		at midspan	at endspan	
loss due to creep	$\Delta f_{pCR} =$	23.8 ksi	22.2 ksi	

RELAXATION OF PRESTRESSING STRANDS loss due to relaxation after transfer at endspan layer 1 $\Delta f_{pR2} =$ 0.6 ksi 0.5 ksi layer 2 $\Delta f_{pR2} =$ $\begin{array}{c} \text{layer 2} & \Delta f_{pR2} = \\ \text{layer 3} & \Delta f_{pR2} = \\ \text{layer 4} & \Delta f_{pR2} = \\ \text{layer 5} & \Delta f_{pR2} = \\ \text{layer 6} & \Delta f_{pR2} = \\ \text{layer 7} & \Delta f_{pR2} = \\ \text{layer 8} & \Delta f_{pR2} = \\ \text{layer 9} & \Delta f_{pR2} = \\ \text{layer 10} & \Delta f_{pR2} = \\ \text{layer 11} & \Delta f_{pR2} = \\ \text{layer 12} & \Delta f_{pR2} = \\ \text{layer 13} & \Delta f_{pR2} = \\ \text{layer 14} & \Delta f_{pR2} = \\ \text{layer 14} & \Delta f_{pR2} = \\ \end{array}$ 0.4 ksi 0.5 ksi 0.3 ksi 0.4 ksi 0.2 ksi 0.3 ksi 0.2 ksi 0.3 ksi 0.2 ksi 0.2 ksi 0.2 ksi 0.2 ksi 0.3 ksi 0.6 ksi 0.6 ksi 0.6 ksi 0.6 ksi 0.6 ksi TOTAL LOSSES AT TRANSFER total loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$ at midspan at endspan layer 1 f_{pt} = 82.0 ksi 82.7 ksi layer 2 f_{pt} = 113.6 ksi 114.4 ksi 136.9 ksi

force per strand = f_{pt} *strand area

	layer 3	$f_{pt} =$	136.2 ksi	136.9 ksi
	layer 4	f _{pt} =	144.1 ksi	144.8 ksi
layer 7 layer 8 layer 9 layer 10 layer 10 layer 10 layer 11 layer 12 layer 13 layer 13 layer 14 layer 13 layer 14 layer 14 layer 15 layer 16 layer 17 layer 16 layer 17 layer 18 layer 18 layer 19 layer 10 layer 10 layer 10 layer 10 layer 10 layer 12 layer 13 layer 14 layer 14 layer 14 layer 19 layer 13 layer 14	layer 5	$f_{pt} =$	154.4 ksi	155.2 ksi
	layer 6	$f_{pt} =$	158.7 ksi	
	layer 7	f _{pt} =	160.8 ksi	
	layer 8	$f_{pt} =$	165.1 ksi	
	layer 9	$f_{pt} =$	167.2 ksi	168.0 ksi
layer 12 fpt =	layer 10	f _{pt} =		182.9 ksi
	layer 11	f _{pt} =		182.9 ksi
layer 14	layer 12	$f_{pt} =$		182.9 ksi
and = f _{pt} *strand area layer 1	layer 13	f _{pt} =		182.9 ksi
layer 1 = 7.0 kips 7.0 kips 9.7 kips layer 2 = 9.7 kips 9.7 kips 9.7 kips 9.7 kips 11.6 kips 11.6 kips 12.3 kips 12.3 kips 13.2 kips 13.2 kips 13.5 kips 13.5 kips 13.6 kips 13.6 kips 13.6 kips 13.7 kips 14.5 kips 14.5 kips 15.5 kips 15.	layer 14	f _{pt} =		182.9 ksi
layer 2 = 9.7 kips 9.7 kips layer 3 = 11.6 kips 11.6 kips layer 4 = 12.2 kips 12.3 kips layer 5 = 13.1 kips 13.2 kips layer 6 = 13.5 kips layer 7 = 13.7 kips layer 8 = 14.0 kips layer 9 = 14.2 kips 14.3 kips layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	and = f _{pt} *strand area		at midspan	at endspan
layer 3 = 11.6 kips 11.6 kips layer 4 = 12.2 kips 12.3 kips layer 5 = 13.1 kips 13.2 kips layer 6 = 13.5 kips layer 7 = 13.7 kips layer 8 = 14.0 kips layer 9 = 14.2 kips 14.3 kips layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 1	=	7.0 kips	7.0 kips
layer 4 = 12.2 kips 12.3 kips layer 5 = 13.1 kips 13.2 kips 13.2 kips 13.2 kips 13.2 kips 13.2 kips 13.2 kips 13.5 kips 13.5 kips 13.7 kips 14.3 kips 14.2 kips 14.3 kips 14.5 kips 15.5 k	layer 2	=	9.7 kips	9.7 kips
layer 5 = 13.1 kips 13.2 kips layer 6 = 13.5 kips layer 7 = 13.7 kips layer 8 = 14.0 kips layer 9 = 14.2 kips 14.3 kips layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 3	=	11.6 kips	11.6 kips
layer 6 = 13.5 kips layer 7 = 13.7 kips layer 8 = 14.0 kips layer 9 = 14.2 kips 14.3 kips layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 4	=	12.2 kips	12.3 kips
layer 7 = 13.7 kips layer 8 = 14.0 kips layer 9 = 14.2 kips 14.3 kips layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 5	=	13.1 kips	13.2 kips
layer 8 = 14.0 kips layer 9 = 14.2 kips 14.3 kips layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 6	=	13.5 kips	
layer 9 = 14.2 kips 14.3 kips layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 7	=	13.7 kips	
layer 10 = 15.5 kips layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 8	=	14.0 kips	
layer 11 = 15.5 kips layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 9	=	14.2 kips	14.3 kips
layer 12 = 15.5 kips layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 10	=		15.5 kips
layer 13 = 15.5 kips layer 14 = 15.5 kips	layer 11	=		15.5 kips
layer 14 = 15.5 kips	layer 12	=		15.5 kips
,	layer 13	=		15.5 kips
Total prestressing force after transfer P _i = 653.0 kips 678.2 kips	layer 14	=		15.5 kips
	Total prestressing force after transfer	P _i =	653.0 kips	678.2 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	27.4%	26.8%
layer 2	% =	21.6%	21.1%
layer 3	% =	19.1%	18.7%
layer 4	% =	18.6%	18.1%
layer 5	% =	17.7%	17.3%
layer 6	% =	17.3%	
layer 7	% =	17.1%	
layer 8	% =	16.7%	
layer 9	% =	16.5%	16.2%
layer 10	% =		14.2%
layer 11	% =		14.2%
layer 12	% =		14.2%
layer 13	% =		14.2%
layer 14	% =		14.2%
TOTAL LOSSES AT	SERVI	CE LOADS	1
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{DT} =$	61.7 ksi	61.0 ksi
layer 2	$\Delta f_{pT} =$	62.0 ksi	61.3 ksi
layer 3	$\Delta f_{pT} =$	62.9 ksi	62.2 ksi
layer 4	$\Delta f_{pT} =$	63.6 ksi	62.8 ksi
layer 5	$\Delta f_{pT} =$	63.9 ksi	63.1 ksi
layer 6	$\Delta f_{pT} =$	63.9 ksi	
layer 7	$\Delta f_{pT} =$	63.9 ksi	
layer 8	$\Delta f_{pT} =$	63.9 ksi	
layer 9	$\Delta f_{pT} =$	63.9 ksi	63.1 ksi
layer 10	$\Delta f_{pT} =$		61.0 ksi
layer 11	$\Delta f_{pT} =$		61.0 ksi
layer 12	$\Delta f_{pT} =$		61.0 ksi
layer 13	$\Delta f_{pT} =$		61.0 ksi
layer 14	$\Delta f_{pT} =$		61.0 ksi
Stress in tendon after all losses = f _{pi} -Δf _{pt}	Ρ.	at midspan	at endspan
layer 1	f _{pe} =	51.3 ksi	52.0 ksi
layer 2	f _{pe} =	82.9 ksi	83.7 ksi
layer 3	f _{pe} =	105.4 ksi	106.2 ksi
layer 4	f _{pe} =	113.4 ksi	114.1 ksi
layer 5	f _{pe} =	123.7 ksi	124.5 ksi
layer 6	f _{pe} =	128.0 ksi	
layer 7	f _{pe} =	130.1 ksi	
layer 8	f _{pe} =	134.4 ksi	
layer 9	f _{pe} =	136.5 ksi	137.3 ksi
layer 10	f _{pe} =		152.2 ksi
layer 11	f _{pe} =		152.2 ksi
layer 12	f _{pe} =		152.2 ksi
layer 13	f _{pe} =		152.2 ksi
layer 14	f _{pe} =		152.2 ksi
	fpe ≤ 0.8	*fpy	
layer 1	=	123.3 ksi	
layer 2	=	152.0 ksi	┪
layer 2	=	160.2 ksi	┪
laver 3	=	164.4 ksi	┪
layer 3 layer 4		168.5 ksi	┪
layer 4			1
layer 4 layer 5	=		
layer 4 layer 5 layer 6	=	170.5 ksi	
layer 4 layer 5 layer 6 layer 7	= = =	170.5 ksi 172.6 ksi	
layer 4 layer 5 layer 6 layer 7 layer 8	= = = =	170.5 ksi 172.6 ksi 197.2 ksi	
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	= = = = =	170.5 ksi 172.6 ksi 197.2 ksi 180.8 ksi	
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	= = = = =	170.5 ksi 172.6 ksi 197.2 ksi 180.8 ksi 205.4 ksi	
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = = = =	170.5 ksi 172.6 ksi 197.2 ksi 180.8 ksi 205.4 ksi 205.4 ksi	
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = = = = =	170.5 ksi 172.6 ksi 197.2 ksi 180.8 ksi 205.4 ksi 205.4 ksi 205.4 ksi	
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = = = =	170.5 ksi 172.6 ksi 197.2 ksi 180.8 ksi 205.4 ksi 205.4 ksi	

OK OK OK OK OK OK

OK OK OK OK OK

force p	er strand	$= f_{pe}^*$	strand	area
---------	-----------	--------------	--------	------

		at midspan	at endspan
layer 1	=	4.4 kips	4.4 kips
layer 2	=	7.0 kips	7.1 kips
layer 3	=	9.0 kips	9.0 kips
layer 4	=	9.6 kips	9.7 kips
layer 5	=	10.5 kips	10.6 kips
layer 6	=	10.9 kips	
layer 7	=	11.1 kips	
layer 8	=	11.4 kips	
layer 9	=	11.6 kips	11.7 kips
layer 10	=		12.9 kips
layer 11	=		12.9 kips
layer 12	=		12.9 kips
layer 13	=		12.9 kips
layer 14	=		12.9 kips
•		at midspan	at endspan

Total prestressing force after all losses $P_{pe} = 513.5 \text{ kips}$ 539.3 kips

Final losses, $\% = (\Delta f_{pr})/(f_{pi})$

layer 1	% =	54.6%	54.0%
layer 2	% =	54.9%	54.2%
layer 3	% =	55.7%	55.0%
layer 4	% =	56.3%	55.6%
layer 5	% =	56.5%	55.8%
layer 6	% =	56.5%	
layer 7	% =	56.5%	
layer 8	% =	56.5%	
layer 9	% =	56.5%	55.8%
layer 10	% =		54.0%
layer 11	% =		54.0%
layer 12	% =		54.0%
layer 13	% =		54.0%

 layer 13
 % =
 54.0%

 layer 14
 % =
 54.0%

 Average final losses, %
 % =
 56.0%
 54.6%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	f _{ci} =	3.300 ksi	
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION

=	1.9 ft
$M_g =$	87.7 ft-kips
=	7.00 in
=	11.00 in
II	9.84 in
=	3.98 in
	15.24 in
ı	15.30 in
e _h =	35.90 in
e =	35.84 in
	M _g = = = = = = = = e _h =

Calcs for eccentricity (see 9.6.7.2)

οк

ок

$$f_{i} = \frac{P_{i}}{A} - \frac{P_{i}\varepsilon}{S_{i}} + \frac{M_{J}}{S_{i}} \qquad \qquad f_{\delta} = \frac{P_{i}}{A} + \frac{P_{i}\varepsilon}{S_{\delta}} - \frac{M_{J}}{S_{\delta}}$$

$$\frac{\text{at midspan}}{\text{Top stress at top fiber of beam}} \qquad \frac{\text{at endspan}}{f_{t}} = \frac{-0.600 \text{ ksi}}{-0.626 \text{ ksi}} = \frac{-0.626 \text{ ksi}}{2.911 \text{ ksi}} = \frac{-0.911 \text{ ksi}}{2.911 \text{ ksi}} = \frac{-0.911 \text{ ksi}}{2.911 \text{ ksi}} = \frac{-0.600 \text{ ksi}}{2.91$$

STRESSES AT	HARP	POINT	
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips	
Top stress at top fiber of beam	$f_t =$	-0.159 ksi	-0.201 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.007 ksi
STRESSES AT MIDSPAN			
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	-0.233 ksi	-0.025 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.372 ksi	1.824 ksi
HOLD-DOWN FORCES			
e stress in strand before losses = 0.8f,	CLO		=

.o.u		
layer 1	=	120.5 ksi
layer 2	=	154.6 ksi
layer 3	=	179.6 ksi
layer 4	=	188.7 ksi
layer 5	=	200.1 ksi
layer 6	=	204.6 ksi
layer 7	=	206.9 ksi
layer 8	=	211.4 ksi
layer 9	=	213.7 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

03303.		
layer 1	=	10.2 kips
layer 2	=	13.1 kips
layer 3	=	15.3 kips
layer 4	=	16.0 kips
layer 5	=	17.0 kips
layer 6	=	17.4 kips
layer 7	=	17.6 kips
layer 8	=	18.0 kips
layer 9	=	18.2 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °
		,

Hold-down force/strand

layer 1	=	1.3 kips/strand
layer 2	=	1.7 kips/strand
layer 3	=	2.0 kips/strand
layer 4	=	2.1 kips/strand
layer 5	II	2.2 kips/strand
layer 6	II	2.3 kips/strand
layer 7	=	2.3 kips/strand
layer 8	II	2.4 kips/strand
layer 9	=	2.4 kips/strand
layer 10	=	2.5 kips/strand
layer 11	II	2.5 kips/strand
layer 12	II	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	26.60 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.457 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	3.276 ksi	
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

-0.014 ksi for the precast beam =

STRESSES AT MID	<u>OSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{ys}}{A} - \frac{P_{ys}\sigma}{S_t} + \frac{(Id_y + bd_s)}{S_t} +$	$\frac{(M_w + M_\phi)}{S_{te}}$		
Due to permanent loads $f_{tg} =$	1.931 ksi	1.889 ksi	o
$P_{ss} = P_{ss} c \cdot (M_s + M_s) (M_{ss})$	$+M_{\star})$ $(M_{rr,1})$		
$f_{rg} = \frac{P_{pet}}{A} - \frac{P_{pe}e}{S_r} + \frac{(M_x + M_z)}{S_r} + \frac{(M_{vet})}{S_r}$	2'm + 2'm		
Due to permanent loads and transient loads $f_{tg} =$	2.421 ksi	2.378 ksi	0
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{w} = \frac{(M_{w} + h)}{S_{w}}$	$\frac{d_{b}}{d_{b}}$		
Due to permanent loads $f_{tc} =$	0.077 ksi	0.077 ksi	0
$f_{w} = \frac{(M_{ws} + M_{b} + M_{b})}{S_{w}}$	d _{II+1})		
Due to permanent loads and transient loads $f_{tc} =$	0.883 ksi	0.883 ksi	0
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ij} = \frac{P_{j,c}}{A} + \frac{P_{id}e}{S_{j}} - \frac{(M_{g} + M_{g})}{S_{h}} - \frac{(M_{wi})}{2}$	$+\boldsymbol{M_b} + 0.3 * \boldsymbol{M_{Lin1}})$		
$A B_1 S_1$	g_{Ir}		
Load Combination Service III f _b =	-3.794 ksi	-3.681 ksi	0

Strength Limit State

POSITIVE	MOMENT	SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.03
layer 2	k =	0.11
layer 3	k =	0.30
layer 4	k =	0.34
layer 5	k =	0.40
layer 6	k =	0.41
layer 7	k =	0.41
layer 8	k =	0.21
layer 9	k =	0.39
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	c =	3.4 ft-kips

average stress in prestressing steel

layer 1	f _{ps} =	150.4 ksi
layer 2	f _{ps} =	193.0 ksi
layer 3	$f_{ps} =$	224.2 ksi
layer 4	$f_{ps} =$	235.5 ksi
layer 5	$f_{ps} =$	249.7 ksi
layer 6	$f_{ps} =$	255.4 ksi
layer 7	f _{ps} =	258.2 ksi
layer 8	f _{ps} =	263.9 ksi
layer 9	$f_{ps} =$	266.7 ksi
layer 10	f _{ps} =	283.8 ksi
layer 11	f _{ps} =	283.8 ksi
layer 12	f _{ps} =	283.8 ksi
layer 13	f _{ps} =	283.8 ksi
layer 14	f _{ps} =	283.8 ksi

nominal flexure resistance

	a =	2.87 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	6884.6 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NOT OK

ок

NEGATIVE MOMENT SECTION

$_{u} = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	4837.2 ft-kips
	a =	7.35 in
	$\Phi M_n =$	4825.3 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips

NOT OK OK

Shear Design

•••	200.g.,			
	CRITICAL SECTION	AT 0.59		
	$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	405.0 kips	
	$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips	
	or			
	$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips	
	$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips	
	may shear	V =	405 0 kins	Ī

max shear	$V_u =$	405.0 kips
max moment	$M_u =$	2877.0 ft-kips
Shear depth	$d_v =$	73.19 in
Applied factored normal force at the section	$N_u =$	0
Angle of diagonal compressive stresses	θ =	36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\epsilon_{q} = \frac{\frac{M_{p}}{d_{s}} + 0.5M_{s} + 0.5M_{s} \cot \theta - A_{ps}f_{ys}}{E_{p}A_{s} + E_{p}A_{ss}} \le 0.002$

effective stress in prestressing strand after all losses

layer 1	$f_{po} =$	52.2 ksi	52.8 ksi
layer 2	f _{po} =	83.9 ksi	84.5 ksi
layer 3	f _{po} =	106.4 ksi	107.1 ksi
layer 4	f _{po} =	114.3 ksi	115.0 ksi
layer 5	f _{po} =	124.7 ksi	
layer 6	f _{po} =	128.9 ksi	
layer 7	f _{po} =	131.1 ksi	
layer 8	$f_{po} =$	135.3 ksi	
layer 9	$f_{po} =$		138.2 ksi
layer 10	f _{po} =		153.0 ksi
layer 11	f _{po} =		153.0 ksi
layer 12	$f_{po} =$		153.0 ksi
layer 13	f _{po} =		153.0 ksi
laver 14	f _{no} =		153.0 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.001475	0.001473
layer 2	ε _x =	0.001406	0.001404
layer 3	$\varepsilon_x =$	0.001355	0.001353
layer 4	$\varepsilon_x =$	0.001336	0.001335
layer 5	$\varepsilon_x =$	0.001313	
layer 6	$\varepsilon_x =$	0.001304	
layer 7	$\varepsilon_x =$	0.001299	
layer 8	$\varepsilon_x =$	0.001290	
layer 9	$\varepsilon_x =$		0.001284
layer 10	$\varepsilon_x =$		0.001257
layer 11	$\varepsilon_x =$		0.001257
layer 12	$\varepsilon_x =$		0.001257
layer 13	$\varepsilon_x =$		0.001257
laver 14	ε, =		0.001257

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-3.79 in	
$\Delta_g =$	-3.68 in	
$\Delta_s =$	-5.63 in	

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

-6.03 in $\Delta_{sw} =$

-0.52 in -0.50 in Δ= Δ= -0.92 in -0.88 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -2.18 in

NOT OK

Deflection due to fire truck

Total Deflection after fire with fire truck

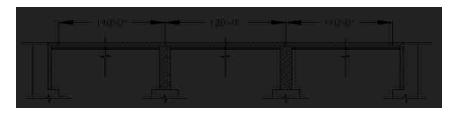
$\Delta_L =$	-4.1776 in
Δ=	-6.9386 in

NOT OK

Location: <u>Fire at Critical Negative Moment Sections</u> Beam Design: 1/2" Strand

Fire Exposure Status: Undamaged

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in		
Compressive Strength	f'c =	4.00 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	7 ksi			
Unit Weight	w _c =	150.0 pcf			
Overall Beam Length:					
@ end spans	L=	110 ft			
@ center span	L=	119 ft			
Design Spans:					
Non-composite beam @ end spans	L=	109 ft			
Non-composite beam @ center span	L=	118 ft			
Composite beam @ end spans	L=	110 ft			
Composite beam @ center span	L=	120 ft			
Beam Spacing	S=	12 ft			

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
emperature of Layer	i i		
	layer 1 (bottom)	T =	68.00 °F
	layer 2	<u>T =</u>	68.00 °F
	layer 3	T = T =	68.00 °F
	layer 4 layer 5	<u> = </u>	68.00 °F 68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T=	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	-		
intial = 277 ksi	layer 1 (bottom)	f _{pu} =	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	*		277 ksi
	layer 8	f _{pu} =	
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	$f_{pu} =$	277 ksi
	layer 12	$f_{pu} =$	277 ksi
	layer 13	$f_{pu} =$	277 ksi
	layer 14	$f_{pu} =$	277 ksi
d Strength	_		
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	•		
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
ess Limits: ore transfer ≤ 0.75f _{pu} (in	itial = 207.6)		
ρu(layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3		207.6 ksi
	•	f _{pi} =	
	layer 4	f _{pi} =	207.6 ksi

r 1 (bottom)	$f_{pi} =$	207.6 ksi
layer 2	$f_{pi} =$	207.6 ksi
layer 3	f _{pi} =	207.6 ksi
layer 4	f _{pi} =	207.6 ksi
layer 5	f _{pi} =	207.6 ksi
layer 6	f _{pi} =	207.6 ksi
layer 7	f _{pi} =	207.6 ksi
layer 8	$f_{pi} =$	207.6 ksi
layer 9	$f_{pi} =$	207.6 ksi
layer 10	$f_{pi} =$	207.6 ksi
layer 11	$f_{pi} =$	207.6 ksi
layer 12	f _{pi} =	207.6 ksi
layer 13	$f_{pi} =$	207.6 ksi
layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) ≤ 0.80f_{py} (initial = 199.7)

Ру (,	
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

ayer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS

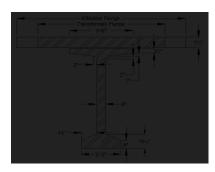
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	$f_y =$	60.0 ksi	68.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

E =	29000.0 ksi


 $\begin{array}{ccc} \text{Area of steel at midspan (effective flange)} & A_{\text{sm}} = & 2.79 \text{ in}^{\wedge}2 \\ \text{Area of steel at endspan (effective flange)} & A_{\text{se}} = & 2.48 \text{ in}^{\wedge}2 \\ \text{Area of temperature and shrinkage steel (12" width)} & A_{\text{s}} = & 0.31 \text{ in}^{\wedge}2 \\ \end{array}$

Layer 2 (Top)

Area of steel at midspan (effective flange) $A_{sm} = 12.6 \text{ in}^2$ Area of steel at endspan (effective flange) $A_{se} = 12.4 \text{ in}^2$ Area of temperature and shrinkage steel (12" width) $A_{s} = 0.2 \text{ in}^2$

Cross-sectional Properties

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	y _b =	36.6 in			
Distance from centroid to extreme top fiber	y _t =	35.4 in			
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3			
Section modulus for the extreme top fiber	S _t =	15421.0 in^3			
Weight	W _t =	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3834 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} 0.7559 Transformed flange width 83.9 in = Transformed flange area 629.3 in^2 Transformed haunch width = 31.7 in Transformed haunch area 15.9 in^2 Deck-distance to top fiber y_t = 3.75 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3			1.091.316 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,316 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.67 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	56,994.5 in^3

COMPOSITE BEAM AT ENDSPAN

	
b _f =	106.6 in
n =	0.7559
=	80.6 in
=	604.4 in^2
=	31.7 in
=	15.9 in^2
y _{td} =	3.75 in
	n = = = = = =

*min of three criteria

	Transformed Area	\mathbf{y}_{t}	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	273,455 in^4	539,947 in^4	813,402 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	5,660 in^4	0.33 in^4	5,660 in^4
Deck	604.4 in^2	76.25 in	46,082.8 in^3	215,472 in^4	2,833 in^4	218,305 in^4
Total	1387.2 in^2		75,302.0 in^3			1,037,366 in^4

Total area of Composite Section	A _c =	1387 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,037,366 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.28 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.72 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.72 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,110.7 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	58,548.3 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	40,336.0 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f	1
8 in. deck weight	w _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	1
•			1
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
FD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	K _g =	2,309,429.79 in^4

at center span:

$$DFM = 0.75 + \left(\frac{g}{9.5}\right)^{0.6} * \left(\frac{g}{L}\right)^{0.2} * \left(\frac{K_{\rm B}}{12 * L * L_{\rm J}^2}\right)^{0.1}$$

DFM = 0.905 lanes/beam

one design lane loaded:

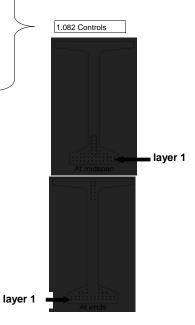
$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.5} + \left(\frac{S}{L}\right)^{0.5} + \left(\frac{K_{1}}{12 + L + L_{1}^{3}}\right)^{0.1}$$

DFM = 0.614 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	=
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	=	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	=	2	68
layer 14	-	-	2	70
Harped Stra	and Group (in	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

0.905 Controls

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e _c =	30.78 in

Pr

EI	LASTIC SHORTEN	ING	
	assumed loss	=	9.00%
Force per strand at transfer	_		
	layer 1	=	28.9 kips
	layer 2	=	28.9 kips
	layer 3	=	28.9 kips
	layer 4	=	28.9 kips
	layer 5	=	28.9 kips
	layer 6	=	28.9 kips
	layer 7	=	28.9 kips
	layer 8	=	28.9 kips
	layer 9	=	28.9 kips
	layer 10	=	28.9 kips
	layer 11	=	28.9 kips
	layer 12	=	28.9 kips
	layer 13	=	28.9 kips
	layer 14	=	28.9 kips
		Г	at midspan
Total prestres	sing force at release	Pi =	1271 6 kips

	_		
		at midspan	at endspan
Total prestressing force at release	$P_i =$	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

SHRINKAGE Shrinkage = (17-0.15*Relative Humidity) 6.5 ksi $\Delta f_{pSR} =$

assume relative humidity = 70%

CREEP OF CONCRETE Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f_{cgp} 1.563 ksi at midspan at endspan loss due to creep $\Delta f_{pCR} =$ 24.3 ksi 24.3 ksi

RELAXATION OF P			ot codou
oss due to relaxation after transfer	ar 1 Af	at midspan	at endspan
laye		2.1 ksi	2.1 ksi
	er 2 $\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	er 3 $\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	er 4 $\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
laye	er 5 $\Delta f_{pR2} =$	2.1 ksi	
laye	er 6 $\Delta f_{pR2} =$	2.1 ksi	
laye	er 7 $\Delta f_{pR2} =$	2.1 ksi	
laye	er 8 $\Delta f_{pR2} =$	2.1 ksi	
laye	er 9 Δf _{pR2} =		2.1 ksi
layer			2.1 ksi
layer	P		2.1 ksi
layer			2.1 ksi
layer			2.1 ksi
layer			2.1 ksi
layer	I T DIPR2		2.1 K31
TOTAL LOSS	SES AT TRA	NSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$			
tress in tendons after transfer $f_{pt} = f_{pi} \Delta f_{pi}$	Γ	at midspan	at endspan
laye	er 1 f _{pt} =	190.6 ksi	190.6 ksi
	er 2 f _{pt} =	190.6 ksi	190.6 ksi
laye		190.6 ksi	190.6 ksi
	er 4 f _{pt} =	190.6 ksi	190.6 ksi
laye		190.6 ksi	130.0 KSI
	er 6 f _{pt} =	190.6 ksi	
laye		190.6 ksi	
laye		190.6 ksi	
laye			190.6 ksi
layer			190.6 ksi
layer	r 11		190.6 ksi
layer	r 12		190.6 ksi
layer	r 13		190.6 ksi
layer	r 14		190.6 ksi
orce per strand = f _{pt} *strand area		at midspan	at endspan
laye	er 1 =	29.2 kips	29.2 kips
laye		29.2 kips	29.2 kips
laye		29.2 kips	29.2 kips
laye		29.2 kips	29.2 kips
laye		29.2 kips	20:2 14:50
laye		29.2 kips	
laye		29.2 kips	
laye		29.2 kips	00.01:
laye			29.2 kips
layer	14 =		29.2 kips
Total prestressing force after trans	sfer P _i =	1284.8 kips	1284.8 kips
nitial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
laye	er 1 % =	8.2%	8.2%
laye	er 2 % =	8.2%	8.2%
lave	er 3 % =	8.2%	8.2%
	er 4 % =	8.2%	8.2%
	er 5 % =	8.2%	
	er 6 % =	8.2%	
	er 7 % =	8.2%	+
			+
	er 8 % =	8.2%	0.00/
	er 9 % =		8.2%
layer			8.2%
	r 11 % =		8.2%
layer			
layer layer	r 12 % =		8.2%
			8.2% 8.2%

ок ок ок ок

OK OK OK OK OK OK OK

TOTAL LOSSE	ES AT S	SERVI	CE LOADS	
Total Losses			at midspan	at endspa
		$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
		$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
		$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
		$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
la		$\Delta f_{pT} =$	49.9 ksi	
la	ayer 6	$\Delta f_{pT} =$	49.9 ksi	
la	ayer 7	$\Delta f_{pT} =$	49.9 ksi	
la	ayer 8	$\Delta f_{pT} =$	49.9 ksi	
la		$\Delta f_{pT} =$		49.9 ksi
laye	/er 10 /	$\Delta f_{pT} =$		49.9 ksi
laye		$\Delta f_{pT} =$		49.9 ksi
laye	/er 12 /	$\Delta f_{pT} =$		49.9 ksi
laye	/er 13 /	$\Delta f_{pT} =$		49.9 ksi
	/er 14 /	$\Delta f_{pT} =$		49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
la	ayer 1	f _{pe} =	157.7 ksi	157.7 ksi
la	ayer 2	f _{pe} =	157.7 ksi	157.7 ksi
la	ayer 3	f _{pe} =	157.7 ksi	157.7 ksi
la	ayer 4	f _{pe} =	157.7 ksi	157.7 ksi
la	ayer 5	f _{pe} =	157.7 ksi	
la	ayer 6	f _{pe} =	157.7 ksi	
la	ayer 7	f _{pe} =	157.7 ksi	
la	ayer 8	f _{pe} =	157.7 ksi	
la	ayer 9	f _{pe} =		157.7 ksi
lay	/er 10	f _{pe} =		157.7 ksi
	/er 11	f _{pe} =		157.7 ksi
	/er 12	f _{pe} =		157.7 ksi
	/er 13	f _{pe} =		157.7 ksi
	/er 14	f _{pe} =		157.7 ksi
check prestressing stress limit at service limit sta			/	•
la	ayer 1	=	199.7 ksi	
	ayer 2	=	199.7 ksi	
	ayer 3	=	199.7 ksi	
	ayer 4	=	199.7 ksi	
	ayer 5	=	199.7 ksi	
	ayer 6	=	199.7 ksi	
	ayer 7	=	199.7 ksi	
	ayer 8	=	199.7 ksi	
	ayer 9	=	199.7 ksi	
	/er 10	=	199.7 ksi	\dashv
	/er 11	=	199.7 ksi	\exists
	/er 12	=	199.7 ksi	\exists
	/er 13	=	199.7 ksi	\dashv
	/er 14	=	199.7 ksi	\dashv
orce per strand = f _{pe} *strand area			at midspan	at endspan
	ayer 1	=	24.1 kips	24.1 kips
ia	ayer 2	=	24.1 kips	24.1 kips
la	, <u>-</u>	=	24.1 kips	24.1 kips
	aver 3		·	
la	ayer 3		24.1 king	24 1 kine
la la	ayer 4	=	24.1 kips 24.1 kips	24.1 kips
la la la	ayer 4 ayer 5	=	24.1 kips	24.1 kips
la la la la	ayer 4 ayer 5 ayer 6	= = =	24.1 kips 24.1 kips	24.1 kips
la la la la la	ayer 4 ayer 5 ayer 6 ayer 7	= = = =	24.1 kips 24.1 kips 24.1 kips	24.1 kips
la la la la la la	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8	= = = = = = = = = = = = = = = = = = = =	24.1 kips 24.1 kips	
la la la la la la	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9	= = = = =	24.1 kips 24.1 kips 24.1 kips	24.1 kips
la la la la la lay	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9 yer 10	= = = = = =	24.1 kips 24.1 kips 24.1 kips	24.1 kips 24.1 kips
la la; la; la; la; lay; lay; lay;	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9 ver 10 ver 11	= = = = = = =	24.1 kips 24.1 kips 24.1 kips	24.1 kips 24.1 kips 24.1 kips
la la; la; la; la; layi layi layi	ayer 4 ayer 5 ayer 6 ayer 7 ayer 8 ayer 9 yer 10	= = = = = =	24.1 kips 24.1 kips 24.1 kips	24.1 kips 24.1 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

a cooco de manorei		
STRESS LIMITS FOR CO	NCRET	E
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi

STRESSES AT TRANSFER LE	NGTH S	ECTION
Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

ок ок

ok ok

ок ок

$f_t = \frac{P_i}{A} - \frac{P_i \sigma}{S_i} + \frac{M_g}{S_t}$	f, =	$= \frac{P_i}{A} + \frac{P_i \sigma}{S_o} - \frac{M_s}{S_o}$	
		at midspan	at endspan
Top stress at top fiber of beam	f _t =	0.342 ksi	0.342 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi
STRESSES AT	THARP I	POINT	
Bending moment due to beam weight at 0.3L	$M_g =$	1184.2 ft-kips	
Top stress at top fiber of beam	f _t =	0.032 ksi	0.032 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi
STRESSES A	AT MIDS	PAN	
Bending moment due to beam weight at 0.5L	M _q =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	0.220 ksi	0.211 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi
HOLD-DOWN FOR	CES		•
			_

assume stress in strand before losses = 0.8f_u

layer 1	ш	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	ш	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	ш	221.4 ksi
layer 14	ш	221.4 ksi

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	ш	33.9 kips
layer 13	ш	33.9 kips
layer 14	ш	33.9 kips
larp Angle	Ψ =	7.2 °

Hold-down force/strand

=	4.4 kips/strand
=	4.4 kips/strand
=	53.39 kips
	= = = = = = = = = = = = = = = = = = = =

Stresses at Service Loads

STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.800 ksi
Due to permanent and transient loads for lo	ad combir	nation Service I
for the precast beam	=	4.200 ksi
for deck	=	2.400 ksi

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

ок

ок

ок

ок

ок

STRESSES AT M	<u>DSPAN</u>	
Compression stresses at top fiber of beam	at midspan	at endspan
$f_t = \frac{P_{ys}}{A} - \frac{P_{ys}\theta}{S_t} + \frac{(M_g + M_s)}{S_t}$	$+\frac{(M_{wo}+M_{\delta})}{S_{tx}}$	
Due to permanent loads f_{tg} :	= 2.041 ksi	2.041 ksi
$f_{rg} = \frac{P_{ge}}{A} - \frac{P_{ge}\theta}{S_{\tau}} + \frac{(M_x + M_y)}{S_{\tau}} + \frac{(M_z + M_y)}{S_{\tau}}$	(M_{IIA})	
$J_{r_{\overline{s}}} = \frac{1}{A} - \frac{1}{S_{r}} + \frac{1}{S_{r}} + \frac{1}{S_{r}}$		
Due to permanent loads and transient loads ftg	= 2.444 ksi	2.444 ksi
ompression stresses at top fiber of deck	at midspan	at endspan
$f_{ic} = \frac{(B\delta_{ws} + 1)}{S_{sr}}$	112 ₈)	
Due to permanent loads f_{tc} :	= 0.042 ksi	0.042 ksi
$f_{tc} - rac{(M_{ws} + M_b +}{S_w}$	M_{II+1}	
Due to permanent loads and transient loads ftc	= 0.488 ksi	0.488 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{rg} = \frac{P_{ps}}{A} + \frac{P_{ps}\theta}{S_h} - \frac{(M_g + M_s)}{S_h} - \frac{(M_s + M_s)}{S_h}$	$_{\circ} + M_{\circ} + 0.8*M_{II+1}$	
A S, S,	2,8c	
Load Combination Service III f _b =	-0.393 ksi	-0.393 ksi

POSITIVE MOMENT S		0204 F # king
$M_{u} = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips
effective length factor for compression members		2.00
layer 1	k =	0.28
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	c =	5.7 ft-kips
verage stress in prestressing steel		
layer 1	$f_{ps} =$	270.9 ksi
layer 2	$f_{ps} =$	270.9 ksi
layer 3	f _{ps} =	270.9 ksi
layer 4	f _{ps} =	270.9 ksi
layer 5	f _{ps} =	270.9 ksi
layer 6	$f_{ps} =$	270.9 ksi
layer 7	$f_{ps} =$	270.9 ksi
layer 8	$f_{ps} =$	270.9 ksi
layer 9	$f_{ps} =$	270.9 ksi
layer 10	$f_{ps} =$	270.9 ksi
layer 11	f _{ps} =	270.9 ksi
layer 12	f _{ps} =	270.9 ksi
layer 13	f _{ps} =	270.9 ksi
layer 14	f _{ps} =	270.9 ksi
nominal flexure resistance		
	a =	4.85 in
$M_r = \Phi M_n$, $\Phi = 1.00$	ФМ _п =	10906.2 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips
NEGATIVE MOMENT S		0000.0 It Ripo
M _{II} = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips
3(==,,	a =	5.97 in
	ΦM _n =	4905.9 ft-kips
M=DC+W+LL+IM	M =	-2869.7 ft-kips
INI-BOTT TEETINI	101 —	2000.7 11 14150
near Design		
CRITICAL SECTION A	AT 0.59	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-2684.4 ft-kips
or	_u –	2007.7 II-IIIpo
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	364.8 kips
	M _u =	-2877.0 ft-kips
	iviu —	-2011.0 II-NIPS
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$		
M _u = 1.25DC+1.5DW+1.75(LL+IM)		405.0 king
M _u = 1.25DC+1.5DW+1.75(LL+IM) max shear	V _u =	405.0 kips
M _u = 1.25DC+1.5DW+1.75(LL+IM) max shear max moment	V _u = M _u =	2877.0 ft-kips
M _u = 1.25DC+1.5DW+1.75(LL+IM) max shear	V _u =	· · · · · · · · · · · · · · · · · · ·

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{\frac{M_a}{d_y} + 0.5N_a + 0.5N_a \cot \theta - A_{po}f_{po}}{E_x A_y + E_y A_p} \le 0.002$

resultant compressive stress at centroid effective stress in prestressing strand after all losses

	at midspan	at endspan
f _{pc} =	0.994 ksi	0.994 ksi

100000			
layer 1	f _{po} =	162.8 ksi	162.8 ksi
layer 2	f _{po} =	162.8 ksi	162.8 ksi
layer 3	f _{po} =	162.8 ksi	162.8 ksi
layer 4	f _{po} =	162.8 ksi	162.8 ksi
layer 5	f _{po} =	162.8 ksi	
layer 6	f _{po} =	162.8 ksi	
layer 7	f _{po} =	162.8 ksi	
layer 8	f _{po} =	162.8 ksi	
layer 9	f _{po} =		162.8 ksi
layer 10	f _{po} =		162.8 ksi
layer 11	f _{po} =		162.8 ksi
layer 12	f _{po} =		162.8 ksi
layer 13	f _{po} =		162.8 ksi
layer 14	f _{po} =		162.8 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\epsilon_x =$	0.002000	
layer 8	$\epsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800 Deflection due to live load and impact

Deflection due to fire truck Total Deflection after fire with fire truck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

 $\Delta_{sw} =$ 0.59 in

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

1.80 in $\Delta_L =$ -0.83 in

-0.7520 in $\Delta_L =$ 3.8033 in Δ=

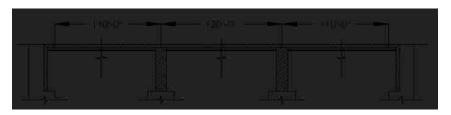
οк

οк

Location: Fire at Critical Negative Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 1/2 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	3.74 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-	72 BULE	-TEE
Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L=	110 ft
@ center span	L=	119 ft
Design Spans:		
Non-composite beam @ end spans	L=	109 ft
Non-composite beam @ center span	L=	118 ft
Composite beam @ end spans	L=	110 ft
Composite beam @ center span	L=	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR		1
	Diameter of single strand		0.5 in
Famous exercises (1)	Area of single strand	A =	0.153 in^2
Temperature of I	-	T =	68 00 ∘⊏
	layer 1 (bottom) layer 2		68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9 layer 10	T = T =	68.00 °F 68.00 °F
	layer 11	T=	68.00 °F
	layer 12		68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
JItimate Strengt			
intial =	277 ksi layer 1 (bottom)	-:-	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
	layer 14	$f_{pu} =$	277 ksi
ield Strength			
intial =	250 ksi layer 1 (bottom)		250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:	0.754 (0.96-1, 007.0)		
erore transter ≤	0.75f _{pu} (initial = 207.6)		
	layer 1 (bottom)	-	207.6 ksi
	layer 2	F*	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	$f_{pi} =$	207.6 ksi
	layer 9	$f_{pi} =$	207.6 ksi
	layer 10	$f_{pi} =$	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

ksi ksi ksi
ksi
ksi

Modulus of Elasticity

intial = 25982 ksi

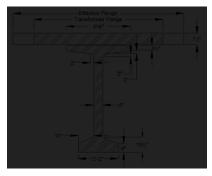
E =	25982.0 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	58.2 ksi	550.00 °F

Modulus of Elasticity


Layer 1 (Bottom)

E =	29000.0 ksi

Layer 2 (Top)

Cross-sectional Properties

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	539,947 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in				
Distance from centroid to extreme top fiber	y _t =	35.4 in				
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3				
Section modulus for the extreme top fiber	S _t =	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$,				
cast-in-place concrete deck	E _{cs} =	3708 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} 0.7309 Transformed flange width 81.1 in = Transformed flange area 608.5 in^2 Transformed haunch width 30.7 in Transformed haunch area 15.3 in^2 Deck-distance to top fiber $y_t =$ 4.56 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	231,850 in^4	539,947 in^4	771,797 in^4
Haunch	15.3 in^2	72.25 in	1,109.0 in^3	5,120 in^4	0.33 in^4	5,121 in^4
Deck	608.5 in^2	75.44 in	45,906.3 in^3	280,077 in^4	2,268 in^4	282,345 in^4
Total	1390.9 in^2		75,087.6 in^3			1,059,263 in^4

Total area of Composite Section	$A_c =$	1391 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,059,263 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.99 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.01 in
Distance from centroid to extreme \underline{top} fiber of slab	y _{tc} =	26.01 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,621.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	58,803.0 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	55,707.6 in^3

COMPOSITE BEAM AT ENDSPAN

	• •
b _f =	106.6 in
n =	0.7309
=	77.9 in
ш	584.4 in^2
=	30.7 in
=	15.3 in^2
y _{td} =	4.56 in
	n = = = = = =

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	273,989 in^4	539,947 in^4	813,936 in^4
Haunch	15.3 in^2	72.25 in	1,109.0 in^3	5,483 in^4	0.32 in^4	5,484 in^4
Deck	584.4 in^2	77.06 in	45,033.3 in^3	208,758 in^4	2,182 in^4	210,940 in^4
Total	1366.7 in^2		74.214.6 in^3			1.030.360 in^4

Total area of Composite Section	A _c =	1367 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,030,360 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.30 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.70 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.70 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,975.2 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	58,213.4 in^3
Section modulus for the extreme top fiber slab	$S_{tc} =$	40,092.3 in^3

Shear Forces and Bending Moments

1	,,,,	,,,,		,,,		
	ם	E	J	2	ADS	

Beam self-weight	w _{beam} =	0.799 k/f	Ì
8 in. deck weight	w _{deck} =	1.200 k/f	İ
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	İ
			İ
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	ı >
Curvature in plans is less than 4°=	0	OK	ı [
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3681
Longitudinal stiffness parameter	K _g =	2,388,355.61 in^4

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{8.6} * \left(\frac{S}{L}\right)^{8.2} * \left(\frac{K_B}{12 \times L^{-8} t_3^3}\right)^{0.1}$$

0.907 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_g}{12 + L + L_s^3}}^{0.1}$$

DFM = 0.615 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	=	2	62
layer 11	-	=	2	64
layer 12	-	-	2	66
layer 13	-	=	2	68
layer 14	-	-	2	70
Harped Str	rand Group (ir	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

layer 1 =

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

0.905 Controls

1.082 Controls

■ layer 1

Prestress Losses

Prestress Losses	NINO		_	
ELASTIC SHORTE	NING =	9.00%		
assumed loss Force per strand at transfer	=	9.00%		
layer 1	=	28.9 kips		
layer 2		28.9 kips		
layer 3		28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8		28.9 kips		
layer 9	=	28.9 kips		
layer 10		28.9 kips		
layer 11 layer 12	=	28.9 kips 28.9 kips		
layer 12		28.9 kips		
layer 14		28.9 kips		
ayo		at midspan	at endspan]
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing				
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cqp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	†
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3		17.0 ksi	17.0 ksi	
layer 4		17.0 ksi	17.0 ksi	
layer 5		17.0 ksi		
layer 6		17.0 ksi		1
layer 7 layer 8	F-4	17.0 ksi 17.0 ksi		1
layer 9	F-4	17.0 K31	17.0 ksi	
layer 10	F-4		17.0 ksi	
layer 11	F-4		17.0 ksi	
layer 12	F-4		17.0 ksi	+
layer 13			17.0 ksi	
layer 14	$\Delta f_{pES} =$		17.0 ksi	
SHRIN	NKAGE			-
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%
CREEP OF	CONCE	TE		-
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as force	$\Delta f_{cdn} =$	1.565 ksi		-
		at midspan	at endspan	Ī
loss due to creep Δf_{pCR}		24.3 ksi	24.3 ksi	†
RELAXATION OF PRE	STRESS	NG STRANDS		7
loss due to relaxation after transfer		at midspan	at endspan	1
layer 1		2.1 ksi	2.1 ksi	
layer 2		2.1 ksi	2.1 ksi	1
layer 3		2.1 ksi	2.1 ksi	1
layer 4		2.1 ksi	2.1 ksi	+
layer 5		2.1 ksi	+	+
layer 6 layer 7	-	2.1 ksi 2.1 ksi	+	+
layer 8	-	2.1 ksi	+	†
layer 9	-	£.1 NJI	2.1 ksi	†
	prt2			†
laver to	$\Delta f_{DR2} =$		Z.T KSI	
layer 10 layer 11			2.1 ksi 2.1 ksi	
•	$\Delta f_{pR2} =$			
layer 11	$\Delta f_{pR2} = \Delta f_{pR2} =$		2.1 ksi	

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 2	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 3	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 4	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 5	$f_{pt} =$	190.6 ksi	
layer 6	$f_{pt} =$	190.6 ksi	
layer 7	$f_{pt} =$	190.6 ksi	
layer 8	$f_{pt} =$	190.6 ksi	
layer 9	$f_{pt} =$		190.6 ksi
layer 10	$f_{pt} =$		190.6 ksi
layer 11	$f_{pt} =$		190.6 ksi
layer 12	$f_{pt} =$		190.6 ksi
layer 13	$f_{pt} =$		190.6 ksi
layer 14	$f_{pt} =$		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=	29.2 kips	29.2 kips
layer 5	=	29.2 kips	
layer 6	=	29.2 kips	
layer 7	=	29.2 kips	
layer 8	=	29.2 kips	
layer 9	=		29.2 kips
layer 10	=		29.2 kips
layer 11	=		29.2 kips
layer 12	=		29.2 kips
layer 13	=		29.2 kips
layer 14	=		29.2 kips
Total prestressing force after transfer	P _i =	1284.8 kips	1284.8 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	0.00/
layer 9	% =		8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14 TOTAL LOSSES AT	% =	CE LOADS	8.2%
Total Losses	SERVIC		at and answ
I Ulai LUSSES		at midspan	at endspan

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$	49.9 ksi	
layer 6	$\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$		49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$		49.9 ksi

Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	107.7 K31
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =	107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		
layer 13	f _{pe} =		157.7 ksi
	f _{pe} =		157.7 ksi
layer 14 check prestressing stress limit at service limit state: fpe	f _{pe} = e < 0.8*fnv	1	157.7 ksi
layer 1	= 0.0 ipy		7
		199.7 ksi	
layer 2	=	199.7 ksi	_
layer 3	=	199.7 ksi	=
layer 4	=	199.7 ksi	-
layer 5	=	199.7 ksi	=
layer 6	=	199.7 ksi	-
layer 7	=	199.7 ksi	-
layer 8	=	199.7 ksi	
layer 9	=	199.7 ksi	
layer 10	=	199.7 ksi	
layer 11	=	199.7 ksi	
layer 12	=	199.7 ksi	
layer 13	=	199.7 ksi	
layer 14	=	199.7 ksi	
force per strand = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
Total prestressing force after all losses Final losses, $\% = (\Delta f_{pT})/(f_{pi})$	P _{pe} =	1061.7 kips	1061.7 kips
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	,
layer 6	% =	24.0%	
layer 7	% =	24.0%	+
layer 8	% =	24.0%	+
layer 9	% =	27.070	24.0%
layer 9			
	% =		24.0%
layer 11	% =		24.0%
140			
layer 12	% =		24.0%
layer 13	% =		24.0%
		24.0%	

OK OK OK OK

OK OK OK

OK OK OK OK

ок

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	2.5 ft		
Bending moment at transfer length	$M_g =$	116.4 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	10.78 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in		
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in		
Eccentricity of the strand group at transfer length:	e _h =	17.09 in		
Eccentricity at end of beam:	e =	16.05 in		

Calcs for eccentricity (see 9.6.7.2)

ок

ок

ок

οк

$f_z = \frac{P_z}{A} - \frac{P_i \theta}{S_z} + \frac{Id_z}{S_z}$	$f_{\theta} = \frac{P_{i}}{A} + \frac{P_{i}\sigma}{S_{\theta}} - \frac{M_{s}}{S_{\theta}}$	
	at midspan	at endspan
T		

Bending moment due to beam weight at 0.3L $M_g = 1188.0 \text{ ft-kips}$ Top stress at top fiber of beam $f_t = 0.035 \text{ ksi}$ 0.03

Top stress at top fiber of beam $f_t = 0.035 \text{ ksi}$ Bottom stress at bottom fiber of the beam $f_b = 3.300 \text{ ksi}$ STRESSES AT MIDSPAN

Bending moment due to beam weight at 0.5L $M_g = 1414.3 \text{ ft-kips}$

Top stress at top fiber of beam $f_t = 0.220 \text{ ksi}$ 0.211 ksi OK

Bottom stress at bottom fiber of the beam $f_b = 3.144 \text{ ksi}$ 3.189 ksi OK

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	ш	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	ш	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi	
for deck	=	1.683 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	4.200 ksi	
for dook	_	2 244 kgi	

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MIDS	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_z = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}\theta}{S_z} + \frac{(M_g + M_s)}{S_z} + \cdots$	$\frac{(M_{w}+M_{+})}{S_{tx}}$		
Due to permanent loads $f_{tg} =$	2.043 ksi	2.043 ksi	ок
$f_{tg} = \frac{P_{ge}}{A} - \frac{P_{ge}g}{S_{t}} + \frac{(M_{x} + M_{z})}{S_{t}} + \frac{(M_{we})}{S_{t}}$	$\left(\frac{+M_{h}}{q}\right) + \frac{\left(M_{f,l+1}\right)}{S_{q}}$		
Due to permanent loads and transient loads ftg =	2.475 ksi	2.475 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{u} = \frac{(M_{us} + M)}{S_{u}}$	<u>a)</u>		
Due to permanent loads $f_{tc} =$	0.043 ksi	0.043 ksi	ок
$f_{ts} - \frac{(M_{to} + M_b + M_b)}{S_{ts}}$	<u></u>		
Due to permanent loads and transient loads ftc =	0.499 ksi	0.499 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{13} = \frac{P_{yx}}{A} - \frac{P_{yx}\theta}{S_{\phi}} - \frac{(M_1 + M_2)}{S_{\phi}} - \frac{(M_{yy} + M_2)}{S_{\phi}} = \frac{(M_{yy} + M_2)}{S_{\phi}} - \frac{(M_{yy} + M_2)}{S_{\phi}} = (M_$	$\frac{(M_b + 0.8*M_{ZI+1})}{S_{bc}}$		
Load Combination Service III f _b =	-0.413 ksi	-0.413 ksi	ок

	Streng	th	Limit	State
--	--------	----	-------	-------

POSITIVE MOMENT SI M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	0201 E # line	
	IVI _u =	8381.5 ft-kips	
effective length factor for compression members		0.00	
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	
versas atrona in prostronais a staal	c =	6.1 ft-kips	
verage stress in prestressing steel	f -	270 E lea:	
layer 1	f _{ps} =	270.5 ksi	
layer 2 layer 3	f _{ps} =	270.5 ksi	
layer 4	f _{ps} =	270.5 ksi 270.5 ksi	
layer 5	f _{ps} =		
	f _{ps} =	270.5 ksi	
layer 6 layer 7	f _{ps} =	270.5 ksi	
layer 8	f _{ps} =	270.5 ksi 270.5 ksi	
layer 9		270.5 ksi	
layer 10	f _{ps} =	270.5 ksi	
layer 11	f _{ps} =	270.5 ksi	
layer 12	f _{ps} =	270.5 ksi	
layer 13	f _{ps} =	270.5 ksi	
layer 14	f _{ps} =	270.5 ksi	
ominal flexure resistance	ips —	210.5 K31	
ioniniai nexure resistance	a =	5.18 in	
$M_r = \Phi M_p, \Phi = 1.00$			OK
	ΦM _n =	10865.1 ft-kips	OK
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S			
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips	
	a =	5.82 in	NOT O
	ΦM _n =	4788.0 ft-kips	NOT O
M=DC+W+LL+IM	M =	-2869.7 ft-kips	ок
-aar Daainn			
near Design	T 0 50		
V _u = 1.25DC+1.5DW+1.75(LL+IM)		40E O Line	
$M_{II} = 1.25DC+1.5DW+1.75(LL+IM)$ $M_{II} = 1.25DC+1.5DW+1.75(LL+IM)$	V _u = M _u =	405.0 kips	
or	ivi _U =	-2684.4 ft-kips	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	364.8 kips	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips	
Mu = 1.2000+1.30***1.73(LL+11VI)	ivi _U —	-2011.0 It-KIPS	
max shear	V _u =	405.0 kins	
max snear max moment	M _u =	405.0 kips 2877.0 ft-kips	
max moment Shear depth	d _v =	73.19 in	
Applied factored normal force at the section		0	
Applied lactored normal force at the Section	$N_u =$	U	

Angle of diagonal compressive stresses

36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{\underline{M_1}}{\frac{d_1}{d_1}} + 0.5N_u + 0.5V_1 \cot \theta - A_{pp}f_{pp}}{E_1A_1 + E_pA_{pp}} \le 0.002$

resultant compressive stress at centroid effective stress in prestressing strand after all losses at midspan at endspan 1.008 ksi 1.008 ksi

f _{po} =	162.9 ksi	162.9 ksi
f _{po} =	162.9 ksi	162.9 ksi
$f_{po} =$	162.9 ksi	162.9 ksi
$f_{po} =$	162.9 ksi	162.9 ksi
$f_{po} =$	162.9 ksi	
$f_{po} =$		162.9 ksi
$f_{po} =$		162.9 ksi
$f_{po} =$		162.9 ksi
f _{po} =		162.9 ksi
f _{po} =		162.9 ksi
f _{po} =	<u> </u>	162.9 ksi
	$\begin{aligned} f_{po} &= \\ f_$	$f_{po} =$ 162.9 ksi $f_{po} =$ 162.9 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection

Deflection due to Haunch and Deck

Total Deflection at transfer Total Deflection at erection

Deflection due to total self weight

Live load deflection limit = span/800 Deflection due to live load and impact

Deflection due to fire truck
Total Deflection after fire with fire truck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

$\Delta_{sw} =$	0.59 in

ſ	Δ =	2.48 in	2.48 in
	Δ =	4.49 in	4.49 in

=	
$\Delta_L =$	
Δ _L =	

$\Delta_L =$	-0.7571 in
Δ =	3.7982 in

ок

ок

Location: <u>Fire at Critical Negative Moment Sections</u> Beam Design: 1/2" Strand

Fire Exposure Status: 1 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	3.57 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	7 ksi		
Unit Weight	w _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L=	119 ft		
Design Spans:				
Non-composite beam @ end spans	L=	109 ft		
Non-composite beam @ center span	L=	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
emperature of Layer	ř		
	layer 1 (bottom)	T =	68.00 °F
	layer 2	<u>T =</u>	68.00 °F
	layer 3	T = T =	68.00 °F
	layer 4 layer 5	<u> = </u>	68.00 °F 68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T=	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	-		
intial = 277 ksi	layer 1 (bottom)	f _{pu} =	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	*		277 ksi
	layer 8	f _{pu} =	
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	$f_{pu} =$	277 ksi
	layer 12	$f_{pu} =$	277 ksi
	layer 13	$f_{pu} =$	277 ksi
	layer 14	$f_{pu} =$	277 ksi
d Strength	_		
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	•		
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
ess Limits: ore transfer ≤ 0.75f _{pu} (in	itial = 207.6)		
ρu(layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3		207.6 ksi
	•	f _{pi} =	
	layer 4	f _{pi} =	207.6 ksi

r 1 (bottom)	$f_{pi} =$	207.6 ksi
layer 2	$f_{pi} =$	207.6 ksi
layer 3	f _{pi} =	207.6 ksi
layer 4	f _{pi} =	207.6 ksi
layer 5	f _{pi} =	207.6 ksi
layer 6	f _{pi} =	207.6 ksi
layer 7	f _{pi} =	207.6 ksi
layer 8	$f_{pi} =$	207.6 ksi
layer 9	$f_{pi} =$	207.6 ksi
layer 10	$f_{pi} =$	207.6 ksi
layer 11	$f_{pi} =$	207.6 ksi
layer 12	f _{pi} =	207.6 ksi
layer 13	$f_{pi} =$	207.6 ksi
layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

Ру (,	
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

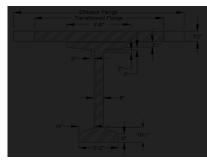
MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	$f_y =$	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	57.6 ksi	820.00 °F

Modulus of Elasticity

Layer 1 (Bottom)


E =	29000.0 ksi

 $\begin{array}{ccc} \text{Area of steel at midspan (effective flange)} & \text{$A_{\rm sm}$=} & 2.79 \text{ in}^2 \\ \text{Area of steel at endspan (effective flange)} & \text{$A_{\rm se}$=} & 2.48 \text{ in}^2 \\ \text{Area of temperature and shrinkage steel (12" width)} & \text{$A_{\rm s}$=} & 0.31 \text{ in}^2 \\ \end{array}$

Layer 2 (Top)

Cross-sectional Properties

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3			
Section modulus for the extreme top fiber	S _t =	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3622 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7141
Transformed flange width	=	79.3 in
Transformed flange area	=	594.5 in^2
Transformed haunch width	=	30.0 in
Transformed haunch area	=	15.0 in^2
Deck-distance to top fiber	$y_t =$	4.89 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	222,211 in/4	539,947 in^4	762,158 in^4
Haunch	15.0 in^2	72.25 in	1,083.5 in^3	5,205 in^4	0.33 in^4	5,205 in^4
Deck	594.5 in^2	75.11 in	44,654.7 in^3	274,538 in^4	1,743 in^4	276,281 in^4
Total	1376.5 in^2		73,810.4 in^3			1,043,643 in^4

Total area of Composite Section	A _c =	1377 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,043,643 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.62 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.38 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.38 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,463.3 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	56,784.5 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	55,399.9 in^3

COMPOSITE BEAM AT ENDSPAN

		·
Effective Flange Width	b _f =	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7141
Transformed flange width	=	76.1 in
Transformed flange area	=	571.0 in^2
Transformed haunch width	=	30.0 in
Transformed haunch area	=	15.0 in^2
Deck-distance to top fiber	y _{td} =	4.89 in

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	271,344 in^4	539,947 in^4	811,291 in^4
Haunch	15.0 in^2	72.25 in	1,083.5 in^3	5,306 in^4	0.31 in^4	5,306 in^4
Deck	571.0 in^2	77.39 in	44,186.4 in^3	201,989 in^4	1,677 in^4	203,666 in^4
Total	42E2 0 in 42		70.040.4 (m/s)			4 000 004 5044

Total area of Composite Section	A _c =	1353 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,020,264 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.21 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.79 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.79 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,821.0 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	57,346.7 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	39,558.7 in^3

Shear Forces and Bending Moments DEAD LOADS

beam seil-weight	w _{beam} =	0.799 K/f	
8 in. deck weight	w _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
		•	
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.4003
Longitudinal stiffness parameter	K _a =	2,444,559.90 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_B}{12 * L * t_3^3}\right)^{0.1}$$

DFM = 0.909 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {N \choose 14}^{0.4} * {N \choose L}^{0.3} * {K_g \choose 12 * L * L^3}^{0.1}$$

DFM = 0.617 lanes/beam

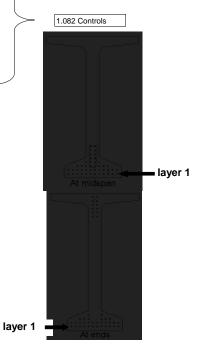
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan			At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
Harped Str	and Group (ii	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e. =	30 78 in

0.905 Controls

Pı

ELASTIC SHORTEI	NING			
assumed loss	=	9.00%		
Force per strand at transfer			<u></u>	
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips	_	
layer 8	=	28.9 kips	_	
layer 9 layer 10	=	28.9 kips 28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips	_	
layer 13	=	28.9 kips	-	
layer 14	=	28.9 kips	-	
layer 14	-	20.5 KIP3		
	[at midspan	at endspan	
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	7
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
oss due to shortening		at midspan	at endspan	+
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	7
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	7
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	7
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{pES} =$	17.0 ksi		1
layer 7	$\Delta f_{pES} =$	17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9	$\Delta f_{pES} =$		17.0 ksi	
layer 10	$\Delta f_{pES} =$		17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12	$\Delta f_{pES} =$		17.0 ksi	
layer 13	$\Delta f_{pES} =$		17.0 ksi	<u> </u>
layer 14	$\Delta f_{pES} =$		17.0 ksi	<u> </u>
				=
	IKAGE			
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	_	assume relative humidity = 70
CREEP OF	CONCDE	TC:		<u>-</u>
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cap}	$\Delta f_{cdp} =$	1.566 ksi		_
		at midspan	at endspan	
loss due to creep		24.3 ksi	24.3 ksi	
RELAXATION OF PRE	STRESS	NG STRANDS		_
oss due to relaxation after transfer		at midspan	at endspan	
layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi	
layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi	
layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi	_
layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi	_
layer 5	$\Delta f_{pR2} =$	2.1 ksi		4
layer 6	$\Delta f_{pR2} =$	2.1 ksi		
lovor 7	$\Delta f_{pR2} =$	2.1 ksi		4
layer 7		2.1 ksi		+
layer 8			2.1 ksi	1
layer 8 layer 9	$\Delta f_{pR2} =$			-
layer 8 layer 9 layer 10	$\Delta f_{pR2} = \Delta f_{pR2} = \Delta f_{pR2}$		2.1 ksi	
layer 8 layer 9 layer 10 layer 11	$\Delta f_{pR2} = $ $\Delta f_{pR2} = $ $\Delta f_{pR2} = $		2.1 ksi 2.1 ksi	
layer 8 layer 9 layer 10 layer 11 layer 12	$\Delta f_{pR2} =$ $\Delta f_{pR2} =$ $\Delta f_{pR2} =$ $\Delta f_{pR2} =$		2.1 ksi 2.1 ksi 2.1 ksi	
layer 8 layer 9 layer 10 layer 11	$\Delta f_{pR2} =$ $\Delta f_{pR2} =$ $\Delta f_{pR2} =$ $\Delta f_{pR2} =$ $\Delta f_{pR2} =$		2.1 ksi 2.1 ksi	

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	190.6 ksi	190.6 ksi
layer 2	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 3	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 4	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 5	$f_{pt} =$	190.6 ksi	
layer 6	$f_{pt} =$	190.6 ksi	
layer 7	$f_{pt} =$	190.6 ksi	
layer 8	$f_{pt} =$	190.6 ksi	
layer 9	$f_{pt} =$		190.6 ksi
layer 10	$f_{pt} =$		190.6 ksi
layer 11	$f_{pt} =$		190.6 ksi
layer 12	$f_{pt} =$		190.6 ksi
layer 13	$f_{pt} =$		190.6 ksi
layer 14	$f_{pt} =$		190.6 ksi
force per strand = f_{pt} *strand area		at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=	29.2 kips	29.2 kips
layer 5	=	29.2 kips	
layer 6	=	29.2 kips	
layer 7	=	29.2 kips	
layer 8	=	29.2 kips	
layer 9	=		29.2 kips
layer 10	=		29.2 kips
layer 11	=		29.2 kips
layer 12	=		29.2 kips
layer 13	=		29.2 kips
layer 14	=		29.2 kips
Total prestressing force after transfer	P _i =	1284.8 kips	1284.8 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	
layer 9	% =		8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14	% =		8.2%
TOTAL LOSSES AT	SERVI	CE LOADS	
Total Losses		at midspan	at endspan

ок ок ок ок

OK OK OK OK OK OK

OK OK

TOTAL LOSSES AT SERVICE LOADS							
Total Losses			at midspan	at endspan			
	layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi			
	layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi			
	layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi			
	layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi			
	layer 5	$\Delta f_{pT} =$	49.9 ksi				
	layer 6	$\Delta f_{pT} =$	49.9 ksi				
	layer 7	$\Delta f_{pT} =$	49.9 ksi				
	layer 8	$\Delta f_{pT} =$	49.9 ksi				
	layer 9	$\Delta f_{pT} =$		49.9 ksi			
	layer 10	$\Delta f_{pT} =$		49.9 ksi			
	layer 11	$\Delta f_{pT} =$		49.9 ksi			
	layer 12	$\Delta f_{pT} =$		49.9 ksi			
	layer 13	$\Delta f_{pT} =$		49.9 ksi			
	layer 14	$\Delta f_{pT} =$		49.9 ksi			

Stress in tendon after all losses = f_{pi} - Δf_{pt}	at midspan	at endspan
layer 1 f _{pe}	= 157.7 ksi	157.7 ksi
layer 2 f _{pe}	= 157.7 ksi	157.7 ksi
layer 3 f _{pe}	= 157.7 ksi	157.7 ksi
layer 4 f _{pe}	= 157.7 ksi	157.7 ksi
layer 5 f _{pe}	= 157.7 ksi	
layer 6 f _{pe}	= 157.7 ksi	
layer 7 f _{pe}	= 157.7 ksi	
layer 8 f _{pe}	= 157.7 ksi	
layer 9 f _{pe}	=	157.7 ksi
layer 10 f _{pe}	=	157.7 ksi
layer 11 f _{pe}	=	157.7 ksi
layer 12 f _{pe}	=	157.7 ksi
layer 13 f _{pe}	=	157.7 ksi
layer 14 f _{pe}	=	157.7 ksi
check prestressing stress limit at service limit state: $fpe \le 0$.	8*fpy	
layer 1 =	199.7 ksi	
layer 2 =	199.7 ksi	
layer 3 =	199.7 ksi	
layer 4 =	199.7 ksi	
layer 5 =	199.7 ksi	
layer 6 =	199.7 ksi	
layer 7 =	199.7 ksi	
layer 8 =	199.7 ksi	
layer 9 =	199.7 ksi	
layer 10 =	199.7 ksi	
layer 11 =	199.7 ksi	
layer 12 =	199.7 ksi	
layer 13 =	199.7 ksi	
layer 14 =	199.7 ksi	
orce per strand = f _{pe} *strand area	at midspan	at endspan
layer 1 =	24.1 kips	24.1 kips
layer 2 =	24.1 kips	24.1 kips
layer 3 =	24.1 kips	24.1 kips
layer 4 =	24.1 kips	24.1 kips
layer 5 =	24.1 kips	
layer 6 =	24.1 kips	
layer 7 =	24.1 kips	
layer 8 =	24.1 kips	
layer 9 =		24.1 kips
layer 10 =		24.1 kips
layer 11 =		
layer 12 =		24.1 KIPS
		24.1 kips 24.1 kips
layer 13 =		
		24.1 kips
layer 13 =	at midspan	24.1 kips 24.1 kips
layer 13 =		24.1 kips 24.1 kips 24.1 kips
layer 13 = layer 14 = Total prestressing force after all losses Ppe		24.1 kips 24.1 kips 24.1 kips at endspan
layer 13 = layer 14 = Total prestressing force after all losses Ppe	= 1061.7 kips	24.1 kips 24.1 kips 24.1 kips at endspan
$\begin{array}{c} \text{layer 13} & = \\ \text{layer 14} & = \\ \end{array}$ $\text{Total prestressing force after all losses} \begin{array}{c} P_{pe} \\ \end{array}$ $\text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 1} & \% \\ \end{array}$	= 1061.7 kips	24.1 kips 24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips
$\begin{array}{c} \text{layer 13} & = \\ \text{layer 14} & = \\ \end{array}$ $\text{Total prestressing force after all losses} \begin{array}{c} P_{pe} \\ \end{array}$ $\text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 1} & \% \\ \end{array}$	= 1061.7 kips = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips
$\begin{array}{c} \text{layer 13} & = \\ \text{layer 14} & = \\ \end{array}$ $\text{Total prestressing force after all losses} \begin{array}{c} P_{pe} \\ \end{array}$ $\text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 1} & \% \\ \text{layer 2} & \% \\ \end{array}$	= 1061.7 kips = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0%
$\begin{array}{c} \text{layer 13} \\ \text{layer 14} \end{array} = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0%
$\begin{array}{c} \text{layer 13} & = \\ \text{layer 14} & = \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} & \boxed{P_{pe}} \\ \text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 1} & \% \\ \text{layer 2} & \% \\ \text{layer 3} & \% \\ \text{layer 4} & \% \\ \end{array}$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0%
$\begin{array}{c} \text{layer 13} & = \\ \text{layer 14} & = \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} & \boxed{P_{\text{pe}}} \\ \text{Final losses, } \% = (\Delta f_{\text{pT}})/(f_{\text{pl}}) \\ \text{layer 1} & \% \\ \text{layer 2} & \% \\ \text{layer 4} & \% \\ \text{layer 5} & \% \\ \end{array}$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0%
$\begin{array}{c c} & \text{layer 13} & = \\ & \text{layer 14} & = \\ & & \text{Total prestressing force after all losses} & \boxed{P_{\text{pe}}} \\ & \text{Final losses, } \% = (\Delta f_{\text{pT}})/(f_{\text{pl}}) & \text{layer 1} & \% \\ & \text{layer 2} & \% \\ & \text{layer 3} & \% \\ & \text{layer 4} & \% \\ & \text{layer 5} & \% \\ & \text{layer 6} & \% \\ \end{array}$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0%
$\begin{array}{c c} \text{layer 13} & = \\ \text{layer 14} & = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0%
$\begin{array}{c c} \text{layer 13} & = \\ \text{layer 14} & = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0% 24.0%
$\begin{array}{c c} \text{layer 13} & = \\ \text{layer 14} & = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0% 24.0% 24.0%
$\begin{array}{c c} \text{layer 13} & = \\ \text{layer 14} & = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0% 24.0% 24.0% 24.0%
$\begin{array}{c c} \text{layer 13} & = \\ \text{layer 14} & = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0% 24.0% 24.0% 24.0% 24.0% 24.0%
$\begin{array}{c c} \text{layer 13} & = \\ \text{layer 14} & = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	= 1061.7 kips = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = 24.0% = = 24.0%	24.1 kips 24.1 kips 24.1 kips at endspan 1061.7 kips 24.0% 24.0% 24.0% 24.0% 24.0% 24.0%

OK OK OK OK OK OK OK

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = $0.6f'_{ci}$ f_{ci} 3.300 ksi					
Tension					
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi			
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi			

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	2.5 ft		
Bending moment at transfer length	$M_g =$	116.4 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	10.78 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in		
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in		
Eccentricity of the strand group at transfer length:	e _h =	17.09 in		
Eccentricity at end of beam:	e =	16.05 in		
>				

Calcs for eccentricity (see 9.6.7.2)

, _	P_{i}	$P_i \sigma$	M_{s}
J2 —	A	S.	S,

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	0.342 ksi	0.342 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi

οк ок

> οк ок

> ок οк

STRESSES AT HARP POINT

Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips	
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi

STRESSES AT MIDSPAN

HOLD DOWN FOR		0.1111.01	0.100 1.01
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.211 ksi
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips	

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
laver 14	=	221.4 ksi

prestress force per strand before any losses:

565.		
layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.607 ksi
Due to permanent and transient loads for load combination Service I		
for the precast beam	=	4.200 ksi
for dook	_	2 142 kgi

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MID	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_z = \frac{P_{yo}}{A} - \frac{P_{yo}\theta}{S_z} + \frac{(M_z + M_z)}{S_z} +$	$\frac{(M_{\infty} + M_{\delta})}{\alpha}$		
$A S_t S_t$	λi _{te}		
Due to permanent loads $f_{tg} =$	2.045 ksi	2.045 ksi	ок
$f_{rg} = \frac{P_{ge}}{A} - \frac{P_{ge}\rho}{S_r} + \frac{(M_x + M_y)}{S_r} + \frac{(M_{se})}{S_r}$	$\frac{+M_h}{S_{rr}} + \frac{(M_{fl+1})}{S_{rr}}$		
Due to permanent loads and transient loads f _{tq} =	2.492 ksi	2.492 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ic} = \frac{(M_{ic} + M_{ic})}{S_{ic}}$	<u>,)</u>		
Due to permanent loads $f_{tc} =$	0.044 ksi	0.044 ksi	ок
$f_{ts} = \frac{(M_{ws} + M_{\delta} + M_{\delta})}{S_{ws}}$	[_{EE+1})		
Due to permanent loads and transient loads $f_{tc} =$	0.502 ksi	0.502 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{xy} = \frac{P_{yx}}{A} + \frac{P_{yx}s}{S_b} - \frac{(M_y + M_z)}{S_b} - \frac{(M_{xx} + M_z)}{S_b}$	$+M_2+0.8*M_{II+1}$		
A S, S,	S_{bc}		
Load Combination Service III f _b =	-0.422 ksi	-0.422 ksi	ок

	Streng	th	Limit	State
--	--------	----	-------	-------

POSITIVE MOMENT SI	ECTION		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips	7
effective length factor for compression members			
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	_
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	_
layer 14	k =	0.28	
	c =	6.4 ft-kips	
rage stress in prestressing steel	4	070.01:	٦
layer 1	f _{ps} =	270.2 ksi	
layer 2	f _{ps} =	270.2 ksi	
layer 3	f _{ps} =	270.2 ksi	-
layer 4 layer 5	f _{ps} =	270.2 ksi 270.2 ksi	-
layer 6	f _{ps} =	270.2 ksi	-
layer 7	f _{ps} =	270.2 ksi	-
layer 8	f _{ps} =	270.2 ksi	-
layer 9	f _{ps} =	270.2 ksi	-
layer 10	f _{ps} =	270.2 ksi	-
layer 11	f _{ps} =	270.2 ksi	-
layer 12	f _{ps} =	270.2 ksi	-
layer 13	f _{ps} =	270.2 ksi	-
layer 14	f _{ps} =	270.2 ksi	
minal flexure resistance	F		_
	a =	5.42 in	7
$M_r = \Phi M_n$, $\Phi = 1.00$	ФМ _п =	10835.1 ft-kips	ок
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S		300010 11 mp3	
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips	٦
,	a =	5.77 in	1
	ФМ _о =	4748.7 ft-kips	иот ок
M=DC+W+LL+IM	M =	-2869.7 ft-kips	ок

Shear Design

CRITICAL SECTION AT 0.59

V_u = 1.25DC+1.5DW+1.75(LL+IM) $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

or

 $V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

-2684.4 ft-kips M_u = V_u = 364.8 kips M_u =

405.0 kips

-2877.0 ft-kips

max shear max moment

Shear depth Applied factored normal force at the section

V_u = 405.0 kips M_u = 2877.0 ft-kips $d_v =$ 73.19 in $N_u =$ 0 Angle of diagonal compressive stresses 36.00 °

STRAIN IN FLEXURAL TENSION REINFORCMENT

V_u =

 $\frac{M_{a}}{4} + 0.5M_{a} + 0.5M_{a} \cot \theta - A_{a} f_{po}$ -≤0.002

resultant compressive stress at centroid effective stress in prestressing strand after all losses

at midspan at endspan 1.016 ksi 1.016 ksi f_{pc} =

layer 1	f _{po} =	162.9 ksi	162.9 ksi
layer 2	f _{po} =	162.9 ksi	162.9 ksi
layer 3	f _{po} =	162.9 ksi	162.9 ksi
layer 4	f _{po} =	162.9 ksi	162.9 ksi
layer 5	f _{po} =	162.9 ksi	
layer 6	f _{po} =	162.9 ksi	
layer 7	$f_{po} =$	162.9 ksi	
layer 8	f _{po} =	162.9 ksi	
layer 9	f _{po} =		162.9 ksi
layer 10	f _{po} =		162.9 ksi
layer 11	f _{po} =		162.9 ksi
layer 12	f _{po} =		162.9 ksi
layer 13	f _{po} =		162.9 ksi
layer 14	f _{po} =		162.9 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\epsilon_x =$		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	$\epsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

at midspan at endspan $\Delta_p =$ 3.97 in 3.97 in $\Delta_g =$ -1.49 in $\Delta_g =$ -1.44 in $\Delta_s =$ -1.95 in

Deflection due to total self weight

 $\Delta_{sw} =$ 0.59 in

Total Deflection at transfer Total Deflection at erection Δ = 2.48 in 2.48 in Δ = 4.49 in 4.49 in

Live load deflection limit = span/800 Deflection due to live load and impact

1.80 in $\Delta_L =$ -0.85 in

Deflection due to fire truck

Total Deflection after fire with fire truck

 $\Delta_L =$ -0.7646 in Δ = 3.7907 in

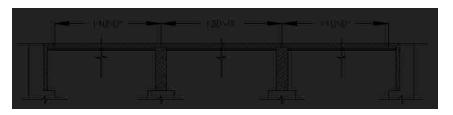
ок

οк

Location: Fire at Critical Negative Moment Sections

Beam Design: 1/2" Strand
Fire Exposure Status: 1-1/2 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	3.39 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE						
Strength at release	f' _{ci} =	5.5 ksi				
Strength at 28 days	f'c =	7 ksi				
Unit Weight	w _c =	150.0 pcf				
Overall Beam Length:						
@ end spans	L =	110 ft				
@ center span	L =	119 ft				
Design Spans:						
Non-composite beam @ end spans	L =	109 ft				
Non-composite beam @ center span	L =	118 ft				
Composite beam @ end spans	L =	110 ft				
Composite beam @ center span	L =	120 ft				
Beam Spacing	S =	12 ft				

	PRESTRESSING STR		1
	Diameter of single strand		0.5 in
Famous exercises (1)	Area of single strand	A =	0.153 in^2
Temperature of I	-	T =	68 00 ∘⊏
	layer 1 (bottom) layer 2		68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9 layer 10	T = T =	68.00 °F 68.00 °F
	layer 11	T=	68.00 °F
	layer 12		68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
JItimate Strengt			
intial =	277 ksi layer 1 (bottom)	-:-	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
	layer 14	$f_{pu} =$	277 ksi
ield Strength			
intial =	250 ksi layer 1 (bottom)		250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:	0.754 (0.96-1, 007.0)		
erore transter ≤	0.75f _{pu} (initial = 207.6)		
	layer 1 (bottom)	-	207.6 ksi
	layer 2	F*	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	$f_{pi} =$	207.6 ksi
	layer 9	$f_{pi} =$	207.6 ksi
	layer 10	$f_{pi} =$	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

,	
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
	$\begin{array}{c} f_{pe} = \\ f_{p$

Modulus of Elasticity

intial = 25982 ksi

E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	55.4 ksi	1010.00 °F

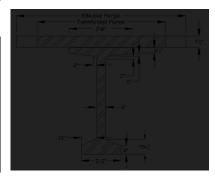
Modulus of Elasticity

Layer 1 (Bottom)

E = 29000.0 ksi

Area of steel at midspan (effective flange) Area of steel at endspan (effective flange)

2.79 in^2 A_{sm}= A_{se}= 2.48 in^2 Area of temperature and shrinkage steel (12" width) 0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flan-Area of steel at endspan (effective flan-Area of temperature and shrinkage steel (12" wid

nge)	A _{sm} =	12.6 in^2
nge)	A _{se} =	12.4 in^2
idth)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	539,947 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in				
Distance from centroid to extreme top fiber	$y_t =$	35.4 in				
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$						
cast-in-place concrete deck	E _{cs} =	3530 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} 0.6959 Transformed flange width 77.2 in = Transformed flange area 579.3 in^2 Transformed haunch width 29.2 in Transformed haunch area 14.6 in^2 Deck-distance to top fiber 5.14 in $y_t =$

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	213,131 in^4	539,947 in^4	753,078 in^4
Haunch	14.6 in^2	72.25 in	1,055.9 in^3	5,265 in^4	0.30 in^4	5,265 in^4
Deck	579.3 in^2	74.86 in	43,369.5 in^3	270,057 in^4	1,399 in^4	271,456 in^4
Total	1361.0 in^2		72,497.6 in^3			1,029,799 in^4

Total area of Composite Section	$A_c =$	1361 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,029,799 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.27 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.73 in
Distance from centroid to extreme \underline{top} fiber of slab	y _{tc} =	26.73 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,331.8 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	54,980.1 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	55,360.1 in^3

COMPOSITE BEAM AT ENDSPAN

	• •
b _f =	106.6 in
n =	0.6959
=	74.2 in
=	556.4 in^2
=	29.2 in
=	14.6 in^2
y _{td} =	5.14 in
	n = = = = = =

*min of three criteria

	Transformed Area	y _t	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	266,924 in^4	539,947 in^4	806,871 in^4
Haunch	14.6 in^2	72.25 in	1,055.9 in^3	5,086 in^4	0.30 in^4	5,086 in^4
Deck	556.4 in^2	77.64 in	43,197.1 in^3	193,625 in^4	1,346 in^4	194,971 in^4
Total	1338.0 in^2		72.325.2 in^3			1.006.929 in^4

Total area of Composite Section	A _c =	1338 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,006,929 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.06 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.94 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.94 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,627.8 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	56,112.1 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	38,810.2 in^3

Shear Forces and Bending Moments

1	,,,,	,,,,		,,,		
	ם	E	J	2	ADS	

Beam self-weight	W _{beam} =	0.799 k/f	Ì
8 in. deck weight	w _{deck} =	1.200 k/f	I
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	İ
			İ
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	i
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	ı >
Curvature in plans is less than 4°=	0	OK	ı
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.4370
Longitudinal stiffness parameter	$K_g =$	2,508,620.36 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{1.5} * \left(\frac{S}{L}\right)^{12} * \left(\frac{K_g}{12 * L * \ell_3^3}\right)^{0.1}$$

DFM = 0.911 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_g}{12 + L + L_s^3}}^{0.1}$$

DFM = 0.618 lanes/beam

0.905 Controls

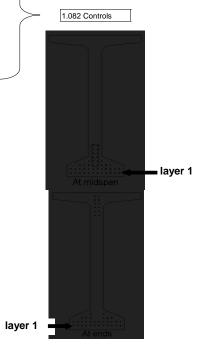
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan			At Ends
from bottom	No. of Distance from Bottom		No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-		2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	ı	2	70
		cluded in above totals)		
layer 3		6		
layer 4		8		
layer 5		10		
layer 6		12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{be})$

y _{bs} =	5.82 in
e. =	30.78 in

Pre

estress Losses			
ELASTIC SHORTEN	=		
assumed loss	=	9.00%	
Force per strand at transfer			-
layer 1	=	28.9 kips	
layer 2	=	28.9 kips	
layer 3	=	28.9 kips	
layer 4	=	28.9 kips	
layer 5	=	28.9 kips	
layer 6	=	28.9 kips	
layer 7	=	28.9 kips	
layer 8	=	28.9 kips	
layer 9	=	28.9 kips	
layer 10	=	28.9 kips	
layer 11	=	28.9 kips	
layer 12	=	28.9 kips	
layer 13	=	28.9 kips	
layer 14	=	28.9 kips	
_			-
		at midspan	at endspan
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing endons due to prestressing force at transfer and the self-weight of the	f _{cgp} =	2.938 ksi	2.938 ksi

Total prestressing force at release	$P_i =$	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

SHRII	NKAGE			
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	ļ	assume relative humidity = 70%

CREEP OF CONCRETE Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f_{cgp} 1.566 ksi at midspan at endspan loss due to creep $\Delta f_{pCR} =$ 24.3 ksi 24.3 ksi

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 5	$\Delta f_{pR2} =$	2.1 ksi	
layer 6	$\Delta f_{pR2} =$	2.1 ksi	
layer 7	$\Delta f_{pR2} =$	2.1 ksi	
layer 8	$\Delta f_{pR2} =$	2.1 ksi	
layer 9	$\Delta f_{pR2} =$		2.1 ksi
layer 10	$\Delta f_{pR2} =$		2.1 ksi
layer 11	$\Delta f_{pR2} =$		2.1 ksi
layer 12	$\Delta f_{pR2} =$		2.1 ksi
layer 13	$\Delta f_{pR2} =$		2.1 ksi
layer 14	$\Delta f_{pR2} =$		2.1 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 2	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 3	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 4	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 5	$f_{pt} =$	190.6 ksi	
layer 6	$f_{pt} =$	190.6 ksi	
layer 7	$f_{pt} =$	190.6 ksi	
layer 8	$f_{pt} =$	190.6 ksi	
layer 9	$f_{pt} =$		190.6 ksi
layer 10	$f_{pt} =$		190.6 ksi
layer 11	$f_{pt} =$		190.6 ksi
layer 12	$f_{pt} =$		190.6 ksi
layer 13	$f_{pt} =$		190.6 ksi
layer 14	$f_{pt} =$		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=	29.2 kips	29.2 kips
layer 5	=	29.2 kips	
layer 6	=	29.2 kips	
layer 7	=	29.2 kips	
layer 8	=	29.2 kips	
layer 9	=		29.2 kips
layer 10	=		29.2 kips
layer 11	=		29.2 kips
layer 12	=		29.2 kips
layer 13	=		29.2 kips
layer 14	=		29.2 kips
Total prestressing force after transfer	P _i =	1284.8 kips	1284.8 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	0.00/
layer 9	% =		8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14 TOTAL LOSSES AT	% =	CE LOADS	8.2%
Total Losses	SERVIC		ot orderer
I Ulai LUSSES		at midspan	at endspan

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$	49.9 ksi	
layer 6	$\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$		49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$		49.9 ksi

Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	107.7 K31
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =	107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		
layer 13	f _{pe} =		157.7 ksi
	f _{pe} =		157.7 ksi
layer 14 check prestressing stress limit at service limit state: fpe	f _{pe} = e < 0.8*fnv	1	157.7 ksi
layer 1	= 0.0 ipy		7
		199.7 ksi	
layer 2	=	199.7 ksi	_
layer 3	=	199.7 ksi	=
layer 4	=	199.7 ksi	-
layer 5	=	199.7 ksi	=
layer 6	=	199.7 ksi	-
layer 7	=	199.7 ksi	-
layer 8	=	199.7 ksi	
layer 9	=	199.7 ksi	
layer 10	=	199.7 ksi	
layer 11	=	199.7 ksi	
layer 12	=	199.7 ksi	
layer 13	=	199.7 ksi	
layer 14	=	199.7 ksi	
force per strand = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
Total prestressing force after all losses Final losses, $\% = (\Delta f_{pT})/(f_{pi})$	P _{pe} =	1061.7 kips	1061.7 kips
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	,
layer 6	% =	24.0%	
layer 7	% =	24.0%	+
layer 8	% =	24.0%	+
layer 9	% =	27.070	24.0%
layer 9			
	% =		24.0%
layer 11	% =		24.0%
140			
layer 12	% =		24.0%
layer 13	% =		24.0%
		24.0%	

OK OK OK OK

OK OK OK

OK OK OK OK

ок

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi			
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi	

STRESSES AT TRANSFER LE	NGTH S	ECTION
Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Locommonty of the offering group at transfer forigun	on –	17.00 111	17	
Eccentricity at end of beam:	e =	16.05 in		
$f_t = \frac{P_i}{A} - \frac{P_i \theta}{S_t} + \frac{M_J}{S_t}$	$f_{\mathfrak{d}}$ =	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_b}-\frac{M_g}{S_b}$		
		at midspan	at endspan	
Top stress at top fiber of beam	$f_t =$	0.342 ksi	0.342 ksi	
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi	
STRESSES AT	HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi	
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi	
STRESSES A	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.211 ksi	
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi	
HOLD DOWN FOR	CEC			

Calcs for eccentricity (see 9.6.7.2)

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

layer 1	II	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

ses:		
layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.526 ksi
Due to permanent and transient loads for lo	ad combi	nation Service I
for the precast beam	=	4.200 ksi
for dook	_	2 024 kgi

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MIDS	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}\theta}{S_t} + \frac{(\mathcal{M}_g + \mathcal{M}_s)}{S_t} + \frac{1}{2}$	$\frac{(M_{w}+M_{\star})}{S_{tx}}$		
Due to permanent loads $f_{tg} =$	2.046 ksi	2.046 ksi	ок
$f_{rg} = \frac{P_{ge}}{A} - \frac{P_{ge}s}{S_{r}} + \frac{(M_{x} + M_{s})}{S_{r}} + \frac{(M_{me} - M_{s})}{S_{r}}$	$\frac{+M_s)}{y} + \frac{(M_{fit+1})}{S_{ij}}$		
Due to permanent loads and transient loads f _{tg} =	2.508 ksi	2.508 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{\nu} = \frac{(M_{vs} + M)}{S_{v}}$	<u>a)</u>		
Due to permanent loads $f_{tc} =$	0.044 ksi	0.044 ksi	ок
$f_w = \frac{(M_w + M_b + M_b)}{S_w}$	<u>rr+1)</u>		
Due to permanent loads and transient loads $f_{tc} =$	0.502 ksi	0.502 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{13} = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu\theta}}{S_b} - \frac{(M_1 + M_s)}{S_b} - \frac{(M_{ws} + M_s)}{S_b} - (M_$	$\frac{M_3 + 0.8*M_{E-1}}{S_{bc}}$		
Load Combination Service III f _b =	-0.430 ksi	-0.430 ksi	ок

POSITIVE MOMENT SI	ECTION		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	8381.5 ft-kips	1
effective length factor for compression members			_
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	1
layer 11	k =	0.28	1
layer 12	k =	0.28	1
layer 13	k =	0.28	
layer 14	k =	0.28	
	c =	6.7 ft-kips	
verage stress in prestressing steel	,		=
layer 1	f _{ps} =	269.9 ksi	
layer 2	f _{ps} =	269.9 ksi	
layer 3	f _{ps} =	269.9 ksi	
layer 4	f _{ps} =	269.9 ksi	
layer 5	f _{ps} =	269.9 ksi	
layer 6	f _{ps} =	269.9 ksi	
layer 7	f _{ps} =	269.9 ksi	
layer 8	f _{ps} =	269.9 ksi	
layer 9	f _{ps} =	269.9 ksi	
layer 10	f _{ps} =	269.9 ksi	
layer 11	f _{ps} =	269.9 ksi	4
layer 12	f _{ps} =	269.9 ksi	
layer 13	f _{ps} =	269.9 ksi	
layer 14	f _{ps} =	269.9 ksi	
ominal flexure resistance	1		٦
	a =	5.70 in	4
$M_r = \Phi M_n, \Phi = 1.00$	$\Phi M_n =$	10800.2 ft-kips	ок
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S	ECTION		_
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	
	a =	5.60 in	
	ΦM _n =	4606.8 ft-kips	NOT OK
M=DC+W+LL+IM	M =	-2869.7 ft-kips	ок

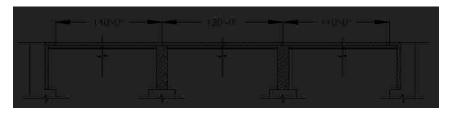
Shear Design

V _{II} = 1.25DC+1.5DW+1.75(LL+IM)	V ₁ =	405 0 kina	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 1.25DC+1.5DW+1.75(LL+IM)$	_	405.0 kips	
or	M _u =	-2684.4 ft-kips	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	364.8 kips	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2877.0 ft-kips	
max shear	V _u =	405.0 kips	
max moment	M _u =	2877.0 ft-kips	
Shear depth	d _v =	73.19 in	
Applied factored normal force at the section	N _u =	0	
Angle of diagonal compressive stresses STRAIN IN FLEXURAL TE	θ= ENSION I	36.00 °	
$\epsilon_n = \frac{\frac{M_\perp}{d_v} + 0.5N_u + 0.5N_u + 0.5N_u}{E_r A_v + 1}$, cot <i>0</i> – 2	رر ^ا ورا. —— ≤ 0.002	
$\epsilon_{n} = \frac{R_{n}A_{n} + R_{n}}{R_{n}A_{n} + R_{n}}$	₹ _p .£ _{pp}		
		at midspan	at endspan
resultant compressive stress at centroid	f _{pc} =	1.024 ksi	1.024 ksi
effective stress in prestressing strand after all losses	_		Т
layer 1	f _{po} =	163.0 ksi	163.0 ksi
layer 2	f _{po} =	163.0 ksi	163.0 ksi
layer 3	f _{po} =	163.0 ksi	163.0 ksi
layer 4	f _{po} =	163.0 ksi	163.0 ksi
layer 5	f _{po} =	163.0 ksi	
layer 6 layer 7	f _{po} =	163.0 ksi 163.0 ksi	
layer 8	f _{po} =	163.0 ksi	
layer 9	f _{po} =	103.0 KSI	163.0 ksi
layer 10	f _{po} =		163.0 ksi
layer 11	f _{po} =		163.0 ksi
layer 12	f _{po} =		163.0 ksi
layer 13	-		163.0 ksi
layer 14	f _{po} =		163.0 ksi
strain in flexural tension	ро	at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	ε _x =	0.002000	
layer 7	ε _x =	0.002000	
layer 8	ε _x =	0.002000	
layer 9	ε _x =		0.002000
layer 10	ε _x =		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000
moddon and Jamber		at midspan	at endspan
Deflection due to Prestressing Force at Transfer	$\Delta_p =$	3.97 in	3.97 in
Deflection due to Beam Self-Weight at Transfer	$\Delta_{q} =$	-1.49 in	
Deflection due to Beam Self-Weight at Erection	$\Delta_g =$	-1.44 in	
Deflection due to Haunch and Deck	$\Delta_s =$	-1.95 in	
Deflection due to total self weight	$\Delta_{\text{sw}} =$	0.59 in	
Fotal Deflection at transfer	Δ =	2.48 in	2.48 in
Total Deflection at erection	Δ =	4.49 in	4.49 in
Live load deflection limit = span/800	=	1.80 in	
	$\Delta_L =$	-0.86 in	Ì
Deflection due to live load and impact			
·	L		- -
Deflection due to fire truck	Δ _L =	-0.7747 in	
· ·	_		

Location: Fire at Critical Negative Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 2 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	3.25 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	7 ksi			
Unit Weight	w _c =	150.0 pcf			
Overall Beam Length:					
@ end spans	L =	110 ft			
@ center span	L =	119 ft			
Design Spans:					
Non-composite beam @ end spans	L =	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L =	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

	PRESTRESSING STR	ANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
Temperature of La	yer		
	layer 1 (bottom)	T =	68.00 °F
	layer 2	T = T =	68.00 °F
	layer 3 layer 4	T =	68.00 °F 68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10 layer 11	T = T =	68.00 °F
	layer 12	T =	68.00 °F 68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial =	277 ksi layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	$f_{pu} =$	277 ksi
	layer 10	$f_{pu} =$	277 ksi
	layer 11	$f_{pu} =$	277 ksi
	layer 12	$f_{pu} =$	277 ksi
	layer 13	$f_{pu} =$	277 ksi
	layer 14	$f_{pu} =$	277 ksi
Yield Strength	-		
intial =	250 ksi layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
_	layer 14	f _{py} =	250 ksi
Stress Limits:	75f (initial = 207.6)		
perore transfer ≤ 0	.75f _{pu} (initial = 207.6)		007.01.
	layer 1 (bottom)	f _{pi} =	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all loss	es) ≤ 0.80f _{py} (initial =	199.7)	
	layer 1 (bottom)	f _{pe} =	199.7 ksi
	layer 2	f _{pe} =	199.7 ksi
	layer 3	f _{pe} =	199.7 ksi
	layer 4	f _{pe} =	199.7 ksi
	layer 5	f _{pe} =	199.7 ksi
	layer 6	f _{pe} =	199.7 ksi
	layer 7	f _{pe} =	199.7 ksi
	layer 8	f _{pe} =	199.7 ksi
	layer 9	f _{pe} =	199.7 ksi
	layer 10	f _{pe} =	199.7 ksi
	layer 11	f _{pe} =	199.7 ksi
	layer 12	f _{pe} =	199.7 ksi
	layer 13	f _{pe} =	199.7 ksi
	layer 14	f _{pe} =	199.7 ksi
Modulus of Elasticity	·		
intial = 25982 ksi	layer 1 (bottom)	E =	25982.0 ksi
	layer 2	E =	25982.0 ksi
	layer 3	E =	25982.0 ksi
	layer 4	E =	25982.0 ksi
	layer 5	E =	25982.0 ksi
	layer 6	E =	25982.0 ksi
	layer 7	E =	25982.0 ksi
	layer 8	E =	25982.0 ksi
	layer 9	E =	25982.0 ksi
	layer 10	E =	25982.0 ksi
	laver 11	F=	25982 0 ksi

MILD STEEL REINFORC	ING BAF	RS	_
Yield Strength			_
Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	53.3 ksi	1120.00 °F
Modulus of Elasticity			
	E =	29000.0 ksi	
Layer 1 (Bottom)			_
Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2	
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2	
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2	
Layer 2 (Top)			_
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2	
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2	
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2]

layer 12 E = layer 13 E =

layer 14 E =

25982.0 ksi 25982.0 ksi

25982.0 ksi

Cross-sectional Properties

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3456 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in b_f = Modular Ratio = E_{cs}/E_{c} 0.6814 Transformed flange width 75.6 in = Transformed flange area 567.3 in^2 Transformed haunch width 28.6 in Transformed haunch area 14.3 in^2 Deck-distance to top fiber 5.34 in $y_t =$

*min of three criteria

	Transformed Area	у _ь	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	205,982 in^4	539,947 in^4	745,929 in^4
Haunch	14.3 in^2	72.25 in	1,033.8 in^3	5,309 in^4	0.33 in^4	5,310 in^4
Deck	567.3 in^2	74.66 in	42,351.1 in^3	266,433 in^4	1,163 in^4	267,597 in^4
Total	1348.6 in^2		71,457.2 in^3			1,018,835 in^4

A _c =	1349 in^2
h _c =	80 in
I _c =	1,018,835 in^4
y _{bc} =	52.99 in
$y_{tg} =$	19.01 in
y _{tc} =	27.01 in
S _{bc} =	19,227.8 in^3
S _{tg} =	53,588.1 in^3
S _{tc} =	55,354.0 in^3
ו ו	$h_{c} = 1$ $I_{c} = 1$ $y_{bc} = 1$ $y_{tg} = 1$ $y_{tc} = 1$ $S_{bc} = 1$

COMPOSITE BEAM AT ENDSPAN

	• •
b _f =	106.6 in
n =	0.6814
=	72.6 in
ш	544.8 in^2
=	28.6 in
=	14.3 in^2
y _{td} =	5.34 in
	n = = = = = =

*min of three criteria

	Transformed Area	y _t	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	263,260 in^4	539,947 in^4	803,207 in^4
Haunch	14.3 in^2	72.25 in	1,033.8 in^3	4,911 in^4	0.30 in^4	4,912 in^4
Deck	544.8 in^2	77.84 in	42,404.7 in^3	186,982 in^4	2,554 in^4	189,536 in^4
Total	1326.1 in^2		71.510.7 in^3			997.654 in^4

Total area of Composite Section	A _c =	1326 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	997,654 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.93 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.07 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.07 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,500.2 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	55,200.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	38,263.2 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight	W _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
•			
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	١ '
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections		OK	J

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	$P_{live} =$	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
FD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.4676
Longitudinal stiffness parameter	K _a =	2,562,082.51 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{8.6} * \left(\frac{S}{L}\right)^{8.2} * \left(\frac{K_g}{12 * L * t_s^3}\right)^{0.1}$$

DFM = 0.913 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_g}{12 + L + L_s^3}}^{0.1}$$

DFM = 0.619 lanes/beam

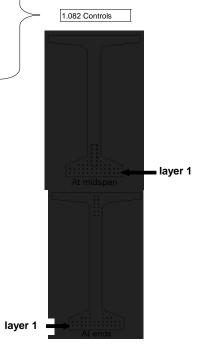
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

At Midspan from bottom No. of Distance from		At Midspan		At Ends		
		Distance from Bottom	No. of	Distance from Bottom		
layer 1	12	2	12	2		
layer 2	12	4	12	4		
layer 3	8	6	6	6		
layer 4	4	8	2	8		
layer 5	2	10	-	-		
layer 6	2	12	-	-		
layer 7	2	14	-	-		
layer 8	2	16	-	-		
layer 9	-	-	2	60		
layer 10	-	-	2	62		
layer 11	-	-	2	64		
layer 12	-	-	2	66		
layer 13	-	-	2	68		
layer 14	-	-	2	70		
Harped Str	and Group (ir	cluded in above totals)				
layer 3	2	6				
layer 4	2	8				
layer 5	2	10				
layer 6	2	12				
layer 7	2	14				
layer 8	2	16		·		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - $y_{be})$

y _{bs} =	5.82 in
e. =	30.78 in

0.905 Controls

Prestress Losses

ELASTIC SHORTE	NING	
assumed loss	=	9.00%
Force per strand at transfer		
layer 1	=	28.9 kips
layer 2	=	28.9 kips
layer 3	=	28.9 kips
layer 4	=	28.9 kips
layer 5	=	28.9 kips
layer 6	=	28.9 kips
layer 7	=	28.9 kips
layer 8	=	28.9 kips
layer 9	=	28.9 kips
layer 10	=	28.9 kips
layer 11	=	28.9 kips
layer 12	=	28.9 kips
layer 13	=	28.9 kips
layer 14	=	28.9 kips
		at midspan

		at midspan	at endspan
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

SHR	INKAGE			
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 5	$\Delta f_{pR2} =$	2.1 ksi	
layer 6	$\Delta f_{pR2} =$	2.1 ksi	
layer 7	$\Delta f_{pR2} =$	2.1 ksi	
layer 8	$\Delta f_{pR2} =$	2.1 ksi	
layer 9	$\Delta f_{pR2} =$		2.1 ksi
layer 10	$\Delta f_{pR2} =$		2.1 ksi
layer 11	$\Delta f_{pR2} =$		2.1 ksi
layer 12	$\Delta f_{pR2} =$		2.1 ksi
layer 13	$\Delta f_{pR2} =$		2.1 ksi
layer 14	$\Delta f_{pR2} =$		2.1 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	190.6 ksi	190.6 ksi
layer 2	f _{pt} =	190.6 ksi	190.6 ksi
layer 3	f _{pt} =	190.6 ksi	190.6 ksi
layer 4	f _{pt} =	190.6 ksi	190.6 ksi
layer 5	f _{pt} =	190.6 ksi	
layer 6	f _{pt} =	190.6 ksi	
layer 7	f _{pt} =	190.6 ksi	
layer 8	f _{pt} =	190.6 ksi	
layer 9	$f_{pt} =$		190.6 ksi
layer 10	$f_{pt} =$		190.6 ksi
layer 11	$f_{pt} =$		190.6 ksi
layer 12	$f_{pt} =$		190.6 ksi
layer 13	f _{pt} =		190.6 ksi
layer 14	$f_{pt} =$		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=	29.2 kips	29.2 kips
layer 5	=	29.2 kips	
layer 6	=	29.2 kips	
layer 7	=	29.2 kips	
layer 8	=	29.2 kips	
layer 9	=		29.2 kips
layer 10	=		29.2 kips
layer 11	=		29.2 kips
layer 12	=		29.2 kips
layer 13	=		29.2 kips
layer 14	=	4004.0 1/2	29.2 kips
Total prestressing force after transfer Initial loss = $(\Delta f_{oi})/(f_{oi})$	P _i =	1284.8 kips	1284.8 kips
layer 1	% =	at midspan 8.2%	at endspan 8.2%
layer 2	% = % =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	0.2 /6
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	
layer 9	% =	0.270	8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14	% =		8.2%
TOTAL LOSSES AT		CE LOADS	
Total Losses		at midspan	at endspan
	A 4		10.01

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

TOTAL LOSSES AT SERVICE LOADS							
Total Losses		at midspan	at endspan				
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi				
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi				
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi				
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi				
layer	$\Delta f_{pT} =$	49.9 ksi					
layer	$\Delta f_{pT} =$	49.9 ksi					
layer	$\Delta f_{pT} =$	49.9 ksi					
layer	$\Delta f_{pT} =$	49.9 ksi					
layer	$\Delta f_{pT} =$		49.9 ksi				
layer 1	$\Delta f_{pT} =$		49.9 ksi				
layer 1	$\Delta f_{pT} =$		49.9 ksi				
layer 1	$\Delta f_{pT} =$		49.9 ksi				
layer 1	$\Delta f_{pT} =$		49.9 ksi				
layer 1	$\Delta f_{pT} =$	<u>'</u>	49.9 ksi				

Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =		157.7 ksi
layer 10	f _{pe} =		157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		157.7 ksi
layer 13	f _{pe} =		157.7 ksi
layer 14	f _{pe} =		157.7 ksi
check prestressing stress limit at service limit state: fpe			
layer 1	=	199.7 ksi	
layer 2	=	199.7 ksi	
layer 3	=	199.7 ksi	┪
layer 4	=	199.7 ksi	\dashv
layer 5	=	199.7 ksi	\dashv
layer 6	=	199.7 ksi	\dashv
layer 7	=	199.7 ksi	\dashv
layer 8		199.7 ksi	┪
layer 9	=	199.7 ksi	┪
layer 10	=	199.7 ksi	┪
layer 11	=		-
· · · · · · · · · · · · · · · · · · ·	=	199.7 ksi	-
layer 12	=	199.7 ksi	-
layer 13	=	199.7 ksi	-
layer 14 force per strand = f _{pe} *strand area	=	199.7 ksi	-t -m-d-m
·		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	04.41:
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
- .,		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.8 kips	1061.8 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$	0/	0.1 ***	
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	4
layer 7	% =	24.0%	
	% =	24.0%	
layer 8	% =		24.0%
layer 9			24.0%
layer 9 layer 10	% =		
layer 9	% = % =		24.0%
layer 9 layer 10 layer 11 layer 12			24.0% 24.0%
layer 9 layer 10 layer 11	% =		
layer 9 layer 10 layer 11 layer 12	% = % =		24.0%

OK OK OK OK

ок

OK OK OK OK

OK OK OK

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	f _{ci} =	3.300 ksi	
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement = $-0.22*\sqrt{f'_{ci}}$	=	-0.016 ksi	

STRESSES AT TRANSFER LE	NGTH S	ECTION
Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

,	$_{-}P_{i}$	$P_i \theta$	$_{\perp}M_{_{I}}$
J2		3,	_S,

£	_	$P_{\mathbf{i}}$	$_{\perp}P_{i}\sigma$ $_{\perp}$	M,
J &	_	\overline{A}	- S ₂	8,

		at midspan	at endspan	
Top stress at top fiber of beam	$f_t =$	0.342 ksi	0.342 ksi	
Bottom stress at bottom fiber of the beam	$f_b =$	3.021 ksi	3.021 ksi	
OTDEOGEO AT HADD DOINT				

ок ΟK

STRESSES AT HARP POINT

Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi	
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi	
STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	M _o =	1414.3 ft-kips	,	

οк ок

	0=0			
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi	
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.211 ksi	
bending moment due to beam weight at 0.5L	ivi _g =	1414.3 It-KIPS		

ок οк

HOLD-DOWN FORCES
assume stress in strand before losses = 0.8f_u

layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	ш	221.4 ksi
layer 6	ш	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	ш	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

ocs.		
layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.463 ksi
Due to permanent and transient loads for lo	oad combii	nation Service I
for the precast beam	=	4.200 ksi
for dools		1 0F0 kg;

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MID	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_z = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}e}{S_{\star}} + \frac{(M_g + M_s)}{S_{\star}} +$	$(M_{\infty} + M_{\bullet})$		
$J_z = \frac{1}{A} - \frac{S_z}{S_z} + \frac{S_z}{S_z}$	S_{tx}		
Due to permanent loads $f_{tg} =$	2.047 ksi	2.047 ksi	Oł
$P_{xx} = P_{xx} s (M_x + M_z) (M_{xx} + M_z)$	(M_{H+1})		
$f_{rg} = \frac{P_{ge}}{A} - \frac{P_{ge}o}{S_{t}} + \frac{(M_{x} + M_{y})}{S_{t}} + \frac{(M_{ge})}{S_{t}}$	<u>S_u + S_u - </u>		
Due to permanent loads and transient loads f _{tg} =	2.521 ksi	2.521 ksi	OF
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{\mathbf{k}} = \frac{(M_{\mathbf{vs}} + h)}{S_{\mathbf{k}}}$	<u>(</u>		
Due to permanent loads $f_{tc} =$	0.044 ksi	0.044 ksi	OF
$f_{ts} - \frac{(M_{to} + M_{t} + k)}{S_{to}}$	I_{H+1}		
Due to permanent loads and transient loads f _{tc} =	0.502 ksi	0.502 ksi	OŁ
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{13} = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}\theta}{S_{\phi}} - \frac{(M_1 + M_2)}{S_{\phi}} - \frac{(M_{uv})}{S_{\phi}}$	$+M_3 + 0.8*M_{ZI+1}$		
en A S, S,	S_{bs}		
Load Combination Service III f _b =	-0.436 ksi	-0.436 ksi	OŁ

	Strength	Limit	State
--	----------	-------	-------

POSITIVE MOMENT S	ECTION		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	8381.5 ft-kips	1
effective length factor for compression members			_
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	
	c =	7.0 ft-kips	
erage stress in prestressing steel	,		=
layer 1	f _{ps} =	269.6 ksi	
layer 2	f _{ps} =	269.6 ksi	
layer 3	f _{ps} =	269.6 ksi	
layer 4	f _{ps} =	269.6 ksi	
layer 5	f _{ps} =	269.6 ksi	
layer 6	f _{ps} =	269.6 ksi	
layer 7	f _{ps} =	269.6 ksi	
layer 8	f _{ps} =	269.6 ksi	
layer 9	f _{ps} =	269.6 ksi	
layer 10	f _{ps} =	269.6 ksi	
layer 11	f _{ps} =	269.6 ksi	
layer 12	f _{ps} =	269.6 ksi	
layer 13	f _{ps} =	269.6 ksi	
layer 14	f _{ps} =	269.6 ksi	
minal flexure resistance	-		7
	a =	5.94 in	4
$M_r = \Phi M_n, \ \Phi = 1.00$	ΦM _n =	10770.5 ft-kips	ок
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S	ECTION		_
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	
	a =	5.43 in	
	ΦM _n =	4468.5 ft-kips	NOT OK
M=DC+W+LL+IM	M =	-2869.7 ft-kips	ок

Shear Design

V _u = 1.25DC+1.5DW+1.75(LL+IM) M _u = 1.25DC+1.5DW+1.75(LL+IM) or	V _u =	405.0 kips	
or		•	_
F	M _u =	-2684.4 ft-kips	
		004.01.	\neg
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	364.8 kips	_
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-2877.0 ft-kips	_
max shear	V _u =	405.0 kips	
max moment	M _u =	2877.0 ft-kips	
Shear depth	d _v =	73.19 in	
Applied factored normal force at the section	N _u =	0	
Angle of diagonal compressive stresses	θ =	36.00 °	
STRAIN IN FLEXURAL TE			
$\frac{M_{\perp}}{d} + 0.5N_{\parallel} + 0.5V$	$I_{i}^{\prime}\cot heta-A$	7e ^f 7,	
$\epsilon_n = \frac{\frac{M}{d_v} + 0.5N_u + 0.5V}{E_r A_v + E_r}$	3, £,,,	—— ≤ 0.092	
		at midspan	at endspan
sultant compressive stress at centroid	f _{pc} =	1.030 ksi	1.030 ksi
fective stress in prestressing strand after all losses			
layer 1	f _{po} =	163.0 ksi	163.0 ksi
layer 2	f _{po} =	163.0 ksi	163.0 ksi
layer 3	f _{po} =	163.0 ksi	163.0 ksi
layer 4	f _{po} =	163.0 ksi	163.0 ksi
layer 5	f _{po} =	163.0 ksi	
layer 6	f _{po} =	163.0 ksi	
layer 7	f _{po} =	163.0 ksi	_
layer 8	f _{po} =	163.0 ksi	100.01.
layer 9	f _{po} =		163.0 ksi
layer 10	f _{po} =		163.0 ksi
layer 11	f _{po} =		163.0 ksi
layer 12 layer 13	f _{po} =		163.0 ksi 163.0 ksi
layer 14	f _{po} = f _{po} =		163.0 ksi
rain in flexural tension	1 _{po} =	at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	ε _x =	0.002000	
layer 7	ε _x =	0.002000	
layer 8	ε _x =	0.002000	
layer 9	ε _x =		0.002000
layer 10	ε _x =		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000
flection and Camber	Г	at midonon	at andones
eflection due to Prestressing Force at Transfer	$\Delta_p =$	at midspan 3.97 in	at endspan 3.97 in
eflection due to Prestressing Force at Transfer	$\Delta_p =$ $\Delta_q =$	-1.49 in	3.97 111
eflection due to Beam Self-Weight at Transier	$\Delta_g = \Delta_g =$	-1.49 in	+
eflection due to Beam Sen-Weight at Election	$\Delta_g = \Delta_s =$	-1.44 III	=
Should add to Hadridi and Dook	△ s −	-1.33 III	_
eflection due to total self weight	$\Delta_{\rm sw}$ =	0.59 in	
	Δ =	2.48 in	2.48 in
otal Deflection at transfer		4.49 in	4.49 in
otal Deflection at transfer otal Deflection at erection	Δ =		
otal Deflection at erection	'	4.00 %	_
otal Deflection at erection ve load deflection limit = span/800	=	1.80 in	7
otal Deflection at erection	'	1.80 in -0.87 in]
otal Deflection at erection ve load deflection limit = span/800	=]

Location: Fire at Critical Negative Moment Sections

Beam Design: 1/2" Strand Fire Exposure Status: 3 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	3.02 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	β ₁ =	0.85		

BEAMS: AASHTO-PCI, BT-	72 BULE	-TEE
Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR		1
	Diameter of single strand		0.5 in
Famous exercises (1)	Area of single strand	A =	0.153 in^2
Temperature of I	-	T =	68 00 ∘⊏
	layer 1 (bottom) layer 2		68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9 layer 10	T = T =	68.00 °F 68.00 °F
	layer 11	T=	68.00 °F
	layer 12		68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
JItimate Strengt			
intial =	277 ksi layer 1 (bottom)	-:-	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
	layer 14	$f_{pu} =$	277 ksi
ield Strength			
intial =	250 ksi layer 1 (bottom)		250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:	0.754 (0.96-1, 007.0)		
erore transter ≤	0.75f _{pu} (initial = 207.6)		
	layer 1 (bottom)	-	207.6 ksi
	layer 2	F*	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	$f_{pi} =$	207.6 ksi
	layer 9	$f_{pi} =$	207.6 ksi
	layer 10	$f_{pi} =$	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi

at service limit state (after all losses) ≤ 0.80f_{py} (initial = 199.7)

Ру (,	
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

ayer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	48.0 ksi	1300.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

E = 29000.0 ksi		
	E =	29000.0 ksi

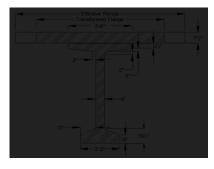
Area of steel at midspan (effective flange)

Area of steel at endspan (effective flange)

Area of temperature and shrinkage steel (12" width)

As-

ve flange)	$A_{sm}=$	2.79 in^2
ve flange)	A _{se} =	2.48 in^2
12" width)	A _{s*} =	0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flange)
Area of steel at endspan (effective flange)
Area of temperature and shrinkage steel (12" width)

$\begin{array}{ccc} \text{nge)} & A_{\text{se}} = & 12.4 \text{ in} \text{^2} \\ \text{didth)} & A_{\text{s'}} = & 0.2 \text{ in} \text{^2} \end{array}$	nge)	A _{sm} =	12.6 in^2
ridth) A _{s*} = 0.2 in^2	nge)	A _{se} =	12.4 in^2
	ridth)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE B	EAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l =	539,947 in^4
Distance from centroid to extreme bottom fiber	y _b =	36.6 in
Distance from centroid to extreme top fiber	y _t =	35.4 in
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3
Section modulus for the extreme top fiber	S _t =	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$,
cast-in-place concrete deck	E _{cs} =	3332 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	5072 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E _{cs} /E _c	n =	0.6568
Transformed flange width	=	72.9 in
Transformed flange area	=	546.8 in^2
Transformed haunch width	=	27.6 in
Transformed haunch area	=	13.8 in^2
Deck-distance to top fiber	y _t =	5.62 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	194,666 in^4	539,947 in^4	734,613 in^4
Haunch	13.8 in^2	72.25 in	996.6 in^3	5,363 in^4	0.33 in^4	5,364 in^4
Deck	546.8 in^2	74.38 in	40,671.9 in^3	261,033 in^4	873 in^4	261,905 in^4
Total	1327.6 in^2		69,740.7 in^3			1,001,883 in^4

= 1328 in^2
= 80 in
: 1,001,883 in^4
= 52.53 in
= 19.47 in
= 27.47 in
= 19,072.2 in^3
= 51,460.9 in^3
= 55,529.3 in^3
= 80 in 1,001,883 in^4 = 52.53 in = 19.47 in = 27.47 in = 19,072.2 in^3 = 51,460.9 in^3

COMPOSITE BEAM AT ENDSPAN

		• •
Effective Flange Width	b _f =	106.6 in
Modular Ratio = E _{cs} /E _c	n =	0.6568
Transformed flange width	=	70.0 in
Transformed flange area	ш	525.1 in^2
Transformed haunch width	=	27.6 in
Transformed haunch area	=	13.8 in^2
Deck-distance to top fiber	V _{td} =	5.62 in

*min of three criteria

	Transformed Area	\mathbf{y}_{t}	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	256,088 in^4	539,947 in^4	796,035 in^4
Haunch	13.8 in^2	72.25 in	996.6 in^3	4,605 in^4	0.29 in^4	4,606 in^4
Deck	525.1 in^2	78.12 in	41,023.7 in^3	175,334 in^4	840 in^4	176,174 in^4
Total	1305.9 in^2		70.092.5 in/3			976.815 in^4

Total area of Composite Section	A _c =	1306 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	976,815 in^4
Distance from centroid to extreme $\underline{\text{bottom}}$ fiber of beam	$y_{bc} =$	53.67 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,199.6 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	53,297.6 in^3
Section modulus for the extreme top fiber slab	$S_{tc} =$	37,102.4 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	W _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	>
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.5225
Longitudinal stiffness parameter	K _q =	2,657,855.22 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{1.6} * \left(\frac{S}{L}\right)^{1.2} * \left(\frac{K_B}{12 \times L^{-2}t_3^3}\right)^{0.1}$$

0.916 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_8}{12 * L * L_8^3}}^{0.1}$$

DFM = 0.621 lanes/beam 0.905 Controls

1.082 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan		At Midspan At Ends	
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	=
layer 6	2	12	-	-
layer 7	2	14	-	=
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	=	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	=	2	68
layer 14	-	-	2	70
Harped Str	rand Group (ir	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

y_{bs} = 5.82 in layer 1 e_c = 30.78 in

■ layer 1

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

Pre

estress Losses		
ELASTIC SHORTEN	IING	
assumed loss	=	9.00%
orce per strand at transfer		
layer 1	=	28.9 kips
layer 2	=	28.9 kips
layer 3	=	28.9 kips
layer 4	=	28.9 kips
layer 5	=	28.9 kips
layer 6	=	28.9 kips
layer 7	=	28.9 kips
layer 8	=	28.9 kips
layer 9	=	28.9 kips
layer 10	=	28.9 kips
layer 11	=	28.9 kips
layer 12	=	28.9 kips
layer 13	=	28.9 kips
layer 14	=	28.9 kips
_		
		at midspan
Total prestressing force at release	P _i =	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing		
		0.0001

Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

SHR	INKAGE			
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%

at endspan

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.567 ksi		
at midspan at endspan				
loss due to creep	$\Delta f_{pCR} =$	24.3 ksi	24.3 ksi	

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 5	$\Delta f_{pR2} =$	2.1 ksi	
layer 6	$\Delta f_{pR2} =$	2.1 ksi	
layer 7	$\Delta f_{pR2} =$	2.1 ksi	
layer 8	$\Delta f_{pR2} =$	2.1 ksi	
layer 9	$\Delta f_{pR2} =$		2.1 ksi
layer 10	$\Delta f_{pR2} =$		2.1 ksi
layer 11	$\Delta f_{pR2} =$		2.1 ksi
layer 12	$\Delta f_{pR2} =$		2.1 ksi
layer 13	$\Delta f_{pR2} =$		2.1 ksi
layer 14	$\Delta f_{pR2} =$		2.1 ksi

TOTAL	LOSSES	AT TRAI	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$				
stress in tendons after transfer $f_{pt} = f_{pi}^- \Delta f_{pi}$			at midspan	at endspan
	layer 1	f _{pt} =	190.6 ksi	190.6 ksi
	layer 2	f _{pt} =	190.6 ksi	190.6 ksi
	layer 3	f _{pt} =	190.6 ksi	190.6 ksi
	layer 4	$f_{pt} =$	190.6 ksi	190.6 ksi
	layer 5	$f_{pt} =$	190.6 ksi	
	layer 6	$f_{pt} =$	190.6 ksi	
	layer 7	$f_{pt} =$	190.6 ksi	
	layer 8	$f_{pt} =$	190.6 ksi	
	layer 9	$f_{pt} =$		190.6 ksi
	layer 10	$f_{pt} =$		190.6 ksi
	layer 11	f _{pt} =		190.6 ksi
	layer 12	$f_{pt} =$		190.6 ksi
	layer 13	$f_{pt} =$		190.6 ksi
	layer 14	$f_{pt} =$		190.6 ksi
force per strand = f _{pt} *strand area	-		at midspan	at endspan
	layer 1	=	29.2 kips	29.2 kips
	layer 2	=	29.2 kips	29.2 kips
	layer 3	=	29.2 kips	29.2 kips
	layer 4	=	29.2 kips	29.2 kips
	layer 5	=	29.2 kips	
	layer 6	=	29.2 kips	
	layer 7	=	29.2 kips	
	layer 8	=	29.2 kips	
	layer 9	=		29.2 kips
	layer 10	=		29.2 kips
	layer 11	=		29.2 kips
	layer 12	=		29.2 kips
	layer 13	=		29.2 kips
	layer 14	=		29.2 kips
Total prestressing force aft	er transfer	P _i =	1284.8 kips	1284.8 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	
layer 9	% =		8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14	% =		8.2%

TOTAL LOSSES AT SERVICE LOADS

Total	Losses

_		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$	49.9 ksi	
layer 6	$\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$		49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$		49.9 ksi

ок ок ок οк ок οк ок ок ок ок ок ок ок

ок

Strees in tenden after all losses = f -Af		at midanan	at and anon
Stress in tendon after all losses = f_{pl} - Δf_{pt} layer 1	f _	at midspan	at endspan
•	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =		157.7 ksi
layer 10	f _{pe} =		157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		157.7 ksi
layer 13	f _{pe} =		157.7 ksi
layer 14	f _{pe} =		157.7 ksi
check prestressing stress limit at service limit state: fp	e ≤ 0.8*fpy	/	_
layer 1	=	199.7 ksi	
layer 2	=	199.7 ksi	
layer 3	=	199.7 ksi	
layer 4	=	199.7 ksi	
layer 5	=	199.7 ksi	
layer 6	=	199.7 ksi	
layer 7	=	199.7 ksi	7
layer 8	=	199.7 ksi	
layer 9	=	199.7 ksi	
layer 10	=	199.7 ksi	
layer 11	=	199.7 ksi	
layer 12	_	199.7 ksi	_
layer 13	=	199.7 ksi	
layer 14		199.7 ksi	
force per strand = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
-			
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
Total prestressing force after all losses Final losses, $\% = (\Delta f_{pT})/(f_{pi})$	P _{pe} =	1061.8 kips	1061.8 kips
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	1
layer 7	% =	24.0%	1
layer 8	% =	24.0%	+
layer 9	% =	27.070	24.0%
layer 9			
•	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =	04.554	24.0%
Average final losses, %	% =	24.0%	24.0%

OK OK OK OK

OK OK OK

OK OK OK OK

ок

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi					
Tension					
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi			
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi			

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	2.5 ft		
Bending moment at transfer length	$M_g =$	116.4 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	10.78 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in		
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in		
Eccentricity of the strand group at transfer length:	e _h =	17.09 in		

Calcs for eccentricity (see 9.6.7.2)

ок ок

ок ок

OK OK

Eccentricity at end of beam:	e =	16.05 in	
$f_t = \frac{P_i}{A} - \frac{P_i \theta}{S_t} + \frac{M_J}{S_t}$	f _b =	$=\frac{P_i}{A}+\frac{P_i e}{S_b}-\frac{M_s}{S_b}$	
		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	0.342 ksi	0.342 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi
STRESSES AT	HARP I	POINT	
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips	
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi
STRESSES A	AT MIDS	PAN	
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	0.220 ksi	0.211 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi		
for deck	=	1.359 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for dock	_	1 912 kgi		

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MIDS	<u>PAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_z = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}\theta}{S_z} + \frac{(\mathcal{M}_g + \mathcal{M}_z)}{S_z} + \frac{1}{2}$	$\frac{(\boldsymbol{M}_{w_0} + \boldsymbol{M}_{+})}{S_{tx}}$		
Due to permanent loads	2.049 ksi	2.049 ksi	ок
$f_{rg} = \frac{P_{ge}}{A} - \frac{P_{ge}s}{S_z} + \frac{(M_x + M_z)}{S_z} + \frac{(M_{ge} - M_z)}{S_z}$	$\frac{+M_h}{q} + \frac{(M_{II+1})}{S_{q}}$		
Due to permanent loads and transient loads f _{tg} =	2.542 ksi	2.542 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{u} = \frac{(M_{us} + M)}{S_{u}}$	<u>a)</u>		
Due to permanent loads $f_{tc} =$	0.043 ksi	0.043 ksi	ок
$f_{w} = \frac{(M_{w} + M_{b} + M_{b})}{S_{w}}$	<u>rr+1)</u>		
Due to permanent loads and transient loads f _{tc} =	0.500 ksi	0.500 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{13} = \frac{P_{yx}}{E} - \frac{P_{yx}\theta}{S_{\phi}} - \frac{(M_1 + M_3)}{S_{\phi}} - \frac{(M_{wx} + M_3)}{S_{\phi}} = \frac{(M_{wx} + M_3)}{S_{\phi}} - \frac{(M_{wx} + M_3)}{S_{\phi}} = (M_$	$\frac{M_b + 0.8*M_{H+1}}{S_{bc}}$		
Load Combination Service III f _b =	-0.445 ksi	-0.445 ksi	ок

	Streng	th	Limit	State
--	--------	----	-------	-------

POSITIVE MOMENT SI	ECTION		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	8381.5 ft-kips	1
effective length factor for compression members			_1
layer 1	k =	0.28	1
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	1
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	
	c =	7.5 ft-kips	
average stress in prestressing steel			7
layer 1	f _{ps} =	269.1 ksi	-
layer 2	f _{ps} =	269.1 ksi	-
layer 3	f _{ps} =	269.1 ksi	-
layer 4	f _{ps} =	269.1 ksi	-
layer 5	f _{ps} =	269.1 ksi	-
layer 6 layer 7	f _{ps} =	269.1 ksi	-
layer 8	f _{ps} =	269.1 ksi 269.1 ksi	+
layer 9	f _{ps} =	269.1 ksi	-
layer 10	f _{ps} =	269.1 ksi	+
layer 11	f _{ps} =	269.1 ksi	1
layer 12	f _{ps} =	269.1 ksi	
layer 13	f _{ps} =	269.1 ksi	
layer 14	f _{ps} =	269.1 ksi	1
nominal flexure resistance	-ps	200111101	_
	a =	6.38 in	٦
$M_r = \Phi M_p, \ \Phi = 1.00$	ФМ ₀ =	10716.1 ft-kips	ок
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S		3033.0 II-KIPS	_ OK
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips	7
	a =	4.99 in	†
	ΦM ₀ =	4115.5 ft-kips	NOT OF
M=DC+W+LL+IM	M =	-2869.7 ft-kips	OK

Shear Design

CRITICAL SECTION AT 0.59 V_u =

V_u = 1.25DC+1.5DW+1.75(LL+IM) $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

or

 $V_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

-2684.4 ft-kips M_u = V_u = 364.8 kips M_u = -2877.0 ft-kips

405.0 kips

max shear max moment

Shear depth Applied factored normal force at the section

V_u= 405.0 kips M_u = 2877.0 ft-kips $d_v =$ 73.19 in $N_u =$ 0 Angle of diagonal compressive stresses 36.00

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{M_1}{1} + 0.5N_1 + 0.5V_1 \cot \theta - A_{j_0}f_{j_0}$ - ≤ 0.002

resultant compressive stress at centroid effective stress in prestressing strand after all losses

at midspan at endspan 1.040 ksi 1.040 ksi

105565			
layer 1	f _{po} =	163.1 ksi	163.1 ksi
layer 2	f _{po} =	163.1 ksi	163.1 ksi
layer 3	f _{po} =	163.1 ksi	163.1 ksi
layer 4	f _{po} =	163.1 ksi	163.1 ksi
layer 5	f _{po} =	163.1 ksi	
layer 6	f _{po} =	163.1 ksi	
layer 7	f _{po} =	163.1 ksi	
layer 8	f _{po} =	163.1 ksi	
layer 9	f _{po} =		163.1 ksi
layer 10	f _{po} =		163.1 ksi
layer 11	f _{po} =		163.1 ksi
layer 12	f _{po} =		163.1 ksi
layer 13	f _{po} =		163.1 ksi
layer 14	f _{po} =		163.1 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\epsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\epsilon_x =$		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

 $\Delta_p =$ 3.97 in 3.97 in -1.49 in $\Delta_g =$ $\Delta_g =$ -1.44 in $\Delta_s =$ -1.95 in

at midspan

at endspan

Deflection due to total self weight

 $\Delta_{sw} =$ 0.59 in

Total Deflection at transfer Total Deflection at erection

2.48 in 2.48 in Δ = 4.49 in 4.49 in

Live load deflection limit = span/800 Deflection due to live load and impact

1.80 in $\Delta_L =$ -0.89 in

Deflection due to fire truck

 $\Delta_L =$ -0.7986 in $\Delta =$ 3.7567 in

Total Deflection after fire with fire truck

ок

ок

Location: <u>Fire at Critical Negative Moment Sections</u> Beam Design: 1/2" Strand

Fire Exposure Status: 4 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	2.83 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-	72 BULE	3-TEE
Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
emperature of Layer	i i		
	layer 1 (bottom)	T =	68.00 °F
	layer 2	<u>T =</u>	68.00 °F
	layer 3	T = T =	68.00 °F
	layer 4 layer 5	<u> = </u>	68.00 °F 68.00 °F
	layer 5	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T=	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	-		
intial = 277 ksi	layer 1 (bottom)	f _{pu} =	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	*		277 ksi
	layer 8	f _{pu} =	
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	$f_{pu} =$	277 ksi
	layer 12	$f_{pu} =$	277 ksi
	layer 13	$f_{pu} =$	277 ksi
	layer 14	$f_{pu} =$	277 ksi
d Strength	_		
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	•		
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
ess Limits: ore transfer ≤ 0.75f _{pu} (in	itial = 207.6)		
ρu(layer 1 (bottom)	f _{pi} =	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3		207.6 ksi
	•	f _{pi} =	
	layer 4	f _{pi} =	207.6 ksi

r 1 (bottom)	$f_{pi} =$	207.6 ksi
layer 2	$f_{pi} =$	207.6 ksi
layer 3	f _{pi} =	207.6 ksi
layer 4	f _{pi} =	207.6 ksi
layer 5	f _{pi} =	207.6 ksi
layer 6	f _{pi} =	207.6 ksi
layer 7	f _{pi} =	207.6 ksi
layer 8	$f_{pi} =$	207.6 ksi
layer 9	$f_{pi} =$	207.6 ksi
layer 10	$f_{pi} =$	207.6 ksi
layer 11	$f_{pi} =$	207.6 ksi
layer 12	f _{pi} =	207.6 ksi
layer 13	$f_{pi} =$	207.6 ksi
layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) ≤ 0.80f_{py} (initial = 199.7)

Ру (,	
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

ayer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	100.00 °F
Layer 2 (Top)	$f_y =$	44.4 ksi	1430.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

E = 29000.0 ksi		
	E =	29000.0 ksi

Area of steel at midspan (effective flange)

Area of steel at endspan (effective flange)

Area of temperature and shrinkage steel (12° width)

As

Layer 2 (Top)

Area of steel at midspan (effective flange)
Area of steel at endspan (effective flange)
Area of temperature and shrinkage steel (12" width)

ge)	A _{sm} =	12.6 in^2
ge)	A _{se} =	12.4 in^2
th)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	539,947 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in				
Distance from centroid to extreme top fiber	$y_t =$	35.4 in				
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$						
cast-in-place concrete deck	$E_{cs} =$	3225 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} 0.6358 Transformed flange width 70.6 in = Transformed flange area 529.3 in^2 Transformed haunch width = 26.7 in Transformed haunch area 13.4 in^2 Deck-distance to top fiber 5.83 in $y_t =$

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	185,416 in^4	539,947 in^4	725,363 in^4
Haunch	13.4 in^2	72.25 in	964.7 in^3	5,396 in^4	0.33 in^4	5,396 in^4
Deck	529.3 in^2	74.17 in	39,260.6 in/3	256,709 in^4	692 in^4	257,400 in^4
Total	1309.7 in^2		68,297.5 in^3			988,159 in^4

Total area of Composite Section	A _c =	1310 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	988,159 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	52.15 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	19.85 in
Distance from centroid to extreme \underline{top} fiber of slab	y _{tc} =	27.85 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,949.1 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	49,776.4 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	55,799.1 in^3

COMPOSITE BEAM AT ENDSPAN

Effective Flange Width 106.6 in Modular Ratio = E_{cs}/E_c 0.6358 n = Transformed flange width 67.8 in Transformed flange area 508.3 in^2 Transformed haunch width 26.7 in Transformed haunch area 13.4 in^2 Deck-distance to top fiber 5.83 in $y_{td} =$

*min of three criteria

	Transformed Area	y _t	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	249,350 in^4	539,947 in^4	789,297 in^4
Haunch	13.4 in^2	72.25 in	964.7 in^3	4,341 in^4	0.28 in^4	4,341 in^4
Deck	508.3 in^2	78.33 in	39,819.0 in/3	165,263 in^4	666 in^4	165,929 in^4
Total	1288.7 in^2		68,856.0 in^3			959,567 in^4

Total area of Composite Section	A _c =	1289 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	959,567 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.43 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.57 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.57 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	17,959.2 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	51,674.2 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	36,115.3 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight	W _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	1
•			1
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
FD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.5727
Longitudinal stiffness parameter	$K_g =$	2,745,627.23 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_8}{12 * L * L_1^3}\right)^{0.1}$$

DFM = 0.919 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_s}{12 * L * L_s^3}}^{0.2}$$

DFM = 0.623 lanes/beam

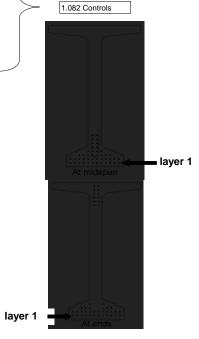
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S'}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	=	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	=	2	68
layer 14	-	-	2	70
Harped Str	and Group (ii	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		·
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		·

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

0.905 Controls

ELASTIC SHORTE	NING			
assumed loss	=	9.00%		
Force per strand at transfer				
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
		at midspan	at endspan	7
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	7
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	7
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	7
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{pES} =$	17.0 ksi		7
layer 7	$\Delta f_{pES} =$	17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9	$\Delta f_{pES} =$		17.0 ksi	
layer 10	$\Delta f_{pES} =$		17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12	$\Delta f_{pES} =$		17.0 ksi	
layer 13	$\Delta f_{pES} =$		17.0 ksi	
layer 14	$\Delta f_{pES} =$		17.0 ksi	
OUDIN	U/ 4 O F			<u> </u>
Shrinkage = (17-0.15*Relative Humidity)	IKAGE	6 E koj	T 4	
Onlinkage – (17-0.15 Nelative Fulfillulty)	$\Delta f_{pSR} =$	6.5 ksi		assume relative humidity = 70%
CREEP OF	CONCRET	E		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying	$\Delta f_{cdp} =$	1.568 ksi		_
prestressing force, calculated at the same section as f _{cgp}				

at midspan 24.3 ksi at endspan 24.3 ksi loss due to creep $\Delta f_{pCR} =$

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 5	$\Delta f_{pR2} =$	2.1 ksi	
layer 6	$\Delta f_{pR2} =$	2.1 ksi	
layer 7	$\Delta f_{pR2} =$	2.1 ksi	
layer 8	$\Delta f_{pR2} =$	2.1 ksi	
layer 9	$\Delta f_{pR2} =$		2.1 ksi
layer 10	$\Delta f_{pR2} =$		2.1 ksi
layer 11	$\Delta f_{pR2} =$		2.1 ksi
layer 12	$\Delta f_{pR2} =$		2.1 ksi
layer 13	$\Delta f_{pR2} =$		2.1 ksi
layer 14	$\Delta f_{pR2} =$		2.1 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	190.6 ksi	190.6 ksi
layer 2	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 3	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 4	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 5	$f_{pt} =$	190.6 ksi	
layer 6	$f_{pt} =$	190.6 ksi	
layer 7	$f_{pt} =$	190.6 ksi	
layer 8	$f_{pt} =$	190.6 ksi	
layer 9	$f_{pt} =$		190.6 ksi
layer 10	$f_{pt} =$		190.6 ksi
layer 11	$f_{pt} =$		190.6 ksi
layer 12	$f_{pt} =$		190.6 ksi
layer 13	$f_{pt} =$		190.6 ksi
layer 14	$f_{pt} =$		190.6 ksi
force per strand = f_{pt} *strand area		at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=	29.2 kips	29.2 kips
layer 5	=	29.2 kips	
layer 6	=	29.2 kips	
layer 7	=	29.2 kips	
layer 8	=	29.2 kips	
layer 9	=		29.2 kips
layer 10	=		29.2 kips
layer 11	=		29.2 kips
layer 12	=		29.2 kips
layer 13	=		29.2 kips
layer 14	=		29.2 kips
Total prestressing force after transfer	P _i =	1284.8 kips	1284.8 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	
layer 9	% =		8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14	% =		8.2%
TOTAL LOSSES AT	SERVI	CE LOADS	
Total Losses		at midspan	at endspan

ок ок ок ок

OK OK OK

OK OK OK OK

ok ok

TOTAL LOSSES AT SERVICE LOADS					
Total Losses			at midspan	at endspan	
	layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi	
	layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi	
	layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi	
	layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi	
	layer 5	$\Delta f_{pT} =$	49.9 ksi		
	layer 6	$\Delta f_{pT} =$	49.9 ksi		
	layer 7	$\Delta f_{pT} =$	49.9 ksi		
	layer 8	$\Delta f_{pT} =$	49.9 ksi		
	layer 9	$\Delta f_{pT} =$		49.9 ksi	
	layer 10	$\Delta f_{pT} =$		49.9 ksi	
	layer 11	$\Delta f_{pT} =$		49.9 ksi	
	layer 12	$\Delta f_{pT} =$		49.9 ksi	
	layer 13	$\Delta f_{pT} =$		49.9 ksi	
	layer 14	$\Delta f_{DT} =$		49.9 ksi	

Stress in tendon after all losses = f _{pi} -Δf _{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =		157.7 ksi
layer 10	f _{pe} =		157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		157.7 ksi
layer 13	f _{pe} =		157.7 ksi
layer 14	f _{pe} =		157.7 ksi
check prestressing stress limit at service limit state: fpe	e ≤ 0.8*fpy	/	
layer 1	=	199.7 ksi	
layer 2	=	199.7 ksi	
layer 3	=	199.7 ksi	
layer 4	=	199.7 ksi	
layer 5	=	199.7 ksi	
layer 6	=	199.7 ksi	
layer 7	=	199.7 ksi	
layer 8	=	199.7 ksi	
layer 9	=	199.7 ksi	
layer 10	=	199.7 ksi	
layer 11	=	199.7 ksi	
layer 12	=	199.7 ksi	
layer 13	=	199.7 ksi	
layer 14	=	199.7 ksi	
orce per strand = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	2
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9		24.1 Kipo	24.1 kips
layer 10			24.1 kips
layer 11	=		24.1 kips
layer 12			24.1 kips
layer 13	=		24.1 kips 24.1 kips
layer 14	=		24.1 kips 24.1 kips
layer 14		at midspan	
Total prestressing force after all losses	P -		at endspan
Final losses, $\% = (\Delta f_{\text{ort}})/(f_{\text{oi}})$	P _{pe} =	1061.8 kips	1061.8 kips
layer 1	0/	24.00/	24.0%
layer 2	% = % =	24.0% 24.0%	24.0%
T	% = % =		
layer 3 layer 4	% = % =	24.0% 24.0%	24.0% 24.0%
layer 5	% = % =	24.0%	24.070
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	24.00/
layer 9	% =		24.0%
layer 10		i e	24.0%
	% =		
layer 11	% =		24.0%
layer 12	% = % =		24.0% 24.0%
layer 12 layer 13	% = % = % =		24.0% 24.0% 24.0%
layer 12	% = % =	24.0%	24.0% 24.0%

ок ок ок

OK OK OK OK OK OK OK OK

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = $0.6f'_{ci}$ f_{ci} 3.300 ksi				
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	2.5 ft		
Bending moment at transfer length	$M_g =$	116.4 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	10.78 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in		
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in		
Eccentricity of the strand group at transfer length:	e _h =	17.09 in		
Eccentricity at end of beam:	e =	16.05 in		
>				

Calcs for eccentricity (see 9.6.7.2)

, _	P_{i}	$P_i \sigma$	M_{s}
J2 —	A	S.	S,

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	0.342 ksi	0.342 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi

οк ок

> οк ок

> ок οк

STRESSES AT HARP POINT

Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips			
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi		
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi		

STRESSES AT MIDSPAN

HOLD DOWN FOR		0.1111.0.	0.100 1.0.
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.211 ksi
Bending moment due to beam weight at 0.5L	$M_g = 1414.3 \text{ ft-kips}$		

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
laver 14	=	221.4 ksi

prestress force per strand before any losses:

bes.		
layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi		
for deck	=	1.274 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for dook	_	1 600 kgi		

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MIDS	PAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_z = \frac{P_{ys}}{A} - \frac{P_{ys}e}{S_z} + \frac{(M_g + M_s)}{S_s} + \frac{(M_g + M_s)}{S_s}$	$\frac{(M_{so} + M_{b})}{c}$		
A S _t S _t	^{A)} Ur		
Due to permanent loads f _{tg} =	2.051 ksi	2.051 ksi	ок
$f_{ty} = \frac{P_{ye}}{A} - \frac{P_{ye}s}{S_{-}} + \frac{(M_x + M_y)}{S_{-}} + \frac{(M_{ye} + M_y)}{S_{-}}$	$\frac{+M_h}{N} + \frac{(M_{LL+1})}{N}$		
* ' '	9		
Due to permanent loads and transient loads $f_{tg} =$	2.560 ksi	2.560 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ic} = \frac{(M_{ws} + M_{i})}{S_{ac}}$	<u>,)</u>		
Due to permanent loads $f_{tc} =$	0.043 ksi	0.043 ksi	ок
$f_{ts} = \frac{(M_{ws} + M_{\delta} + M_{I})}{S_{w}}$	_{(E+1})		
Due to permanent loads and transient loads f _{tc} =	0.498 ksi	0.498 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{13} = \frac{P_{ys}}{A} + \frac{P_{ys}\theta}{S_{\phi}} - \frac{(M_{11} + M_{2})}{S_{\phi}} - \frac{(M_{10} + M_{2})}{S_{\phi}}$	$M_s + 0.8*M_{II+1}$		
$\frac{S_{ij}}{A} - \frac{S_{ij}}{S_{ij}} - \frac{S_{ij}}{S_{ij}} = \frac{S_{ij}}{S_{ij}}$	S'ac		
Load Combination Service III f _b =	-0.453 ksi	-0.453 ksi	ок

Strength Limit State POSITIVE MOMENT SI	ECTION		_
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips	
effective length factor for compression members			_
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	
	c =	8.0 ft-kips	
average stress in prestressing steel			
layer 1	f _{ps} =	268.6 ksi	
layer 2	f _{ps} =	268.6 ksi	
layer 3	f _{ps} =	268.6 ksi	
layer 4	f _{ps} =	268.6 ksi	
layer 5	f _{ps} =	268.6 ksi	
layer 6	f _{ps} =	268.6 ksi	
layer 7	f _{ps} =	268.6 ksi	
layer 8 layer 9	f _{ps} =	268.6 ksi	
layer 9	f _{ps} = f _{ps} =	268.6 ksi 268.6 ksi	
layer 11	f _{ps} =	268.6 ksi	
layer 12	f _{ps} =	268.6 ksi	+
layer 13	f _{ps} =	268.6 ksi	1
layer 14	f _{ps} =	268.6 ksi	
nominal flexure resistance	·ps —	200.0 101	
	a =	6.79 in	
$M_r = \Phi M_p, \ \Phi = 1.00$	ΦM _n =	10664.7 ft-kips	ок
· · · ·			ок
M=DC+W+LL+IM NEGATIVE MOMENT S	M =	5833.6 ft-kips	UK
M _{II} = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips	
Wig = 1.2000+1.30************************************	a =	4.70 in	-
	а = ФМ _п =	3876.2 ft-kips	NOT O
M=DC+W+LL+IM	ΨW _n =	-2869.7 ft-kips	OK

Shear Design

CRITICAL SECTION A			_
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2684.4 ft-kips	
or			_
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips	
max shear	V _u =	405.0 kips	
max moment	M _u =	2877.0 ft-kips	
Shear depth	d _v =	73.19 in	
Applied factored normal force at the section	N _u =	0	
Angle of diagonal compressive stresses	θ =	36.00 °	
STRAIN IN FLEXURAL T	ENSION	REINFORCMENT	
$\frac{M_a}{1} + 0.5 N_a + 0.5 $	7 cot 8 - 2	4/20	
$\epsilon_{\mathbf{z}} = \frac{\frac{M_{\mathbf{A}} + 0.5N_{\mathbf{z}} + 0.5N_{\mathbf{z}}}{d_{\mathbf{y}}} + 0.5N_{\mathbf{z}} + 0.5N_{\mathbf{z}}}{E_{\mathbf{z}}A_{\mathbf{y}} + 1}$	T_A	≤0.0C2	
-5-3	7-P	at midspan	at endspan
esultant compressive stress at centroid	f _{pc} =	1.048 ksi	1.048 ksi
ffective stress in prestressing strand after all losses		1	
layer 1	f _{po} =	163.1 ksi	163.1 ksi
layer 2	f _{po} =	163.1 ksi	163.1 ksi
layer 3	f _{po} =	163.1 ksi	163.1 ksi
layer 4	f _{po} =	163.1 ksi	163.1 ksi
layer 5	f _{po} =	163.1 ksi	
layer 6	f _{po} =	163.1 ksi	
layer 7	f _{po} =	163.1 ksi	1
layer 8	f _{po} =	163.1 ksi	
layer 9	f _{po} =		163.1 ksi
layer 10	f _{po} =		163.1 ksi
layer 11	f _{po} =		163.1 ksi
layer 12	f _{po} =		163.1 ksi
layer 13	f _{po} =		163.1 ksi
layer 14	t _{po} =		163.1 ksi
train in flexural tension		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6 layer 7	ε _x =	0.002000 0.002000	
layer 8	$\varepsilon_x = $ $\varepsilon_x = $	0.002000	
layer 9	$\varepsilon_{x} =$	0.002000	0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_{x} =$		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000
flection and Camber		1	
		at midspan	at endspan
Deflection due to Prestressing Force at Transfer	$\Delta_p =$	3.97 in	3.97 in
eflection due to Beam Self-Weight at Transfer	$\Delta_g =$	-1.49 in	
eflection due to Beam Self-Weight at Erection	$\Delta_g =$	-1.44 in	
Deflection due to Haunch and Deck	$\Delta_s =$	-1.95 in	
deflection due to total self weight	$\Delta_{sw} =$	0.59 in	
otal Dallastian at transfer	•	0.40	0.40:
Fotal Deflection at transfer	Δ =	2.48 in	2.48 in
otal Deflection at erection	Δ =	4.49 in	4.49 in
ive load deflection limit = span/800	=	1.80 in	
Deflection due to live load and impact	Δ _L =	-0.90 in	
Deflection due to fire truck	Δ _L =	-0.8130 in	4
otal Deflection after fire with fire truck	Δ =	3.7423 in	

CRITICAL SECTION AT 0.59

Location: Fire at Critical Negative Moment Sections Beam Design: 3/8" Strand

Fire Exposure Status: Undamaged

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in		
Compressive Strength	f'c =	4.00 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-	72 BULE	3-TEE
Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	$w_c =$	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

P	RESTRESSING ST	RANDS	
Dia	ameter of single strand	d =	0.4 in
Tomporature of Layer	Area of single strand	A =	0.085 in^2
Temperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5 layer 6	T = T =	68.00 °F 68.00 °F
	layer 7	T=	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10 layer 11	T = T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength	I 4 (b -++)	4	0041:
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi 284 ksi
	layer 5 layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength			
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10 layer 11	f _{py} =	257 ksi 257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	iayo. 1 i	-ру	201 1101
pefore transfer ≤ 0.75f _{pu} (initi	al = 213.2)		
•	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14	f _{pi} =	213.2 ksi

at service limit state (after all losses) ≤ 0.80f_{py} (initial = 205.4)

layer

1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

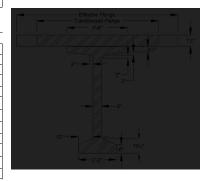
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	60.0 ksi	68.00 °F

Modulus of Elasticity

Layer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)


Area of steel at midspan (effective flange) $\begin{array}{ccc} A_{sm} = & 2.79 \text{ in} \wedge 2 \\ A_{se} = & 2.48 \text{ in} \wedge 2 \\ A_{rea} = & 2.$

Layer 2 (Top)

Area of steel at midspan (effective flange) $\frac{A_{sm}{=}}{A_{se}{=}} \qquad \frac{12.6 \text{ in}^2 2}{A_{se}{=}}$ Area of steel at endspan (effective flange) $\frac{A_{se}{=}}{A_{se}{=}} \qquad \frac{12.4 \text{ in}^2 2}{A_{se}{=}}$ Area of temperature and shrinkage steel (12" width) $\frac{A_{s}{=}}{A_{s}{=}} \qquad 0.2 \text{ in}^2$

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7559
Transformed flange width	=	83.9 in
Transformed flange area	=	629.3 in^2
Transformed haunch width	Ш	31.7 in
Transformed haunch area	=	15.9 in^2
Deck-distance to top fiber	$y_t =$	3.75 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77,204.1 in^3			1,091,316 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,316 in^4
Distance from centroid to extreme $\underline{\text{bottom}}$ fiber of beam	y _{bc} =	54.67 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	56,994.5 in^3

COMPOSITE BEAM AT ENDSPAN

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							
Effective Flange Width	$b_f =$	106.6 in						
Modular Ratio = E_{cs}/E_{c}	n =	0.7559						
Transformed flange width	II	80.6 in						
Transformed flange area	=	604.4 in^2						
Transformed haunch width	Ш	31.7 in						
Transformed haunch area	=	15.9 in^2						
Deck-distance to top fiber	y _{td} =	3.75 in						

*min of three criteria

	Transformed Area	Уt	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	273,455 in^4	539,947 in^4	813,402 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	5,660 in^4	0.33 in^4	5,660 in^4
Deck	604.4 in^2	76.25 in	46,082.8 in^3	215,472 in^4	2,833 in^4	218,305 in^4
Total	1387 2 in^2		75 302 0 in/3		•	1 037 366 in^4

Total area of Composite Section	A _c =	1387 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,037,366 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.28 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.72 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.72 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,110.7 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	58,548.3 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	40,336.0 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight		0.799 k/f
8 in. deck weight		1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	ОК	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
PFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	ОК
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	$K_g =$	2,309,429.79 in^4

at center span:

$$DFM = 0.75 \cdot \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{I}\right)^{0.2} * \left(\frac{K_F}{12 * I \cdot I * I_F}\right)^{0.1}$$

$$DFM = \begin{vmatrix} 0.905 \text{ lanes/beam} \end{vmatrix}$$

0.905 Controls

one design lane loaded:

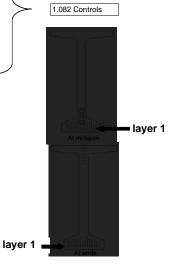
$$DFM = 0.75 + \left(\frac{S}{.4}\right)^{04} + \left(\frac{S}{L}\right)^{03} + \left(\frac{K_g}{.2 + L + t_s^3}\right)^{0.1}$$

DFM = 0.614 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFY = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Strand Group (included in above totals)				
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTENING					
assumed loss	=	6.00%			
Force per strand at transfer					
layer 1	=	17.0 kips			
layer 2	=	17.0 kips			
layer 3	=	17.0 kips			
layer 4	=	17.0 kips			
layer 5	=	17.0 kips			
layer 6	=	17.0 kips			
layer 7	=	17.0 kips			
layer 8	=	17.0 kips			
layer 9	=	17.0 kips			
layer 10	=	17.0 kips			
layer 11	=	17.0 kips			
layer 12	=	17.0 kips			
layer 13	=	17.0 kips			
layer 14	=	17.0 kips			

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14			13.3 ksi

SHRINKAGE

Shrinkage = (17-0.15*Relative Humidity)

 $\Delta f_{pSR} =$ 6.5 ksi

assume relative humidity = 70%

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as $f_{\rm cgp}$	$\Delta f_{cdp} =$	1.587 ksi		
		at midspan	at endspan	
loss due to creep	$\Delta f_{nCR} =$	17.8 ksi	16.6 ksi	

RELAXATION OF PRES loss due to relaxation after transfer		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3		2.9 ksi	2.9 ksi
layer 4		2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6		2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8		2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$		2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi
TOTAL LOSSES	AT TRA	NSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$	1		1
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	100.01
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =	at midanan	199.9 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4 layer 5	=	16.9 kips 16.9 kips	17.0 kips 17.0 kips
	=	· · · · · · · · · · · · · · · · · · ·	17.0 KIPS
layer 6	=	16.9 kips	
layer 7 layer 8	=	16.9 kips 16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=	10.5 KIPS	17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13			17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
nitial loss = $(\Delta f_{\text{pi}})/(f_{\text{pi}})$.,-	at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	0.270
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =	2.070	6.2%
			6.2%
*	% =		
layer 11	% = % =		
*	% = % = % =		6.2%

ок ок ок

OK OK OK OK OK OK

ок

ок ок

TOTAL LOS Fotal Losses			at midspan	at endspan
	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
tress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.7 ksi
	layer 2	f _{pe} =	172.0 ksi	172.7 ksi
	layer 3	f _{pe} =	172.0 ksi	172.7 ksi
	layer 4	f _{pe} =	172.0 ksi	172.7 ksi
	layer 5	f _{pe} =	172.0 ksi	172.7 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.71
	layer 9	t _{pe} =	172.0 ksi	172.7 ksi
	layer 10	f _{pe} =		172.7 ksi
	layer 11 layer 12	f _{pe} =		172.7 ksi 172.7 ksi
	layer 13	f _{pe} =		172.7 ksi
	layer 14	f _{pe} =		172.7 ksi
neck prestressing stress limit at service li			R*fnv	172.7 KSI
leck presuessing stress little at service in	layer 1	= 0.0	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
orce per strand = f _{pe} *strand area	_		at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	
	layer 9	=	14.6 kips	14.7 kips
	layer 10	=		14.7 kips
	layer 10 layer 11	=		14.7 kips
	layer 10 layer 11 layer 12	=		14.7 kips 14.7 kips
	layer 10 layer 11	=		14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.9 kips	939.2 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*\f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	$M_g =$	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	II	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	II	15.30 in		
Eccentricity of the strand group at transfer length:	$e_h =$	21.36 in		
Eccentricity at end of beam:	e =	21.30 in		

 $f_{i} = \frac{P_{i}}{A} - \frac{P_{i}e}{S_{i}} + \frac{M_{s}}{S_{r}} \qquad f_{b} = \frac{P_{i}}{A} + \frac{P_{i}e}{S_{b}} - \frac{M_{s}}{S_{b}}$ $\text{Top stress at top fiber of beam} \qquad \begin{array}{c|c} & \text{at midspan} & \text{at endspan} \\ f_{t} = & -0.017 \text{ ksi} & -0.017 \text{ ksi} \end{array}$

Calcs for eccentricity (see 9.6.7.2)

ok ok

ок

Bottom stress at bottom fiber of the beam	$f_b =$	2.906 ksi	2.906 ksi		
STRESSES AT HARP POINT					
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips			
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi		

Bottom stress at bottom fiber of the beam f_b = 2.736 ksi 2.621 ksi ок STRESSES AT MIDSPAN 1414.3 ft-kips Bending moment due to beam weight at 0.5L $M_g =$ Top stress at top fiber of beam $f_t =$ 0.320 ksi 0.345 ksi ок Bottom stress at bottom fiber of the beam $f_b =$ 2.554 ksi 2.438 ksi ок

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

227.4 ksi layer 1 layer 2 227.4 ksi layer 3 = 227.4 ksi layer 4 227.4 ksi 227.4 ksi layer 5 layer 6 227.4 ksi = 227.4 ksi layer 7 = layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi layer 11 227.4 ksi 227.4 ksi layer 12 layer 13 227.4 ksi layer 14 227.4 ksi

prestress force per strand before any losses:

layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	II	2.5 kips/strand
layer 7	II	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	II	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam = 4.200 ksi				
for deck	=	2 400 ksi		

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

STRESSES A	T MIDS	<u>PAN</u>	
ompression stresses at top fiber of beam		at midspan	at endspan
$f_i = \frac{P_{ge}}{A} - \frac{P_{ge}\theta}{S_i} + \frac{(M_g + i)}{S_i}$	<i>M₃</i> ; + ($\frac{M_w + M_s)}{S_w}$	
Due to permanent loads	f _{tg} =	2.105 ksi	2.102 ksi
$P_{\mu} = P_{\mu} \sigma - (M_{\pi} + M_{s})$	(M _m -	(M_b) (M_{H+1})	
$f_{ty} = \frac{P_{yt}}{A} - \frac{P_{yt}o}{S_1} + \frac{(M_x + M_s)}{S_y} +$	7,	,	
Due to permanent loads and transient loads	f _{tg} =	2.508 ksi	2.505 ksi
ompression stresses at top fiber of deck		at midspan	at endspan
$f_{ee} = \frac{(M_{no})}{c}$	S_{tc}	<u> </u>	
Due to permanent loads	f _{tc} =	0.042 ksi	0.042 ksi
$f_{tr} = \frac{(M_{ws} + M)}{S}$, + M _E	_{E+1})	
Due to permanent loads and transient loads	f _{tc} =	0.488 ksi	0.488 ksi
ension stresses at top fiber of deck		at midspan	at endspan
$f_{1j} = \frac{P_{jd}}{A} + \frac{P_{jd}s}{S_b} - \frac{(M_R + M_S)}{S_b} -$	(M ₂₁ +	$M_t + 0.8*M_{E,t1})$	
$A = S_{\bullet} \qquad S_{\bullet}$		\mathcal{L}_{kr}	
Load Combination Service III	f _b =	-0.792 ksi	-0.781 ksi

Strength L	imit	State
------------	------	-------

$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	8381.5 ft-kips
effective length factor for compression members	ŭ	
layer 1	k =	0.27
layer 2	k =	0.27
layer 3	k =	0.27
layer 4	k =	0.27
layer 5	k =	0.27
layer 6	k =	0.27
layer 7	k =	0.27
layer 8	k =	0.27
layer 9	k =	0.27
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	C =	4.6 ft-kips
average stress in prestressing steel		
layer 1	f _{ps} =	279.4 ksi
layer 2	f _{ps} =	279.4 ksi
layer 3	f _{ps} =	279.4 ksi
layer 4	f _{ps} =	279.4 ksi
layer 5	f _{ps} =	279.4 ksi
layer 6	f _{ps} =	279.4 ksi
layer 7 layer 8	f _{ps} =	279.4 ksi
layer 9	f _{ps} =	279.4 ksi 279.4 ksi
layer 10	$f_{ps} = f_{ps} =$	279.4 ksi
layer 11	f _{ps} =	279.4 ksi
layer 12	f _{ps} =	279.4 ksi
layer 13	f _{ps} =	279.4 ksi
layer 14	f _{ps} =	279.4 ksi
nominal flexure resistance	·ps	270.4 (6)
	a =	3.92 in
$M_r = \Phi M_p$, $\Phi = 1.00$	ΦM _n =	9196.5 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips
NEGATIVE MOMENT S		3000.0 It-Rips
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips
	a =	5.97 in
	ΦM _n =	4905.9 ft-kips
M=DC+W+LL+IM	M =	-2869.7 ft-kips

Shear Design

CRITICAL SECTION AT 0.59				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00 °		

STRAIN IN FLEXURAL TENSION REINFORCMENT

$\epsilon_z = \frac{\frac{M_A}{a_v} + 0.5 N_e + 0.5 V_u \cos \theta}{E_s A_s + E_y A_y}$	l _{pe} f _{pe} ≤ 0.002	

resultant compressive stress at centroid effective stress in prestressing strand after all losses

at midspan at endspan 0.909 ksi 0.911 ksi f_{pc} =

layer 1	f _{po} =	176.7 ksi	177.3 ksi
layer 2	f _{po} =	176.7 ksi	177.3 ksi
layer 3	f _{po} =	176.7 ksi	177.3 ksi
layer 4	$f_{po} =$	176.7 ksi	177.3 ksi
layer 5	$f_{po} =$	176.7 ksi	
layer 6	f _{po} =	176.7 ksi	
layer 7	$f_{po} =$	176.7 ksi	
layer 8	$f_{po} =$	176.7 ksi	
layer 9	f _{po} =		177.3 ksi
layer 10	$f_{po} =$		177.3 ksi
layer 11	$f_{po} =$		177.3 ksi
layer 12	f _{po} =		177.3 ksi
layer 13	f _{po} =		177.3 ksi
layer 14	$f_{po} =$		177.3 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	ε _x =	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	ε _x =		0.002000
layer 11	ε _x =		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	ε _x =		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

at midspan at endspan $\Delta_p =$ 3.27 in 3.29 in $\Delta_g =$ -1.49 in Δ_g = -1.44 in -1.95 in $\Delta_s =$

Deflection due to total self weight

 $\Delta_{\rm sw} =$ -0.11 in

Total Deflection at transfer Total Deflection at erection

1.79 in 1.81 in Δ= Δ= 3.24 in 3.27 in

Live load deflection limit = span/800 Deflection due to live load and impact

= 1.80 in $\Delta_L =$ -0.83 in

Deflection due to fire truck Total Deflection after fire with fire truck $\Delta_L =$ -0.7520 in Δ= 2.4129 in

ок

ок

Location: <u>Fire at Critical Negative Moment Sections</u> Beam Design: 3/8" Strand

Fire Exposure Status: 1/2 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB					
Actual Thickness	t _{as} =	8.0 in			
Wearing Surface	II	0.5 in			
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in			
Compressive Strength	f'c =	3.74 ksi			
Unit Weight	w _c =	150.0 pcf			
Stress factor of compression block	β ₁ =	0.85			

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	7 ksi			
Unit Weight	W _c =	150.0 pcf			
Overall Beam Length:					
@ end spans	L =	110 ft			
@ center span	L =	119 ft			
Design Spans:					
Non-composite beam @ end spans	L =	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L =	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

	ESTRESSING ST		
	neter of single strand	d =	0.4 in
Temperature of Layer	Area of single strand	A =	0.085 in^2
remperature or Layer	layer 1 (bottom)	T =	68.00 °F
	layer 1 (bottom)	T=	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T = T =	68.00 °F 68.00 °F
	layer 8 layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
Iltimata Otana ath	layer 14	T =	68.00 °F
Iltimate Strength	la 4 (b.attaan)		0041:
intial = 284 ksi	layer 1 (bottom)		284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
ield Strength		,	
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
tress Limits:	ial 212.2\		
efore transfer ≤ 0.75f _{pu} (init			040.0 les:
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14	f _{pi} =	213.2 ksi

•

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

2000) = 0.001py (initial = 200.4)					
layer 1 (bottom)	f _{pe} =	205.4 ksi			
layer 2	f _{pe} =	205.4 ksi			
layer 3	f _{pe} =	205.4 ksi			
layer 4	f _{pe} =	205.4 ksi			
layer 5	f _{pe} =	205.4 ksi			
layer 6	f _{pe} =	205.4 ksi			
layer 7	f _{pe} =	205.4 ksi			
layer 8	f _{pe} =	205.4 ksi			
layer 9	f _{pe} =	205.4 ksi			
layer 10	f _{pe} =	205.4 ksi			
layer 11	f _{pe} =	205.4 ksi			
layer 12	f _{pe} =	205.4 ksi			
layer 13	f _{pe} =	205.4 ksi			
layer 14	f _{pe} =	205.4 ksi			

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength			
Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	58.2 ksi	550.00 °F
Modulus of Elasticity			
Layer 1 (Bottom)	E =	29000.0 ksi	
Layer 2 (Top)	E =	29000.0 ksi	
Layer 1 (Bottom)			•
Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2	
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2	
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2	
Layer 2 (Top)			<u>-</u> '
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2	
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2	
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2	

Cross-sectional Properties

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	y _t =	35.4 in			
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3708 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM AT MIDSPAN 111.0 in

0.7309 81.1 in 608.5 in^2 Transformed flange area Transformed haunch width 30.7 in Transformed haunch area 15.3 in^2 Deck-distance to top fiber y_t = 4.56 in

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	ı	I +A(y _{bc} -y _b)2
Beam	767.0 in/2	36.60 in	28,072.2 in/3	231,850 in/4	539,947 in^4	771,797 in^4
Haunch	15.3 in/2	72.25 in	1,109.0 in/3	5,120 in/4	0.32 in/4	5,121 in^4
Deck	608.5 in/2	75.44 in	45,906.3 in/3	280,077 in/4	2,268 in^4	282,345 in/4
Total	1390.9 in/2		75,087.6 in/3			1,059,263 in/4

·		
Total area of Composite Section	A _c =	1391 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,059,263 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.99 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.01 in
Distance from centroid to extreme top fiber of slab	$y_{tc} =$	26.01 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,621.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	58,803.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	55,707.6 in^3

COMPOSITE BEAM AT ENDSPAN

Effective Flange Width	$b_f =$	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7309
Transformed flange width		77.9 in
Transformed flange area	=	584.4 in^2
Transformed haunch width	=	30.7 in
Transformed haunch area	=	15.3 in^2
Deck-distance to top fiber	V _{td} =	4.56 in

*min	of three	criteria
------	----------	----------

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in/2	36.60 in	28,072.2 in/3	273,989 in/4	539,947 in^4	813,936 in/4
Haunch	15.3 in/2	72.25 in	1,109.0 in/3	5,483 in/4	0.32 in/4	5,484 in^4
Deck	584.4 in^2	77.06 in	45,033.3 in/3	208,758 in/4	2,182 in^4	210,940 in/4
Total	1366.7 in/2		74,214.6 in/3			1,030,360 in/4

· · · · · · · · · · · · · · · · · · ·		
Total area of Composite Section	A _c =	1367 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,030,360 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.30 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.70 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.70 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,975.2 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	58,213.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	40.092.3 in^3

Shear Forces and Bending Moments

	•	
Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight		
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant Number of beams is not less than four $N_b = Roadway part of the overhang, d_e \le 3.0 ft, d_e =$ OK OK OK Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs ОК

Barrier and wearing surface loads are
equally distributed among the 4 beams

Barrier Wt		0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS				
Fire truck live load front load (Point A)	P _{live} =	48.0 kips	7	
Fire truck live load back load (Point B)	P _{live} =	22.0 kips	1	
distance between two loads		19.2 ft	1	
distance from nearest edge to point A	X _a =	59.0 ft	1	
distance from nearest edge to point B	x _b =	39.8 ft	1	
RFD Specifications: Art. 4.6.2.2.1		•		
Width of Deck Constant		OK		Barrier and wea
Number of beams is not less than four N_b =	4	OK		equally distribute
Beams are parallel and approximately of the same stiffness		OK		oquany diombut
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK		
Curvature in plans is less than 4°=	0	OK		

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3681
Longitudinal stiffness parameter	K _g =	2,388,355.61 in^4

at center span: $EFM = 0.75 + \left(\frac{N}{9.5}\right)^{1.9} \stackrel{\text{d. }}{=} \left(\frac{N}{r_s}\right)^{3.3} \stackrel{\text{d. }}{=} \left(\frac{K_{\pi}}{12^{-5}...k_s^{2}}\right)^{0.3}$ | DFM = | 0.907 | lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{g}{14}\right)^{14} = \left(\frac{g}{2r}\right)^{14} + \left(\frac{K_s}{12^{\frac{14}{3}}L^{\frac{14}{3}}}\right)^{14}$$

$$|DFM = | 0.615 | anes/beam$$

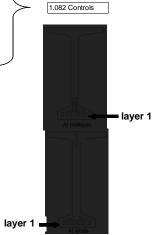
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 - {\binom{S}{12}} - {\binom{S}{35}}^t$$

$$DFV = \begin{bmatrix} 1.082 \text{ lanes/beam} \end{bmatrix}$$

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan			At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	
layer 8	2	14		-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Strai	Harped Strand Group (included in above totals)			
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		·
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

arrier and wearing surface loads are qually distributed among the 4 beams

0.905 Controls

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTENING				
	assumed loss	=	6.00%	
Force per strand at transfer				
	layer 1	=	17.0 kips	
	layer 2	=	17.0 kips	
	layer 3	=	17.0 kips	
	layer 4	=	17.0 kips	
	layer 5	=	17.0 kips	
	layer 6	=	17.0 kips	
	layer 7	=	17.0 kips	
	layer 8	=	17.0 kips	
	layer 9	=	17.0 kips	
	layer 10	=	17.0 kips	
	layer 11	=	17.0 kips	
	layer 12	=	17.0 kips	
	layer 13	=	17.0 kips	
	layer 14	=	17.0 kips	

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

SH	IRIN	JK 4	IGE

 $\Delta f_{pSR} =$

Shrinkage = (17-0.15*Relative Humidity)

6.5 ksi

assume relative humidity = 70%

CREEP OF	CREEP OF CONCRETE			
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.587 ksi		
		at midspan	at endspan	
loss due to creep	$\Delta f_{pCR} =$	17.8 ksi	16.6 ksi	

lana dira ta palarratian aftan tuanafan		NG STRANDS	at andana.
loss due to relaxation after transfer		at midspan	at endspar
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$	2.0 1.0.	2.9 ksi
layer 11			_
	Δf _{pR2} =		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi
TOTAL LOSSES	AT TRA	NSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspa
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8		199.3 ksi	-
	f _{pt} =		400.0 [:
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	$f_{pt} =$		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
orce per strand = f _{pt} *strand area		at midspan	at endspa
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	
			17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kip
	11=		
nitial loss = $(\Delta f_{pi})/(f_{pi})$	0/	at midspan	at endspa
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	-
layer 7	% =	6.5%	
layer 8	% =	6.5%	1
layer 9	% =	6.5%	6.2%
layer 10	% =	0.070	6.2%
	% =		
layer 11			6.2%
layer 12	% =		6.2%
			6.2%
layer 13 layer 14	% = % =		6.2%

OK OK OK OK OK OK OK OK OK

TOTAL LOSSES AT SERVICE LOADS				
Total Losses		at midspan	at endspan	
layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi	
layer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi	
layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi	
layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi	
layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi	
layer 6	$\Delta f_{pT} =$	41.1 ksi		
layer 7	$\Delta f_{pT} =$	41.1 ksi		
layer 8	$\Delta f_{pT} =$	41.1 ksi	40.51	
layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi	
layer 10	$\Delta f_{pT} =$		40.5 ksi	
layer 11 layer 12	$\Delta f_{pT} =$		40.5 ksi 40.5 ksi	
layer 13	$\Delta f_{pT} =$ $\Delta f_{-} =$		40.5 ksi	
layer 14	$\Delta f_{pT} =$		40.5 ksi	
Stress in tendon after all losses = f_{pi} - Δf_{pt}	$\Delta f_{pT} =$	at midspan	at endspan	
layer 1	f	172.0 ksi	172.7 ksi	
layer 2	f _{pe} =	172.0 ksi	172.7 ksi	
layer 3	f _{pe} =	172.0 ksi	172.7 ksi	
layer 4	f _{pe} =	172.0 ksi	172.7 ksi	
layer 5	f _{pe} =	172.0 ksi	172.7 ksi	
layer 6	f _{pe} =	172.0 ksi		
layer 7	f _{pe} =	172.0 ksi		
layer 8	f _{pe} =	172.0 ksi		
layer 9	f _{pe} =	172.0 ksi	172.7 ksi	
layer 10	f _{pe} =		172.7 ksi	
layer 11	f _{pe} =		172.7 ksi	
layer 12	f _{pe} =		172.7 ksi	
layer 13	f _{pe} =		172.7 ksi	
layer 14	fpe =		172.7 ksi	
check prestressing stress limit at service limit sta	te: fpe≤	0.8*fpy		
layer 1	=	205.4 ksi		
layer 2	=	205.4 ksi		
layer 3	=	205.4 ksi		
layer 4	=	205.4 ksi		
layer 5	=	205.4 ksi		
layer 6	=	205.4 ksi		
layer 7	=	205.4 ksi	_	
layer 8	=	205.4 ksi	_	
layer 9	=	205.4 ksi	_	
layer 10	=	205.4 ksi	_	
layer 11	=	205.4 ksi	- 	
layer 12	=	205.4 ksi	+	
layer 13 layer 14	-	205.4 ksi 205.4 ksi	-	
force per strand = f _{pe} *strand area	=	at midspan	at endspan	
layer 1	=	14.6 kips	14.7 kips	
layer 2	=	14.6 kips	14.7 kips	
layer 3	=	14.6 kips	14.7 kips	
layer 4	=	14.6 kips	14.7 kips	
layer 5	=	14.6 kips	14.7 kips	
layer 6	=	14.6 kips	apo	
layer 7	=	14.6 kips		
layer 8	=	14.6 kips		
layer 9	=	14.6 kips	14.7 kips	
layer 10	=		14.7 kips	
layer 11	=		14.7 kips	
layer 12	=		14.7 kips	
layer 13	=		14.7 kips	
layer 14	=		14.7 kips	

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.9 kips	939.3 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$,		
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi			
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION			
Transfer Length = 60*(strand diameter)	=	1.9 ft	
Bending moment at transfer length	$M_g =$	87.7 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	9.84 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in	
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in	
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in	
Eccentricity of the strand group at transfer length:	e _h =	21.36 in	
Eccentricity at end of beam:	e =	21.30 in	

Calcs for eccentricity (see 9.6.7.2)

ok ok

OK OK

OK OK

$f_t = \frac{P_t}{4} - \frac{P_t \theta}{\alpha} + \frac{M_{\theta}}{\alpha}$	fa =	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_h}-\frac{M_s}{S_h}$	·
$f_t = \frac{1}{A} - \frac{1}{S_t} + \frac{1}{S_t}$	J 9 -	A S_b S_b	
		at midspan	at endspan
Top stress at top fiber of beam	f _t =	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.906 ksi	2.906 ksi
STRESSES AT	HARP	POINT	•
Bending moment due to beam weight at 0.3L	M _g =	1188.0 ft-kips	
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi
STRESSES A	AT MIDS	SPAN	-
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	0.320 ksi	0.345 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi
HOLD-DOWN FOR	CES	1	

assume stress in strand before losses = 0.8f_u

: 0.8f _u		
layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	=	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	=	227.4 ksi
layer 8	=	227.4 ksi
layer 9	Ш	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

00000.		
layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
arp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	30.45 kips
layer 12 layer 13 layer 14	= =	2.5 kips/strand 2.5 kips/strand 2.5 kips/strand

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi	
for deck	=	1.683 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	4.200 ksi	
for deck	=	2.244 ksi	

Tension:

Load Combination Service III for the precast beam = -0.016 ksi

ок

ок

ок

ок

ок

STRESSES A	T MIDS	<u>SPAN</u>	
Compression stresses at top fiber of beam		at midspan	at endspan
$f_{i} = \frac{P_{\mu\nu}}{\mathcal{L}} - \frac{P_{\mu\nu}\sigma}{\mathcal{S}_{i}} + \frac{(M_{ij} + \epsilon)^{2}}{\mathcal{S}_{i}}$	<u>M,)</u> +($\frac{M_{no} - M_{+})}{S_{ng}}$	
Due to permanent loads	f _{tg} =	2.107 ksi	2.105 ksi
$f_{\rm eg} = \frac{P_{\rm go}}{A} - \frac{P_{\rm go} \sigma}{S_{\rm r}} + \frac{(M_{\rm g} + M_{\rm v})}{S_{\rm g}} +$	$\frac{(M_{\infty}+S_{\eta})}{S_{\eta}}$	$\frac{-M_{\nu})}{\pi} + \frac{(M_{ZZ,1})}{S_{\pi}}$	
Due to permanent loads and transient loads	f _{tg} =	2.539 ksi	2.536 ksi
Compression stresses at top fiber of deck		at midspan	at endspan
$f_{ss} = \frac{(M_{ss})^2}{2}$		0.043 ksi	0.043 ksi
$f_{w} = \frac{(M_{w} + \delta)}{2}$	10		1
Due to permanent loads and transient loads	f _{tc} =	0.499 ksi	0.499 ksi
Tension stresses at top fiber of deck		at midspan	at endspan
$f_{\rm fig} = \frac{P_{\rm pot}}{A} + \frac{P_{\rm pot}\theta}{S_{\rm g}} - \frac{(M_{\rm g} + M_{\rm g})}{S_{\rm g}} -$	(W ₁₀₅ +	M ₂ +0.5* M₁₂₊₁) S ₂ ,	
Load Combination Service III			-0.801 ksi

Strenath	I imit	Ctate
Strenatn	LIMIT	State

POSITIVE MOMENT S	ECTION	N	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	4.9 ft-kips	
average stress in prestressing steel			_
layer 1	f _{ps} =	279.1 ksi	
layer 2	f _{ps} =	279.1 ksi	
layer 3	f _{ps} =	279.1 ksi	
layer 4	f _{ps} =	279.1 ksi	
layer 5	f _{ps} =	279.1 ksi	
layer 6	f _{ps} =	279.1 ksi	
layer 7	f _{ps} =	279.1 ksi	
layer 8	f _{ps} =	279.1 ksi	
layer 9	f _{ps} =	279.1 ksi	
layer 10	f _{ps} =	279.1 ksi	
layer 11	f _{ps} =	279.1 ksi	1
layer 12	f _{ps} =	279.1 ksi	1
layer 13	f _{ps} =	279.1 ksi	
layer 14	f _{ps} =	279.1 ksi	1
nominal flexure resistance			Т
	a =	4.18 in	1
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	9168.8 ft-kips	OK
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S	SECTIO		_
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-4837.2 ft-kips	
	a =	5.82 in	
	$\Phi M_n =$	4788.0 ft-kips	NOT OK
M=DC+W+LL+IM	M =	-2869.7 ft-kips	OK

Shear Design

icai Besign		
CRITICAL SECTION	AT 0.59	
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2877.0 ft-kips
max shear	V _u =	405.0 kips
max moment	M _u =	2877.0 ft-kips
Shear depth	d _v =	73.19 in
Applied factored normal force at the section	N _u =	0
Angle of diagonal compressive stresses	θ =	36.00 °
0=0.411.111.51.51.51.51.51		DEILIEGEGIE

STRAIN IN FLEXURAL TENSION REINFORCMENT

0		
$\mathbf{e}_{\tau} = \frac{\frac{\mathcal{U}_{s}}{d_{s}} - 0.5\mathcal{U}_{s} + 0.5\mathcal{Y}_{s} \cot \theta - \frac{1}{2}}{E_{s}A_{s} + E_{s}A_{p}}$	A _{pe} f _{pe} ——≤0.002	
	at midspan	at endspan

resultant compressive stress at centroid effective stress in prestressing strand after

	$f_{pc} =$	0.921 ksi	0.923 ksi
er all los	ses		
layer 1	f _{po} =	176.7 ksi	177.4 ksi
layer 2	f _{po} =	176.7 ksi	177.4 ksi

Si Si Si
si
i
si
si
si
si
an
0
0
0
0
0
0
-
0
0

strain in flexural tension

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	
		-

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	1.81 in
Δ =	3.24 in	3.27 in

Live load deflection limit = span/800 Deflection due to live load and impact

=	1.80 in
$\Delta_L =$	-0.84 in

Deflection due to fire truck

$\Delta_L =$	-0.7571 in
Δ =	2.4078 in

ΟK

Total Deflection after fire with fire truck

ок

Location: Fire at Critical Negative Moment Sections

Beam Design: 3/8" Strand Fire Exposure Status: 1 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	3.57 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE			
Strength at release	f'ci =	5.5 ksi	
Strength at 28 days	f'c =	7 ksi	
Unit Weight	w _c =	150.0 pcf	
Overall Beam Length:			
@ end spans	L =	110 ft	
@ center span	L =	119 ft	
Design Spans:			
Non-composite beam @ end spans	L =	109 ft	
Non-composite beam @ center span	L =	118 ft	
Composite beam @ end spans	L =	110 ft	
Composite beam @ center span	L =	120 ft	
Beam Spacing	S =	12 ft	

PRESTRESSING STI	RANDS	
Diameter of single strand	d =	0.4 in
Area of single strand	A =	0.085 in^2
Temperature of Layer		
layer 1 (bottom)		68.00 °F
layer 2 layer 3	T = T =	68.00 °F 68.00 °F
layer 4	T=	68.00 °F
layer 5	T =	68.00 °F
layer 6	T =	68.00 °F
layer 7	T =	68.00 °F
layer 8	T =	68.00 °F
layer 9	T =	68.00 °F
layer 10 layer 11	T = T =	68.00 °F
layer 12	T =	68.00 °F 68.00 °F
layer 13	T =	68.00 °F
layer 14	T =	68.00 °F
Ultimate Strength	,	
intial = 284 ksi layer 1 (bottom)	$f_{pu} =$	284 ksi
layer 2	f _{pu} =	284 ksi
layer 3	f _{pu} =	284 ksi
layer 4	f _{pu} =	284 ksi
layer 5	f _{pu} =	284 ksi
layer 6	f _{pu} =	284 ksi
layer 7	f _{pu} =	284 ksi
layer 8	f _{pu} =	284 ksi
layer 9	f _{pu} =	284 ksi
layer 10	f _{pu} =	284 ksi
•		
layer 11	f _{pu} =	284 ksi
layer 12	f _{pu} =	284 ksi
layer 13	f _{pu} =	284 ksi
layer 14	f _{pu} =	284 ksi
Yield Strength	f _	257 kgi
intial = 257 ksi layer 1 (bottom)	f _{py} =	257 ksi
layer 2	f _{py} =	257 ksi
layer 3	f _{py} =	257 ksi
layer 4	f _{py} =	257 ksi
layer 5	f _{py} =	257 ksi
layer 6	f _{py} =	257 ksi
layer 7	f _{py} =	257 ksi
layer 8	f _{py} =	257 ksi
layer 9	f _{py} =	257 ksi
layer 10	f _{py} =	257 ksi
layer 11	$f_{py} =$	257 ksi
layer 12	f _{py} =	257 ksi
layer 13	f _{py} =	257 ksi
layer 14	f _{py} =	257 ksi
Stress Limits:	,	
before transfer ≤ 0.75f _{pu} (initial = 213.2)		
layer 1 (bottom)	f _{pi} =	213.2 ksi
layer 2	f _{pi} =	213.2 ksi
layer 3	f _{pi} =	213.2 ksi
layer 4	f _{pi} =	213.2 ksi
layer 5	f _{pi} =	213.2 ksi
layer 6	f _{pi} =	213.2 ksi
layer 7	f _{pi} =	213.2 ksi
layer 8	f _{pi} =	213.2 ksi
layer 9	f _{pi} =	213.2 ksi
layer 10	f _{pi} =	213.2 ksi
layer 10		
	f _{pi} =	213.2 ksi
layer 12	f _{pi} =	213.2 ksi
	f _{pi} =	213.2 ksi
layer 13 layer 14	f _{pi} =	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

, ру (,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	$f_{pe} =$	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

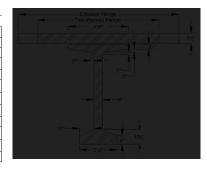
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	57.6 ksi	820.00 °F

Modulus of Elasticity

Layer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)


Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2
· · · · · · · · · · · · · · · · · · ·		

Layer 2 (Top)

	Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
	Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of	temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM			
Area of cross-section of beam	A =	767.0 in^2	
Overall depth of beam	H =	72.0 in	
Moment of Inertia	l =	539,947 in^4	
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in	
Distance from centroid to extreme top fiber	$y_t =$	35.4 in	
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3	
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3	
Weight	$W_t =$	799.0 plf	
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$			
cast-in-place concrete deck	E _{cs} =	3622 ksi	
precast beam at release	E _{ci} =	4496 ksi	
precast beam at service loads	E _c =	5072 ksi	

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7141
Transformed flange width	=	79.3 in
Transformed flange area	=	594.5 in^2
Transformed haunch width	Ш	30.0 in
Transformed haunch area	=	15.0 in^2
Deck-distance to top fiber	$y_t =$	4.89 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	ı	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	222,211 in^4	539,947 in^4	762,158 in^4
Haunch	15.0 in^2	72.25 in	1,083.5 in^3	5,205 in^4	0.31 in^4	5,205 in^4
Deck	594.5 in^2	75.11 in	44,654.7 in^3	274,538 in^4	1,743 in^4	276,281 in^4
Total	1376.5 in^2		73,810.4 in^3			1,043,643 in^4

Total area of Composite Section	A _c =	1377 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,043,643 in^4
Distance from centroid to extreme $\underline{\text{bottom}}$ fiber of beam	y _{bc} =	53.62 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.38 in
Distance from centroid to extreme top fiber of slab	$y_{tc} =$	26.38 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,463.3 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	56,784.5 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	55,399.9 in^3

COMPOSITE BEAM AT ENDSPAN

SOM COME BEAM AT ENDOLAN				
Effective Flange Width	$b_f =$	106.6 in		
Modular Ratio = E_{cs}/E_{c}	n =	0.7141		
Transformed flange width	II	76.1 in		
Transformed flange area	Ш	571.0 in^2		
Transformed haunch width	Ш	30.0 in		
Transformed haunch area	=	15.0 in^2		
Deck-distance to top fiber	$y_{td} =$	4.89 in		

*min of three criteria

	Transformed Area	Уt	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	271,344 in^4	539,947 in^4	811,291 in^4
Haunch	15.0 in^2	72.25 in	1,083.5 in^3	5,306 in^4	0.31 in^4	5,306 in^4
Deck	571.0 in^2	77.39 in	44,186.4 in^3	201,989 in^4	1,677 in^4	203,666 in^4
Total	1353.0 in^2		73,342.1 in^3			1,020,264 in^4

Total area of Composite Section	A _c =	1353 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,020,264 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.21 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.79 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.79 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,821.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	57,346.7 in^3
Section modulus for the extreme top fiber slab	$S_{tc} =$	39,558.7 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight		1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross		ок	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	ОК
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	ок

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.4003
Longitudinal stiffness parameter	$K_g =$	2,444,559.90 in^4

at center span:

$$DFM = 0.75 \cdot \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*k_s^2}\right)^{0.1}$$

$$DFM = 0.909 \text{ lanes/beam}$$

one design lane loaded:

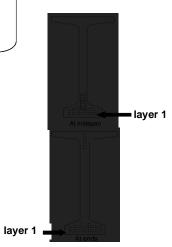
$$DFM = 0.75 + \left(\frac{S}{14}\right)^{04} + \left(\frac{S}{L}\right)^{03} + \left(\frac{K_g}{12 + L + L_s^3}\right)^{0.1}$$

DFM = 0.617 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFY = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Stra	nd Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

0.905 Controls

1.082 Controls

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - $y_{bs})$

y _{bs} =	5.44 in
e _c =	31.16 in

17.0 kips

17.0 kips

Prestress Losses

ELASTIC SHORTENING						
	assumed loss	=	6.00%			
Force per strand at transfer						
	layer 1	=	17.0 kips			
	layer 2	=	17.0 kips			
	layer 3	=	17.0 kips			
	layer 4	=	17.0 kips			
	layer 5	=	17.0 kips			
	layer 6	=	17.0 kips			
	layer 7	=	17.0 kips			
	layer 8	=	17.0 kips			
	layer 9	=	17.0 kips			
	layer 10	=	17.0 kips			
	layer 11	=	17.0 kips			
	layer 12	=	17.0 kips			

layer 13

layer 14

=

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8		13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$	·	13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

•···········						
$\Delta f_{pSR} = 6.5 \text{ ksi}$		_	assume relative humidity = 70%			
CONCR	ETE		_			
$\Delta f_{cdp} =$	1.588 ksi		_			
	at midspan	at endspan				
$\Delta f_{pCR} =$	17.8 ksi	16.6 ksi				
	CONCRI	CONCRETE $\Delta f_{cdp} = 1.588 \text{ ksi}$ at midspan	CONCRETE Δf _{cdp} = 1.588 ksi at midspan at endspan			

SHRINKAGE

loss due to creep $\Delta f_{pCR} =$

RELAXATION OF PRES oss due to relaxation after transfer		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3		2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5		2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$		2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi
TOTAL LOSSES	AT TRA	NSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
orce per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	47.01.:
layer 9	=	16.9 kips	17.0 kips
layer 10			17.0 kips
layer 11	=		17.0 kips
layer 12 layer 13	=		17.0 kips 17.0 kips
layer 13	=		17.0 kips
Total prestressing force after transfer	= P _i =	1047.8 kips	
	- 1 -	at midspan	1054.0 kips at endspan
		6.5%	6.2%
nitial loss = $(\Delta f_{pi})/(f_{pi})$	% -	0.070	
layer 1	% =	6 50/-	
layer 1 layer 2	% =	6.5% 6.5%	6.2%
layer 1 layer 2 layer 3	% = % =	6.5%	6.2%
layer 1 layer 2 layer 3 layer 4	% = % = % =	6.5% 6.5%	6.2% 6.2%
layer 1 layer 2 layer 3 layer 4 layer 5	% = % = % = % =	6.5% 6.5% 6.5%	6.2%
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	% = % = % = % = % =	6.5% 6.5% 6.5% 6.5%	6.2% 6.2%
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	% = % = % = % = % = % = % =	6.5% 6.5% 6.5% 6.5% 6.5%	6.2% 6.2%
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	% = % = % = % = % = % = % = % =	6.5% 6.5% 6.5% 6.5% 6.5% 6.5%	6.2% 6.2% 6.2%
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	% = % = % = % = % = % = % = % = % = % =	6.5% 6.5% 6.5% 6.5% 6.5%	6.2% 6.2% 6.2% 6.2%
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 7 layer 8 layer 8	% = % = % = % = % = % = % = % = % = % =	6.5% 6.5% 6.5% 6.5% 6.5% 6.5%	6.2% 6.2% 6.2% 6.2%
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 8 layer 9 layer 10	% = % = % = % = % = % = % = % = % = % =	6.5% 6.5% 6.5% 6.5% 6.5% 6.5%	6.2% 6.2% 6.2% 6.2% 6.2% 6.2%
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 7 layer 8 layer 8	% = % = % = % = % = % = % = % = % = % =	6.5% 6.5% 6.5% 6.5% 6.5% 6.5%	6.2% 6.2% 6.2% 6.2% 6.2%

ок ок ок

OK OK OK OK OK OK

ок

ok ok

TOTAL LOSS Total Losses			at midspan	at endspan
	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
la	ayer 10	$\Delta f_{pT} =$		40.5 ksi
la	ayer 11	$\Delta f_{pT} =$		40.5 ksi
la	ayer 12	$\Delta f_{pT} =$		40.5 ksi
la	ayer 13	$\Delta f_{pT} =$		40.5 ksi
la	ayer 14	$\Delta f_{pT} =$		40.5 ksi
tress in tendon after all losses = f_{pi} - Δf_{pt}	H		at midspan	at endspan
	layer 1	f _{pe} =	172.1 ksi	172.7 ksi
	layer 2	f _{pe} =	172.1 ksi	172.7 ksi
	layer 3	f _{pe} =	172.1 ksi	172.7 ksi
	layer 4	f _{pe} =	172.1 ksi	172.7 ksi
	layer 5	f _{pe} =	172.1 ksi	172.7 ksi
	layer 6	f _{pe} =	172.1 ksi	
	layer 7	f _{pe} =	172.1 ksi	
	layer 8	f _{pe} =	172.1 ksi	170 7 kgi
	layer 9 ayer 10	t _{pe} =	172.1 ksi	172.7 ksi 172.7 ksi
	ayer 10	f _{pe} =		172.7 ksi
	ayer 12	f _{pe} =		172.7 ksi
	ayer 13	f _{pe} =		172.7 ksi
	ayer 14	f _{pe} =		172.7 ksi
eck prestressing stress limit at service lim			R*fnv	
	layer 1	=	205.4 ksi	7
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	ayer 10	=	205.4 ksi	
	ayer 11	=	205.4 ksi	_
	ayer 12	=	205.4 ksi	
	ayer 13	=	205.4 ksi	4
	ayer 14	=	205.4 ksi	
rce per strand = f _{pe} *strand area	آ دا		at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6 layer 7	=	14.6 kips	+
		=	14.6 kips 14.6 kips	+
	· ·	_		
	layer 8	=		1/1 7 kins
	layer 8 layer 9	=	14.6 kips	14.7 kips
la	layer 8 layer 9 ayer 10	=		14.7 kips
la Ia	layer 8 layer 9 ayer 10 ayer 11	= = =		14.7 kips 14.7 kips
la la la	layer 8 layer 9 ayer 10 ayer 11 ayer 12	= = = =		14.7 kips 14.7 kips 14.7 kips
la la la la	layer 8 layer 9 ayer 10 ayer 11	= = =		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	936.0 kips	939.3 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION					
Transfer Length = 60*(strand diameter)	=	1.9 ft			
Bending moment at transfer length	$M_g =$	87.7 ft-kips			
center of 12 strands to top fiber of beam at the end	=	7.00 in			
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in			
center of 12 strands and top fiber of beam at transfer length	II	9.84 in			
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in			
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in			
center of gravity of all strands and the bottom fiber of beam at the end	II	15.30 in			
Eccentricity of the strand group at transfer length:	e _h =	21.36 in			
Eccentricity at end of beam:	e =	21.30 in			

 $f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_r} \qquad \qquad f_b = \frac{P_i}{A} + \frac{P_i e}{S_b} - \frac{M_g}{S_b}$ $= \frac{\text{at midspan}}{S_b} \qquad \qquad \text{at endspan}$ Top stress at top fiber of beam $f_t = \frac{-0.017 \text{ ksi}}{5} = \frac{-0.017 \text{ ksi}}{2.906 \text{ ksi}} = \frac{-0.017 \text{ ksi}}{2.906 \text{ ksi}}$ STRESSES AT HARP POINT

Calcs for eccentricity (see 9.6.7.2)

ок

ок

Top stress at top fiber of beam	f. =	0.173 ksi	0.169 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi	ок
STRESSES AT MIDSDAN				

STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.320 ksi	0.345 ksi	0
Bottom stress at bottom fiber of the beam f _b = 2.554 ksi		2.438 ksi	0	
HOLD-DOWN FOR	CES		-	

assume stress in strand before losses = 0.8f_u

layer 1	II	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	=	227.4 ksi
layer 9	II	227.4 ksi
layer 10	II	227.4 ksi
layer 11	=	227.4 ksi
layer 12	II	227.4 ksi
layer 13	=	227.4 ksi
layer 14	-	227.4 ksi

prestress force per strand before any losses:

layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
arp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi		
for deck	=	1.607 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for deck	=	2 142 ksi		

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

ок

ок

ок

ΟK

ок

	AT MINDO	<u>PAN</u>	
ompression stresses at top fiber of beam		at midspan	at endspan
$f_{s} = \frac{P_{ps}}{A} - \frac{P_{ps}\theta}{S_{s}} + \frac{(M_{s} + S_{s})}{S_{s}}$	$+\frac{M_s}{m}$	$\frac{M_{w}+M_{s})}{S_{tg}}$	
Due to permanent loads	f _{tg} =	2.109 ksi	2.106 ksi
$P_{uv} = P_{uv} o (M_u + M_v)$	(M	M ₂) (M _{22,2})	*
$f_{ig} = \frac{P_{id}}{A} - \frac{P_{id}\sigma}{S_1} + \frac{(M_g + M_s)}{S_g}$	+ د د.	+ \ \S_{ap}	
Due to permanent loads and transient loads	$f_{tq} =$	2.556 ksi	2.553 ksi
compression stresses at top fiber of deck		at midspan	at endspan
$f_{cs} = \frac{(M, \dots, M)}{2}$	16		0.0441:-:
Due to permanent loads	f _{tc} =	0.044 ksi	0.044 ksi
$f_{tr} = \frac{(M_{tot} + 1)^{t}}{2}$	$H_{\bullet} + M_{\perp}$	<u>r+1)</u>	
$J_{w} = \frac{1}{2}$	S.		
$J_{tr} =$ Due to permanent loads and transient loads	_ P.	0.502 ksi	0.502 ksi
	_ P.		0.000
Due to permanent loads and transient loads rension stresses at top fiber of deck	f _{tc} =	0.502 ksi at midspan	0.000
Due to permanent loads and transient loads	f _{tc} =	0.502 ksi at midspan	0.502 ksi at endspan
Due to permanent loads and transient loads ension stresses at top fiber of deck	f _{tc} = (M ₂₁ +	0.502 ksi at midspan	0.000

Strength Limit Sta

POSITIVE MOMENT SECTION $M_{ij} = 1.25DC+1.5DW+1.75(LL+IM) \qquad M_{ij} = 0$ effective length factor for compression members $layer \ 1 \qquad k = 0$ $layer \ 2 \qquad k = 0$ $layer \ 3 \qquad k = 0$	8381.5 ft-kips	7
effective length factor for compression members		
layer 1 k = layer 2 k =		Ш
	0.27	
layer 3 k =	0.27	
	0.27	
layer 4 k =	0.27	
layer 5 k =	0.27	
layer 6 k =	0.27	
layer 7 k =	0.27	
layer 8 k =	0.27	
layer 9 k =	0.27	
layer 10 k =	0.27	1
layer 11 k =	0.27	1
layer 12 k =	0.27	
layer 13 k =	0.27	
layer 14 k =	0.27	
c =verage stress in prestressing steel	5.2 ft-kips	
layer 1 $f_{ps} =$	278.8 ksi	1
layer 2 $f_{ps} =$	278.8 ksi	
layer 3 $f_{\text{ps}} =$	278.8 ksi	
layer 4 f _{ps} =	278.8 ksi	
layer 5 f _{ps} =	278.8 ksi	
layer 6 f _{ps} =	278.8 ksi	
layer 7 $f_{ps} =$	278.8 ksi	
layer 8 f _{ps} =	278.8 ksi	
layer 9 f _{ps} =	278.8 ksi	
layer 10 f _{ps} =	278.8 ksi	
layer 11 f _{ps} =	278.8 ksi	
layer 12 f _{ps} =	278.8 ksi]
layer 13 f _{ps} =	278.8 ksi	1
layer 14 f _{ps} =	278.8 ksi	
ominal flexure resistance		ī
a =	4.38 in	
$M_r = \Phi M_n$, $\Phi = 1.00$ $\Phi M_n =$	9148.6 ft-kips	ок
M=DC+W+LL+IM M =	5833.6 ft-kips	ок
NEGATIVE MOMENT SECTION		1
M _u = 1.25DC+1.5DW+1.75(LL+IM) M _u =	-4837.2 ft-kips	-
a =	5.77 in	NOT O
$\begin{array}{c c} \Phi M_n = \\ M = DC + W + LL + IM & M = \\ \end{array}$	4748.7 ft-kips -2869.7 ft-kips	NOT OK OK

Shear Design

= 00.g.:				
CRITICAL SECTION AT 0.59				
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2877.0 ft-kips		
_				
max shear	$V_u =$	405.0 kips		
max moment	M _u =	2877.0 ft-kips		
Shear depth	d _v =	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00 °		
CTD AIN IN ELEVIIDAL TE	MOION	DEINICODOMENIT		

STRAIN IN FLEXURAL TENSION REINFORCMENT

$\epsilon_z = \frac{\frac{M_1}{d_v} + 0.5M_c + 0.5M_u \cot \theta}{E_s A_s + E_v A_u}$	d _{pe} f _{pe} ≤ 0.002	

resultant compressive stress at centroid effective stress in prestressing strand after all losses

	at midspan	at endspan
f _{pc} =	0.927 ksi	0.929 ksi
0		

layer 1 f_{po} = 176.8 ksi 177.4 ksi 176.8 ksi 177.4 ksi layer 2 $f_{po} =$ layer 3 f_{po} = 176.8 ksi 177.4 ksi layer 4 f_{po} = 176.8 ksi 177.4 ksi layer 5 $f_{po} =$ layer 6 $f_{po} =$ layer 7 $f_{po} =$ 176.8 ksi 176.8 ksi 176.8 ksi layer 8 f_{po} = 176.8 ksi layer 9 $f_{po} =$ layer 10 $f_{po} =$ 177.4 ksi 177.4 ksi layer 11 f_{po} = 177.4 ksi layer 12 $f_{po} =$ layer 13 $f_{po} =$ 177.4 ksi 177.4 ksi

strain in flexural tension

f _{po} =		177.4 ksi
	at midspan	at endspan
$\varepsilon_x =$	0.002000	0.002000
$\varepsilon_x =$	0.002000	
$\varepsilon_x =$		0.002000
$\varepsilon_x =$	·	0.002000
	$\begin{split} & \varepsilon_{\mathrm{X}} = \\ & $	$\begin{array}{c c} \textbf{at midspan} \\ \textbf{$\epsilon_{\rm x}$} = & 0.0020000 \\ \textbf{$\epsilon_{\rm x}$} = & 0.0020000 \\ \textbf{$\epsilon_{\rm x}$} = & 0.0020000 \\ \textbf{$\epsilon_{\rm x}$} = & 0.0020000 \\ \textbf$

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_p = 3.27 \text{ in}$ 3.29 in $\Delta_g = -1.49 \text{ in}$ $\Delta_g = -1.44 \text{ in}$ $\Delta_s = -1.95 \text{ in}$		at midspan	at endspan
$\Delta_g =$ -1.44 in	$\Delta_p =$	3.27 in	3.29 in
9	$\Delta_g =$	-1.49 in	
$\Delta_s =$ -1.95 in	$\Delta_g =$	-1.44 in	
	$\Delta_s =$	-1.95 in	

Deflection due to total self weight

-0.11 in $\Delta_{sw} =$

Total Deflection at transfer Total Deflection at erection

1.79 in 1.81 in Δ= Δ = 3.24 in 3.27 in

Live load deflection limit = span/800 Deflection due to live load and impact

1.80 in -0.85 in $\Delta_L =$

Deflection due to fire truck

-0.7646 in $\Delta_1 =$ 2.4003 in Δ=

Total Deflection after fire with fire truck

ок ок

Location: Fire at Critical Negative Moment Sections Beam Design: 3/8" Strand

Fire Exposure Status: 1-1/2 Hour



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	3.39 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	7 ksi			
Unit Weight	w _c =	150.0 pcf			
Overall Beam Length:					
@ end spans	L =	110 ft			
@ center span	L =	119 ft			
Design Spans:					
Non-composite beam @ end spans	L =	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L =	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

PRESTRESSING STI	RANDS	
Diameter of single strand	d =	0.4 in
Area of single strand	A =	0.085 in^2
Temperature of Layer		
layer 1 (bottom)		68.00 °F
layer 2 layer 3	T = T =	68.00 °F 68.00 °F
layer 4	T=	68.00 °F
layer 5	T =	68.00 °F
layer 6	T =	68.00 °F
layer 7	T =	68.00 °F
layer 8	T =	68.00 °F
layer 9	T =	68.00 °F
layer 10 layer 11	T = T =	68.00 °F
layer 12	T =	68.00 °F 68.00 °F
layer 13	T =	68.00 °F
layer 14	T =	68.00 °F
Ultimate Strength	,	
intial = 284 ksi layer 1 (bottom)	$f_{pu} =$	284 ksi
layer 2	f _{pu} =	284 ksi
layer 3	f _{pu} =	284 ksi
layer 4	f _{pu} =	284 ksi
layer 5	f _{pu} =	284 ksi
layer 6	f _{pu} =	284 ksi
layer 7	f _{pu} =	284 ksi
layer 8	f _{pu} =	284 ksi
layer 9	f _{pu} =	284 ksi
layer 10	f _{pu} =	284 ksi
•		
layer 11	f _{pu} =	284 ksi
layer 12	f _{pu} =	284 ksi
layer 13	f _{pu} =	284 ksi
layer 14	f _{pu} =	284 ksi
Yield Strength	f _	257 kgi
intial = 257 ksi layer 1 (bottom)	f _{py} =	257 ksi
layer 2	f _{py} =	257 ksi
layer 3	f _{py} =	257 ksi
layer 4	f _{py} =	257 ksi
layer 5	f _{py} =	257 ksi
layer 6	f _{py} =	257 ksi
layer 7	f _{py} =	257 ksi
layer 8	f _{py} =	257 ksi
layer 9	f _{py} =	257 ksi
layer 10	f _{py} =	257 ksi
layer 11	$f_{py} =$	257 ksi
layer 12	f _{py} =	257 ksi
layer 13	f _{py} =	257 ksi
layer 14	f _{py} =	257 ksi
Stress Limits:	,	
before transfer ≤ 0.75f _{pu} (initial = 213.2)		
layer 1 (bottom)	f _{pi} =	213.2 ksi
layer 2	f _{pi} =	213.2 ksi
layer 3	f _{pi} =	213.2 ksi
layer 4	f _{pi} =	213.2 ksi
layer 5	f _{pi} =	213.2 ksi
layer 6	f _{pi} =	213.2 ksi
layer 7	f _{pi} =	213.2 ksi
layer 8	f _{pi} =	213.2 ksi
layer 9	f _{pi} =	213.2 ksi
layer 10	f _{pi} =	213.2 ksi
layer 10		
	f _{pi} =	213.2 ksi
layer 12	f _{pi} =	213.2 ksi
	f _{pi} =	213.2 ksi
layer 13 layer 14	f _{pi} =	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

, 64	. ,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	$f_{pe} =$	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

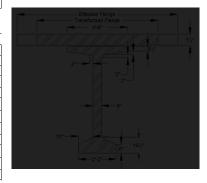
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	55.4 ksi	1010.00 °F

Modulus of Elasticity

Layer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)


(Bottom)					
Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2			
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2			
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2			

Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	$E_{cs} =$	3530 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_c	n =	0.6959
Transformed flange width	=	77.2 in
Transformed flange area	=	579.3 in^2
Transformed haunch width	Ш	29.2 in
Transformed haunch area	=	14.6 in^2
Deck-distance to top fiber	$y_t =$	5.14 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	213,131 in^4	539,947 in^4	753,078 in^4
Haunch	14.6 in^2	72.25 in	1,055.9 in^3	5,265 in^4	0.30 in^4	5,265 in^4
Deck	579.3 in^2	74.86 in	43,369.5 in^3	270,057 in^4	1,399 in^4	271,456 in^4
Total	1361.0 in^2		72,497.6 in^3			1,029,799 in^4

Total area of Composite Section	A _c =	1361 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,029,799 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.27 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.73 in
Distance from centroid to extreme top fiber of slab	$y_{tc} =$	26.73 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,331.8 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	54,980.1 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	55,360.1 in^3

COMPOSITE BEAM AT ENDSPAN

Effective Flange Width	$b_f =$	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6959
Transformed flange width	=	74.2 in
Transformed flange area	=	556.4 in^2
Transformed haunch width	Ш	29.2 in
Transformed haunch area	=	14.6 in^2
Deck-distance to top fiber	y _{td} =	5.14 in

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	266,924 in^4	539,947 in^4	806,871 in^4
Haunch	14.6 in^2	72.25 in	1,055.9 in^3	5,086 in^4	0.30 in^4	5,086 in^4
Deck	556.4 in^2	77.64 in	43,197.1 in^3	193,625 in^4	1,346 in^4	194,971 in^4
Total	1338.0 in^2		72.325.2 in^3		•	1.006.929 in^4

Total area of Composite Section	A _c =	1338 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,006,929 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.06 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.94 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.94 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,627.8 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	56,112.1 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	38,810.2 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	W _{beam} =	0.799 k/f
8 in. deck weight	w _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	l
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	$x_b =$	39.8 ft
FD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		ОК
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.4370
Longitudinal stiffness parameter	K _g =	2,508,620.36 in^4

$$DFM = 0.75 \cdot \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{I}\right)^{0.2} * \left(\frac{K_F}{12^{**}I_{-}^{*}k_{-}^{2}}\right)^{0.1}$$

$$DFM = \begin{vmatrix} 0.911 \text{ lanes/beam} \end{vmatrix}$$

one design lane loaded:

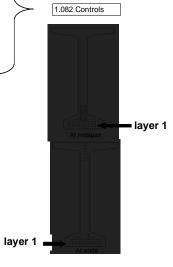
$$DFM = 0.75 + \left(\frac{S}{.4}\right)^{0.4} + \left(\frac{S}{L}\right)^{0.3} + \left(\frac{K_g}{.2 + L + L_s^2}\right)^{0.3}$$

DFM = 0.618 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFY = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Stra	nd Group (ii	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTENING				
	assumed loss	=	6.00%	
Force per strand at transfer				
	layer 1	=	17.0 kips	
	layer 2	=	17.0 kips	
	layer 3	=	17.0 kips	
	layer 4	=	17.0 kips	
	layer 5	=	17.0 kips	
	layer 6	=	17.0 kips	
	layer 7	=	17.0 kips	
	layer 8	=	17.0 kips	
	layer 9	=	17.0 kips	
	layer 10	=	17.0 kips	
	layer 11	=	17.0 kips	
	layer 12	=	17.0 kips	
	layer 13	=	17.0 kips	
	layer 14	=	17.0 kips	

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	$f_{\rm cgp} =$	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

SHRINKAGE

Shrinkage = (17-0.15*Relative Humidity) $\Delta f_{pSR} = \begin{bmatrix} 6.5 \text{ ksi} \end{bmatrix}$ assume relative humidity = 70%

CREEP OF CONCRETE						
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as $f_{\rm cgp}$	$\Delta f_{cdp} =$	1.589 ksi				
		at midspan	at endspan			
loss due to creep	$\Delta f_{pCR} =$	17.8 ksi	16.6 ksi			

RELAXATION OF PRES loss due to relaxation after transfer		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3		2.9 ksi	2.9 ksi
layer 4		2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6		2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10			2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12			2.9 ksi
layer 13			2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi
TOTAL 1 000F0	AT TD 4	NOTED	
TOTAL LOSSES	AI IKA	INSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$	Γ	at midenan	at andans
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$ layer 1	f . –	at midspan 199.3 ksi	at endspan 199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	$f_{pt} = f_{pt} =$	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	100.0 101
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	= D =	1047 0 1-1	17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
nitial loss = $(\Delta f_{pi})/(f_{pi})$ layer 1	0/	at midspan 6.5%	at endspan
	% =		6.2%
layer 2 layer 3	% = % =	6.5%	6.2%
layer 4	% = % =	6.5% 6.5%	6.2%
layer 5	% = % =	6.5%	6.2%
layer 6	% =	6.5%	0.270
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =	0.070	6.2%
layer 11	% =		6.2%
iayor i i			6.2%
laver 12	% =		
layer 12 layer 13	% = % =		6.2%

ок ок ок

OK OK OK OK OK OK

ок

ok ok

otal Losses			CE LOADS at midspan	at endspan
	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
tress in tendon after all losses = f_{pi} - Δf_{pt}	ı		at midspan	at endspan
	layer 1	f _{pe} =	172.1 ksi	172.7 ksi
	layer 2	f _{pe} =	172.1 ksi	172.7 ksi
	layer 3	f _{pe} =	172.1 ksi	172.7 ksi
	layer 4	f _{pe} =	172.1 ksi	172.7 ksi
	layer 5	f _{pe} =	172.1 ksi	172.7 ksi
	layer 6	f _{pe} =	172.1 ksi	
	layer 7	f _{pe} =	172.1 ksi	
	layer 8	f _{pe} =	172.1 ksi	170 7 kai
	layer 9 layer 10	t _{pe} =	172.1 ksi	172.7 ksi
	layer 10	f _{pe} =		172.7 ksi 172.7 ksi
	layer 12	f _{pe} =		172.7 ksi
	layer 12	f _{pe} =		172.7 ksi
	layer 14	f _{pe} =		172.7 ksi
neck prestressing stress limit at service			R*fnv	172.7 101
icox productioning du doc infine de del vice	layer 1	=	205.4 ksi	\neg
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	_
	layer 13	=	205.4 ksi	_
	layer 14	=	205.4 ksi	1
rce per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	-			
	layer 6	=	14.6 kips	
	layer 6 layer 7	=	14.6 kips	
	layer 6 layer 7 layer 8	=	14.6 kips 14.6 kips	14.7 bins
	layer 6 layer 7 layer 8 layer 9	= = =	14.6 kips	14.7 kips
	layer 6 layer 7 layer 8 layer 9 layer 10	= = =	14.6 kips 14.6 kips	14.7 kips
	layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = =	14.6 kips 14.6 kips	14.7 kips 14.7 kips
	layer 6 layer 7 layer 8 layer 9 layer 10	= = =	14.6 kips 14.6 kips	14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	936.0 kips	939.3 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	$M_g =$	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	-	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	II	15.30 in		
Eccentricity of the strand group at transfer length:	e _h =	21.36 in		
Eccentricity at end of beam:	e =	21.30 in		

 $f_i = \frac{P_i}{A} - \frac{P_i e}{S_i} + \frac{M_g}{S_r} \qquad \qquad f_b = \frac{P_i}{A} + \frac{P_i e}{S_b} - \frac{M_g}{S_b}$ $\text{Top stress at top fiber of beam} \qquad \qquad \text{at endspan}$ $\text{Bottom stress at bottom fiber of the beam} \qquad \qquad f_t = \qquad -0.017 \text{ ksi} \qquad -0.017 \text{ ksi}$ $\text{Bottom stress at bottom fiber of the beam} \qquad \qquad f_b = \qquad 2.906 \text{ ksi} \qquad 2.906 \text{ ksi}$

Calcs for eccentricity (see 9.6.7.2)

ок

ок

OK OK

STRESSES AT HARP POINT					
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips			
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi		
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi		
CTRECCEC	T MIDO	DANI			

assume stress in strand before losses = 0.8f_u

layer 1	II	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	=	227.4 ksi
layer 9	II	227.4 ksi
layer 10	II	227.4 ksi
layer 11	=	227.4 ksi
layer 12	II	227.4 ksi
layer 13	=	227.4 ksi
layer 14	-	227.4 ksi

prestress force per strand before any losses:

layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	II	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.526 ksi
Due to permanent and transient loads for I	oad comb	ination Service I
for the precast beam	=	4.200 ksi
for deck	=	2.034 ksi

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

STRESSES AT	MIDSPAN	
Compression stresses at top fiber of beam	at midspan	at endspan
$f_{i} = \frac{P_{pe}}{A} - \frac{P_{pe}S}{S_{i}} + \frac{(M_{s} + \lambda \delta)}{S_{t}}$	$\frac{\langle S_{s} \rangle}{S_{tg}} + \frac{(M_{ws} + M_{s})}{S_{tg}}$	
Due to permanent loads	f _{tg} = 2.110 ksi	2.108 ksi
$P_{p_i} = P_{p_i} o (M_p + M_s)$	$(M_{m}-M_b)$ (M_{H+1})	•
$f_{ty} = \frac{P_{tt}}{A} - \frac{P_{tt}o}{S_1} + \frac{(M_x + M_y)}{S_y} + \frac{1}{S_y}$	N _{ag} 7 N _{ag}	
Due to permanent loads and transient loads	f _{tq} = 2.572 ksi	2.569 ksi
Compression stresses at top fiber of deck	at midspan	at endspan
$f_{ts} = \frac{(M_{us})}{S}$	TE .	
Due to permanent loads	f _{tc} = 0.044 ksi	0.044 ksi
$f_w = \frac{(M_w + M_s)}{S_b}$	+ M _{II+1})	
Due to permanent loads and transient loads	$f_{tc} = 0.502 \text{ ksi}$	0.502 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{13} = \frac{P_{34}}{A} + \frac{P_{34}s}{S_b} - \frac{(M_R + M_S)}{S_b} - \frac{C}{S_b}$	$\frac{M_{m} + M_{L} + 0.8 * M_{E,m}}{\mathcal{L}_{m}}$	
	f _b = -0.829 ksi	-0.818 ksi

Strength Limit Sta

Strength Limit State	FOTION		_
POSITIVE MOMENT S M _{II} = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	8381.5 ft-kips	7
effective length factor for compression members	IVI _U —	0301.3 II-Kips	
layer 1	k =	0.27	1
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	5.4 ft-kips	
average stress in prestressing steel			7
layer 1	f _{ps} =	278.6 ksi	
layer 2	f _{ps} =	278.6 ksi	-
layer 3	f _{ps} =	278.6 ksi	
layer 4	f _{ps} =	278.6 ksi	1
layer 5	f _{ps} =	278.6 ksi	1
layer 6 layer 7	f _{ps} = f _{ps} =	278.6 ksi 278.6 ksi	-
layer 8	f _{ps} =	278.6 ksi	
layer 9	f _{ps} =	278.6 ksi	
layer 10	f _{ps} =	278.6 ksi	
layer 11	f _{ps} =	278.6 ksi	
layer 12	f _{ps} =	278.6 ksi	1
layer 13	f _{ps} =	278.6 ksi	1
layer 14	f _{ps} =	278.6 ksi	1
nominal flexure resistance	F		
	a =	4.61 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9125.1 ft-kips	ок
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S			-
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips	
	a =	5.60 in	1
	ΦM _n =	4606.8 ft-kips	NOT (
M=DC+W+LL+IM	M =	-2869.7 ft-kips	ок

Shear Design

Design				
CRITICAL SECTION AT 0.59				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	V _u =	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	d _v =	73.19 in		
Applied factored normal force at the section	N _u =	0		

STRAIN IN FLEXURAL TENSION REINFORCMENT

e_	$\frac{M_{\perp}}{d_{\nu}} + 0.5M_{e} + 0.5W_{e} \cot \theta$	$\frac{A_{pe}f_{pe}}{=} \le 0.002$	
-3-	$E_{s}A_{s}+E_{\mu}A_{\mu}$	<u>3</u> 3.002	

resultant compressive stress at centroid effective stress in prestressing strand after all losses

Angle of diagonal compressive stresses $\theta =$

 $\begin{array}{c|cccc} & \textbf{at midspan} & \textbf{at endspan} \\ \hline f_{pc} = & 0.933 \text{ ksi} & 0.935 \text{ ksi} \\ \hline \text{sses} \end{array}$

36.00°

layer 1	f _{po} =	176.8 ksi	177.4 ksi
layer 2	f _{po} =	176.8 ksi	177.4 ksi
layer 3	f _{po} =	176.8 ksi	177.4 ksi
layer 4	$f_{po} =$	176.8 ksi	177.4 ksi
layer 5	$f_{po} =$	176.8 ksi	
layer 6	f _{po} =	176.8 ksi	
layer 7	$f_{po} =$	176.8 ksi	
layer 8	$f_{po} =$	176.8 ksi	
layer 9	f _{po} =		177.4 ksi
layer 10	$f_{po} =$		177.4 ksi
layer 11	$f_{po} =$		177.4 ksi
layer 12	f _{po} =		177.4 ksi
layer 13	f _{po} =		177.4 ksi
layer 14	f _{po} =		177.4 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	ε _x =	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck $\begin{array}{c|cccc} & \textbf{at midspan} & \textbf{at endspan} \\ \hline \Delta_p = & 3.27 \text{ in} & 3.29 \text{ in} \\ \hline \Delta_g = & -1.49 \text{ in} \\ \hline \Delta_g = & -1.44 \text{ in} \\ \hline \Delta_s = & -1.95 \text{ in} \\ \hline \end{array}$

Deflection due to total self weight

 $\Delta_{\rm sw}$ = -0.11 in

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800 Deflection due to live load and impact = 1.80 in Δ_L = -0.86 in

Deflection due to fire truck

Total Deflection after fire with fire truck

 $\Delta_L = -0.7747 \text{ in}$ $\Delta = 2.3901 \text{ in}$

ок ок

Location: Fire at Critical Negative Moment Sections Beam Design: 3/8" Strand

Fire Exposure Status: 2 Hour



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	3.25 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	7 ksi		
Unit Weight	w _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

PRESTRESSING STI	RANDS	
Diameter of single strand	d =	0.4 in
Area of single strand	A =	0.085 in^2
Temperature of Layer		
layer 1 (bottom)		68.00 °F
layer 2 layer 3	T = T =	68.00 °F 68.00 °F
layer 4	T=	68.00 °F
layer 5	T =	68.00 °F
layer 6	T =	68.00 °F
layer 7	T =	68.00 °F
layer 8	T =	68.00 °F
layer 9	T =	68.00 °F
layer 10 layer 11	T = T =	68.00 °F
layer 12	T =	68.00 °F 68.00 °F
layer 13	T =	68.00 °F
layer 14	T =	68.00 °F
Ultimate Strength	,	
intial = 284 ksi layer 1 (bottom)	$f_{pu} =$	284 ksi
layer 2	f _{pu} =	284 ksi
layer 3	f _{pu} =	284 ksi
layer 4	f _{pu} =	284 ksi
layer 5	f _{pu} =	284 ksi
layer 6	f _{pu} =	284 ksi
layer 7	f _{pu} =	284 ksi
layer 8	f _{pu} =	284 ksi
layer 9	f _{pu} =	284 ksi
layer 10	f _{pu} =	284 ksi
•		
layer 11	f _{pu} =	284 ksi
layer 12	f _{pu} =	284 ksi
layer 13	f _{pu} =	284 ksi
layer 14	f _{pu} =	284 ksi
Yield Strength	f _	257 kgi
intial = 257 ksi layer 1 (bottom)	f _{py} =	257 ksi
layer 2	f _{py} =	257 ksi
layer 3	f _{py} =	257 ksi
layer 4	f _{py} =	257 ksi
layer 5	f _{py} =	257 ksi
layer 6	f _{py} =	257 ksi
layer 7	f _{py} =	257 ksi
layer 8	f _{py} =	257 ksi
layer 9	f _{py} =	257 ksi
layer 10	f _{py} =	257 ksi
layer 11	$f_{py} =$	257 ksi
layer 12	f _{py} =	257 ksi
layer 13	f _{py} =	257 ksi
layer 14	f _{py} =	257 ksi
Stress Limits:	,	
before transfer ≤ 0.75f _{pu} (initial = 213.2)		
layer 1 (bottom)	f _{pi} =	213.2 ksi
layer 2	f _{pi} =	213.2 ksi
layer 3	f _{pi} =	213.2 ksi
layer 4	f _{pi} =	213.2 ksi
layer 5	f _{pi} =	213.2 ksi
layer 6	f _{pi} =	213.2 ksi
layer 7	f _{pi} =	213.2 ksi
layer 8	f _{pi} =	213.2 ksi
layer 9	f _{pi} =	213.2 ksi
layer 10	f _{pi} =	213.2 ksi
layer 10		
	f _{pi} =	213.2 ksi
layer 12	f _{pi} =	213.2 ksi
	f _{pi} =	213.2 ksi
layer 13 layer 14	f _{pi} =	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

, ру (,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	$f_{pe} =$	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

yer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

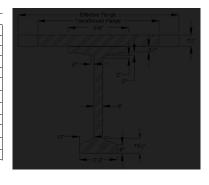
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	53.3 ksi	1120.00 °F

Modulus of Elasticity

Layer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)


Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2

Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3456 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_c	n =	0.6814
Transformed flange width	=	75.6 in
Transformed flange area	=	567.3 in^2
Transformed haunch width	Ш	28.6 in
Transformed haunch area	=	14.3 in^2
Deck-distance to top fiber	$y_t =$	5.34 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b^{)2}$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	205,982 in^4	539,947 in^4	745,929 in^4
Haunch	14.3 in^2	72.25 in	1,033.8 in^3	5,309 in^4	0.30 in^4	5,310 in^4
Deck	567.3 in^2	74.66 in	42,351.1 in^3	266,433 in^4	1,163 in^4	267,597 in^4
Total	1348.6 in^2		71,457.2 in^3			1,018,835 in^4

Total area of Composite Section	A _c =	1349 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,018,835 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	52.99 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	19.01 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	27.01 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,227.8 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	53,588.1 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	55,354.0 in^3

COMPOSITE BEAM AT ENDSPAN

JOINI COITE BEAM AT ENDOLAIN					
Effective Flange Width	$b_f =$	106.6 in			
Modular Ratio = E_{cs}/E_{c}	n =	0.6814			
Transformed flange width	II	72.6 in			
Transformed flange area	=	544.8 in^2			
Transformed haunch width	Ш	28.6 in			
Transformed haunch area	=	14.3 in^2			
Deck-distance to top fiber	$y_{td} =$	5.34 in			

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	263,260 in^4	539,947 in^4	803,207 in^4
Haunch	14.3 in^2	72.25 in	1,033.8 in^3	4,911 in^4	0.30 in^4	4,912 in^4
Deck	544.8 in^2	77.84 in	42,404.7 in^3	186,982 in^4	1,119 in^4	188,101 in^4
Total	1326.1 in^2		71.510.7 in^3		•	996.220 in^4

Total area of Composite Section	A _c =	1326 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	996,220 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.93 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.07 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.07 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,473.6 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	55,120.6 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	38,208.2 in^3

Shear Forces and Bending Moments

'y	M. OILICITES	
	DEADLOADS	

Beam self-weight	W _{beam} =	0.799 k/f
8 in. deck weight	W _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	ОК	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ок	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS			
Fire truck live load front load (Point A)	P _{live} =	48.0 kips	
Fire truck live load back load (Point B)	P _{live} =	22.0 kips	
distance between two loads		19.2 ft	
distance from nearest edge to point A	X _a =	59.0 ft	
distance from nearest edge to point B	X _b =	39.8 ft	
LRFD Specifications: Art. 4.6.2.2.1			$\neg \neg$
Width of Deck Constant		ОК	Barrier and wearing surface loads are
Number of beams is not less than four N _b =	4	OK	equally distributed among the 4 beam
Beams are parallel and approximately of the same stiffness		OK	equally distributed among the 1 seam
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Bridge Type "k" (LRFD Table 4.6.2.2.1-1)			
Number of design lanes = w/12	=	3 lanes	
Distribution Factor for Bending Moment:			
Beams spacing	S =	12.0 ft	
Depth of concrete slab	t _s =	7.5 in	
		100.00	

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.4676
Longitudinal stiffness parameter	$K_g =$	2,562,082.51 in^4

at center span:
$$DFM = 0.75 \cdot \left(\frac{S}{9.5}\right)^{16} * \left(\frac{S}{L}\right)^{02} * \left(\frac{K_S}{12*L*k_s^2}\right)^{0.1}$$

$$DFM = 0.913 \text{ lanes/beam}$$
one design lane loaded:
$$DFM = 0.75 + \left(\frac{S}{14}\right)^{04} * \left(\frac{S}{L}\right)^{03} * \left(\frac{K_S}{12*L*k_s^3}\right)^{0.1}$$

$$DFM = 0.619 \text{ lanes/beam}$$

Distribution Factor for Shear Force both end spans and center span: $DFY = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^{2}$

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

1.082 Controls

		At Midspan		At Ends			
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom			
layer 1	14	2	14	2			
layer 2	14	3.5	14	3.5			
layer 3	14	5	14	5		(E)	
layer 4	10	6.5	8	6.5			
layer 5	4	8	2	8			laver
layer 6	2	10	-	-		At midspan	iayo
layer 7	2	12	-	-		At macpain	
layer 8	2	14	-	-		<u> </u>	
layer 9	2	16	2	60			
layer 10	-	-	2	62			
layer 11	-	-	2	64			
layer 12	-	-	2	66			
layer 13	-	-	2	68			
layer 14	-	-	2	70			
	64		64				
Harped Stra	ınd Group (ir	ncluded in above totals)					
layer 3	2	6					
layer 4	2	8				J	
layer 5	2	10				Jania dina	
layer 6	2	12			layer 1		
layer 7	2	14				At ends	
layer 8	2	16					

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - $y_{bs})$

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTENING					
	assumed loss	=	6.00%		
Force per strand at transfer					
	layer 1	=	17.0 kips		
	layer 2	=	17.0 kips		
	layer 3	=	17.0 kips		
	layer 4	=	17.0 kips		
	layer 5	=	17.0 kips		
	layer 6	=	17.0 kips		
	layer 7	=	17.0 kips		
	layer 8	=	17.0 kips		
	layer 9	=	17.0 kips		
	layer 10	=	17.0 kips		
	layer 11	=	17.0 kips		
	layer 12	=	17.0 kips		
	layer 13	=	17.0 kips		
	layer 14	=	17.0 kips		

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

SHRINKAGE Shrinkage = (17-0.15*Relative Humidity) $\Delta f_{pSR} =$ 6.5 ksi assume relative humidity = 70%

CREEP OF CONCRETE Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f_{cgp} 1.590 ksi at midspan at endspan loss due to creep $\Delta f_{pCR} =$ 16.5 ksi 17.8 ksi

RELAXATION OF PRES	TRESS	NG STRANDS	
loss due to relaxation after transfer		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	F	2.9 ksi	2.9 ksi
layer 4	F	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$		2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12			2.9 ksi
layer 13			2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi
	AI IRA	NSFER	
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspar
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	199.9 KSI
layer 7		199.3 ksi	
layer 8	$f_{pt} = f_{pt} =$	199.3 ksi	
layer 9		199.3 ksi	199.9 ksi
layer 10	f _{pt} =	199.3 KSI	199.9 ksi
layer 11	f _{pt} =		199.9 ksi
·	f _{pt} =		
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
force per strand = f _{pt} *strand area		at midspan	at endspar
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
· L			17.0 kips
layer 13	=		17.0 KIPS
	=		17.0 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$	
---	--

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

OK OK OK OK OK OK OK OK OK

tal Losses	layer 1 layer 2 layer 3	$\Delta f_{pT} = \Delta f_{pT} =$	at midspan 41.1 ksi	at endspan 40.5 ksi
	layer 2			
	-		41.1 ksi	40.5 ksi
		$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
ress in tendon after all losses = f_{pi} - Δf_{pt}	ı		at midspan	at endspan
	layer 1	f _{pe} =	172.1 ksi	172.7 ksi
	layer 2	f _{pe} =	172.1 ksi	172.7 ksi
	layer 3	f _{pe} =	172.1 ksi	172.7 ksi
	layer 4	f _{pe} =	172.1 ksi	172.7 ksi
	layer 5	f _{pe} =	172.1 ksi	172.7 ksi
	layer 6	f _{pe} =	172.1 ksi	
	layer 7	f _{pe} =	172.1 ksi	
	layer 8	f _{pe} =	172.1 ksi	170 7 kgi
	layer 9 layer 10	t _{pe} =	172.1 ksi	172.7 ksi 172.7 ksi
	layer 10	f _{pe} =		172.7 ksi
	layer 12	f _{pe} =		172.7 ksi
	layer 12	f _{pe} =		172.7 ksi
	layer 14	f _{pe} =		172.7 ksi
eck prestressing stress limit at service			3*fpv	
ison produceding on ode initial action viso	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	7
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	4
	layer 13	=	205.4 ksi	4
	layer 14	=	205.4 ksi	
rce per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	+
		=	14.6 kips	
	layer 7	_	11 C Lina	
	layer 8	=	14.6 kips	14.7 kins
	layer 8 layer 9	=	14.6 kips 14.6 kips	14.7 kips
	layer 8 layer 9 layer 10	=		14.7 kips
	layer 8 layer 9 layer 10 layer 11	= =		14.7 kips 14.7 kips
	layer 8 layer 9 layer 10	=		14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	936.1 kips	939.4 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE						
Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi				
Tension						
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi				
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi				

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	$M_g =$	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	II	15.30 in		
Eccentricity of the strand group at transfer length:	e _h =	21.36 in		
Eccentricity at end of beam:	e =	21.30 in		

Calcs for eccentricity (see 9.6.7.2)

$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$	f _b =	$=\frac{P_i}{A}+\frac{P_ie}{S_b}-\frac{M_B}{S_b}$		
		at midspan	at endspan	
Top stress at top fiber of beam	$f_t =$	-0.017 ksi	-0.017 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	2.906 ksi	2.906 ksi	ок
STRESSES AT	HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.173 ksi	0.169 ksi	OK
Bottom stress at bottom fiber of the beam	$f_b =$	2.736 ksi	2.621 ksi	ок
STRESSES A	T MIDS	PAN		
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	0.320 ksi	0.345 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	ок
HOLD-DOWN FOR	CES			

assume stress in strand before losses = 0.8f_u

layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	Ш	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	Ш	227.4 ksi
layer 8	=	227.4 ksi
layer 9	=	227.4 ksi
layer 10	Ш	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	Ш	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi		
for deck	=	1.463 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for deck	_	1 950 ksi		

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

STRESSES AT MIDS	PAN	
Compression stresses at top fiber of beam	at midspan	at endspan
$f_1 = \frac{P_{yx}}{A} - \frac{P_{yx}\theta}{S_1} + \frac{(M_y + M_z)}{S_z} + \frac{(M_y + M_z)}{S_z}$	$\frac{M_{w}+M_{s})}{S_{ty}}$	
Due to permanent loads $f_{tg} =$	2.111 ksi	2.109 ksi
$f_{ty} = \frac{P_{yd}}{A} - \frac{P_{yd}\sigma}{S_1} + \frac{(M_X + M_J)}{S_2} + \frac{(M_{yz} - M_J)}{S_2}$	M_b) (M_{M+1})	
$J_{ty} = \frac{1}{A} - \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_3}$		
Due to permanent loads and transient loads $f_{tg} =$	2.585 ksi	2.582 ksi
Compression stresses at top fiber of deck	at midspan	at endspan
$f_{ze} = \frac{(M_{w} + M_{s})}{S_{ze}}$		
Due to permanent loads f _{tc} =	0.044 ksi	0.044 ksi
$f_{tr} = \frac{(M_{to} + M_{b} + M_{zi})}{S_{tr}}$	<u>[41]</u>	
Due to permanent loads and transient loads f _{tc} =	0.502 ksi	0.502 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{12} = \frac{P_{24}}{A} + \frac{P_{24}s}{S_A} - \frac{(M_{21} + M_{2})}{S_A} - \frac{(M_{21} + M_{2})}{S_A}$	$\frac{M_z + 0.8*M_{_{EH}})}{\mathcal{L}_{_{hr}}}$	
	**	

Stre

POSITIVE MOMENT S	ECTION	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	8381.5 ft-kips
fective length factor for compression members		
layer 1	k =	0.27
layer 2	k =	0.27
layer 3	k =	0.27
layer 4	k =	0.27
layer 5	k =	0.27
layer 6	k =	0.27
layer 7	k =	0.27
layer 8	k =	0.27
layer 9	k =	0.27
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	c =	5.6 ft-kips
age stress in prestressing steel		
layer 1	f _{ps} =	278.3 ksi
layer 2	f _{ps} =	278.3 ksi
layer 3	f _{ps} =	278.3 ksi
layer 4	f _{ps} =	278.3 ksi

average stress in	n į	prestressing	stee
-------------------	-----	--------------	------

layer 1	f _{ps} =	278.3 ksi		
layer 2	$f_{ps} =$	278.3 ksi		
layer 3	f _{ps} =	278.3 ksi		
layer 4	$f_{ps} =$	278.3 ksi		
layer 5	$f_{ps} =$	278.3 ksi		
layer 6	$f_{ps} =$	278.3 ksi		
layer 7	$f_{ps} =$	278.3 ksi		
layer 8	$f_{ps} =$	278.3 ksi		
layer 9	$f_{ps} =$	278.3 ksi		
layer 10	$f_{ps} =$	278.3 ksi		
layer 11	$f_{ps} =$	278.3 ksi		
layer 12	f _{ps} =	278.3 ksi		
layer 13	f _{ps} =	278.3 ksi		
layer 14	$f_{ps} =$	278.3 ksi		

nominal flexure resistance

	a =	4.80 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9105.1 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips

NEGATIVE MOMENT SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = -4837.2 ft-kips 5.43 in a = $\Phi M_n =$ 4468.5 ft-kips M=DC+W+LL+IM

M = -2869.7 ft-kips οк οк

NOT OK

ок

Shear Design

= 00.g.:		
CRITICAL SECTION A	AT 0.59	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips
_		
max shear	$V_u =$	405.0 kips
max moment	M _u =	2877.0 ft-kips
Shear depth	d _v =	73.19 in
Applied factored normal force at the section	N _u =	0
Angle of diagonal compressive stresses	θ =	36.00 °
CTD AIN IN ELEVIIDAL TE	MOION	DEINICODOMENIT

STRAIN IN FLEXURAL TENSION REINFORCMENT

£	$rac{W_{\perp}}{d_{\psi}} + 0.5 N_{e} + 0.5 W_{e} \cot \theta + 2$	l _p f _p , —— ≤ 0.002	
- -	$E,A,+E,A_{\mu}$		

resultant compressive stress at centroid effective stress in prestressing strand after all losses

layer 1	f _{po} =	176.9 ksi	177.5 ksi
layer 2	f _{po} =	176.9 ksi	177.5 ksi
layer 3	f _{po} =	176.9 ksi	177.5 ksi
layer 4	f _{po} =	176.9 ksi	177.5 ksi
laver 5	f =	176 9 ksi	

ksi 176.9 ksi layer 6 $f_{po} =$ layer 7 f_{po} = 176.9 ksi layer 8 f_{po} = 176.9 ksi layer 9 f_{po} = 177.5 ksi layer 10 f_{po} = 177.5 ksi layer 11 f_{po} = 177.5 ksi layer 12 f_{po} = 177.5 ksi layer 13 f_{po} = 177.5 ksi

strain in flexural tension

layer 14	f _{po} =		177.5 ksi
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	ε _x =	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{sw} = -0.11 \text{ in}$

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800
Deflection due to live load and impact

= 1.80 in Δ_L = -0.87 in

Deflection due to fire truck

Total Deflection after fire with fire truck

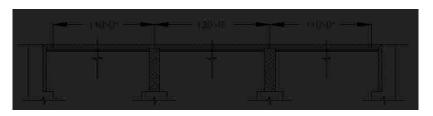
 $\Delta_{L} = -0.7830 \text{ in}$ $\Delta = 2.3818 \text{ in}$

ок

ок

Location: Fire at Critical Negative Moment Sections Beam Design: 3/8" Strand

Fire Exposure Status: 3 Hour



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	3.02 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	7 ksi		
Unit Weight	$w_c =$	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L=	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

PRESTRESSING STI	RANDS	
Diameter of single strand	d =	0.4 in
Area of single strand	A =	0.085 in^2
Temperature of Layer		
layer 1 (bottom)		68.00 °F
layer 2 layer 3	T = T =	68.00 °F 68.00 °F
layer 4	T=	68.00 °F
layer 5	T =	68.00 °F
layer 6	T =	68.00 °F
layer 7	T =	68.00 °F
layer 8	T =	68.00 °F
layer 9	T =	68.00 °F
layer 10 layer 11	T = T =	68.00 °F
layer 12	T =	68.00 °F 68.00 °F
layer 13	T =	68.00 °F
layer 14	T =	68.00 °F
Ultimate Strength	,	
intial = 284 ksi layer 1 (bottom)	$f_{pu} =$	284 ksi
layer 2	f _{pu} =	284 ksi
layer 3	f _{pu} =	284 ksi
layer 4	f _{pu} =	284 ksi
layer 5	f _{pu} =	284 ksi
layer 6	f _{pu} =	284 ksi
layer 7	f _{pu} =	284 ksi
layer 8	f _{pu} =	284 ksi
layer 9	f _{pu} =	284 ksi
layer 10	f _{pu} =	284 ksi
•		
layer 11	f _{pu} =	284 ksi
layer 12	f _{pu} =	284 ksi
layer 13	f _{pu} =	284 ksi
layer 14	f _{pu} =	284 ksi
Yield Strength	f _	257 kgi
intial = 257 ksi layer 1 (bottom)	f _{py} =	257 ksi
layer 2	f _{py} =	257 ksi
layer 3	f _{py} =	257 ksi
layer 4	f _{py} =	257 ksi
layer 5	f _{py} =	257 ksi
layer 6	f _{py} =	257 ksi
layer 7	f _{py} =	257 ksi
layer 8	f _{py} =	257 ksi
layer 9	f _{py} =	257 ksi
layer 10	f _{py} =	257 ksi
layer 11	$f_{py} =$	257 ksi
layer 12	f _{py} =	257 ksi
layer 13	f _{py} =	257 ksi
layer 14	f _{py} =	257 ksi
Stress Limits:	,	
before transfer ≤ 0.75f _{pu} (initial = 213.2)		
layer 1 (bottom)	f _{pi} =	213.2 ksi
layer 2	f _{pi} =	213.2 ksi
layer 3	f _{pi} =	213.2 ksi
layer 4	f _{pi} =	213.2 ksi
layer 5	f _{pi} =	213.2 ksi
layer 6	f _{pi} =	213.2 ksi
layer 7	f _{pi} =	213.2 ksi
layer 8	f _{pi} =	213.2 ksi
layer 9	f _{pi} =	213.2 ksi
layer 10	f _{pi} =	213.2 ksi
layer 10		
	f _{pi} =	213.2 ksi
layer 12	f _{pi} =	213.2 ksi
	f _{pi} =	213.2 ksi
layer 13 layer 14	f _{pi} =	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

	,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

yer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

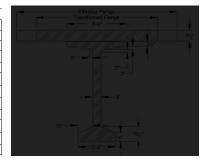
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	48.0 ksi	1300.00 °F

Modulus of Elasticity

Layer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)


Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2
· · · · · · · · · · · · · · · · · · ·		

Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3332 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6568
Transformed flange width	=	72.9 in
Transformed flange area	=	546.8 in^2
Transformed haunch width	=	27.6 in
Transformed haunch area	=	13.8 in^2
Deck-distance to top fiber	$y_t =$	5.62 in

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	194,666 in^4	539,947 in^4	734,613 in^4
Haunch	13.8 in^2	72.25 in	996.6 in^3	5,363 in^4	0.29 in^4	5,364 in^4
Deck	546.8 in^2	74.38 in	40,671.9 in^3	261,033 in^4	873 in^4	261,905 in^4
Total	1327.6 in^2		69,740.7 in^3			1,001,882 in^4

Total area of Composite Section	A _c =	1328 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,001,882 in^4
Distance from centroid to extreme $\underline{\text{bottom}}$ fiber of beam	y _{bc} =	52.53 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	19.47 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	27.47 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,072.2 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	51,460.9 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	55,529.3 in^3

COMPOSITE BEAM AT ENDSPAN

· · · · · · · · · · · · · · · · · · ·		••
Effective Flange Width	$b_f =$	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6568
Transformed flange width	=	70.0 in
Transformed flange area	=	525.1 in^2
Transformed haunch width	Ш	27.6 in
Transformed haunch area	=	13.8 in^2
Deck-distance to top fiber	y _{td} =	5.62 in

*min of three criteria

	Transformed Area	yt	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	256,088 in^4	539,947 in^4	796,035 in^4
Haunch	13.8 in^2	72.25 in	996.6 in^3	4,605 in^4	0.29 in^4	4,606 in^4
Deck	525.1 in^2	78.12 in	41,023.7 in^3	175,334 in^4	840 in^4	176,174 in^4
Total	1305.9 in^2		70.092.5 in^3			976.814 in^4

Total area of Composite Section	A _c =	1306 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	976,814 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,199.6 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	53,297.6 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	37,102.4 in^3

Shear Forces and Bending Moments

'y	M. OILICITES	
	DEADLOADS	

Beam self-weight	W _{beam} =	0.799 k/f
8 in. deck weight	w _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1			7
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	ОК	
Cross-section of the bridge is consistent with one of the cross		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
D Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	ОК
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.5225
Longitudinal stiffness parameter	K _g =	2,657,855.22 in^4

at center span:

$$DFM = 0.75 \mid \left(\frac{S}{9.5}\right)^{16} * \left(\frac{S}{I}\right)^{12} * \left(\frac{K_F}{12 * L * K_s^2}\right)^{0.1}$$

$$DFM = \begin{vmatrix} 0.916 \text{ lanes/beam} \end{vmatrix}$$

0.905 Controls

1.082 Controls

one design lane loaded:

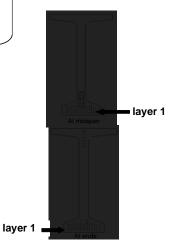
$$DFM = 0.75 + \left(\frac{S}{.4}\right)^{0.4} + \left(\frac{S}{L}\right)^{0.5} + \left(\frac{K_g}{.2 + L + L_s^3}\right)^{0.1}$$

DFM = 0.621 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFY = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

At Midspan		At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
	nd Group (in	cluded in above totals)		
layer 3	2	6		·
layer 4	2	8		·
layer 5	2	10		·
layer 6	2	12		·
layer 7	2	14		·
laver 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

EL	ASTIC SHORTE	NING	
	assumed loss	=	6.00%
Force per strand at transfer	•		
	layer 1	=	17.0 kips
	layer 2	=	17.0 kips
	layer 3	=	17.0 kips
	layer 4	=	17.0 kips
	layer 5	=	17.0 kips
	layer 6	=	17.0 kips
	layer 7	=	17.0 kips
	layer 8	=	17.0 kips
	layer 9	=	17.0 kips
	layer 10	=	17.0 kips
	layer 11	=	17.0 kips
	layer 12	=	17.0 kips
	layer 13	=	17.0 kips
	layer 14	=	17.0 kips

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

SHRINKAGE

Shrinkage = (17-0.15*Relative Humidity) $\Delta f_{pSR} = 6.5 \text{ ksi}$ assume relative humidity = 70%

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cpp}		1.592 ksi		
•		at midspan	at endspan	
loss due to creen	$\Delta f_{nCR} =$	17 8 ksi	16.5 ksi	

RELAXATION OF PRES oss due to relaxation after transfer		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10			2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi
TOTAL LOSSES	. AT TD /	MEEED	
TOTAL LOSSES	ALIKA	ANSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$		at midanan	at andones
ress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$ layer 1	f . –	at midspan 199.3 ksi	at endspan 199.9 ksi
layer 2	$f_{pt} = f_{pt} =$	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	$f_{pt} =$		199.9 ksi
layer 11	$f_{pt} =$		199.9 ksi
layer 12	$f_{pt} =$		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
orce per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4 layer 5	=	16.9 kips 16.9 kips	17.0 kips 17.0 kips
layer 6		16.9 kips	17.0 Kips
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
nitial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	0.001
	% =	6.5%	6.2%
layer 9			6.2%
layer 10	% =		6.00/
layer 10 layer 11	% =		6.2%
layer 10			6.2% 6.2% 6.2%

OK OK OK OK OK OK OK OK

ок

OK OK

TOTAL LOSSE Total Losses			at midspan	at endspan
	yer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	yer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	yer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	yer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	ver 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	yer 6	$\Delta f_{pT} =$	41.1 ksi	1010 1101
	yer 7	Δf _{pT} =	41.1 ksi	
	yer 8	$\Delta f_{pT} =$	41.1 ksi	
	yer 9	$\Delta f_{DT} =$	41.1 ksi	40.5 ksi
	er 10	$\Delta f_{pT} =$		40.5 ksi
	er 11	$\Delta f_{pT} =$		40.5 ksi
•	er 12	$\Delta f_{pT} =$		40.5 ksi
•	er 13	$\Delta f_{pT} =$		40.5 ksi
	er 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	٠ [—-рі	at midspan	at endspan
	yer 1	f _{pe} =	172.1 ksi	172.7 ksi
	yer 2	f _{pe} =	172.1 ksi	172.7 ksi
	yer 3	f _{pe} =	172.1 ksi	172.7 ksi
	yer 4	f _{pe} =	172.1 ksi	172.7 ksi
	yer 5	f _{pe} =	172.1 ksi	172.7 ksi
	yer 6	f _{pe} =	172.1 ksi	
	yer 7	f _{pe} =	172.1 ksi	
	yer 8	f _{pe} =	172.1 ksi	
	ver 9	f _{pe} =	172.1 ksi	172.7 ksi
	er 10	f _{pe} =	17211101	172.7 ksi
	er 11	f _{pe} =		172.7 ksi
•	er 12	f _{pe} =		172.7 ksi
	er 13	f _{pe} =		172.7 ksi
	er 14	f _{pe} =		172.7 ksi
check prestressing stress limit at service limit			3*fpv	
	yer 1	=	205.4 ksi	
	yer 2	=	205.4 ksi	
	yer 3	=	205.4 ksi	
	yer 4	=	205.4 ksi	
	yer 5	=	205.4 ksi	
	yer 6	=	205.4 ksi	
	yer 7	=	205.4 ksi	
	yer 8	=	205.4 ksi	
	yer 9	=	205.4 ksi	
lay	· .			
,	er ro	=	205.4 ksi	
lav	- H	=	205.4 ksi	
	er 11		205.4 ksi 205.4 ksi	
layı	er 11 er 12	=	205.4 ksi 205.4 ksi 205.4 ksi	
layı layı	er 11 er 12 er 13	= = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	
layı layı layı	er 11 er 12	=	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi	at endsnan
layı layı layı force per strand = f _{pa} *strand area	er 11 er 12 er 13 er 14	= = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan	at endspan
layı layı layı force per strand = f _{pe} *strand area la	er 11 er 12 er 13 er 14 yer 1	= = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips	14.7 kips
layı layı layı force per strand = f _{pe} *strand area la la	er 11 er 12 er 13 er 14 yer 1 yer 2	= = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips	14.7 kips 14.7 kips
layı layı layı force per strand = f _{pe} *strand area la la la	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 3	= = = = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips
layi layi force per strand = f _{pe} *strand area la la la	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 3 yer 4	= = = = = = = = = = = = = = = = = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips
layi layi layi force per strand = f _{pe} *strand area la la la la	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 2 yer 3 yer 4	= = = = = = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips
layı layı force per strand = f _{pe} *strand area la la la la la	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 3 yer 4 yer 5 yer 6	= = = = = = = = = = = = = = = = = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips
layı layı force per strand = f _{pe} *strand area la la la la la la	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 3 yer 4 yer 5 yer 6 yer 7	= = = = = = = = = = = = = = = = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips
layı layı force per strand = f _{pe} *strand area la la la la la la la	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 3 yer 4 yer 5 yer 6 yer 7	= = = = = = = = = = = = = = = = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layı layı force per strand = f _{pe} "strand area la la la la la la la la la	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 3 yer 4 yer 5 yer 6 yer 7 yer 8 yer 9	= = = = = = = = = = = = = = = = = = = =	205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layi layi force per strand = f _{pe} *strand area la la la la la la la layi	er 11 er 12 er 13 er 14 yer 1 yer 2 yer 3 yer 4 yer 5 yer 6 yer 7 yer 8 yer 9 er 10		205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layi layi layi force per strand = f _{pe} *strand area la la la la la layi layi	er 11 er 12 er 13 er 14 yer 1 yyer 2 yyer 3 yyer 4 yyer 5 yyer 6 yyer 7 yyer 8 yyer 9 er 10 er 11		205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layi layi layi force per strand = f _{pe} *strand area la la la layi layi layi layi	er 11 er 12 er 13 er 14 yer 1 yer 2 yyer 3 yyer 4 yyer 5 yyer 6 yyer 6 yyer 7 yer 8 yyer 9 er 10 er 11		205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layi layi layi force per strand = f _{pe} *strand area la la la la layi layi layi layi	er 11 er 12 er 13 er 14 yer 1 yyer 2 yyer 3 yyer 4 yyer 5 yyer 6 yyer 7 yyer 8 yyer 9 er 10 er 11		205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi 205.4 ksi at midspan 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	936.1 kips	939.4 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*\f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	$M_g =$	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	II	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	II	15.30 in		
Eccentricity of the strand group at transfer length:	e _h =	21.36 in		
Eccentricity at end of beam:	e =	21.30 in		

 $f_{i} = \frac{P_{i}}{A} - \frac{P_{i}e}{S_{i}} + \frac{M_{s}}{S_{r}} \qquad \qquad f_{b} = \frac{P_{i}}{A} + \frac{P_{i}e}{S_{b}} - \frac{M_{s}}{S_{b}}$ $\text{at midspan} \qquad \text{at endspan}$ $\text{Top stress at top fiber of beam} \qquad f_{t} = \qquad -0.017 \text{ ksi} \qquad -0.017 \text{ ksi}$ $\text{Bottom stress at bottom fiber of the beam} \qquad f_{b} = \qquad 2.906 \text{ ksi} \qquad 2.906 \text{ ksi}$

Calcs for eccentricity (see 9.6.7.2)

ок

ок

οк

ок

assume stress in strand before losses = 0.8f_u

layer 1	II	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	=	227.4 ksi
layer 9	II	227.4 ksi
layer 10	II	227.4 ksi
layer 11	=	227.4 ksi
layer 12	II	227.4 ksi
layer 13	=	227.4 ksi
layer 14	-	227.4 ksi

prestress force per strand before any losses:

layer 1	II	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	30.45 kips
	= = = = = = = = = = = = = = = = = = = =

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi	
for deck	=	1.359 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	4.200 ksi	
for deck	=	1 812 ksi	

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

STRESSES AT	MIDSPAN	
Compression stresses at top fiber of beam	at midspan	at endspan
$f_i = \frac{P_{ps}}{A} - \frac{P_{ps}\theta}{S_i} + \frac{(M_g + b\theta)}{S_t}$	$\frac{\langle M_{yy} + M_{z} \rangle}{S_{ty}} + \frac{\langle M_{yy} + M_{z} \rangle}{S_{ty}}$	
Due to permanent loads	f _{tg} = 2.113 ksi	2.111 ksi
$P_{\mu} = P_{\mu} \sigma - (M_{\pi} + M_{s})$	$(M_{m}-M_b) \cdot (M_{H+1})$	
$f_{ty} = \frac{P_{yt}}{A} - \frac{P_{yt}o}{S_t} + \frac{(M_x + M_y)}{S_t} + \frac{1}{S_t}$		
Due to permanent loads and transient loads	f _{tg} = 2.606 ksi	2.604 ksi
Compression stresses at top fiber of deck	at midspan	at endspan
$f_{ts} = \frac{(M_{us})}{S}$	te	
Due to permanent loads	$f_{tc} = 0.043 \text{ ksi}$	0.043 ksi
$f_{tr} = \frac{(M_{w} + M_{b})}{S_{b}}$	+ M _{II+1})	
Due to permanent loads and transient loads	f _{tc} = 0.500 ksi	0.500 ksi
Tension stresses at top fiber of deck	at midspan	at endspan
$f_{1g} = \frac{P_{gg}}{A} + \frac{P_{gg}s}{S_b} - \frac{(M_g + M_g)}{S_b} - \frac{C}{S_b}$	$\frac{M_{\pi_1} + M_2 + 0.8*M_{H,1}}{\sigma}$	
		-0.834 ksi
Load Combination Service III	$f_b = -0.845 \text{ ksi}$	-0.034 KSI

Strength Limit State

POSITIVE MOMENT S	ECTION		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	6.1 ft-kips	
average stress in prestressing steel			
layer 1	$f_{ps} =$	277.9 ksi	
layer 2	$f_{ps} =$	277.9 ksi	
layer 3	$f_{ps} =$	277.9 ksi	
layer 4	$f_{ps} =$	277.9 ksi	
layer 5	$f_{ps} =$	277.9 ksi	
layer 6	$f_{ps} =$	277.9 ksi	
layer 7	$f_{ps} =$	277.9 ksi	
layer 8	$f_{ps} =$	277.9 ksi	
layer 9	$f_{ps} =$	277.9 ksi	
layer 10	$f_{ps} =$	277.9 ksi	
layer 11	$f_{ps} =$	277.9 ksi	
layer 12	$f_{ps} =$	277.9 ksi	
layer 13	$f_{ps} =$	277.9 ksi	
layer 14	$f_{ps} =$	277.9 ksi	
nominal flexure resistance			
	a =	5.16 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9068.2 ft-kips	OK
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S	ECTION		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-4837.2 ft-kips	
	a =	4.99 in	
	ФМ _п =	4115.5 ft-kips	NOT C
M=DC+W+LL+IM	M =	-2869.7 ft-kips	ок

Shear Design

.ca. 2 co.g.:				
CRITICAL SECTION A	AT 0.59			
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
_				
max shear	$V_u =$	405.0 kips		
max moment	M _u =	2877.0 ft-kips		
Shear depth	d _v =	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00 °		
CTD AIN IN ELEVIIDAL TE	MOION	DEINICODOMENIT		

STRAIN IN FLEXURAL TENSION REINFORCMENT

E — .	$\frac{M_{\perp}}{d_{\gamma}} + 0.5M_{c} + 0.5$	$V_{\mu}\cot heta$ $A_{\mu u}$	" " — ≤ 3.002		
- -	E, A, +	$E_{\mu}A_{\mu}$			

resultant compressive stress at centroid effective stress in prestressing strand after all los

at midspan at endspan f_{pc} = 0.946 ksi 0.948 ksi

i all losse		
layer 1	f _{po} =	176.9 ksi

un ioooc	,0		
layer 1	f _{po} =	176.9 ksi	177.5 ksi
layer 2	f _{po} =	176.9 ksi	177.5 ksi
layer 3	f _{po} =	176.9 ksi	177.5 ksi
layer 4	f _{po} =	176.9 ksi	177.5 ksi
layer 5	f _{po} =	176.9 ksi	
layer 6	f _{po} =	176.9 ksi	
layer 7	f _{po} =	176.9 ksi	
layer 8	f _{po} =	176.9 ksi	
layer 9	f _{po} =		177.5 ksi
layer 10	$f_{po} =$		177.5 ksi
layer 11	f _{po} =		177.5 ksi
layer 12	f _{po} =		177.5 ksi
layer 13	f _{po} =		177.5 ksi
layer 14	f _{po} =		177.5 ksi
		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000

strain in flexural tension

layer 14	I _{po} =		177.5 KSI
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

Total Deflection at transfer Total Deflection at erection

1.79 in 1.81 in Δ= Δ = 3.24 in 3.27 in

Live load deflection limit = span/800 Deflection due to live load and impact

1.80 in -0.89 in $\Delta_L =$

Deflection due to fire truck

Δ_I = -0.7986 in 2.3663 in Δ=

Total Deflection after fire with fire truck

ок ок

Location: Fire at Critical Negative Moment Sections Beam Design: 3/8" Strand

Fire Exposure Status: 4 Hour

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	8.0 in		
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	2.83 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE						
Strength at release	f'ci =	5.5 ksi				
Strength at 28 days	f'c =	7 ksi				
Unit Weight	w _c =	150.0 pcf				
Overall Beam Length:						
@ end spans L = 110 ft						
@ center span	L =	119 ft				
Design Spans:						
Non-composite beam @ end spans	L =	109 ft				
Non-composite beam @ center span	L =	118 ft				
Composite beam @ end spans	L =	110 ft				
Composite beam @ center span	L =	120 ft				
Beam Spacing	S =	12 ft				

	PRESTRESSING ST	RANDS	
Di	ameter of single strand	d =	0.4 in
Town or at use of Lover	Area of single strand	A =	0.085 in^2
Temperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6 layer 7	T = T =	68.00 °F 68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12 layer 13	T = T =	68.00 °F 68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength	iayo. 1 i		00.00
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength		,	
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	ial 242.2\		
before transfer ≤ 0.75f _{pu} (init			040.01.1
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13 layer 14	f _{pi} =	213.2 ksi 213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

	,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

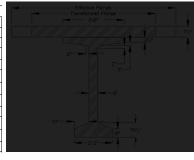
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	100.00 °F
Layer 2 (Top)	f _y =	44.4 ksi	1430.00 °F

Modulus of Elasticity

Layer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)


Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2

Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	y _t =	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$				
cast-in-place concrete deck	$E_{cs} =$	3225 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6358
Transformed flange width	=	70.6 in
Transformed flange area	=	529.3 in^2
Transformed haunch width	ш	26.7 in
Transformed haunch area	=	13.4 in^2
Deck-distance to top fiber	$y_t =$	5.83 in

*min of three criteria

	Transformed Area	у _ь	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b^{)2}$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	185,416 in^4	539,947 in^4	725,363 in^4
Haunch	13.4 in^2	72.25 in	964.7 in^3	5,396 in^4	0.28 in^4	5,396 in^4
Deck	529.3 in^2	74.17 in	39,260.6 in^3	256,709 in^4	692 in^4	257,400 in^4
Total	1309.7 in^2		68,297.5 in^3			988,159 in^4

Total area of Composite Section	A _c =	1310 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	988,159 in^4
Distance from centroid to extreme $\underline{\text{bottom}}$ fiber of beam	y _{bc} =	52.15 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	19.85 in
Distance from centroid to extreme top fiber of slab	$y_{tc} =$	27.85 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,949.1 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	49,776.4 in^3
Section modulus for the extreme \underline{top} fiber slab	$S_{tc} =$	55,799.1 in^3

COMPOSITE BEAM AT ENDSPAN

COMIT COLLE DEAM AT	LINDOI A	uv
Effective Flange Width	$b_f =$	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6358
Transformed flange width	=	67.8 in
Transformed flange area	=	508.3 in^2
Transformed haunch width	=	26.7 in
Transformed haunch area	=	13.4 in^2
Deck-distance to top fiber	y _{td} =	5.83 in

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	249,350 in^4	539,947 in^4	789,297 in^4
Haunch	13.4 in^2	72.25 in	964.7 in^3	4,341 in^4	0.28 in^4	4,341 in^4
Deck	508.3 in^2	78.33 in	39,819.0 in^3	165,263 in^4	666 in^4	165,929 in^4
Total	1288 7 in^2		68 856 0 in^3			959 567 in^4

Total area of Composite Section	A _c =	1289 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	959,567 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.43 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.57 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.57 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	17,959.2 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	51,674.2 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	36,115.3 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	W _{beam} =	0.799 k/f
8 in. deck weight		1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	ОК
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
LRFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.5727
Longitudinal stiffness parameter	K _g =	2,745,627.23 in^4

at center span: $DFM = 3.75 \cdot \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{F}\right)^{0.2} * \left(\frac{K_F}{-2^{\frac{44}{5}}F^{\frac{14}{5}}F^{\frac{3}{5}}}\right)^{0.1}$ | DFM = | 0.919 | lanes/beam

0.905 Controls

$$DFM = 0.75 + \left(\frac{S}{.4}\right)^{0.4} + \left(\frac{S}{L}\right)^{0.3} + \left(\frac{K_g}{.2*L*t_s^3}\right)^{0.1}$$

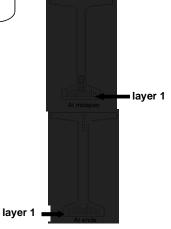
$$DFM = 0.623 \text{ lanes/beam}$$

Distribution Factor for Shear Force

both end spans and center span:

$$DFY = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam


1.082 Controls

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
•	64	•	64	
Harped Stra	ind Group (ir	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth

strand eccentricity at midspan = (y_b-y_{bs})

$y_{bs} =$	5.44 in
e _c =	31.16 in

ELASTIC SHORTEI	NING		_	
assumed loss	=	6.00%		
Force per strand at transfer			_	
layer 1	=	17.0 kips		
layer 2	=	17.0 kips		
layer 3	=	17.0 kips		
layer 4	=	17.0 kips		
layer 5	=	17.0 kips		
layer 6	=	17.0 kips		
layer 7	=	17.0 kips		
layer 8	=	17.0 kips		
layer 9	=	17.0 kips		
layer 10	=	17.0 kips		
layer 11	=	17.0 kips		
layer 12	=	17.0 kips		
layer 13	=	17.0 kips		
layer 14	=	17.0 kips		
		at midspan	at endspan	
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{DES} =$	13.9 ksi	13.3 ksi	
			40011	
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi	
layer 2 layer 3	$\Delta f_{pES} = $ $\Delta f_{pES} = $	13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi	
- I	$\Delta f_{pES} =$			
layer 3		13.9 ksi	13.3 ksi	
layer 3 layer 4 layer 5	$\Delta f_{pES} = \Delta f_{pES} = 0$	13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi	- - -
layer 3 layer 4 layer 5	$\Delta f_{pES} = $ $\Delta f_{pES} = $ $\Delta f_{pES} = $	13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi	-
layer 3 layer 4 layer 5 layer 6	$\Delta f_{pES} =$ $\Delta f_{pES} =$ $\Delta f_{pES} =$ $\Delta f_{pES} =$ $\Delta f_{pES} =$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi	- - - - -
layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ \end{split}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi	-
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{split} &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ \end{split}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi 13.3 ksi	- - - - - - -
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{split} &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ &\Delta f_{pES} = \\ \end{split}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi	
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{split} & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ & \Delta f_{pES} = \\ \end{split}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi	
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi	
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 11	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi	
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi	
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 13	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi	

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as $f_{\rm cgp}$	$\Delta f_{cdn} =$	1.594 ksi		
		at midspan	at endspan	
loss due to creep	$\Delta f_{pCR} =$	17.8 ksi	16.5 ksi	

RELAXATION OF PRES	IKESSI		
oss due to relaxation after transfer	A.f.	at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi 2.9 ksi	2 0 kgi
layer 9 layer 10	$\Delta f_{pR2} =$	2.9 KSI	2.9 ksi 2.9 ksi
layer 11	$\Delta f_{pR2} = $ $\Delta f_{pR2} = $		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi
layer 14	Δi _{pR2} –		2.5 KSI
TOTAL LOSSES	AT TRA	NSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$			
tress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
orce per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
nitial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =	<u> </u>	6.2%
layer 11	% =		6.2%
layer 12	% =	<u> </u>	6.2%
layer 12			
layer 13	% =		6.2%

OK OK OK OK OK OK OK OK OK

TOTAL LOSSES	AI JENVI		-4 1
Total Losses		at midspan	at endspan
layer		41.1 ksi	40.5 ksi
layer		41.1 ksi	40.5 ksi
layer		41.1 ksi	40.5 ksi
layer		41.1 ksi	40.5 ksi
layer		41.1 ksi	40.5 ksi
layer		41.1 ksi	
layer		41.1 ksi	
layer		41.1 ksi	
layer		41.1 ksi	40.5 ksi
layer 1			40.5 ksi
layer 1			40.5 ksi
layer 1	F -		40.5 ksi
layer 1			40.5 ksi
layer 1	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer		172.1 ksi	172.7 ksi
layer		172.1 ksi	172.7 ksi
layer		172.1 ksi	172.7 ksi
layer		172.1 ksi	172.7 ksi
layer		172.1 ksi	172.7 ksi
layer		172.1 ksi	
layer	F	172.1 ksi	
layer	F	172.1 ksi	
layer	9 f _{pe} =	172.1 ksi	172.7 ksi
layer 1	0 f _{pe} =		172.7 ksi
layer 1	1 f _{pe} =		172.7 ksi
layer 1	2 f _{pe} =		172.7 ksi
layer 1	3 f _{pe} =		172.7 ksi
layer 1			172.7 ksi
check prestressing stress limit at service limit sta			
layer		205.4 ksi	
layer		205.4 ksi	
layer		205.4 ksi	
layer	4 =	205.4 ksi	
layer	5 =	205.4 ksi	
layer	6 =	205.4 ksi	
layer		205.4 ksi	
layer		205.4 ksi	
layer		205.4 ksi	
layer 1		205.4 ksi	
layer 1	1 =	205.4 ksi	
layer 1	2 =	205.4 ksi	
layer 1	3 =	205.4 ksi	
layer 1	4 =	205.4 ksi	
orce per strand = f _{pe} *strand area		at midspan	at endspan
layer	1 =	14.6 kips	14.7 kips
layer	2 =	14.6 kips	14.7 kips
layer		14.6 kips	14.7 kips
layer		14.6 kips	14.7 kips
layer	5 =	14.6 kips	14.7 kips
layer	6 =	14.6 kips	
layer	7 =	14.6 kips	
layer	8 =	14.6 kips	
layer	9 =	14.6 kips	14.7 kips
layer 1	0 =		14.7 kips
			14.7 kips
layer 1	1 =		
· · · · · · · · · · · · · · · · · · ·			14.7 kips
layer 1	2 =		

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	936.2 kips	939.5 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR C	ONCRET	Έ
Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi

STRESSES AT TRANSFER LE	NGTH S	ECTION
Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	-	15.30 in
Eccentricity of the strand group at transfer length:	$e_h =$	21.36 in
Eccentricity at end of beam:	e =	21.30 in

Calcs for eccentricity (see 9.6.7.2)

_		21.00 111	0 -	Ecocitiioity at ond of boain.
		$=\frac{P_2}{A}+\frac{P_2\sigma}{S_3}-\frac{M_S}{S_3}$	f _a =	$f_t' = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_r}$
1	at endspan	at midspan		
ок	-0.017 ksi	-0.017 ksi	f _t =	Top stress at top fiber of beam
OK	2.906 ksi	2.906 ksi	f _b =	Bottom stress at bottom fiber of the beam
_		POINT	HARP	STRESSES AT
=		1188.0 ft-kips	$M_g =$	Bending moment due to beam weight at 0.3L
OH	0.169 ksi	0.173 ksi	$f_t =$	Top stress at top fiber of beam
OH	2.621 ksi	2.736 ksi	f _b =	Bottom stress at bottom fiber of the beam
=		PAN	AT MIDS	STRESSES A
		1414.3 ft-kips	$M_g =$	Bending moment due to beam weight at 0.5L
OK	0.345 ksi	0.320 ksi	$f_t =$	Top stress at top fiber of beam
OF	2.438 ksi	2.554 ksi	f _b =	Bottom stress at bottom fiber of the beam
			CES	HOLD-DOWN FOR
	_			

assume stress in strand before losses = 0.8f_u

layer 1	ш	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	=	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	=	227.4 ksi
layer 9	=	227.4 ksi
layer 10	II	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
arp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	II	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	II	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.274 ksi
Due to permanent and transient loads for I	oad comb	ination Service I
for the precast beam	=	4.200 ksi
for deck	=	1.698 ksi

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MIDS	SPAN .	
Compression stresses at top fiber of beam	at midspan	at endspan
$f_1 = \frac{F_{ga}}{A} - \frac{F_{ga}\theta}{S_t} + \frac{(M_g + M_s)}{S_t} + \frac{1}{2}$	$rac{(M_{ws}+M_{s})}{S_{tg}}$	
Due to permanent loads $f_{tg} =$	2.114 ksi	2.112 ksi
$f_{ty} = \frac{P_M}{A} - \frac{P_{MS}}{S_x} + \frac{(M_x + M_s)}{S_x} + \frac{(M_{xx} - M_s)}{S_x}$	$(M_B) (M_{H+1})$	
$J_{ig} = \frac{1}{A} = \frac{1}{S_i} + \frac{1}{S_i} = \frac{1}{S_i}$	<u> </u>	
Due to permanent loads and transient loads f _{tq} =	2.624 ksi	2.622 ksi
Compression stresses at top fiber of deck	at midspan	at endspan
$f_{ts} = \frac{(M_{vo} + M)}{S_{ts}}$	<u>,)</u>	
Due to permanent loads $f_{tc} =$	0.043 ksi	0.043 ksi
$f_{tr} = \frac{(M_{us} + M_b + M_b)}{S_{tr}}$	_{(Z+1})	
Due to permanent loads and transient loads $f_{tc} =$	0.498 ksi	0.498 ksi
Tension stresses at top fiber of deck	at midspan	at endspan
$J_{ty} = \frac{P_{pt}}{A} + \frac{P_{pt}\theta}{S_b} - \frac{(M_y + M_y)}{S_b} - \frac{(M_{ty} + M_y)}{S_b}$	$\frac{M_0 + 0.8^{\infty} M_{Hal})}{S_{br}}$	
Load Combination Service III f _b =	-0.852 ksi	-0.841 ksi

Strength Lin	11t	State
--------------	-----	-------

trength Limit State		
POSITIVE MOMENT S		
M _u = 1.25DC+1.5DW+1.75(LL+IM)	$M_u =$	8381.5 ft-kips
effective length factor for compression members		
layer 1	k =	0.27
layer 2	k =	0.27
layer 3	k =	0.27
layer 4	k =	0.27
layer 5	k =	0.27
layer 6	k =	0.27
layer 7	k =	0.27
layer 8	k =	0.27
layer 9	k =	0.27
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	c =	6.5 ft-kips
average stress in prestressing steel		
layer 1	f _{ps} =	277.5 ksi
layer 2	f _{ps} =	277.5 ksi
layer 3	f _{ps} =	277.5 ksi
layer 4	f _{ps} =	277.5 ksi
layer 5	f _{ps} =	277.5 ksi
layer 6	f _{ps} =	277.5 ksi
layer 7	f _{ps} =	277.5 ksi
layer 8	f _{ps} =	277.5 ksi
layer 9	f _{ps} =	277.5 ksi
layer 10	f _{ps} =	277.5 ksi
layer 11	f _{ps} =	277.5 ksi
layer 12	f _{ps} =	277.5 ksi
layer 13	f _{ps} =	277.5 ksi
layer 14	f _{ps} =	277.5 ksi
nominal flexure resistance		
	a =	5.50 in
$M_r = \Phi M_n$, $\Phi = 1.00$	ФМ _п =	9033.5 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips
NEGATIVE MOMENT S		5555.0 It htps
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips
	a =	4.70 in
	ΦM ₀ =	3876.2 ft-kips
M=DC+W+LL+IM	M =	-2869.7 ft-kips

Shear Design

near Besign				
CRITICAL SECTION AT 0.59				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00°		
OTD AIN IN ELEVIDAL TE		DEILIEGEGMENIT		

STRAIN IN FLEXURAL TENSION REINFORCMENT

e	$\frac{M_{\perp}}{d_{\nu}} + 0.5M_{\nu} + 0.5M_{\nu} \cot \theta$	4 _{p.} ./ _{p.}
- - -	$E_1A_1+E_2A_m$	20,002

resultant compressive stress at centroid effective stress in prestressing strand after all los

all losse	S		
layer 1	f _{po} =	177.0 ksi	177.6 ksi
layer 2	f _{po} =	177.0 ksi	177.6 ksi
laver 3	foo =	177 0 ksi	177 6 ksi

177.0 ksi layer 4 f_{po} = 177.6 ksi layer 5 f_{po} = 177.0 ksi 177.0 ksi layer 6 $f_{po} =$ layer 7 f_{po} = 177.0 ksi layer 8 f_{po} = 177.0 ksi layer 9 $f_{po} =$ 177.6 ksi layer 10 f_{po} = 177.6 ksi layer 11 f_{po} = 177.6 ksi layer 12 f_{po} = 177.6 ksi layer 13 f_{po} = 177.6 ksi

strain in flexural tension

layer 14	f _{po} =		177.6 ksi
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	ε _x =	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{\text{sw}} = -0.11 \text{ in}$

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800
Deflection due to live load and impact

= 1.80 in Δ_L = -0.90 in

Deflection due to fire truck

Total Deflection after fire with fire truck

 $\Delta_{L} = -0.8130 \text{ in}$ $\Delta = 2.3519 \text{ in}$

ок

οк

Location: Fire above Deck Between Girders

Beam Design: 1/2" Strand
Fire Exposure Status: Undamaged

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	4.00 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE Strength at release f'ci = 5.5 ksi Strength at 28 days f'c = 7 ksi Unit Weight W_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L= @ center span 119 ft L = Design Spans: 109 ft Non-composite beam @ end spans Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span 120 ft Beam Spacing 12 ft

	PRESTRESSING STR		
D	iameter of single strand	d =	0.5 in
omporature of Layer	Area of single strand	A =	0.153 in^2
emperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	<u>T =</u>	68.00 °F
	layer 8	T = T =	68.00 °F 68.00 °F
	layer 9 layer 10	T=	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	г		
intial = 277 ksi	layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	$f_{pu} =$	277 ksi
	layer 4	$f_{pu} =$	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13		277 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{pu} =	
d Strength	layer 14	f _{pu} =	277 ksi
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
.mar = 200 Nor	layer 1 (bottom)	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4		250 ksi
	· · · · · ·	f _{py} =	
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	$f_{py} =$	250 ksi
	layer 11	$f_{py} =$	250 ksi
	layer 12	$f_{py} =$	250 ksi
	layer 13	$f_{py} =$	250 ksi
	layer 14	$f_{py} =$	250 ksi
s Limits:			
e transfer ≤ 0.75f _{pu} (initi			
	layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	$f_{pi} =$	207.6 ksi
	layer 3	$f_{pi} =$	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	
			207.6 ksi
	layer 13	$f_{pi} =$	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

ру (,	
er 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	$f_{pe} =$	199.7 ksi
layer 3	$f_{pe} =$	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	$f_{pe} =$	199.7 ksi
layer 6	$f_{pe} =$	199.7 ksi
layer 7	$f_{pe} =$	199.7 ksi
layer 8	$f_{pe} =$	199.7 ksi
layer 9	$f_{pe} =$	199.7 ksi
layer 10	$f_{pe} =$	199.7 ksi
layer 11	$f_{pe} =$	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	$f_{pe} =$	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

MILD STEEL REINFORCING BARS

Yield Strength

ayer 1 (Bottom)	$f_y =$	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	60.0 ksi	68.00 °F

29000.0 ksi

Modulus of Elasticity

Layer 1 (Bottom)

(Bottom)		
Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2

E =

Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

ross-sectional Properties				
NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7559
Transformed flange width	II	83.9 in
Transformed flange area	II	629.3 in^2
Transformed haunch width	=	31.7 in
Transformed haunch area	=	15.9 in^2

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412 2 in^2		77 204 1 in^3			1 091 315 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,315 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	56,994.5 in^3

DECK (as 12" beam)

	D=0.1 (40 .2 500	,			
Reinforcing per 12"			at midspan	at beams	
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2	
	Layer 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2	

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

cast-in-place concrete deck	E _{cs} =	3834 ksi
-----------------------------	-------------------	----------

	Moment of Intertia	$I_g =$	512 in^4	
Di	stance from centroid to extreme bottom fiber of deck	$y_b =$	4.00 in	
	Distance from centroid to extreme top fiber of deck	$y_t =$	4.00 in	
	Modulus of Rupture	$f_r =$	474.3 psi	
	Cracking Moment	M _{CR} =	5.1 ft-kips	5.1 ft-kips
	Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	99 in^4	93 in^4
Effective Moment of Inertia for Continuous Beam	l _o =	96 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight	w _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD	Specifications:	Art.	4.6.2.2.1

Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	$P_{live} =$	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	$K_g =$	2,309,429.79 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_g}{12 + L^4 t_s^2}\right)^{0.2}$$

DFM = 0.905 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_{J}}{12*L*t_{s}^{3}}\right)^{0}$$

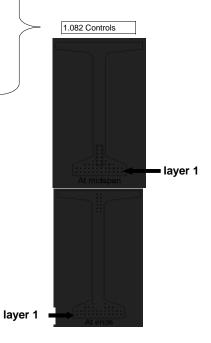
DFM = 0.614 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	=
layer 8	2	16	-	=
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	•	-	2	70
Harped Stra	ınd Group (i	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTE	NING			
assumed loss	=	9.00%		
Force per strand at transfer			=	
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	-	28.9 kips		
layer 5	-	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	-	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
		at midspan	at endspan	7
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{pES} =$	17.0 ksi		
layer 7	$\Delta f_{pES} =$	17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9	$\Delta f_{pES} =$		17.0 ksi	
layer 10	$\Delta f_{pES} =$		17.0 ksi	
layer 11			17.0 ksi	
layer 12	$\Delta f_{pES} =$		17.0 ksi	
layer 13	$\Delta f_{pES} =$		17.0 ksi	
layer 14			17.0 ksi	
CUDIA	WA 05			=
	IKAGE	0.51:		
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	_ —	assume relative humidity = 70%
CREEP OF	CONCRI	ETE		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as $f_{\rm cgp}$	$\Delta f_{cdp} =$	1.563 ksi		=

at midspan

24.3 ksi

loss due to creep $\Delta f_{pCR} =$

at endspan

24.3 ksi

RELAXATION O loss due to relaxation after transfer			at midspan	at endspan
and to roundien after transfer	layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 3		2.1 ksi	2.1 ksi
	layer 4		2.1 ksi	2.1 ksi
	layer 5		2.1 ksi	2111101
		$\Delta f_{pR2} =$	2.1 ksi	
	layer 7	$\Delta f_{pR2} =$	2.1 ksi	
	· ·	$\Delta f_{pR2} =$	2.1 ksi	
		$\Delta f_{pR2} =$	2111101	2.1 ksi
ı	ayer 10	_		2.1 ksi
	ayer 11			2.1 ksi
	ayer 12	_		2.1 ksi
	ayer 13			2.1 ksi
	ayer 14			2.1 ksi
·	ayer 14	□ pR2 =		2.1 131
TOTAL L	OSSES	AT TRA	ANSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$			at midspan	at endspan
рг — рг — рг — рг — рг	layer 1	f _{pt} =	190.6 ksi	190.6 ksi
	layer 2	f _{pt} =	190.6 ksi	190.6 ksi
	layer 3	f _{pt} =	190.6 ksi	190.6 ksi
	layer 4	f _{pt} =	190.6 ksi	190.6 ksi
	layer 5	f _{pt} =	190.6 ksi	10010 1101
	layer 6	f _{pt} =	190.6 ksi	
	layer 7	f _{pt} =	190.6 ksi	
	layer 8	f _{pt} =	190.6 ksi	
	layer 9	f _{pt} =	100.0 101	190.6 ksi
1	ayer 10	f _{pt} =		190.6 ksi
	ayer 11	f _{pt} =		190.6 ksi
	ayer 12	f _{pt} =		190.6 ksi
	ayer 13			
	ayer 14	f _{pt} =		190.6 ksi 190.6 ksi
force per strand = f _{pt} *strand area	ayer 14	f _{pt} =	at midspan	at endspan
orde per strana = ipt strana area	layer 1		29.2 kips	
	layer 2	=	·	29.2 kips 29.2 kips
		=	29.2 kips	
	layer 3	=	29.2 kips	29.2 kips
	layer 4	=	29.2 kips	29.2 kips
	layer 5	=	29.2 kips	
	layer 6	=	29.2 kips	
	layer 7	=	29.2 kips	
	layer 8		29.2 kips	20.0 1:5-
,	layer 9	=		29.2 kips
	ayer 10	=		29.2 kips
	ayer 11	=		29.2 kips
	ayer 12	=		29.2 kips
	ayer 13	=		29.2 kips
Total prestressing force after	ayer 14	=	4004011	29.2 kips
rotal prestressing force after	transier	P _i =	1284.8 kips	1284.8 kips
$\text{nitial loss} = (\Delta f_{\text{pi}})/(f_{\text{pi}})$, , , , ī	0/	at midspan	at endspan
	layer 1	% =	8.2%	8.2%
	layer 2	% =	8.2%	8.2%
	layer 3	% =	8.2%	8.2%
	layer 4	% =	8.2%	8.2%
	layer 5	% =	8.2%	
	layer 6	% =	8.2%	
	layer 7	% =	8.2%	
	layer 8	% =	8.2%	
	layer 9	% =		8.2%
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	ayer 10	% =		8.2%
Į.	ayer ro	0/		0.270

layer 11

layer 12

layer 13

layer 14

% =

% =

% =

% =

OK OK OK OK OK OK OK

ок

οк

ок

οк

8.2%

8.2%

8.2%

8.2%

TOTAL LOSSES A		at midspan	at endspan
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2		49.9 ksi	49.9 ksi
layer		49.9 ksi	49.9 ksi
layer 4		49.9 ksi	49.9 ksi
layer s		49.9 ksi	10.0 101
layer (49.9 ksi	
layer 7		49.9 ksi	
layer 8		49.9 ksi	
layer 9	-	10.0 101	49.9 ksi
layer 10			49.9 ksi
layer 1			49.9 ksi
layer 12			49.9 ksi
layer 1			49.9 ksi
layer 14			49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	. — рі	at midspan	at endspan
layer	f _{pe} =	157.7 ksi	157.7 ksi
layer 2		157.7 ksi	157.7 ksi
layer 3		157.7 ksi	157.7 ksi
layer		157.7 ksi	157.7 ksi
layer s		157.7 ksi	107.7 101
layer (157.7 ksi	
layer		157.7 ksi	
layer 8		157.7 ksi	
layers		107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 1			157.7 ksi
layer 12			157.7 ksi
layer 13			157.7 ksi
layer 14	-		157.7 ksi
check prestressing stress limit at service limit state		fpv	
layer		199.7 ksi	
layer 2		199.7 ksi	
layer 3		199.7 ksi	
layer 4		199.7 ksi	
layer s		199.7 ksi	
layer (199.7 ksi	
layer 7		199.7 ksi	
layer 8		199.7 ksi	
layers		199.7 ksi	
layer 10		199.7 ksi	
layer 1		199.7 ksi	
layer 12		199.7 ksi	
layer 13		199.7 ksi	7
layer 14		199.7 ksi	7
force per strand = f _{pe} *strand area	L	at midspan	at endspan
layer	1 =	24.1 kips	24.1 kips
layer 2		24.1 kips	24.1 kips
layer 3	3 =	24.1 kips	24.1 kips
layer 4	4 =	24.1 kips	24.1 kips
layer s		24.1 kips	-
layer 6		24.1 kips	
layer 7	_	24.1 kips	
layer 8		24.1 kips	
layer 9			24.1 kips
layer 10			24.1 kips
•			24.1 kips
layer 1	' -		
layer 1: layer 12	_		24.1 kips
•	2 =		

OK OK OK

OK OK OK

ok ok

OK OK OK

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LE	NGTH S	ECTION
Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

		10.03 111	C -	Eccentricity at one beam.
İ		$= \frac{P_i}{A} + \frac{P_i \sigma}{S_b} - \frac{M_B}{S_b}$	f, :	$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$
İ	at endspan	at midspan		
ок	0.342 ksi	0.342 ksi	f _t =	Top stress at top fiber of beam
ок	3.021 ksi	3.021 ksi	f _b =	Bottom stress at bottom fiber of the beam
		POINT	T HARP	STRESSES A
		1188.0 ft-kips	$M_g =$	Bending moment due to beam weight at 0.3L
ОК	0.035 ksi	0.035 ksi	f _t =	Top stress at top fiber of beam
ОК	3.300 ksi	3.300 ksi	f _b =	Bottom stress at bottom fiber of the beam
		PAN	AT MIDS	STRESSES
		1414.3 ft-kips	M _g =	Bending moment due to beam weight at 0.5L
ок	0.211 ksi	0.220 ksi	f _t =	Top stress at top fiber of beam
ок	3.189 ksi	3.144 ksi	f _b =	Bottom stress at bottom fiber of the beam

HOLD-DOWN FOR	CES	
assume stress in strand before losses = 0.8f _u		Т
layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	-	221.4 ksi
layer 11	-	221.4 ksi
layer 12	-	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi
prestress force per strand before any losses:		
layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	-	33.9 kips
layer 8	-	33.9 kips
layer 9		33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	-	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °
Hold-down force/strand	Ψ –	1.2
layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	-	4.4 kips/strand
layer 5	-	4.4 kips/strand
layer 6		4.4 kips/strand
•	= =	4.4 kips/strand
layer 7 layer 8		4.4 kips/strand
	=	
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13		
layer 13 layer 14	=	4.4 kips/strand
layer 13	=	4.4 kips/strand 53.39 kips
layer 13 layer 14 Total hold-down force	=	
layer 13 layer 14 Total hold-down force		53.39 kips
layer 13 layer 14 Total hold-down force resses at Service Loads STRESS LIMITS FOR Compression:	ONCRE	53.39 kips
layer 13 layer 14 Total hold-down force resses at Service Loads STRESS LIMITS FOR Compression: Due to permanent loads for load co	ONCRE	53.39 kips FE Service I
layer 13 layer 14 Total hold-down force resses at Service Loads STRESS LIMITS FOR Compression: Due to permanent loads for load co for the precast beam	ONCRE	53.39 kips FE Service I 3.150 ksi
layer 13 layer 14 Total hold-down force resses at Service Loads STRESS LIMITS FOR Compression: Due to permanent loads for load co for the precast beam for deck	ONCRE mbination	53.39 kips FE Service I 3.150 ksi 1.800 ksi
layer 13 layer 14 Total hold-down force resses at Service Loads STRESS LIMITS FOR Compression: Due to permanent loads for load co for the precast beam for deck Due to permanent and transient loads for I	ONCRE mbination = = oad comb	53.39 kips FE Service I 3.150 ksi 1.800 ksi ination Service I
layer 13 layer 14 Total hold-down force Fresses at Service Loads STRESS LIMITS FOR Compression: Due to permanent loads for load cofor the precast beam for deck Due to permanent and transient loads for I for the precast beam	ONCRE mbination = e oad comb	53.39 kips FE Service I 3.150 ksi 1.800 ksi bination Service I 4.200 ksi
layer 13 layer 14 Total hold-down force resses at Service Loads STRESS LIMITS FOR Compression: Due to permanent loads for load co for the precast beam for deck Due to permanent and transient loads for I	ONCRE mbination = = oad comb	53.39 kips FE Service I 3.150 ksi 1.800 ksi ination Service I

for the precast beam =

-0.016 ksi

STRESSES AT MI	<u>DSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{gd}}{A} \cdot \frac{P_{gd}^g}{S_t} \mid \frac{(M_g + M_s)}{S_t}$	$+\frac{(M_{w}+M_{\delta})}{S_{tg}}$		
Due to permanent loads f_{tg}	2.041 ksi	2.041 ksi	
$P_{g_{\ell}} = P_{g_{\ell}} \circ (M_g + M_g)$ (M	(M_{EL+1}) (M_{EL+1})		
$f_{ig} = \frac{P_{ge}}{A} - \frac{P_{ge}\sigma}{S_i} + \frac{(M_g + M_g)}{S_i} + \frac{(M_g + M_g)}{S_i}$	S _{tg} + S _{tg}		
Due to permanent loads and transient loads f_{tg}	2.444 ksi	2.444 ksi	
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ts} = \frac{(M_{us} + i)}{S_{ts}}$	<u>M ,)</u>		
Due to permanent loads f_{tc} =	0.042 ksi	0.042 ksi	
$f_{w} = \frac{\langle M_{w} + M_{s} + I \rangle}{S_{w}}$	M_{Ll+1}		
Due to permanent loads and transient loads f_{tc} =	0.488 ksi	0.488 ksi	
ension stresses at top fiber of deck	at midspan	at endspan	
$f_{13} = \frac{P_{\mu e}}{A} + \frac{P_{\mu e} S}{S_{\lambda}} = \frac{(M_{B} + M_{A})}{S_{\lambda}} = \frac{(M_{B} + M_{A})}{S_{\lambda}}$	$_{\theta}$ + M_{θ} + 0.8* M_{LL+1}		
$^{-\eta}$ A S_{δ} S_{δ}	$S_{\delta c}$		
Load Combination Service III f _b =	-0.393 ksi	-0.393 ksi	

Strength Limit State

POSITIVE MOMENT SECTION

 $M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u =$ 8381.5 ft-kips effective length factor for compression members layer 1 k = 0.28 layer 2 0.28 k = layer 3 k = 0.28 layer 4 k = 0.28 0.28 layer 5 k = layer 6 k = 0.28 layer 7 0.28

layer 8 0.28 k = layer 9 k = 0.28 layer 10 0.28 k = layer 11 k = 0.28 layer 12 0.28 k = layer 13 k = 0.28

layer 14 k = 0.28 5.7 ft-kips c =

average stress in prestressing steel

f _	070 01 :
ps -	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
$f_{ps} =$	270.9 ksi
	f _{ps} = f _{ps}

nominal flexure resistance

4.85 in $M_r = \Phi M_n, \, \Phi = 1.00 \quad \Phi M_n =$ 10906.2 ft-kips

NEGATIVE MOMENT SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u =

-4837.2 ft-kips a = 0.20 in ΦM_n = 5273.8 ft-kips

οк

οк

Shear Design

CRITICAL SECTION AT 0.59

 $V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ V_u = $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$

or

 $V_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

V_u = 364.8 kips $M_u =$ -2877.0 ft-kips

405.0 kips

2684.4 ft-kips

max shear max moment

V_u = 405.0 kips M_u = 2877.0 ft-kips Shear depth $d_v =$ 73.19 in Applied factored normal force at the section $N_u =$ 0 θ = 36.00°

Angle of diagonal compressive stresses STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{M_u}{s} + 0.5N_u + 0.5V_u \cot \theta - A_{po}f_{po}$ _ **≤** 0.002 $E, A, + E, A_{\mu}$

resultant compressive stress at centroid effective stress in prestressing strand after all losses

at midspan at endspan 0.994 ksi 0.994 ksi $f_{pc} =$

311 105565	•		
layer 1	f _{po} =	162.8 ksi	162.8 ksi
layer 2	f _{po} =	162.8 ksi	162.8 ksi
layer 3	f _{po} =	162.8 ksi	162.8 ksi
layer 4	f _{po} =	162.8 ksi	162.8 ksi
layer 5	f _{po} =	162.8 ksi	
layer 6	f _{po} =	162.8 ksi	
layer 7	f _{po} =	162.8 ksi	
layer 8	f _{po} =	162.8 ksi	
layer 9	$f_{po} =$		162.8 ksi
layer 10	f _{po} =		162.8 ksi
layer 11	f _{po} =		162.8 ksi
layer 12	$f_{po} =$		162.8 ksi
layer 13	f _{po} =		162.8 ksi
laver 14	f _{no} =		162.8 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	ε _x =	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	ε _x =		0.002000
layer 10	ε _x =		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	ε _x =		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	
		·

Deflection due to total self weight

0.59 in $\Delta_{sw} =$

Total Deflection at transfer Total Deflection at erection

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-0.9835 in
=	0.18 in
$\Delta_{i} =$	-0.13 in

Location: Fire above Deck Between Girders

Beam Design: 1/2" Strand Fire Exposure Status: 1/2 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f' _c =	3.74 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE Strength at release f'ci = 5.5 ksi Strength at 28 days f'c = 7 ksi Unit Weight W_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L= 119 ft @ center span L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span 120 ft Beam Spacing 12 ft

	PRESTRESSING STR		
D	iameter of single strand	d =	0.5 in
omporature of Layer	Area of single strand	A =	0.153 in^2
emperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	<u>T =</u>	68.00 °F
	layer 8	T = T =	68.00 °F 68.00 °F
	layer 9 layer 10	T=	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	г		
intial = 277 ksi	layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	$f_{pu} =$	277 ksi
	layer 4	$f_{pu} =$	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13		277 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{pu} =	
d Strength	layer 14	f _{pu} =	277 ksi
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
.mar = 200 Nor	layer 1 (bottom)	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4		250 ksi
	· · · · · ·	f _{py} =	
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	$f_{py} =$	250 ksi
	layer 11	$f_{py} =$	250 ksi
	layer 12	$f_{py} =$	250 ksi
	layer 13	$f_{py} =$	250 ksi
	layer 14	$f_{py} =$	250 ksi
s Limits:			
e transfer ≤ 0.75f _{pu} (initi			
	layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	$f_{pi} =$	207.6 ksi
	layer 3	$f_{pi} =$	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	
			207.6 ksi
	layer 13	$f_{pi} =$	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

Py \	,	
er 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	$f_{pe} =$	199.7 ksi
layer 3	$f_{pe} =$	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	$f_{pe} =$	199.7 ksi
layer 7	$f_{pe} =$	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	$f_{pe} =$	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

layer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

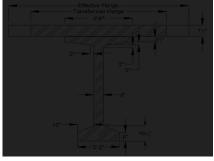
MILD STEEL REINFORCING BARS AT ENDSPAN

Yield Strength

ayer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Laver 2 (Top)	f _v =	58.2 ksi	550.00 °F

Modulus of Elasticity

Layer 1 (Bottom)


o o. E.douony		
	= E	29000.0 ksi
(Bottom)		·
Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2

Layer 2 (Top)

· 17		
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

033 3cctional i Topcitics					
NON-COMPOSITE BEAM					
Area of cross-section of beam A = 767.0 in^2					
Overall depth of beam	H =	72.0 in			
Moment of Inertia	I=	539,947 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3708 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7309
Transformed flange width	II	81.1 in
Transformed flange area	=	608.5 in^2
Transformed haunch width	=	30.7 in
Transformed haunch area	=	15.3 in^2

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	241,398 in^4	539,947 in^4	781,345 in^4
Haunch	15.3 in^2	72.25 in	1,109.0 in^3	4,923 in^4	0.33 in^4	4,924 in^4
Deck	608.5 in^2	76.25 in	46,399.2 in^3	292,099 in^4	2,950 in^4	295,049 in^4
Total	1390 9 in^2		75 580 5 in/3			1 081 318 in^4

Total area of Composite Section	A _c =	1391 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,081,318 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.34 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.66 in
Distance from centroid to extreme top fiber of slab	$y_{tc} =$	25.66 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,898.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	61,232.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	57,652.8 in^3

DECK (as 12 beall)				
Reinforcing per 12"			at midspan	at beams
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2
	Laver 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2

Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$

cast-in-place concrete deck	E _{cs} =	3708 ksi
-----------------------------	-------------------	----------

Moment of Intertia	$I_g =$	324 in^4	
Distance from centroid to extreme bottom fiber of deck	$y_b =$	3.44 in	
Distance from centroid to extreme top fiber of deck	$y_t =$	4.56 in	
Modulus of Rupture	$f_r =$	458.7 psi	
Cracking Moment	$M_{CR} =$	3.6 ft-kips	2.7 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	90 in^4	88 in^4
Effective Moment of Inertia for Continuous Beam	l _o =	89 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight	w _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD S	pecifications:	Art.	4.6.2.2.	1

Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ок

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
D Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3681
Longitudinal stiffness parameter	$K_g =$	2,388,355.43 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_g}{12 + L + L_s^2}\right)^{0.3}$$

DFM = 0.907 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_S}{12 * L^* L_s^2}\right)^{0.5}$$

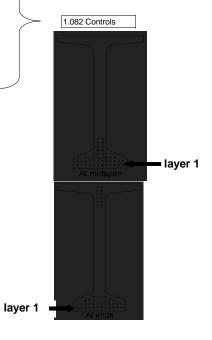
DFM = 0.615 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan		At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	-	
layer 6	2	12	-	=	
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	•	2	70	
Harped Stra	nd Group (in	ncluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTE	NING			
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
•		at midspan	at endspan	
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3	F	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{pES} =$	17.0 ksi		
layer 7	$\Delta f_{pES} =$	17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9			17.0 ksi	
layer 10	$\Delta f_{pES} =$		17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12			17.0 ksi	
layer 13	$\Delta f_{pES} =$		17.0 ksi	
layer 14	$\Delta f_{pES} =$		17.0 ksi	
SHRIN	IKAGE			_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{DSR} =$	6.5 ksi	14	assume relative humidity = 70%
	'	l		
CREEP OF	CONCR	ETE		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.563 ksi		

at midspan

24.3 ksi

loss due to creep $\Delta f_{pCR} =$

at endspan

24.3 ksi

loss due to relaxation after transfer		at midspan	at endspan
layer	1 $\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer		2.1 ksi	2.1 ksi
layer	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer		2.1 ksi	
layer	$\Delta f_{pR2} =$	2.1 ksi	
layer	$7 \Delta f_{pR2} =$	2.1 ksi	
layer	$\Delta f_{pR2} =$	2.1 ksi	
layer	$\Delta f_{pR2} =$		2.1 ksi
	$0 \Delta f_{pR2} =$		2.1 ksi
layer 1	-		2.1 ksi
layer 1	F		2.1 ksi
	$\Delta f_{pR2} =$		2.1 ksi
layer 1	$4 \Delta f_{pR2} =$		2.1 ksi
TOTAL LOSSI	ES AT TRA	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$	1	at midspan	at endspan
layer	1 f _{pt} =	190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	
layer			190.6 ksi
layer 1	0 f _{pt} =		190.6 ksi
layer 1			190.6 ksi
layer 1	2 f _{pt} =		190.6 ksi
layer 1	3 f _{pt} =		190.6 ksi
layer 1	4 f _{pt} =		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer	1 =	29.2 kips	29.2 kips
layer	2 =	29.2 kips	29.2 kips
layer		29.2 kips	29.2 kips
layer		29.2 kips	29.2 kips
layer		29.2 kips	
layer		29.2 kips	
layer		29.2 kips	
layer		29.2 kips	00.01:
layer			29.2 kips
layer 1			29.2 kips
layer 1			29.2 kips
layer 1 layer 1			29.2 kips 29.2 kips
layer 1			29.2 kips 29.2 kips
Total prestressing force after transfe		1284.8 kips	1284.8 kips
. ,		•	
Initial loss = $(\Delta f_{pi})/(f_{pi})$ layer	1 % =	at midspan 8.2%	at endspan 8.2%
layer		8.2%	8.2%
layer		8.2%	8.2%
layer		8.2%	8.2%
layer		8.2%	0.2 /0
layer		8.2%	_
layer		8.2%	1
layer		8.2%	1
layer			8.2%
*			8.2%
layer 1	0 % =		0.2 /0

layer 11

layer 12

layer 13

layer 14

% =

% =

% =

% =

OK OK OK OK OK OK OK

ок

οк

ок

οк

8.2%

8.2%

8.2%

8.2%

TOTAL LOSSES A		at midspan	at endspan
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2		49.9 ksi	49.9 ksi
layer		49.9 ksi	49.9 ksi
layer 4		49.9 ksi	49.9 ksi
layer s		49.9 ksi	10.0 101
layer (49.9 ksi	
layer 7		49.9 ksi	
layer 8		49.9 ksi	
layer 9	-	10.0 101	49.9 ksi
layer 10			49.9 ksi
layer 1			49.9 ksi
layer 12			49.9 ksi
layer 1			49.9 ksi
layer 14			49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	. — рі	at midspan	at endspan
layer	f _{pe} =	157.7 ksi	157.7 ksi
layer 2		157.7 ksi	157.7 ksi
layer 3		157.7 ksi	157.7 ksi
layer		157.7 ksi	157.7 ksi
layer s		157.7 ksi	107.7 101
layer (157.7 ksi	
layer		157.7 ksi	
layer 8		157.7 ksi	
layers		107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 1			157.7 ksi
layer 12			157.7 ksi
layer 13			157.7 ksi
layer 14	-		157.7 ksi
check prestressing stress limit at service limit state		fpv	
layer		199.7 ksi	
layer 2		199.7 ksi	
layer 3		199.7 ksi	
layer 4		199.7 ksi	
layer s		199.7 ksi	
layer (199.7 ksi	
layer 7		199.7 ksi	
layer 8		199.7 ksi	
layers		199.7 ksi	
layer 10		199.7 ksi	
layer 1		199.7 ksi	
layer 12		199.7 ksi	
layer 13		199.7 ksi	7
layer 14		199.7 ksi	7
force per strand = f _{pe} *strand area	L	at midspan	at endspan
layer	1 =	24.1 kips	24.1 kips
layer 2		24.1 kips	24.1 kips
layer 3	3 =	24.1 kips	24.1 kips
layer 4	4 =	24.1 kips	24.1 kips
layer s		24.1 kips	_
layer 6		24.1 kips	
layer 7		24.1 kips	
layer 8		24.1 kips	
layer 9		·	24.1 kips
layer 10			24.1 kips
•			24.1 kips
layer 1	' -		
layer 1: layer 12			24.1 kips
•	2 =		

OK OK OK

OK OK OK

ok ok

OK OK OK

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi					
Tension					
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi			
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi			

STRESSES AT TRANSFER LENGTH SECTION					
Transfer Length = 60*(strand diameter)	=	2.5 ft			
Bending moment at transfer length	$M_g =$	116.4 ft-kips			
center of 12 strands to top fiber of beam at the end	=	7.00 in			
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in			
center of 12 strands and top fiber of beam at transfer length	=	10.78 in			
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in			
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in			
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in			
Eccentricity of the strand group at transfer length:	e _h =	17.09 in			
Eccentricity at end of beam:	e =	16.05 in			

Calcs for eccentricity (see 9.6.7.2)

		10.03 111	C -	Eccentricity at one beam.	
İ		$= \frac{P_i}{A} + \frac{P_i \sigma}{S_b} - \frac{M_B}{S_b}$	f, :	$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$	
İ	at endspan	at midspan			
ок	0.342 ksi	0.342 ksi	f _t =	Top stress at top fiber of beam	
ок	3.021 ksi	3.021 ksi	f _b =	Bottom stress at bottom fiber of the beam	
		POINT	T HARP	STRESSES A	
		1188.0 ft-kips	$M_g =$	Bending moment due to beam weight at 0.3L	
ОК	0.035 ksi	0.035 ksi	f _t =	Top stress at top fiber of beam	
ОК	3.300 ksi	3.300 ksi	f _b =	Bottom stress at bottom fiber of the beam	
		PAN	AT MIDS	STRESSES	
		1414.3 ft-kips	M _g =	Bending moment due to beam weight at 0.5L	
ок	0.211 ksi	0.220 ksi	f _t =	Top stress at top fiber of beam	
ок	3.189 ksi	3.144 ksi	f _b =	Bottom stress at bottom fiber of the beam	

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f, 221.4 ksi layer 2 221.4 ksi layer 3 221.4 ksi layer 4 221.4 ksi 221.4 ksi layer 5 = layer 6 221.4 ksi 221.4 ksi layer 7 = layer 8 221.4 ksi layer 9 = 221.4 ksi layer 10 221.4 ksi = layer 11 221.4 ksi layer 12 221.4 ksi = layer 13 221.4 ksi layer 14 = 221.4 ksi prestress force per strand before any losses: layer 1 33.9 kips = 33.9 kips layer 2 = layer 3 33.9 kips = layer 4 = 33.9 kips layer 5 33.9 kips = layer 6 33.9 kips 33.9 kips layer 7 = layer 8 33.9 kips layer 9 33.9 kips 33.9 kips layer 10 layer 11 33.9 kips 33.9 kips layer 12 = layer 13 = 33.9 kips layer 14 33.9 kips = Harp Angle 7.2 ° $\Psi =$ Hold-down force/strand layer 1 4.4 kips/strand layer 2 4.4 kips/strand 4.4 kips/strand layer 3 = 4.4 kips/strand layer 4 = layer 5 = 4.4 kips/strand 4.4 kips/strand layer 6 = layer 7 4.4 kips/strand = layer 8 4.4 kips/strand = layer 9 4.4 kips/strand 4.4 kips/strand layer 10 layer 11 4.4 kips/strand layer 12 4.4 kips/strand 4.4 kips/strand layer 13 = layer 14 4.4 kips/strand Total hold-down force 53.39 kips Stresses at Service Loads STRESS LIMITS FOR CONCRETE Compression: Due to permanent loads for load combination Service I 3.150 ksi for the precast beam for deck 1.683 ksi Due to permanent and transient loads for load combination Service I for the precast beam 4.200 ksi

for deck

Load Combination Service III

for the precast beam

Tension:

2.244 ksi

-0.016 ksi

STRESSES AT MII	OSPAN .		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{je}}{A} \cdot \frac{P_{je}r}{S_t} \cdot \frac{(M_g + M_s)}{S_t}$	$\frac{(\boldsymbol{M}_{w}+\boldsymbol{M}_{b})}{S_{tg}}$		
Due to permanent loads $f_{tg} =$	2.042 ksi	2.042 ksi	c
$f_{zg} = \frac{P_{ge}}{A} - \frac{P_{ge}s}{S_z} + \frac{(M_g + M_s)}{S_z} + (M_u$	$\frac{s+M_b)}{S_{tg}} + \frac{(M_{EL+1})}{S_{tg}}$		
Due to permanent loads and transient loads f _{tg} =	2.456 ksi	2.456 ksi	c
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{w} = \frac{(M_{wx} + h)}{S_{w}}$	<u>(,)</u>		
Due to permanent loads f _{tc} =	0.042 ksi	0.042 ksi	c
$f_{w} = \frac{(M_{w} + M_{s} + M_{s})}{S_{w}}$	f ₂₂₊₁)		
Due to permanent loads and transient loads f _{tc} =	0.482 ksi	0.482 ksi	c
Tension stresses at top fiber of deck at midspan at endspan			
$f_{1g} = \frac{\mu_{ps}}{A} + \frac{\mu_{ps}}{S_b} = \frac{(M_B + M_A)}{S_b} = \frac{(M_{10})}{S_b}$	$\frac{+\boldsymbol{M_{s}}+0.8\boldsymbol{*}\boldsymbol{M_{LL+1}}\rangle}{S_{sc}}$		
Load Combination Service III f _b =	-0.397 ksi	-0.397 ksi	c

Strength Limit State

 POSITIVE MOMENT SECTION

 M_u = 1.25DC+1.5DW+1.75(LL+IM)
 M_u =
 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.28
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	c =	6.1 ft-kips

average stress in prestressing steel

layer 1	f _{ps} =	270.5 ksi
layer 2	f _{ps} =	270.5 ksi
layer 3	f _{ps} =	270.5 ksi
layer 4	f _{ps} =	270.5 ksi
layer 5	$f_{ps} =$	270.5 ksi
layer 6	$f_{ps} =$	270.5 ksi
layer 7	f _{ps} =	270.5 ksi
layer 8	f _{ps} =	270.5 ksi
layer 9	$f_{ps} =$	270.5 ksi
layer 10	f _{ps} =	270.5 ksi
layer 11	f _{ps} =	270.5 ksi
layer 12	f _{ps} =	270.5 ksi
layer 13	f _{ps} =	270.5 ksi
layer 14	f _{ps} =	270.5 ksi

nominal flexure resistance

5.18 in $M_r = \Phi M_n, \ \Phi = 1.00$ $\Phi M_n =$ 10865.1 ft-kips

NEGATIVE MOMENT SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = -4837.2 ft-kips 0.20 in a = $\Phi M_n =$ 5144.4 ft-kips

οк

ок

Shear Design

CRITICAL SECTION AT 0.59 $V_{II} = 1.25DC + 1.5DW + 1.75(LL + IM)$ 405.0 kips V_u = $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ 2684.4 ft-kips or $V_u = 1.25DC+1.5DW+1.75(LL+IM)$ V_u = 364.8 kips $M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u =$ -2877.0 ft-kips max shear V_u = 405.0 kips M_u = max moment 2877.0 ft-kips Shear depth $d_v =$ 73.19 in Applied factored normal force at the section $N_u =$ 0 Angle of diagonal compressive stresses θ = 36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

$= \frac{d_y}{d_y} + 0.5N_y + 0.5V_y \cot \theta - A_{po}f_{po}$ $= = \frac{d_y}{d_y} \leq 0.002$					
$E_{\mu} = \frac{1}{E_{\mu}A_{\mu} + E_{\mu}A_{\mu}} \leq 0.002$					
				at midspan	at endspan

resultant compressive stress at centroid 1.001 ksi 1.001 ksi f_{pc} = effective stress in prestressing strand after all losses

layer 1	f _{po} =	162.8 ksi	162.8 ksi
layer 2	f _{po} =	162.8 ksi	162.8 ksi
layer 3	f _{po} =	162.8 ksi	162.8 ksi
layer 4	$f_{po} =$	162.8 ksi	162.8 ksi
layer 5	f _{po} =	162.8 ksi	
layer 6	$f_{po} =$	162.8 ksi	
layer 7	$f_{po} =$	162.8 ksi	
layer 8	f _{po} =	162.8 ksi	
layer 9	f _{po} =		162.8 ksi
layer 10	f _{po} =		162.8 ksi
layer 11	$f_{po} =$		162.8 ksi
layer 12	f _{po} =		162.8 ksi
layer 13	$f_{po} =$		162.8 ksi
layer 14	$f_{po} =$		162.8 ksi
		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000

strain in flexural tension

layer 13	$t_{po} =$		162.8 KSI
layer 14	f _{po} =		162.8 ksi
,		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	ε _x =		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

at midspan

at endspan

3.97 in

2.48 in

4.49 in

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_p =$	3.97 in
$\Delta_g =$	-1.49 in
$\Delta_g =$	-1.44 in
$\Delta_s =$	-1.95 in

Deflection due to total self weight

 $\Delta_{sw} =$ 0.59 in

Total Deflection at transfer

2.48 in Λ =

Total Deflection at erection

Δ = 4.49 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1006 in
=	0.18 in
$\Delta_1 =$	-0.21 in

Location: Fire above Deck Between Girders

Beam Design: 1/2" Strand Fire Exposure Status: 1 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	3.57 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE Strength at release f'ci = 5.5 ksi Strength at 28 days f'c = 7 ksi Unit Weight W_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L= @ center span 119 ft L = Design Spans: 109 ft Non-composite beam @ end spans Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span 120 ft Beam Spacing 12 ft

	PRESTRESSING STR		
D	iameter of single strand	d =	0.5 in
omporature of Layer	Area of single strand	A =	0.153 in^2
emperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	<u>T =</u>	68.00 °F
	layer 8	T = T =	68.00 °F 68.00 °F
	layer 9 layer 10	T=	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	г		
intial = 277 ksi	layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	$f_{pu} =$	277 ksi
	layer 4	$f_{pu} =$	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13		277 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{pu} =	
d Strength	layer 14	f _{pu} =	277 ksi
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
.mar = 200 Nor	layer 1 (bottom)	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4		250 ksi
	· · · · · ·	f _{py} =	
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	$f_{py} =$	250 ksi
	layer 11	$f_{py} =$	250 ksi
	layer 12	$f_{py} =$	250 ksi
	layer 13	$f_{py} =$	250 ksi
	layer 14	$f_{py} =$	250 ksi
s Limits:			
e transfer ≤ 0.75f _{pu} (initi			
	layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	$f_{pi} =$	207.6 ksi
	layer 3	$f_{pi} =$	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	
			207.6 ksi
	layer 13	$f_{pi} =$	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

er 1 (bottom)	$f_{pe} =$	199.7 ksi
layer 2	$f_{pe} =$	199.7 ksi
layer 3	$f_{pe} =$	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	$f_{pe} =$	199.7 ksi
layer 6	$f_{pe} =$	199.7 ksi
layer 7	$f_{pe} =$	199.7 ksi
layer 8	$f_{pe} =$	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	$f_{pe} =$	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

layer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

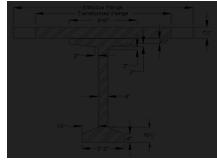
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	57.6 ksi	820.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

E =


 $\begin{array}{ccc} \text{Area of steel at midspan (effective flange)} & A_{\text{sm}} = & 2.79 \text{ in}^{\circ}2 \\ \text{Area of steel at endspan (effective flange)} & A_{\text{se}} = & 2.48 \text{ in}^{\circ}2 \\ \text{Area of temperature and shrinkage steel (12" width)} & A_{\text{s}} = & 0.31 \text{ in}^{\circ}2 \\ \end{array}$

Layer 2 (Top)

,		
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

occ cochonal i roportico				
NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	$E_{cs} =$	3622 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7141
Transformed flange width	=	79.3 in
Transformed flange area	=	594.5 in^2
Transformed haunch width	=	30.0 in
Transformed haunch area	=	15.0 in^2

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	235,253 in^4	539,947 in^4	775,200 in^4
Haunch	15.0 in^2	72.25 in	1,083.5 in^3	4,933 in^4	0.33 in^4	4,933 in^4
Deck	594.5 in^2	76.25 in	45,332.4 in^3	291,335 in^4	2,950 in^4	294,284 in^4
Total	1376 5 in^2		74 488 2 in^3			1 074 417 in^4

Total area of Composite Section	A _c =	1377 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,074,417 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.11 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.89 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.89 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,854.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	60,068.2 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	58,118.2 in^3

DECK (as 12" beam)

	D=0.1 (40 .2 500	,			
Reinforcing per 12"			at midspan	at beams	
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2	
	Layer 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2	

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

cast-in-place concrete deck	E _{cs} =	3622 ksi
-----------------------------	-------------------	----------

Moment of Intertia	$I_g =$	249 in^4	
Distance from centroid to extreme bottom fiber of deck	$y_b =$	3.11 in	
Distance from centroid to extreme top fiber of deck	$y_t =$	4.89 in	
Modulus of Rupture	$f_r =$	448.1 psi	
Cracking Moment	$M_{CR} =$	3.0 ft-kips	1.9 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	88 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	l _o =	88 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight		1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1

RFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
FD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.4003
Longitudinal stiffness parameter	$K_g =$	2,444,559.72 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_E}{12 * L} * L_s^2\right)^{0}$$

DFM = 0.909 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_{J}}{12*L*t_{s}^{3}}\right)^{0}$$

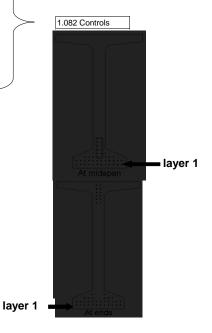
DFM = 0.617 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

At Midspan		At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	=
layer 7	2	14	-	=
layer 8	2	16	-	=
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
Harped Stra	nd Group (i	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTE	NING		_	
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
		at midspan	at endspan	
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{pES} =$	17.0 ksi		
layer 7	$\Delta f_{pES} =$	17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9			17.0 ksi	
layer 10	$\Delta f_{pES} =$		17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12			17.0 ksi	
layer 13	$\Delta f_{pES} =$		17.0 ksi	
layer 14	$\Delta f_{pES} =$		17.0 ksi	
CHDIN	IKAGE			_
Shrinkage = (17-0.15*Relative Humidity)		6.5 ksi		assume relative humidity = 70%
Offininage – (17-0.13 Nelative Fluithlatty)	$\Delta f_{pSR} =$	0.0 (5)		assume relative numbers 10%
CREEP OF	CONCR	ETE		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.563 ksi		_

at midspan

24.3 ksi

loss due to creep $\Delta f_{pCR} =$

at endspan

24.3 ksi

loss due to relaxation after transfer		at midspan	at endspan
layer	1 $\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer		2.1 ksi	2.1 ksi
layer	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer		2.1 ksi	
layer	$\Delta f_{pR2} =$	2.1 ksi	
layer	$7 \Delta f_{pR2} =$	2.1 ksi	
layer	$\Delta f_{pR2} =$	2.1 ksi	
layer	$\Delta f_{pR2} =$		2.1 ksi
	$0 \Delta f_{pR2} =$		2.1 ksi
layer 1	-		2.1 ksi
layer 1	F		2.1 ksi
	$\Delta f_{pR2} =$		2.1 ksi
layer 1	$4 \Delta f_{pR2} =$		2.1 ksi
TOTAL LOSSI	ES AT TRA	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$	1	at midspan	at endspan
layer	1 f _{pt} =	190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	
layer			190.6 ksi
layer 1	0 f _{pt} =		190.6 ksi
layer 1			190.6 ksi
layer 1	2 f _{pt} =		190.6 ksi
layer 1	3 f _{pt} =		190.6 ksi
layer 1	4 f _{pt} =		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer	1 =	29.2 kips	29.2 kips
layer	2 =	29.2 kips	29.2 kips
layer		29.2 kips	29.2 kips
layer		29.2 kips	29.2 kips
layer		29.2 kips	
layer		29.2 kips	
layer		29.2 kips	
layer		29.2 kips	00.01:
layer			29.2 kips
layer 1			29.2 kips
layer 1			29.2 kips
layer 1 layer 1			29.2 kips 29.2 kips
layer 1			29.2 kips 29.2 kips
Total prestressing force after transfe		1284.8 kips	1284.8 kips
. ,	'	•	
Initial loss = $(\Delta f_{pi})/(f_{pi})$ layer	1 % =	at midspan 8.2%	at endspan 8.2%
layer		8.2%	8.2%
layer		8.2%	8.2%
layer		8.2%	8.2%
layer		8.2%	0.2 /0
layer		8.2%	_
layer		8.2%	1
layer		8.2%	1
layer			8.2%
*			8.2%
layer 1	0 % =		0.2 /0

layer 11

layer 12

layer 13

layer 14

% =

% =

% =

% =

OK OK OK OK OK OK OK

ок

οк

ок

οк

8.2%

8.2%

8.2%

8.2%

TOTAL LOSSES A		at midspan	at endspan
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2		49.9 ksi	49.9 ksi
layer		49.9 ksi	49.9 ksi
layer 4		49.9 ksi	49.9 ksi
layer s		49.9 ksi	10.0 101
layer (49.9 ksi	
layer 7		49.9 ksi	
layer 8		49.9 ksi	
layer 9	-	10.0 101	49.9 ksi
layer 10			49.9 ksi
layer 1			49.9 ksi
layer 12			49.9 ksi
layer 1			49.9 ksi
layer 14			49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	. — рі	at midspan	at endspan
layer	f _{pe} =	157.7 ksi	157.7 ksi
layer 2		157.7 ksi	157.7 ksi
layer 3		157.7 ksi	157.7 ksi
layer		157.7 ksi	157.7 ksi
layer s		157.7 ksi	107.7 101
layer (157.7 ksi	
layer		157.7 ksi	
layer 8		157.7 ksi	
layers		107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 1			157.7 ksi
layer 12			157.7 ksi
layer 13			157.7 ksi
layer 14	-		157.7 ksi
check prestressing stress limit at service limit state		fpv	
layer		199.7 ksi	
layer 2		199.7 ksi	
layer 3		199.7 ksi	
layer 4		199.7 ksi	
layer s		199.7 ksi	
layer (199.7 ksi	
layer 7		199.7 ksi	
layer 8		199.7 ksi	
layers		199.7 ksi	
layer 10		199.7 ksi	
layer 1		199.7 ksi	
layer 12		199.7 ksi	
layer 13		199.7 ksi	7
layer 14		199.7 ksi	7
force per strand = f _{pe} *strand area	L	at midspan	at endspan
layer	1 =	24.1 kips	24.1 kips
layer 2		24.1 kips	24.1 kips
layer 3	3 =	24.1 kips	24.1 kips
layer 4	4 =	24.1 kips	24.1 kips
layer s		24.1 kips	_
layer 6		24.1 kips	
layer 7	_	24.1 kips	
layer 8		24.1 kips	
layer 9		·	24.1 kips
layer 10			24.1 kips
•			24.1 kips
layer 1	' -		
layer 1: layer 12	_		24.1 kips
•	2 =		

OK OK OK

OK OK OK

ok ok

OK OK OK

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi					
Tension					
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi			
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi			

STRESSES AT TRANSFER LE	NGTH S	ECTION
Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

		10.03 111	C -	Eccentricity at one beam.
İ		$= \frac{P_i}{A} + \frac{P_i \sigma}{S_b} - \frac{M_B}{S_b}$	f, :	$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$
İ	at endspan	at midspan		
ок	0.342 ksi	0.342 ksi	f _t =	Top stress at top fiber of beam
ок	3.021 ksi	3.021 ksi	f _b =	Bottom stress at bottom fiber of the beam
		POINT	T HARP	STRESSES A
		1188.0 ft-kips	$M_g =$	Bending moment due to beam weight at 0.3L
ОК	0.035 ksi	0.035 ksi	f _t =	Top stress at top fiber of beam
ОК	3.300 ksi	3.300 ksi	f _b =	Bottom stress at bottom fiber of the beam
		PAN	AT MIDS	STRESSES
		1414.3 ft-kips	M _g =	Bending moment due to beam weight at 0.5L
ок	0.211 ksi	0.220 ksi	f _t =	Top stress at top fiber of beam
ок	3.189 ksi	3.144 ksi	f _b =	Bottom stress at bottom fiber of the beam

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f, 221.4 ksi layer 2 221.4 ksi layer 3 221.4 ksi layer 4 221.4 ksi 221.4 ksi layer 5 = layer 6 221.4 ksi 221.4 ksi layer 7 = layer 8 221.4 ksi layer 9 = 221.4 ksi layer 10 221.4 ksi layer 11 221.4 ksi layer 12 221.4 ksi = layer 13 221.4 ksi layer 14 = 221.4 ksi prestress force per strand before any losses: 33.9 kips layer 1 = layer 2 33.9 kips layer 3 = 33.9 kips layer 4 33.9 kips = layer 5 33.9 kips 33.9 kips layer 6 = layer 7 33.9 kips layer 8 33.9 kips 33.9 kips layer 9 layer 10 33.9 kips 33.9 kips layer 11 layer 12 = 33.9 kips layer 13 33.9 kips = layer 14 33.9 kips Harp Angle ψ = 7.2 ° Hold-down force/strand layer 1 4.4 kips/strand 4.4 kips/strand layer 2 = layer 3 4.4 kips/strand = layer 4 = 4.4 kips/strand 4.4 kips/strand layer 5 = layer 6 4.4 kips/strand = layer 7 4.4 kips/strand = layer 8 4.4 kips/strand 4.4 kips/strand layer 9 layer 10 4.4 kips/strand layer 11 4.4 kips/strand layer 12 4.4 kips/strand = layer 13 4.4 kips/strand 4.4 kips/strand layer 14 Total hold-down force 53.39 kips Stresses at Service Loads STRESS LIMITS FOR CONCRETE Compression: Due to permanent loads for load combination Service I for the precast beam = 3.150 ksi for deck 1.607 ksi Due to permanent and transient loads for load combination Service I for the precast beam 4.200 ksi for deck = 2.142 ksi Tension:

Load Combination Service III

-0.016 ksi

for the precast beam

STRESSES AT MID	<u>SPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{jet}}{A} \cdot \frac{P_{jet}v}{S_t} \cdot \frac{(M_s + M_s)}{S_t}$	$\frac{(\boldsymbol{M}_{w}+\boldsymbol{M}_{\delta})}{S_{tg}}$		
Due to permanent loads $f_{tg} =$	2.042 ksi	2.042 ksi	C
$f_{ig} = \frac{P_{ge}}{A} - \frac{P_{ge}s}{S_z} + \frac{(M_g + M_s)}{S_z} + \frac{(M_w}{S_z}$	$\frac{S_{ig} + M_b}{S_{ig}} + \frac{(M_{EL+1})}{S_{ig}}$		
Due to permanent loads and transient loads f _{tg} =	2.465 ksi	2.465 ksi	C
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{xx} = \frac{(M_{ux} + M_{xx})}{S_{xx}}$	<u>(,)</u>		
Due to permanent loads f _{tc} =	0.042 ksi	0.042 ksi	C
$f_{w} = \frac{(M_{w} + M_{s} + M_{s})}{S_{w}}$	f ₂₂₊₁)		
Due to permanent loads and transient loads f _{tc} =	0.478 ksi	0.478 ksi	c
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1g} - rac{\mu_{ps}}{A} + rac{P_{ps}s}{S_b} - rac{(M_B + M_{\odot})}{S_b} - rac{(M_{10})}{S_b}$	$\frac{+\boldsymbol{M_{\theta}}+0.8^{\boldsymbol{*}}\boldsymbol{M_{LL+1}}\rangle}{S_{\theta e}}$		
Load Combination Service III f _b =	-0.399 ksi	-0.399 ksi	c

Strength Limit State

 POSITIVE MOMENT SECTION

 M_u = 1.25DC+1.5DW+1.75(LL+IM)
 M_u =
 8381.5 ft-kips effective length factor for compression members

k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
k =	0.28
c =	6.4 ft-kips
	k = k = k = k = k = k = k = k = k = k =

average stress in prestressing steel

f _{ps} =	270.2 ksi
$f_{ps} =$	270.2 ksi
f _{ps} =	270.2 ksi
$f_{ps} =$	270.2 ksi
$f_{ps} =$	270.2 ksi
f _{ps} =	270.2 ksi
f _{ps} =	270.2 ksi
f _{ps} =	270.2 ksi
$f_{ps} =$	270.2 ksi
f _{ps} =	270.2 ksi
f _{ps} =	270.2 ksi
f _{ps} =	270.2 ksi
$f_{ps} =$	270.2 ksi
f _{ps} =	270.2 ksi
	$\begin{aligned} f_{ps} &= \\ f_$

nominal flexure resistance

5.42 in $M_r = \Phi M_n, \ \Phi = 1.00$ $\Phi M_n =$ 10835.1 ft-kips

NEGATIVE MOMENT SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = -4837.2 ft-kips 0.19 in a = $\Phi M_n =$ 5101.2 ft-kips

οк

οк

Shear Design

CRITICAL SECTION AT 0.59				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips		
or		_		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		
Applied factored normal force at the section	$N_u =$	0		

Angle of diagonal compressive stresses $\theta = 36.00^{\circ}$ STRAIN IN FLEXURAL TENSION REINFORCMENT

$\mathbf{E}_{u} = \frac{\frac{M_{u}}{d_{v}} + 0.5N_{u} + 0.5N_{u} \cot \theta - A_{ps}f_{ps}}{R_{s}A_{s} + R_{p}A_{ps}} \le 0.002$				
at midspan at endspan				
resultant compressive stress at centroid $f_{pc} = 1.006 \text{ ksi}$ 1.006 ksi				
effective stress in prestressing strand after all losses				

troid	$f_{pc} =$	1.006 ksi	1.006 ksi
nd after all losses			
layer 1	f _{po} =	162.8 ksi	162.8 ksi
layer 2	f _{po} =	162.8 ksi	162.8 ksi

layer 3 f_{po} = 162.8 ksi 162.8 ksi layer 4 $f_{po} =$ 162.8 ksi 162.8 ksi layer 5 f_{po} = 162.8 ksi layer 6 f_{po} = 162.8 ksi layer 7 f_{po} = 162.8 ksi layer 8 layer 9 162.8 ksi $f_{po} =$ 162.8 ksi $f_{po} =$ layer 10 f_{po} = 162.8 ksi layer 11 f_{po} = 162.8 ksi layer 12 f_{po} = 162.8 ksi la la

strain in flexural tension

layer 13	$f_{po} =$		162.8 ksi
layer 14	$f_{po} =$		162.8 ksi
•		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	ε _x =	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

at midspan

Deflection due to total self weight

 $\Delta_{\rm sw}$ = 0.59 in

Total Deflection at transfer Total Deflection at erection

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

at endspan

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1381 in
=	0.18 in
$\Delta_1 =$	-0.28 in

Location: Fire above Deck Between Girders

Beam Design: 1/2" Strand Fire Exposure Status: 1-1/2 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in		
Compressive Strength	f'c =	3.39 ksi		
Unit Weight	W _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE Strength at release f'ci = 5.5 ksi 7 ksi Strength at 28 days f'c = Unit Weight W_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L= 119 ft @ center span L = Design Spans: 109 ft Non-composite beam @ end spans Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span 120 ft Beam Spacing 12 ft

	PRESTRESSING STR		
D	iameter of single strand	d =	0.5 in
omporature of Layer	Area of single strand	A =	0.153 in^2
emperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	<u>T =</u>	68.00 °F
	layer 8	T = T =	68.00 °F 68.00 °F
	layer 9 layer 10	T=	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	г		
intial = 277 ksi	layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	$f_{pu} =$	277 ksi
	layer 4	$f_{pu} =$	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13		277 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{pu} =	
d Strength	layer 14	f _{pu} =	277 ksi
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
.mar = 200 Nor	layer 1 (bottom)	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4		250 ksi
	· · · · ·	f _{py} =	
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	$f_{py} =$	250 ksi
	layer 11	$f_{py} =$	250 ksi
	layer 12	$f_{py} =$	250 ksi
	layer 13	$f_{py} =$	250 ksi
	layer 14	$f_{py} =$	250 ksi
s Limits:			
e transfer ≤ 0.75f _{pu} (initi			
	layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	$f_{pi} =$	207.6 ksi
	layer 3	$f_{pi} =$	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	
			207.6 ksi
	layer 13	$f_{pi} =$	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

er 1 (bottom)	$f_{pe} =$	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	$f_{pe} =$	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	$f_{pe} =$	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	$f_{pe} =$	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	$f_{pe} =$	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

ayer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

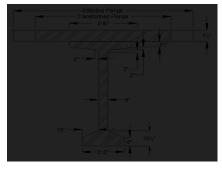
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Laver 2 (Top)	f _v =	55.4 ksi	1010.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

E =	29000.0 ksi


Area of steel at midspan (effective flange) A_{sm} = 2.79 in^2 Area of steel at endspan (effective flange) A_{se} = 2.48 in^2 Area of temperature and shrinkage steel (12" width) A_{s} = 0.31 in^2

Layer 2 (Top)

,		
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

· · · · · · · · · · · · · · · · · · ·				
NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3530 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6959
Transformed flange width	=	77.2 in
Transformed flange area	=	579.3 in^2
Transformed haunch width	=	29.2 in
Transformed haunch area	=	14.6 in^2

*min of three criteria

	Transformed Area	у _b	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	228,530 in^4	539,947 in^4	768,477 in^4
Haunch	14.6 in^2	72.25 in	1,055.9 in^3	4,942 in^4	0.33 in^4	4,942 in^4
Deck	579.3 in^2	76.25 in	44,174.8 in^3	290,397 in^4	2,950 in^4	293,346 in^4
Total	1361.0 in^2		73.302.9 in^3			1.066.765 in^4

Total area of Composite Section	$A_c =$	1361 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,066,765 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.86 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.14 in
Distance from centroid to extreme top fiber of slab	$y_{tc} =$	26.14 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,805.8 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	58,811.6 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	58,645.5 in^3

DECK (as 12" beam)

	D=0.1 (40 .2 500	,			
Reinforcing per 12"			at midspan	at beams	
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2	
	Layer 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2	

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

cast-in-place concrete deck	E _{cs} =	3530 ksi
-----------------------------	-------------------	----------

Moment of Intertia	I _g =	200 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.86 in	
Distance from centroid to extreme top fiber of deck	$y_t =$	5.14 in	
Modulus of Rupture	$f_r =$	436.7 psi	
Cracking Moment	$M_{CR} =$	2.5 ft-kips	1.4 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	88 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	l _e =	87 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight	w _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD S	pecifications:	Art.	4.6.2.2.	1

. Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ок

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
LRFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.4370
Longitudinal stiffness parameter	$K_g =$	2,508,620.17 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_g}{12 + L^4 t_s^2}\right)^{0.2}$$

DFM = 0.911 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_{J}}{12*L*t_{s}^{3}}\right)^{0}$$

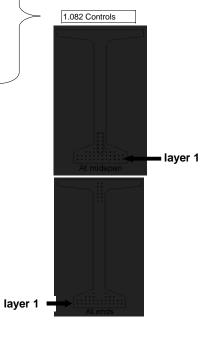
DFM = 0.618 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	=
layer 8	2	16	-	=
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	•	-	2	70
Harped Stra	ınd Group (i	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTE	NING			
assumed loss	=	9.00%		
Force per strand at transfer	•			
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
.,		at midspan	at endspan	
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{pES} =$	17.0 ksi		
layer 7		17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9	$\Delta f_{pES} =$		17.0 ksi	
layer 10			17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12	$\Delta f_{pES} =$		17.0 ksi	
layer 13			17.0 ksi	
layer 14			17.0 ksi	
•	P-3		l.	
SHRIN	IKAGE			=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%
				_
CREEP OF	CONCR	ETE		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.564 ksi		

at midspan

24.3 ksi

loss due to creep $\Delta f_{pCR} =$

at endspan

24.3 ksi

RELAXATION O loss due to relaxation after transfer			at midspan	at endspan
and to roundier after transfer	layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 3		2.1 ksi	2.1 ksi
	layer 4		2.1 ksi	2.1 ksi
	layer 5		2.1 ksi	2111101
		$\Delta f_{pR2} =$	2.1 ksi	
	layer 7	$\Delta f_{pR2} =$	2.1 ksi	
	· ·	$\Delta f_{pR2} =$	2.1 ksi	
		$\Delta f_{pR2} =$	2111101	2.1 ksi
ı	ayer 10	_		2.1 ksi
	ayer 11			2.1 ksi
	ayer 12	_		2.1 ksi
	ayer 13			2.1 ksi
	ayer 14			2.1 ksi
·	ayer 14	□ pR2 =		2.1 131
TOTAL L	OSSES	AT TRA	ANSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$			at midspan	at endspan
рг — рг — рг — рг — рг	layer 1	f _{pt} =	190.6 ksi	190.6 ksi
	layer 2	f _{pt} =	190.6 ksi	190.6 ksi
	layer 3	f _{pt} =	190.6 ksi	190.6 ksi
	layer 4	f _{pt} =	190.6 ksi	190.6 ksi
	layer 5	f _{pt} =	190.6 ksi	10010 1101
	layer 6	f _{pt} =	190.6 ksi	
	layer 7	f _{pt} =	190.6 ksi	
	layer 8	f _{pt} =	190.6 ksi	
	layer 9	f _{pt} =	100.0 101	190.6 ksi
1	ayer 10	f _{pt} =		190.6 ksi
	ayer 11	f _{pt} =		190.6 ksi
	ayer 12	f _{pt} =		190.6 ksi
	ayer 13			
	ayer 14	f _{pt} =		190.6 ksi 190.6 ksi
force per strand = f _{pt} *strand area	ayer 14	f _{pt} =	at midspan	at endspan
orde per strana = ipt strana area	layer 1		29.2 kips	
	layer 2	=	·	29.2 kips 29.2 kips
		=	29.2 kips	
	layer 3	=	29.2 kips	29.2 kips
	layer 4	=	29.2 kips	29.2 kips
	layer 5	=	29.2 kips	
	layer 6	=	29.2 kips	
	layer 7	=	29.2 kips	
	layer 8		29.2 kips	20.0 1:5-
,	layer 9	=		29.2 kips
	ayer 10	=		29.2 kips
	ayer 11	=		29.2 kips
	ayer 12	=		29.2 kips
	ayer 13	=		29.2 kips
Total prestressing force after	ayer 14	=	4004011	29.2 kips
rotal prestressing force after	transier	P _i =	1284.8 kips	1284.8 kips
$\text{nitial loss} = (\Delta f_{\text{pi}})/(f_{\text{pi}})$, , , , ,	0/	at midspan	at endspan
	layer 1	% =	8.2%	8.2%
	layer 2	% =	8.2%	8.2%
	layer 3	% =	8.2%	8.2%
	layer 4	% =	8.2%	8.2%
	layer 5	% =	8.2%	
	layer 6	% =	8.2%	
	layer 7	% =	8.2%	
	layer 8	% =	8.2%	
	layer 9	% =		8.2%
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	ayer 10	% =		8.2%
Į.	ayer ro	0/		0.270

layer 11

layer 12

layer 13

layer 14

% =

% =

% =

% =

OK OK OK OK OK OK OK

ок

οк

ок

οк

8.2%

8.2%

8.2%

8.2%

TOTAL LOSSES A		at midspan	at endspan
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2		49.9 ksi	49.9 ksi
layer		49.9 ksi	49.9 ksi
layer 4		49.9 ksi	49.9 ksi
layer s		49.9 ksi	10.0 101
layer (49.9 ksi	
layer 7		49.9 ksi	
layer 8		49.9 ksi	
layer 9	-	10.0 101	49.9 ksi
layer 10			49.9 ksi
layer 1			49.9 ksi
layer 12			49.9 ksi
layer 1			49.9 ksi
layer 14			49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	. — рі	at midspan	at endspan
layer	f _{pe} =	157.7 ksi	157.7 ksi
layer 2		157.7 ksi	157.7 ksi
layer 3		157.7 ksi	157.7 ksi
layer		157.7 ksi	157.7 ksi
layer s		157.7 ksi	107.7 101
layer (157.7 ksi	
layer		157.7 ksi	
layer 8		157.7 ksi	
layers		107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 1			157.7 ksi
layer 12			157.7 ksi
layer 13			157.7 ksi
layer 14	-		157.7 ksi
check prestressing stress limit at service limit state		fpv	
layer		199.7 ksi	
layer 2		199.7 ksi	
layer 3		199.7 ksi	
layer 4		199.7 ksi	
layer s		199.7 ksi	
layer (199.7 ksi	
layer 7		199.7 ksi	
layer 8		199.7 ksi	
layers		199.7 ksi	
layer 10		199.7 ksi	
layer 1		199.7 ksi	
layer 12		199.7 ksi	
layer 13		199.7 ksi	7
layer 14		199.7 ksi	7
force per strand = f _{pe} *strand area	L	at midspan	at endspan
layer	1 =	24.1 kips	24.1 kips
layer 2		24.1 kips	24.1 kips
layer 3	3 =	24.1 kips	24.1 kips
layer 4	4 =	24.1 kips	24.1 kips
layer s		24.1 kips	_
layer 6		24.1 kips	
layer 7	_	24.1 kips	
layer 8		24.1 kips	
layer 9			24.1 kips
layer 10			24.1 kips
•			24.1 kips
layer 1	' -		
layer 1: layer 12	_		24.1 kips
•	2 =		

OK OK OK

OK OK OK

ok ok

OK OK OK

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE						
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi						
Tension						
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi				
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi				

STRESSES AT TRANSFER LENGTH SECTION					
Transfer Length = 60*(strand diameter)	=	2.5 ft			
Bending moment at transfer length	$M_g =$	116.4 ft-kips			
center of 12 strands to top fiber of beam at the end	=	7.00 in			
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in			
center of 12 strands and top fiber of beam at transfer length	=	10.78 in			
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in			
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in			
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in			
Eccentricity of the strand group at transfer length:	e _h =	17.09 in			
Eccentricity at end of beam:	e =	16.05 in			

Calcs for eccentricity (see 9.6.7.2)

		10.03 111	C -	Eccentricity at one beam.
İ		$= \frac{P_i}{A} + \frac{P_i \sigma}{S_b} - \frac{M_B}{S_b}$	f, :	$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$
İ	at endspan	at midspan		
ок	0.342 ksi	0.342 ksi	f _t =	Top stress at top fiber of beam
ок	3.021 ksi	3.021 ksi	f _b =	Bottom stress at bottom fiber of the beam
		POINT	T HARP	STRESSES A
		1188.0 ft-kips	$M_g =$	Bending moment due to beam weight at 0.3L
ОК	0.035 ksi	0.035 ksi	f _t =	Top stress at top fiber of beam
ОК	3.300 ksi	3.300 ksi	f _b =	Bottom stress at bottom fiber of the beam
		PAN	AT MIDS	STRESSES
		1414.3 ft-kips	M _g =	Bending moment due to beam weight at 0.5L
ок	0.211 ksi	0.220 ksi	f _t =	Top stress at top fiber of beam
ок	3.189 ksi	3.144 ksi	f _b =	Bottom stress at bottom fiber of the beam

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f, 221.4 ksi layer 2 221.4 ksi layer 3 221.4 ksi layer 4 221.4 ksi 221.4 ksi layer 5 = layer 6 221.4 ksi 221.4 ksi layer 7 = layer 8 221.4 ksi layer 9 = 221.4 ksi layer 10 221.4 ksi = layer 11 221.4 ksi layer 12 221.4 ksi = layer 13 221.4 ksi layer 14 = 221.4 ksi prestress force per strand before any losses: layer 1 33.9 kips = 33.9 kips layer 2 = layer 3 33.9 kips = layer 4 = 33.9 kips layer 5 33.9 kips = layer 6 33.9 kips 33.9 kips layer 7 = layer 8 33.9 kips layer 9 33.9 kips 33.9 kips layer 10 layer 11 33.9 kips 33.9 kips layer 12 = layer 13 = 33.9 kips layer 14 33.9 kips = Harp Angle 7.2 ° $\Psi =$ Hold-down force/strand layer 1 4.4 kips/strand layer 2 4.4 kips/strand 4.4 kips/strand layer 3 = 4.4 kips/strand layer 4 = layer 5 = 4.4 kips/strand 4.4 kips/strand layer 6 = layer 7 4.4 kips/strand = layer 8 4.4 kips/strand = layer 9 4.4 kips/strand 4.4 kips/strand layer 10 layer 11 4.4 kips/strand layer 12 4.4 kips/strand 4.4 kips/strand layer 13 = layer 14 4.4 kips/strand Total hold-down force 53.39 kips Stresses at Service Loads STRESS LIMITS FOR CONCRETE Compression: Due to permanent loads for load combination Service I 3.150 ksi for the precast beam for deck 1.526 ksi Due to permanent and transient loads for load combination Service I for the precast beam 4.200 ksi

for deck

Load Combination Service III

for the precast beam

Tension:

2.034 ksi

-0.016 ksi

STRESSES AT MIL	OSPAN .		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_t = \frac{P_{jd}}{A} \cdot \frac{P_{jd}s}{S_t} \cdot \frac{(M_s + M_s)}{S_t}$	$\frac{(\boldsymbol{M}_{w}+\boldsymbol{M}_{b})}{S_{tg}}$		
Due to permanent loads $f_{tg} =$	2.043 ksi	2.043 ksi	C
$f_{zg} = \frac{P_{ge}}{A} - \frac{P_{ge}s}{S_z} + \frac{(M_g + M_s)}{S_z} + \frac{(M_u}{S_z}$	$\frac{S_{ig} + M_b}{S_{ig}} + \frac{(M_{EL+1})}{S_{ig}}$		
Due to permanent loads and transient loads f _{tg} =	2.475 ksi	2.475 ksi	C
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{w} = \frac{(M_{wx} + h)}{S_{w}}$	<u>(,)</u>		
Due to permanent loads $f_{tc} =$	0.041 ksi	0.041 ksi	C
$f_{w} = \frac{(M_{w} + M_{s} + M_{s})}{S_{w}}$	$I_{\underline{x}+1}$		
Due to permanent loads and transient loads f _{tc} =	0.474 ksi	0.474 ksi	C
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1g} = \frac{\mu_{ps}}{A} + \frac{\mu_{ps}}{S_b} = \frac{(M_B + M_A)}{S_b} = \frac{(M_{10})}{S_b}$	$\frac{+\boldsymbol{M_{s}}+0.8\boldsymbol{*}\boldsymbol{M_{LL+1}}\rangle}{S_{sc}}$		
Load Combination Service III f _b =	-0.402 ksi	-0.402 ksi	(

Strength Limit State

POSITIVE MOMENT SECTION

layer 3 0.28 k = layer 4 k = 0.28 0.28 layer 5 k = layer 6 k = 0.28 layer 7 0.28 layer 8 0.28 k = layer 9 k = 0.28 0.28 layer 10 k = layer 11 k = 0.28 layer 12 0.28 k = layer 13 k = 0.28 layer 14 k = 0.28 6.7 ft-kips c =

 $\ \ \, \text{average stress in prestressing steel}$

layer 1	f _{ps} =	269.9 ksi
layer 2	$f_{ps} =$	269.9 ksi
layer 3	f _{ps} =	269.9 ksi
layer 4	f _{ps} =	269.9 ksi
layer 5	$f_{ps} =$	269.9 ksi
layer 6	f _{ps} =	269.9 ksi
layer 7	f _{ps} =	269.9 ksi
layer 8	$f_{ps} =$	269.9 ksi
layer 9	$f_{ps} =$	269.9 ksi
layer 10	f _{ps} =	269.9 ksi
layer 11	f _{ps} =	269.9 ksi
layer 12	f _{ps} =	269.9 ksi
layer 13	$f_{ps} =$	269.9 ksi
layer 14	f _{ps} =	269.9 ksi

nominal flexure resistance

 $\begin{array}{c|c} & a = & 5.70 \text{ in} \\ \\ M_r = \Phi M_n, \ \Phi = 1.00 & \Phi M_n = & 10800.2 \text{ ft-kips} \\ \end{array}$

NEGATIVE MOMENT SECTION

 $\begin{aligned} M_{u} &= 1.25 DC + 1.5 DW + 1.75 (LL + IM) \\ & & & & M_{u} = & -4837.2 \text{ ft-kips} \\ & & & & a = & 0.19 \text{ in} \\ & & & & & & & \\ \hline & \Phi M_{n} &= & & 4945.9 \text{ ft-kips} \end{aligned}$

ок

οк

Shear Design

CRITICAL SECTION AT 0.59 $V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ 405.0 kips V_u = $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ -2684.4 ft-kips or $V_u = 1.25DC+1.5DW+1.75(LL+IM)$ V_u = 364.8 kips $M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u =$ -2877.0 ft-kips max shear V_u = 405.0 kips M_u = 2877.0 ft-kips max moment Shear depth $d_v =$ 73.19 in Applied factored normal force at the section $N_u =$ 0 Angle of diagonal compressive stresses θ = 36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

$\mathbf{e}_{u} = \frac{\frac{M_{u}}{d_{v}} + 0.5N_{u} + 0.5N_{u} \cot \theta - A_{po}f_{po}}{R_{s}A_{s} + R_{y}A_{po}} \le 0.002$						
at midspan at endspan						
resultant compressive stress at centroid $f_{pc} = 1.011 \text{ ksi}$ 1.011 ksi						
effective stress in prestressing strand after all lo	9929					

layer 1	f _{po} =	162.9 ksi	162.9 ksi
layer 2	f _{po} =	162.9 ksi	162.9 ksi
layer 3	f _{po} =	162.9 ksi	162.9 ksi
layer 4	f _{po} =	162.9 ksi	162.9 ksi
layer 5	f _{po} =	162.9 ksi	
layer 6	f _{po} =	162.9 ksi	
layer 7	f _{po} =	162.9 ksi	
layer 8	f _{po} =	162.9 ksi	
layer 9	f _{po} =		162.9 ksi
layer 10	f _{po} =		162.9 ksi
layer 11	$f_{po} =$		162.9 ksi
layer 12	f _{po} =		162.9 ksi
layer 13	f _{po} =		162.9 ksi
layer 14	f _{po} =		162.9 ksi
		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000

strain in flexural tension

ayci io	·po —		102.5 131
ayer 14	f _{po} =		162.9 ksi
•		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
ayer 10	$\epsilon_x =$		0.002000
ayer 11	$\varepsilon_x =$		0.002000
ayer 12	$\varepsilon_x =$		0.002000
ayer 13	ε _x =		0.002000
ayer 14	$\varepsilon_x =$		0.002000

at midspan

3.97 in

-1.49 in

-1.44 in

-1.95 in

at endspan

3.97 in

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

Δ _p –	
$\Delta_g =$	
$\Delta_g =$	
$\Delta_s =$	

Deflection due to total self weight

 $\Delta_{\rm sw} = 0.59 \ {\rm in}$

Total Deflection at transfer Total Deflection at erection

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

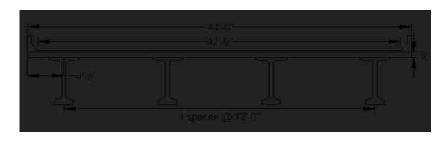
Deck Deflection (assuming 12" beam)

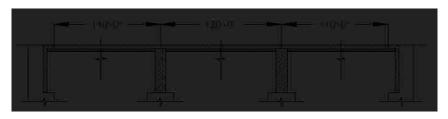
Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1719 in
=	0.18 in
$\Delta_1 =$	-0.34 in

Location: <u>Fire above Deck Between Girders</u> Beam Design: 1/2" Strand

Fire Exposure Status: 2 Hour




Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	3.25 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE

Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	RESTRESSING STR		
Dia	meter of single strand	d =	0.5 in
Tanananatura af Lauran	Area of single strand	A =	0.153 in^
Temperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 1 (bottom)	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	Ť=	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	<u>T</u> =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13 layer 14	T = T =	68.00 °F 68.00 °F
Ultimate Strength	layer 14	1 =	00.00 F
intial = 277 ksi	layer 1 (bottom)	f. =	277 ksi
muci = ZII Noi		f _{pu} =	277 ksi
	layer 2	f _{pu} =	
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	$f_{pu} =$	277 ksi
	layer 9	$f_{pu} =$	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
	layer 14	f _{pu} =	277 ksi
Yield Strength	layor 14	·pu —	211 131
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	-	250 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{py} =	250 ksi
	layer 4	f _{py} =	
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	$f_{py} =$	250 ksi
	layer 9	$f_{py} =$	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{DV} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:	, [P7	
before transfer ≤ 0.75f _{pu} (initi	al = 207.6)		
pu (layer 1 (bottom)	$f_{pi} =$	207.6 ks
	layer 2	f _{pi} =	207.6 ks
	layer 3	f _{pi} =	207.6 ks
	·		
	layer 4	f _{pi} =	207.6 ks
	layer 5	f _{pi} =	207.6 ks
	layer 6	f _{pi} =	207.6 ks
	layer 7	f _{pi} =	207.6 ks
	layer 8	$f_{pi} =$	207.6 ks
	layer 9	f _{pi} =	207.6 ks
	layer 10	f _{pi} =	207.6 ks
	layer 11	f _{pi} =	207.6 ks
	layer 12	f _{pi} =	207.6 ks
	layer 13	f _{pi} =	207.6 ks
	iayei 13	'pı —	201.0 NS
	layer 14	$f_{pi} =$	207.6 ks

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

, , ,		<u> </u>
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

MILD STEEL REINFORCING BARS AT ENDSPAN

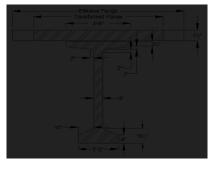
Yield Strength

ayer 1 (Bottom)	$f_y =$	60.0 ksi	68.00 °F
Layer 2 (Top)	$f_y =$	53.3 ksi	1120.00 °F

Modulus of Elasticity

E =	29000.0 ksi

Layer 1 (Bottom)


Area of steel at midspan (effective flange) A_{sm} = 2.79 in^2 Area of steel at endspan (effective flange) A_{se} = 2.48 in^2 Area of temperature and shrinkage steel (12" width) A_{s} = 0.31 in^2

Layer 2 (Top)

	Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
	Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of t	emperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l=	539,947 in^4		
Distance from centroid to extreme bottom fiber	y _b =	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3456 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM

00 00E DE		
Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6814
Transformed flange width	=	75.6 in
Transformed flange area	=	567.3 in^2
Fransformed haunch width	=	28.6 in
Transformed haunch area	=	14.3 in^2

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	223,138 in^4	539,947 in^4	763,085 in^4
Haunch	14.3 in^2	72.25 in	1,033.8 in^3	4,947 in^4	0.33 in^4	4,947 in^4
Deck	567.3 in^2	76.25 in	43,253.1 in^3	289,564 in^4	2,950 in^4	292,514 in^4
Total	1348.6 in^2		72,359.1 in^3			1,060,546 in^4

Total area of Composite Section	A _c =	1349 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,060,546 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.66 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.34 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.34 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,765.5 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	57,815.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	59,083.0 in^3

DECK (as 12" beam)

D2011 (40 12 D0411)					
Reinforcing per 12"			at midspan	at beams	
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2	
	Laver 2 (Top)	$A_{s^*}=$	0.2 in^2	0.2 in^2	

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt[4]{f}_c)$ cast-in-place concrete deck $E_{cs} = 1$

3456 ksi

Moment of Intertia	$I_g =$	166 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.66 in	
Distance from centroid to extreme top fiber of deck	y _t =	5.34 in	
Modulus of Rupture	$f_r =$	427.6 psi	
Cracking Moment	M _{CR} =	2.2 ft-kips	1.1 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	87 in^4	87 in^4
Effective Moment of Inertia for Continuous Ream	l. =	87 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight	w _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD Specifications:	Art 16221
LINI D opecifications.	AIL 4.0.2.2. I

	Width of Deck Constant		OK
	Number of beams is not less than four N _b =	4	OK
	Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
	Curvature in plans is less than 4°=	0	OK
Cross-section	on of the bridge is consistent with one of the cross sections given by LRFD specs		ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	$P_{live} =$	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	$x_b =$	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.4676
Longitudinal stiffness parameter	K _g =	2,562,082.31 in^4

at center span:

$$DFM = 0.75 \cdot \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_B}{12 * L * L_s^2}\right)^{0.1}$$

$$| DFM = | 0.913 | anes/beam$$

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.5} * \left(\frac{K_{s}}{12 * L * \ell_{s}^{5}}\right)^{0.01}$$

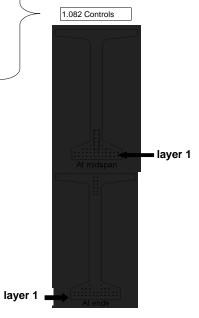
$$| DFM = | 0.619 | lanes/beam$$

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + {S \choose 12} - {S \choose 35}^2$$


$$DFV = 1.082 \text{ lanes/beam}$$

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
Harped Strai	nd Group (ir	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth $strand\ eccentricity\ at\ midspan = (y_b-y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTE	NING		
assumed loss	=	9.00%	
Force per strand at transfer			
layer 1	=	28.9 kips	
layer 2	=	28.9 kips	
layer 3	=	28.9 kips	
layer 4	=	28.9 kips	
layer 5	=	28.9 kips	
layer 6	=	28.9 kips	
layer 7	=	28.9 kips	
layer 8	=	28.9 kips	
layer 9	=	28.9 kips	
layer 10	=	28.9 kips	
layer 11	=	28.9 kips	
layer 12	=	28.9 kips	
layer 13	=	28.9 kips	
layer 14	=	28.9 kips	
		at midspan	at endspan
Total prestressing force at release	$P_i =$	1271.6 kips	1271.6 kips
	f _{cgp} =	2.938 ksi	2.938 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi at midspan	2.938 ksi at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment			
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment Loss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
oss due to shorteninglayer 1	$\Delta f_{pES} = \Delta f_{pES} = 0$	at midspan 17.0 ksi	at endspan 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment Loss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_$	at midspan 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment Loss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment Loss due to shortening layer 1 layer 2 layer 3 layer 4	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \end{array}$	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment Loss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9 layer 10 layer 10 layer 10 layer 10 layer 10 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment Loss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi	at endspan 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi 17.0 ksi

Shrinkage = (17-0.15*Relative Humidity)

6.5 ksi

assume relative humidity = 70%

CREEP OF CONCRETE							
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.564 ksi					
		at midspan	at endspan				
loss due to creep	$\Delta f_{pCR} =$	24.3 ksi	24.3 ksi				

RELAXATION OF PRE	STRESS	ING STRANDS	
loss due to relaxation after transfer		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 5	$\Delta f_{pR2} =$	2.1 ksi	
layer 6	$\Delta f_{pR2} =$	2.1 ksi	
layer 7	$\Delta f_{pR2} =$	2.1 ksi	
layer 8	$\Delta f_{pR2} =$	2.1 ksi	
layer 9	$\Delta f_{pR2} =$		2.1 ksi
layer 10	$\Delta f_{pR2} =$		2.1 ksi
layer 11	$\Delta f_{pR2} =$		2.1 ksi
layer 12	$\Delta f_{pR2} =$		2.1 ksi
- I			2.1 ksi
layer 13	$\Delta f_{pR2} =$		
layer 14	$\Delta f_{pR2} =$		2.1 ksi
TOTAL LOSSES	AT TRA	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$	ſ	at midspan	at endspan
layer 1	$f_{pt} =$	190.6 ksi	190.6 ksi
layer 2	f _{pt} =	190.6 ksi	190.6 ksi
layer 3	f _{pt} =	190.6 ksi	190.6 ksi
layer 4	f _{pt} =	190.6 ksi	190.6 ksi
layer 5	f _{pt} =	190.6 ksi	
layer 6	f _{pt} =	190.6 ksi	
layer 7	f _{pt} =	190.6 ksi	
layer 8	f _{pt} =	190.6 ksi	
layer 9	f _{pt} =	100.0 K31	190.6 ksi
layer 10			190.6 ksi
- I	f _{pt} =		
layer 11	f _{pt} =		190.6 ksi
layer 12	f _{pt} =		190.6 ksi
layer 13	f _{pt} =		190.6 ksi
layer 14	f _{pt} =		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=		
1		29.2 kips	29.2 kips
layer 5	=	29.2 kips	29.2 Kips
layer 6		29.2 kips 29.2 kips	29.2 Kips
- I	=	29.2 kips	29.2 Np5
layer 6	=	29.2 kips 29.2 kips	29.2 NIPS
layer 6 layer 7	= = =	29.2 kips 29.2 kips 29.2 kips	29.2 kips
layer 6 layer 7 layer 8	= = = =	29.2 kips 29.2 kips 29.2 kips	
layer 6 layer 7 layer 8 layer 9	= = = =	29.2 kips 29.2 kips 29.2 kips	29.2 kips
layer 6 layer 7 layer 8 layer 9 layer 10	= = = = = =	29.2 kips 29.2 kips 29.2 kips	29.2 kips 29.2 kips
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = = = =	29.2 kips 29.2 kips 29.2 kips	29.2 kips 29.2 kips 29.2 kips 29.2 kips
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	= = = = = = = = =	29.2 kips 29.2 kips 29.2 kips	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	= = = = = = = =	29.2 kips 29.2 kips 29.2 kips	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 Total prestressing force after transfer	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips
layer 6 layer 7 layer 8 layer 9 layer 10 layer 10 layer 11 layer 12 layer 12 layer 12 layer 14 Total prestressing force after transfer lnitial loss = $(\Delta f_{\rm pl})/(f_{\rm pl})$	= = = = = = = = = P _i =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 11 layer 12 layer 12 layer 14 Total prestressing force after transfer lnitial loss = $(\Delta f_{\rm pl})/(f_{\rm pl})$	= = = = = = = = = = = = = = = P _i = = %	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2%
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 Total prestressing force after transfer layer 1 layer 1 layer 12 layer 14 layer 16 layer 17 layer 18 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 2	= = = = = = = = = = = = = = = = P ₁ = = % = %	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at midspan 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2%
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 Total prestressing force after transfer layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 2 layer 3	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at midspan 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2%
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 Total prestressing force after transfer layer 2 layer 3 layer 14 layer 2 layer 3 layer 4 layer 2 layer 3 layer 4	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2%
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 Total prestressing force after transfer layer 2 layer 3 layer 14 layer 2 layer 3 layer 4 layer 2 layer 3 layer 4 layer 3 layer 4 layer 5	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2%
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 11 layer 12 layer 13 layer 14 Total prestressing force after transfer layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2%
$\begin{array}{c} \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \text{Total prestressing force after transfer} \\ \\ \text{Initial loss} = (\Delta f_{pi})/(f_{pi}) \\ \text{layer 2} \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2%
layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 10 layer 11 layer 12 layer 13 layer 14 Total prestressing force after transfer layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 2 layer 3 layer 4 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2% 8.2%
$\begin{array}{c} \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \text{Total prestressing force after transfer} \\ \\ \text{Initial loss} = (\Delta f_{pi})/(f_{pi}) \\ \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2% 8.2%
$\begin{array}{c} \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \text{Total prestressing force after transfer} \\ \\ \text{Initial loss} = (\Delta f_{\rm pl})/(f_{\rm pl}) \\ \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2% 8.2% 8.2%
$\begin{array}{c} \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \text{Total prestressing force after transfer} \\ \\ \text{Initial loss} = (\Delta f_{pi})/(f_{pi}) \\ \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2% 8.2%
$\begin{array}{c} \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \text{Total prestressing force after transfer} \\ \\ \text{Initial loss} = (\Delta f_{\rm pl})/(f_{\rm pl}) \\ \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2% 8.2% 8.2%
$layer \ 6 \\ layer \ 7 \\ layer \ 8 \\ layer \ 9 \\ layer \ 10 \\ layer \ 10 \\ layer \ 11 \\ layer \ 12 \\ layer \ 13 \\ layer \ 14 \\ Total prestressing force after transfer \\ Initial loss = (\Delta f_{pl})/(f_{pl})$ $layer \ 1 \\ layer \ 2 \\ layer \ 3 \\ layer \ 4 \\ layer \ 5 \\ layer \ 6 \\ layer \ 7 \\ layer \ 6 \\ layer \ 7 \\ layer \ 8 \\ layer \ 9 \\ layer \ 9 \\ layer \ 9 \\ layer \ 9 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 10 \\ layer \ 11 \\ layer \ 11 \\ layer \ 11 \\ layer \ 11 \\ layer \ 10 \\ layer \ 11 \\ layer \ 12 \\ layer \ 13 \\ layer \ 14 \\ layer \$	= = = = = = = = = = = = = = = = = = =	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips 1284.8 kips at midspan 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2% 8.2%	29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 29.2 kips 1284.8 kips at endspan 8.2% 8.2% 8.2% 8.2% 8.2%

OK OK OK OK OK OK OK OK

ок

RELAXATION OF PRESTRESSING STRANDS

Total Losses			CE LOADS at midspan	at endspan
	layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
	layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
	layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
	layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
	layer 5	$\Delta f_{pT} =$	49.9 ksi	
	layer 6	$\Delta f_{pT} =$	49.9 ksi	
	layer 7	$\Delta f_{pT} =$	49.9 ksi	
	layer 8	$\Delta f_{pT} =$	49.9 ksi	
	layer 9	$\Delta f_{pT} =$		49.9 ksi
I	ayer 10	$\Delta f_{pT} =$		49.9 ksi
	ayer 11	$\Delta f_{pT} =$		49.9 ksi
	ayer 12	$\Delta f_{pT} =$		49.9 ksi
	ayer 13	$\Delta f_{pT} =$		49.9 ksi
	ayer 14	$\Delta f_{pT} =$		49.9 ksi
ss in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	157.7 ksi	157.7 ksi
	layer 2	f _{pe} =	157.7 ksi	157.7 ksi
	layer 3	f _{pe} =	157.7 ksi	157.7 ksi
	layer 4	f _{pe} =	157.7 ksi	157.7 ksi
	layer 5	$f_{pe} =$	157.7 ksi	
	layer 6	f _{pe} =	157.7 ksi	
	layer 7	f _{pe} =	157.7 ksi	
	layer 8	f _{pe} =	157.7 ksi	
	layer 9	$f_{pe} =$		157.7 ksi
I	ayer 10	f _{pe} =		157.7 ksi
I	ayer 11	f _{pe} =		157.7 ksi
	ayer 12	f _{pe} =		157.7 ksi
I	ayer 13	f _{pe} =		157.7 ksi
	ayer 14	f _{pe} =		157.7 ksi
ck prestressing stress limit at service lin		: fpe ≤ 0.		
	layer 1	=	199.7 ksi	
	layer 2	=	199.7 ksi	
	layer 3	=	199.7 ksi	
	layer 4	=	199.7 ksi	4
	layer 5	=	199.7 ksi	4
	layer 6	=	199.7 ksi	4
	layer 7	=	199.7 ksi	4
	layer 8	=	199.7 ksi	_
	layer 9	=	199.7 ksi	4
	ayer 10	=	199.7 ksi	4
	ayer 11	=	199.7 ksi	
	ayer 12	=	199.7 ksi	_
	ayer 13	=	199.7 ksi	-
	ayer 14	=	199.7 ksi	-4 1
e per strand = f _{pe} *strand area	,		at midspan	at endspan
	layer 1	=	24.1 kips	24.1 kips
	layer 2	=	24.1 kips	24.1 kips
	layer 3	=	24.1 kips	24.1 kips
	layer 4	=	24.1 kips	24.1 kips
	layer 5	=	24.1 kips	
	layer 6	=	24.1 kips	
	layer 7	=	24.1 kips	
	layer 8	=	24.1 kips	
	layer 9	=		24.1 kips
	ayer 10	=		24.1 kips
	ayer 11	=		24.1 kips
	ayer 12	=		24.1 kips
ı	ayer 13	=		24.1 kips
	ayer 14			24.1 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =	·	24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	M _o =	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

$f_2 = \frac{P_1}{A} - \frac{P_1 e}{S_1} + \frac{M_1}{S_2}$	f, =	$=\frac{P_i}{A}-\frac{P_ie}{S_b}-\frac{M_B}{S_b}$		
		at midspan	at endspan	
Top stress at top fiber of beam	f _t =	0.342 ksi	0.342 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi	ок
STRESSES A	THARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi	ок
STRESSES A	AT MIDS	SPAN	•	
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.211 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi	ок

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

Oil		
layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	II	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	II	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service i			
for the precast beam	=	3.150 ksi	
for deck	=	1.463 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	4.200 ksi	
for deck	=	1.950 ksi	

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

STRESSES AT MIDSPAN Compression stresses at top fiber of beam at midspan at endspa	
	ın
$f_{2} = \frac{P_{ye}}{A} - \frac{P_{ye\theta}}{S_{2}} + \frac{(M_{z} + M_{3})}{S_{2}} + \frac{(M_{we} + M_{8})}{S_{yg}}$	
Due to permanent loads $f_{tg} = 2.044 \text{ ksi}$ 2.044 ks	i (
$f_{iy} = \frac{P_{ys}}{A} - \frac{P_{yd}S}{S_t} + \frac{(M_y + M_z)}{S_t} + \frac{(M_{ys} + M_b)}{S_{tx}} + \frac{(M_{EL+1})}{S_{ty}}$	
Due to permanent loads and transient loads $f_{tq} = 2.483 \text{ ks}$ 2.483 ks	i
Compression stresses at top fiber of deck at midspan at endspa	ın
$f_{w} = \frac{(M_{w} + M_{\phi})}{S_{w}}$	
Due to permanent loads $f_{tc} = 0.041 \text{ ksi}$ 0.041 ks	i C
$f_{x} = \frac{(M_{y_{t}} + M_{\phi} + M_{L(\phi)})}{S_{y_{t}}}$	
Due to permanent loads and transient loads $f_{tc} = 0.470 \text{ ks}$ 0.470 ks	i (
Tension stresses at top fiber of deck at midspan at endspa	ın
$f_{1g} = \frac{P_{po}}{A} + \frac{P_{poS}}{S_h} - \frac{(M_B + M_{\star})}{S_h} - \frac{(M_{\star o} + M_d + 0.8 * M_{ZZ,1})}{S_{ho}}$	
A S ₄ S ₅ S ₄	
Load Combination Service III $f_b =$ -0.404 ksi -0.404 ks	si C

rength Limit State POSITIVE MOMENT SECTION		
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	8381.5 ft-kips
effective length factor for compression members		
layer 1	k =	0.28
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28

average stress in prestressing steel

layer 1	$f_{ps} =$	269.6 ksi
layer 2	f _{ps} =	269.6 ksi
layer 3	f _{ps} =	269.6 ksi
layer 4	$f_{ps} =$	269.6 ksi
layer 5	$f_{ps} =$	269.6 ksi
layer 6	f _{ps} =	269.6 ksi
layer 7	$f_{ps} =$	269.6 ksi
layer 8	$f_{ps} =$	269.6 ksi
layer 9	$f_{ps} =$	269.6 ksi
layer 10	$f_{ps} =$	269.6 ksi
layer 11	$f_{ps} =$	269.6 ksi
layer 12	$f_{ps} =$	269.6 ksi
layer 13	$f_{ps} =$	269.6 ksi
layer 14	f _{ps} =	269.6 ksi

7.0 ft-kips

c =

nominal flexure resistance

	a =	5.94 III
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	10770.5 ft-kips

NEGATIVE MOMENT SECTION M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u =

)	$M_u =$	-4837.2 ft-kips		
	a =	0.19 in		
	$\Phi M_n =$	4794.8 ft-kips		

NOT OK

οк

Shear Design

CRITICAL SECTION AT 0.59				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00°		
STRAIN IN FLEXURAL TENSION REINFORCMENT				

$\frac{M_i}{d_i}$ +	$0.5N_a + 0.5V_a \cot \theta - A_a$	برا _ي . — <0.002
, 	E.A.+E.A.	34.445

at midspan at endspan resultant compressive stress at centroid 1.015 ksi 1.015 ksi effective stress in prestressing strand after all losses

all 10556	35		
layer 1	f _{po} =	162.9 ksi	162.9 ksi
layer 2	f _{po} =	162.9 ksi	162.9 ksi
layer 3	f _{po} =	162.9 ksi	162.9 ksi
layer 4	f _{po} =	162.9 ksi	162.9 ksi
layer 5	f _{po} =	162.9 ksi	
layer 6	f _{po} =	162.9 ksi	
layer 7	f _{po} =	162.9 ksi	
layer 8	f _{po} =	162.9 ksi	
layer 9	f _{po} =		162.9 ksi
layer 10	f _{po} =		162.9 ksi
layer 11	f _{po} =		162.9 ksi
layer 12	f _{po} =		162.9 ksi
layer 13	f _{po} =		162.9 ksi
layer 14	f _{po} =		162.9 ksi
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000

strain in flexural tension

layer 14	f _{po} =		162.9 ksi
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	
	•	

Deflection due to total self weight

 $\Delta_{sw} =$ 0.59 in

Total Deflection at transfer Total Deflection at erection

Λ =	2.48 in	2.48 in
Δ=	4.49 in	4.49 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1984 in
=	0.18 in
Δ, =	-0 41 in

Location: Fire above Deck Between Girders

Beam Design: 1/2" Strand Fire Exposure Status: 3 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	3.02 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE Strength at release f'ci = 5.5 ksi 7 ksi Strength at 28 days f'c = Unit Weight W_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L= 119 ft @ center span L = Design Spans: 109 ft Non-composite beam @ end spans Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span 120 ft Beam Spacing 12 ft

	PRESTRESSING STR		
D	iameter of single strand	d =	0.5 in
omporature of Layer	Area of single strand	A =	0.153 in^2
emperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	<u>T =</u>	68.00 °F
	layer 8	T = T =	68.00 °F 68.00 °F
	layer 9 layer 10	T=	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	г		
intial = 277 ksi	layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	$f_{pu} =$	277 ksi
	layer 4	$f_{pu} =$	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13		277 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{pu} =	
d Strength	layer 14	f _{pu} =	277 ksi
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
.mar = 200 Nor	layer 1 (bottom)	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4		250 ksi
	· · · · ·	f _{py} =	
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	$f_{py} =$	250 ksi
	layer 11	$f_{py} =$	250 ksi
	layer 12	$f_{py} =$	250 ksi
	layer 13	$f_{py} =$	250 ksi
	layer 14	$f_{py} =$	250 ksi
s Limits:			
e transfer ≤ 0.75f _{pu} (initi			
	layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	$f_{pi} =$	207.6 ksi
	layer 3	$f_{pi} =$	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	
			207.6 ksi
	layer 13	$f_{pi} =$	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

er 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	$f_{pe} =$	199.7 ksi
layer 3	$f_{pe} =$	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	$f_{pe} =$	199.7 ksi
layer 7	$f_{pe} =$	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

layer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

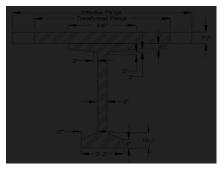
MILD STEEL REINFORCING BARS AT ENDSPAN

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F	
Layer 2 (Top)	f _v =	48.0 ksi	1300.00 °F	

Modulus of Elasticity

Layer 1 (Bottom)


E =	29000.0 ksi

Layer 2 (Top)

,		
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
a of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

ross-sectional Properties					
NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	y _b =	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3332 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6568
Transformed flange width	=	72.9 in
Transformed flange area	=	546.8 in^2
Transformed haunch width	=	27.6 in
Transformed haunch area	=	13.8 in^2

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	213,944 in^4	539,947 in^4	753,891 in^4
Haunch	13.8 in^2	72.25 in	996.6 in^3	4,953 in^4	0.33 in^4	4,953 in^4
Deck	546.8 in^2	76.25 in	41,694.5 in^3	287,973 in^4	2,950 in^4	290,922 in^4
Total	1327.6 in^2		70.763.3 in^3			1.049.766 in^4

Total area of Composite Section	A _c =	1328 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,049,766 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.30 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.70 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.70 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,694.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	56,141.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	59,861.8 in^3

DECK (as 12" beam)

		~,		
Reinforcing per 12"			at midspan	at beams
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2
	Layer 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2

Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$

cast-in-place concrete deck E_{cs} = 3332 ksi

Moment of Intertia	I _g =	125 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.38 in	
Distance from centroid to extreme top fiber of deck	$y_t =$	5.62 in	
Modulus of Rupture	$f_r =$	412.2 psi	
Cracking Moment	$M_{CR} =$	1.8 ft-kips	0.8 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	87 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	l _e =	87 in^4	

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight $w_{beam} = 8$ in. deck weight $w_{deck} = 8$ 0.799 k/f 1.200 k/f 1/2 in. haunch weight Whaunch = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1
147

Width of Deck Constant Number of beams is not less than four $N_b = Roadway part of the overhang, d_e \le 3.0 ft, d_e =$ OK OK OK 4 1.5 Curvature in plans is less than 4° = OK Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.5225
Longitudinal stiffness parameter	$K_g =$	2,657,855.02 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_g}{12 + L^4 t_s^2}\right)^{0.2}$$

DFM = 0.916 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_J}{12*L*t_s^3}\right)^{0}$$

DFM = 0.621 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-		2	70
Harped Stra	ınd Group (iı	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

0.905 Controls

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTE	NING		_	
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	-	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
,		at midspan	at endspan	
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6		17.0 ksi		
layer 7	$\Delta f_{pES} =$	17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9	$\Delta f_{pES} =$		17.0 ksi	
layer 10	$\Delta f_{pES} =$		17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12	$\Delta f_{pES} =$		17.0 ksi	
layer 13	$\Delta f_{pES} =$		17.0 ksi	
layer 14	$\Delta f_{pES} =$		17.0 ksi	
				_
	IKAGE		Т	_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	─	assume relative humidity = 70%
CREEP OF	CONCR	ETE		
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cap}	$\Delta f_{cdp} =$	1.564 ksi		=

at midspan

24.3 ksi

loss due to creep $\Delta f_{pCR} =$

at endspan

24.3 ksi

loss due to relaxation after transfer		at midspan	at endspan
layer	1 $\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer		2.1 ksi	2.1 ksi
layer	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer		2.1 ksi	
layer	$\Delta f_{pR2} =$	2.1 ksi	
layer	$7 \Delta f_{pR2} =$	2.1 ksi	
layer	$\Delta f_{pR2} =$	2.1 ksi	
layer	$\Delta f_{pR2} =$		2.1 ksi
	$0 \Delta f_{pR2} =$		2.1 ksi
layer 1	-		2.1 ksi
layer 1	F		2.1 ksi
	$\Delta f_{pR2} =$		2.1 ksi
layer 1	$4 \Delta f_{pR2} =$		2.1 ksi
TOTAL LOSSI	ES AT TRA	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$	1	at midspan	at endspan
layer	1 f _{pt} =	190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	190.6 ksi
layer		190.6 ksi	
layer			190.6 ksi
layer 1	0 f _{pt} =		190.6 ksi
layer 1			190.6 ksi
layer 1	2 f _{pt} =		190.6 ksi
layer 1	3 f _{pt} =		190.6 ksi
layer 1	4 f _{pt} =		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer	1 =	29.2 kips	29.2 kips
layer	2 =	29.2 kips	29.2 kips
layer		29.2 kips	29.2 kips
layer		29.2 kips	29.2 kips
layer		29.2 kips	
layer		29.2 kips	
layer		29.2 kips	
layer		29.2 kips	00.01:
layer			29.2 kips
layer 1			29.2 kips
layer 1			29.2 kips
layer 1 layer 1			29.2 kips 29.2 kips
layer 1			29.2 kips 29.2 kips
Total prestressing force after transfe		1284.8 kips	1284.8 kips
. ,	'	•	
Initial loss = $(\Delta f_{pi})/(f_{pi})$ layer	1 % =	at midspan 8.2%	at endspan 8.2%
layer		8.2%	8.2%
layer		8.2%	8.2%
layer		8.2%	8.2%
layer		8.2%	0.2 /0
layer		8.2%	_
layer		8.2%	1
layer		8.2%	1
layer		*	8.2%
*			
layer 1	0 % =		8.2%

layer 11

layer 12

layer 13

layer 14

% =

% =

% =

% =

OK OK OK OK OK OK OK

ок

οк

ок

οк

8.2%

8.2%

8.2%

8.2%

TOTAL LOSSES A		at midspan	at endspan
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2		49.9 ksi	49.9 ksi
layer		49.9 ksi	49.9 ksi
layer 4		49.9 ksi	49.9 ksi
layer s		49.9 ksi	10.0 101
layer (49.9 ksi	
layer 7		49.9 ksi	
layer 8		49.9 ksi	
layer 9	-	10.0 101	49.9 ksi
layer 10			49.9 ksi
layer 1			49.9 ksi
layer 12			49.9 ksi
layer 1			49.9 ksi
layer 1			49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	. — рі	at midspan	at endspan
layer	f _{pe} =	157.7 ksi	157.7 ksi
layer 2		157.7 ksi	157.7 ksi
layer 3		157.7 ksi	157.7 ksi
layer		157.7 ksi	157.7 ksi
layer s		157.7 ksi	107.7 101
layer (157.7 ksi	
layer		157.7 ksi	
layer 8		157.7 ksi	
layers		107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 1			157.7 ksi
layer 12			157.7 ksi
layer 13			157.7 ksi
layer 14	-		157.7 ksi
check prestressing stress limit at service limit state		fpv	
layer		199.7 ksi	
layer 2		199.7 ksi	
layer 3		199.7 ksi	
layer 4		199.7 ksi	
layer s		199.7 ksi	
layer (199.7 ksi	
layer 7		199.7 ksi	
layer 8		199.7 ksi	
layers		199.7 ksi	
layer 10		199.7 ksi	
layer 1		199.7 ksi	
layer 12		199.7 ksi	
layer 13		199.7 ksi	7
layer 14		199.7 ksi	7
force per strand = f _{pe} *strand area	L	at midspan	at endspan
layer	1 =	24.1 kips	24.1 kips
layer 2		24.1 kips	24.1 kips
layer 3	3 =	24.1 kips	24.1 kips
layer 4	4 =	24.1 kips	24.1 kips
layer s		24.1 kips	-
layer 6		24.1 kips	
layer 7		24.1 kips	
layer 8		24.1 kips	
layer 9		·	24.1 kips
layer 10			24.1 kips
•			24.1 kips
layer 1	' -		
layer 1: layer 12	_		24.1 kips
•	2 =		

OK OK OK

OK OK OK

ok ok

OK OK OK

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi				
Tension				
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	2.5 ft		
Bending moment at transfer length	$M_g =$	116.4 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	10.78 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in		
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in		
Eccentricity of the strand group at transfer length:	e _h =	17.09 in		
Eccentricity at end of beam:	e =	16.05 in		

Calcs for eccentricity (see 9.6.7.2)

		10.03 111	C -	Eccentricity at one beam.
İ		$= \frac{P_i}{A} + \frac{P_i \sigma}{S_b} - \frac{M_B}{S_b}$	f, :	$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$
İ	at endspan	at midspan		
ок	0.342 ksi	0.342 ksi	f _t =	Top stress at top fiber of beam
ок	3.021 ksi	3.021 ksi	f _b =	Bottom stress at bottom fiber of the beam
		POINT	T HARP	STRESSES A
		1188.0 ft-kips	$M_g =$	Bending moment due to beam weight at 0.3L
ОК	0.035 ksi	0.035 ksi	f _t =	Top stress at top fiber of beam
ОК	3.300 ksi	3.300 ksi	f _b =	Bottom stress at bottom fiber of the beam
		PAN	AT MIDS	STRESSES
		1414.3 ft-kips	M _g =	Bending moment due to beam weight at 0.5L
ок	0.211 ksi	0.220 ksi	f _t =	Top stress at top fiber of beam
ок	3.189 ksi	3.144 ksi	f _b =	Bottom stress at bottom fiber of the beam

HOLD-DOWN FOR assume stress in strand before losses = 0.8f _{ii}	CE9	
layer 1	=	221.4 ksi
layer 2		221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	_	221.4 ksi
layer 6	=	221.4 ksi
layer 7	_	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi
prestress force per strand before any losses:		
layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °
Hold-down force/strand layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips
resses at Service Loads STRESS LIMITS FOR C	ONCRE	ГЕ
Compression:		
Due to permanent loads for load co		
for the precast beam	=	3.150 ksi
for deck	=	1.359 ksi
Due to permanent and transient loads for I		
for the precast beam	=	4.200 ksi
for deck	=	1.812 ksi
Tension:		
Load Combination Ser	vice III	
for the precest heam	_	-0.016 kei

for the precast beam

-0.016 ksi

STRESSES AT MID	SPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{z} = \frac{P_{yd}}{A} - \frac{F_{yd}\sigma}{S_{z}} + \frac{(M_{y} + M_{z})}{S_{z}} + \frac{(M_{z} + M_{z})}{S_{z}}$	$\frac{(\boldsymbol{M}_{w}+\boldsymbol{M}_{\delta})}{S_{tg}}$		
Due to permanent loads $f_{tg} =$	2.045 ksi	2.045 ksi	OI
$f_{zg} = \frac{P_{ge}}{A} - \frac{P_{ge}\sigma}{S_z} + \frac{(\Delta d_g + \lambda d_s)}{S_z} + \frac{(M_w)}{S_z}$	$\frac{S_{ig} + M_b}{S_{ig}} + \frac{(M_{EL+1})}{S_{ig}}$		
Due to permanent loads and transient loads f _{tg} =	2.497 ksi	2.497 ksi	Ol
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{ux} + M_{tr})}{S_{tr}}$	<u>(a)</u>		
Due to permanent loads $f_{tc} =$	0.040 ksi	0.040 ksi	0
$f_{w} = \frac{(M_{w} + M_{\theta} + M_{\theta})}{S_{w}}$	(<u>rr+1</u>)		
Due to permanent loads and transient loads f _{tc} =	0.464 ksi	0.464 ksi	O
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1g} - \frac{P_{\mu\nu}}{A} + \frac{P_{\mu\nu}S}{S_{\delta}} - \frac{(M_B + M_{\odot})}{S_{\delta}} - \frac{(M_{10})}{S_{\delta}}$	$\frac{+\boldsymbol{M}_{\boldsymbol{\theta}} + 0.8^*\boldsymbol{M}_{LL+1}}{S_{\boldsymbol{\theta}\boldsymbol{c}}}$		
Load Combination Service III f _b =	-0.408 ksi	-0.408 ksi	O

Strength Limit State

 POSITIVE MOMENT SECTION

 M_u = 1.25DC+1.5DW+1.75(LL+IM)
 M_u =
 8381.5 ft-kips effective length factor for compression members

0		
layer 1	k =	0.28
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	C =	7.5 ft-kips

average stress in prestressing steel

f _{ps} =	269.1 ksi
$f_{ps} =$	269.1 ksi
f _{ps} =	269.1 ksi
$f_{ps} =$	269.1 ksi
$f_{ps} =$	269.1 ksi
$f_{ps} =$	269.1 ksi
f _{ps} =	269.1 ksi
$f_{ps} =$	269.1 ksi
$f_{ps} =$	269.1 ksi
f _{ps} =	269.1 ksi
f _{ps} =	269.1 ksi
f _{ps} =	269.1 ksi
f _{ps} =	269.1 ksi
f _{ps} =	269.1 ksi
	$\begin{aligned} f_{ps} &= \\ f_$

nominal flexure resistance

6.38 in $M_r = \Phi M_n, \ \Phi = 1.00$ $\Phi M_n =$ 10716.1 ft-kips

NEGATIVE MOMENT SECTION

 $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

$M_u =$	-4837.2 ft-kips
a =	0.18 in
$\Phi M_n =$	4410.7 ft-kips

οк

NOT OK

Shear Design

CRITICAL SECTION AT 0.59					
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips			
or					
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	364.8 kips			
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips			
max shear	$V_u =$	405.0 kips			
max moment	$M_u =$	2877.0 ft-kips			
Shear depth	$d_v =$	73.19 in			
Applied factored normal force at the section	N _u =	0			

Angle of diagonal compressive stresses $\theta =$ STRAIN IN FLEXURAL TENSION REINFORCMENT

$\frac{M_u}{d_v} + 0.5N_u + 0.5V_u \cot \theta - A_{po}f_{po}$ $\epsilon_u = \frac{d_v}{d_v} \leq 0.002$				
$\mathcal{Z}_{p}A_{p}$				
	at midenan	at endenan		

resultant compressive stress at centroid f_{pc} = 1.023 ksi effective stress in prestressing strand after all losses

layer 1	f _{po} =	162.9 ksi	162.9 ksi
layer 2	f _{po} =	162.9 ksi	162.9 ksi
layer 3	f _{po} =	162.9 ksi	162.9 ksi
layer 4	$f_{po} =$	162.9 ksi	162.9 ksi
layer 5	f _{po} =	162.9 ksi	
layer 6	f _{po} =	162.9 ksi	
layer 7	$f_{po} =$	162.9 ksi	
layer 8	f _{po} =	162.9 ksi	
layer 9	f _{po} =		162.9 ksi
layer 10	f _{po} =		162.9 ksi
layer 11	$f_{po} =$		162.9 ksi
layer 12	f _{po} =		162.9 ksi
layer 13	f _{po} =		162.9 ksi
layer 14	$f_{po} =$		162.9 ksi
		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000

36.00°

strain in flexural tension

ayer 13	Ipo —		102.3 K31
layer 14	f _{po} =		162.9 ksi
•		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$	_	0.002000
layer 13	ε _x =		0.002000
layer 14	$\varepsilon_x =$		0.002000

at midspan

3.97 in

-1.49 in

-1.44 in

-1.95 in

at endspan

3.97 in

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erectio Deflection due to Haunch and Deck

on	1
	1

 $\Delta_p =$

 $\Delta_{sw} =$ 0.59 in

Total Deflection at transfer

Deflection due to total self weight

Total Deflection at erection

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.2443 in
=	0.18 in
$\Delta_1 =$	-0.55 in

Location: Fire above Deck Between Girders

Beam Design: 1/2" Strand Fire Exposure Status: 4 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	2.83 ksi		
Unit Weight	W _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE Strength at release f'ci = 5.5 ksi 7 ksi Strength at 28 days f'c = Unit Weight W_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L= 119 ft @ center span L = Design Spans: 109 ft Non-composite beam @ end spans Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span 120 ft

Beam Spacing

12 ft

	PRESTRESSING STR		
D	iameter of single strand	d =	0.5 in
omporature of Layer	Area of single strand	A =	0.153 in^2
emperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 2	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	<u>T =</u>	68.00 °F
	layer 8	T = T =	68.00 °F 68.00 °F
	layer 9 layer 10	T=	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	г		
intial = 277 ksi	layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	$f_{pu} =$	277 ksi
	layer 4	$f_{pu} =$	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13		277 ksi
	· · · · · · · · · · · · · · · · · · ·	f _{pu} =	
d Strength	layer 14	f _{pu} =	277 ksi
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
.mar = 200 Nor	layer 1 (bottom)	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4		250 ksi
	· · · · ·	f _{py} =	
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	$f_{py} =$	250 ksi
	layer 11	$f_{py} =$	250 ksi
	layer 12	$f_{py} =$	250 ksi
	layer 13	$f_{py} =$	250 ksi
	layer 14	$f_{py} =$	250 ksi
s Limits:			
e transfer ≤ 0.75f _{pu} (initi			
	layer 1 (bottom)	$f_{pi} =$	207.6 ksi
	layer 2	$f_{pi} =$	207.6 ksi
	layer 3	$f_{pi} =$	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	
			207.6 ksi
	layer 13	$f_{pi} =$	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

, b),	,	
layer 1 (bottom)	$f_{pe} =$	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{ne} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

ayer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
laver 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

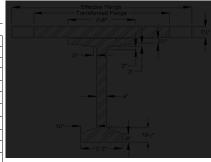
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	100.00 °F
Layer 2 (Top)	f _v =	44.4 ksi	1430.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

E =	29000.0 ksi


Area of steel at midspan (effective flange) A_{sm} = 2.79 in^2 Area of steel at endspan (effective flange) A_{se} = 2.48 in^2 Area of temperature and shrinkage steel (12" width) A_{s} := 0.31 in^2

Layer 2 (Top)

,		
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
a of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

oss-sectional Froperties			
NON-COMPOSITE BEAM			
Area of cross-section of beam	A =	767.0 in^2	
Overall depth of beam	H =	72.0 in	
Moment of Inertia	l=	539,947 in^4	
Distance from centroid to extreme bottom fiber	y _b =	36.6 in	
Distance from centroid to extreme top fiber	$y_t =$	35.4 in	
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3	
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3	
Weight	$W_t =$	799.0 plf	
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$			
cast-in-place concrete deck	E _{cs} =	3225 ksi	
precast beam at release	E _{ci} =	4496 ksi	
precast beam at service loads	E _c =	5072 ksi	

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6358
Transformed flange width	=	70.6 in
Transformed flange area	=	529.3 in^2
Transformed haunch width	=	26.7 in
Transformed haunch area	=	13.4 in^2

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	206,008 in^4	539,947 in^4	745,955 in^4
Haunch	13.4 in^2	72.25 in	964.7 in^3	4,954 in^4	0.33 in^4	4,954 in^4
Deck	529.3 in^2	76.25 in	40,361.6 in^3	286,415 in^4	2,950 in^4	289,365 in^4
Total	1309 7 in^2		69 398 5 in/3			1 040 274 in^4

Total area of Composite Section	A _c =	1310 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,040,274 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	52.99 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	19.01 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	27.01 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,632.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	54,718.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	60,570.1 in^3

DECK (as 12" beam)

		~,		
Reinforcing per 12"			at midspan	at beams
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2
	Layer 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

cast-in-place concrete deck	E _{cs} =	3225 ksi
-----------------------------	-------------------	----------

Moment of Intertia	I _g =	99 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.17 in	
Distance from centroid to extreme top fiber of deck	$y_t =$	5.83 in	
Modulus of Rupture	$f_r =$	399.0 psi	
Cracking Moment	$M_{CR} =$	1.5 ft-kips	0.6 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	87 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	l _o =	87 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight	w _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f

LRFD	Specifications:	Art.	4.6.2.2	.1

Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	$x_a =$	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
.RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.5727
Longitudinal stiffness parameter	$K_g =$	2,745,627.03 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_{E}}{12 + L + c_{s}^{2}}\right)^{0}$$

DFM = 0.919 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_{J}}{12*L*t_{s}^{3}}\right)^{0}$$

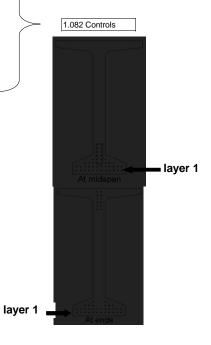
DFM = 0.623 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	=
layer 7	2	14	-	=
layer 8	2	16	-	=
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
Harped Stra	nd Group (i	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTE	NING			
assumed loss	=	9.00%		
Force per strand at transfer	•			
layer 1	=	28.9 kips		
layer 2	=	28.9 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14	=	28.9 kips		
.,		at midspan	at endspan	
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi	
layer 5	$\Delta f_{pES} =$	17.0 ksi		
layer 6	$\Delta f_{pES} =$	17.0 ksi		
layer 7		17.0 ksi		
layer 8	$\Delta f_{pES} =$	17.0 ksi		
layer 9	$\Delta f_{pES} =$		17.0 ksi	
layer 10			17.0 ksi	
layer 11	$\Delta f_{pES} =$		17.0 ksi	
layer 12	$\Delta f_{pES} =$		17.0 ksi	
layer 13			17.0 ksi	
layer 14			17.0 ksi	
•	P-3		l.	
SHRIN	IKAGE			=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%
				_
CREEP OF	CONCR	ETE		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.564 ksi		

at midspan

24.3 ksi

loss due to creep $\Delta f_{pCR} =$

at endspan

24.3 ksi

RELAXATION O loss due to relaxation after transfer			at midspan	at endspan
and to roundier after transfer	layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 3		2.1 ksi	2.1 ksi
	layer 4		2.1 ksi	2.1 ksi
	layer 5		2.1 ksi	2111101
		$\Delta f_{pR2} =$	2.1 ksi	
	layer 7	$\Delta f_{pR2} =$	2.1 ksi	
		$\Delta f_{pR2} =$	2.1 ksi	
		$\Delta f_{pR2} =$	2111101	2.1 ksi
ı	ayer 10	_		2.1 ksi
	ayer 11			2.1 ksi
	ayer 12	_		2.1 ksi
	ayer 13			2.1 ksi
	ayer 14			2.1 ksi
·	ayer 14	□ pR2 =		2.1 131
TOTAL L	OSSES	AT TRA	ANSFER	
otal loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$			at midspan	at endspan
рг — рг — рг — рг — рг	layer 1	f _{pt} =	190.6 ksi	190.6 ksi
	layer 2	f _{pt} =	190.6 ksi	190.6 ksi
	layer 3	f _{pt} =	190.6 ksi	190.6 ksi
	layer 4	f _{pt} =	190.6 ksi	190.6 ksi
	layer 5	f _{pt} =	190.6 ksi	10010 1101
	layer 6	f _{pt} =	190.6 ksi	
	layer 7	f _{pt} =	190.6 ksi	
	layer 8	f _{pt} =	190.6 ksi	
	layer 9	f _{pt} =	100.0 101	190.6 ksi
1	ayer 10	f _{pt} =		190.6 ksi
	ayer 11	f _{pt} =		190.6 ksi
	ayer 12	f _{pt} =		190.6 ksi
	ayer 13			
	ayer 14	f _{pt} =		190.6 ksi 190.6 ksi
force per strand = f _{pt} *strand area	ayer 14	f _{pt} =	at midspan	at endspan
orde per strana = ipt strana area	layer 1		29.2 kips	
	layer 2	=	·	29.2 kips 29.2 kips
		=	29.2 kips	
	layer 3	=	29.2 kips	29.2 kips
	layer 4	=	29.2 kips	29.2 kips
	layer 5	=	29.2 kips	
	layer 6	=	29.2 kips	
	layer 7	=	29.2 kips	
	layer 8		29.2 kips	20.0 1:5-
,	layer 9	=		29.2 kips
	ayer 10	=		29.2 kips
	ayer 11	=		29.2 kips
	ayer 12	=		29.2 kips
	ayer 13	=		29.2 kips
Total prestressing force after	ayer 14	=	4004011	29.2 kips
rotal prestressing force after	transier	P _i =	1284.8 kips	1284.8 kips
$\text{nitial loss} = (\Delta f_{\text{pi}})/(f_{\text{pi}})$, , , , ī	0/	at midspan	at endspan
	layer 1	% =	8.2%	8.2%
	layer 2	% =	8.2%	8.2%
	layer 3	% =	8.2%	8.2%
	layer 4	% =	8.2%	8.2%
	layer 5	% =	8.2%	
	layer 6	% =	8.2%	
	layer 7	% =	8.2%	
	layer 8	% =	8.2%	
	layer 9	% =		8.2%
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	ayer 10	% =		8.2%
Į.	ayer ro	0/		0.270

layer 11

layer 12

layer 13

layer 14

% =

% =

% =

% =

OK OK OK OK OK OK OK

ок

οк

ок

οк

8.2%

8.2%

8.2%

8.2%

TOTAL LOSSES A		at midspan	at endspan
layer	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2		49.9 ksi	49.9 ksi
layer		49.9 ksi	49.9 ksi
layer 4		49.9 ksi	49.9 ksi
layer s		49.9 ksi	10.0 101
layer (49.9 ksi	
layer 7		49.9 ksi	
layer 8		49.9 ksi	
layers	-	10.0 101	49.9 ksi
layer 10			49.9 ksi
layer 1			49.9 ksi
layer 12			49.9 ksi
layer 1			49.9 ksi
layer 14			49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}	. — рі	at midspan	at endspan
layer	f _{pe} =	157.7 ksi	157.7 ksi
layer 2		157.7 ksi	157.7 ksi
layer 3		157.7 ksi	157.7 ksi
layer		157.7 ksi	157.7 ksi
layer s		157.7 ksi	107.7 101
layer (157.7 ksi	
layer		157.7 ksi	
layer 8		157.7 ksi	
layers		107.7 K31	157.7 ksi
layer 10			157.7 ksi
layer 1			157.7 ksi
layer 12			157.7 ksi
layer 13			157.7 ksi
layer 14	-		157.7 ksi
check prestressing stress limit at service limit state		fpv	
layer		199.7 ksi	
layer 2		199.7 ksi	
layer 3		199.7 ksi	
layer 4		199.7 ksi	
layer s		199.7 ksi	
layer (199.7 ksi	
layer 7		199.7 ksi	
layer 8		199.7 ksi	
layers		199.7 ksi	
layer 10		199.7 ksi	
layer 1		199.7 ksi	
layer 12		199.7 ksi	
layer 13		199.7 ksi	7
layer 14		199.7 ksi	7
force per strand = f _{pe} *strand area	L	at midspan	at endspan
layer	1 =	24.1 kips	24.1 kips
layer 2		24.1 kips	24.1 kips
layer 3	3 =	24.1 kips	24.1 kips
layer 4	4 =	24.1 kips	24.1 kips
layer s		24.1 kips	-
layer 6		24.1 kips	
layer 7	_	24.1 kips	
layer 8		24.1 kips	
layer 9			24.1 kips
layer 10			24.1 kips
•			24.1 kips
layer 1	' -		
layer 1: layer 12	_		24.1 kips
•	2 =		

OK OK OK

OK OK OK

ok ok

OK OK OK

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.7 kips	1061.7 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	2.5 ft		
Bending moment at transfer length	$M_g =$	116.4 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	10.78 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in		
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in		
Eccentricity of the strand group at transfer length:	e _h =	17.09 in		
Eccentricity at end of beam:	e =	16.05 in		

Calcs for eccentricity (see 9.6.7.2)

$-\frac{M_g}{S_b}$		$f_t = \frac{P_i}{A} - \frac{P_i \sigma}{S_t} + \frac{M_s}{S_t} $ f_s
span at endspan	at midspan	
ksi 0.342 ksi	0.342 ksi	Top stress at top fiber of beam $f_t =$
ksi 3.021 ksi	3.021 ksi	Bottom stress at bottom fiber of the beam f _b =
	POINT	STRESSES AT HARP
ft-kips	1188.0 ft-kips	Bending moment due to beam weight at $0.3L$ $M_q =$
ksi 0.035 ksi	0.035 ksi	Top stress at top fiber of beam $f_t =$
ksi 3.300 ksi	3.300 ksi	Bottom stress at bottom fiber of the beam f _b =
	PAN	STRESSES AT MIDS
ft-kips	1414.3 ft-kips	Bending moment due to beam weight at 0.5L $M_g =$
ksi 0.211 ksi	0.220 ksi	Top stress at top fiber of beam $f_t =$
ksi 3.189 ksi	3.144 ksi	Bottom stress at bottom fiber of the beam $f_b =$

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f, 221.4 ksi layer 2 221.4 ksi layer 3 221.4 ksi layer 4 221.4 ksi 221.4 ksi layer 5 = layer 6 221.4 ksi 221.4 ksi layer 7 = layer 8 221.4 ksi layer 9 = 221.4 ksi layer 10 221.4 ksi = layer 11 221.4 ksi layer 12 221.4 ksi = layer 13 221.4 ksi layer 14 = 221.4 ksi prestress force per strand before any losses: layer 1 33.9 kips = 33.9 kips layer 2 = layer 3 33.9 kips = layer 4 = 33.9 kips layer 5 33.9 kips = layer 6 33.9 kips 33.9 kips layer 7 = layer 8 33.9 kips layer 9 33.9 kips 33.9 kips layer 10 layer 11 33.9 kips 33.9 kips layer 12 = layer 13 = 33.9 kips layer 14 33.9 kips = Harp Angle 7.2 ° $\Psi =$ Hold-down force/strand layer 1 4.4 kips/strand layer 2 4.4 kips/strand 4.4 kips/strand layer 3 = 4.4 kips/strand layer 4 = layer 5 = 4.4 kips/strand 4.4 kips/strand layer 6 = layer 7 4.4 kips/strand = layer 8 4.4 kips/strand = layer 9 4.4 kips/strand 4.4 kips/strand layer 10 layer 11 4.4 kips/strand layer 12 4.4 kips/strand 4.4 kips/strand layer 13 = layer 14 4.4 kips/strand Total hold-down force 53.39 kips Stresses at Service Loads STRESS LIMITS FOR CONCRETE Compression: Due to permanent loads for load combination Service I 3.150 ksi for the precast beam for deck 1.274 ksi Due to permanent and transient loads for load combination Service I for the precast beam 4.200 ksi

for deck

Load Combination Service III

for the precast beam

Tension:

1.698 ksi

-0.016 ksi

STRESSES AT MID	SPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{z} = \frac{P_{ys}}{A} - \frac{F_{ys}\sigma}{S_{z}} + \frac{(M_{y} + M_{z})}{S_{z}}$	$\frac{(\boldsymbol{M}_{w}+\boldsymbol{M}_{\delta})}{S_{tg}}$		
Due to permanent loads $f_{tg} =$	2.046 ksi	2.046 ksi	Ol
$f_{zg} = \frac{P_{ge}}{A} - \frac{P_{ge}\sigma}{S_z} + \frac{(\Delta d_g + \lambda d_s)}{S_z} + \frac{(M_w)}{S_z}$	$\frac{S_{ig} + M_b}{S_{ig}} + \frac{(M_{EL+1})}{S_{ig}}$		
Due to permanent loads and transient loads f _{tg} =	2.510 ksi	2.510 ksi	Ol
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{ux} + M_{tr})}{S_{tr}}$	<u>(a)</u>		
Due to permanent loads $f_{tc} =$	0.040 ksi	0.040 ksi	0
$f_{w} = \frac{(M_{w} + M_{b} + M_{b})}{S_{w}}$	(<u>rr+1</u>)		
Due to permanent loads and transient loads f _{tc} =	0.459 ksi	0.459 ksi	O
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1g} - rac{P_{pr}}{A} + rac{P_{pr}R}{S_0} - rac{(M_B + M_A)}{S_0} - rac{(M_{10})}{S_0}$	$\frac{+\boldsymbol{M}_{\theta}+0.8^{*}\boldsymbol{M}_{LL+1}\rangle}{S_{\theta c}}$		
Load Combination Service III f _b =	-0.412 ksi	-0.412 ksi	0

Strength Limit State

 POSITIVE MOMENT SECTION

 Mu = 1.25DC+1.5DW+1.75(LL+IM)
 Mu =
 8381.5 ft-kips effective length factor for compression members

layer 1	k =	0.28
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	C =	8.0 ft-kips

average stress in prestressing steel

layer 1	f _{ps} =	268.6 ksi
layer 2	$f_{ps} =$	268.6 ksi
layer 3	f _{ps} =	268.6 ksi
layer 4	f _{ps} =	268.6 ksi
layer 5	$f_{ps} =$	268.6 ksi
layer 6	$f_{ps} =$	268.6 ksi
layer 7	f _{ps} =	268.6 ksi
layer 8	$f_{ps} =$	268.6 ksi
layer 9	$f_{ps} =$	268.6 ksi
layer 10	f _{ps} =	268.6 ksi
layer 11	f _{ps} =	268.6 ksi
layer 12	f _{ps} =	268.6 ksi
layer 13	f _{ps} =	268.6 ksi
layer 14	f _{ps} =	268.6 ksi

nominal flexure resistance

6.79 in $M_r = \Phi M_n, \ \Phi = 1.00$ $\Phi M_n =$ 10664.7 ft-kips

οк

NEGATIVE MOMENT SECTION

M_u = 1.25DC+1.5DW+1.75(LL+IM) M_u = -4837.2 ft-kips 0.18 in a = $\Phi M_n =$ 4151.8 ft-kips

NOT OK

Shear Design

CRITICAL SECTION AT 0.59				
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ $V_u = 405.0 \text{ kips}$				
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00°		

STRAIN IN FLEXURAL TENSION REINFORCMENT $\frac{M_u}{d} + 0.5N_u + 0.5N_u \cot \theta - A_{pol}f_{po}$

$ \epsilon_{y} = \frac{u_{y}}{E_{x}A_{y} + h} $	——≤ 0.002		
		at midspan	at endspan
resultant compressive stress at centroid	f _{pc} =	1.030 ksi	1.030 ksi
effective stress in prestressing strand after all losses	3		•
layer 1	f _{po} =	163.0 ksi	163.0 ksi
lovor 2	f _	162 O kei	162 0 kgi

f_{po} = 163.0 ksi layer 3 163.0 ksi $f_{po} =$ layer 4 $f_{po} =$ 163.0 ksi 163.0 ksi layer 5 f_{po} = 163.0 ksi layer 6 f_{po} = 163.0 ksi layer 7 f_{po} = 163.0 ksi layer 8 layer 9 163.0 ksi $f_{po} =$ 163.0 ksi $f_{po} =$ layer 10 f_{po} = 163.0 ksi layer 11 f_{po} = 163.0 ksi layer 12 f_{po} = 163.0 ksi la la

strain in flexural tension

layer 13	$f_{po} =$		163.0 ksi
layer 14	$f_{po} =$		163.0 ksi
,		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

at midspan

3.97 in

-1.49 in

-1.44 in

-1.95 in

at endspan

3.97 in

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_g =$	
$\Delta_g =$	
$\Delta_s =$	

 $\Delta_{\rm p} =$

Deflection due to total self weight

$\Delta_{sw} =$	0.59 in

Total Deflection at transfer Total Deflection at erection

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.2857 in	
=	0.18 in	
$\Delta_1 =$	-0.70 in	

Location: Fire above Deck Between Girders

Beam Design: 3/8" Strand
Fire Exposure Status: Undamaged

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	4.00 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	β ₁ =	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE 5.5 ksi Strength at release f'ci = Strength at 28 days f'c = 7 ksi Unit Weight w_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L = @ center span 119 ft L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span Beam Spacing 12 ft

-	PRESTRESSING STI	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laa. 4 (b.a.t.a.a.)	-	C0.00.0F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T = T =	68.00 °F
	layer 10 layer 11	T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	$f_{pu} =$	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ŕ		II.
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{DV} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	,	P7	
before transfer ≤ 0.75f _{pu} (ir	nitial = 213.2)		
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14		213.2 ksi
	layer 14	f _{pi} =	21J.2 NOI

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	$f_{pe} =$	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

ayer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	60.0 ksi	68.00 °F
•			

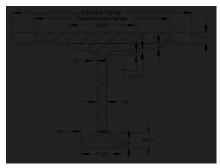
Modulus of Elasticity

Layer 1 (Bottom) E =

Layer 2 (Top) E = 29000.0 ksi 29000.0 ksi

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
f temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMP	POSITE	BEAM

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3834 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E. =	5072 ksi			

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7559
Transformed flange width	=	83.9 in
Transformed flange area	=	629.3 in^2
Transformed haunch width	=	31.7 in
Transformed haunch area	=	15.9 in^2
Transformed flange width Transformed flange area Transformed haunch width	= = =	83.9 in 629.3 in^2 31.7 in

*min of three criteria

	Transformed Area	yb	Ayb	A(ybc-yb)2	ı	I +A(ybc-yb)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3			1.091.315 in^4

_		
Total area of Composite Section	$A_c =$	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,315 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	56,994.5 in^3

DECK (as 12" beam)

Reinforcing per 12"

		at midspan	at beams	
Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2	
Layer 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2	

Modulus of Elasticity = 33000*(W_c ^1.5)*($\sqrt{f_c}$)

= 00000 (** _C 1.0) (*1 _C)		
cast-in-place concrete deck	E _{cs} =	3834 ksi

Moment of Intertia	$I_g =$	512 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	4.00 in	
Distance from centroid to extreme top fiber of deck	y _t =	4.00 in	
Modulus of Rupture	$f_r =$	474.3 psi	
Cracking Moment	M _{CR} =	5.1 ft-kips	5.1 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kip

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	99 in^4	93 in^4
Effective Moment of Inertia for Continuous Beam	I. =	96 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
LRFD Specifications: Art. 4.6.2.2.1			$\overline{}$
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		OK	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	$P_{live} =$	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	K _g =	2,309,429.79 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*t_s^3}\right)^{0}$$

DFM = 0.905 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.5} * \left(\frac{K_s}{12 * L * L_s^3}\right)^{0.5}$$

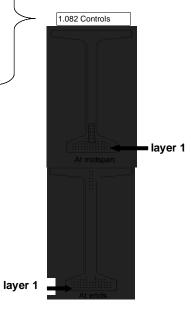
DFM = 0.614 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan		At Midspan At Ends		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	14	2	14	2	
layer 2	14	3.5	14	3.5	
layer 3	14	5	14	5	
layer 4	10	6.5	8	6.5	
layer 5	4	8	2	8	
layer 6	2	10	-	-	
layer 7	2	12	-	-	
layer 8	2	14	-	-	
layer 9	2	16	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
•	64		64		
Harped Stra	nd Group (in	cluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layor 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b s)

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTEI	NING		
assumed loss	=	6.00%	
Force per strand at transfer			
layer 1	=	17.0 kips	
layer 2	=	17.0 kips	
layer 3	=	17.0 kips	
layer 4	=	17.0 kips	
layer 5	=	17.0 kips	
layer 6	=	17.0 kips	
layer 7	=	17.0 kips	
layer 8	=	17.0 kips	
layer 9	=	17.0 kips	
layer 10	=	17.0 kips	
layer 11	=	17.0 kips	
layer 12	=	17.0 kips	
layer 13	=	17.0 kips	
layer 14	=	17.0 kips	
•		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing			
	$f_{cgp} =$	2.412 ksi	2.307 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi at midspan	2.307 ksi at endspan
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	$f_{cgp} = $ $\Delta f_{pES} = $		
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1	-	at midspan 13.9 ksi	at endspan 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 4 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9 layer 10 layer 10 layer 10 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi

S	HRINKAGE			=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%

RELAXATIO	ON OF PRE	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 6	$\Delta f_{pR2} =$	2.9 ksi	
	layer 7	$\Delta f_{pR2} =$	2.9 ksi	
	layer 8	$\Delta f_{pR2} =$	2.9 ksi	
	layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 10	$\Delta f_{pR2} =$		2.9 ksi
	layer 11	$\Delta f_{pR2} =$		2.9 ksi
	layer 12	$\Delta f_{pR2} =$		2.9 ksi
	layer 13	$\Delta f_{pR2} =$		2.9 ksi
	layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$
stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$

force per strand = f_{pt} *strand area

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
Λf \//f \		at midenan	at andenan

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

ок ок ок ок ок ок ок ок ok ok ок ок ок ок

Total Losses	JOSES A	I JERVI	CE LOADS at midspan	at endspan
I Oldi EUSSES	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.6 ksi
	layer 2	f _{pe} =	172.0 ksi	172.6 ksi
	layer 3	f _{pe} =	172.0 ksi	172.6 ksi
	layer 4	f _{pe} =	172.0 ksi	172.6 ksi
	layer 5	f _{pe} =	172.0 ksi	172.6 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.01.
	layer 9	f _{pe} =	172.0 ksi	172.6 ksi
	layer 10	f _{pe} =		172.6 ksi
	layer 11	t _{pe} =		172.6 ksi
	layer 12 layer 13	f _{pe} =		172.6 ksi 172.6 ksi
	layer 14	f _{pe} =		172.6 ksi
check prestressing stress limit at service li	- 1		fnv	172.0 K31
oneon productioning duode in in at dervice in	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
force per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	14.7 kips
	layer 9 layer 10		14.6 kips	14.7 kips 14.7 kips
	layer 10	=		14.7 kips 14.7 kips
	iayei i i			
	laver 12	_		
	layer 12 layer 13	=		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.7 kips	939.1 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = 0.6f'ci	f _{ci} =	3.300 ksi			
Tension					
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi			
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi			

STRESSES AT TRANSFER LE	NGTH S	ECTION	_
Transfer Length = 60*(strand diameter)	=	1.9 ft	
Bending moment at transfer length	$M_g =$	87.7 ft-kips	1
center of 12 strands to top fiber of beam at the end	=	7.00 in	
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	9.84 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in	
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in	
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in	
Eccentricity of the strand group at transfer length:	e _h =	21.36 in	رل
Eccentricity at end of beam:	e =	21.30 in	T.

Calcs for eccentricity (see 9.6.7.2)

,			
$f_r = rac{P_i}{A} - rac{P_i e}{S_i} + rac{M_s}{S_r}$	f , =	$=\frac{P_i}{A}+\frac{P_i\mathscr{C}}{S_b}-\frac{M_g}{S_b}$	
		at midspan	at endspan
Top stress at top fiber of beam	f _t =	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.906 ksi	2.906 ksi
STRESSES A	T HARP	POINT	
Bending moment due to beam weight at 0.3L	M _g =	1188.0 ft-kips	
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi
STRESSES	AT MIDS	PAN	
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	0.320 ksi	0.345 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u 227.4 ksi 227.4 ksi layer 2 = layer 3 = 227.4 ksi 227.4 ksi layer 4 = layer 5 227.4 ksi layer 6 = 227.4 ksi layer 7 227.4 ksi layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi 227.4 ksi layer 11 layer 12 227.4 ksi layer 13 = 227.4 ksi layer 14 227.4 ksi prestress force per strand before any losses: layer 1 = 19.3 kips layer 2 19.3 kips = layer 3 19.3 kips layer 4 19.3 kips 19.3 kips layer 5 layer 6 19.3 kips layer 7 19.3 kips layer 8 19.3 kips 19.3 kips layer 9 = layer 10 19.3 kips 19.3 kips layer 11 = layer 12 19.3 kips = layer 13 19.3 kips layer 14 19.3 kips Harp Angle Ψ = 7.2 ° Hold-down force/strand layer 1 2.5 kips/strand layer 2 2.5 kips/strand = layer 3 2.5 kips/strand 2.5 kips/strand layer 4 = 2.5 kips/strand layer 5 layer 6 2.5 kips/strand = layer 7 2.5 kips/strand layer 8 2.5 kips/strand 2.5 kips/strand layer 9 layer 10 2.5 kips/strand layer 11 2.5 kips/strand layer 12 = 2.5 kips/strand

Stresses at Service Loads

STRESS LIMITS FOR CONCRETE

Total hold-down force

layer 13

layer 14

=

2.5 kips/strand

2.5 kips/strand

30.45 kips

Compression:

Due to permanent loads for load combination Service I

F				
for the precast beam	=	3.150 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for deck	=	2.400 ksi		

Tension:

Load Combination Service III

for the precast beam	=	-0.016 ksi

STRESSES AT	T MIDSPAN	
ompression stresses at top fiber of beam	at midspan	at endspan
$f_{\theta} = \frac{P_{pe}}{A} - \frac{P_{pe}s}{S_{t}} + \frac{(M_{g} + h)}{S_{t}}$	$\frac{M_{s})}{S_{ty}} + \frac{(M_{ws} + M_{s})}{S_{ty}}$	
Due to permanent loads	f _{tg} = 2.105 ksi	2.102 ksi
$f_{tg} = \frac{P_{pa}}{A} - \frac{P_{pa}e}{S_t} + \frac{(M_g + M_s)}{S_t} +$	$\frac{(M_{yg} + M_{g})}{S_{tg}} + \frac{(M_{LL+1})}{S_{tg}}$	
Due to permanent loads and transient loads	f _{tq} = 2.508 ksi	2.505 ksi
ompression stresses at top fiber of deck	at midspan	at endspan
$f_{tr} = \frac{(M_{us})}{2}$	+ 112 ;) ? ?s	
Due to permanent loads	$f_{tc} = 0.042 \text{ ksi}$	0.042 ksi
$f_w = \frac{(M_w + M_0)}{S_i}$, + M _{LL+1})	
Due to permanent loads and transient loads	$f_{tc} = 0.488 \text{ ksi}$	0.488 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{yy} = \frac{P_{yx}}{A} + \frac{F_{yx}s}{S_b} = \frac{(M_x + M_y)}{S_b} = -\frac{(M_x + M_y)}{S_b}$	$(\boldsymbol{M}_{18} + \boldsymbol{M}_{2} + 0.8 * \boldsymbol{M}_{22+1})$	
$S_{ij} = A + S_{ij} = S_{ij}$	వ్క,	
Load Combination Service III	f _b = -0.793 ksi	-0.782 ksi

Strength Limit State

POSITIVE MOMENT S	ECTION		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	4.6 ft-kips	
verage stress in prestressing steel		_	
layer 1	f _{ps} =	279.4 ksi	
layer 2	f _{ps} =	279.4 ksi	
layer 3	f _{ps} =	279.4 ksi	
layer 4	f _{ps} =	279.4 ksi	
layer 5	f _{ps} =	279.4 ksi	
layer 6	f _{ps} =	279.4 ksi	
layer 7	f _{ps} =	279.4 ksi	
layer 8	f _{ps} =	279.4 ksi	
layer 9	f _{ps} =	279.4 ksi	
layer 10	f _{ps} =	279.4 ksi	
layer 11	f _{ps} =	279.4 ksi	
layer 12	f _{ps} =	279.4 ksi	
layer 13	f _{ps} =	279.4 ksi	
layer 14	f _{ps} =	279.4 ksi	
ominal flexure resistance			
	a =	3.92 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	ΦM _n =	9196.5 ft-kips	(
NEGATIVE MOMENT S	SECTION	·	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	
,	a =	0.20 in	
		5070.0 (1.15)	

 $\Phi M_n =$

5273.8 ft-kips

ок

Shear Design

CRITICAL SECTION AT 0.59

$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips

 $V_u = 1.25DC+1.5DW+1.75(LL+IM)$

 $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$

 $V_u =$ 364.8 kips M_u = -2877.0 ft-kips

max shear max moment

V_u = 405.0 kips M_u = 2877.0 ft-kips Shear depth $d_v =$ 73.19 in Applied factored normal force at the section N_u = 0 Angle of diagonal compressive stresses θ = 36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{M_{\mu}}{M_{\mu}} + 0.5 M_{\mu} + 0.5 W_{\mu} \cot \theta - A_{\mu \mu} f_{\mu \rho}$

resultant compressive stress at centroid effective stress in prestressing strand after all lo

		at iliiuspan	at endspan
	f _{pc} =	0.909 ksi	0.911 ksi
osses			

III losses							
layer 1	f _{po} =	176.7 ksi	177.3 ksi				
layer 2	f _{po} =	176.7 ksi	177.3 ksi				
layer 3	f _{po} =	176.7 ksi	177.3 ksi				
layer 4	f _{po} =	176.7 ksi	177.3 ksi				
layer 5	f _{po} =	176.7 ksi					
layer 6	f _{po} =	176.7 ksi					
layer 7	f _{po} =	176.7 ksi					
layer 8	f _{po} =	176.7 ksi					
layer 9	f _{po} =		177.3 ksi				
layer 10	f _{po} =		177.3 ksi				
layer 11	$f_{po} =$		177.3 ksi				
layer 12	f _{po} =		177.3 ksi				
layer 13	f _{po} =		177.3 ksi				
layer 14	$f_{po} =$		177.3 ksi				

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	
		=

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

Total Deflection at transfer

 $\Delta =$ 1.79 in 1.81 in Δ = 3.24 in 3.27 in

Total Deflection at erection

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-0.9835 in
=	0.18 in
Δ, =	-0.13 in

Location: Fire above Deck Between Girders

Beam Design: 3/8" Strand Fire Exposure Status: 1/2 Hour

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	3.74 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE 5.5 ksi Strength at release f'ci = Strength at 28 days f'c = 7 ksi Unit Weight w_c = 150.0 pcf Overall Beam Length: @ end spans 110 ft L = @ center span 119 ft L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span Beam Spacing 12 ft

-	PRESTRESSING STI	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laa. 4 (b.a.t.a.a.)	-	C0.00.0F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T = T =	68.00 °F
	layer 10 layer 11	T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	$f_{pu} =$	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ŕ		II.
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{DV} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	,	P7	
before transfer ≤ 0.75f _{pu} (ir	nitial = 213.2)		
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14		213.2 ksi
	layer 14	f _{pi} =	21J.2 NOI

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

r 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
laver 14	fne =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
laver 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

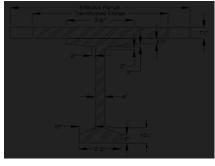
Yield Strength

Layer 1 (Bottom)	$f_y =$	60.0 ksi	68.00 °F
Layer 2 (Top)	$f_y =$	58.2 ksi	550.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
f temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-	CON	IPOSI	TE E	BEAM

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3708 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM

Effective Flange Width	b _f =	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7309
Transformed flange width	=	81.1 in
Transformed flange area	=	608.5 in^2
Transformed haunch width	=	30.7 in
Transformed haunch area	=	15.3 in^2

*min of three criteria

	Transformed Area	yb	Ayb	A(ybc-yb)2	ı	I +A(ybc-yb)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	241,398 in^4	539,947 in^4	781,345 in^4
Haunch	15.3 in^2	72.25 in	1,109.0 in^3	4,923 in^4	0.33 in^4	4,924 in^4
Deck	608.5 in^2	76.25 in	46,399.2 in^3	292,099 in^4	2,950 in^4	295,049 in^4
Total	1390.9 in^2		75,580.5 in^3			1,081,318 in^4

_		
Total area of Composite Section	$A_c =$	1391 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,081,318 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.34 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.66 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.66 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,898.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	61,232.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	57,652.8 in^3

DECK (as 12" beam)

		,		
Reinforcing per 12"			at midspan	at beams
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2
	Laver 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

cast-in-place concrete deck E_{cs} = 3708 ksi

Moment of Intertia	I _g =	324 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	3.44 in	
Distance from centroid to extreme top fiber of deck	$y_t =$	4.56 in	
Modulus of Rupture	$f_r =$	458.7 psi	
Cracking Moment	M _{CR} =	3.6 ft-kips	2.7 ft-kip
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-ki

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	l _e =	90 in^4	88 in^4
Effective Moment of Inertia for Continuous Beam	l _e =	89 in^4	

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f W_{deck} = 1.200 k/f W_{deck} = 0.022 k/f W_{deunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3681
Longitudinal stiffness parameter	K _g =	2,388,355.43 in^4

at center snan.

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*t_s^2}\right)^{0.6}$$

DFM = 0.907 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.5} * \left(\frac{K_s}{12 * L * L_s^3}\right)^{0.5}$$

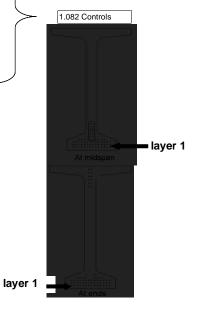
DFM = 0.615 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Stra	nd Group (inc	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layor 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b s)

y _{bs} =	5.44 in	
e _c =	31.16 in	

Prestress Losses

ELASTIC SHORTEI	NING		
assumed loss	=	6.00%	
Force per strand at transfer			<u></u>
layer 1	=	17.0 kips	
layer 2	=	17.0 kips	
layer 3	=	17.0 kips	
layer 4	=	17.0 kips	
layer 5	=	17.0 kips	
layer 6	=	17.0 kips	
layer 7	=	17.0 kips	
layer 8	=	17.0 kips	
layer 9	=	17.0 kips	
layer 10	=	17.0 kips	
layer 11	=	17.0 kips	
layer 12	=	17.0 kips	
layer 13	=	17.0 kips	
layer 14	=	17.0 kips	
•		at midspan	at endspan
Total prestressing force at release	$P_i =$	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing			
	$f_{cgp} =$	2.412 ksi	2.307 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi at midspan	2.307 ksi at endspan
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	$f_{cgp} = $ $\Delta f_{pES} = $		
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1	-	at midspan 13.9 ksi	at endspan 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 4 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9 layer 10 layer 10 layer 10 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi

SHRINKAGE				=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%

RELAXATIO	ON OF PRE	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 6	$\Delta f_{pR2} =$	2.9 ksi	
	layer 7	$\Delta f_{pR2} =$	2.9 ksi	
	layer 8	$\Delta f_{pR2} =$	2.9 ksi	
	layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 10	$\Delta f_{pR2} =$		2.9 ksi
	layer 11	$\Delta f_{pR2} =$		2.9 ksi
	layer 12	$\Delta f_{pR2} =$		2.9 ksi
	layer 13	$\Delta f_{pR2} =$		2.9 ksi
	layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$
stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$

force per strand = f_{pt} *strand area

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
Λf \//f \		at midenan	at andenan

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

ок ок ок ок ок ок ок ок ok ok ок ок ок ок

Total Losses	JOSES A	I JERVI	CE LOADS at midspan	at endspan
I Oldi EUSSES	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.6 ksi
	layer 2	f _{pe} =	172.0 ksi	172.6 ksi
	layer 3	f _{pe} =	172.0 ksi	172.6 ksi
	layer 4	f _{pe} =	172.0 ksi	172.6 ksi
	layer 5	f _{pe} =	172.0 ksi	172.6 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.01.
	layer 9	f _{pe} =	172.0 ksi	172.6 ksi
	layer 10	f _{pe} =		172.6 ksi
	layer 11	t _{pe} =		172.6 ksi
	layer 12 layer 13	f _{pe} =		172.6 ksi 172.6 ksi
	layer 14	f _{pe} =		172.6 ksi
check prestressing stress limit at service li	- 1		fnv	172.0 K31
oneon productioning duode in in at dervice in	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
force per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	14.7 kips
	layer 9 layer 10		14.6 kips	14.7 kips 14.7 kips
	layer 10	=		14.7 kips 14.7 kips
	iayei i i			
	laver 12	_		
	layer 12 layer 13	=		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.8 kips	939.1 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	f _{ci} =	3.300 ksi	
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement = $-0.22*\sqrt{f'_{ci}}$	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION			
Transfer Length = 60*(strand diameter)	=	1.9 ft	
Bending moment at transfer length	$M_g =$	87.7 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	9.84 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in	
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in	
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in	
Eccentricity of the strand group at transfer length:	e _h =	21.36 in	
Eccentricity at end of beam:	e =	21.30 in	

Calcs for eccentricity (see 9.6.7.2)

ok ok

ок ок

ок ок

Eccentricity at end of beam.	e =	21.30 In	
$f_r = \frac{P_i}{A} - \frac{P_i \sigma}{S_t} + \frac{M_r}{S_r}$	f , =	$=\frac{P_i}{A}+\frac{P_i\theta}{S_\theta}-\frac{M_g}{S_\theta}$	
		at midspan	at endspan
Top stress at top fiber of beam	f _t =	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.906 ksi	2.906 ksi
STRESSES A	T HARP	POINT	
Bending moment due to beam weight at 0.3L	M _g =	1188.0 ft-kips	
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi
STRESSES	AT MIDS	PAN	•
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	0.320 ksi	0.345 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u 227.4 ksi 227.4 ksi layer 2 = layer 3 = 227.4 ksi 227.4 ksi layer 4 = layer 5 227.4 ksi layer 6 227.4 ksi layer 7 227.4 ksi layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi 227.4 ksi layer 11 layer 12 227.4 ksi = layer 13 = 227.4 ksi layer 14 227.4 ksi prestress force per strand before any losses: 19.3 kips layer 1 = layer 2 19.3 kips 19.3 kips layer 3 19.3 kips layer 4 layer 5 19.3 kips layer 6 19.3 kips layer 7 19.3 kips 19.3 kips layer 8 = layer 9 19.3 kips layer 10 19.3 kips = layer 11 19.3 kips = layer 12 19.3 kips layer 13 19.3 kips = layer 14 = 19.3 kips Harp Angle 7.2 ° Ψ = Hold-down force/strand 2.5 kips/strand layer 1 = layer 2 2.5 kips/strand layer 3 2.5 kips/strand = layer 4 2.5 kips/strand layer 5 2.5 kips/strand = layer 6 2.5 kips/strand layer 7 2.5 kips/strand layer 8 2.5 kips/strand 2.5 kips/strand layer 9 layer 10 2.5 kips/strand 2.5 kips/strand layer 11 = layer 12 2.5 kips/strand = layer 13 2.5 kips/strand layer 14 2.5 kips/strand = Total hold-down force 30.45 kips Stresses at Service Loads STRESS LIMITS FOR CONCRETE Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.683 ksi
Due to permanent and transient loads for I	oad combi	nation Service I
for the precast beam	=	4.200 ksi
for deck	=	2.244 ksi

Tension:

Load	Combination	Service	Ш

for the precast beam	=	-0.016 ksi

STRESSES AT I	MIDSPAN	
ompression stresses at top fiber of beam	at midspan	at endspan
$f_{\overline{x}} = \frac{\Gamma_{pet}}{A} - \frac{\Gamma_{pet} x}{S_t} + \frac{(M_g + M_g)}{S_t}$	$+\frac{(M_{yy}+M_{\phi})}{S_{yy}}$	
Due to permanent loads f_{tg}	g = 2.106 ksi	2.103 ksi
$f_{ij} = \frac{P_{ps}}{A} - \frac{P_{ps}E}{S_t} + \frac{(M_g + M_s)}{S_t} + \frac{(M_g + M_s)}{S_t}$	$\frac{M_{us}+M_s)}{S_{ty}}+\frac{(M_{Ll+1})}{S_{ty}}$	
Due to permanent loads and transient loads f _{tr}	a = 2.520 ksi	2.518 ksi
ompression stresses at top fiber of deck	at midspan	at endspan
$f_{tr} = \frac{(M_{us} + S_{us})}{S_{us}}$	- <u>142 ; </u>	
Due to permanent loads f _{tc}	e = 0.042 ksi	0.042 ksi
$f_w = \frac{(M_w + M_b - M_b)}{S_w}$	$+M_{Ll+1}$)	
Due to permanent loads and transient loads ftc	= 0.482 ksi	0.482 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{ry} = \frac{P_{ye}}{A} + \frac{F_{ye}s}{S_s} - \frac{(M_z + M_z)}{S_s} - \frac{(A_z + M_z)}{S_s}$	$M_{\infty} + M_{\perp} + 0.8 * M_{LL+1}$	
$S_{ij} = A S_{ij} = S_{ij}$	చ్,	
Load Combination Service III f _b	= -0.797 ksi	-0.785 ksi

Strength Limit State

POSITIVE MOMENT S	ECTION		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members		_	
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	C =	4.9 ft-kips	
verage stress in prestressing steel	-		
layer 1	f _{ps} =	279.1 ksi	
layer 2	f _{ps} =	279.1 ksi	
layer 3	f _{ps} =	279.1 ksi	
layer 4	f _{ps} =	279.1 ksi	
layer 5	f _{ps} =	279.1 ksi	
layer 6	f _{ps} =	279.1 ksi	
layer 7	$f_{ps} =$	279.1 ksi	
layer 8	$f_{ps} =$	279.1 ksi	
layer 9	$f_{ps} =$	279.1 ksi	
layer 10	$f_{ps} =$	279.1 ksi	
layer 11	$f_{ps} =$	279.1 ksi	
layer 12	$f_{ps} =$	279.1 ksi	
layer 13	$f_{ps} =$	279.1 ksi	
layer 14	$f_{ps} =$	279.1 ksi	
ominal flexure resistance			
	a =	4.18 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9168.8 ft-kips	(
NEGATIVE MOMENT S	ECTION		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	
	a =	0.20 in	
	ФМ _п =	5144.4 ft-kips	(

Shear Design

CRITICAL SECTION AT 0.59				
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00 °		
STRAIN IN FLEXURAL TENSION REINFORCMENT				

$\frac{M_u + 0.5N_u + 0.5N_u \cot \theta - A_{pa}f_{pa}}{d_v} \le 1.002$			
$E_{j}A_{j}+E_{j}A_{p}$			
	at midenan	at andenan	

resultant compressive stress at centroid effective stress in prestressing strand after a

	f _{pc} =	0.914 ksi	0.917 ksi
all losses			
lover 1	f _	176 7 kgi	177 2 kgi

layer 1	f _{po} =	176.7 ksi	177.3 ksi
layer 2	f _{po} =	176.7 ksi	177.3 ksi
layer 3	f _{po} =	176.7 ksi	177.3 ksi
layer 4	f _{po} =	176.7 ksi	177.3 ksi
layer 5	f _{po} =	176.7 ksi	
layer 6	f _{po} =	176.7 ksi	
layer 7	f _{po} =	176.7 ksi	
layer 8	f _{po} =	176.7 ksi	
layer 9	f _{po} =		177.3 ksi
layer 10			177.3 ksi
layer 11	f _{po} =		177.3 ksi
layer 12	f _{po} =		177.3 ksi
layer 13	f _{po} =		177.3 ksi
layer 14	f _{po} =		177.3 ksi
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
lavor 2	٠ –	0.002000	0.002000

strain in flexural tension

layer 10	·po —		177.0 1031
layer 14 f _{po} =			177.3 ksi
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =	<u> </u>	0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	3.29 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	1.81 in
Δ =	3.24 in	3.27 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1006 in
=	0.18 in
$\Delta_{l} =$	-0.21 in

Location: Fire above Deck Between Girders

Beam Design: 3/8" Strand Fire Exposure Status: 1 Hour

Material Properties

210.1.u. 1 1 0 p 0 1 1100				
CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in		
Compressive Strength	f'c =	3.57 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	β ₁ =	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE 5.5 ksi Strength at release f'ci = Strength at 28 days f'c = 7 ksi Unit Weight w_c = 150.0 pcf Overall Beam Length: @ end spans 110 ft L = @ center span 119 ft L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span Beam Spacing 12 ft

-	PRESTRESSING STI	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laa. 4 (b.a.t.a.a.)	-	C0.00.0F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T = T =	68.00 °F
	layer 10 layer 11	T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	$f_{pu} =$	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ŕ		II.
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{DV} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	,	P7	
before transfer ≤ 0.75f _{pu} (ir	nitial = 213.2)		
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14		213.2 ksi
	layer 14	f _{pi} =	21J.2 NOI

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

P) \	. ,	
r 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
E =	25898.0 ksi
	E = E = E = E = E = E = E = E = E = E =

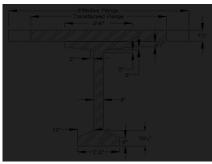
MILD STEEL REINFORCING BARS AT ENDSPAN

Yield Strength

Layer 1 (Bottom)	$f_y =$	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	57.6 ksi	820.00 °F
Layer 1 (Bottom)	E =	29000.0 ksi	
Layer 2 (Top)	E =	29000.0 ksi	

Layer 1 (Bottom)

Modulus of Elasticity


Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2
op)		
Area of steel at midenan (offective flance)	Λ –	12 6 in 12

Layer 2 (Top) Area of steel at endspan (effective flange) A_{se}= 12.4 in^2 Area of temperature and shrinkage steel (12" width) 0.2 in^2

Cross-sectional Properties

NON-COMPOSITE I	BEAM

NON-COMPOSITE BEAM			
Area of cross-section of beam	A =	767.0 in^2	
Overall depth of beam	H =	72.0 in	
Moment of Inertia	l =	539,947 in^4	
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in	
Distance from centroid to extreme top fiber	$y_t =$	35.4 in	
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3	
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3	
Weight	$W_t =$	799.0 plf	
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$			
cast-in-place concrete deck	E _{cs} =	3622 ksi	
precast beam at release	E _{ci} =	4496 ksi	
precast beam at service loads	E _c =	5072 ksi	

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_c	n =	0.7141
Transformed flange width	=	79.3 in
Transformed flange area	=	594.5 in^2
Transformed haunch width	=	30.0 in
Transformed haunch area	=	15.0 in^2

*min of three criteria

	Transformed Area	yb	Ayb	A(ybc-yb)2	ı	I +A(ybc-yb)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	235,253 in^4	539,947 in^4	775,200 in^4
Haunch	15.0 in^2	72.25 in	1,083.5 in^3	4,933 in^4	0.33 in^4	4,933 in^4
Deck	594.5 in^2	76.25 in	45,332.4 in^3	291,335 in^4	2,950 in^4	294,284 in^4
Total	1376.5 in^2		74.488.2 in^3	·		1.074.417 in^4

ī		
Total area of Composite Section	$A_c =$	1377 in^2
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	1,074,417 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.11 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.89 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.89 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,854.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	60,068.2 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	58,118.2 in^3

DECK (as 12" beam)

at beams Reinforcing per 12" at midspan Layer 1 (Bottom) 0.3 in^2 0.3 in^2 0.2 in^2 0.2 in^2 Layer 2 (Top) $A_{s^*}=$

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

00000 (** _C 1.0) (11 _C)		
cast-in-place concrete deck	E _{cs} =	3622 ksi

Moment of Intertia	$I_g =$	249 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	3.11 in	
Distance from centroid to extreme top fiber of deck	$y_t =$	4.89 in	
Modulus of Rupture	$f_r =$	448.1 psi	
Cracking Moment	$M_{CR} =$	3.0 ft-kips	1.9 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	I _e =	88 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	l _e =	88 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	W _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
•			
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	١ ٠
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		OK	IJ

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.4003
Longitudinal stiffness parameter	K _g =	2,444,559.72 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*F_s^2}\right)^{0.6}$$

DFM = 0.909 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.5} * \left(\frac{K_s}{12*L*t_s^3}\right)^0$$

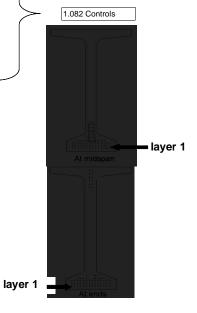
DFM = 0.617 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan		At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	14	2	14	2	
layer 2	14	3.5	14	3.5	
layer 3	14	5	14	5	
layer 4	10	6.5	8	6.5	
layer 5	4	8	2	8	
layer 6	2	10	-	-	
layer 7	2	12	-	-	
layer 8	2	14	-	-	
layer 9	2	16	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12		-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
	64		64		
Harped Stra	nd Group (in	cluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b s)

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTEI	NING		
assumed loss	=	6.00%	
Force per strand at transfer			
layer 1	=	17.0 kips	
layer 2	=	17.0 kips	
layer 3	=	17.0 kips	
layer 4	=	17.0 kips	
layer 5	=	17.0 kips	
layer 6	=	17.0 kips	
layer 7	=	17.0 kips	
layer 8	=	17.0 kips	
layer 9	=	17.0 kips	
layer 10	=	17.0 kips	
layer 11	=	17.0 kips	
layer 12	=	17.0 kips	
layer 13	=	17.0 kips	
layer 14	=	17.0 kips	
•		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing			
	$f_{cgp} =$	2.412 ksi	2.307 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi at midspan	2.307 ksi at endspan
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	$f_{cgp} = $ $\Delta f_{pES} = $		
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1	-	at midspan 13.9 ksi	at endspan 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 4 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 7 layer 8 layer 9 layer 10 layer 10 layer 10 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi

S	HRINKAGE			=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%

RELAXATIO	ON OF PRE	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 6	$\Delta f_{pR2} =$	2.9 ksi	
	layer 7	$\Delta f_{pR2} =$	2.9 ksi	
	layer 8	$\Delta f_{pR2} =$	2.9 ksi	
	layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 10	$\Delta f_{pR2} =$		2.9 ksi
	layer 11	$\Delta f_{pR2} =$		2.9 ksi
	layer 12	$\Delta f_{pR2} =$		2.9 ksi
	layer 13	$\Delta f_{pR2} =$		2.9 ksi
	layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$
stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$

force per strand = f_{pt} *strand area

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
Λf \//f \		at midenan	at andenan

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

ок ок ок ок ок ок ок ок ok ok ок ок ок ок

Total Losses	JOSES A	I JERVI	CE LOADS at midspan	at endspan
I Oldi EUSSES	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.6 ksi
	layer 2	f _{pe} =	172.0 ksi	172.6 ksi
	layer 3	f _{pe} =	172.0 ksi	172.6 ksi
	layer 4	f _{pe} =	172.0 ksi	172.6 ksi
	layer 5	f _{pe} =	172.0 ksi	172.6 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.01.
	layer 9	f _{pe} =	172.0 ksi	172.6 ksi
	layer 10	f _{pe} =		172.6 ksi
	layer 11	t _{pe} =		172.6 ksi
	layer 12 layer 13	f _{pe} =		172.6 ksi 172.6 ksi
	layer 14	f _{pe} =		172.6 ksi
check prestressing stress limit at service li	- 1		fnv	172.0 K31
oneon productioning duode in in at dervice in	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
force per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	14.7 kips
	layer 9 layer 10		14.6 kips	14.7 kips 14.7 kips
	layer 10	=		14.7 kips 14.7 kips
	iayei i i			
	laver 12	_		
	layer 12 layer 13	=		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.8 kips	939.1 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi					
Tension	Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi			
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi			

STRESSES AT TRANSFER LENGTH SECTION					
Transfer Length = 60*(strand diameter)	=	1.9 ft			
Bending moment at transfer length	$M_g =$	87.7 ft-kips			
center of 12 strands to top fiber of beam at the end	=	7.00 in			
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in			
center of 12 strands and top fiber of beam at transfer length	=	9.84 in			
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in			
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in			
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in			
Eccentricity of the strand group at transfer length:	e _h =	21.36 in			
Eccentricity at end of beam:	e =	21.30 in			

Calcs for eccentricity (see 9.6.7.2)

f , =	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_b}-\frac{M_g}{S_b}$		
	at midspan	at endspan	
f _t =	-0.017 ksi	-0.017 ksi	0
f _b =	2.906 ksi	2.906 ksi	0
T HARP	POINT		
M _g =	1188.0 ft-kips		
f _t =	0.173 ksi	0.169 ksi	0
f _b =	2.736 ksi	2.621 ksi	0
AT MIDS	PAN		
$M_g =$	1414.3 ft-kips		
f _t =	0.320 ksi	0.345 ksi	0
f _b =	2.554 ksi	2.438 ksi	0
	$\begin{aligned} &f_b = \\ &\textbf{T HARP} \\ &M_g = \\ &f_t = \\ &f_b = \\ &\textbf{AT MIDS} \\ &M_g = \\ &f_t = \end{aligned}$	$ f_{b} = \frac{1}{A} + \frac{23}{S_{b}} - \frac{1}{S_{b}} $ at midspan $ f_{t} = -0.017 \text{ ksi} $ $ f_{b} = 2.906 \text{ ksi} $ T HARP POINT $ f_{g} = 1188.0 \text{ ft-kips} $ $ f_{t} = 0.173 \text{ ksi} $ $ f_{b} = 2.736 \text{ ksi} $ AT MIDSPAN $ M_{g} = 1414.3 \text{ ft-kips} $ $ f_{t} = 0.320 \text{ ksi} $	$ f_b = \frac{r_1}{A} + \frac{r_2 \sigma}{S_b} - \frac{r_b}{S_b} $ at midspan at endspan $ f_t = -0.017 \text{ ksi} -0.017 \text{ ksi} $ $ f_b = 2.906 \text{ ksi} $

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u 227.4 ksi 227.4 ksi layer 2 = layer 3 227.4 ksi 227.4 ksi layer 4 = layer 5 227.4 ksi 227.4 ksi layer 6 layer 7 227.4 ksi layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi layer 11 227.4 ksi layer 12 227.4 ksi = layer 13 = 227.4 ksi layer 14 227.4 ksi prestress force per strand before any losses: 19.3 kips layer 1 = layer 2 19.3 kips 19.3 kips layer 3 layer 4 19.3 kips layer 5 19.3 kips layer 6 19.3 kips layer 7 19.3 kips 19.3 kips layer 8 = layer 9 19.3 kips layer 10 19.3 kips = layer 11 19.3 kips = layer 12 19.3 kips layer 13 = 19.3 kips layer 14 = 19.3 kips Harp Angle 7.2 ° Ψ = Hold-down force/strand 2.5 kips/strand layer 1 = layer 2 2.5 kips/strand layer 3 2.5 kips/strand = layer 4 2.5 kips/strand layer 5 2.5 kips/strand = layer 6 2.5 kips/strand layer 7 2.5 kips/strand layer 8 2.5 kips/strand 2.5 kips/strand layer 9 layer 10 2.5 kips/strand 2.5 kips/strand layer 11 = layer 12 2.5 kips/strand = layer 13 2.5 kips/strand layer 14 2.5 kips/strand = Total hold-down force 30.45 kips Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.607 ksi
Due to permanent and transient loads for l	ination Service I	
for the precast beam	=	4.200 ksi
for deck	=	2.142 ksi

Tension:

Load	Com	binat	ion	Serv	ice	Ш

for the precast beam	=	-0.016 ksi

STRESSES AT MID	SPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{\mathbf{z}} = \frac{P_{\mathbf{j}\mathbf{u}}}{A} - \frac{P_{\mathbf{j}\mathbf{u}^{\mathbf{g}}}}{S_{t}} + \frac{(\mathbf{M}_{\mathbf{g}} + \mathbf{M}_{s})}{S_{t}} +$	$-\frac{(M_{w_2}+M_{\phi})}{S_{ig}}$		
Due to permanent loads $f_{tg} =$	2.106 ksi	2.104 ksi	C
$f_{ig} = \frac{P_{pe}}{A} - \frac{P_{pe}x}{S_{i}} + \frac{(M_{g} + M_{s})}{S_{t}} + \frac{(M_{w}}{S_{s}}$	$\left(\frac{S_{ij}+M_{\delta}}{S_{ij}}\right)+\frac{(M_{Ll+1})}{S_{ij}}$		
Due to permanent loads and transient loads f _{tg} =	2.529 ksi	2.527 ksi	C
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{tot} + M_{tot})}{S_{tot}}$	<u>(1)</u>		
Due to permanent loads $f_{tc} =$	0.042 ksi	0.042 ksi	c
$f_{x} = \frac{(M_{xs} + M_{b} + M_{b})}{S_{x}}$	(_{E+1})		
Due to permanent loads and transient loads f _{tc} =	0.478 ksi	0.478 ksi	C
ension stresses at top fiber of deck	at midspan	at endspan	
$f_{\gamma y} = \frac{P_{ye}}{A} + \frac{F_{ye}s}{S_s} - \frac{(M_x + M_z)}{S_s} - \frac{(M_{\infty})}{S_s}$	$+M_{\bullet}+0.8*M_{EI+1}$)		
$J_{\eta g} = \frac{1}{A} + \frac{1}{S_{\phi}} = \frac{1}{S_{\phi}} = \frac{1}{S_{\phi}}$	న్,		
Load Combination Service III f _b =	-0.799 ksi	-0.788 ksi	C

Strength Limit State

POSITIVE MOMENT S	<u>ECTION</u>		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	5.2 ft-kips	
verage stress in prestressing steel			
layer 1	f _{ps} =	278.8 ksi	
layer 2	f _{ps} =	278.8 ksi	
layer 3	f _{ps} =	278.8 ksi	
layer 4	f _{ps} =	278.8 ksi	
layer 5	f _{ps} =	278.8 ksi	
layer 6	f _{ps} =	278.8 ksi	
layer 7	f _{ps} =	278.8 ksi	
layer 8	f _{ps} =	278.8 ksi	
layer 9	f _{ps} =	278.8 ksi	
layer 10	f _{ps} =	278.8 ksi	
layer 11	f _{ps} =	278.8 ksi	
layer 12	f _{ps} =	278.8 ksi	
layer 13	f _{ps} =	278.8 ksi	
layer 14	f _{ps} =	278.8 ksi	
ominal flexure resistance			
	a =	4.38 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	ΦM _n =	9148.6 ft-kips	
NEGATIVE MOMENT S	ECTION		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	
- '	a =	0.19 in	
	ФМ _п =	5101.2 ft-kips	

Shear Design

CRITICAL SECTION AT 0.59

$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips

 $V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$

 $M_u = 1.25DC+1.5DW+1.75(LL+IM)$

 $V_u =$ 364.8 kips M_u = -2877.0 ft-kips

max shear max moment

V_u = 405.0 kips M_u = 2877.0 ft-kips Shear depth $d_v =$ 73.19 in Applied factored normal force at the section N_u = 0 Angle of diagonal compressive stresses θ = 36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

f_{pc} =

 $\frac{M_{\mu}}{M_{\mu}} + 0.5 M_{\mu} + 0.5 W_{\mu} \cot \theta - A_{\mu \mu} f_{\mu \rho}$ ≤0.002

resultant compressive stress at centroid effective stress in prestressing strand after al

II losses			
layer 1	f _{po} =	176.7 ksi	177.3 ksi
layer 2	f _{po} =	176.7 ksi	177.3 ksi
layer 3	f _{po} =	176.7 ksi	177.3 ksi
layer 4	f _{po} =	176.7 ksi	177.3 ksi
layer 5	f _{po} =	176.7 ksi	
layer 6	f _{po} =	176.7 ksi	
layer 7	f _{po} =	176.7 ksi	
layer 8	f _{po} =	176.7 ksi	
layer 9	f _{po} =		177.3 ksi
layer 10	f _{po} =		177.3 ksi
	,	·	

at midspan

0.918 ksi

at endspan

0.921 ksi

177.3 ksi layer 11 layer 12 177.3 ksi layer 13 177.3 ksi $f_{po} =$ layer 14 177.3 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	0.62 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

 $\Delta =$ 1.79 in -0.86 in Δ = 3.24 in -1.53 in

Total Deflection at transfer Total Deflection at erection

Deck Deflection (assuming 12" beam)

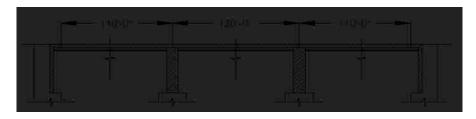
Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1381 in
=	0.18 in
Δ, =	-0.28 in

Location: Fire above Deck Between Girders

Beam Design: 3/8" Strand
Fire Exposure Status: 1-1/2 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	3.39 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	β ₁ =	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE 5.5 ksi Strength at release f'ci = Strength at 28 days f'c = 7 ksi Unit Weight w_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L = @ center span 119 ft L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span Beam Spacing 12 ft

-	PRESTRESSING STI	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laa. 4 (b.a.t.a.a.)	-	C0.00.0F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T = T =	68.00 °F
	layer 10 layer 11	T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	$f_{pu} =$	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ŕ		II.
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{DV} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	,	P7	
before transfer ≤ 0.75f _{pu} (ir	nitial = 213.2)		
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14		213.2 ksi
	layer 14	f _{pi} =	21J.2 NOI

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

P) \	. ,	
r 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

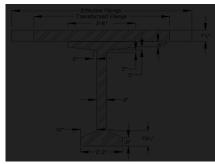
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	$f_y =$	55.4 ksi	1010.00 °F
r			

Modulus of Elasticity

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE	BEAM

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	539,947 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3530 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM

00 00 <u>D</u>		
Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_c	n =	0.6959
Transformed flange width	=	77.2 in
Transformed flange area	=	579.3 in^2
Transformed haunch width	=	29.2 in
Transformed haunch area	=	14.6 in^2

*min of three criteria

	Transformed Area	yb	Ayb	A(ybc-yb)2	I	I +A(ybc-yb)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	228,530 in^4	539,947 in^4	768,477 in^4
Haunch	14.6 in^2	72.25 in	1,055.9 in^3	4,942 in^4	0.33 in^4	4,942 in^4
Deck	579.3 in^2	76.25 in	44,174.8 in^3	290,397 in^4	2,950 in^4	293,346 in^4
Total	1361.0 in^2		73.302.9 in^3			1.066.765 in^4

Total area of Composite Section	A _c =	1361 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,066,765 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.86 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.14 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.14 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,805.8 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	58,811.6 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	58,645.5 in^3

DECK (as 12" beam)

Reinforcing per 12" at midspan at beams Layer 1 (Bottom) 0.3 in^2 0.3 in^2 0.2 in^2 0.2 in^2 Layer 2 (Top) A_{s*}=

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

cast-in-place concrete deck E_{cs} = 3530 ksi

Moment of Intertia	$I_g =$	200 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.86 in	
Distance from centroid to extreme top fiber of deck	y _t =	5.14 in	
Modulus of Rupture	$f_r =$	436.7 psi	
Cracking Moment	M _{CR} =	2.5 ft-kips	1.4 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	I _e =	88 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	l _e =	87 in^4	

Shear Forces and Bending Moments DEAD LOADS

Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs

Deam sen-weight	wbeam -	0.133 N1	
8 in. deck weight	w _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
LRFD Specifications: Art. 4.6.2.2.1			_
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

OK

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.4370
Longitudinal stiffness parameter	K _g =	2,508,620.17 in^4

at center snan.

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*t_s^2}\right)^{0}$$

DFM = 0.911 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.8} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_s}{12 * L * I_s^3}\right)^0$$

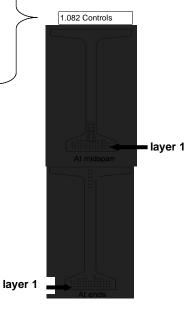
DFM = 0.618 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	=
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-		2	62
layer 11	-		2	64
layer 12	-		2	66
layer 13	-		2	68
layer 14	-	-	2	70
	64		64	
Harped Stra	nd Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b s)

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTEI	NING		
assumed loss	=	6.00%	
Force per strand at transfer			
layer 1	=	17.0 kips	
layer 2	=	17.0 kips	
layer 3	=	17.0 kips	
layer 4	=	17.0 kips	
layer 5	=	17.0 kips	
layer 6	=	17.0 kips	
layer 7	=	17.0 kips	
layer 8	=	17.0 kips	
layer 9	=	17.0 kips	
layer 10	=	17.0 kips	
layer 11	=	17.0 kips	
layer 12	=	17.0 kips	
layer 13	=	17.0 kips	
layer 14	=	17.0 kips	
_		at midspan	at endspan
Total prestressing force at release	$P_i =$	1088.0 kips	1054.0 kips
Compatibility of annual advanced at the annual at the annu			
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =		2.307 ksi at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.412 ksi at midspan 13.9 ksi	
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening.		at midspan 13.9 ksi	at endspan 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_{pES} = 0$	at midspan 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \end{array}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment .oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi

S	HRINKAGE		_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	 assume relative humidity = 70%

RELAXATIO	ON OF PRE	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 6	$\Delta f_{pR2} =$	2.9 ksi	
	layer 7	$\Delta f_{pR2} =$	2.9 ksi	
	layer 8	$\Delta f_{pR2} =$	2.9 ksi	
	layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 10	$\Delta f_{pR2} =$		2.9 ksi
	layer 11	$\Delta f_{pR2} =$		2.9 ksi
	layer 12	$\Delta f_{pR2} =$		2.9 ksi
	layer 13	$\Delta f_{pR2} =$		2.9 ksi
	layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$
stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$

force per strand = f_{pt} *strand area

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
Λf \//f \		at midenan	at andenan

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

ок ок ок ок ок ок ок ок ok ok ок ок ок ок

Total Losses	JOSES A	I JERVI	CE LOADS at midspan	at endspan
I Oldi EUSSES	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.6 ksi
	layer 2	f _{pe} =	172.0 ksi	172.6 ksi
	layer 3	f _{pe} =	172.0 ksi	172.6 ksi
	layer 4	f _{pe} =	172.0 ksi	172.6 ksi
	layer 5	f _{pe} =	172.0 ksi	172.6 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.01.
	layer 9	f _{pe} =	172.0 ksi	172.6 ksi
	layer 10	f _{pe} =		172.6 ksi
	layer 11	t _{pe} =		172.6 ksi
	layer 12 layer 13	f _{pe} =		172.6 ksi 172.6 ksi
	layer 14	f _{pe} =		172.6 ksi
check prestressing stress limit at service li	- 1		fnv	172.0 K31
oneon productioning duode in in at dervice in	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
force per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	14.7 kips
	layer 9 layer 10		14.6 kips	14.7 kips 14.7 kips
	layer 10	=		14.7 kips 14.7 kips
	iayei i i			
	laver 12	_		
	layer 12 layer 13	=		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.8 kips	939.1 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = 0.6f'ci	$f_{ci} =$	3.300 ksi	
Tension			
without bonded reinforcement = -0.0948*√f' _{ci} ≤ -0.2	=	-0.200 ksi	
with bonded auxiliary reinforcement =0.22*\f'ci	=	-0.016 ksi	

STRESSES AT TRANSFER	LENGTH S	SECTION	
Transfer Length = 60*(strand diameter	er) =	1.9 ft	
Bending moment at transfer leng	th M _g =	87.7 ft-kips	
center of 12 strands to top fiber of beam at the e	nd =	7.00 in	
center of 12 strands to bottom fiber of beam at the harp po	int =	11.00 in	
center of 12 strands and top fiber of beam at transfer leng	gth =	9.84 in	
center of gravity of 32 strands and bottom fiber of bea	am =	3.98 in	
center of gravity of all strands and the bottom fiber of beam transfer leng		15.24 in	
center of gravity of all strands and the bottom fiber of beam at t	he nd =	15.30 in	
Eccentricity of the strand group at transfer lengt	h: e _h =	21.36 in	ر [
Eccentricity at end of bear	n: e =	21.30 in	1

Calcs for eccentricity (see 9.6.7.2)

ok ok

$f_r = \frac{P_i}{A} - \frac{P_i e}{S_i} + \frac{M_r}{S_r}$	f , =	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_b}-\frac{M_g}{S_b}$	
		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.906 ksi	2.906 ksi

				=
STRESSES A	T HARP	POINT		_
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.173 ksi	0.169 ksi	ОК
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi	ок
STRESSES	AT MIDS	PAN		='
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		='
Top stress at top fiber of beam	f _t =	0.320 ksi	0.345 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	OK

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u 227.4 ksi 227.4 ksi layer 2 = layer 3 = 227.4 ksi 227.4 ksi layer 4 = layer 5 227.4 ksi layer 6 227.4 ksi layer 7 227.4 ksi layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi 227.4 ksi layer 11 layer 12 227.4 ksi = layer 13 = 227.4 ksi layer 14 227.4 ksi prestress force per strand before any losses: 19.3 kips layer 1 = layer 2 19.3 kips 19.3 kips layer 3 19.3 kips layer 4 layer 5 19.3 kips layer 6 19.3 kips layer 7 19.3 kips 19.3 kips layer 8 = layer 9 19.3 kips layer 10 19.3 kips = layer 11 19.3 kips = layer 12 19.3 kips layer 13 19.3 kips = layer 14 = 19.3 kips Harp Angle 7.2 ° Ψ = Hold-down force/strand 2.5 kips/strand layer 1 = layer 2 2.5 kips/strand layer 3 2.5 kips/strand = layer 4 2.5 kips/strand layer 5 2.5 kips/strand = layer 6 2.5 kips/strand 2.5 kips/strand layer 7 layer 8 2.5 kips/strand 2.5 kips/strand layer 9 layer 10 2.5 kips/strand 2.5 kips/strand layer 11 = layer 12 2.5 kips/strand = layer 13 2.5 kips/strand layer 14 2.5 kips/strand = Total hold-down force 30.45 kips Stresses at Service Loads STRESS LIMITS FOR CONCRETE Compression: Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.526 ksi
Due to permanent and transient loads for I	oad comb	ination Service I
for the precast beam	=	4.200 ksi
for deck	=	2.034 ksi

Tension:

Load	Combination	Service	Ш
			_

for the precast beam	=	-0.016 ksi

STRESSES AT	MIDSPAN	
ompression stresses at top fiber of beam	at midspan	at endspan
$f_{g} = \frac{P_{pst}}{A} - \frac{P_{pst}x}{S_{t}} + \frac{(M_{g} + M_{s})}{S_{t}}$	$+\frac{(M_{ws}+M_{\phi})}{S_{ty}}$	
Due to permanent loads f_{t_l}	g = 2.107 ksi	2.105 ksi
$f_{ij} = \frac{P_{pst}}{A} - \frac{P_{pst}e}{S_t} + \frac{(M_g + M_s)}{S_t} + \frac{(M_g + M_s)}{S_t}$	$\frac{M_{us} + M_b)}{S_{ty}} + \frac{(M_{Ll+1})}{S_{ty}}$	
Due to permanent loads and transient loads f _{tt}	g = 2.539 ksi	2.536 ksi
ompression stresses at top fiber of deck	at midspan	at endspan
$f_{tr} = \frac{(M_{us} + S_{u})}{S_{u}}$	- <u>147 ,)</u> s	
Due to permanent loads f _{to}	c = 0.041 ksi	0.041 ksi
$f_w = rac{(M_w + M_s)}{S_w}$	+ M _{LL+1})	
Due to permanent loads and transient loads ftel	c = 0.474 ksi	0.474 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{1g} - \frac{P_{ge}}{A} + \frac{F_{ge}s}{S_b} - \frac{(M_g + M_g)}{S_b} - \frac{(M_g + M_g)}{S_b}$	$M_{\infty} + M_{\phi} + 0.8 * M_{EE+1}$	
$S_{\eta} = A + S_{\delta} - S_{\delta}$	చ్,,	
Load Combination Service III f	= -0.802 ksi	-0.791 ksi

Strength Limit State

POSITIVE MOMENT SE	ECTION .		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	5.4 ft-kips	
verage stress in prestressing steel			
layer 1	f _{ps} =	278.6 ksi	
layer 2	f _{ps} =	278.6 ksi	
layer 3	f _{ps} =	278.6 ksi	
layer 4	f _{ps} =	278.6 ksi	
layer 5	f _{ps} =	278.6 ksi	
layer 6	f _{ps} =	278.6 ksi	
layer 7	f _{ps} =	278.6 ksi	
layer 8	f _{ps} =	278.6 ksi	
layer 9	f _{ps} =	278.6 ksi	
layer 10	f _{ps} =	278.6 ksi	
layer 11	f _{ps} =	278.6 ksi	
layer 12	f _{ps} =	278.6 ksi	
layer 13	f _{ps} =	278.6 ksi	
layer 14	f _{ps} =	278.6 ksi	
ominal flexure resistance			
	a =	4.61 in	
$M_r = \Phi M_p, \ \Phi = 1.00$	ФМ _п =	9125.1 ft-kips	
NEGATIVE MOMENT S		·	
M _{II} = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips	
, , , , , , , , , , , , , , , , , , , ,	a =	0.19 in	
_	ΦM _n =	4945.9 ft-kips	

Shear Design

CRITICAL SECTION	CRITICAL SECTION AT 0.59			
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips		
or				
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips		
max shear	$V_u =$	405.0 kips		
max moment	$M_u =$	2877.0 ft-kips		
Shear depth	$d_v =$	73.19 in		
Applied factored normal force at the section	$N_u =$	0		
Angle of diagonal compressive stresses	θ =	36.00 °		
STRAIN IN ELEXLIDAL TENSION REINFORCMENT				

$\epsilon_{u} = \frac{\frac{M_{u}}{d_{v}} + 0.5 M_{u} + 0.5 M_{u}}{E_{v} A_{v} + E_{v}}$	1 ₃₀ / ₃₀ ≤0.002	
_	at midspan	at endspan

		at illiaopali	l
resultant compressive stress at centroid	f _{pc} =	0.923 ksi	
effective stress in prestressing strand after all losses			

all losses			
layer 1	f _{po} =	176.7 ksi	177.3 ksi
layer 2	f _{po} =	176.7 ksi	177.3 ksi
layer 3	f _{po} =	176.7 ksi	177.3 ksi
layer 4	f _{po} =	176.7 ksi	177.3 ksi
layer 5	f _{po} =	176.7 ksi	
layer 6	f _{po} =	176.7 ksi	
layer 7	f _{po} =	176.7 ksi	
layer 8	f _{po} =	176.7 ksi	
layer 9	f _{po} =		177.3 ksi
layer 10	f _{po} =		177.3 ksi
layer 11	f _{po} =		177.3 ksi
layer 12	f _{po} =		177.3 ksi
layer 13	f _{po} =		177.3 ksi
layer 14	$f_{po} =$		177.3 ksi
		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
	1		l

0.925 ksi

strain in flexural tension

iayei is	Ipo —		177.3 KSI
layer 14 f _{po} =			177.3 ksi
	•	at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	ε _x =	0.002000	
layer 7	ε _x =	0.002000	
layer 8	ε _x =	0.002000	
layer 9	ε _x =		0.002000
layer 10	ε _x =		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	0.62 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	-0.86 in
Δ =	3.24 in	-1.53 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1719 in
=	0.18 in
$\Delta_{l} =$	-0.34 in

Location: Fire above Deck Between Girders

Beam Design: 3/8" Strand Fire Exposure Status: 2 Hour

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	3.25 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	β ₁ =	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE 5.5 ksi Strength at release f'ci = Strength at 28 days f'c = 7 ksi Unit Weight w_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L = @ center span 119 ft L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span Beam Spacing 12 ft

-	PRESTRESSING STI	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laa. 4 (b.a.t.a.a.)	-	C0.00.0F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T = T =	68.00 °F
	layer 10 layer 11	T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	$f_{pu} =$	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ŕ		II.
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{DV} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	,	P7	
before transfer ≤ 0.75f _{pu} (ir	nitial = 213.2)		
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14		213.2 ksi
	layer 14	f _{pi} =	21J.2 NOI

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

, ,	,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	$f_{pe} =$	205.4 ksi
layer 9	$f_{pe} =$	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

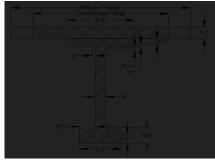
Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	$f_y =$	53.3 ksi	1120.00 °F

Modulus of Elasticity

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON	00145	COITE	
NON:	·COME	OSHE	BEAM

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	539,947 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in				
Distance from centroid to extreme top fiber	$y_t =$	35.4 in				
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$						
cast-in-place concrete deck	E _{cs} =	3456 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6814
Transformed flange width	=	75.6 in
Transformed flange area	ш	567.3 in^2
Transformed haunch width	=	28.6 in
Transformed haunch area	=	14.3 in^2

*min of three criteria

	Transformed Area	yb	Ayb	A(ybc-yb)2	I	I +A(ybc-yb)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	223,138 in^4	539,947 in^4	763,085 in^4
Haunch	14.3 in^2	72.25 in	1,033.8 in^3	4,947 in^4	0.33 in^4	4,947 in^4
Deck	567.3 in^2	76.25 in	43,253.1 in^3	289,564 in^4	2,950 in^4	292,514 in^4
Total	1348.6 in^2		72.359.1 in^3			1.060.546 in^4

Total area of Composite Section	A _c =	1349 in^2
Total area of Composite Section	∩ _c –	1343 1172
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	1,060,546 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.66 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.34 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.34 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,765.5 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	57,815.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	59,083.0 in^3

DECK (as 12" beam)

Reinforcing per 12"

		at midspan	at beams	
Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2	
Layer 2 (Top)	A _{s*} =	0.2 in^2	0.2 in^2	

Modulus of Elasticity = 33000*(W_c ^1.5)*($\sqrt{f_c}$)

= 00000 (** _C 1.0) (*1 _C)		
cast-in-place concrete deck	E _{cs} =	3456 ksi

Moment of Intertia	I _g =	166 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.66 in	
Distance from centroid to extreme top fiber of deck	y _t =	5.34 in	
Modulus of Rupture	f _r =	427.6 psi	
Cracking Moment	$M_{CR} =$	2.2 ft-kips	1.1 ft-kips
Max negative moment at loading stage	$M_a =$	16.9 ft-kips	21.1 ft-kips
•			

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	I _e =	87 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	l _e =	87 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
•			
LRFD Specifications: Art. 4.6.2.2.1			_
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
0		01/	

Outvature in plans is less than 4 =	U	OIL
oss-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК
Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Barrier and wearing surface loads are equally distributed among the 4 beams

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.4676
Longitudinal stiffness parameter	K _g =	2,562,082.31 in^4

at center snan.

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*t_s^2}\right)^{0}$$

DFM = 0.913 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.5} * \left(\frac{K_s}{12 * L * L_s^3}\right)^{0.5}$$

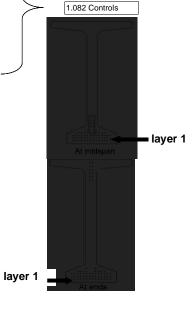
DFM = 0.619 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan			At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64	•	64	
Harped Stra	nd Group (ir	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b s)

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTEI	NING		
assumed loss	=	6.00%	
Force per strand at transfer			
layer 1	=	17.0 kips	
layer 2	=	17.0 kips	
layer 3	=	17.0 kips	
layer 4	=	17.0 kips	
layer 5	=	17.0 kips	
layer 6	=	17.0 kips	
layer 7	=	17.0 kips	
layer 8	=	17.0 kips	
layer 9	=	17.0 kips	
layer 10	=	17.0 kips	
layer 11	=	17.0 kips	
layer 12	=	17.0 kips	
layer 13	=	17.0 kips	
layer 14	=	17.0 kips	
_		at midspan	at endspan
Total prestressing force at release	$P_i =$	1088.0 kips	1054.0 kips
Compatibility of annual advanced at the annual at the annu			
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =		2.307 ksi at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.412 ksi at midspan 13.9 ksi	
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening.		at midspan 13.9 ksi	at endspan 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_{pES} = 0$	at midspan 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \end{array}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment .oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi

S	HRINKAGE		_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	 assume relative humidity = 70%

RELAXATIO	ON OF PRE	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 6	$\Delta f_{pR2} =$	2.9 ksi	
	layer 7	$\Delta f_{pR2} =$	2.9 ksi	
	layer 8	$\Delta f_{pR2} =$	2.9 ksi	
	layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 10	$\Delta f_{pR2} =$		2.9 ksi
	layer 11	$\Delta f_{pR2} =$		2.9 ksi
	layer 12	$\Delta f_{pR2} =$		2.9 ksi
	layer 13	$\Delta f_{pR2} =$		2.9 ksi
	layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$
stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$

force per strand = f_{pt} *strand area

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
Λf \//f \		at midenan	at andenan

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

ок ок ок ок ок ок ок ок ok ok ок ок ок ок

Total Losses	JOSES A	I JERVI	CE LOADS at midspan	at endspan
I Oldi EUSSES	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.6 ksi
	layer 2	f _{pe} =	172.0 ksi	172.6 ksi
	layer 3	f _{pe} =	172.0 ksi	172.6 ksi
	layer 4	f _{pe} =	172.0 ksi	172.6 ksi
	layer 5	f _{pe} =	172.0 ksi	172.6 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.01.
	layer 9	f _{pe} =	172.0 ksi	172.6 ksi
	layer 10	f _{pe} =		172.6 ksi
	layer 11	t _{pe} =		172.6 ksi
	layer 12 layer 13	f _{pe} =		172.6 ksi 172.6 ksi
	layer 14	f _{pe} =		172.6 ksi
check prestressing stress limit at service li	- 1		fnv	172.0 K31
oneon productioning duode in in at dervice in	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
force per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	14.7 kips
	layer 9 layer 10		14.6 kips	14.7 kips 14.7 kips
	layer 10	=		14.7 kips 14.7 kips
	iayei i i			
	laver 12	_		
	layer 12 layer 13	=		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.8 kips	939.1 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE			
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi			
Tension			
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi	
with bonded auxiliary reinforcement = $-0.22*\sqrt{f'_{ci}}$	=	-0.016 ksi	

STRESSES AT TRANSFER LENGTH SECTION			
Transfer Length = 60*(strand diameter)	=	1.9 ft	
Bending moment at transfer length	$M_g =$	87.7 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	9.84 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in	
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in	
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in	
Eccentricity of the strand group at transfer length:	e _h =	21.36 in	
Eccentricity at end of beam:	e =	21.30 in	

Calcs for eccentricity (see 9.6.7.2)

ok ok

ок ок

ок ок

Eccentricity at end of beam.	e =	21.30 In	
$f_r = \frac{P_i}{A} - \frac{P_i \sigma}{S_t} + \frac{M_r}{S_r}$	f , =	$=\frac{P_i}{A}+\frac{P_i\theta}{S_\theta}-\frac{M_g}{S_\theta}$	
		at midspan	at endspan
Top stress at top fiber of beam	f _t =	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.906 ksi	2.906 ksi
STRESSES A	T HARP	POINT	
Bending moment due to beam weight at 0.3L	M _g =	1188.0 ft-kips	
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi
STRESSES	AT MIDS	PAN	
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips	
Top stress at top fiber of beam	f _t =	0.320 ksi	0.345 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi

HOLD-DOWN FORCES assume stress in strand before losses = 0.8fu 227.4 ksi layer 2 227.4 ksi = layer 3 227.4 ksi 227.4 ksi layer 4 = layer 5 227.4 ksi layer 6 = 227.4 ksi layer 7 227.4 ksi layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi 227.4 ksi layer 11 layer 12 227.4 ksi layer 13 = 227.4 ksi layer 14 227.4 ksi prestress force per strand before any losses: layer 1 = 19.3 kips layer 2 19.3 kips = layer 3 19.3 kips layer 4 19.3 kips 19.3 kips layer 5 layer 6 19.3 kips layer 7 19.3 kips layer 8 19.3 kips 19.3 kips layer 9 = layer 10 19.3 kips 19.3 kips layer 11 = layer 12 19.3 kips = layer 13 19.3 kips layer 14 19.3 kips Harp Angle Ψ = 7.2 ° Hold-down force/strand layer 1 2.5 kips/strand layer 2 2.5 kips/strand = layer 3 2.5 kips/strand 2.5 kips/strand layer 4 = layer 5 2.5 kips/strand layer 6 2.5 kips/strand = layer 7 2.5 kips/strand layer 8 2.5 kips/strand 2.5 kips/strand layer 9 layer 10 2.5 kips/strand layer 11 2.5 kips/strand layer 12 = 2.5 kips/strand

Stresses at Service Loads

STRESS LIMITS FOR CONCRETE

Total hold-down force

layer 13

layer 14

=

2.5 kips/strand

2.5 kips/strand

30.45 kips

Compression:

Due to permanent loads for load combination Service I				
for the precast beam	=	3.150 ksi		
for deck	=	1.463 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for deck	=	1.950 ksi		

Tension:

Load Combination Service III

for the precast beam	=	-0.016 ksi

STRESSES AT MI	DSPAN_		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{t} = \frac{P_{ps}}{A} - \frac{P_{ps}r}{S_{t}} + \frac{(M_{g} + M_{s})}{S_{t}}$	$+\frac{(M_{yy}+M_{z})}{S_{zy}}$		
Due to permanent loads $f_{tg} =$	2.108 ksi	2.106 ksi	OI
$f_{ty} = \frac{P_{pe}}{A} - \frac{P_{pe}e}{S_t} + \frac{(M_y + M_s)}{S_t} + \frac{(M_t + M_s)}{S_t}$	$\frac{s+M_b}{S_{ty}} + \frac{(M_{Ll+1})}{S_{ty}}$		
Due to permanent loads and transient loads f _{tg} =	2.547 ksi	2.545 ksi	OI
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{us} + 1)}{S_{tr}}$	<u>(,)</u>		
Due to permanent loads $f_{tc} =$	0.041 ksi	0.041 ksi	0
$f_{w} = \frac{(M_{w} + M_{s} + M_{s} + M_{s})}{S_{w}}$	M _{EE+1})		
Due to permanent loads and transient loads $f_{tc} =$	0.470 ksi	0.470 ksi	OI
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1g} = \frac{P_{ge}}{A} + \frac{F_{ge}s}{S_s} - \frac{(M_g + M_s)}{S_s} - \frac{(M_m + M_s)}{S_s}$	$\frac{(+M_b + 0.8*M_{EL+1})}{S_b}$		
Load Combination Service III f _b =	-0.804 ksi	-0.793 ksi	Ol

Strength Limit State

POSITIVE MOMENT S	ECTION		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	5.6 ft-kips	
verage stress in prestressing steel			
layer 1	f _{ps} =	278.3 ksi	
layer 2	f _{ps} =	278.3 ksi	
layer 3	f _{ps} =	278.3 ksi	
layer 4	$f_{ps} =$	278.3 ksi	
layer 5	f _{ps} =	278.3 ksi	
layer 6	$f_{ps} =$	278.3 ksi	
layer 7	$f_{ps} =$	278.3 ksi	
layer 8	f _{ps} =	278.3 ksi	
layer 9	f _{ps} =	278.3 ksi	
layer 10	f _{ps} =	278.3 ksi	
layer 11	f _{ps} =	278.3 ksi	
layer 12	$f_{ps} =$	278.3 ksi	
layer 13	f _{ps} =	278.3 ksi	
layer 14	$f_{ps} =$	278.3 ksi	
ominal flexure resistance			
	a =	4.80 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9105.1 ft-kips	ок
NEGATIVE MOMENT S	SECTION	·	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	
,	a =	0.19 in	
	411	4704.0.6 Line	NOT

 $\Phi M_n =$

4794.8 ft-kips

NOT OK

Shear Design

CRITICAL SECTION	AT 0.59		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips	
or			
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips	
max shear	$V_u =$	405.0 kips	
max moment	$M_u =$	2877.0 ft-kips	
Shear depth	$d_v =$	73.19 in	
Applied factored normal force at the section	$N_u =$	0	
Angle of diagonal compressive stresses	θ =	36.00 °	
STRAIN IN FLEXURAL TENSION REINFORCMENT			

$\boldsymbol{\epsilon}_{t} = \frac{\underline{M}_{u} + 0.5 M_{u} + 0.5 W_{u} \cot \theta - 1}{E_{s} A_{s} + E_{p} A_{p}}$	A _{pe} f _{pe} ≤ 0.0002	

all losses	;		
layer 1	f _{po} =	176.7 ksi	177.4 ksi
layer 2	f _{po} =	176.7 ksi	177.4 ksi
layer 3	f _{po} =	176.7 ksi	177.4 ksi
layer 4	f _{po} =	176.7 ksi	177.4 ksi
layer 5	f _{po} =	176.7 ksi	
layer 6	f _{po} =	176.7 ksi	
layer 7	f _{po} =	176.7 ksi	
layer 8	f _{po} =	176.7 ksi	
layer 9	f _{po} =		177.4 ksi
layer 10	f _{po} =		177.4 ksi
layer 11			177.4 ksi
layer 12	f _{po} =		177.4 ksi
layer 13	f _{po} =		177.4 ksi
layer 14	f _{po} =		177.4 ksi
		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
lover 2	c _	0.002000	0.000000

strain in flexural tension

layer 14	f _{po} =		177.4 ksi
•		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\epsilon_x =$		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	$\epsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	0.62 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{\rm sw} = -0.11 \text{ in}$

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	-0.86 in
Δ =	3.24 in	-1.53 in

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.1985 in
=	0.18 in
$\Delta_{l} =$	-0.41 in

Location: Fire above Deck Between Girders

Beam Design: 3/8" Strand Fire Exposure Status: 3 Hour

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in		
Compressive Strength	f'c =	3.02 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	β ₁ =	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE 5.5 ksi Strength at release f'ci = Strength at 28 days f'c = 7 ksi Unit Weight w_c = 150.0 pcf Overall Beam Length: 110 ft @ end spans L = @ center span 119 ft L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span Beam Spacing 12 ft

-	PRESTRESSING STI	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laa. 4 (b.a.t.a.a.)	-	C0.00.0F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T = T =	68.00 °F
	layer 10 layer 11	T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	$f_{pu} =$	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ŕ		II.
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{DV} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	,	P7	
before transfer $\leq 0.75f_{pu}$ (in	nitial = 213.2)		
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14		213.2 ksi
	layer 14	f _{pi} =	2 IJ.2 NOI

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

, P) \	,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	$f_{pe} =$	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	$f_{pe} =$	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	$f_{pe} =$	205.4 ksi
layer 9	$f_{pe} =$	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

ayer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

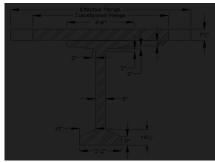
MILD STEEL REINFORCING BARS AT ENDSPAN

Yield Strength

Layer 1 (Bottom)	$f_y =$	60.0 ksi	68.00 °F
Layer 2 (Top)	$f_y =$	48.0 ksi	1300.00 °F
•			
Layer 1 (Bottom)	E =	29000.0 ksi	
Layer 2 (Top)	E =	29000.0 ksi	
Edyci Z (Top)		20000.0 Kgi	

Layer 1 (Bottom)

Modulus of Elasticity


Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
f temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2

Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
rea of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	y _b =	36.6 in		
Distance from centroid to extreme top fiber	$y_t =$	35.4 in		
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3332 ksi		
precast beam at release	E _{ci} =	4496 ksi		
proceet beam at convice leads	F -	5072 kgi		

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_c	n =	0.6568
Transformed flange width	=	72.9 in
Transformed flange area	=	546.8 in^2
Transformed haunch width	=	27.6 in
Transformed haunch area	=	13.8 in^2

*min of three criteria

	Transformed Area	yb	Ayb	A(ybc-yb)2	I	I +A(ybc-yb)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	213,944 in^4	539,947 in^4	753,891 in^4
Haunch	13.8 in^2	72.25 in	996.6 in^3	4,953 in^4	0.33 in^4	4,953 in^4
Deck	546.8 in^2	76.25 in	41,694.5 in^3	287,973 in^4	2,950 in^4	290,922 in^4
Total	1327.6 in^2		70.763.3 in^3			1.049.766 in^4

Total area of Composite Section	$A_c =$	1328 in^2
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	1,049,766 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.30 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.70 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.70 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,694.9 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	56,141.4 in^3
Section modulus for the extreme top fiber slab	$S_{tc} =$	59,861.8 in^3

DECK (as 12" beam)

Reinforcing per 12" at midspan at beams Layer 1 (Bottom) 0.3 in^2 0.3 in^2 0.2 in^2 0.2 in^2 Layer 2 (Top) A_{s*}=

Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$

cast-in-place concrete deck E_{cs} = 3332 ksi

Moment of Intertia	I _g =	125 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.38 in	
Distance from centroid to extreme top fiber of deck	y _t =	5.62 in	
Modulus of Rupture	$f_r =$	412.2 psi	
Cracking Moment	$M_{CR} =$	1.8 ft-kips	0.8 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	I _e =	87 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	I. =	87 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
•			
LRFD Specifications: Art. 4.6.2.2.1			_
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.5225
Longitudinal stiffness parameter	K _g =	2,657,855.02 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*I_s^3}\right)^0$$

DFM = 0.916 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.5} * \left(\frac{K_F}{12*L*t_s^2}\right)^0$$

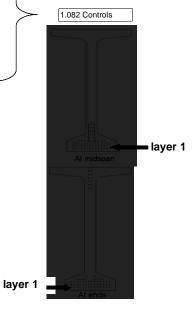
DFM = 0.621 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
	nd Group (inc	cluded in above totals)		
layer 3	2	6		•
layer 4	2	8		·
layer 5	2	10		
layer 6	2	12		·
layer 7	2	14		
lavor 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b s)

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTEI	NING		
assumed loss	=	6.00%	
Force per strand at transfer			
layer 1	=	17.0 kips	
layer 2	=	17.0 kips	
layer 3	=	17.0 kips	
layer 4	=	17.0 kips	
layer 5	=	17.0 kips	
layer 6	=	17.0 kips	
layer 7	=	17.0 kips	
layer 8	=	17.0 kips	
layer 9	=	17.0 kips	
layer 10	=	17.0 kips	
layer 11	=	17.0 kips	
layer 12	=	17.0 kips	
layer 13	=	17.0 kips	
layer 14	=	17.0 kips	
_		at midspan	at endspan
Total prestressing force at release	$P_i =$	1088.0 kips	1054.0 kips
Compatibility of annual advanced at the annual at the second at the seco			
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =		2.307 ksi at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.412 ksi at midspan 13.9 ksi	
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening.		at midspan 13.9 ksi	at endspan 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_{pES} = 0$	at midspan 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \end{array}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment .oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi

S	HRINKAGE		_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	 assume relative humidity = 70%

RELAXATIO	ON OF PRE	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 6	$\Delta f_{pR2} =$	2.9 ksi	
	layer 7	$\Delta f_{pR2} =$	2.9 ksi	
	layer 8	$\Delta f_{pR2} =$	2.9 ksi	
	layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 10	$\Delta f_{pR2} =$		2.9 ksi
	layer 11	$\Delta f_{pR2} =$		2.9 ksi
	layer 12	$\Delta f_{pR2} =$		2.9 ksi
	layer 13	$\Delta f_{pR2} =$		2.9 ksi
	layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$
stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$

force per strand = f_{pt} *strand area

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
Λf \//f \		at midenan	at andenan

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

ок ок ок ок ок ок ок ок ok ok ок ок ок ок

Total Losses	JOSES A	I JERVI	CE LOADS at midspan	at endspan
I Oldi EUSSES	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.6 ksi
	layer 2	f _{pe} =	172.0 ksi	172.6 ksi
	layer 3	f _{pe} =	172.0 ksi	172.6 ksi
	layer 4	f _{pe} =	172.0 ksi	172.6 ksi
	layer 5	f _{pe} =	172.0 ksi	172.6 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.01.
	layer 9	f _{pe} =	172.0 ksi	172.6 ksi
	layer 10	f _{pe} =		172.6 ksi
	layer 11	t _{pe} =		172.6 ksi
	layer 12 layer 13	f _{pe} =		172.6 ksi 172.6 ksi
	layer 14	f _{pe} =		172.6 ksi
check prestressing stress limit at service li	- 1		fnv	172.0 K31
oneon productioning duode in in at dervice in	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
force per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	14.7 kips
	layer 9 layer 10		14.6 kips	14.7 kips 14.7 kips
	layer 10	=		14.7 kips 14.7 kips
	iayei i i			
	laver 12	_		
	layer 12 layer 13	=		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.8 kips	939.1 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION					
Transfer Length = 60*(strand diameter)	=	1.9 ft			
Bending moment at transfer length	$M_g =$	87.7 ft-kips			
center of 12 strands to top fiber of beam at the end	=	7.00 in			
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in			
center of 12 strands and top fiber of beam at transfer length	=	9.84 in			
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in			
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in			
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in			
Eccentricity of the strand group at transfer length:	e _h =	21.36 in			
Eccentricity at end of beam:	e =	21.30 in			

Calcs for eccentricity (see 9.6.7.2)

_			
f , =	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_b}-\frac{M_g}{S_b}$		
	at midspan	at endspan	
f _t =	-0.017 ksi	-0.017 ksi	0
f _b =	2.906 ksi	2.906 ksi	0
T HARP	POINT		
M _g =	1188.0 ft-kips		
f _t =	0.173 ksi	0.169 ksi	0
f _b =	2.736 ksi	2.621 ksi	0
AT MIDS	PAN		
$M_g =$	1414.3 ft-kips		
f _t =	0.320 ksi	0.345 ksi	0
f _b =	2.554 ksi	2.438 ksi	0
	$\begin{aligned} &f_b = \\ &\textbf{T HARP} \\ &M_g = \\ &f_t = \\ &f_b = \\ &\textbf{AT MIDS} \\ &M_g = \\ &f_t = \end{aligned}$	$ f_{b} = \frac{1}{A} + \frac{23}{S_{b}} - \frac{1}{S_{b}} $ at midspan $ f_{t} = -0.017 \text{ ksi} $ $ f_{b} = 2.906 \text{ ksi} $ T HARP POINT $ f_{g} = 1188.0 \text{ ft-kips} $ $ f_{t} = 0.173 \text{ ksi} $ $ f_{b} = 2.736 \text{ ksi} $ AT MIDSPAN $ M_{g} = 1414.3 \text{ ft-kips} $ $ f_{t} = 0.320 \text{ ksi} $	$ f_b = \frac{r_1}{A} + \frac{r_2 \sigma}{S_b} - \frac{r_b}{S_b} $ at midspan at endspan $ f_t = -0.017 \text{ ksi} -0.017 \text{ ksi} $ $ f_b = 2.906 \text{ ksi} $

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u 227.4 ksi 227.4 ksi layer 2 = layer 3 = 227.4 ksi 227.4 ksi layer 4 = layer 5 227.4 ksi layer 6 = 227.4 ksi layer 7 227.4 ksi layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi 227.4 ksi layer 11 layer 12 227.4 ksi = layer 13 = 227.4 ksi layer 14 227.4 ksi prestress force per strand before any losses: layer 1 = 19.3 kips layer 2 19.3 kips = layer 3 19.3 kips layer 4 19.3 kips 19.3 kips layer 5 layer 6 19.3 kips layer 7 19.3 kips layer 8 19.3 kips 19.3 kips layer 9 = layer 10 19.3 kips 19.3 kips layer 11 = layer 12 19.3 kips = layer 13 19.3 kips layer 14 19.3 kips Harp Angle Ψ = 7.2 ° Hold-down force/strand layer 1 2.5 kips/strand layer 2 2.5 kips/strand = layer 3 2.5 kips/strand layer 4 2.5 kips/strand = layer 5 2.5 kips/strand layer 6 2.5 kips/strand = layer 7 2.5 kips/strand layer 8 2.5 kips/strand 2.5 kips/strand layer 9 layer 10 2.5 kips/strand 2.5 kips/strand layer 11 layer 12 = 2.5 kips/strand

Stresses at Service Loads

STRESS LIMITS FOR CONCRETE

Total hold-down force

layer 13

layer 14

=

2.5 kips/strand

2.5 kips/strand

30.45 kips

Compression:

Due to permanent loads for load combination Service I

= 00 to pointern to the contract of			
for the precast beam	=	3.150 ksi	
for deck	=	1.359 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	4.200 ksi	
for deck	=	1.812 ksi	

Tension:

Load Combination Service III

for the precast beam	=	-0.016 ksi

STRESSES AT	MIDSPAN	
ompression stresses at top fiber of beam	at midspan	at endspan
$f_{\theta} = \frac{P_{p\theta}}{A} - \frac{P_{p\theta}\theta}{S_t} + \frac{(M_g + M_g)}{S_t}$	$\frac{(M_{yy} + M_{z})}{S_{zy}}$	
Due to permanent loads f	_{tg} = 2.109 ksi	2.107 ksi
$f_{tg} = \frac{P_{pet}}{A} - \frac{P_{pet}^{et}}{S_t} + \frac{(M_g + M_s)}{S_t} + \frac{(M_g + M_s)}{S_t}$	$\frac{(M_{up}+M_{\bar{g}})}{S_{tg}}+\frac{(M_{LL+1})}{S_{tg}}$	
Due to permanent loads and transient loads	_{ta} = 2.561 ksi	2.559 ksi
ompression stresses at top fiber of deck	at midspan	at endspan
$f_{tr} = \frac{(M_{vol} - S_t)}{S_t}$	<u>+ 112 ,)</u> w	
Due to permanent loads f	tc = 0.040 ksi	0.040 ksi
$f_{w} = \frac{(M_{w} + M_{s})}{S_{w}}$	$+M_{LL+L}$)	
Due to permanent loads and transient loads f	tc = 0.464 ksi	0.464 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{rg} = \frac{P_{ge}}{A} + \frac{F_{ge}s}{S_{\phi}} - \frac{(M_g + M_s)}{S_{\phi}} - \frac{(M_g + M_s)}{S_{\phi}}$	$M_{\infty} + M_{\bullet} + 0.8 * M_{Bl+1})$	
$J^{\eta_0} = A S_{\bullet} S_{\bullet}$	S.,	
Load Combination Service III f	-0.808 ksi	-0.797 ksi

Strength Limit State

POSITIVE MOMENT S			9
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members			-
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	6.1 ft-kips	
verage stress in prestressing steel			=
layer 1	f _{ps} =	277.9 ksi	
layer 2	$f_{ps} =$	277.9 ksi	
layer 3	f _{ps} =	277.9 ksi	
layer 4	f _{ps} =	277.9 ksi	
layer 5	f _{ps} =	277.9 ksi	
layer 6	f _{ps} =	277.9 ksi	
layer 7	$f_{ps} =$	277.9 ksi	
layer 8	$f_{ps} =$	277.9 ksi	
layer 9	$f_{ps} =$	277.9 ksi	
layer 10	$f_{ps} =$	277.9 ksi	
layer 11	$f_{ps} =$	277.9 ksi	
layer 12	$f_{ps} =$	277.9 ksi	
layer 13	f _{ps} =	277.9 ksi	
layer 14	f _{ps} =	277.9 ksi	
ominal flexure resistance			
	a =	5.16 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	ΦM _n =	9068.2 ft-kips	ок
NEGATIVE MOMENT S	SECTION		1
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	
	a =	0.18 in	
	ФМ _п =	4410.7 ft-kips	NOT O

Shear Design

CRITICAL SECTION AT 0.59

 $V_u = 1.25DC+1.5DW+1.75(LL+IM)$ 405.0 kips V_u = $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ -2684.4 ft-kips or

 $V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$ $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$

M_u =

max shear max moment Shear depth

V_u = 405.0 kips M_u = 2877.0 ft-kips $d_v =$ 73.19 in Applied factored normal force at the section N_u = 0 Angle of diagonal compressive stresses θ = 36.00°

364.8 kips

-2877.0 ft-kips

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $V_u =$

 $\frac{M_{\mu}}{M_{\mu}} + 0.5 M_{\mu} + 0.5 W_{\mu} \cot \theta - A_{\mu \mu} f_{\mu \rho}$ ≤0.002

resultant compressive stress at centroid effective stress in prestressing strand after all losses

at midspan at endspan 0.932 ksi 0.935 ksi

f _{po} =	176.8 ksi	177.4 ksi
f _{po} =	176.8 ksi	177.4 ksi
f _{po} =	176.8 ksi	177.4 ksi
f _{po} =	176.8 ksi	177.4 ksi
f _{po} =	176.8 ksi	
f _{po} =	176.8 ksi	
f _{po} =	176.8 ksi	
f _{po} =	176.8 ksi	
f _{po} =		177.4 ksi
f _{po} =		177.4 ksi
f _{po} =		177.4 ksi
f _{po} =		177.4 ksi
$f_{po} =$		177.4 ksi
f _{po} =		177.4 ksi
	$\begin{aligned} f_{po} &= \\ f_$	$\begin{array}{llll} f_{po} = & 176.8 \text{ ksi} \\ f_{po} = & $

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\begin{array}{c cccc} \Delta_p = & 3.27 \text{ in} & 0.62 \text{ in} \\ \Delta_g = & -1.49 \text{ in} \\ \Delta_g = & -1.44 \text{ in} \\ \Delta_s = & -1.95 \text{ in} \\ \end{array}$		at midspan	at endspan
$\Delta_{\rm g}$ = -1.44 in	$\Delta_p =$	3.27 in	0.62 in
9	$\Delta_g =$	-1.49 in	_
$\Delta_{\rm s}$ = -1.95 in	$\Delta_g =$	-1.44 in	
	$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

Total Deflection at transfer

 $\Delta =$ 1.79 in -0.86 in $\Delta =$ 3.24 in -1.53 in

Total Deflection at erection

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.2443 in
=	0.18 in
Δ, =	-0.55 in

Location: Fire above Deck Between Girders

Beam Design: 3/8" Strand Fire Exposure Status: 4 Hour

Material Properties

210.1.u. 1 1 0 p 0 1 1100				
CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	2.83 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	β ₁ =	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE 5.5 ksi Strength at release f'ci = Strength at 28 days f'c = 7 ksi Unit Weight w_c = 150.0 pcf Overall Beam Length: @ end spans 110 ft L = @ center span 119 ft L = Design Spans: Non-composite beam @ end spans 109 ft Non-composite beam @ center span 118 ft Composite beam @ end spans 110 ft Composite beam @ center span Beam Spacing 12 ft

-	PRESTRESSING STI	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laa. 4 (b.a.t.a.a.)	-	C0.00.0F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T = T =	68.00 °F
	layer 10 layer 11	T =	68.00 °F 68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	$f_{pu} =$	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ŕ		II.
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{DV} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	,	P7	
before transfer $\leq 0.75f_{pu}$ (in	nitial = 213.2)		
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	f _{pi} =	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 13	f _{pi} =	213.2 ksi
	layer 14		213.2 ksi
	layer 14	f _{pi} =	2 IJ.2 NOI

at service limit state (after all losses) ≤ 0.80f_{pv} (initial = 205.4)

, ,	,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	$f_{pe} =$	205.4 ksi
layer 9	$f_{pe} =$	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS AT ENDSPAN

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	100.00 °F
Layer 2 (Top)	f _y =	44.4 ksi	1430.00 °F

Modulus of Elasticity

Layer 1 (Bottom) E = 29000.0 ksi

Layer 2 (Top) E = 29000.0 ksi

Layer 1 (Bottom)

Area of steel at midspan (effective flange) A_{sm}= 2.79 in^2 Area of steel at endspan (effective flange) A_{se}= 2.48 in^2 Area of temperature and shrinkage steel (12" width) A_s= 0.31 in^2

Layer 2 (Top)

Area of steel at midspan (effective flange) A_{sm} = 12.6 in/2 Area of steel at endspan (effective flange) A_{se} = 12.4 in/2 Area of temperature and shrinkage steel (12" width) A_{s} = 0.2 in/2

Cross-sectional Properties

1033-3ectional i Toperties			7000
NON-COMPOSITE I	BEAM		
Area of cross-section of beam	A =	767.0 in^2	
Overall depth of beam	H =	72.0 in	-
Moment of Inertia	l =	539,947 in^4	
Distance from centroid to extreme bottom fiber	y _b =	36.6 in	
Distance from centroid to extreme top fiber	$y_t =$	35.4 in	1
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3	
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3	
Weight	$W_t =$	799.0 plf	ı
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$			
cast-in-place concrete deck	E _{cs} =	3225 ksi	
precast beam at release	E _{ci} =	4496 ksi	ı
precast beam at service loads	E _c =	5072 ksi	

COMPOSITE BEAM

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6358
Transformed flange width	=	70.6 in
Transformed flange area	ш	529.3 in^2
Transformed haunch width	=	26.7 in
Transformed haunch area	II	13.4 in^2

*min of three criteria

	Transformed Area	yb	Ayb	A(ybc-yb)2	I	I +A(ybc-yb)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	206,008 in^4	539,947 in^4	745,955 in^4
Haunch	13.4 in^2	72.25 in	964.7 in^3	4,954 in^4	0.33 in^4	4,954 in^4
Deck	529.3 in^2	76.25 in	40,361.6 in^3	286,415 in^4	2,950 in^4	289,365 in^4
Total	1309.7 in^2		69.398.5 in^3			1.040.274 in^4

ī		1
Total area of Composite Section	$A_c =$	1310 in^2
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	1,040,274 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	52.99 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	19.01 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	27.01 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,632.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	54,718.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	60,570.1 in^3

DECK (as 12" beam)

DECK (as 12 beall)						
Reinforcing per 12"			at midspan	at beams		
	Layer 1 (Bottom)	A _{s*} =	0.3 in^2	0.3 in^2		
	Laver 2 (Top)	A _{e*} =	0.2 in^2	0.2 in^2		

Modulus of Elasticity = 33000*(W_c ^1.5)*($\sqrt{f_c}$)

= 33000 (W _c ··1.3) (W _c)		
cast-in-place concrete deck	E _{cs} =	3225 ksi

Moment of Intertia	I _g =	99 in^4	
Distance from centroid to extreme bottom fiber of deck	y _b =	2.17 in	
Distance from centroid to extreme top fiber of deck	y _t =	5.83 in	
Modulus of Rupture	$f_r =$	399.0 psi	
Cracking Moment	$M_{CR} =$	1.5 ft-kips	0.6 ft-kips
Max negative moment at loading stage	M _a =	16.9 ft-kips	21.1 ft-kips

Cracking Moment of Inertia	I _{cr} =	87 in^4	87 in^4
Effective Moment of Inertia	I _e =	87 in^4	87 in^4
Effective Moment of Inertia for Continuous Beam	I _e =	87 in^4	

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	W _{beam} =	0.799 k/f	
8 in. deck weight	w _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
LRFD Specifications: Art. 4.6.2.2.1			_
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1	'	
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.5727
Longitudinal stiffness parameter	K _g =	2,745,627.03 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_g}{12*L*L^2}\right)^{0.6}$$

DFM = 0.919 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.5} * \left(\frac{K_s}{12 * L * I_s^3}\right)^{0}$$

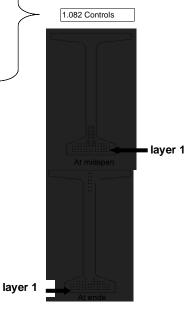
DFM = 0.623 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
•	64		64	
Harped Stra	nd Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
laver 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b s)

y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTEI	NING		
assumed loss	=	6.00%	
Force per strand at transfer			
layer 1	=	17.0 kips	
layer 2	=	17.0 kips	
layer 3	=	17.0 kips	
layer 4	=	17.0 kips	
layer 5	=	17.0 kips	
layer 6	=	17.0 kips	
layer 7	=	17.0 kips	
layer 8	=	17.0 kips	
layer 9	=	17.0 kips	
layer 10	=	17.0 kips	
layer 11	=	17.0 kips	
layer 12	=	17.0 kips	
layer 13	=	17.0 kips	
layer 14	=	17.0 kips	
_		at midspan	at endspan
Total prestressing force at release	$P_i =$	1088.0 kips	1054.0 kips
Compatibility of annual advanced at the annual at the second at the seco			
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =		2.307 ksi at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.412 ksi at midspan 13.9 ksi	
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening	$\Delta f_{pES} =$	at midspan	at endspan
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening.		at midspan 13.9 ksi	at endspan 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2	$\Delta f_{pES} = \Delta f_{pES} = 0$	at midspan 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4	$\Delta f_{pES} = \Delta f_$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6	$\begin{array}{l} \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \Delta f_{pES} = \\ \end{array}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
endons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment .oss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	$\begin{array}{c} \Delta f_{pES} = \\ \Delta f_{pES}$	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi
tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment coss due to shortening layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	$\begin{split} \Delta f_{pES} &= \\ \Delta $	at midspan 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi 13.9 ksi	at endspan 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi 13.3 ksi

S	HRINKAGE		_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	 assume relative humidity = 70%

RELAXATIO	ON OF PRE	STRESSIN	G STRANDS	
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 6	$\Delta f_{pR2} =$	2.9 ksi	
	layer 7	$\Delta f_{pR2} =$	2.9 ksi	
	layer 8	$\Delta f_{pR2} =$	2.9 ksi	
	layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
	layer 10	$\Delta f_{pR2} =$		2.9 ksi
	layer 11	$\Delta f_{pR2} =$		2.9 ksi
	layer 12	$\Delta f_{pR2} =$		2.9 ksi
	layer 13	$\Delta f_{pR2} =$		2.9 ksi
	layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$
stress in tendons after transfer $f_{pt} = f_{pi} \text{-} \Delta f_{pi}$

force per strand = f_{pt} *strand area

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	f _{pt} =	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips
Total prestressing force after transfer	P _i =	1047.8 kips	1054.0 kips
Λf \//f \		at midenan	at andenan

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

ок ок ок ок ок ок ок ок ok ok ок ок ок ок

Total Losses	JOSES A	I JERVI	CE LOADS at midspan	at endspan
I Oldi EUSSES	layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 6	$\Delta f_{pT} =$	41.1 ksi	
	layer 7	$\Delta f_{pT} =$	41.1 ksi	
	layer 8	$\Delta f_{pT} =$	41.1 ksi	
	layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
	layer 10	$\Delta f_{pT} =$		40.5 ksi
	layer 11	$\Delta f_{pT} =$		40.5 ksi
	layer 12	$\Delta f_{pT} =$		40.5 ksi
	layer 13	$\Delta f_{pT} =$		40.5 ksi
	layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}			at midspan	at endspan
	layer 1	f _{pe} =	172.0 ksi	172.6 ksi
	layer 2	f _{pe} =	172.0 ksi	172.6 ksi
	layer 3	f _{pe} =	172.0 ksi	172.6 ksi
	layer 4	f _{pe} =	172.0 ksi	172.6 ksi
	layer 5	f _{pe} =	172.0 ksi	172.6 ksi
	layer 6	f _{pe} =	172.0 ksi	
	layer 7	f _{pe} =	172.0 ksi	
	layer 8	f _{pe} =	172.0 ksi	470.01.
	layer 9	f _{pe} =	172.0 ksi	172.6 ksi
	layer 10	f _{pe} =		172.6 ksi
	layer 11	t _{pe} =		172.6 ksi
	layer 12 layer 13	f _{pe} =		172.6 ksi 172.6 ksi
	layer 14	f _{pe} =		172.6 ksi
check prestressing stress limit at service li	- 1		fnv	172.0 K31
oneon productioning duode in in at dervice in	layer 1	=	205.4 ksi	
	layer 2	=	205.4 ksi	
	layer 3	=	205.4 ksi	
	layer 4	=	205.4 ksi	
	layer 5	=	205.4 ksi	
	layer 6	=	205.4 ksi	
	layer 7	=	205.4 ksi	
	layer 8	=	205.4 ksi	
	layer 9	=	205.4 ksi	
	layer 10	=	205.4 ksi	
	layer 11	=	205.4 ksi	
	layer 12	=	205.4 ksi	
	layer 13	=	205.4 ksi	
	layer 14	=	205.4 ksi	
force per strand = f _{pe} *strand area			at midspan	at endspan
	layer 1	=	14.6 kips	14.7 kips
	layer 2	=	14.6 kips	14.7 kips
	layer 3	=	14.6 kips	14.7 kips
	layer 4	=	14.6 kips	14.7 kips
	layer 5	=	14.6 kips	14.7 kips
	layer 6	=	14.6 kips	
	layer 7	=	14.6 kips	
	layer 8	=	14.6 kips	14.7 kips
	layer 9 layer 10		14.6 kips	14.7 kips 14.7 kips
	layer 10	=		14.7 kips 14.7 kips
	iayei i i			
	laver 12	_		
	layer 12 layer 13	=		14.7 kips 14.7 kips

		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	935.8 kips	939.1 kips
Final losses, $\% = (\Delta f_{pT})/(f_{pi})$			
layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = $0.6f'_{ci}$ f_{ci} = 3.300 ksi				
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	$M_g =$	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in		
Eccentricity of the strand group at transfer length:	e _h =	21.36 in		
Eccentricity at end of beam:	e =	21.30 in		

Calcs for eccentricity (see 9.6.7.2)

_			
f , =	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_b}-\frac{M_g}{S_b}$		
	at midspan	at endspan	
f _t =	-0.017 ksi	-0.017 ksi	0
f _b =	2.906 ksi	2.906 ksi	0
T HARP	POINT		
M _g =	1188.0 ft-kips		
f _t =	0.173 ksi	0.169 ksi	0
f _b =	2.736 ksi	2.621 ksi	0
AT MIDS	PAN		
$M_g =$	1414.3 ft-kips		
f _t =	0.320 ksi	0.345 ksi	0
f _b =	2.554 ksi	2.438 ksi	0
	$\begin{aligned} &f_b = \\ &\textbf{T HARP} \\ &M_g = \\ &f_t = \\ &f_b = \\ &\textbf{AT MIDS} \\ &M_g = \\ &f_t = \end{aligned}$	$ f_{b} = \frac{1}{A} + \frac{23}{S_{b}} - \frac{1}{S_{b}} $ at midspan $ f_{t} = -0.017 \text{ ksi} $ $ f_{b} = 2.906 \text{ ksi} $ T HARP POINT $ f_{g} = 1188.0 \text{ ft-kips} $ $ f_{t} = 0.173 \text{ ksi} $ $ f_{b} = 2.736 \text{ ksi} $ AT MIDSPAN $ M_{g} = 1414.3 \text{ ft-kips} $ $ f_{t} = 0.320 \text{ ksi} $	$ f_b = \frac{r_1}{A} + \frac{r_2 \sigma}{S_b} - \frac{r_b}{S_b} $ at midspan at endspan $ f_t = -0.017 \text{ ksi} -0.017 \text{ ksi} $ $ f_b = 2.906 \text{ ksi} $

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u 227.4 ksi 227.4 ksi layer 2 = layer 3 = 227.4 ksi 227.4 ksi layer 4 = layer 5 227.4 ksi layer 6 227.4 ksi layer 7 227.4 ksi layer 8 227.4 ksi layer 9 227.4 ksi layer 10 227.4 ksi 227.4 ksi layer 11 layer 12 227.4 ksi = layer 13 = 227.4 ksi layer 14 227.4 ksi prestress force per strand before any losses: layer 1 = 19.3 kips layer 2 19.3 kips = layer 3 19.3 kips layer 4 19.3 kips 19.3 kips layer 5 layer 6 19.3 kips layer 7 19.3 kips layer 8 19.3 kips 19.3 kips layer 9 = layer 10 19.3 kips 19.3 kips layer 11 = layer 12 19.3 kips = layer 13 19.3 kips layer 14 19.3 kips Harp Angle Ψ = 7.2 ° Hold-down force/strand layer 1 2.5 kips/strand layer 2 2.5 kips/strand = layer 3 2.5 kips/strand layer 4 2.5 kips/strand = layer 5 2.5 kips/strand layer 6 2.5 kips/strand = layer 7 2.5 kips/strand layer 8 2.5 kips/strand 2.5 kips/strand layer 9 layer 10 2.5 kips/strand 2.5 kips/strand layer 11 layer 12 = 2.5 kips/strand layer 13 2.5 kips/strand =

Stresses at Service Loads

STRESS LIMITS FOR CONCRETE

Total hold-down force

layer 14

Compression:

Due to permanent loads for load combination Service I

= 00 to position to the contract of the contra		
for the precast beam	=	3.150 ksi
for deck	=	1.274 ksi
Due to permanent and transient loads for l	oad combi	ination Service I
for the precast beam	=	4.200 ksi
for deck	=	1.698 ksi

Tension:

Load Combination Service III

for the precast beam	=	-0.016 ksi

2.5 kips/strand

30.45 kips

STRESSES AT MID	SPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{\mathbf{z}} = \frac{P_{\mathbf{j}\mathbf{u}}}{A} - \frac{P_{\mathbf{j}\mathbf{u}^{\mathbf{g}}}}{S_{t}} + \frac{(\mathbf{M}_{\mathbf{g}} + \mathbf{M}_{s})}{S_{t}} +$	$-\frac{(M_{yy}+M_{y})}{S_{ty}}$		
Due to permanent loads $f_{tg} =$	2.110 ksi	2.108 ksi	0
$f_{ij} = \frac{P_{jii}}{A} - \frac{P_{jii}e}{S_i} + \frac{(M_g + M_s)}{S_t} + \frac{(M_w}{S_t}$	$\frac{(M_{LL+1})}{S_{ty}} + \frac{(M_{LL+1})}{S_{ty}}$		
Due to permanent loads and transient loads f _{tg} =	2.574 ksi	2.572 ksi	0
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{tot} + M_{tot})}{S_{tot}}$	<u>()</u>		
Due to permanent loads $f_{tc} =$	0.040 ksi	0.040 ksi	c
$f_w = \frac{(M_w + M_b + M_b + M_b)}{S_w}$	(u_{t+1})		
Due to permanent loads and transient loads f _{tc} =	0.459 ksi	0.459 ksi	C
ension stresses at top fiber of deck	at midspan	at endspan	
$f_{yy} = \frac{P_{yx}}{A} + \frac{F_{yx}\theta}{S_0} - \frac{(M_x + M_y)}{S_0} - \frac{(M_{yx})}{S_0}$	$+M_{\phi}+0.8*M_{EI+1}$		
$S_{\eta} = \frac{1}{A} \cdot \frac{S_{\delta}}{S_{\delta}} = \frac{S_{\delta}}{S_{\delta}}$	న్క,		
Load Combination Service III f _b =	-0.812 ksi	-0.801 ksi	0

Strength Limit State

POSITIVE MOMENT S	ECTION	,	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.27	
layer 2	k =	0.27	
layer 3	k =	0.27	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	6.5 ft-kips	
average stress in prestressing steel			
layer 1	f _{ps} =	277.5 ksi	
layer 2	f _{ps} =	277.5 ksi	
layer 3	f _{ps} =	277.5 ksi	
layer 4	f _{ps} =	277.5 ksi	
layer 5	f _{ps} =	277.5 ksi	
layer 6	f _{ps} =	277.5 ksi	
layer 7	f _{ps} =	277.5 ksi	
layer 8	f _{ps} =	277.5 ksi	
layer 9	f _{ps} =	277.5 ksi	
layer 10	f _{ps} =	277.5 ksi	
layer 11	f _{ps} =	277.5 ksi	
layer 12	f _{ps} =	277.5 ksi	
layer 13	f _{ps} =	277.5 ksi	
layer 14	f _{ps} =	277.5 ksi	
nominal flexure resistance			
	a =	5.50 in	
$M_r = \Phi M_n$, $\Phi = 1.00$	ΦM _n =	9033.5 ft-kips	
NEGATIVE MOMENT S		·	
M _{II} = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips	
	iviu –	1007.2 11 1000	

a =

 $\Phi M_n =$

0.18 in

4151.8 ft-kips

NOT OK

Shear Design

CRITICAL SECTION AT 0.59

$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips
a.r		

 $V_u = 1.25DC+1.5DW+1.75(LL+IM)$

 $M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$

 $V_u =$ 364.8 kips M_u = -2877.0 ft-kips

max shear max moment Shear depth

V_u = 405.0 kips M_u = 2877.0 ft-kips $d_v =$ 73.19 in Applied factored normal force at the section N_u = 0 Angle of diagonal compressive stresses θ = 36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{\underline{M_u}}{\cdot} + 0.5M_u + 0.5V_u \cot \theta - A_{y_0} f_{y_0}$ ≤0.002

resultant compressive stress at centroid effective stress in prestressing strand after all losses

at midspan at endspan 0.938 ksi 0.940 ksi

111 103303	,		
layer 1	f _{po} =	176.8 ksi	177.4 ksi
layer 2	f _{po} =	176.8 ksi	177.4 ksi
layer 3	f _{po} =	176.8 ksi	177.4 ksi
layer 4	f _{po} =	176.8 ksi	177.4 ksi
layer 5	f _{po} =	176.8 ksi	
layer 6	f _{po} =	176.8 ksi	
layer 7	f _{po} =	176.8 ksi	
layer 8	f _{po} =	176.8 ksi	
layer 9	f _{po} =		177.4 ksi
layer 10	f _{po} =		177.4 ksi
layer 11	f _{po} =		177.4 ksi
layer 12	f _{po} =		177.4 ksi
layer 13	f _{po} =		177.4 ksi
layer 14	f _{po} =		177.4 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.27 in	0.62 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -0.11 in

Total Deflection at transfer

 $\Delta =$ 1.79 in -0.86 in Δ = 3.24 in -1.53 in

Total Deflection at erection

Deck Deflection (assuming 12" beam)

Deflection due to Deck Self-Weight Live load deflection limit = span/800 Deflection due to live load and impact

$\Delta_g =$	-1.2857 in
=	0.18 in
Δ, =	-0.70 in

Parametric Design: <u>US Route 7 Case Study</u> Beam Design: 1/2" Strand

Fire Exposure Status: Undamaged

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE S	LAB	
Actual Thickness	t _{as} =	8.0 in
Wearing Surface	=	0.5 in
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in
Compressive Strength	f'c =	4.00 ksi
Unit Weight	w _c =	150.0 pcf
Stress factor of compression block	$\beta_1 =$	0.85

BEAMS: AASHTO-PCI, BT-	72 BULE	3-TEE
Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
emperature of Layer	1		
	layer 1 (bottom)	T = T =	68.00 °F 68.00 °F
	layer 2 layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T = T =	68.00 °F
	layer 12 layer 13	T =	68.00 °F 68.00 °F
	layer 14	T =	68.00 °F
nate Strength	, 0		00.00
intial = 277 ksi	layer 1 (bottom)	f _{pu} =	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9		277 ksi
	•	f _{pu} =	
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
Other worth	layer 14	f _{pu} =	277 ksi
Strength	lavar 4 (hattam)	f _	OFO Irei
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	$f_{py} =$	250 ksi
	layer 10	$f_{py} =$	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
ss Limits: e transfer ≤ 0.75f _{pu} (initia	al = 207.6)		
• • •	layer 1 (bottom)	f _{pi} =	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f :=	207.6 ksi

f_{pi} =

 $f_{pi} =$

f_{pi} =

f_{pi}=

207.6 ksi

207.6 ksi

207.6 ksi

207.6 ksi

207.6 ksi

207.6 ksi

207.6 ksi 207.6 ksi

layer 7

layer 8

layer 9 layer 10

layer 11

layer 12

layer 13 $f_{pi} =$ layer 14 $f_{pi} =$

at service limit state (after all losses) $\leq 0.80 f_{py}$ (initial = 199.7)

layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

ayer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	60.0 ksi	68.00 °F

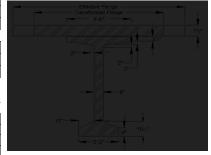
Modulus of Elasticity

Layer 1 (Bottom)

E = 29000.0 ksi

 $\begin{array}{ccc} \text{Area of steel at midspan (effective flange)} & A_{\text{sm}} = & 2.79 \text{ in/2} \\ \text{Area of steel at endspan (effective flange)} & A_{\text{se}} = & 2.48 \text{ in/2} \\ \text{Area of temperature and shrinkage steel (12" width)} & A_{\text{s}} = & 0.31 \text{ in/2} \\ \end{array}$

Layer 2 (Top)


Area of steel at midspan (effective flange)
Area of steel at endspan (effective flange)
Area of temperature and shrinkage steel (12" width)

nge)	A _{sm} =	12.6 in^2
nge)	A _{se} =	12.4 in^2
dth)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-	-COMPO	SITE	BEAM

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	539,947 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in				
Distance from centroid to extreme top fiber	$y_t =$	35.4 in				
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$						
cast-in-place concrete deck	E _{cs} =	3834 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width b_f = 111.0 in Modular Ratio = E_{cs}/E_{c} 0.7559 Transformed flange width 83.9 in = Transformed flange area 629.3 in^2 Transformed haunch width = 31.7 in Transformed haunch area 15.9 in^2 Deck-distance to top fiber 3.75 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3			1.091.316 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,316 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.67 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	56,994.5 in^3

COMPOSITE BEAM AT ENDSPAN

$b_f =$	106.6 in
n =	0.7559
=	80.6 in
=	604.4 in^2
=	31.7 in
=	15.9 in^2
$y_{td} =$	3.75 in
	n = = = = = =

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	273,455 in^4	539,947 in^4	813,402 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	5,660 in^4	0.33 in^4	5,660 in^4
Deck	604.4 in^2	76.25 in	46,082.8 in^3	215,472 in^4	2,833 in^4	218,305 in^4
Total	1387.2 in^2		75,302.0 in^3			1.037.366 in^4

Total area of Composite Section	A _c =	1387 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,037,366 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.28 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.72 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.72 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,110.7 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	58,548.3 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	40,336.0 in^3

Shear Forces and Bending Moments

22,12 20,120			
Beam self-weight	W _{beam} =	0.799 k/f]
8 in. deck weight	W _{deck} =	1.200 k/f]
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	\
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		OK	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
LRFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N _b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	$K_g =$	2,309,429.79 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_B}{12 * L * L_3^3}\right)^{0.1}$$

DFM = 0.905 lanes/beam

one design lane loaded:

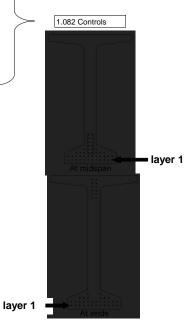
$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_g}{12^+L^+l_s^3}}^{0.1}$$

DFM = 0.614 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

	At Midspan		At Ends	
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9		-	2	60
layer 10	-	=	2	62
layer 11		=	2	64
layer 12		=	2	66
layer 13	-	=	2	68
layer 14	-	-	2	70
Harped Stra	and Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

0.905 Controls

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth $strand\ eccentricity\ at\ midspan = (y_b\text{-}y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

28.9 kips

Prestress Losses

E	LASTIC SHORTE	NING	
	assumed loss	=	9.00%
orce per strand at transfer			
	layer 1	=	28.9 kips
	layer 2	=	28.9 kips
	layer 3	=	28.9 kips
	layer 4	=	28.9 kips
	layer 5	=	28.9 kips
	layer 6	=	28.9 kips
	layer 7	=	28.9 kips
	layer 8	=	28.9 kips
	layer 9	=	28.9 kips
	layer 10	=	28.9 kips
	layer 11	=	28.9 kips
	layer 12	=	28.9 kips
	layer 13	=	28.9 kips

layer 14

		at midspan	at endspan
Total prestressing force at release	$P_i =$	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

assume relative humidity = 70%

CREEP OF	CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as t _{cgp}	$\Delta f_{cdn} =$	1.563 ksi			
		at midspan	at endspan		
loss due to creep	$\Delta f_{pCR} =$	24.3 ksi	24.3 ksi		

loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 5	$\Delta f_{pR2} =$	2.1 ksi	
	layer 6	$\Delta f_{pR2} =$	2.1 ksi	
	layer 7	$\Delta f_{pR2} =$	2.1 ksi	
	layer 8	$\Delta f_{pR2} =$	2.1 ksi	
	layer 9	$\Delta f_{pR2} =$		2.1 ksi
	layer 10	$\Delta f_{pR2} =$		2.1 ksi
	layer 11	$\Delta f_{pR2} =$		2.1 ksi
	layer 12	$\Delta f_{pR2} =$		2.1 ksi
	layer 13	$\Delta f_{pR2} =$		2.1 ksi
	layer 14	$\Delta f_{pR2} =$		2.1 ksi
TOT	AL LOSSES	S AT TRANS	SFFR	

TOTAL LOSSES AT TRANSFER				
total loss $\Delta f_{pES} = \Delta f_{pi}$				
stress in tendons after transfer $f_{pt} = f_{pi} \Delta f_{pi}$	at midspan	at endspan		
layer 1 f _{pt} =	190.6 ksi	190.6 ksi		
layer 2 f _{pt} =	190.6 ksi	190.6 ksi		
layer 3 f _{pt} =	190.6 ksi	190.6 ksi		
layer 4 f _{pt} =	190.6 ksi	190.6 ksi		
layer 5 f _{pt} =	190.6 ksi			
layer 6 f _{pt} =	190.6 ksi			
layer 7 f _{pt} =	190.6 ksi			
layer 8 f _{pt} =	190.6 ksi			
layer 9 f _{pt} =		190.6 ksi		
layer 10 f _{pt} =		190.6 ksi		
layer 11 f _{pt} =		190.6 ksi		
layer 12 f _{pt} =		190.6 ksi		
layer 13 f _{pt} =		190.6 ksi		
layer 14 f _{pt} =		190.6 ksi		
force per strand = f _{pt} *strand area	at midspan	at endspan		
layer 1 =	29.2 kips	29.2 kips		
layer 2 =	29.2 kips	29.2 kips		
layer 3 =	29.2 kips	29.2 kips		
layer 4 =	29.2 kips	29.2 kips		
layer 5 =	29.2 kips			
layer 6 =	29.2 kips			
layer 7 =	29.2 kips			
layer 8 =	29.2 kips			
layer 9 =		29.2 kips		
layer 10 =		29.2 kips		
layer 11 =		29.2 kips		
layer 12 =		29.2 kips		
layer 13 =		29.2 kips		
layer 14 =		29.2 kips		
Total prestressing force after transfer P _i =	1284.8 kips	1284.8 kips		
Initial loss = $(\Delta f_{pi})/(f_{pi})$	at midspan	at endspan		
layer 1 % =	8.2%	8.2%		
layer 2 % =	8.2%	8.2%		
layer 3 % =	8.2%	8.2%		
layer 4 % =	8.2%	8.2%		
layer 5 % =	8.2%			
layer 6 % =	8.2%			
layer 7 % =	8.2%			
layer 8 % =	8.2%			
layer 9 % =		8.2%		
layer 10 % =		8.2%		
layer 11 % =		8.2%		
layer 12 % =		8.2%		
layer 13 % =		8.2%		
layer 14 % =		8.2%		

OK OK OK OK OK OK OK OK OK

TOTAL LOSSES AT Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$	49.9 ksi	10.0 10.1
layer 6	$\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$		49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$		49.9 ksi
Stress in tendon after all losses = f _{pi} -Δf _{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =		157.7 ksi
layer 10	f _{pe} =		157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		157.7 ksi
layer 13	f _{pe} =		157.7 ksi
layer 14	f _{pe} =		157.7 ksi
check prestressing stress limit at service limit state: fp			_
layer 1	=	199.7 ksi	_
layer 2	=	199.7 ksi	_
layer 3	=	199.7 ksi	
layer 4	=	199.7 ksi	
layer 5	=	199.7 ksi	
layer 6	=	199.7 ksi	
layer 7	=	199.7 ksi	
layer 8	=	199.7 ksi	
layer 9	=	199.7 ksi	=
layer 10	=	199.7 ksi	
layer 11	=	199.7 ksi	
layer 12	=	199.7 ksi	\dashv
layer 13 layer 14	=	199.7 ksi	\dashv
layer 14	=	199.7 ksi	
force per strand = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	po
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=	1-	24.1 kips
,	=		24.1 kips
laver 10		1	
layer 10 layer 11	=		24.1 kips
layer 10 layer 11 layer 12			24.1 kips 24.1 kips
layer 11	=		
layer 11 layer 12	=		24.1 kips

at midspan 1061.6 kips

Total prestressing force after all losses $P_{pe} =$

at endspan 1061.6 kips

% =	24.0%	24.0%
% =	24.0%	24.0%
% =	24.0%	24.0%
% =	24.0%	24.0%
% =	24.0%	
% =	24.0%	
% =	24.0%	
% =	24.0%	
% =		24.0%
% =		24.0%
% =		24.0%
% =		24.0%
% =		24.0%
% =		24.0%
% =	24.0%	24.0%
	% = % = % = % = % = % = % = % = % = % =	% = 24.0% % = 24.0% % = 24.0% % = 24.0% % = 24.0% % = 24.0% % = 24.0% % = 24.0% % = 24.0% % = 24.0% % = 24.0%

Stresses at Transfer

STRESS LIMITS FOR CO	DNCRET	E
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		

without bonded reinforcement = $-0.0948*\sqrt{f_{ci}} \le -0.2$ = -0.200 ksi with bonded auxiliary reinforcement = $-0.22*\sqrt{f_{ci}}$ = -0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft	
Bending moment at transfer length	$M_g =$	116.4 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	`
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	10.78 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in	
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in	
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in	
Eccentricity of the strand group at transfer length:	e _h =	17.09 in	,
Eccentricity at end of beam:	e =	16.05 in	-

Calcs for eccentricity (see 9.6.7.2)

	• -		
$f_{i} = \frac{P_{i}}{I} - \frac{P_{i}g}{I} + \frac{M_{g}}{I}$	<i>s</i> _	$P_i \perp P_i \sigma \perp N$	A,
A S. S.	25 -	$\overline{A} \cdot \overline{S_{\delta}} = \overline{A}$	57

;;		വ വു	ao a	
		at mic	Ispan	at endspan
Top stress at top fiber of beam	$f_t =$	0.34	2 ksi	0.342 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.02	1 ksi	3 021 ksi

ok ok

STRESSES A	THARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1184.2 ft-kips		
Top stress at top fiber of beam	f _t =	0.032 ksi	0.032 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi	ок
STRESSES	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	0.220 ksi	0.211 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi	ок
HOLD-DOWN FOR	CES			

assume stress in strand before losses = 0.8f_u

layer 1	II	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	II	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	II	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	II	221.4 ksi

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °
	Ψ -	, <u>.</u>

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

Due to permanent loads for load con	nomation (Service i			
for the precast beam	=	3.150 ksi			
for deck	=	1.800 ksi			
Due to permanent and transient loads for lo	ad combi	nation Service I			
for the precast beam = 4.200 ksi					
for deck	=	2.400 ksi			

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

STRESSES AT MI	<u>IDSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_z = \frac{P_{ge}}{A} \cdot \frac{P_{ge} a}{S_z} + \frac{(M_z + M_z)}{S_z}$	$+\frac{(\boldsymbol{M}_{us}+\boldsymbol{M}_{s})}{\mathcal{S}_{uy}}$		
Due to permanent loads f_{tg}	= 2.041 ksi	2.041 ksi	
$f_{ig} = \frac{P_{ge}}{A} - \frac{P_{ge}e}{S_t} + \frac{(M_g + M_s)}{S_t} + \frac{(M_g + M_s)}{S_t}$	$\frac{S_{ij} + M_{ij}}{S_{ij}} + \frac{(M_{Ll+1})}{S_{ij}}$		
Due to permanent loads and transient loads f _{tg}	= 2.444 ksi	2.444 ksi	
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{sc} = rac{(M_{ws} +}{S_{sc}}$	Ma ,)		
Due to permanent loads f_{tc}	= 0.042 ksi	0.042 ksi	
$f_{tr} = \frac{(M_{ws} + M_{o} + N_{o} + M_{o})}{S_{tr}}$	M_{II+1}		
Due to permanent loads and transient loads f_{tc}	= 0.488 ksi	0.488 ksi	
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{1g} = \frac{P_{ps}}{A} + \frac{P_{ps}s}{S_b} - \frac{(M_g + M_s)}{S_b} - \frac{(M_s + M_s)}{S_b}$	$_{c} + M_{s} + 0.8*M_{H+1}$		
$S_{\eta \eta} = \frac{1}{A} + \frac{1}{S_{\phi}} = \frac{1}{S_{\phi}}$	S'der		
Load Combination Service III f _b =	-0.393 ksi	-0.393 ksi	

POSITIVE MOMENT S		
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	8381.5 ft-kips
effective length factor for compression members		
layer 1	k =	0.28
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	c =	5.7 ft-kips
layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14	fps = fps =	270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi 270.9 ksi
	a =	4.85 in
$M_r = \Phi M_n$, $\Phi = 1.00$		10906.2 ft-kips
NEGATIVE MOMENT S	ECTION	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-4837.2 ft-kips
	a =	0.20 in
	$\Phi M_n =$	5099.1 ft-kips
ear Design		
CRITICAL SECTION A	AT 0.59	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips
or		
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-2877.0 ft-kips
- ,		
max shear	V _u =	405.0 kips
max moment	M _u =	2877.0 ft-kips
Shear depth	d _v =	73.19 in
Applied factored normal force at the section	N _u =	0
Angle of diagonal compressive stresses	0	26.00 %

Angle of diagonal compressive stresses

36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT $\frac{\overline{M}_{a}}{+0.5M_{a}+0.5W_{a}\cot\theta-A_{pol}/po}$ -≤0.002 $E_sA_s + E_sA_u$ at midspan at endspan 0.994 ksi 0.994 ksi resultant compressive stress at centroid effective stress in prestressing strand after all losses 162.8 ksi 162.8 ksi layer 1 $f_{po} =$ layer 2 f_{po} = 162.8 ksi 162.8 ksi layer 3 162.8 ksi 162.8 ksi f_{po} = layer 4 f_{po} = 162.8 ksi 162.8 ksi layer 5 162.8 ksi $f_{po} =$ layer 6 162.8 ksi f_{po} = layer 7 f_{po} = 162.8 ksi 162.8 ksi layer 8 f_{po} = layer 9 $f_{po} =$ 162.8 ksi layer 10 162.8 ksi f_{po} = layer 11 162.8 ksi f_{po} = layer 12 f_{po} = 162.8 ksi layer 13 162.8 ksi $f_{po} =$ layer 14 f_{po} = 162.8 ksi strain in flexural tension at midspan at endspan layer 1 $\epsilon_x =$ 0.002000 0.002000 layer 2 0.002000 0.002000 $\epsilon_x =$ 0.002000 0.002000 layer 3 $\varepsilon_x =$ layer 4 0.002000 0.002000 layer 5 0.002000 ε_x = layer 6 ε_x = 0.002000 layer 7 0.002000 $\varepsilon_x =$ 0.002000 layer 8 $\varepsilon_x =$ layer 9 ε_x = 0.002000 0.002000 layer 10 $\varepsilon_x =$ layer 11 $\epsilon_x =$ 0.002000 layer 12 0.002000 $\varepsilon_x =$ layer 13 $\varepsilon_x =$ 0.002000 layer 14 0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

Deflection	due	to to	ntal	self	weigh	t

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800 Deflection due to live load and impact

Deflection due to fire truck Total Deflection after fire with fire truck

		at midspan	at endspan
	$\Delta_p =$	3.97 in	3.97 in
	$\Delta_g =$	-1.49 in	
	$\Delta_g =$	-1.44 in	
	$\Delta_s =$	-1.95 in	
ſ			

Δ _{sw} =	0.59 III	

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

=	1.80 in
$\Delta_L =$	-0.83 in

-0.7520 in $\Delta_{l} =$ Δ= 3.8033 in

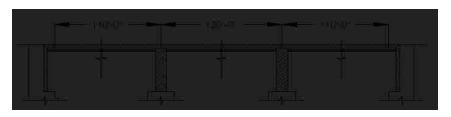
οк

ок

Parametric Design: <u>US Route 7 Case Study</u> Beam Design: 1/2" Strand

Fire Exposure Status: Damaged

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	3.09 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	7 ksi		
Unit Weight	w _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L=	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

	PRESTRESSING STR	ANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
Temperature of La	yer		
	layer 1 (bottom)	T =	68.00 °F
	layer 2	T = T =	68.00 °F
	layer 3 layer 4	T =	68.00 °F 68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10 layer 11	T = T =	68.00 °F
	layer 12	T =	68.00 °F 68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial =	277 ksi layer 1 (bottom)	$f_{pu} =$	277 ksi
	layer 2	$f_{pu} =$	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	$f_{pu} =$	277 ksi
	layer 10	$f_{pu} =$	277 ksi
	layer 11	$f_{pu} =$	277 ksi
	layer 12	$f_{pu} =$	277 ksi
	layer 13	$f_{pu} =$	277 ksi
	layer 14	$f_{pu} =$	277 ksi
Yield Strength	-		
intial =	250 ksi layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
_	layer 14	f _{py} =	250 ksi
Stress Limits:	75f (initial = 207.6)		
perore transfer ≤ 0	.75f _{pu} (initial = 207.6)		007.01.
	layer 1 (bottom)	f _{pi} =	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	f _{pi} =	207.6 ksi
	layer 9	f _{pi} =	207.6 ksi
	layer 10	f _{pi} =	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi
	layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 199.7)

- oroonpy (minute) -	,	
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	$f_{pe} =$	199.7 ksi
layer 5	$f_{pe} =$	199.7 ksi
layer 6	$f_{pe} =$	199.7 ksi
layer 7	$f_{pe} =$	199.7 ksi
layer 8	$f_{pe} =$	199.7 ksi
layer 9	$f_{pe} =$	199.7 ksi
layer 10	$f_{pe} =$	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity

intial = 25982 ksi

E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
E =	25982.0 ksi
	E = E = E = E = E = E = E = E = E = E =

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _y =	51.6 ksi	1193.00 °F

Modulus of Elasticity

E = 29000.0 ksi

Layer 1 (Bottom)

Area of steel at midspan (effective flange) A_{sm} = 2.79 in/2 Area of steel at endspan (effective flange) A_{so} = 2.48 in/2 Area of temperature and shrinkage steel (12" width) A_{s} := 0.31 in/2

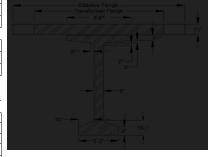
Layer 2 (Top)

Area of steel at midspan (effective flange)

Asm = 12.6 in^2

Area of steel at endspan (effective flange)

Ase = 12.4 in^2


Area of temperature and shrinkage steel (12* width)

As:= 0.2 in^2

Cross-sectional Properties

NON-	-COMPOS	ITE BEAM

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	539,947 in^4				
Distance from centroid to extreme bottom fiber	y _b =	36.6 in				
Distance from centroid to extreme top fiber	$y_t =$	35.4 in				
Section modulus for the extreme bottom fiber	S _b =	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$						
cast-in-place concrete deck	E _{cs} =	3370 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	b _f =	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6644
Transformed flange width	=	73.7 in
Transformed flange area	=	553.1 in^2
Transformed haunch width	=	27.9 in
Transformed haunch area	=	14.0 in^2
Deck-distance to top fiber	y _t =	4.82 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	205,498 in^4	539,947 in^4	745,445 in^4
Haunch	14.0 in^2	72.25 in	1,008.1 in^3	5,187 in^4	0.33 in^4	5,188 in^4
Deck	553.1 in^2	75.18 in	41,583.1 in^3	272,881 in^4	1,499 in^4	274,380 in^4
Total	1334.1 in^2		70,663.4 in^3			1,025,013 in^4

Total area of Composite Section	A _c =	1334 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,025,013 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	52.97 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	19.03 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	27.03 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,351.4 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	53,858.5 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	57,072.6 in^3

COMPOSITE BEAM AT ENDSPAN

	• •
b _f =	106.6 in
n =	0.6644
=	70.8 in
ш	531.2 in^2
=	27.9 in
=	14.0 in^2
y _{td} =	4.56 in
	n = = = = = =

*min of three criteria

	Transformed Area	y _t	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	247,359 in^4	539,947 in^4	787,306 in^4
Haunch	14.0 in^2	72.25 in	1,008.1 in^3	4,500 in^4	0.29 in^4	4,500 in^4
Deck	531.2 in^2	77.06 in	40,933.4 in^3	171,309 in^4	2,182 in^4	173,491 in^4
Total	1312.1 in^2		70.013.7 in/3			965,297 in^4

Total area of Composite Section	A _c =	1312 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	965,297 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.36 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	18.64 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.64 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,090.8 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	51,781.7 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	36,232.6 in^3

Shear Forces and Bending Moments

1	,,,,	,,,,		,,,		
	ם	E	J	2	ADS	

Beam self-weight	W _{beam} =	0.799 k/f	
8 in. deck weight	W _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	>
Curvature in plans is less than 4°=	0	OK	ſ
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1	•	
Width of Deck Constant		OK
Number of beams is not less than four $N_b =$	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.5051
Longitudinal stiffness parameter	K _a =	2,627,577.61 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{16} * \left(\frac{S}{L}\right)^{12} * \left(\frac{K_g}{12 * L * f_3^3}\right)^{0.1}$$

0.915 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.3} * {\binom{K_s}{12 + L + L_s^3}}^{0.1}$$

DFM = 0.621 lanes/beam

0.905 Controls

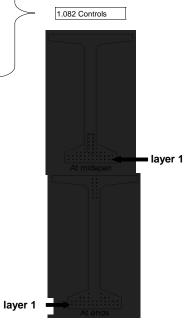
Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	-
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
		cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		·
layer 6	2	12		·
layer 7	2	14		
layer 8	2	16		·

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - y_b)

y _{bs} =	5.82 in
e. =	30.78 in

Prestress Losses

	ELASTIC SHORTENING					
	assumed loss	=	9.00%			
Force per strand at transfer	•					
	layer 1	=	28.9 kips			
	layer 2	=	28.9 kips			
	layer 3	=	28.9 kips			
	layer 4	=	28.9 kips			
	layer 5	=	28.9 kips			
	layer 6	=	28.9 kips			
	layer 7	=	28.9 kips			
	layer 8	=	28.9 kips			
	layer 9	=	28.9 kips			
	layer 10	=	28.9 kips			
	layer 11	=	28.9 kips			
	layer 12	=	28.9 kips			
	layer 13	=	28.9 kips			
	layer 14	=	28.9 kips			

		at midspan	at endspan
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

SHRII	NKAGE			_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	1	assume relative humidity = 70%

24.3 ksi

24.3 ksi

RELAXATION OF PRESTRESSING STRANDS

loss due to creep $\Delta f_{pCR} =$

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
layer 5	$\Delta f_{pR2} =$	2.1 ksi	
layer 6	$\Delta f_{pR2} =$	2.1 ksi	
layer 7	$\Delta f_{pR2} =$	2.1 ksi	
layer 8	$\Delta f_{pR2} =$	2.1 ksi	
layer 9	$\Delta f_{pR2} =$		2.1 ksi
layer 10	$\Delta f_{pR2} =$		2.1 ksi
layer 11	$\Delta f_{pR2} =$		2.1 ksi
layer 12	$\Delta f_{pR2} =$		2.1 ksi
layer 13	$\Delta f_{pR2} =$		2.1 ksi
layer 14	$\Delta f_{pR2} =$		2.1 ksi

TOTAL LOSSES AT TRANSFER

TOTAL LOSSES	AT TRAN	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$	_		
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	190.6 ksi	190.6 ksi
layer 2	f _{pt} =	190.6 ksi	190.6 ksi
layer 3	f _{pt} =	190.6 ksi	190.6 ksi
layer 4	f _{pt} =	190.6 ksi	190.6 ksi
layer 5	f _{pt} =	190.6 ksi	
layer 6	f _{pt} =	190.6 ksi	
layer 7	f _{pt} =	190.6 ksi	
layer 8	f _{pt} =	190.6 ksi	
layer 9	f _{pt} =		190.6 ksi
layer 10	f _{pt} =		190.6 ksi
layer 11	f _{pt} =		190.6 ksi
layer 12	f _{pt} =		190.6 ksi
layer 13	f _{pt} =		190.6 ksi
layer 14	f _{pt} =		190.6 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=	29.2 kips	29.2 kips
layer 5	=	29.2 kips	
layer 6	=	29.2 kips	
layer 7	=	29.2 kips	
layer 8	=	29.2 kips	
layer 9	=	•	29.2 kips
layer 10	=		29.2 kips
layer 11	=		29.2 kips
layer 12	=		29.2 kips
layer 13	=		29.2 kips
layer 14	=		29.2 kips
Total prestressing force after transfer	P _i =	1284.8 kips	1284.8 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	
layer 9	% =		8.2%
· · · · · · · · · · · · · · · · · · ·	% =		8.2%
layer 10			8.2%
layer 10 layer 11	% =		0.2 /0
· · · · · · · · · · · · · · · · · · ·	% = % =		8.2%
layer 11			

OK OK OK OK OK OK OK OK OK

Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$	49.9 ksi	
layer 6	$\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$		49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$		49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =		157.7 ksi
layer 10	f _{pe} =		157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		157.7 ksi
layer 13	f _{pe} =		157.7 ksi
layer 14	f _{pe} =		157.7 ksi
check prestressing stress limit at service limit state: fpe	e ≤ 0.8*fpy		_
layer 1	=	199.7 ksi	
layer 2	=	199.7 ksi	
layer 3	=	199.7 ksi	
layer 4	=	199.7 ksi	
layer 5	=	199.7 ksi	
layer 6	=	199.7 ksi	
layer 7	=	199.7 ksi	
layer 8	=	199.7 ksi	
layer 9	=	199.7 ksi	
layer 10	=	199.7 ksi	
· · · · · · · · · · · · · · · · · · ·	=	199.7 ksi	
layer 11		400 71 '	1
layer 11 layer 12	=	199.7 ksi	
layer 11 layer 12 layer 13	=	199.7 ksi	
layer 11 layer 12			
layer 11 layer 12 layer 13	-	199.7 ksi	
layer 11 layer 12 layer 13	-	199.7 ksi	at endspan

force	nor	strand	_ 1	٠ *	etrand	area
loice	pei	Stranu	= 1	pe	Straniu	area

nd = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.7 kips	1061.7 kips

layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer		
STRESS LIMITS FOR CO	ONCRET	E
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	M _g =	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

•	$\underline{P_1}$	<u> </u>	<u> 14,</u>
J2	A	<i>S</i> ,	S,

$$f_b = \frac{P_i}{A} + \frac{P_i e}{S_b} - \frac{M_B}{S_b}$$

3.144 ksi

3.189 ksi

ок

		at midspan	at endspan	
Г		•		
Top stress at top fiber of beam	$f_t =$	0.342 ksi	0.342 ksi	
Bottom stress at bottom fiber of the beam f _b =		3.021 ksi	3.021 ksi	
STRESSES AT	HARP I	POINT		
Bending moment due to beam weight at 0.3L	M _g =	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	0.035 ksi	0.035 ksi	
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi	
STRESSES A	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips		
Top stress at top fiber of beam	f. =	0.220 ksi	0.211 ksi	

Bottom stress at bottom fiber of the beam | f_b = |

assume stress in strand before losses = 0.8f_u

=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	II	33.9 kips
layer 6	ш	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	ш	33.9 kips
layer 13	ш	33.9 kips
layer 14	ш	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	ш	4.4 kips/strand
layer 2	ш	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	ш	4.4 kips/strand
layer 6	ш	4.4 kips/strand
layer 7	ш	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	ш	4.4 kips/strand
layer 14	ш	4.4 kips/strand
Total hold-down force	ш	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

Due to permanent loads for load combination Service I					
for the precast beam	=	3.150 ksi			
for deck	=	1.391 ksi			
Due to permanent and transient loads for load combination Service I					
for the precast beam	=	4.200 ksi			
for deck	=	1.854 ksi			

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

ок

ок

ок

οк

ок

STRESSES AT MID	<u>SPAN</u>	
Compression stresses at top fiber of beam	at midspan	at endspan
$f_{z} = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}A}{S_{z}} + \frac{(M_{z} + M_{z})}{S_{z}} + \frac{(M_{z} + M_{z})}{S_{z}}$	$\frac{(\boldsymbol{M}_{\varpi} + \boldsymbol{M}_{s})}{S_{\varpi}}$	
Due to permanent loads f _{tg} =	2.047 ksi	2.047 ksi
$f_{ig} = \frac{P_{pe}}{A} - \frac{P_{pe}e}{S_t} + \frac{(M_s + M_s)}{S_t} + \frac{(M_w)}{S_t}$	$_{1}+M_{2})$ $_{\perp}$ $(M_{B,1})$	
$J_{ig} = \frac{1}{A} - \frac{1}{S_t} + \frac{1}{S_t}$	S_{ij} T_{ij}	
Due to permanent loads and transient loads f _{tg} =	2.518 ksi	2.518 ksi
Compression stresses at top fiber of deck	at midspan	at endspan
$f_{\mathbf{k}} = \frac{(M_{\text{NS}} + N_{\text{NS}})}{S_{\text{NS}}}$		0.0401 :
Due to permanent loads $f_{tc} =$	0.042 ksi	0.042 ksi
$f_w = \frac{(M_w + M_o + h)}{S_w}$	$f_{E=1}$	
Due to permanent loads and transient loads f _{tc} =	0.487 ksi	0.487 ksi
Tension stresses at top fiber of deck	at midspan	at endspan
$f_{12} = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}\delta}{S_h} - \frac{(M_1 + M_2)}{S_h} - \frac{(M_{\nu\nu})}{S_h}$	$+M_{\delta}+C.8*M_{ZZ+1}$	
· · A S, S,	S. dec	
	-0.429 ksi	

POSITIVE MOMENT S			7
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members			_
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	_
layer 13	k =	0.28	1
layer 14	k =	0.28	4
	c =	7.3 ft-kips	
layer 2	f _{ps} =	269.2 ksi	1
layer 1	f _{ps} =	269.2 ksi	
· · · · · · · · · · · · · · · · · · ·			-
layer 3 layer 4	f _{ps} =	269.2 ksi 269.2 ksi	-
layer 5	f _{ps} =	269.2 ksi	-
layer 6	f _{ps} =	269.2 ksi	-
layer 7	f _{ps} =	269.2 ksi	1
layer 8	f _{ps} =	269.2 ksi	-
layer 9	f _{ps} =	269.2 ksi	-
layer 10	f _{ps} =	269.2 ksi	1
layer 11	f _{ps} =	269.2 ksi	1
layer 12	f _{ps} =	269.2 ksi	1
layer 13	f _{ps} =	269.2 ksi	1
layer 14	f _{ps} =	269.2 ksi	1
ominal flexure resistance	ро		_
	a =	6.23 in	
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	10733.5 ft-kips	ок
NEGATIVE MOMENT S	ECTION		_
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-4837.2 ft-kips	1
	a =	0.19 in	1
	$\Phi M_n =$	4504.5 ft-kips	NOT O
•			_
ear Design			_
CRITICAL SECTION A	AT 0.59		_
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips	1
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips	_
or			-
$V_{II} = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	364.8 kips	1
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-2877.0 ft-kips	

V_u =

M_u =

 $d_v =$

 $N_u =$

Shear depth

max shear

Applied factored normal force at the section

max moment

Angle of diagonal compressive stresses

405.0 kips 2877.0 ft-kips

73.19 in

0

36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

N FLEXURAL $1 \le 100$ $\frac{M_1}{2} + 0.5N_1 + 0.5V_1 \cot \theta - A_{p}J_{p}$ ≤ 0.002 $E,A,+E,E_p$

resultant compressive stress at centroid effective stress in prestressing strand after all losses at midspan at endspan 1.030 ksi 1.030 ksi

103363			
layer 1	f _{po} =	163.0 ksi	163.0 ksi
layer 2	f _{po} =	163.0 ksi	163.0 ksi
layer 3	f _{po} =	163.0 ksi	163.0 ksi
layer 4	f _{po} =	163.0 ksi	163.0 ksi
layer 5	$f_{po} =$	163.0 ksi	
layer 6	$f_{po} =$	163.0 ksi	
layer 7	$f_{po} =$	163.0 ksi	
layer 8	$f_{po} =$	163.0 ksi	
layer 9	$f_{po} =$		163.0 ksi
layer 10	$f_{po} =$		163.0 ksi
layer 11	$f_{po} =$		163.0 ksi
layer 12	f _{po} =		163.0 ksi
layer 13	f _{po} =		163.0 ksi
layer 14	f _{po} =		163.0 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\epsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	$\varepsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer

Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800 Deflection due to live load and impact

Deflection due to fire truck Total Deflection after fire with fire truck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

 $\Delta_{sw} =$ 0.59 in

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

1.80 in -0.90 in

$\Delta_L =$	-0.8081 in
Δ =	3.7472 in

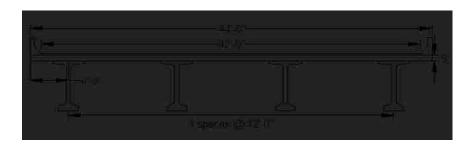
ок

ок

Parametric Design: <u>US Route 7 Case Study</u> Beam Design: 3/8" Strand

Fire Exposure Status: Undamaged

(PCI Bridge Design Manual Section 9.6)



Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	4.00 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE

Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR		
	Diameter of single strand	d =	0.4 in
T (1)	Area of single strand	A =	0.085 in^2
Temperature of Layer	layer 1 (bottom)	T =	68.00 °F
	layer 1 (bottom)	T =	68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9 layer 10	T = T =	68.00 °F 68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength			
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	$f_{pu} =$	284 ksi
	layer 4	$f_{pu} =$	284 ksi
	layer 5	$f_{pu} =$	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	$f_{pu} =$	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	, ,		
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{pv} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{pv} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13		257 ksi
		f _{py} =	
Stress Limits:	layer 14	I _{py} =	257 ksi
before transfer ≤ 0.75f _{pu} (ini	tial = 213 2)		
25.510 transion = 0.751pu (IIII	layer 1 (bottom)	f . –	213.2 ksi
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	·	f _{pi} =	
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	f _{pi} =	213.2 ksi
	layer 10	f _{pi} =	213.2 ksi
	layer 11	$f_{pi} =$	213.2 ksi
	layer 12	f _{pi} =	213.2 ksi
	layer 12 layer 13	f _{pi} =	213.2 ksi 213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

layer

P) \	,	
1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
laver 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	60.0 ksi	68.00 °F

Modulus of Elasticity

ayer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	A _{sm} =	2.79 in/2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2
Layer 2 (Top)		
Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2

 $\begin{array}{ccc} \text{Area of steel at midspan (effective flange)} & A_{\text{sm}} = & 12.6 \text{ in} \% \\ \text{Area of steel at endspan (effective flange)} & A_{\text{se}} = & 12.4 \text{ in} \% \\ \text{Area of temperature and shrinkage steel (12" width)} & A_{\text{s'}} = & 0.2 \text{ in} \% \\ \end{array}$

Cross-sectional Properties

NON-COMPOSITE	REAM

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	y _t =	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7559
Transformed flange width	=	83.9 in
Transformed flange area	II	629.3 in^2
Transformed haunch width	=	31.7 in
Transformed haunch area	=	15.9 in^2
Deck-distance to top fiber	$y_t =$	3.75 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3		•	1.091.316 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,316 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	56,994.5 in^3

COMPOSITE BEAM AT ENDSPAN

CINII COLLE DEAM AL	OINI COITE BEAN AT ENDOTAIN					
Effective Flange Width	$b_f =$	106.6 in				
Modular Ratio = E_{cs}/E_{c}	n =	0.7559				
Transformed flange width	=	80.6 in				
Transformed flange area	=	604.4 in^2				
Transformed haunch width	II	31.7 in				
Transformed haunch area	=	15.9 in^2				
Deck-distance to top fiber	y _{td} =	3.75 in				

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	ı	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	273,455 in^4	539,947 in^4	813,402 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	5,660 in^4	0.33 in^4	5,660 in^4
Deck	604.4 in^2	76.25 in	46,082.8 in^3	215,472 in^4	2,833 in^4	218,305 in^4
Total	1387.2 in^2		75.302.0 in^3			1.037.366 in^4

Total area of Composite Section	A _c =	1387 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,037,366 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.28 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.72 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.72 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,110.7 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	58,548.3 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	40,336.0 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight w _{beam} =	0.799 k/f
8 in. deck weight w _{deck} =	1.200 k/f
1/2 in. haunch weight W _{haunch} =	0.022 k/f
,	

LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four $N_b =$	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	$K_g =$	2,309,429.79 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_{J}}{12*L*t_{J}^{3}}\right)^{0.1}$$

DFM = 0.905 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_g}{12*L*t_3^3}\right)^{0.1}$$

DFM = 0.614 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

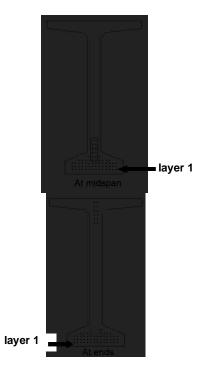
0.905 Controls

1.082 Controls

		At Midspan		At Ends	
from bottom	No. of Distance from Bottom		No. of	Distance from Bottom	
layer 1	14	2	14	2	
layer 2	14	3.5	14	3.5	
layer 3	14	5	14	5	
layer 4	10	6.5	8	6.5	
layer 5	4	8	2	8	
layer 6	2	10	-	=	
layer 7	2	12	-	=	
layer 8	2	14	-	=	
layer 9	2	16	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
	64		64		
Harped Str	and Group (ir	cluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12		·	
layer 7	2	14			
layer 8	2	16		<u> </u>	

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	31.16 in


Prestress Losses

ELASTIC SHORTENING

assumed loss = 6.00%

Force per strand at transfer

layer 1	=	17.0 kips
layer 2	=	17.0 kips
layer 3	II	17.0 kips
layer 4	=	17.0 kips
layer 5	II	17.0 kips
layer 6	=	17.0 kips
layer 7	=	17.0 kips
layer 8	=	17.0 kips
layer 9	=	17.0 kips
ayer 10	=	17.0 kips
ayer 11	=	17.0 kips
ayer 12	=	17.0 kips
ayer 13	II	17.0 kips
ayer 14	=	17.0 kips

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	$f_{cgp} =$	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.587 ksi		
at midspan at endspan				
loss due to creep	$\Delta f_{pCR} =$	17.8 ksi	16.6 ksi	

RELAXATION OF PRESTRESSING STRANDS				
loss due to relaxation after transfer		at midspan	at endspan	
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi	
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi	
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi	
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi	
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi	
layer 6	$\Delta f_{pR2} =$	2.9 ksi		
layer 7	$\Delta f_{pR2} =$	2.9 ksi		
layer 8		2.9 ksi		
layer 9		2.9 ksi	2.9 ksi	
layer 10	$\Delta f_{pR2} =$		2.9 ksi	
layer 11	$\Delta f_{pR2} =$		2.9 ksi	
layer 12			2.9 ksi	
layer 13	$\Delta f_{pR2} =$		2.9 ksi	
layer 14	$\Delta f_{pR2} =$		2.9 ksi	

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$ stress in tendons after transfer $f_{pt} = f_{pi}$ - Δf_{pi}

ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer ·	1 f _{pt} =	199.3 ksi	199.9 ksi
layer 2	2 f _{pt} =	199.3 ksi	199.9 ksi
layer	$f_{pt} =$	199.3 ksi	199.9 ksi
layer 4	4 f _{pt} =	199.3 ksi	199.9 ksi
layer !	5 f _{pt} =	199.3 ksi	199.9 ksi
layer (6 f _{pt} =	199.3 ksi	
layer	7 f _{pt} =	199.3 ksi	
layer 8	$f_{pt} =$	199.3 ksi	
layer 9	9 f _{pt} =	199.3 ksi	199.9 ksi
layer 10	$f_{pt} =$		199.9 ksi
layer 1	1 f _{pt} =		199.9 ksi
layer 12	$f_{pt} =$		199.9 ksi
layer 13	3 f _{pt} =		199.9 ksi
layer 14	4 f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer '	1 =	16.9 kips	17.0 kips
layer 2	2 =	16.9 kips	17.0 kips
layer	3 =	16.9 kips	17.0 kips
layer 4	4 =	16.9 kips	17.0 kips
layer !	5 =	16.9 kips	17.0 kips
layer (6 =	16.9 kips	
layer	7 =	16.9 kips	
layer 8	8 =	16.9 kips	
layer 9	9 =	16.9 kips	17.0 kips
layer 10	0 =		17.0 kips
layer 1	1 =		17.0 kips
layer 12	2 =		17.0 kips
layer 13	3 =		17.0 kips
layer 14	4 =		17.0 kips
Total prestressing force after transfe	r P _i =	1047.8 kips	1054.0 kips

force per strand = f_{pt} *strand area

Initial loss =	$(\Delta f_{pi})/(f_{pi})$
----------------	----------------------------

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

OK OK OK OK OK OK OK OK OK

TOTAL LOSSES A	T SERVI	CE LOADS	
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 6	$\Delta f_{pT} =$	41.1 ksi	
layer 7	$\Delta f_{pT} =$	41.1 ksi	
layer 8	$\Delta f_{pT} =$	41.1 ksi	
layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 10	$\Delta f_{pT} =$		40.5 ksi
layer 11	$\Delta f_{pT} =$		40.5 ksi
layer 12	$\Delta f_{pT} =$		40.5 ksi
layer 13	$\Delta f_{pT} =$		40.5 ksi
layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	172.0 ksi	172.7 ksi
layer 2	f _{pe} =	172.0 ksi	172.7 ksi
layer 3	f _{pe} =	172.0 ksi	172.7 ksi
layer 4	f _{pe} =	172.0 ksi	172.7 ksi
layer 5	f _{pe} =	172.0 ksi	172.7 ksi
layer 6	f _{pe} =	172.0 ksi	
layer 7	f _{pe} =	172.0 ksi	
layer 8	f _{pe} =	172.0 ksi	
layer 9	f _{pe} =	172.0 ksi	172.7 ksi
layer 10	f _{pe} =		172.7 ksi
layer 11	f _{pe} =		172.7 ksi
layer 12	f _{pe} =		172.7 ksi
layer 13	f _{pe} =		172.7 ksi
layer 14	f _{pe} =		172.7 ksi
check prestressing stress limit at service limit state:	fpe ≤ 0.8*	fpy	
layer 1	=	205.4 ksi	
layer 2	=	205.4 ksi	
I		005.41.1	

layer 3

layer 4

layer 5

layer 6

layer 7

layer 8

layer 9

layer 10

layer 11

layer 12

layer 13

layer 14

=

=

=

=

=

=

=

=

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi 205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

ок
oĸ
ок
oĸ
oĸ
ок
oĸ
oĸ
oĸ
ок
oĸ
ок
ок
ок

force	ner	strand	= f.	.*sti	rand	area

		at midspan	at endspan
layer 1	=	14.6 kips	14.7 kips
layer 2	=	14.6 kips	14.7 kips
layer 3	=	14.6 kips	14.7 kips
layer 4	=	14.6 kips	14.7 kips
layer 5	=	14.6 kips	14.7 kips
layer 6	=	14.6 kips	
layer 7	=	14.6 kips	
layer 8	=	14.6 kips	
layer 9	=	14.6 kips	14.7 kips
layer 10	=		14.7 kips
layer 11	=		14.7 kips
layer 12	=		14.7 kips
layer 13	=		14.7 kips
layer 14	=		14.7 kips
		at midspan	at endspan
II losses	Pne =	935.9 kips	939.2 kips

Total prestressing force after all losses P_{pe} =

Final losses,	% = (Δf_{DT})/(f_{Di})
---------------	-------	--------------------------------

layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer		
STRESS LIMITS FOR CO	ONCRET	Έ
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	II	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	I	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	ı	15.30 in
Eccentricity of the strand group at transfer length:	e _h =	21.36 in
Eccentricity at end of beam:	e =	21.30 in

Calcs for eccentricity (see 9.6.7.2)

οк ок

$$f_{s} = \frac{P_{i}}{A} - \frac{P_{i}s}{S_{i}} + \frac{M_{g}}{S_{i}}$$

$$f_{\phi} = \frac{P_{i}}{A} + \frac{P_{i}s}{S_{\phi}} - \frac{M_{g}}{S_{\phi}}$$

$$f_b = \frac{P_t}{A} + \frac{P_t s}{S_b} - \frac{M_s}{S_b}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	$f_b =$	2.906 ksi	2.906 ksi

STRESSES AT	T HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi	
Bottom stress at bottom fiber of the beam	$f_b =$	2.736 ksi	2.621 ksi	
STRESSES A	AT MIDS	PAN	_	
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.320 ksi	0.345 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	
HOLD DOWN FOR	0=0			

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	II	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	II	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	II	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
Ψ =	7.2 °
	= = = = = = = = = = = = = = = = = = = =

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	II	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	II	2.5 kips/strand
layer 9	II	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	II	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.800 ksi
Due to permanent and transient loads for le	oad combi	nation Service I
for the precast beam	=	4.200 ksi

2.400 ksi

Tension:

Load Combination Service III

for the precast beam -0.016 ksi

for deck =

STRESSES AT MIDS	PAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{i} = \frac{P_{po}}{A} - \frac{P_{po}s}{S_{s}} + \frac{(M_{s} + M_{s})}{S_{s}} + \frac{(M_{s} + M_{s})}{S_{s}}$	$\frac{M_{\infty}+M_{\bullet})}{S_{n}}$		
Due to permanent loads $f_{tg} =$	2.105 ksi	2.102 ksi	
$f_{tg} = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}e}{S_{\tau}} + \frac{(M_{g} + M_{s})}{S_{\tau}} + \frac{(M_{wu} + M_{s})}{S_{tg}}$	$\frac{+M_{\bullet})}{s} + \frac{(M_{IE+1})}{S_{te}}$		
Due to permanent loads and transient loads ftg =	2.508 ksi	2.505 ksi	
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{us} + M_s)}{S_{tr}}$	<u>.)</u>		
Due to permanent loads f _{tc} =	0.042 ksi	0.042 ksi	
$f_{ss} = \frac{(M_{us} + M_{s} + M_{L})}{S_{ss}}$	_{(Z+1})		
Due to permanent loads and transient loads f _{tc} =	0.488 ksi	0.488 ksi	(
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ig} = \frac{P_{gg}}{A} + \frac{P_{gg}\theta}{S_{g}} - \frac{(M_{g} + M_{s})}{S_{g}} - \frac{(M_{uo} + M_{s})}{S_{g}}$	$M_b + 0.8*M_{II+1}$) S_{Lc}		
Load Combination Service III f _b =	-0.792 ksi	-0.781 ksi	

Strength Limit State

POSITIVE MOMENT SI	ECTION	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips
effective length factor for compression members		•
layer 1	k =	0.27
layer 2	k =	0.27
layer 3	k =	0.27
layer 4	k =	0.27
layer 5	k =	0.27
layer 6	k =	0.27
layer 7	k =	0.27
layer 8	k =	0.27
layer 9	k =	0.27
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	C =	4.6 ft-kips

	prestressing	

layer 1	$f_{ps} =$	279.4 ksi
layer 2	$f_{ps} =$	279.4 ksi
layer 3	$f_{ps} =$	279.4 ksi
layer 4	$f_{ps} =$	279.4 ksi
layer 5	$f_{ps} =$	279.4 ksi
layer 6	f _{ps} =	279.4 ksi
layer 7	f _{ps} =	279.4 ksi
layer 8	$f_{ps} =$	279.4 ksi
layer 9	$f_{ps} =$	279.4 ksi
layer 10	$f_{ps} =$	279.4 ksi
layer 11	f _{ps} =	279.4 ksi
layer 12	$f_{ps} =$	279.4 ksi
layer 13	$f_{ps} =$	279.4 ksi
layer 14	f _{ps} =	279.4 ksi

nominal flexure resistance

$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	9196.5 ft-kips	ок
	a =	3.92 in	

NEGATIVE MOMENT SECTION

$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-4837.2 ft-kips	
	a =	0.20 in	
	$\Phi M_n =$	5099.1 ft-kips	

ок

Shear Design

CRITICAL SECTION AT 0.59

$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips

 $\begin{array}{ccc} \text{max shear} & V_{\text{u}} = & 405.0 \text{ kips} \\ \text{max moment} & M_{\text{u}} = & 2877.0 \text{ ft-kips} \\ \text{Shear depth} & d_{\text{v}} = & 73.19 \text{ in} \\ \text{Applied factored normal force at the section} & N_{\text{u}} = & 0 \\ \text{Angle of diagonal compressive stresses} & \theta = & 36.00 \,^{\circ} \end{array}$

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{\frac{M_a}{d_\tau} + 0.5N_a + 0.5V_a \cot \theta - A_{pe}f_{pe}}{\frac{d_\tau}{B.A. + B.A.}} \le 0.002$

resultant compressive stress at centroid effective stress in prestressing strand after all losse

	at midspan	at endspan
f _{pc} =	0.909 ksi	0.911 ksi

all losses			
layer 1	f _{po} =	176.7 ksi	177.3 ksi
layer 2	$f_{po} =$	176.7 ksi	177.3 ksi
layer 3	f _{po} =	176.7 ksi	177.3 ksi
layer 4	f _{po} =	176.7 ksi	177.3 ksi
layer 5	f _{po} =	176.7 ksi	
layer 6	$f_{po} =$	176.7 ksi	
layer 7	$f_{po} =$	176.7 ksi	
layer 8	f _{po} =	176.7 ksi	
layer 9	f _{po} =		177.3 ksi
layer 10	$f_{po} =$		177.3 ksi
layer 11	$f_{po} =$		177.3 ksi
layer 12	f _{po} =		177.3 ksi
layer 13	f _{po} =		177.3 ksi
layer 14	f _{po} =		177.3 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\epsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_{\rm g} =$ -1.44 in $\Delta_{\rm s} =$ -1.95 in	$\Delta_g =$	-1.49 in
$\Delta_{\rm s}$ = -1.95 in	$\Delta_g =$	-1.44 in
	$\Delta_s =$	-1.95 in

at midspan

3.27 in

Deflection due to total self weight

 $\Delta_{\rm sw} = -0.11 \, \text{in}$

 $\Delta_p =$

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	1.81 in
Δ =	3.24 in	3.27 in

Live load deflection limit = span/800 Deflection due to live load and impact = 1.80 in $\Delta_L =$ -0.83 in

Deflection due to fire truck

 $\Delta_L = -0.7520 \text{ in}$ $\Delta = 2.4129 \text{ in}$

Total Deflection after fire with fire truck

ok ok

at endspan

3.29 in

Parametric Design: <u>US Route 7 Case Study</u>

Beam Design: 3/8" Strand
Fire Exposure Status: Damaged


Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	3.09 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE

Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	la 4 (b.atta.ar)	_	C0 00 %F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7 layer 8	T = T =	68.00 °F 68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
Ultimate Strength	layer 14	T =	68.00 °F
intial = 284 k	si layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ſ		
intial = 257 k	* ` '	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	t _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13 layer 14	f _{py} =	257 ksi 257 ksi
Stress Limits:	layer 14	f _{py} =	257 KSI
before transfer ≤ 0.75f _p	(initial = 213.2)		
- p	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	$f_{pi} =$	213.2 ksi
	layer 10	$f_{pi} =$	213.2 ksi
	layer 11	$f_{pi} =$	213.2 ksi
	layer 12	$f_{pi} =$	213.2 ksi
	layer 13	$f_{pi} =$	213.2 ksi
	layer 14	$f_{pi} =$	213.2 ksi
	•		

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

- / — тото ру (,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	$f_{pe} =$	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	$f_{pe} =$	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
laver 14	E =	25898.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	51.6 ksi	1193.00 °F

Modulus of Elasticity

ayer 1 (Bottom)	E =	29000.0 ksi
Layer 2 (Top)	E =	29000.0 ksi

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2
Layer 2 (Top)		

Area of steel at midspan (effective flange)

Area of steel at endspan (effective flange)

Area of steel at endspan (effective flange)

As= 12.6 in^2

Area of temperature and shrinkage steel (12" width)

As= 0.2 in^2

Cross-sectional Properties

NON-COMPOSITE	BEAM

NON-COM COTTE BEAM		
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l =	539,947 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in
Distance from centroid to extreme top fiber	y _t =	35.4 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3370 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	5072 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6644
Transformed flange width	=	73.7 in
Transformed flange area	II	553.1 in^2
Transformed haunch width	=	27.9 in
Transformed haunch area	=	14.0 in^2
Deck-distance to top fiber	$y_t =$	4.82 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	205,498 in^4	539,947 in^4	745,445 in^4
Haunch	14.0 in^2	72.25 in	1,008.1 in^3	5,187 in^4	0.29 in^4	5,188 in^4
Deck	553.1 in^2	75.18 in	41,583.1 in^3	272,881 in^4	1,499 in^4	274,380 in^4
Total	1334.1 in^2		70.663.4 in^3			1.025.013 in^4

Total area of Composite Section	A _c =	1334 in^2
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	1,025,013 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	52.97 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	19.03 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	27.03 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,351.4 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	53,858.5 in^3
Section modulus for the extreme top fiber slab	$S_{tc} =$	57,072.6 in^3

COMPOSITE BEAM AT ENDSPAN

70 mm	,,	
Effective Flange Width	$b_f =$	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6644
Transformed flange width	=	70.8 in
Transformed flange area	=	531.2 in^2
Transformed haunch width	=	27.9 in
Transformed haunch area	=	14.0 in^2
Deck-distance to top fiber	y _{td} =	5.11 in

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	253,530 in^4	539,947 in^4	793,477 in^4
Haunch	14.0 in^2	72.25 in	1,008.1 in^3	4,612 in^4	0.29 in^4	4,612 in^4
Deck	531.2 in^2	77.61 in	41,225.5 in^3	175,583 in^4	1,049 in^4	176,632 in^4
Total	1312.1 in^2		70,305.8 in^3			974,722 in^4

Total area of Composite Section	A _c =	1312 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	974,722 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.58 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.42 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.42 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	18,191.6 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	52,919.3 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	36,894.7 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight	w _{beam} =	0.799 k/f
8 in. deck weight	W _{deck} =	1.200 k/f
1/2 in. haunch weight	W _{haunch} =	0.022 k/f
·		

LRFD Specifications: Art. 4.6.2.2.1			
·			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	ОК	
Cross-section of the bridge is consistent with one of the cross		ок	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
LRFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four $N_b =$	4	ОК
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.5051
Longitudinal stiffness parameter	K _g =	2,627,577.61 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_{J}}{12*L*t_{J}^{3}}\right)^{0}$$

DFM = 0.915 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_g}{12*L*t_j^3}\right)^{0.1}$$

DFM = 0.621 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

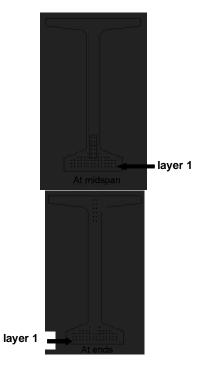
0.905 Controls

1.082 Controls

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
Harped Stra	and Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in
e _c =	31.16 in


Prestress Losses

ELASTIC SHORTENING

assumed loss = 6.00%

Force per strand at transfer

layer 1	=	17.0 kips		
layer 2	=	17.0 kips		
layer 3	=	17.0 kips		
layer 4	II	17.0 kips		
layer 5	=	17.0 kips		
layer 6	=	= 17.0 kips		
layer 7	=	17.0 kips		
layer 8	=	17.0 kips		
layer 9	=	17.0 kips		
layer 10	=	17.0 kips		
layer 11	=	17.0 kips		
layer 12	=	17.0 kips		
layer 13	=	17.0 kips		
layer 14	=	17.0 kips		

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	$f_{cgp} =$	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

SHRINKAGE Shrinkage = (17-0.15*Relative Humidity) assume relative humidity = 70% $\Delta f_{pSR} =$ 6.5 ksi

CREEP OF	CONCRE	ETE	
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.592 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	17.8 ksi	16.5 ksi

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$		2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

$_{\rm S} = \Delta I_{\rm pi}$			
ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer	1 f _{pt} =	199.3 ksi	199.9 ksi
layer	2 f _{pt} =	199.3 ksi	199.9 ksi
layer	3 f _{pt} =	199.3 ksi	199.9 ksi
layer	4 f _{pt} =	199.3 ksi	199.9 ksi
layer	5 f _{pt} =	199.3 ksi	199.9 ksi
layer	6 f _{pt} =	199.3 ksi	
layer	7 f _{pt} =	199.3 ksi	
layer	8 f _{pt} =	199.3 ksi	
layer	9 f _{pt} =	199.3 ksi	199.9 ksi
layer 1	0 f _{pt} =		199.9 ksi
layer 1	1 f _{pt} =		199.9 ksi
layer 1	2 f _{pt} =		199.9 ksi
layer 1	3 f _{pt} =		199.9 ksi
layer 1	4 f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer	1 =	16.9 kips	17.0 kips
layer	2 =	16.9 kips	17.0 kips
layer	3 =	16.9 kips	17.0 kips
layer	4 =	16.9 kips	17.0 kips
layer	5 =	16.9 kips	17.0 kips
layer	6 =	16.9 kips	
layer	7 =	16.9 kips	
layer	8 =	16.9 kips	
layer	9 =	16.9 kips	17.0 kips
layer 1	0 =		17.0 kips
layer 1	1 =		17.0 kips
layer 1	2 =		17.0 kips
layer 1	3 =		17.0 kips
layer 1	4 =		17.0 kips
Total prestressing force after transfe	er P _i =	1047.8 kips	1054.0 kips

force per strand = f_{pt} *strand area

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

c)	k
c)	K
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	K
c)	k
		0000000000000

TOTAL LOSSES AT SERVICE LOADS					
Total Losses		at midspan	at endspan		
laye	r 1 $\Delta f_{pT} =$	41.1 ksi	40.5 ksi		
laye	r 2 Δf _{pT} =	41.1 ksi	40.5 ksi		
laye	r 3 Δf _{pT} =	41.1 ksi	40.5 ksi		
laye	r 4 Δf _{pT} =	41.1 ksi	40.5 ksi		
laye	r 5 Δf _{pT} =	41.1 ksi	40.5 ksi		
laye	r 6 Δf _{pT} =	41.1 ksi			
laye	r 7 Δf _{pT} =	41.1 ksi			
laye	r 8 Δf _{pT} =	41.1 ksi			
laye	r 9 Δf _{pT} =	41.1 ksi	40.5 ksi		
layer	10 $\Delta f_{pT} =$		40.5 ksi		
layer	11 $\Delta f_{pT} =$		40.5 ksi		
layer	12 $\Delta f_{pT} =$		40.5 ksi		
layer	13 $\Delta f_{pT} =$		40.5 ksi		
layer	14 $\Delta f_{pT} =$		40.5 ksi		
Stress in tendon after all losses = f _{pi} -∆f _{pt}		at midspan	at endspan		
laye	r 1 f _{pe} =	172.1 ksi	172.7 ksi		
laye	r 2 f _{pe} =	172.1 ksi	172.7 ksi		
laye	r 3 f _{pe} =	172.1 ksi	172.7 ksi		
laye	r 4 f _{pe} =	172.1 ksi	172.7 ksi		
laye	r 5 f _{pe} =	172.1 ksi	172.7 ksi		
laye	r 6 f _{pe} =	172.1 ksi			
laye	r 7 f _{pe} =	172.1 ksi			
laye	r 8 f _{pe} =	172.1 ksi			
laye	r 9 f _{pe} =	172.1 ksi	172.7 ksi		
layer	10 f _{pe} =		172.7 ksi		
layer	11 f _{pe} =		172.7 ksi		
layer	12 f _{pe} =		172.7 ksi		
layer	13 f _{pe} =		172.7 ksi		
layer			172.7 ksi		
check prestressing stress limit at service limit stat	e: fpe ≤ 0.8*	fpy	·		
laye	r 1 =	205.4 ksi			
laye	r 2 =	205.4 ksi			

check prestressing stress limit at service limit state	: fpe ≤ 0.8*fpy
--	-----------------

layer 1	II	205.4 ksi
layer 2	=	205.4 ksi
layer 3	=	205.4 ksi
layer 4	=	205.4 ksi
layer 5	=	205.4 ksi
layer 6	=	205.4 ksi
layer 7	=	205.4 ksi
layer 8	=	205.4 ksi
layer 9	=	205.4 ksi
layer 10	=	205.4 ksi
layer 11	=	205.4 ksi
layer 12	=	205.4 ksi
layer 13	=	205.4 ksi
layer 14	=	205.4 ksi

ок
ок
ок
ок
ок
ок
ок
ок
ок
ок
ок
ок
OK
ок

force	ner	strand	= f.	.*sti	rand	area

		at midspan	at endspan
layer 1	=	14.6 kips	14.7 kips
layer 2	=	14.6 kips	14.7 kips
layer 3	=	14.6 kips	14.7 kips
layer 4	=	14.6 kips	14.7 kips
layer 5	=	14.6 kips	14.7 kips
layer 6	=	14.6 kips	
layer 7	=	14.6 kips	
layer 8	=	14.6 kips	
layer 9	=	14.6 kips	14.7 kips
layer 10	=		14.7 kips
layer 11	=		14.7 kips
layer 12	=		14.7 kips
layer 13	=		14.7 kips
layer 14	=		14.7 kips
		at midspan	at endspan
II losses	P.,, =	936.1 kips	939 4 kins

Final los

Total prestressing force after all losses	P _{pe} =	936.1 kips	939.4 kips	
osses, % = $(\Delta f_{pT})/(f_{pi})$				

layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer

STRESS LIMITS FOR CO	ONCRET	E
Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in
Eccentricity of the strand group at transfer length:	e _h =	21.36 in
Eccentricity at end of beam:	e =	21.30 in

Calcs for eccentricity (see 9.6.7.2)

ок ок

4	$-\frac{P_i}{2}$	$P_{i\sigma}$	_ <u>M</u>
J 2	\overline{A}	S,	<u>S,</u>

$$f_{\bullet} = \frac{P_i}{A} + \frac{P_i s}{S_{\bullet}} - \frac{M_s}{S_{\bullet}}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	$f_b =$	2.906 ksi	2.906 ksi

STRESSES AT	T HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi	
STRESSES A	AT MIDS	PAN	_	
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.320 ksi	0.345 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	
HOLD DOWN FOR	0=0			

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	II	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	II	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	II	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
Ψ =	7.2 °
	= = = = = = = = = = = = = = = = = = = =

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	II	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	II	2.5 kips/strand
layer 9	II	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	II	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.391 ksi
Due to permanent and transient loads for loads	oad combi	nation Service I
for the precast beam	=	4.200 ksi

1.854 ksi

Tension:

Load Combination Service III

for deck

for the precast beam -0.016 ksi

STRESSES AT MID	SPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{i} = \frac{P_{yo}}{A} - \frac{P_{yo}s}{S_{z}} + \frac{(M_{x} + M_{z})}{S_{z}} +$	$\frac{(M_{\infty}+M_{*})}{S_{\pi}}$		
Due to permanent loads $f_{tg} =$	2.111 ksi	2.108 ksi	
$f_{ij} = \frac{P_{po}}{A} - \frac{P_{po}P}{S_{r}} + \frac{(M_{s} + M_{s})}{S_{r}} + \frac{(M_{w})}{S_{r}}$	$\frac{(M_{E}, M_{\bullet})}{S_{te}} + \frac{(M_{EE,1})}{S_{te}}$		
Due to permanent loads and transient loads f _{tg} =	2.582 ksi	2.580 ksi	
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{to} + \Lambda)}{S_{tr}}$	<u>(1,)</u>		
Due to permanent loads $f_{tc} =$	0.042 ksi	0.042 ksi	
$f_{as} = \frac{(M_{us} + M_{s} + M_{s} + h)}{S_{as}}$	I_{LL+1}		
Due to permanent loads and transient loads f _{tc} =	0.487 ksi	0.487 ksi	
ension stresses at top fiber of deck	at midspan	at endspan	
$f_{ij} = \frac{P_{ji}}{A} + \frac{P_{ji}\theta}{S_0} - \frac{(M_g + M_g)}{S_0} - \frac{(M_{uv})}{S_0}$	$+M_{\delta}+0.8*M_{II+1}$) S_{Lc}		
Load Combination Service III f _b =	-0.828 ksi	-0.816 ksi	

Strength Limit State

POSITIVE MOMENT SECTION						
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 8381.5 \text{ ft-kips}$						
effective length factor for compression members		•				
layer 1	k =	0.27				
layer 2	k =	0.27				
layer 3	k =	0.27				
layer 4	k =	0.27				
layer 5	k =	0.27				
layer 6	k =	0.27				
layer 7	k =	0.27				
layer 8	k =	0.27				
layer 9	k =	0.27				
layer 10	k =	0.27				
layer 11	k =	0.27				
layer 12	k =	0.27				
layer 13	k =	0.27				
layer 14	k =	0.27				
	C =	5.9 ft-kips				

	prestressing	

layer 1	f _{ps} =	278.0 ksi
layer 2	$f_{ps} =$	278.0 ksi
layer 3	$f_{ps} =$	278.0 ksi
layer 4	$f_{ps} =$	278.0 ksi
layer 5	$f_{ps} =$	278.0 ksi
layer 6	$f_{ps} =$	278.0 ksi
layer 7	$f_{ps} =$	278.0 ksi
layer 8	$f_{ps} =$	278.0 ksi
layer 9	$f_{ps} =$	278.0 ksi
layer 10	$f_{ps} =$	278.0 ksi
layer 11	$f_{ps} =$	278.0 ksi
layer 12	f _{ps} =	278.0 ksi
layer 13	f _{ps} =	278.0 ksi
layer 14	f _{ps} =	278.0 ksi

5.04 in

ΟK

NOT OK

at endspan

0.941 ksi

177.5 ksi

nominal flexure resistance

$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9080.0 ft-kips
NEGATIVE MOMENT S	SECTION	
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-4837.2 ft-kips
	a =	0.19 in
	$\Phi M_n =$	4504.5 ft-kips

a =

Shear Design

CRITICAL SECTION AT 0.59

$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips

 $\begin{array}{ccc} \text{max shear} & V_{\text{u}} = & 405.0 \text{ kips} \\ \text{max moment} & M_{\text{u}} = & 2877.0 \text{ ft-kips} \\ \text{Shear depth} & d_{\text{v}} = & 73.19 \text{ in} \\ \text{Applied factored normal force at the section} & N_{\text{u}} = & 0 \\ \text{Angle of diagonal compressive stresses} & \theta = & 36.00 \, ^{\circ} \end{array}$

STRAIN IN FLEXURAL TENSION REINFORCMENT

f_{pc} =

 $\epsilon_{z} - \frac{\frac{M_{z}}{d_{y}} + 0.5N_{z} + 0.5V_{z} \cot \theta - A_{pc}f_{pe}}{B_{c}A_{z} + B_{z}A_{pc}} \le 0.002$

resultant compressive stress at centroid effective stress in prestressing strand after all losses

111 105565			
layer 1	f _{po} =	176.9 ksi	177.5 ksi
layer 2	$f_{po} =$	176.9 ksi	177.5 ksi
layer 3	f _{po} =	176.9 ksi	177.5 ksi
layer 4	f _{po} =	176.9 ksi	177.5 ksi
layer 5	f _{po} =	176.9 ksi	
layer 6	$f_{po} =$	176.9 ksi	
layer 7	$f_{po} =$	176.9 ksi	
layer 8	f _{po} =	176.9 ksi	
layer 9	f _{po} =		177.5 ksi
layer 10	$f_{po} =$		177.5 ksi
layer 11	$f_{po} =$		177.5 ksi
layer 12	f _{po} =		177.5 ksi
layer 13	f _{po} =		177.5 ksi

at midspan

0.938 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\epsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	ε _x =		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_p =$	3.27 111	3.29 111
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

at endspan

at midspan

Deflection due to total self weight

 $\Delta_{\rm sw} = -0.11 \ {\rm in}$

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	1.81 in
Δ =	3.24 in	3.27 in

Live load deflection limit = span/800

Deflection due to live load and impact

Total Deflection after fire with fire truck

= 1.80 in $\Delta_L =$ -0.89 in

Deflection due to fire truck

 $\Delta_L = -0.8003 \text{ in}$ $\Delta = 2.3645 \text{ in}$

ок ок

Parametric Design: Puyallup River Case Study Beam Design: 1/2" Strand Fire Exposure Status: Undamaged

MISSOURI University of Science & Technology

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	-	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	7 ksi		
Unit Weight	w _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L =	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L =	118 ft		
Composite beam @ end spans	L =	110 ft		
Composite beam @ center span	L =	120 ft		
Beam Spacing	S =	12 ft		

PRESTRESSING ST	RANDS	
Diameter of single strand	d =	0.5 in
Area of single strand	A =	0.153 in^2
Temperature of Layer	-	C0 00 0F
layer 1 (bottom) layer 2		68.00 °F 68.00 °F
layer 3		68.00 °F
layer 4		68.00 °F
layer 5	T =	68.00 °F
layer 6		68.00 °F
layer 7		68.00 °F
layer 8 layer 9		68.00 °F 68.00 °F
layer 10		68.00 °F
layer 11		68.00 °F
layer 12		68.00 °F
layer 13		68.00 °F
layer 14	T =	68.00 °F
Ultimate Strength	4 _	277 kg;
intial = 277 ksi layer 1 (bottom)		277 ksi
layer 2		277 ksi
layer 3	F-	277 ksi
layer 4		277 ksi
layer 5		277 ksi
layer 6		277 ksi
layer 7		277 ksi
layer 8		277 ksi
layer 9		277 ksi
layer 10	$f_{pu} =$	277 ksi
layer 11	$f_{pu} =$	277 ksi
layer 12	$f_{pu} =$	277 ksi
layer 13	$f_{pu} =$	277 ksi
layer 14	f _{pu} =	277 ksi
Yield Strength		I
intial = 250 ksi layer 1 (bottom)		250 ksi
layer 2	F)	250 ksi
layer 3	$f_{py} =$	250 ksi
layer 4		250 ksi
layer 5	$f_{py} =$	250 ksi
layer 6	$f_{py} =$	250 ksi
layer 7	f _{py} =	250 ksi
layer 8	$f_{py} =$	250 ksi
layer 9	$f_{py} =$	250 ksi
layer 10	$f_{py} =$	250 ksi
layer 11	f _{py} =	250 ksi
layer 12	f _{py} =	250 ksi
layer 13	f _{py} =	250 ksi
layer 14	f _{py} =	250 ksi
Stress Limits:		
before transfer $\leq 0.75f_{pu}$ (initial = 202.5)		
layer 1 (bottom)	$f_{pi} =$	207.6 ksi
layer 2	f _{pi} =	207.6 ksi
layer 3	f _{pi} =	207.6 ksi
layer 4		207.6 ksi
layer 5	f _{pi} =	207.6 ksi
layer 6		207.6 ksi
layer 7		207.6 ksi
layer 8		207.6 ksi
layer 9	P.	207.6 ksi
layer 10		207.6 ksi
layer 11		207.6 ksi
		207.6 ksi
laver 12	- hi	
layer 12 layer 13	f _n :=	207.6 ksi
layer 12 layer 13 layer 14		207.6 ksi 207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

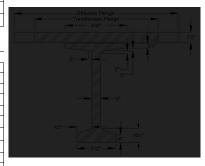
	,	
layer 1 (bottom)	f _{pe} =	199.7 ksi
layer 2	f _{pe} =	199.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

(Si

layer

1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{c+} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	I=	527,217 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in			
Distance from centroid to extreme top fiber	$y_t =$	35.4 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3834 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	5072 ksi			

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.7559 Transformed flange width 83.9 in = Transformed flange area 629.3 in^2 Transformed haunch width Transformed haunch area 15.9 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	Į	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	527,217 in^4	777,660 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3			1.078.585 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,078,585 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,729.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,237.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	56,329.7 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant ОК Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК 1.5 Curvature in plans is less than 4°= OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	K _a =	2,292,589.53 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{6.6} + \left(\frac{S}{L_{\star}}\right)^{0.2} + \left(\frac{K_{\rm g}}{12 * L^{2} t_{\star}^{2}}\right)^{0.1}$$

DFM = 0.904 lanes/beam

one design lane loaded:

$$DPM = 0.75 + \left(\frac{N}{14}\right)^{64} * \left(\frac{N}{L}\right)^{03} * \left(\frac{K_g}{12*L*E_g^3}\right)^{0.1}$$

DFM = 0.613 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

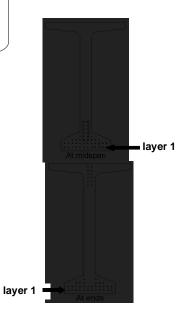
DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 : \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan	At Ends		
from bottom	om bottom No. of Distan		No. of	Distance from Bottom	
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	=	
layer 6	2	12	-	-	
layer 7	2	14	-	=	
layer 8	2	16	-	-	
layer 9	-	-	- 2 6		
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2 70		
Harped Stra	nd Group (ir	ncluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			


distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

0.905 Controls

1.082 Controls

NING		_	
=	9.00%		
=			
=			
=			
=	28.9 kips		
		·	_
	at midspan	at endspan	
$P_i =$	1271.6 kips	1271.6 kips	
f _{cgp} =	2.969 ksi	2.969 ksi	
	at midspan	at endspan	
$\Delta f_{pES} =$	17.2 ksi	17.2 ksi	
$\Delta f_{pES} =$	17.2 ksi	17.2 ksi	
$\Delta f_{pES} =$	17.2 ksi	17.2 ksi	
$\Delta f_{pES} =$	17.2 ksi	17.2 ksi	
$\Delta f_{pES} =$	17.2 ksi		
$\Delta f_{pES} =$	17.2 ksi		
$\Delta f_{pES} =$	17.2 ksi		
$\Delta f_{pES} =$	17.2 ksi		
$\Delta f_{pES} =$		17.2 ksi	
$\Delta f_{pES} =$		17.2 ksi	
$\Delta f_{pES} =$		17.2 ksi	
$\Delta f_{pES} =$		17.2 ksi	
$\Delta f_{pES} =$		17.2 ksi	
$\Delta f_{pES} =$		17.2 ksi	_
KAGE			=
-	6.5 kei		assume relative humidity = 70%
psk	0.0 101		accume relative numberly = 70%
CONCRE	TF		_
CONCRE	.16		_
Δf _{cdp} =	1.599 ksi		_
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	=	

RETE	ΓΕ	
:	1.599 ksi	
	at midspan	at endspan
=	24.4 ksi	24.4 ksi
SINC	IG STRANDS	
	at midspan	at endspan

RELAXATION OF PRESTRESSING STRANDS				
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 5	$\Delta f_{pR2} =$	2.1 ksi	
	layer 6	$\Delta f_{pR2} =$	2.1 ksi	
	layer 7	$\Delta f_{pR2} =$	2.1 ksi	
	layer 8	$\Delta f_{pR2} =$	2.1 ksi	
	layer 9	$\Delta f_{pR2} =$		2.1 ksi
	layer 10	$\Delta f_{pR2} =$		2.1 ksi
	layer 11	$\Delta f_{pR2} =$		2.1 ksi
	layer 12	$\Delta f_{pR2} =$		2.1 ksi
	layer 13	$\Delta f_{pR2} =$		2.1 ksi
	layer 14	$\Delta f_{pR2} =$		2.1 ksi

TOTAL LOSSES AT TRANSFER

stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endsp
layer 1	f _{pt} =	190.4 ksi	190.4 ks
layer 2	$f_{pt} =$	190.4 ksi	190.4 ks
layer 3	f _{pt} =	190.4 ksi	190.4 ks
layer 4	f _{pt} =	190.4 ksi	190.4 ks
layer 5	$f_{pt} =$	190.4 ksi	
layer 6	f _{pt} =	190.4 ksi	
layer 7	f _{pt} =	190.4 ksi	
layer 8	f _{pt} =	190.4 ksi	
layer 9	f _{pt} =		190.4 k
layer 10	f _{pt} =		190.4 k
layer 11	f _{pt} =		190.4 k
layer 12	f _{pt} =		190.4 k
layer 13	f _{pt} =		190.4 k
layer 14	$f_{pt} =$		190.4 ks
force per strand = f _{pt} *strand area		at midspan	at endsp
layer 1	=	29.1 kips	29.1 kip
layer 2	=	29.1 kips	29.1 kip
layer 3	=	29.1 kips	29.1 kip
layer 4	=	29.1 kips	29.1 kip
layer 5	=	29.1 kips	
layer 6	=	29.1 kips	
layer 7	=	29.1 kips	
layer 8	=	29.1 kips	00.41:
layer 9	=		29.1 kip
layer 10	=		29.1 kip
layer 11	=		29.1 kip
layer 12	=		29.1 kip
layer 13	=		29.1 kip
layer 14	= P _i =	1200 4 kina	29.1 kip
Total prestressing force after transfer Initial loss = $(\Delta f_{\text{pi}})/(f_{\text{pi}})$	r _i =	1280.4 kips at midspan	1280.4 ki
layer 1	% =	·	
layer 2	% = % =	8.3% 8.3%	8.3% 8.3%
· · · · · · · · · · · · · · · · · · ·			
layer 3 layer 4	% = % =	8.3% 8.3%	8.3% 8.3%
layer 5		8.3%	0.3%
layer 6	% = % =	8.3%	
layer 7	% =	8.3%	1
layer 8	% = % =	8.3%	+
layer 9	% = % =	0.370	8.3%
layer 10	% =		8.3%
layer 11	% = % =		8.3%
layer 12	% = % =		8.3%
layer 13	% =		8.3%
layer 14	% = % =		8.3%
layer 14			0.076
TOTAL LOSSES AT	SFRVI	CELOADS	

Total	Losses

		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	50.2 ksi	50.2 ksi
layer 2	$\Delta f_{pT} =$	50.2 ksi	50.2 ksi
layer 3	$\Delta f_{pT} =$	50.2 ksi	50.2 ksi
layer 4	$\Delta f_{pT} =$	50.2 ksi	50.2 ksi
layer 5	$\Delta f_{pT} =$	50.2 ksi	
layer 6	$\Delta f_{pT} =$	50.2 ksi	
layer 7	$\Delta f_{pT} =$	50.2 ksi	
layer 8	$\Delta f_{pT} =$	50.2 ksi	
layer 9	$\Delta f_{pT} =$		50.2 ksi
layer 10	$\Delta f_{pT} =$		50.2 ksi
layer 11	$\Delta f_{pT} =$		50.2 ksi
layer 12	$\Delta f_{pT} =$		50.2 ksi
layer 13	$\Delta f_{pT} =$		50.2 ksi
layer 14	$\Delta f_{pT} =$		50.2 ksi

OK OK OK OK

OK OK ок ок OK OK ок OK OK

Stress	in	tendon	after	all	losses	=	f _{ni} -Δf _{nt}
--------	----	--------	-------	-----	--------	---	-----------------------------------

		at midspan	at endspan
layer 1	f _{pe} =	157.4 ksi	157.4 ksi
layer 2	f _{pe} =	157.4 ksi	157.4 ksi
layer 3	$f_{pe} =$	157.4 ksi	157.4 ksi
layer 4	$f_{pe} =$	157.4 ksi	157.4 ksi
layer 5	f _{pe} =	157.4 ksi	
layer 6	f _{pe} =	157.4 ksi	
layer 7	f _{pe} =	157.4 ksi	
layer 8	f _{pe} =	157.4 ksi	
layer 9	$f_{pe} =$		157.4 ksi
layer 10	f _{pe} =		157.4 ksi
layer 11	f _{pe} =		157.4 ksi
layer 12	f _{pe} =		157.4 ksi
layer 13	f _{pe} =	·	157.4 ksi
layer 14	f _{pe} =		157.4 ksi

check prestressing stress limit at service limit state: fpe ≤ 0.8*fpy

layer 1	=	199.7 ksi
layer 2	=	199.7 ksi
layer 3	=	199.7 ksi
layer 4	=	199.7 ksi
layer 5	=	199.7 ksi
layer 6	=	199.7 ksi
layer 7	=	199.7 ksi
layer 8	=	199.7 ksi
layer 9	=	199.7 ksi
layer 10	=	199.7 ksi
layer 11	=	199.7 ksi
layer 12	=	199.7 ksi
layer 13	=	199.7 ksi
layer 14	=	199.7 ksi

ок ок ок ок ок οĸ οк ок ок ок οĸ ок οк οк

force per strand = f_{pe} *strand area

		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
all losses	P _{pe} =	1059.8 kips	1059.8 kips

",			
layer 1	% =	24.2%	24.2%
layer 2	% =	24.2%	24.2%
layer 3	% =	24.2%	24.2%
layer 4	% =	24.2%	24.2%
layer 5	% =	24.2%	
layer 6	% =	24.2%	
layer 7	% =	24.2%	
layer 8	% =	24.2%	
layer 9	% =		24.2%
layer 10	% =		24.2%
layer 11	% =		24.2%
layer 12	% =		24.2%
layer 13	% =		24.2%
layer 14	% =		24.2%
Average final losses, %	% =	24.2%	24.2%

Stresses at Transfer

ooco at manorer						
STRESS LIMITS FOR CONCRETE						
Compression = 0.6f'ci	f _{ci} =	3.300 ksi				
Tension						
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi				
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi				

STRESSES AT TRANSFER LENGTH SECTION					
Transfer Length = 60*(strand diameter)	=	2.5 ft			
Bending moment at transfer length	$M_g =$	116.4 ft-kips			
center of 12 strands to top fiber of beam at the end	=	7.00 in			
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in			
center of 12 strands and top fiber of beam at transfer length	=	10.78 in			
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in			
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in			
center of gravity of all strands and the bottom fiber of beam at the end	II	20.55 in			
Eccentricity of the strand group at transfer length:	e _h =	17.09 in			
Eccentricity at end of beam:	e =	16.05 in			

Calcs for eccentricity (see 9.6.7.2)

ок

οĸ

$f_t = \frac{P_i}{A} - \frac{P_i \varepsilon}{S_t} + \frac{M_g}{S_t}$	f,	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_o}-\frac{M_g}{S_o}$	
		at midspan	at endspan
Top stress at top fiber of beam	f _t =	0.341 ksi	0.341 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi

STRESSES AT	Γ HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.038 ksi	0.038 ksi	OK
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi	ок
STRESSES A	AT MIDS	PAN	_	
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.214 ksi	OK
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.174 ksi	OK
HOLD-DOWN FOR	CES			

assume stress in strand before losses = 0.8f_u

=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
ı	221.4 ksi
=	221.4 ksi
=	221.4 ksi
ı	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
	= = = = = = = = = = = = = = = = = = = =

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
rp Angle	Ψ =	7.2 °

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips
•		•

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam = 4.200 ksi			
for deck	_	2 400 ksi	

Tension:

Load Combination Service III for the precast beam = -0.016 ksi

STRESSES AT MIC	SPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_1 = \frac{P_{ys}}{A} - \frac{P_{ys}e}{S_1} + \frac{(M_y + M_s)}{S_t} +$	$\frac{(M_{yy} + M_{\phi})}{S_{yy}}$		
Due to permanent loads $f_{tg} =$	2.042 ksi	2.042 ksi	
$f_{ty} = \frac{P_{tt}}{A} - \frac{P_{tt}e}{S_{s}} + \frac{(M_{tt} + M_{s})}{S_{s}} + \frac{(M_{tt})}{S_{s}}$	$-M_b$) (M_{R+1})		
$J_{tx} = \frac{1}{A} - \frac{1}{S_z} + \frac{1}{S_z} + \frac{1}{S_z}$	S _e 7 .S _{ee}		
Due to permanent loads and transient loads $f_{tq} =$	2.450 ksi	2.450 ksi	(
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{to} = \frac{(M_{ys} + M_{to})}{S_{to}}$	<u> 1 ₈)</u>		
Due to permanent loads $f_{tc} =$	0.043 ksi	0.043 ksi	(
$f_{tr} = \frac{(M_{wt} + M_{b} + M_{b})}{S_{tr}}$	f _{EE+1})		
Due to permanent loads and transient loads $f_{tc} =$	0.493 ksi	0.493 ksi	
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ij} = \frac{P_{jii}}{A} + \frac{P_{jii}\sigma}{Z_{ij}} - \frac{(M_{I} + M_{S})}{S_{ij}} - \frac{(M_{vi})}{2}$	$+M_b + 0.8*M_{U+1}$		
\mathcal{L} \mathcal{L} $\mathcal{L}_{\mathfrak{p}}$ $\mathcal{L}_{\mathfrak{p}}$	S' _{kr}		
Load Combination Service III f _b =	-0.413 ksi	-0.413 ksi	

enath I imit St Str

POSITIVE MOMENT S	ECTION		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members		<u> </u>	
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	
	c =	5.7 ft-kips	
overage stress in prestressing steel			
layer 1	f _{ps} =	270.9 ksi	
layer 2	f _{ps} =	270.9 ksi	
layer 3	f _{ps} =	270.9 ksi	
layer 4	f _{ps} =	270.9 ksi	
layer 5	f _{ps} =	270.9 ksi	
layer 6	f _{ps} =	270.9 ksi	
layer 7	f _{ps} =	270.9 ksi	
layer 8	f _{ps} =	270.9 ksi	
layer 9	f _{ps} =	270.9 ksi	
layer 10	f _{ps} =	270.9 ksi	
layer 11	f _{ps} =	270.9 ksi	
layer 12	f _{ps} =	270.9 ksi	
layer 13	f _{ps} =	270.9 ksi	
layer 14	f _{ps} =	270.9 ksi	
nominal flexure resistance			
	a =	4.87 in	
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	10902.9 ft-kips	OI
M=DC+W+LL+IM	M =	5833.6 ft-kips	Ol
NEGATIVE MOMENT S	ECTION	<u> </u>	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	4837.2 ft-kips	
	a =	5.73 in	
	$\Phi M_n =$	4879.0 ft-kips	Ol
M=DC+W+LL+IM	M =	2869.7 ft-kips	Ol
near Design			
CRITICAL SECTION A	AT 0.59		
V _u = 1.25DC+1.5DW+1.75(LL+IM)	$V_u =$	405.0 kips	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	-2684.4 ft-kips	
or			
V _u = 1.25DC+1.5DW+1.75(LL+IM)	$V_u =$	364.8 kips	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	-2877.0 ft-kips	
_			
max shear	$V_u =$	405.0 kips	
max moment	$M_u =$	2877.0 ft-kips	
Shear depth	$d_v =$	73.19 in	
Applied factored normal force at the section	$N_u =$	0	
Angle of diagonal compressive stresses	θ =	36.00 °	

STRAIN IN FLEXURAL TENSION REINFORCIMENT	
$rac{M_g}{d_v} + 0.5N_g + 0.5M_g \cot \theta + A_{p,r} f_{ps}$ $\epsilon_v = rac{d_v}{d_v} + 5.0.002$	
$H_{j}A_{j}+H_{j}A_{j}$	

f_{pc} =

at midspan 0.983 ksi

at endspan 0.983 ksi

resultant compressive stress at centroid

effective stress in prestressing strand after all losses

er all losse	s		
layer 1	f _{po} =	162.5 ksi	162.5 ksi
layer 2	f _{po} =	162.5 ksi	162.5 ksi
layer 3	f _{po} =	162.5 ksi	162.5 ksi
layer 4	f _{po} =	162.5 ksi	162.5 ksi
layer 5	f _{po} =	162.5 ksi	102.0 101
layer 6	f _{po} =	162.5 ksi	
layer 7	f _{po} =	162.5 ksi	
layer 8	f _{po} =	162.5 ksi	
layer 9	f _{po} =	. 52.0 (0)	162.5 ksi
layer 10	f _{po} =		162.5 ksi
layer 11	f _{po} =		162.5 ksi
layer 12	f _{po} =		162.5 ksi
layer 13	f _{po} =		162.5 ksi
layer 14	f _{po} =		162.5 ksi
.,.	ро	at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	ε _x =	0.002000	
layer 7	ε _x =	0.002000	
layer 8	ε _x =	0.002000	
layer 9	ε _x =		0.002000
layer 10	ε _x =		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000

strain in flexural tension

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	4.05 in	4.05 in
$\Delta_g =$	-1.52 in	
$\Delta_g =$	-1.30 in	
$\Delta_s =$	-1.99 in	

0.002000

0.002000

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

Δ =	2.53 in	2.53 in
Δ =	4.88 in	4.88 in

0.75 in

Live load deflection limit = span/800
Deflection due to live load and impact

=	-1.80 in
$\Delta_L =$	-0.80 in

layer 13 $\epsilon_x =$

layer 14 $\epsilon_x =$

 $\Delta_{sw} =$

Deflection due to fire truck

Total Deflection after fire with fire truck

$\Delta_L =$	-1.4796 in
Δ =	3.3248 in

ок ок

Parametric Design: Puyallup River Case Study Beam Design: 1/2" Strand

Fire Exposure Status: 1 Hour

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	-	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	5.02 ksi			
Unit Weight	w _c =	150.0 pcf			
Overall Beam Length:					
@ end spans	L =	110 ft			
@ center span	L =	119 ft			
Design Spans:					
Non-composite beam @ end spans	L =	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L=	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

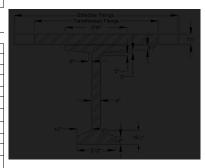
	F	PRESTRESSING STI	RANDS	
	Di	ameter of single strand	d =	0.5 in
		Area of single strand	A =	0.153 in^2
Temperature of	Layer		-	070.00.05
		layer 1 (bottom) layer 2	T =	870.00 °F 150.00 °F
		layer 3	T = T =	68.00 °F
		layer 4	T =	68.00 °F
		layer 5	T =	68.00 °F
		layer 6	T =	68.00 °F
		layer 7	T =	68.00 °F
		layer 8	T =	68.00 °F
		layer 9 layer 10	T = T =	68.00 °F 68.00 °F
		layer 11	T =	68.00 °F
		layer 12	T =	68.00 °F
		layer 13	T =	68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng		I 4 (btt)		040 l:
intial =	277 ksi	layer 1 (bottom)	f _{pu} =	219 ksi
		layer 2	f _{pu} =	274 ksi
		layer 3	f _{pu} =	277 ksi
		layer 4	f _{pu} =	277 ksi
		layer 5	f _{pu} =	277 ksi
		layer 6	f _{pu} =	277 ksi
		layer 7	f _{pu} =	277 ksi
		layer 8	f _{pu} =	277 ksi
		layer 9	f _{pu} =	277 ksi
		layer 10	f _{pu} =	277 ksi
		layer 11	f _{pu} =	277 ksi
		layer 12	f _{pu} =	277 ksi
		layer 13	f _{pu} =	277 ksi
		layer 14	f _{pu} =	277 ksi
Yield Strength	0501			0471
intial =	250 ksi	layer 1 (bottom)	f _{py} =	217 ksi
		layer 2	f _{py} =	247 ksi
		layer 3	f _{py} =	250 ksi
		layer 4	f _{py} =	250 ksi
		layer 5	f _{py} =	250 ksi
		layer 6	f _{py} =	250 ksi
		layer 7	f _{py} =	250 ksi
		layer 8	f _{py} =	250 ksi
		layer 9	f _{py} =	250 ksi
		layer 10	f _{py} =	250 ksi
		layer 11	f _{py} =	250 ksi
		layer 12	f _{py} =	250 ksi
		layer 13	f _{py} =	250 ksi
		layer 14	f _{py} =	250 ksi
Stress Limits:	< 0.7E5 /1.19	Hal 202 E)		
before transfer	≥ U./5f _{pu} (INI			1010::
		layer 1 (bottom)	f _{pi} =	164.0 ksi
		layer 2	f _{pi} =	205.5 ksi
		layer 3	f _{pi} =	207.6 ksi
		layer 4	f _{pi} =	207.6 ksi
		layer 5	f _{pi} =	207.6 ksi
		layer 6	f _{pi} =	207.6 ksi
		layer 7	f _{pi} =	207.6 ksi
		layer 8	f _{pi} =	207.6 ksi
		layer 9	f _{pi} =	207.6 ksi
		layer 10	f _{pi} =	207.6 ksi
		layer 11	$f_{pi} =$	207.6 ksi
		layer 12	$f_{pi} =$	207.6 ksi
		layer 13	$f_{pi} =$	207.6 ksi
		layer 14	$f_{pi} =$	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, 64		
layer 1 (bottom)	f _{pe} =	173.7 ksi
layer 2	f _{pe} =	197.7 ksi
layer 3	f _{pe} =	199.7 ksi
layer 4	f _{pe} =	199.7 ksi
layer 5	f _{pe} =	199.7 ksi
layer 6	f _{pe} =	199.7 ksi
layer 7	f _{pe} =	199.7 ksi
layer 8	f _{pe} =	199.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	$f_{pe} =$	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

layer 1 (bottom)	E =	26241.8 ksi
layer 2	E =	27281.1 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
rea of temperature and shrinkage steel (12" width)	Α	0.0 in/2

Cross-sectional Properties

NON-COMPOSITE BEAM					
Area of cross-section of beam	A =	767.0 in^2			
Overall depth of beam	H =	72.0 in			
Moment of Inertia	l =	411,881 in^4			
Distance from centroid to extreme bottom fiber	$y_b =$	38.5 in			
Distance from centroid to extreme top fiber	$y_t =$	33.5 in			
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3			
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3			
Weight	$W_t =$	799.0 plf			
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$					
cast-in-place concrete deck	E _{cs} =	3834 ksi			
precast beam at release	E _{ci} =	4496 ksi			
precast beam at service loads	E _c =	4295 ksi			

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.8926 Transformed flange width 99.1 in = Transformed flange area 743.1 in^2 Transformed haunch width 37.5 in Transformed haunch area 18.7 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	Į	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	38.50 in	29,529.5 in^3	270,012 in^4	411,881 in^4	681,893 in^4
Haunch	18.7 in^2	72.25 in	1,354.4 in^3	4,211 in^4	0.33 in^4	4,211 in^4
Deck	743.1 in^2	76.25 in	56,663.3 in^3	267,912 in^4	2,950 in^4	270,861 in^4
Total	1528.9 in^2		87,547.2 in^3			956,966 in^4

Total area of Composite Section	A _c =	1529 in^2
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	956,966 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	57.26 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	14.74 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	22.74 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	16,711.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	64,934.7 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	47.149.6 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant ОК Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК 1.5 Curvature in plans is less than 4°= OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.1203
Longitudinal stiffness parameter	K _a =	1,812,256.42 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{1.6} * \left(\frac{S^{\times 0.2}}{L}\right)^{0.2} * \left(\frac{K_{\parallel}}{12*L^*L^*}\right)^{0.2}$$

DFM = 0.885 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{N}{14}\right)^{0.4} * \left(\frac{N}{L}\right)^{0.3} * \left(\frac{K_B}{12 * L * E_S^3}\right)^{0.1}$$

DFM = 0.601 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

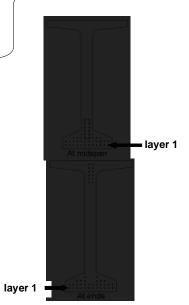
DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 : \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	12	2	12	2
layer 2	12	4	12	4
layer 3	8	6	6	6
layer 4	4	8	2	8
layer 5	2	10	-	=
layer 6	2	12	-	-
layer 7	2	14	-	-
layer 8	2	16	-	-
layer 9	-	-	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
Harped Stra	ınd Group (i	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		


distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.82 in
0 -	22 60 in

0.905 Controls

1.082 Controls

Prestress Losses ELASTIC SHORTEN	IING			
assumed loss	=	9.00%		
Force per strand at transfer			<u></u>	
layer 1	=	22.8 kips		
layer 2	=	28.6 kips		
layer 3	=	28.9 kips		
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6	=	28.9 kips		
layer 7	=	28.9 kips		
layer 8	=	28.9 kips		
layer 9	=	28.9 kips		
layer 10	=	28.9 kips		
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13	=	28.9 kips		
layer 14_	=	28.9 kips		
		at midspan	at endspan	٦
Total prestressing force at release	P _i =	1194.8 kips	1194.8 kips	_
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment.	f _{cgp} =	3.332 ksi	3.332 ksi	=
		at midanan	at and an an	_
Loss due to shortening layer 1	Λf _	at midspan 19.4 ksi	at endspan 19.4 ksi	_
· · · · · · · · · · · · · · · · · · ·	$\Delta f_{pES} = $ $\Delta f_{pES} = $	20.2 ksi	20.2 ksi	-
·	$\Delta f_{pES} =$	19.3 ksi	19.3 ksi	=
	$\Delta f_{pES} =$	19.3 ksi	19.3 ksi	=
· · · · · · · · · · · · · · · · · · ·	$\Delta f_{pES} =$	19.3 ksi	10.0 101	-
	$\Delta f_{pES} =$	19.3 ksi		_
	Δf _{pES} =	19.3 ksi		=
· · · · · · · · · · · · · · · · · · ·	Δf _{pES} =	19.3 ksi		
·	$\Delta f_{pES} =$		19.3 ksi	1
	Δf _{pES} =		19.3 ksi	1
	$\Delta f_{pES} =$		19.3 ksi	
	$\Delta f_{pES} =$		19.3 ksi	
Table	$\Delta f_{pES} =$		19.3 ksi	1
layer 14	$\Delta f_{pES} =$		19.3 ksi	
				=
SHRINI				_
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	─	assume relative humidity =
	ONODET	·F		_
CREEP OF C	ONCKE	E		_
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	2.155 ksi		_
		at midspan	at endspan	
loss due to creep	$\Delta f_{pCR} =$	24.9 ksi	24.9 ksi	
				_
	TRESSIN	IG STRANDS		
RELAXATION OF PRES	TILLOOM			7
loss due to relaxation after transfer		at midspan 1.8 ksi	at endspan 1.8 ksi	

CREEP OF CONCRETE			
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f_{cgp}	$\Delta f_{cdn} =$	2.155 ksi	
		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	24.9 ksi	24.9 ksi

RELAXATION OF PRESTRESSING STRANDS				
loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	1.8 ksi	1.8 ksi
	layer 2	$\Delta f_{pR2} =$	1.7 ksi	1.7 ksi
	layer 3	$\Delta f_{pR2} =$	1.8 ksi	1.8 ksi
	layer 4	$\Delta f_{pR2} =$	1.8 ksi	1.8 ksi
	layer 5	$\Delta f_{pR2} =$	1.8 ksi	
	layer 6	$\Delta f_{pR2} =$	1.8 ksi	
	layer 7	$\Delta f_{pR2} =$	1.8 ksi	
	layer 8	$\Delta f_{pR2} =$	1.8 ksi	
	layer 9	$\Delta f_{pR2} =$		1.8 ksi
	layer 10	$\Delta f_{pR2} =$		1.8 ksi
	layer 11	$\Delta f_{pR2} =$		1.8 ksi
	layer 12	$\Delta f_{pR2} =$		1.8 ksi
	layer 13	$\Delta f_{pR2} =$		1.8 ksi
	layer 14	$\Delta f_{pR2} =$		1.8 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi}$ - Δf_{pi}		at midspan	at endspan
layer 1	$f_{pt} =$	144.6 ksi	144.6 ksi
layer 2	$f_{pt} =$	185.3 ksi	185.3 ksi
layer 3	$f_{pt} =$	188.3 ksi	188.3 ksi
layer 4	$f_{pt} =$	188.3 ksi	188.3 ksi
layer 5	$f_{pt} =$	188.3 ksi	
layer 6	$f_{pt} =$	188.3 ksi	
layer 7	$f_{pt} =$	188.3 ksi	
layer 8	$f_{pt} =$	188.3 ksi	
layer 9	$f_{pt} =$		188.3 ksi
layer 10	$f_{pt} =$		188.3 ksi
layer 11	$f_{pt} =$		188.3 ksi
layer 12	$f_{pt} =$		188.3 ksi
layer 13	$f_{pt} =$		188.3 ksi
layer 14	f _{pt} =		188.3 ksi
force per strand = f _{pt} *strand area	•	at midspan	at endspan
layer 1	=	22.1 kips	22.1 kips
layer 2	=	28.4 kips	28.4 kips
layer 3	=	28.8 kips	28.8 kips
layer 4	=	28.8 kips	28.8 kips
layer 5	=	28.8 kips	
layer 6	=	28.8 kips	
layer 7	=	28.8 kips	
layer 8	=	28.8 kips	
layer 9	=		28.8 kips
layer 10	=		28.8 kips
layer 11	=		28.8 kips
layer 12	=		28.8 kips
layer 13	=		28.8 kips
layer 14	=		28.8 kips
Total prestressing force after transfer	P _i =	1182.0 kips	1182.0 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	11.9%	11.9%
layer 2	% =	9.8%	9.8%
layer 3	% =	9.3%	9.3%
layer 4	% =	9.3%	9.3%
layer 5	% =	9.3%	
layer 6	% =	9.3%	
layer 7	% =	9.3%	
layer 8	% =	9.3%	
layer 9	% =		9.3%
layer 10	% =		9.3%
layer 11	% =		9.3%
layer 12	% =		9.3%
layer 13	% =		9.3%
layer 14	% =		9.3%
TOTAL LOSSES A	T SERVI	CE LOADS	
Total Losses		at midspan	at endspan

Total Losses

		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	52.6 ksi	52.6 ksi
layer 2	$\Delta f_{pT} =$	53.4 ksi	53.4 ksi
layer 3	$\Delta f_{pT} =$	52.4 ksi	52.4 ksi
layer 4	$\Delta f_{pT} =$	52.4 ksi	52.4 ksi
layer 5	$\Delta f_{pT} =$	52.4 ksi	
layer 6	$\Delta f_{pT} =$	52.4 ksi	
layer 7	$\Delta f_{pT} =$	52.4 ksi	
layer 8	$\Delta f_{pT} =$	52.4 ksi	
layer 9	$\Delta f_{pT} =$		52.4 ksi
layer 10	$\Delta f_{pT} =$		52.4 ksi
layer 11	$\Delta f_{pT} =$		52.4 ksi
layer 12	$\Delta f_{pT} =$		52.4 ksi
layer 13	$\Delta f_{pT} =$		52.4 ksi
layer 14	$\Delta f_{pT} =$		52.4 ksi

OK OK OK OK OK OK OK OK OK

Stress in tendon after all losses = f _{pi} -Δf _{pt}		at midspan	at endspan
layer	1 f _{pe} =	111.4 ksi	111.4 ksi
layer	F**	152.1 ksi	152.1 ksi
layer		155.2 ksi	155.2 ksi
layer		155.2 ksi	155.2 ksi
layer		155.2 ksi	
layer			155.2 ksi
layer 1			155.2 ksi
layer 1			155.2 ksi
layer 1			155.2 ksi
layer 1			155.2 ksi
layer 1			155.2 ksi
check prestressing stress limit at service limit sta		8*fpy	
layer		173.7 ksi	
layer		197.7 ksi	
layer		199.7 ksi	
layer		199.7 ksi	7
layer		199.7 ksi	
layer 1		199.7 ksi	
layer 1		199.7 ksi	
layer 1		199.7 ksi	
layer 1		199.7 ksi	
layer 1		199.7 ksi	
force per strand = f _{pe} *strand area		at midspan	at endspan
layer	1 =	17.0 kips	17.0 kips
layer		23.3 kips	23.3 kips
layer		23.7 kips	23.7 kips
i i		·	
layer	4 =	23.7 kips	23.7 kips
layer layer		23.7 kips 23.7 kips	23.7 kips
layer	5 =	23.7 kips	23.7 kips
	5 = 6 =	23.7 kips 23.7 kips	23.7 kips
layer layer	5 = 6 = 7 =	23.7 kips 23.7 kips 23.7 kips	23.7 kips
layer layer layer layer	5 = 6 = 7 = 8 =	23.7 kips 23.7 kips	
layer layer layer	5 = 6 = 7 = 8 = 9 =	23.7 kips 23.7 kips 23.7 kips	23.7 kips
layer layer layer layer layer	5 = 6 = 7 = 8 = 9 = 0 =	23.7 kips 23.7 kips 23.7 kips	23.7 kips 23.7 kips
layer layer layer layer layer	5 = 6 = 7 = 8 = 9 = 0 = 1 = 9	23.7 kips 23.7 kips 23.7 kips	23.7 kips
layer layer layer layer layer layer 1	5 = 6 = 7 = 8 = 9 = 0 = 11 = 22 =	23.7 kips 23.7 kips 23.7 kips	23.7 kips 23.7 kips 23.7 kips
layer layer layer layer layer layer a layer	5 = 6 = 7 = 8 = 9 = 0 = 11 = 22 = 33 = 9	23.7 kips 23.7 kips 23.7 kips	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips
layer layer layer layer layer layer layer layer	5 = 6 = 7 = 8 = 9 = 0 = 1 = 2 = 3 = 1	23.7 kips 23.7 kips 23.7 kips	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips
layer all layer for the layer of the layer o	5 = 6 = 7 = 8 = 9 = 0 = 1 = 2 = 3 = 4 =	23.7 kips 23.7 kips 23.7 kips 23.7 kips	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips
layer layer	5 = 6 = 7 = 8 = 9 = 0 = 11 = 2 = 33 = 4 = = 5	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.6 kips	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips
layer layer	5 = 6 = 7 = 8 = 9 = 0 = 11 = 22 = 34 = = 11 % = 11 % =	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.6 kips at midspan 958.6 kips	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips
layer layer	5 = 6 = 7 = 8 = 9 = 0 = 1 = 2 = 3 = 4 = 1	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.6 kips 32.1% 32.6%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips
layer layer	5 = 6 = 7 = 8 = 9 = 0 = 1 = 2 = 3 = 4 = 1	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.6 kips 32.1% 32.6% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips
layer layer	5 = 6 = 7 = 8 = 9 = 11 = 2 = 33 = 4 = 11	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.1% 23.6% 32.6% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 34 endspan 958.6 kips 32.1% 32.6% 32.6%
layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer specified by $^\prime$ and $^\prime$ layer laye	5 = 6 = 7 = 8 = 9 = 11 = 2 = 33 = 4 = 11	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.6% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 34 endspan 958.6 kips 32.1% 32.6% 32.6%
layer layer	5 = 6 = 77 = 88 = 99 = 900 = 11 = 122 = 33 = 14 = 11	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 34 endspan 958.6 kips 32.1% 32.6% 32.6%
layer layer	5 = = = = = = = = = = = = = = = = = = =	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 34 endspan 958.6 kips 32.1% 32.6% 32.6%
layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer $^\prime$ layer l	5 = = = = = = = = = = = = = = = = = = =	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips 32.1% 32.6% 32.0%
layer layer	5 = 6 = 7	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips 32.1% 32.6% 32.0% 32.0%
layer layer	5 = 6 = 7	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips 32.1% 32.6% 32.0% 32.0%
layer layer	5 = = = = = = = = = = = = = = = = = = =	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0%
$\label{eq:layer} \begin{array}{c} \text{layer} \\ \\ \text{layer} \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \\ \text{layer} \\ \\ \\ \text{layer} \\ \\ \\ \text{layer} \\ \\ \\ \\ \text{layer} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5 = 6 = 7 = 8 = 9 = 11 = 2 = 33 = 4 = 12 = 2 % = 14 % = 5 % = 6 % = 7 % = 8 % = 9 % = 9 % = 11 % = 2 % = 11 % = 2 % = 11 % = 2 % = 11 % = 2 % = 11 % = 12 % = 12 % = 11 % = 12 %	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0%
layer layer	5 = = = = = = = = = = = = = = = = = = =	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips 32.6% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0%
$\label{eq:layer} \begin{array}{c} \text{layer} \\ \\ \text{layer} \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \text{layer} \\ \\ \\ \text{layer} \\ \\ \\ \text{layer} \\ \\ \\ \text{layer} \\ \\ \\ \\ \text{layer} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5 = = = = = = = = = = = = = = = = = = =	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 32.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0%	23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips 23.7 kips at endspan 958.6 kips 32.1% 32.6% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0% 32.0%

OK OK OK OK OK OK OK

Stresses at Transfer

3000 at 11a110101					
STRESS LIMITS FOR CONCRETE					
Compression = 0.6f'ci	f _{ci} =	3.300 ksi			
Tension					
without bonded reinforcement = $-0.0948 \times \sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi			
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi			
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2					

STRESSES AT TRANSFER LENGTH SECTION			
Transfer Length = 60*(strand diameter)	=	2.5 ft	
Bending moment at transfer length	M _g =	116.4 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	10.78 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in	
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in	
center of gravity of all strands and the bottom fiber of beam at the end	II	20.55 in	
Eccentricity of the strand group at transfer length:	e _h =	18.99 in	
Eccentricity at end of beam:	e =	17.95 in	

 $f_t = \frac{P_i}{A} - \frac{P_i s}{S_t} + \frac{M_g}{S_t} \qquad \qquad f_0 = \frac{P_i}{A} + \frac{P_i \sigma}{S_0} - \frac{M_g}{S_0}$ $\frac{\text{at midspan}}{\text{Top stress at top fiber of beam}} \qquad \frac{f_t}{f_t} = \frac{0.176 \text{ ksi}}{0.176 \text{ ksi}} \qquad \frac{\text{OK}}{\text{OK}}$ Bottom stress at bottom fiber of the beam $\frac{f_b}{f_b} = \frac{2.985 \text{ ksi}}{0.2985 \text{ ksi}} = \frac{0.85 \text{ ksi}}{0.85 \text{ oK}}$

Calcs for eccentricity (see 9.6.7.2)

STRESSES AT HARP POINT				
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	-0.039 ksi	-0.039 ksi	С
Bottom stress at bottom fiber of the beam	f _b =	3.220 ksi	3.175 ksi	C
STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	0.126 ksi	0.137 ksi	c
Bottom stress at bottom fiber of the beam	f _b =	3.038 ksi	2.993 ksi	C
HOLD-DOWN FORCES				

assume stress in strand before losses = 0.8f_u

=	174.9 ksi
=	219.2 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
=	221.4 ksi
	= = = = = = = = = = = = = = = = = = = =

prestress force per strand before any losses:

layer 1	=	26.8 kips
layer 2	=	33.5 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	ı	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	ı	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	ı	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	II	33.9 kips
rp Angle	Ψ =	7.2 °

layer 1	=	3.5 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	=	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	=	53.39 kips
'		

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.259 ksi		
for deck	=	1.800 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	3.012 ksi		
for deck	=	2.400 ksi		

Tension:

Load Combination Service III -0.013 ksi for the precast beam =

ок

ок

οĸ

οĸ

ок

STRESSES A	T MIDS	PAN				
Compression stresses at top fiber of beam		at midspan	at endspan			
$f_{i} = \frac{P_{pe}}{A} - \frac{P_{pe}e}{S_{i}} + \frac{(M_{y} + M_{z})}{S_{t}} + \frac{(M_{m} + M_{\phi})}{S_{2g}}$						
Due to permanent loads	$f_{tg} =$	1.993 ksi	1.993 ksi			
$f_{tx} = \frac{P_{yx}}{A} - \frac{P_{yx}\sigma}{S_t} + \frac{(M_x + M_y)}{S_x} +$	+ (M _m -	$\frac{(M_b)}{N_{eg}} + \frac{(M_{RL+1})}{N_{eg}}$				
Due to permanent loads and transient loads	$f_{tg} =$	2.384 ksi	2.384 ksi			
Compression stresses at top fiber of deck		at midspan	at endspan			
$f_{to} = \frac{(M_{w})}{2}$	S ₁₁	<u>''</u>				
Due to permanent loads	$f_{tc} =$	0.051 ksi	0.051 ksi			
$f_{w} = \frac{(M_{w} + h)}{2}$	S _{te} + M _E	<u>(1-1)</u>				
Due to permanent loads and transient loads	$f_{tc} =$	0.589 ksi	0.589 ksi			
Tension stresses at top fiber of deck		at midspan	at endspan			
$f_{ij} = \frac{P_{ji}}{A} + \frac{P_{ji}\sigma}{S_0} - \frac{(M_I + M_s)}{S_0} - \frac{1}{S_0}$	(M _{v1} +	$\frac{M_b + 0.8*M_{U+1})}{S_{kr}}$				
Load Combination Service III	f _b =	-0.839 ksi	-0.839 ksi			

Strength L	imit	State
------------	------	-------

POSITIVE MOMENT S	ECTION		_
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	8381.5 ft-kips	
effective length factor for compression members			_
layer 1	k =	0.09	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	4
	c =	5.4 ft-kips]
verage stress in prestressing steel layer 1 layer 2	f _{ps} = f _{ps} =	217.2 ksi 272.2 ksi	
layer 3	f _{ps} =	274.9 ksi	
layer 4	f _{ps} =	274.9 ksi	
layer 5	f _{ps} =	274.9 ksi	
layer 6	f _{ps} =	274.9 ksi	Ī
layer 7	f _{ps} =	274.9 ksi	
layer 8	f _{ps} =	274.9 ksi	-
layer 9	$f_{ps} =$	274.9 ksi	
layer 10	f _{ps} =	274.9 ksi	
layer 11	$f_{ps} =$	274.9 ksi	
layer 12	$f_{ps} =$	274.9 ksi	
layer 13	$f_{ps} =$	274.9 ksi	
layer 14	$f_{ps} =$	274.9 ksi	
ominal flexure resistance			7
	a =	4.60 in	
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	10385.8 ft-kips	OK
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S	SECTION	1	-
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	4837.2 ft-kips	
	a =	7.99 in	
	$\Phi M_n =$	4803.8 ft-kips	NOT OK
M=DC+W+LL+IM	M =	2869.7 ft-kips	ок
ear Design			=
CRITICAL SECTION		405.01.	1
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	405.0 kips	4
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-2684.4 ft-kips	J
or			1
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V,, =	364.8 kips	

V_u =

M_u =

d_v=

Shear depth

max shear

max moment

Applied factored normal force at the section $N_u =$

Angle of diagonal compressive stresses $\theta =$

405.0 kips

2877.0 ft-kips

73.19 in

0

36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\epsilon_{\tau} = \frac{\frac{M_{\pi}}{d_{\tau}} + 0.5N_{\pi} + 0.5V_{\pi} \cot \theta - A_{\mu\nu} j_{\mu\nu}}{Z_{\tau} A_{\tau} + Z_{\mu} A_{\mu\nu}} \le 0.002$

u0000	•		
layer 1	f _{po} =	115.8 ksi	115.8 ksi
layer 2	f _{po} =	156.7 ksi	156.7 ksi
layer 3	f _{po} =	159.5 ksi	159.5 ksi
layer 4	f _{po} =	159.5 ksi	159.5 ksi
layer 5	f _{po} =	159.5 ksi	
layer 6	f _{po} =	159.5 ksi	
layer 7	f _{po} =	159.5 ksi	
layer 8	f _{po} =	159.5 ksi	
layer 9	f _{po} =		159.5 ksi
layer 10	f _{po} =		159.5 ksi
layer 11	f _{po} =		159.5 ksi
layer 12	f _{po} =		159.5 ksi
layer 13	f _{po} =		159.5 ksi
layer 14	f _{po} =		159.5 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	$\varepsilon_x =$		0.002000
layer 12	$\varepsilon_x =$	·	0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	4.05 in	3.97 in
$\Delta_g =$	-1.95 in	
$\Delta_g =$	-1.97 in	
$\Delta_s =$	-3.01 in	

Deflection due to total self weight

 $\Delta_{\rm sw}$ = -0.93 in

Total Deflection at transfer Total Deflection at erection

Δ =	2.10 in	2.02 in
Δ =	3.65 in	3.50 in

Live load deflection limit = span/800 Deflection due to live load and impact $\begin{array}{ccc} = & -1.80 \text{ in} \\ \Delta_L = & -1.07 \text{ in} \end{array}$

Deflection due to fire truck

Total Deflection after fire with fire truck

 $\Delta_L = -2.2365 \text{ in}$ $\Delta = 0.8807 \text{ in}$

ок

NOT OK

Parametric Design: Puyallup River Case Study Beam Design: 1/2" Strand

Fire Exposure Status: 2 Hours

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	β ₁ =	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE				
Strength at release	f'ci =	5.5 ksi		
Strength at 28 days	f'c =	4.40 ksi		
Unit Weight	w _c =	150.0 pcf		
Overall Beam Length:				
@ end spans	L =	110 ft		
@ center span	L=	119 ft		
Design Spans:				
Non-composite beam @ end spans	L =	109 ft		
Non-composite beam @ center span	L=	118 ft		
Composite beam @ end spans	L=	110 ft		
Composite beam @ center span	L=	120 ft		
Beam Spacing	S =	12 ft		

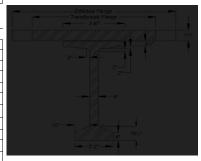
		PRESTRESSING ST	RANDS	
		Diameter of single strand	d =	0.5 in
		Area of single strand		0.153 in^2
Temperature of	Layer	lover 1 (bettern)		4270 00 °F
		layer 1 (bottom) layer 2	T = T =	1270.00 °F 590.00 °F
		layer 3	T =	68.00 °F
		layer 4	T =	68.00 °F
		layer 5	T =	68.00 °F
		layer 6 layer 7	T = T =	68.00 °F 68.00 °F
		layer 8	T=	68.00 °F
		layer 9	T =	68.00 °F
		layer 10	T =	68.00 °F
		layer 11	T =	68.00 °F
		layer 12 layer 13	T = T =	68.00 °F 68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng	th	,		
intial =	277 ksi	layer 1 (bottom)	f _{pu} =	104 ksi
		layer 2	f _{pu} =	263 ksi
		layer 3	f _{pu} =	277 ksi
		layer 4	f _{pu} =	277 ksi
		layer 5	f _{pu} =	277 ksi
		layer 6	f _{pu} =	277 ksi
		layer 7	f _{pu} =	277 ksi
		layer 8	f _{pu} =	277 ksi
		layer 9	$f_{pu} =$	277 ksi
		layer 10	$f_{pu} =$	277 ksi
		layer 11	f _{pu} =	277 ksi
		layer 12	f _{pu} =	277 ksi
		layer 13	f _{pu} =	277 ksi
		layer 14	f _{pu} =	277 ksi
Yield Strength intial =	2E0 kai	lover 1 (hettem)	f _	102 kgi
iiiliai =	250 ksi	layer 1 (bottom) layer 2	f _{py} =	102 ksi 240 ksi
		layer 3	f _{py} =	245 ksi
		layer 4	f _{py} =	245 ksi
		layer 5	$f_{py} =$ $f_{py} =$	247 ksi
		layer 6	f _{py} =	247 ksi
		layer 7	f _{py} =	247 ksi
		layer 8	f _{py} =	247 ksi
		layer 9	f _{py} =	250 ksi
		layer 10	f _{py} =	250 ksi
		layer 11	f _{py} =	250 ksi
		layer 12	f _{py} =	250 ksi
		layer 13	f _{py} =	250 ksi
		layer 14	f _{py} =	250 ksi
Stress Limits:		.,.	P)	
before transfer :	≤ 0.75f _{pu} (ir	nitial = 202.5)		
		layer 1 (bottom)	$f_{pi} =$	77.9 ksi
		layer 2	$f_{pi} =$	197.2 ksi
		layer 3	f _{pi} =	207.6 ksi
		layer 4	$f_{pi} =$	207.6 ksi
		layer 5	$f_{pi} =$	207.6 ksi
		layer 6	$f_{pi} =$	207.6 ksi
		layer 7	f _{pi} =	207.6 ksi
		layer 8	$f_{pi} =$	207.6 ksi
		layer 9	f _{pi} =	207.6 ksi
		layer 10	f _{pi} =	207.6 ksi
		layer 11	f _{pi} =	207.6 ksi
		layer 12	f _{pi} =	207.6 ksi
		layer 13	f _{pi} =	207.6 ksi
		layer 14	$f_{pi} =$	207.6 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

/ py (- ,	
layer 1 (bottom)	f _{pe} =	81.9 ksi
layer 2	f _{pe} =	191.7 ksi
layer 3	f _{pe} =	195.7 ksi
layer 4	f _{pe} =	195.7 ksi
layer 5	f _{pe} =	197.7 ksi
layer 6	f _{pe} =	197.7 ksi
layer 7	f _{pe} =	197.7 ksi
layer 8	f _{pe} =	197.7 ksi
layer 9	f _{pe} =	199.7 ksi
layer 10	f _{pe} =	199.7 ksi
layer 11	f _{pe} =	199.7 ksi
layer 12	f _{pe} =	199.7 ksi
layer 13	f _{pe} =	199.7 ksi
layer 14	f _{pe} =	199.7 ksi

Modulus of Elasticity intial = 25982 ksi

layer 1 (bottom)	E =	25462.4 ksi
layer 2	E =	27281.1 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	=	386,902 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	40.3 in		
Distance from centroid to extreme top fiber	$y_t =$	31.7 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000*(W_c^1.5)*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	4021 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in b_f = Modular Ratio = E_{cs}/E_{c} n = 0.9535 Transformed flange width 105.8 in = Transformed flange area 793.8 in^2 Transformed haunch width 40.0 in 20 0 in∆2

	Transionneu naunch area	_	20.0 117 2			
	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	40.31 in	30,917.8 in^3	261,121 in^4	386,902 in^4	648,022 in^4
Haunch	20.0 in^2	72.25 in	1,446.6 in^3	3,643 in^4	0.33 in^4	3,643 in^4
Deck	793.8 in^2	76.25 in	60,524.0 in^3	242,779 in^4	2,950 in^4	245,729 in^4
Total	1580.8 in^2		92,888.4 in^3			897,395 in^4

*min of three criteria

Total area of Composite Section	A _c =	1581 in^2
Overall Depth of the Composite Section	$h_c =$	80 in
Moment of Inertia	I _c =	897,395 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	58.76 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	13.24 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	21.24 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	15,271.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	67,784.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	44,314.7 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight w_{beam} = 0.799 k/f 8 in. deck weight w_{deck}= 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A) P_{live}= 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft x_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant OK Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$ OK OK 1.5 Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.0488
Longitudinal stiffness parameter	K _a =	1.670.458.43 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} + \left(\frac{S}{L}\right)^{0.2} + \left(\frac{K_F}{12*L*t_1^3}\right)^{0.3}$$

DFM = 0.878 lanes/beam

one design lane loaded:

$$DFM = 0.75 - \left(\frac{N}{14}\right)^{34} * \left(\frac{N}{L}\right)^{33} * \left(\frac{K_y}{12 * L * e_y^3}\right)^{01}$$

DFM = 0.596 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

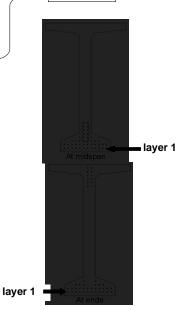
$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam


		At Midspan	At Ends		
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	-	
layer 6	2	12	-	-	
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
Harped Stra	ınd Group (ir	ncluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b$ - $y_{bs})$

y _{bs} =	5.82 in
e =	34.49 in

0.905 Controls

1.082 Controls

ELASTIC SHORTEI	NING			
assumed loss	=	9.00%		
Force per strand at transfer			_	
layer 1	=	10.8 kips		
layer 2	=	27.5 kips		
layer 3	=	28.9 kips	_	
layer 4	=	28.9 kips		
layer 5	=	28.9 kips		
layer 6		28.9 kips		
layer 7 layer 8	=	28.9 kips 28.9 kips	_	
layer 9		28.9 kips		
layer 10	=	28.9 kips	_	
layer 11	=	28.9 kips		
layer 12	=	28.9 kips		
layer 13		28.9 kips		
layer 14	=	28.9 kips		
,	l		=	
		at midspan	at endspan	1
Total prestressing force at release	P _i =	1037.6 kips	1037.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment		3.056 ksi	3.056 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.3 ksi	17.3 ksi	1
layer 2		18.5 ksi	18.5 ksi	
layer 3	$\Delta f_{pES} =$	17.7 ksi	17.7 ksi	
layer 4	$\Delta f_{pES} =$	17.7 ksi	17.7 ksi	
layer 5		17.7 ksi		
layer 6	$\Delta f_{pES} =$	17.7 ksi		
layer 7	F	17.7 ksi		
layer 8		17.7 ksi		
layer 9	F		17.7 ksi	
layer 10	P-0		17.7 ksi	_
layer 11	$\Delta f_{pES} =$		17.7 ksi	_
layer 12			17.7 ksi	_
layer 13	F=0		17.7 ksi	_
layer 14	$\Delta f_{pES} =$		17.7 ksi	
SHRIN	IKAGE			=
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 7
CREEP OF	CONCRE	TE		=
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	2.418 ksi		_
•		at midspan	at endspan	7
loss due to creep	$\Delta f_{pCR} =$	19.7 ksi	19.7 ksi	1
		NG STRANDS		= _
RELAXATION OF PRES				
loss due to relaxation after transfer	,	at midspan	at endspan	
loss due to relaxation after transfer layer 1	$\Delta f_{pR2} =$		at endspan 2.3 ksi	_
loss due to relaxation after transfer layer 1 layer 2	,	at midspan		- - -

		at midspan	at endspan
loss due to creep	$\Delta f_{pCR} =$	19.7 ksi	19.7 ksi
RELAXATION OF PRES	STRESSI	NG STRANDS	
loss due to relaxation after transfer		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.3 ksi	2.3 ksi
layer 2	$\Delta f_{pR2} =$	2.2 ksi	2.2 ksi
layer 3	$\Delta f_{pR2} =$	2.3 ksi	2.3 ksi
layer 4	$\Delta f_{pR2} =$	2.3 ksi	2.3 ksi
layer 5	$\Delta f_{pR2} =$	2.3 ksi	
layer 6	$\Delta f_{pR2} =$	2.3 ksi	
layer 7	$\Delta f_{pR2} =$	2.3 ksi	
layer 8	$\Delta f_{pR2} =$	2.3 ksi	
layer 9	$\Delta f_{pR2} =$		2.3 ksi
layer 10	$\Delta f_{pR2} =$		2.3 ksi
layer 11	$\Delta f_{pR2} =$		2.3 ksi
layer 12	$\Delta f_{pR2} =$		2.3 ksi
layer 13	$\Delta f_{pR2} =$		2.3 ksi
layer 14	$\Delta f_{pR2} =$		2.3 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$	711 1110	ato: Lit	
stress in tendons after transfer $f_{\text{ot}} = f_{\text{oi}} - \Delta f_{\text{oi}}$		at midspan	at endspan
layer 1	f _{pt} =	60.5 ksi	60.5 ksi
layer 2	f _{pt} =	178.7 ksi	178.7 ksi
layer 3	f _{pt} =	189.9 ksi	189.9 ksi
layer 4	f _{pt} =	189.9 ksi	189.9 ksi
layer 5	f _{pt} =	189.9 ksi	
layer 6	f _{pt} =	189.9 ksi	
layer 7	f _{pt} =	189.9 ksi	
layer 8	f _{pt} =	189.9 ksi	
layer 9	f _{pt} =		189.9 ksi
layer 10	f _{pt} =		189.9 ksi
layer 11	f _{pt} =		189.9 ksi
layer 12	f _{pt} =		189.9 ksi
layer 13	f _{pt} =		189.9 ksi
layer 14	$f_{pt} =$		189.9 ksi
force per strand = f_{pt} *strand area		at midspan	at endspan
layer 1	=	9.3 kips	9.3 kips
layer 2	=	27.3 kips	27.3 kips
layer 3	=	29.1 kips	29.1 kips
layer 4	=	29.1 kips	29.1 kips
layer 5	=	29.1 kips	
layer 6	=	29.1 kips	
layer 7	=	29.1 kips	
layer 8	=	29.1 kips	
layer 9	=		29.1 kips
layer 10	=		29.1 kips
layer 11	=		29.1 kips
layer 12	=		29.1 kips
layer 13	=		29.1 kips
layer 14	=		29.1 kips
Total prestressing force after transfer	$P_i =$	1021.2 kips	1021.2 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	22.2%	22.2%
layer 2	% =	9.4%	9.4%
layer 3	% =	8.5%	8.5%
layer 4	% =	8.5%	8.5%
layer 5	% =	8.5%	
layer 6	% =	8.5%	
layer 7	% =	8.5%	
layer 8	% =	8.5%	
layer 9	% =		8.5%
layer 10	% =		8.5%
layer 11	% =		8.5%
layer 12	% =		8.5%
layer 13	% =		8.5%
layer 14	% =		8.5%
TOTAL LOSSES AT	SERVI		_
Total Losses		at midspan	at endspan

		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	45.9 ksi	45.9 ksi
layer 2	$\Delta f_{pT} =$	47.1 ksi	47.1 ksi
layer 3	$\Delta f_{pT} =$	46.2 ksi	46.2 ksi
layer 4	$\Delta f_{pT} =$	46.2 ksi	46.2 ksi
layer 5	$\Delta f_{pT} =$	46.2 ksi	
layer 6	$\Delta f_{pT} =$	46.2 ksi	
layer 7	$\Delta f_{pT} =$	46.2 ksi	
layer 8	$\Delta f_{pT} =$	46.2 ksi	
layer 9	$\Delta f_{pT} =$		46.2 ksi
layer 10	$\Delta f_{pT} =$		46.2 ksi
layer 11	$\Delta f_{pT} =$		46.2 ksi
layer 12	$\Delta f_{pT} =$		46.2 ksi
layer 13	$\Delta f_{pT} =$		46.2 ksi
layer 14	$\Delta f_{pT} =$		46.2 ksi

ок ок ок ок

OK OK OK OK OK OK OK

Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspar
layer 1	f _{pe} =	32.0 ksi	32.0 ksi
layer 2	f _{pe} =	150.1 ksi	150.1 ksi
layer 3	f _{pe} =	161.4 ksi	161.4 ksi
layer 4	f _{pe} =	161.4 ksi	161.4 ksi
layer 5	f _{pe} =	161.4 ksi	
layer 6	f _{pe} =	161.4 ksi	
layer 7	f _{pe} =	161.4 ksi	
layer 8	f _{pe} =	161.4 ksi	
layer 9	f _{pe} =		161.4 ksi
layer 10	f _{pe} =		161.4 ksi
layer 11	f _{pe} =		161.4 ksi
layer 12	f _{pe} =		161.4 ksi
layer 13			161.4 ksi
layer 14	f _{pe} =		161.4 ksi
check prestressing stress limit at service limit state:	fpe =	2*fny	101.4 KSI
II.			
layer 1	=	81.9 ksi	
layer 2	=	191.7 ksi	
layer 3	=	195.7 ksi	_
layer 4	=	195.7 ksi	\dashv
layer 5	=	197.7 ksi	_
layer 6	=	197.7 ksi	_
layer 7	=	197.7 ksi	
layer 8	=	197.7 ksi	
layer 9	=	199.7 ksi	
layer 10	=	199.7 ksi	
layer 11	=	199.7 ksi	
layer 12	=	199.7 ksi	
layer 13	=	199.7 ksi	
layer 14	=	199.7 ksi	
force per strand = f _{pe} *strand area		at midspan	at endspar
layer 1	=	4.9 kips	4.9 kips
layer 2	=	23.0 kips	23.0 kips
layer 3	=	24.7 kips	24.7 kips
layer 4	=	24.7 kips	24.7 kips
layer 5	=	24.7 kips	
layer 6	=	24.7 kips	
layer 7	=	24.7 kips	
layer 8	=	24.7 kips	
layer 9	=		24.7 kips
layer 10	=		24.7 kips
layer 11	=		24.7 kips
,			, , , , , , , , , , , , , , , , , , , ,
laver 12	=		24.7 kips
layer 12 layer 13	=		24.7 kips 24.7 kips
layer 13	=		24.7 kips
		at midspan	
layer 13 layer 14 Total prestressing force after all losses	=	at midspan 828.0 kips	24.7 kips 24.7 kips at endspar
layer 13 layer 14 $\label{eq:Total}$ Total prestressing force after all losses Final losses, % = (Δf_{pT})/(f_{pl})	=	828.0 kips	24.7 kips 24.7 kips at endspa 828.0 kips
layer 13 layer 14 $Total~prestressing~force~after~all~losses$ Final losses, % = (Δf_{pT})/(f_{pi}) layer 1	= = P _{pe} = % =	828.0 kips 59.0%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0%
layer 13 layer 14	= = P _{pe} = % = % =	828.0 kips	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5%
layer 13 layer 14	= = P _{pe} = % = % = % =	828.0 kips 59.0% 60.5% 59.4%	24.7 kips 24.7 kips at endspal 828.0 kips 59.0% 60.5% 59.4%
layer 13 layer 14	= = P _{pe} = % = % = % = % =	59.0% 60.5% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5%
layer 13 layer 14	= = = = = = = = = = = = = = = = = = =	59.0% 60.5% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4%
layer 13 layer 14	= = = = = = = = = = = = = = = = = = =	59.0% 60.5% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4%
layer 13 layer 14	= = = = = = = = = = = = = = = = = = =	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4%
layer 13 layer 14 Total prestressing force after all losses Final losses, $\%=(\Delta f_{pT})/(f_{pi})$ layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8	= = = = = = = = = = = = = = = = = = =	59.0% 60.5% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4%
layer 13 layer 14 Total prestressing force after all losses Final losses, $\% = (\Delta f_{pT})/(f_{pi})$ layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	= = = = = = = = = = = = = = = = = = =	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4% 59.4%
layer 13 layer 14 layer 14 Total prestressing force after all losses Final losses, $\%=(\Delta f_{pT})/(f_{pi})$ layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	= = = = = = = = = = = = = = = = = = =	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4% 59.4%
layer 13 layer 14 layer 14 Total prestressing force after all losses. Final losses, $\%=(\Delta f_{pT})/(f_{pi})$ layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 10 layer 10 layer 10 layer 10	= = = = = = = = = = = = = = = = = = =	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4%
layer 13 layer 14 layer 14 layer 14 losses Final losses, % = $(\Delta f_{pT})/(f_{pi})$ layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 9 layer 1 layer 9 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 12	= = = = = = = = = = = = = = = = = = =	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%
layer 13 layer 14 layer 14 layer 15 layer 16 layer 17 layer 18 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 10 layer 10 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 layer 15 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 11 layer 12 layer 13	=	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspail 828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4% 59.4% 59.4%
layer 13 layer 14 layer 14 layer 14 losses Final losses, % = $(\Delta f_{pT})/(f_{pi})$ layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 9 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 1 layer 11 layer 12	= = = = = = = = = = = = = = = = = = =	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kip: 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%
layer 13 layer 14 layer 14 layer 15 layer 16 layer 17 layer 18 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 19 layer 10 layer 10 layer 11 layer 12 layer 11 layer 12 layer 13 layer 13 layer 19 layer 13	=	828.0 kips 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4%	24.7 kips 24.7 kips at endspa 828.0 kip 59.0% 60.5% 59.4% 59.4% 59.4% 59.4% 59.4% 59.4%

OK OK OK OK OK OK

OK OK OK OK OK

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION			
Transfer Length = 60*(strand diameter)	=	2.5 ft	
Bending moment at transfer length	$M_g =$	116.4 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	10.78 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in	
center of gravity of all strands and the bottom fiber of beam at transfer length		19.51 in	
center of gravity of all strands and the bottom fiber of beam at the end	Ш	20.55 in	
Eccentricity of the strand group at transfer length:	e _h =	20.80 in	
Eccentricity at end of beam:	e =	19.76 in	

Calcs for eccentricity (see 9.6.7.2)

οк

οк

OK OK

ок

οк

$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$	f , =	$=\frac{P_i}{A}+\frac{P_i\sigma}{S_b}-\frac{M_E}{S_b}$	
		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	0.045 ksi	0.045 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.706 ksi	2.706 ksi
STRESSES AT HARP POINT			

SIKESSES AI	HAKP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	-0.028 ksi	-0.028 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.796 ksi	2.737 ksi	
STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips		
Top stress at top fiber of beam	f. =	0 133 ksi	0 148 ksi	

Top stress at top fiber of beam $f_t = 0.133 \text{ ksi}$ 0.148 ksi

Bottom stress at bottom fiber of the beam $f_b = 2.614 \text{ ksi}$ 2.555 ksi

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	83.0 ksi
layer 2	=	210.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

layer 1	=	12.7 kips
layer 2	=	32.2 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	II	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	II	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	II	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	II	33.9 kips
rp Angle	Ψ =	7.2 °

layer 1	=	1.7 kips/strand
layer 2	=	4.2 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	II	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	II	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	II	4.4 kips/strand
layer 14	=	4.4 kips/strand
Total hold-down force	II	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	1.980 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	2.640 ksi		
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

for the precast beam = -0.013 ksi

STRESSES AT MIL	<u>OSPAN</u>		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_i = \frac{P_{ps}}{A} - \frac{P_{ps}e}{S_t} + \frac{(M_g + M_s)}{S_t} +$	$\frac{(\mathcal{M}_{us} + \mathcal{M}_{*})}{S_{tg}}$		
Due to permanent loads $f_{tg} =$	2.000 ksi	2.000 ksi	NOT OK
$f_{tx} = \frac{P_{yx}}{A} - \frac{P_{yx}\rho}{S_x} + \frac{(M_x + M_z)}{S_x} + \frac{(M_{xx})}{S_x}$	$\frac{+M_b)}{\Sigma_{\mathbf{g}}} + \frac{(M_{B,a})}{\Sigma_{\mathbf{g}}}$		
Due to permanent loads and transient loads $f_{tg} =$	2.375 ksi	2.375 ksi	ок
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ts} = \frac{(M_{ts} + 1)}{S_{ts}}$	<u>4 ,)</u>		
Due to permanent loads $f_{tc} =$	0.054 ksi	0.054 ksi	ок
$f_{\omega} = \frac{(M_{\pi i} + M_{\phi} + M_{\phi} + M_{\phi})}{S_{\omega}}$	d ₁₁₁₊₁)		
Due to permanent loads and transient loads $f_{tc} =$	0.627 ksi	0.627 ksi	ок
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ty} = \frac{P_{yx}}{A} + \frac{F_{yx}\rho}{S_{y}} - \frac{(M_{y} + M_{z})}{S_{h}} - \frac{(M_{w})}{S_{h}}$	$\frac{+M_b+0.8*M_{2L+1})}{S_{lc}}$		
Load Combination Service III f _b =	-1.323 ksi	-1.323 ksi	ок

POSITIVE MOMENT SI	ECTION		
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.11	
layer 2	k =	0.26	
layer 3	k =	0.31	
layer 4	k =	0.31	
layer 5	k =	0.29	
layer 6	k =	0.29	
layer 7	k =	0.29	
layer 8	k =	0.29	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	
	c =	4.7 ft-kips	
verage stress in prestressing steel	f _{ps} =	103.1 ksi	
layer 2	$f_{ps} =$	261.2 ksi	
layer 3	f _{ps} =	274.9 ksi	
layer 4	f _{ps} =	274.9 ksi	
layer 5	f _{ps} =	274.9 ksi	
layer 6	f _{ps} =	274.9 ksi	
layer 7	f _{ps} =	274.9 ksi	
layer 8	f _{ps} =	274.9 ksi	
layer 9	f _{ps} =	274.9 ksi	
layer 10	f _{ps} =	274.9 ksi	
layer 11	f _{ps} =	274.9 ksi	
layer 12	f _{ps} =	274.9 ksi	
layer 13	f _{ps} =	274.9 ksi	
layer 14 ominal flexure resistance	f _{ps} =	274.9 ksi	
ommai nexure resistance	a =	4.00 in	
M AM A 100			OK
$M_r = \Phi M_n$, $\Phi = 1.00$	ΦM _n =	8978.2 ft-kips	OK
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S			
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	4837.2 ft-kips	
-	a =	9.12 in	NOT
M DC William	ΦM _n =	4766.4 ft-kips	NOT C
M=DC+W+LL+IM	M =	2869.7 ft-kips	ок
ear Design	T 0 50		
CRITICAL SECTION A		405.01:	
$V_U = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	405.0 kips	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2684.4 ft-kips	
or V _{II} = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	364.8 kips	

V_u =

M_u =

d_v =

Shear depth

max shear max moment

Applied factored normal force at the section N_u =

Angle of diagonal compressive stresses $\theta =$

405.0 kips

2877.0 ft-kips

73.19 in

0

36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\epsilon_{v} = \frac{\frac{M_{s}}{d_{v}} + 0.5 R_{s} + 0.5 Y_{s} \cot \theta}{E_{s} A_{s} + E_{p} A_{w}} \le 0.002$

resultant compressive stress at centroid effective stress in prestressing strand after

	at midspan	at endspan
f _{pc} =	0.586 ksi	0.586 ksi

r all losses					
layer 1	f _{po} =	35.7 ksi	35.7 ksi		
layer 2	f _{po} =	154.1 ksi	154.1 ksi		
layer 3	f _{po} =	165.1 ksi	165.1 ksi		
layer 4	f _{po} =	165.1 ksi	165.1 ksi		
layer 5	f _{po} =	165.1 ksi			
layer 6	f _{po} =	165.1 ksi			
layer 7	f _{po} =	165.1 ksi			
layer 8	f _{po} =	165.1 ksi			
layer 9	f _{po} =		165.1 ksi		
layer 10	f _{po} =		165.1 ksi		
layer 11	f _{po} =		165.1 ksi		
layer 12	$f_{po} =$		165.1 ksi		
layer 13	f _{po} =		165.1 ksi		
layer 14	f _{po} =	_	165.1 ksi		

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	ε _x =	0.002000	
layer 7	ε _x =	0.002000	
layer 8	ε _x =	0.002000	
layer 9	ε _x =		0.002000
layer 10	ε _x =		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	4.05 in	3.97 in
$\Delta_g =$	-2.07 in	
$\Delta_g =$	-2.24 in	
$\Delta_s =$	-3.43 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -1.62 in

Total Deflection at transfer Total Deflection at erection

Δ =	1.98 in	1.90 in
Δ =	3.15 in	3.00 in

Live load deflection limit = span/800 Deflection due to live load and impact

=	-1.80 in
$\Delta_L =$	-1.22 in

ΟK

Deflection due to fire truck

 $\Delta_L =$ -2.5431 in Δ = -0.1090 in

Total Deflection after fire with fire truck

NOT OK

Parametric Design: Puyallup River Case Study Beam Design: 3/8" Strand Fire Exposure Status: Undamaged

MISSOURI

University of Science & Technology

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in	
Compressive Strength	f'c =	4 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-	72 BULE	3-TEE
Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

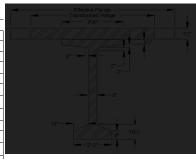
	ŀ	Prestressing Sti	RANDS	
	D	iameter of single strand	d =	0.4 in
		Area of single strand	A =	0.085 in^2
Temperature of	Layer		_	
		layer 1 (bottom)	T =	68.00 °F
		layer 2 layer 3	T = T =	68.00 °F 68.00 °F
		layer 4	T =	68.00 °F
		layer 5	T =	68.00 °F
		layer 6	T =	68.00 °F
		layer 7	T =	68.00 °F
		layer 8	T =	68.00 °F
		layer 9	T =	68.00 °F
		layer 10 layer 11	T = T =	68.00 °F 68.00 °F
		layer 12	T=	68.00 °F
		layer 13	T =	68.00 °F
		layer 14	T =	68.00 °F
Ultimate Streng	th			1
intial =	284 ksi	layer 1 (bottom)	f _{pu} =	284 ksi
		layer 2	$f_{pu} =$	284 ksi
		layer 3	f _{pu} =	284 ksi
		layer 4	f _{pu} =	284 ksi
		layer 5	f _{pu} =	284 ksi
		layer 6	f _{pu} =	284 ksi
		layer 7	f _{pu} =	284 ksi
		layer 8	f _{pu} =	284 ksi
		layer 9	f _{pu} =	284 ksi
		layer 10	f _{pu} =	284 ksi
		layer 11	f _{pu} =	284 ksi
		layer 12		284 ksi
		· · · · · · · · · · · · · · · · · · ·	f _{pu} =	
		layer 13	f _{pu} =	284 ksi
Yield Strength		layer 14	f _{pu} =	284 ksi
intial =	257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
IIIIai –	231 KSI	layer 2		257 ksi
		layer 3	f _{py} =	257 ksi
		· · · · · · · · · · · · · · · · · · ·	f _{py} =	
		layer 4	f _{py} =	257 ksi
		layer 5	f _{py} =	257 ksi
		layer 6	f _{py} =	257 ksi
		layer 7	f _{py} =	257 ksi
		layer 8	f _{py} =	257 ksi
		layer 9	f _{py} =	257 ksi
		layer 10	f _{py} =	257 ksi
		layer 11	f _{py} =	257 ksi
		layer 12	f _{py} =	257 ksi
		layer 13	$f_{py} =$	257 ksi
		layer 14	$f_{py} =$	257 ksi
Stress Limits:				
before transfer	≤ 0.75f _{pu} (init	· ·		T
		layer 1 (bottom)	$f_{pi} =$	213.2 ksi
		layer 2	$f_{pi} =$	213.2 ksi
		layer 3	$f_{pi} =$	213.2 ksi
		layer 4	f _{pi} =	213.2 ksi
		layer 5	$f_{pi} =$	213.2 ksi
		layer 6	f _{pi} =	213.2 ksi
		layer 7	f _{pi} =	213.2 ksi
		layer 8	f _{pi} =	213.2 ksi
		layer 9	f _{pi} =	213.2 ksi
		layer 10	f _{pi} =	213.2 ksi
		layer 11	f _{pi} =	213.2 ksi
		layer 12	f _{pi} =	213.2 ksi
		layer 13	f _{pi} =	213.2 ksi
			·pi —	
		layer 14	$f_{pi} =$	213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

тт, — ттт ру (,	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	$f_{pe} =$	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.0 in^2

Cross-sectional Properties

rocc cochonar r roportico		
NON-COMPOSITE I	BEAM	
Area of cross-section of beam	A =	767.0 in^2
Overall depth of beam	H =	72.0 in
Moment of Inertia	l=	527,217 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in
Distance from centroid to extreme top fiber	$y_t =$	35.4 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3834 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	5072 ksi

COMPOSITE BEAM AT MIDSPAN

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	527,217 in^4	777,660 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3		•	1.078.585 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,078,585 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,729.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,237.8 in^3
Section modulus for the extreme top fiber slab	S _{tr} =	56.329.7 in^3

Shear Forces and Bending Moments

DEAD LOADS

| Beam self-weight | W_{beam} = | 0.799 k/f | | 8 in. deck weight | W_{deck} = | 1.200 k/f | 1/2 in. haunch weight | W_{haunch} = | 0.022 k/f |

Curvature in plans is less than 4° = 0 OK

Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs

OK

LIVE LOADS

Fire truck live load front load (Point A) $P_{live} = 48.0 \text{ kips}$ Fire truck live load back load (Point B) $P_{live} = 22.0 \text{ kips}$ distance between two loads 19.2 ft

distance from nearest edge to point A $X_a = 59.0 \text{ ft}$ distance from nearest edge to point B $X_b = 39.8 \text{ ft}$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant OK

Number of beams is not less than four $N_b = 4$ OK

Beams are parallel and approximately of the same stiffness

Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e = 1.5$ OK

Curvature in plans is less than $4^\circ = 0$ OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier and wearing surface loads are

equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	K _a =	2,292,589.53 in^4

at center span: DFM = 0.904 lanes/beam

one design lane loaded:

DFM = 0.613 lanes/beam

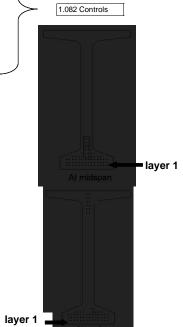
Distribution Factor for Shear Force

both end spans and center span:

$$DHV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 : \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8		14	-	-
layer 9		16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12		-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64		64	
		cluded in above totals)		
layer 3	2	6		
layer 4	2	8		·
layer 5	2	10		·
layer 6		12		·
layer 7	2	14		•
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.44 in
e _c =	31.16 in

0.905 Controls

Prestress Losses

ELASTIC SHORTENING 6.00% assumed loss Force per strand at transfer layer 1 17.0 kips 17.0 kips layer 2 layer 3 17.0 kips = layer 4 = 17.0 kips layer 5 17.0 kips layer 6 = 17.0 kips layer 7 17.0 kips layer 8 = 17.0 kips layer 9 17.0 kips = layer 10 17.0 kips = layer 11 17.0 kips layer 12 17.0 kips layer 13 = 17.0 kips layer 14 17.0 kips =

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.436 ksi	2.329 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	14.0 ksi	13.4 ksi
layer 2	$\Delta f_{pES} =$	14.0 ksi	13.4 ksi
layer 3	$\Delta f_{pES} =$	14.0 ksi	13.4 ksi
layer 4	$\Delta f_{pES} =$	14.0 ksi	13.4 ksi
layer 5	$\Delta f_{pES} =$	14.0 ksi	13.4 ksi
layer 6	$\Delta f_{pES} =$	14.0 ksi	
layer 7	$\Delta f_{pES} =$	14.0 ksi	
layer 8	$\Delta f_{pES} =$	14.0 ksi	
layer 9	$\Delta f_{pES} =$	14.0 ksi	13.4 ksi
layer 10	$\Delta f_{pES} =$		13.4 ksi
layer 11	$\Delta f_{pES} =$		13.4 ksi
layer 12	$\Delta f_{pES} =$		13.4 ksi
layer 13	$\Delta f_{pES} =$		13.4 ksi
layer 14			13.4 ksi

SHRIN	NKAGE			
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%
CREEP OF	CONCR	ETE		_
				

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$		2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{DR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

•	UIAL
total loss $\Delta f_{pES} = \Delta f_{pi}$	
stress in tendons after transfer for	f _{ni} -Δf _n

at midspan at endspan layer 1 f_{pt} = 199.1 ksi 199.7 ksi layer 2 f_{pt} = 199.1 ksi 199.7 ksi layer 3 199.1 ksi 199.7 ksi $f_{pt} =$ f_{pt} = 199.1 ksi 199.7 ksi layer 4 layer 5 $f_{pt} =$ 199.1 ksi 199.7 ksi layer 6 f_{pt} = 199.1 ksi layer 7 $f_{pt} =$ 199.1 ksi layer 8 f_{pt} = 199.1 ksi 199.1 ksi layer 9 f_{pt} = 199.7 ksi layer 10 $f_{pt} =$ layer 11 $f_{pt} =$ 199.7 ksi 199.7 ksi layer 12 f_{pt} = 199.7 ksi layer 13 $f_{pt} =$ layer 14 $f_{pt} =$ 199.7 ksi 199 7 ksi

force per strand = f_{pt} *strand area

iayei 14	pt -		199.7 KSI
		at midspan	at endspan
layer 1	=	16.9 kips	17.0 kips
layer 2	=	16.9 kips	17.0 kips
layer 3	=	16.9 kips	17.0 kips
layer 4	=	16.9 kips	17.0 kips
layer 5	=	16.9 kips	17.0 kips
layer 6	=	16.9 kips	
layer 7	=	16.9 kips	
layer 8	=	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10	=		17.0 kips
layer 11	=		17.0 kips
layer 12	=		17.0 kips
layer 13	=		17.0 kips
layer 14	=		17.0 kips

1047.8 kips

1054.0 kips

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.6%	6.3%
layer 2	% =	6.6%	6.3%
layer 3	% =	6.6%	6.3%
layer 4	% =	6.6%	6.3%
layer 5	% =	6.6%	6.3%
layer 6	% =	6.6%	
layer 7	% =	6.6%	
layer 8	% =	6.6%	
layer 9	% =	6.6%	6.3%
layer 10	% =		6.3%
layer 11	% =		6.3%
layer 12	% =		6.3%
layer 13	% =		6.3%
layer 14	% =		6.3%
CEC AT	F CEDVI	CELOADO	

TOTAL LOSSES AT SERVICE LOADS

Total prestressing force after transfer P_i =

Total Losses

SES AT SERVICE LUADS			
		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	41.3 ksi	40.7 ksi
layer 2	$\Delta f_{pT} =$	41.3 ksi	40.7 ksi
layer 3	$\Delta f_{pT} =$	41.3 ksi	40.7 ksi
layer 4	$\Delta f_{pT} =$	41.3 ksi	40.7 ksi
layer 5	$\Delta f_{pT} =$	41.3 ksi	40.7 ksi
layer 6	$\Delta f_{pT} =$	41.3 ksi	
layer 7	$\Delta f_{pT} =$	41.3 ksi	
layer 8	$\Delta f_{pT} =$	41.3 ksi	
layer 9	$\Delta f_{pT} =$	41.3 ksi	40.7 ksi
layer 10	$\Delta f_{pT} =$		40.7 ksi
layer 11	$\Delta f_{pT} =$		40.7 ksi
layer 12	$\Delta f_{pT} =$		40.7 ksi
layer 13	$\Delta f_{pT} =$		40.7 ksi
layer 14	$\Delta f_{pT} =$		40.7 ksi

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

Strose in tondon after all losses – f -Af		at midenan	at andenan
Stress in tendon after all losses = f_{pi} - Δf_{pt} layer 1	f _{pe} =	at midspan 171.9 ksi	at endspan 172.5 ksi
layer 2	f _{pe} =	171.9 ksi	172.5 ksi
layer 3	f _{pe} =	171.9 ksi	172.5 ksi
layer 4	f _{pe} =	171.9 ksi	172.5 ksi
layer 5	f _{pe} =	171.9 ksi	172.5 ksi
layer 6	f _{pe} =	171.9 ksi	
layer 7	f _{pe} =	171.9 ksi	
layer 8	f _{pe} =	171.9 ksi	
layer 9	f _{pe} =	171.9 ksi	172.5 ksi
layer 10	f _{pe} =		172.5 ksi
layer 11	f _{pe} =		172.5 ksi
layer 12	f _{pe} =		172.5 ksi
layer 13	f _{pe} =		172.5 ksi
layer 14	f _{pe} =		172.5 ksi
check prestressing stress limit at service limit state		3*fpv	
layer 1	=	205.4 ksi	
layer 2	=	205.4 ksi	
layer 3	=	205.4 ksi	7
layer 4	=	205.4 ksi	7
layer 5	=	205.4 ksi	+
layer 6	=	205.4 ksi	+
layer 7	=	205.4 ksi	1
layer 8	=	205.4 ksi	+
layer 9	=	205.4 ksi	=
layer 10	=	205.4 ksi	+
layer 11	=	205.4 ksi	
layer 12	=	205.4 ksi	
layer 13	=	205.4 ksi	
layer 14	=	205.4 ksi	
force per strand = f_{pe} *strand area		at midspan	at endspan
layer 1	=	14.6 kips	14.7 kips
layer 2	=	14.6 kips	14.7 kips
laver 3	=	14.6 kips	14.7 kips
layer 3	=	14.6 kips 14.6 kips	14.7 kips 14.7 kips
layer 4	=	14.6 kips	14.7 kips
layer 4 layer 5	=	14.6 kips 14.6 kips	-
layer 4 layer 5 layer 6	= =	14.6 kips 14.6 kips 14.6 kips	14.7 kips
layer 4 layer 5 layer 6 layer 7	= = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8	= = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9	= = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 10	= = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	= = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	= = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11	= = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	= = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips at endspan
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 12 layer 13 Total prestressing force after all losses	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips at endspan
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 122} \\ \text{layer 132} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses}, \% = (\Delta f_{pT})/(f_{pl}) \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 45.7 kips 46.8 kips 47.8 kips 48.8 kips
layer 4 layer 5 layer 6 layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13 layer 14 Total prestressing force after all losses Final losses, $\% = (\Delta f_{pT})/(f_{pl})$ layer 1	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.9 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 122} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 2} \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.9 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 2} \\ \text{layer 3} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 kips 14.10 kips
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 2} \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.9 kips 14.9 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 kips 14.9 kips 19.1% 19.1% 19.1%
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 2} \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 4} \\ \text{layer 5} \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 k
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{\text{pT}})/(f_{\text{pl}}) \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 k
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{\text{pT}})/(f_{\text{pl}}) \\ \text{layer 2} \\ \text{layer 2} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 19.1% 19.1% 19.1% 19.1%
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{\text{pT}})/(f_{\text{pl}}) \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 19.1% 19.1% 19.1% 19.1% 19.1%
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{pT})/(f_{pi}) \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 6} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 10} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 19.1% 19.1% 19.1% 19.1% 19.1% 19.1%
$layer\ 4$ $layer\ 5$ $layer\ 6$ $layer\ 7$ $layer\ 8$ $layer\ 9$ $layer\ 10$ $layer\ 11$ $layer\ 12$ $layer\ 13$ $layer\ 14$ $Total\ prestressing\ force\ after\ all\ losses$ $Final\ losses,\ \% = (\Delta f_{pT})/(f_{pl})$ $layer\ 1$ $layer\ 2$ $layer\ 3$ $layer\ 4$ $layer\ 5$ $layer\ 6$ $layer\ 7$ $layer\ 8$ $layer\ 9$ $layer\ 10$ $layer\ 10$ $layer\ 10$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 k
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{pT})/(f_{pl}) \\ \text{layer 1} \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 12} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1%
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$ $\begin{array}{c} \text{Total prestressing force after all losses} \\ \text{Final losses, } \% = (\Delta f_{\text{pT}})/(f_{\text{pl}}) \\ \text{layer 1} \\ \text{layer 2} \\ \text{layer 3} \\ \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 12} \\ \text{layer 13} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1%
$\begin{array}{c} \text{layer 4} \\ \text{layer 5} \\ \text{layer 6} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 7} \\ \text{layer 8} \\ \text{layer 9} \\ \text{layer 10} \\ \text{layer 11} \\ \text{layer 11} \\ \text{layer 12} \\ \text{layer 13} \\ \text{layer 14} \\ \end{array}$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.8 kips 14.9 kips 14.9 kips 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4% 19.4%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1% 19.1%

OK OK OK OK OK OK OK

Stresses at Transfer

STRESS LIMITS FOR CONCRETE				
Compression = 0.6f'ci	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION			
Transfer Length = 60*(strand diameter)	=	1.9 ft	
Bending moment at transfer length	M _g =	87.7 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	9.84 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in	
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in	
center of gravity of all strands and the bottom fiber of beam at the end	=	15.30 in	
Eccentricity of the strand group at transfer length:	e _h =	21.36 in	
Eccentricity at end of beam:	e =	21.30 in	

Calcs for eccentricity (see 9.6.7.2)

ок ок

ок

ок

$f_{\cdot} = \frac{P_i}{I} - \frac{P_i e}{I} + \frac{M_B}{I}$	$r = P_i + P_i s = M$
" A S, S,	$J_{\bullet} = \frac{1}{A} + \frac{1}{S_{\bullet}} = \frac{1}{A}$
	at midspa

oan at endspan Top stress at top fiber of beam $f_t =$ -0.017 ksi -0.017 ksi ок Bottom stress at bottom fiber of the beam $f_b =$ 2.906 ksi 2.906 ksi ок

STRESSES AT HARP POINT

Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.173 ksi	0.169 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi	
STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.320 ksi	0.345 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	=	227.4 ksi
layer 4	=	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	ı	227.4 ksi
layer 8	=	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

layer 1	=	19.3 kips
layer 2	=	19.3 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	=	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	=	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	=	19.3 kips
p Angle	Ψ =	7.2 °

=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	2.5 kips/strand
=	30.45 kips
	= = = = = = = = = = = = = = = = = = =

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi
for deck	=	1.800 ksi
Due to permanent and transient loads for load combination Service I		
for the precast beam	=	4.200 ksi
for deck	=	2.400 ksi

Tension:

Load Combination Service III for the precast beam = -0.016 ksi

STRESSES AT MIDS	<u>PAN</u>	
compression stresses at top fiber of beam	at midspan	at endspan
$f_{i} = \frac{P_{ys}}{A} - \frac{P_{ys}s}{S_{s}} + \frac{(M_{s} + M_{s})}{S_{s}} + \frac{C}{S_{s}}$	$\frac{M_{\tau_2}+M_{\phi})}{S_{\tau_2}}$	
Due to permanent loads $f_{tg} =$	2.106 ksi	2.103 ksi
$P_{p_s} = P_{p_s} c (M_g + M_s) (M_{p_s} + M_s)$	(M_b) (M_{EL_b})	
$I_{ij} = \frac{P_{ji}}{A} - \frac{P_{ji}c}{S_i} + \frac{(M_g + M_s)}{S_i} + \frac{(M_{uv} + M_s)}{S_{ij}}$		
Due to permanent loads and transient loads $f_{tq} =$	2.513 ksi	2.511 ksi
compression stresses at top fiber of deck	at midspan	at endspan
$f_{ts} = \frac{(M_{to} + M_{\delta})}{S_{tr}}$	<u>, , , , , , , , , , , , , , , , , , , </u>	
Due to permanent loads $f_{tc} =$	0.043 ksi	0.043 ksi
$f_{w} = \frac{(M_{ws} + M_b + M_B)}{S_{w}}$	_{(Z+1})	
Due to permanent loads and transient loads $f_{tc} =$	0.493 ksi	0.493 ksi
ension stresses at top fiber of deck	at midspan	at endspan
$f_{17} = \frac{P_{34}}{A} + \frac{P_{34}e}{S_3} - \frac{(M_{\pi} + M_3)}{S_3} - \frac{(M_{\pi i} + M_3)}{S_3}$	$\frac{M_s + 0.8*M_{max}}{\mathcal{L}_{s}}$	
<u> </u>		

Strength Lin	11t	State
--------------	-----	-------

POSITIVE MOMENT S	ECTION	
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	8381.5 ft-kips
effective length factor for compression members		
layer 1	k =	0.27
layer 2	k =	0.27
layer 3	k =	0.27
layer 4	k =	0.27
layer 5	k =	0.27
layer 6	k =	0.27
layer 7	k =	0.27
layer 8	k =	0.27
layer 9	k =	0.27
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k = c =	4.6 ft-kips
	0 -	4.0 It-Rips
average stress in prestressing steel		
layer 1	f _{ps} =	279.4 ksi
layer 2	f _{ps} =	279.4 ksi
layer 3	f _{ps} =	279.4 ksi
layer 4	f _{ps} =	279.4 ksi
layer 5	f _{ps} =	279.4 ksi
layer 6	f _{ps} =	279.4 ksi
layer 7	f _{ps} =	279.4 ksi
layer 8	f _{ps} =	279.4 ksi
layer 9	$f_{ps} =$	279.4 ksi
layer 10	f _{ps} =	279.4 ksi
layer 11	$f_{ps} =$	279.4 ksi
layer 12	$f_{ps} =$	279.4 ksi
layer 13	$f_{ps} =$	279.4 ksi
layer 14	$f_{ps} =$	279.4 ksi
nominal flexure resistance		
	a =	3.94 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9193.8 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips
NEGATIVE MOMENT S	ECTION	<u> </u>
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	4837.2 ft-kips
	a =	5.73 in
	$\Phi M_n =$	4879.0 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips
Shear Design		
CRITICAL SECTION A		
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	405.0 kips
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2684.4 ft-kips
or		
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	-2877.0 ft-kips
max shear	V _u =	405.0 kips
max moment	$M_u =$	2877.0 ft-kips
Shear depth	$d_v =$	73.19 in
	NI -	0
Applied factored normal force at the section Angle of diagonal compressive stresses	N _u =	36.00 °

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\in_{\mathbf{T}} = \frac{\frac{M_{y}}{d_{\gamma}} + 0.5N_{x} + 0.5V_{x} \cot \theta - A_{y,c}f_{y,c}}{S_{y}A_{y} + E_{y}A_{y,c}}$ - **s** 0.002

at midspan at endspan resultant compressive stress at centroid 0.901 ksi 0.903 ksi effective stress in prestressing strand after all losses

	-		
layer 1	f _{po} =	176.5 ksi	177.1 ksi
layer 2	f _{po} =	176.5 ksi	177.1 ksi
layer 3	f _{po} =	176.5 ksi	177.1 ksi
layer 4	f _{po} =	176.5 ksi	177.1 ksi
layer 5	f _{po} =	176.5 ksi	
layer 6	$f_{po} =$	176.5 ksi	
layer 7	f _{po} =	176.5 ksi	
layer 8	f _{po} =	176.5 ksi	
layer 9	$f_{po} =$		177.1 ksi
layer 10	f _{po} =		177.1 ksi
layer 11	f _{po} =		177.1 ksi
layer 12	$f_{po} =$		177.1 ksi
layer 13	f _{po} =		177.1 ksi
layer 14	f _{po} =		177.1 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	ε _x =	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	ε _x =	0.002000	
layer 7	ε _x =	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	ε _x =		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	ε _x =		0.002000
laver 14	ε,=		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.35 in	3.37 in
$\Delta_g =$	-1.52 in	
$\Delta_g =$	-1.30 in	
$\Delta_s =$	-1.99 in	

Deflection due to total self weight

 $\Delta_{sw} =$ 0.06 in

Total Deflection at transfer Total Deflection at erection

Δ =	1.83 in	1.85 in
Δ =	3.62 in	3.66 in

Live load deflection limit = span/800 Deflection due to live load and impact

=	-1.80 in
$\Delta_L =$	-0.80 in

ок

ок

Deflection due to fire truck Total Deflection after fire with fire truck $\Delta_L =$ -1.4796 in Δ = 1.9287 in

Parametric Design: Puyallup River Case Study Beam Design: 3/8" Strand

Fire Exposure Status: 1 Hour

Material Properties

CAST-IN-PLACE SLAB				
Actual Thickness	t _{as} =	8.0 in		
Wearing Surface	=	0.5 in		
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in		
Compressive Strength	f'c =	4 ksi		
Unit Weight	w _c =	150.0 pcf		
Stress factor of compression block	$\beta_1 =$	0.85		

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	5.02 ksi			
Unit Weight	w _c =	150.0 pcf			
Overall Beam Length:					
@ end spans	L =	110 ft			
@ center span	L =	119 ft			
Design Spans:					
Non-composite beam @ end spans	L =	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L =	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

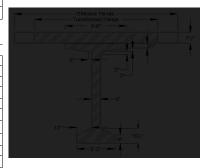
		PRESTRESSING STI	RANDS	
		Diameter of single strand	d =	0.4 in
		Area of single strand	A =	0.085 in^2
Temperature of	Layer			T
		layer 1 (bottom)	T =	1150.00 °F
		layer 2 layer 3	T = T =	340.00 °F 100.00 °F
		layer 4	T=	68.00 °F
		layer 5	T =	68.00 °F
		layer 6	T =	68.00 °F
		layer 7	T =	68.00 °F
		layer 8 layer 9	T = T =	68.00 °F 68.00 °F
		layer 10	T =	68.00 °F
		layer 11	T =	68.00 °F
		layer 12	T =	68.00 °F
		layer 13	T =	68.00 °F
Ultimate Streng	th	layer 14	T =	68.00 °F
intial =	284 ksi	layer 1 (bottom)	f _{pu} =	139 ksi
ii iii cii	20	layer 2	f _{pu} =	281 ksi
		layer 3	f _{pu} =	284 ksi
		layer 4	f _{pu} =	284 ksi
		layer 5	f _{pu} =	284 ksi
		layer 6	f _{pu} =	284 ksi
		layer 7	f _{pu} =	284 ksi
		layer 8	f _{pu} =	284 ksi
		layer 9	f _{pu} =	284 ksi
		layer 10	f _{pu} =	284 ksi
		layer 11	f _{pu} =	284 ksi
		layer 12	f _{pu} =	284 ksi
		layer 13	f _{pu} =	284 ksi
		layer 14	f _{pu} =	284 ksi
Yield Strength			,	,
intial =	257 ksi	layer 1 (bottom)	f _{py} =	139 ksi
		layer 2	f _{py} =	247 ksi
		layer 3	f _{py} =	254 ksi
		layer 4	f _{py} =	257 ksi
		layer 5	f _{py} =	257 ksi
		layer 6	f _{py} =	257 ksi
		layer 7	f _{py} =	257 ksi
		layer 8	f _{py} =	257 ksi
		layer 9	f _{py} =	257 ksi
		layer 10	f _{py} =	257 ksi
		layer 11	t _{py} =	257 ksi
		layer 12	f _{py} =	257 ksi
		layer 13	f _{py} =	257 ksi
Stress Limits:		layer 14	f _{py} =	257 ksi
before transfer	≤ 0.75f _m (i	initial = 202.5)		
	- pu (layer 1 (bottom)	f _{pi} =	104.4 ksi
		layer 2	f _{pi} =	211.0 ksi
		layer 3	f _{pi} =	213.2 ksi
		layer 4	f _{pi} =	213.2 ksi
		layer 5	f _{pi} =	213.2 ksi
		layer 6	f _{pi} =	213.2 ksi
		layer 7	f _{pi} =	213.2 ksi
		layer 8	f _{pi} =	213.2 ksi
		layer 9	f _{pi} =	213.2 ksi
		layer 10	f _{pi} =	213.2 ksi
		layer 11	f _{pi} =	213.2 ksi
		layer 12	f _{pi} =	213.2 ksi
		layer 13	f _{pi} =	213.2 ksi
		layer 14	$f_{pi} =$	213.2 ksi
				-

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

, ,	. ,	
layer 1 (bottom)	f _{pe} =	110.9 ksi
layer 2	f _{pe} =	197.2 ksi
layer 3	f _{pe} =	203.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{ne} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

yer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	27192.9 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
rea of temperature and shrinkage steel (12" width)	A _c +=	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	411,881 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	40.3 in		
Distance from centroid to extreme top fiber	$y_t =$	31.7 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	4295 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.8926 Transformed flange width 99.1 in = Transformed flange area 743.1 in^2 Transformed haunch width Transformed haunch area 18.7 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	40.31 in	30,917.8 in^3	244,676 in^4	411,881 in^4	656,557 in^4
Haunch	18.7 in^2	72.25 in	1,354.4 in^3	3,716 in^4	0.33 in^4	3,716 in^4
Deck	743.1 in^2	76.25 in	56,663.3 in^3	242,900 in^4	2,950 in^4	245,849 in^4
Total	1528.9 in^2		88,935.5 in^3			906,123 in^4

Total area of Composite Section	A _c =	1529 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	906,123 in^4
Distance from centroid to extreme $\underline{\text{bottom}}$ fiber of beam	y _{bc} =	58.17 in
Distance from centroid to extreme \underline{top} fiber of beam	y _{tg} =	13.83 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	21.83 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	15,577.0 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	65,521.8 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	46,501.7 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck} = 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant
Number of beams is not less than four N_b =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK 1.5 Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

P_{live} = Fire truck live load front load (Point A) 48.0 kips Fire truck live load back load (Point B) P_{live}= 22.0 kips 19.2 ft distance between two loads distance from nearest edge to point A 59.0 ft x_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant OK Number of beams is not less than four N_b = ОК Beams are parallel and approximately of the same stiffness Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$ OK ок Curvature in plans is less than 4°= OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.1203
Longitudinal stiffness parameter	K _q =	1,812,256.42 in^4

at center span: DFM = 0.885 lanes/beam

one design lane loaded:

DFM = 0.601 lanes/beam

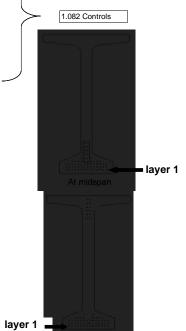
Distribution Factor for Shear Force

both end spans and center span:

$$DFY = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:


$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8		14	-	-
layer 9		16	2	60
layer 10	1	-	2	62
layer 11	-	=-	2	64
layer 12		-	2	66
layer 13		-	2	68
layer 14		-	2	70
	64		64	
		cluded in above totals)		
layer 3		6		
layer 4	2	8		
layer 5	2	10		•
layer 6	2	12		•
layer 7	2	14		•
layer 8	2	16		<u> </u>

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.44 in
e _c =	34.87 in

0.905 Controls

Prestress Losses

ELASTIC SHORTEI	NING	
assumed loss	=	6.00%
Force per strand at transfer		
layer 1	=	8.3 kips
layer 2	=	16.9 kips
layer 3	=	17.0 kips
layer 4	=	17.0 kips
layer 5	=	17.0 kips
layer 6	=	17.0 kips
layer 7	=	17.0 kips
layer 8	=	17.0 kips
layer 9	=	17.0 kips
layer 10	=	17.0 kips
layer 11	=	17.0 kips
layer 12	=	17.0 kips
layer 13	=	17.0 kips
layer 14	=	17.0 kips

		at midspan	at endspan
	_		
Total prestressing force at release	$P_i =$	964.8 kips	930.8 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.694 ksi	2.549 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	15.5 ksi	14.7 ksi
layer 2	$\Delta f_{pES} =$	16.3 ksi	15.4 ksi
layer 3	$\Delta f_{pES} =$	15.5 ksi	14.7 ksi
layer 4	$\Delta f_{pES} =$	15.5 ksi	14.7 ksi
layer 5	$\Delta f_{pES} =$	15.5 ksi	14.7 ksi
layer 6	$\Delta f_{pES} =$	15.5 ksi	
layer 7	$\Delta f_{pES} =$	15.5 ksi	
layer 8	$\Delta f_{pES} =$	15.5 ksi	
layer 9	$\Delta f_{pES} =$	15.5 ksi	14.7 ksi
layer 10	$\Delta f_{pES} =$		14.7 ksi
layer 11	$\Delta f_{pES} =$		14.7 ksi
layer 12	$\Delta f_{pES} =$	·	14.7 ksi
layer 13	$\Delta f_{pES} =$		14.7 ksi
layer 14	$\Delta f_{pES} =$		14.7 ksi

 $\Delta f_{pSR} =$ 6.5 ksi assume relative humidity = 70%

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

OF FRESTRESSING STRAINDS					
		at midspan	at endspan		
layer 1	$\Delta f_{pR2} =$	2.8 ksi	2.9 ksi		
layer 2	$\Delta f_{pR2} =$	2.7 ksi	2.8 ksi		
layer 3	$\Delta f_{pR2} =$	2.8 ksi	2.9 ksi		
layer 4	$\Delta f_{pR2} =$	2.8 ksi	2.9 ksi		
layer 5	$\Delta f_{pR2} =$	2.8 ksi	2.9 ksi		
layer 6	$\Delta f_{pR2} =$	2.8 ksi			
layer 7	$\Delta f_{pR2} =$	2.8 ksi			
layer 8	$\Delta f_{pR2} =$	2.8 ksi			
layer 9	$\Delta f_{pR2} =$	2.8 ksi	2.9 ksi		
layer 10	$\Delta f_{pR2} =$		2.9 ksi		
layer 11	$\Delta f_{pR2} =$		2.9 ksi		
layer 12	$\Delta f_{pR2} =$		2.9 ksi		
layer 13	$\Delta f_{pR2} =$		2.9 ksi		
layer 14	$\Delta f_{pR2} =$		2.9 ksi		

TOTAL LOSSES AT TRANSFER

TOTAL LOSSES	AT TRA	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	$f_{pt} =$	88.9 ksi	89.8 ksi
layer 2	$f_{pt} =$	194.7 ksi	195.6 ksi
layer 3	$f_{pt} =$	197.6 ksi	198.5 ksi
layer 4	$f_{pt} =$	197.6 ksi	198.5 ksi
layer 5	$f_{pt} =$	197.6 ksi	198.5 ksi
layer 6	$f_{pt} =$	197.6 ksi	
layer 7	$f_{pt} =$	197.6 ksi	
layer 8	$f_{pt} =$	197.6 ksi	
layer 9	$f_{pt} =$	197.6 ksi	198.5 ksi
layer 10	$f_{pt} =$		198.5 ksi
layer 11	f _{pt} =		198.5 ksi
layer 12	f _{pt} =		198.5 ksi
layer 13	f _{pt} =		198.5 ksi
layer 14	f _{pt} =		198.5 ksi
force per strand = f _{pt} *strand area		at midspan	at endspan
layer 1	=	7.6 kips	7.6 kips
layer 2	=	16.6 kips	16.6 kips
layer 3	=	16.8 kips	16.9 kips
layer 4	=	16.8 kips	16.9 kips
layer 5	=	16.8 kips	16.9 kips
layer 6	=	16.8 kips	
layer 7	=	16.8 kips	
layer 8	=	16.8 kips	
layer 9	=	16.8 kips	16.9 kips
layer 10	=		16.9 kips
layer 11	=		16.9 kips
layer 12	=		16.9 kips
layer 13	=		16.9 kips
layer 14	=		16.9 kips
Total prestressing force after transfer	P _i =	910.0 kips	913.4 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	14.9%	14.1%
layer 2	% =	7.7%	7.3%
layer 3	% =	7.3%	6.9%
layer 4	% =	7.3%	6.9%
layer 5	% =	7.3%	6.9%
layer 6	% =	7.3%	
layer 7	% =	7.3%	
layer 8	% =	7.3%	
layer 9	% =	7.3%	6.9%
layer 10	% =		6.9%
layer 11	% =		6.9%
layer 12	% =		6.9%
layer 13	% =		6.9%
layer 14	% =		6.9%
TOTAL LOSSES A	T SERVI	CE LOADS	*
Total Losses		at midspan	at endspan
ı			

		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	41.0 ksi	40.2 ksi
layer 2	$\Delta f_{pT} =$	41.8 ksi	40.9 ksi
layer 3	$\Delta f_{pT} =$	41.0 ksi	40.2 ksi
layer 4	$\Delta f_{pT} =$	41.0 ksi	40.2 ksi
layer 5	$\Delta f_{pT} =$	41.0 ksi	40.2 ksi
layer 6	$\Delta f_{pT} =$	41.0 ksi	
layer 7	$\Delta f_{pT} =$	41.0 ksi	
layer 8	$\Delta f_{pT} =$	41.0 ksi	
layer 9	$\Delta f_{pT} =$	41.0 ksi	40.2 ksi
layer 10	$\Delta f_{pT} =$		40.2 ksi
layer 11	$\Delta f_{pT} =$		40.2 ksi
layer 12	$\Delta f_{pT} =$		40.2 ksi
layer 13	$\Delta f_{pT} =$		40.2 ksi
layer 14	$\Delta f_{pT} =$		40.2 ksi

ок ок ок ок ок ок ок ок ок ок ок ок OK OK

Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer	f _{pe} =	63.4 ksi	64.3 ksi
layer 2		169.2 ksi	170.1 ksi
layer 3		172.1 ksi	173.0 ksi
layer 4		172.1 ksi	173.0 ksi
layer 5		172.1 ksi	173.0 ksi
layer 6	-	172.1 ksi	
layer 7		172.1 ksi	
layer 8		172.1 ksi	
layer 9		172.1 ksi	173.0 ksi
layer 10			173.0 ksi
layer 1	-		173.0 ksi
layer 12			173.0 ksi
layer 13			173.0 ksi
layer 14			173.0 ksi
check prestressing stress limit at service limit state		8*fpy	
layer ²		110.9 ksi	
layer 2		197.2 ksi	
layer 3		203.4 ksi	
layer 4		205.4 ksi	
layer 5		205.4 ksi	1
layer 6		205.4 ksi	
layer 7		205.4 ksi	
layer 8		205.4 ksi	
layer S		205.4 ksi	
layer 10		205.4 ksi	
layer 1		205.4 ksi	
layer 12		205.4 ksi	
layer 13		205.4 ksi	
layer 14		205.4 ksi	
force per strand = f _{pe} *strand area		at midspan	at endspan
layer	=	5.4 kips	5.5 kips
layer 2		14.4 kips	14.5 kips
layer 3		14.6 kips	14.7 kips
•			
layer 4	=		
layer 4 layer 5		14.6 kips	14.7 kips
layer 5	=	14.6 kips 14.6 kips	
layer 6	i =	14.6 kips 14.6 kips 14.6 kips	14.7 kips
layer \$ layer 6 layer 7	5 = 6 = 7 =	14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips
layer 5 layer 6 layer 7 layer 8	5 = 5 = 7 = 8 =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips
layer S layer 6 layer 7 layer 8 layer 8	5 = 6 = 7 = 8 = 9 =	14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips
layer 5 layer 6 layer 7 layer 8 layer 9 layer 10	5 = 5 = 7 = 8 = 9 = 9 = 9 = 9 = 9 = 9 = 9 = 9 = 9	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 5 layer 0 layer 1 layer 10 layer 10 layer 10	5 = 5 = 7 = 8 = = 9 = = = 9	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 5 layer 0 layer 1 layer 10 layer 10 layer 11 layer 12	5 = 5 = 7 = 8 = 9 = 9 = 2 = 2 =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 5 layer 0 layer 1 layer 10 layer 10 layer 11 layer 12 layer 12		14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 5 layer 0 layer 1 layer 10 layer 10 layer 11 layer 12	5 = 5 = 7 = 8 = 9 = 9 = 9 = 9 = 9 = 9 = 9	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 5 layer 6 layer 7 layer 7 layer 11 layer 12 layer 12 layer 12 layer 12 layer 12		14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips
layer 5 layer 6 layer 6 layer 7 layer 8 layer 10 layer 10 layer 11 layer 12 layer 12 layer 13 layer 14 layer 15 layer 15 layer 15 layer 16 layer 16 layer 17 layer 17 layer 18 layer 19 layer 1	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 24.7 kips 35.2 kips 26.2 kips
layer ξ layer ξ	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.8 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 35.5%
$\begin{array}{c} \text{layer } S \\ \text{layer }$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 kips 14.9 kips	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 38.5 kips 38.5 kips 38.5 kips
$\begin{array}{c} \text{layer } s\\ \text{layer } s$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.0 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 35.8 kips 38.5% 39.2% 38.5%
$\begin{array}{c} \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 8\\ \text{layer } 8\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 2\\ \text{layer } 2\\ \text{layer } 3$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.0 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 35.8 kips 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 1\\ \text{layer } 2\\ \text{layer } 2\\ \text{layer } 3$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 14.9 kips 15.0 kips 16.0 kips 17.0 kips 18.0 kips 18.0 kips 19.0 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 35.8 kips 38.5% 39.2% 38.5%
$\begin{array}{c} \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 1\\ \text{layer } 2\\ \text{layer } 3$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 39.3% 40.0% 39.3% 39.3% 39.3% 39.3%	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 35.8 kips 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } s\\ \text{layer } 1s\\ \text{layer } 1s\\ \text{layer } 1s\\ \text{layer } 1s\\ \text{layer } 1s\\ \text{layer } 1s\\ \text{layer } 1s\\ \text{layer } 1s\\ \text{layer } s\\ l$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.0 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 35.8 kips 38.5% 38.5% 38.5% 38.5%
layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω layer Ω Ω layer Ω	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 38.5% 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 12\\ \text{layer } 12\\ \text{layer } 12\\ \text{layer } 12\\ \text{layer } 13\\ \text{layer } 14\\ \text{layer } 14\\ \text{layer } 14\\ \text{layer } 15\\ \text{layer } 16\\$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.0 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 34.8 endspan 808.2 kips 38.5% 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 12\\ \text{layer } 12\\ \text{layer } 12\\ \text{layer } 12\\ \text{layer } 13\\ \text{layer } 14\\ \text{layer } 14\\ \text{layer } 14\\ \text{layer } 14\\ \text{layer } 15\\ \text{layer } 16\\$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 6\\ \text{layer } 8\\ \text{layer } 12\\ $	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 14.8 kips 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} layer for layer f$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} \text{layer } s\\ \text{layer } s$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 34.7 kips 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5%
$\begin{array}{c} layer for layer f$	= = = = = = = = = = = = = = = = = = =	14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.6 kips 14.7 kips 14.8 kips 14.8 kips 14.9 k	14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 14.7 kips 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5% 38.5%

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

Stresses at Transfer

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	$M_g =$	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	=	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	Ш	15.30 in		
Eccentricity of the strand group at transfer length:	e _h =	25.07 in		
Eccentricity at end of beam:	e =	25.01 in		

Calcs for eccentricity (see 9.6.7.2)

zoonineny at ona or zoann	0 -	20.01 111		
$f_t = \frac{P_i}{A} - \frac{P_i s}{S_t} + \frac{M_s}{S_t}$	f , =	$=\frac{P_i}{A}+\frac{P_{i\sigma}}{S_{\bullet}}-\frac{M_E}{S_{\bullet}}$		
		at midspan	at endspan	
Top stress at top fiber of beam	f _t =	-0.225 ksi	-0.226 ksi	ок
Bottom stress at bottom fiber of the beam	$f_b =$	2.809 ksi	2.809 ksi	ок
STRESSES AT	HARP	POINT	_	
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.053 ksi	0.050 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	2.558 ksi	2.371 ksi	ок
STRESSES A	AT MIDS	PAN		
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.177 ksi	0.226 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	2.376 ksi	2.189 ksi	ок

HOLD-DOWN FORCES assume stress in strand before losses = 0.8f_u

layer 1	=	111.4 ksi
layer 2	=	225.1 ksi
layer 3	=	227.4 ksi
layer 4	=	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	=	227.4 ksi
layer 8	=	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	II	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

layer 1	=	9.5 kips
layer 2	=	19.1 kips
layer 3	=	19.3 kips
layer 4	=	19.3 kips
layer 5	=	19.3 kips
layer 6	=	19.3 kips
layer 7	=	19.3 kips
layer 8	-	19.3 kips
layer 9	=	19.3 kips
layer 10	=	19.3 kips
layer 11	-	19.3 kips
layer 12	=	19.3 kips
layer 13	=	19.3 kips
layer 14	-	19.3 kips
p Angle	ψ =	7.2 °

layer 1	=	1.2 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	ı	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	2.259 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam = 3.012 ksi			
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

-0.013 ksi for the precast beam =

STRESSES AT MII	DSPAN_		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{i} = \frac{P_{pu}}{A} - \frac{P_{gd}e}{S_{i}} + \frac{(M_{g} + M_{s})}{S_{t}}$	$+\frac{(M_w + M_s)}{S_w}$		
Due to permanent loads $f_{tg} =$	2.005 ksi	2.000 ksi	0
$f_{tx} = \frac{P_{tx}}{A} - \frac{P_{yx}\sigma}{S_{z}} + \frac{(M_{x} + M_{y})}{S_{z}} + \frac{(M_{x} + M_{y})}{S_{z}}$	$\frac{N_{\rm g}-M_b}{N_{\rm g}} + \frac{(M_{\rm ff,sl})}{N_{\rm g}}$		
Due to permanent loads and transient loads f _{tg} =	2.392 ksi	2.387 ksi	0
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{ts} = \frac{(M_{us} + h)}{S_{ts}}$	<u>4.,)</u>		
Due to permanent loads f_{tc} =	0.052 ksi	0.052 ksi	o
$f_{w} = \frac{(M_{w} + M_{s} + M_{s})}{S_{w}}$	M)		
Due to permanent loads and transient loads f_{tc} =	0.598 ksi	0.598 ksi	O
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ij} = \frac{P_{ji}}{A} + \frac{P_{ji}s}{N_j} - \frac{(M_{\pi} + M_s)}{S_s} - \frac{(M_{\pi i})}{N_{\pi i}}$	$\frac{+M_z+0.8*M_{Ed}}{\mathcal{Z}_{tr}}$		
Load Combination Service III f _b =	-1.362 ksi	-1.345 ksi	0

Strength L	imit	State
------------	------	-------

POSITIVE MOMENT S	ECTION		
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	8381.5 ft-kips	
effective length factor for compression members			
layer 1	k =	0.09	
layer 2	k =	0.33	
layer 3	k =	0.29	
layer 4	k =	0.27	
layer 5	k =	0.27	
layer 6	k =	0.27	
layer 7	k =	0.27	
layer 8	k =	0.27	
layer 9	k =	0.27	
layer 10	k =	0.27	
layer 11	k =	0.27	
layer 12	k =	0.27	
layer 13	k =	0.27	
layer 14	k =	0.27	
	c =	4.1 ft-kips	
verage stress in prestressing steel			
layer 1	$f_{ps} =$	138.6 ksi	
layer 2	$f_{ps} =$	280.0 ksi	
layer 3	$f_{ps} =$	282.8 ksi	
layer 4	$f_{ps} =$	282.8 ksi	
layer 5	$f_{ps} =$	282.8 ksi	
layer 6	f _{ps} =	282.8 ksi	
layer 7	$f_{ps} =$	282.8 ksi	
layer 8	$f_{ps} =$	282.8 ksi	
layer 9	$f_{ps} =$	282.8 ksi	
layer 10	$f_{ps} =$	282.8 ksi	
layer 11	$f_{ps} =$	282.8 ksi	
layer 12	f _{ps} =	282.8 ksi	
layer 13	$f_{ps} =$	282.8 ksi	
layer 14	f _{ps} =	282.8 ksi	
ominal flexure resistance			
	a =	3.49 in	
$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	8224.2 ft-kips	NOT O
M=DC+W+LL+IM	M =	5833.6 ft-kips	ок
NEGATIVE MOMENT S	SECTION	1	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	4837.2 ft-kips	
	a =	7.99 in	
	ФМ _п =	4803.8 ft-kips	NOT O
M=DC+W+LL+IM	M =	2869.7 ft-kips	ок
ear Design CRITICAL SECTION	AT 0 50		
V _u = 1.25DC+1.5DW+1.75(LL+IM)		405.0 kina	
$M_{ij} = 1.25DC + 1.5DW + 1.75(LL + IM)$ $M_{ij} = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	405.0 kips	
	$M_u =$	-2684.4 ft-kips	
or V = 1.25DC+1.5DW+1.75(LL+IM)	V -	364 8 kina	
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips	
IVIU - 1.2000+1.0000+1.70(LL+IIVI)	$M_u =$	-2877.0 ft-kips	
max shear	V _u =	405.0 kips	
may mamont	N/I —	2977 0 ft king	

max moment

Applied factored normal force at the section $N_u =$

Angle of diagonal compressive stresses $\theta =$

Shear depth

 $M_u =$

d_v=

2877.0 ft-kips

73.19 in

0

36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\epsilon_a = \frac{\frac{M_a}{d_y} + 0.5M_a + 0.5M_a \cot \theta - A_{pa}f_{pa}}{E_3A_3 + E_pA_p} \le 0.002$

at midspan at endspan resultant compressive stress at centroid f_{pc} = 0.623 ksi 0.624 ksi effective stress in prestressing strand after all losses

	-		
layer 1	f _{po} =	67.2 ksi	68.0 ksi
layer 2	f _{po} =	173.2 ksi	174.1 ksi
layer 3	f _{po} =	175.9 ksi	176.7 ksi
layer 4	f _{po} =	175.9 ksi	176.7 ksi
layer 5	f _{po} =	175.9 ksi	
layer 6	f _{po} =	175.9 ksi	
layer 7	f _{po} =	175.9 ksi	
layer 8	f _{po} =	175.9 ksi	
layer 9	f _{po} =		176.7 ksi
layer 10	f _{po} =		176.7 ksi
layer 11	f _{po} =		176.7 ksi
layer 12	f _{po} =		176.7 ksi
layer 13	f _{po} =		176.7 ksi
layer 14	f _{po} =		176.7 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	ε _x =	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	ε _x =	0.002000	0.002000
layer 5	ε _x =	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	ε _x =	0.002000	
layer 8	ε _x =	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\varepsilon_x =$		0.002000
layer 11	ε _x =		0.002000
layer 12	ε _x =		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.35 in	3.29 in
$\Delta_g =$	-1.95 in	
$\Delta_g =$	-1.97 in	
$\Delta_s =$	-3.01 in	

Deflection due to total self weight

 $\Delta_{sw} =$ -1.63 in

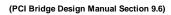
Total Deflection at transfer Total Deflection at erection

Δ =	1.40 in	1.35 in
Δ =	2.39 in	2.28 in

Live load deflection limit = span/800 Deflection due to live load and impact

=	-1.80 in
$\Delta_L =$	-1.13 in

ок


Deflection due to fire truck

-2.2365 in $\Delta_L =$ Total Deflection after fire with fire truck -0.5193 in Δ=

NOT OK

Parametric Design: Puyallup River Case Study Beam Design: 3/8" Strand

Fire Exposure Status: 2 Hours

Material Properties

CAST-IN-PLACE SLAB		
Actual Thickness	t _{as} =	8.0 in
Wearing Surface	=	0.5 in
Structural thickness = Actual - Wearing Surface	t _s =	7.5 in
Compressive Strength	f'c =	4 ksi
Unit Weight	w _c =	150.0 pcf
Stress factor of compression block	β ₁ =	0.85

BEAMS: AASHTO-PCI, BT-72 BULB-TEE			
Strength at release	f'ci =	5.5 ksi	
Strength at 28 days	f'c =	4.40 ksi	
Unit Weight	w _c =	150.0 pcf	
Overall Beam Length:			
@ end spans	L =	110 ft	
@ center span	L =	119 ft	
Design Spans:			
Non-composite beam @ end spans	L =	109 ft	
Non-composite beam @ center span	L =	118 ft	
Composite beam @ end spans	L=	110 ft	
Composite beam @ center span	L =	120 ft	
Beam Spacing	S =	12 ft	

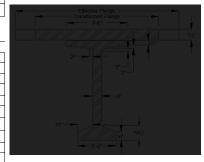
	PRESTRESSING STR	RANDS	
	iameter of single strand	d =	0.375 in
	Area of single strand		0.085 in^2
Temperature of Layer	ı		1
	layer 1 (bottom)	T =	1580.00 °F
	layer 2	T =	780.00 °F
	layer 3 layer 4	T = T =	255.00 °F 68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9	T =	68.00 °F
	layer 10 layer 11	T = T =	68.00 °F 68.00 °F
	layer 12	T=	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength	1		I
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	94 ksi
	layer 2	$f_{pu} =$	256 ksi
	layer 3	$f_{pu} =$	284 ksi
	layer 4	$f_{pu} =$	284 ksi
	layer 5	$f_{pu} =$	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	$f_{pu} =$	284 ksi
	layer 8	$f_{pu} =$	284 ksi
	layer 9	$f_{pu} =$	284 ksi
	layer 10	$f_{pu} =$	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength		•	
intial = 257 ksi	layer 1 (bottom)	$f_{py} =$	98 ksi
	layer 2	$f_{py} =$	252 ksi
	layer 3	$f_{py} =$	257 ksi
	layer 4	$f_{py} =$	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	$f_{py} =$	257 ksi
	layer 7	$f_{py} =$	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	f _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{pv} =	257 ksi
Stress Limits:	•		
before transfer $\leq 0.75f_{pu}$ (ini	tial = 202.5)		
	layer 1 (bottom)	$f_{pi} =$	70.3 ksi
	layer 2	f _{pi} =	191.8 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	-	f _{pi} =	213.2 ksi
	layer / l		
	layer 7 layer 8		213.2 ksi
	layer 8	f _{pi} =	213.2 ksi 213.2 ksi
	layer 8 layer 9	f _{pi} =	213.2 ksi
	layer 8 layer 9 layer 10	$f_{pi} =$ $f_{pi} =$ $f_{pi} =$	213.2 ksi 213.2 ksi
	layer 8 layer 9 layer 10 layer 11	$f_{pi} = f$	213.2 ksi 213.2 ksi 213.2 ksi
	layer 8 layer 9 layer 10 layer 11 layer 12	$f_{pi} = f$	213.2 ksi 213.2 ksi 213.2 ksi 213.2 ksi
	layer 8 layer 9 layer 10 layer 11	$f_{pi} = f$	213.2 ksi 213.2 ksi 213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 194.4)

/ py (- ,	
layer 1 (bottom)	f _{pe} =	78.1 ksi
layer 2	f _{pe} =	201.3 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	f _{pe} =	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	f _{pe} =	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity intial = 25898 ksi

layer 1 (bottom)	E =	27192.9 ksi
layer 2	E =	27710.9 ksi
layer 3	E =	27710.9 ksi
layer 4	E =	27710.9 ksi
layer 5	E =	27710.9 ksi
layer 6	E =	27451.9 ksi
layer 7	E =	26933.9 ksi
layer 8	E =	27192.9 ksi
layer 9	E =	27192.9 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
layer 14	E =	25898.0 ksi


REINFORCING BARS

Yield Strength	f _y =	57.6 ksi
Modulus of Elasticity	E =	29000.0 ksi

Area of steel at endspan (effective flange)	A _{se} =	15.4 in^2
Area of steel at midspan (effective flange)	A _{sm} =	0.0 in^2
Area of temperature and shrinkage steel (12" width)	A=	0.0 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	386,902 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	43.7 in		
Distance from centroid to extreme top fiber	$y_t =$	28.3 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	E _{cs} =	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	4021 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} n = 0.9535 Transformed flange width 105.8 in = Transformed flange area 793.8 in^2 Transformed haunch width 40.0 in Transformed haunch area 20.0 in^2

*min of three criteria

	Transformed Area	y _b	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	43.67 in	33,494.9 in^3	214,457 in^4	386,902 in^4	601,359 in^4
Haunch	20.0 in^2	72.25 in	1,446.6 in^3	2,816 in^4	0.33 in^4	2,816 in^4
Deck	793.8 in^2	76.25 in	60,524.0 in^3	199,626 in^4	2,950 in^4	202,576 in^4
Total	1580.8 in^2		95,465.5 in^3			806,751 in^4

Total area of Composite Section	A _c =	1581 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	806,751 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	60.39 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	11.61 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	19.61 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	13,358.7 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	69,496.0 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	43.150.8 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight W_{beam} = 0.799 k/f 8 in. deck weight w_{deck}= 1.200 k/f 1/2 in. haunch weight W_{haunch} = 0.022 k/f

LRFD Specifications: Art. 4.6.2.2.1

Width of Deck Constant
Number of beams is not less than four N₅ =
Roadway part of the overhang, d_e ≤ 3.0 ft, d_e = OK OK OK Curvature in plans is less than 4°= ОК Cross-section of the bridge is consistent with one of the cross OK sections given by LRFD specs

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt Wt = 0.150 k/f Dead load of future wearing surface DW = 0.263 k/f

LIVE LOADS

Fire truck live load front load (Point A) P_{live} = 48.0 kips Fire truck live load back load (Point B) P_{live} = 22.0 kips distance between two loads 19.2 ft distance from nearest edge to point A 59.0 ft X_a = distance from nearest edge to point B 39.8 ft $X_b =$

LRFD Specifications: Art. 4.6.2.2.1 Width of Deck Constant ОК Number of beams is not less than four N_b = OK Beams are parallel and approximately of the same stiffness Roadway part of the overhang, d_e \leq 3.0 ft, d_e = OK ОК Curvature in plans is less than 4°= ОК

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.0488
Longitudinal stiffness parameter	K _q =	1,670,458.43 in^4

at center span: DFM = 0.878 lanes/beam

one design lane loaded: $DPM = 0.75 + \left(\frac{N}{14}\right)^{0.4} * \left(\frac{N}{L}\right)^{0.3} * \left(\frac{K_g}{12*L*E_s^3}\right)^{0.1}$ DFM = 0.596 lanes/beam

Distribution Factor for Shear Force

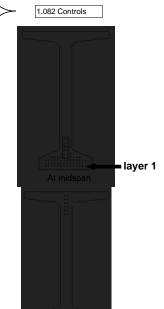
both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 : \left(\frac{S}{25}\right)$$


DFV = 0.840 lanes/beam

At Midspan		At Midspan	At Ends	
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10	-	-
layer 7	2	12	-	-
layer 8	2	14	-	-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
	64	•	64	
Harped Stra	nd Group (in	cluded in above totals)		
layer 3	2	6		
layer 4	2	8		
layer 5	2	10		
layer 6	2	12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = $(y_b - y_{bs})$

y _{bs} =	5.44 in
e _c =	38.23 in

layer 1

0.905 Controls

P

ELASTIC SHORTE	NING		<u> </u>	
assumed loss	=	6.00%		
Force per strand at transfer			<u> </u>	
layer 1	=	5.6 kips		
layer 2	=	15.3 kips		
layer 3	=	17.0 kips		
layer 4	=	17.0 kips		
layer 5	=	17.0 kips		
layer 6	=	17.0 kips		
layer 7	=	17.0 kips		
layer 8	=	17.0 kips		
layer 9	=	17.0 kips		
layer 10	=	17.0 kips		
layer 11	=	17.0 kips		
layer 12	=	17.0 kips		
layer 13	=	17.0 kips	_	
layer 14	=	17.0 kips	_	
	Ì	at midspan	at endspan	
Total prestressing force at release	P _i =	904.6 kips	870.6 kips	
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.948 ksi	2.775 ksi	
Loss due to shortening		at midspan	at endspan	
layer 1	$\Delta f_{pES} =$	17.8 ksi	16.8 ksi	
layer 2	$\Delta f_{pES} =$	18.2 ksi	17.1 ksi	
layer 3	$\Delta f_{pES} =$	18.2 ksi	17.1 ksi	
layer 4	$\Delta f_{pES} =$	18.2 ksi	17.1 ksi	
layer 5	$\Delta f_{pES} =$	18.2 ksi	17.1 ksi	
layer 6	$\Delta f_{pES} =$	18.0 ksi		
layer 7	$\Delta f_{pES} =$	17.7 ksi		
layer 8	$\Delta f_{pES} =$	17.8 ksi		
	$\Delta f_{pES} =$	17.8 ksi	16.8 ksi	
	$\Delta f_{pES} =$		16.0 ksi	
layer 11	F-0		16.0 ksi	
lover 12	$\Delta f_{pES} =$		16.0 ksi	
			16.0 ksi	
layer 13	$\Delta f_{pES} =$			-
			16.0 ksi	
layer 13 layer 14	$\Delta f_{pES} =$			<u> </u> -
layer 13 layer 14 SHRIN		6.5 ksi		assume relative humidity = 70%
layer 13 layer 14 SHRIN Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pES} =$ IKAGE $\Delta f_{pSR} =$			assume relative humidity = 70%
layer 13 layer 14	$\Delta f_{pES} =$ IKAGE $\Delta f_{pSR} =$			assume relative humidity = 70%

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}		2.686 ksi		
		at midspan	at endspan	
loss due to creep	$\Delta f_{pCR} =$	16.6 ksi	14.5 ksi	

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 2	$\Delta f_{pR2} =$	2.4 ksi	2.6 ksi
layer 3	$\Delta f_{pR2} =$	2.4 ksi	2.6 ksi
layer 4	$\Delta f_{pR2} =$	2.4 ksi	2.6 ksi
layer 5	$\Delta f_{pR2} =$	2.4 ksi	2.6 ksi
layer 6	$\Delta f_{pR2} =$	2.5 ksi	
layer 7	$\Delta f_{pR2} =$	2.5 ksi	
layer 8	$\Delta f_{pR2} =$	2.5 ksi	
layer 9	$\Delta f_{pR2} =$	2.5 ksi	2.6 ksi
layer 10	$\Delta f_{pR2} =$		2.7 ksi
layer 11	$\Delta f_{pR2} =$		2.7 ksi
layer 12	$\Delta f_{pR2} =$		2.7 ksi
layer 13	$\Delta f_{pR2} =$		2.7 ksi
layer 14	$\Delta f_{pR2} =$		2.7 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$			
stress in tendons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	$f_{pt} =$	52.5 ksi	53.6 ksi
layer 2	$f_{pt} =$	173.7 ksi	174.7 ksi
layer 3	$f_{pt} =$	195.0 ksi	196.0 ksi
layer 4	$f_{pt} =$	195.0 ksi	196.0 ksi
layer 5	$f_{pt} =$	195.0 ksi	196.0 ksi
layer 6	$f_{pt} =$	195.2 ksi	
layer 7	$f_{pt} =$	195.5 ksi	
layer 8	$f_{pt} =$	195.3 ksi	
layer 9	$f_{pt} =$	195.3 ksi	196.4 ksi
layer 10	$f_{pt} =$		197.2 ksi
layer 11	$f_{pt} =$		197.2 ksi
layer 12	$f_{pt} =$		197.2 ksi
layer 13	$f_{pt} =$		197.2 ksi
layer 14	$f_{pt} =$		197.2 ksi
force per strand = f_{pt} *strand area		at midspan	at endspan
layer 1	=	4.5 kips	4.6 kips
layer 2	=	14.8 kips	14.9 kips
layer 3	=	16.6 kips	16.7 kips
layer 4	=	16.6 kips	16.7 kips
layer 5	=	16.6 kips	16.7 kips
layer 6	=	16.6 kips	
layer 7	=	16.6 kips	
layer 8	=	16.6 kips	
layer 9	=	16.6 kips	16.7 kips
layer 10	=		16.8 kips
layer 11	=		16.8 kips
layer 12	=		16.8 kips
layer 13	=		16.8 kips
layer 14	=		16.8 kips
Total prestressing force after transfer	$P_i =$	834.6 kips	841.8 kips
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	25.3%	23.9%
layer 2	% =	9.5%	8.9%
layer 3	% =	8.5%	8.0%
layer 4	% =	8.5%	8.0%
layer 5	% =	8.5%	8.0%
layer 6	% =	8.4%	
layer 7	% =	8.3%	
layer 8	% =	8.4%	
layer 9	% =	8.4%	7.9%
layer 10	% =		7.5%
layer 11	% =		7.5%
layer 12	% =		7.5%
layer 13	% =		7.5%
layer 14	% =		7.5%
TOTAL LOSSES AT	SERVI	CE LOADS	
Total Lacase		at midenan	at andenan

TOTAL LOSSES AT	SERVI	CI

Total Losses

		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	43.4 ksi	42.3 ksi
layer 2	$\Delta f_{pT} =$	43.7 ksi	42.7 ksi
layer 3	$\Delta f_{pT} =$	43.7 ksi	42.7 ksi
layer 4	$\Delta f_{pT} =$	43.7 ksi	42.7 ksi
layer 5	$\Delta f_{pT} =$	43.7 ksi	42.7 ksi
layer 6	$\Delta f_{pT} =$	43.5 ksi	
layer 7	$\Delta f_{pT} =$	43.2 ksi	
layer 8	$\Delta f_{pT} =$	43.4 ksi	
layer 9	$\Delta f_{pT} =$	43.4 ksi	42.3 ksi
layer 10	$\Delta f_{pT} =$		41.5 ksi
layer 11	$\Delta f_{pT} =$		41.5 ksi
layer 12	$\Delta f_{pT} =$		41.5 ksi
layer 13	$\Delta f_{pT} =$		41.5 ksi
layer 14	$\Delta f_{pT} =$		41.5 ksi

OK OK OK

ок ок ок ок ок OK OK ок OK OK

Stress	in	tendon	after	all	losses	= f	_{oi} -∆f _r	
--------	----	--------	-------	-----	--------	-----	--------------------------------	--

		at midspan	at endspan
layer 1	f _{pe} =	27.0 ksi	28.0 ksi
layer 2	f _{pe} =	148.1 ksi	149.2 ksi
layer 3	f _{pe} =	169.4 ksi	170.5 ksi
layer 4	f _{pe} =	169.4 ksi	170.5 ksi
layer 5	f _{pe} =	169.4 ksi	170.5 ksi
layer 6	f _{pe} =	169.6 ksi	
layer 7	f _{pe} =	169.9 ksi	
layer 8	f _{pe} =	169.8 ksi	
layer 9	f _{pe} =	169.8 ksi	170.8 ksi
layer 10	f _{pe} =		171.6 ksi
layer 11	f _{pe} =		171.6 ksi
layer 12	f _{pe} =		171.6 ksi
layer 13	f _{pe} =		171.6 ksi
layer 14	f _{pe} =		171.6 ksi

check prestressing stress limit at service limit state: fpe ≤ 0.8*fpy

layer 1	=	78.1 ksi
layer 2	=	201.3 ksi
layer 3	=	205.4 ksi
layer 4	=	205.4 ksi
layer 5	=	205.4 ksi
layer 6	=	205.4 ksi
layer 7	=	205.4 ksi
layer 8	=	205.4 ksi
layer 9	=	205.4 ksi
layer 10	=	205.4 ksi
layer 11	=	205.4 ksi
layer 12	=	205.4 ksi
layer 13	=	205.4 ksi
layer 14	=	205.4 ksi

ок ок ок ок ок ок ок οк ок οк οĸ ок οк ок

force per strand = f_{pe} *strand area

		at midspan	at endspan
layer 1	=	2.3 kips	2.4 kips
layer 2	=	12.6 kips	12.7 kips
layer 3	=	14.4 kips	14.5 kips
layer 4	=	14.4 kips	14.5 kips
layer 5	=	14.4 kips	14.5 kips
layer 6	=	14.4 kips	
layer 7	=	14.4 kips	
layer 8	=	14.4 kips	
layer 9	=	14.4 kips	14.5 kips
layer 10	=		14.6 kips
layer 11	=		14.6 kips
layer 12	=		14.6 kips
layer 13	=		14.6 kips
layer 14	=		14.6 kips
		at midspan	at endspan
all losses	P _{pe} =	727.1 kips	733.6 kips

727.1 kips

layer 1	% =	61.7%	60.2%
layer 2	% =	62.1%	60.6%
layer 3	% =	62.1%	60.6%
layer 4	% =	62.1%	60.6%
layer 5	% =	62.1%	60.6%
layer 6	% =	61.9%	
layer 7	% =	61.4%	
layer 8	% =	61.7%	
layer 9	% =	61.7%	60.2%
layer 10	% =		59.0%
layer 11	% =		59.0%
layer 12	% =		59.0%
layer 13	% =		59.0%
layer 14	% =		59.0%
sses, %	% =	61.9%	59.8%

Average final loss

Stresses at Transfer

STRESS LIMITS FOR CONCRETE					
Compression = 0.6f'ci	f _{ci} =	3.300 ksi			
Tension					
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi			
with handed auxiliary reinforcement =0.22*\f'	_	0.016 kgi			

STRESSES AT TRANSFER LENGTH SECTION				
Transfer Length = 60*(strand diameter)	=	1.9 ft		
Bending moment at transfer length	M _g =	87.7 ft-kips		
center of 12 strands to top fiber of beam at the end	=	7.00 in		
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in		
center of 12 strands and top fiber of beam at transfer length	II	9.84 in		
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in		
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in		
center of gravity of all strands and the bottom fiber of beam at the end	ı	15.30 in		
Eccentricity of the strand group at transfer length:	e _h =	28.43 in		
Eccentricity at end of beam:	e =	28.37 in		

Calcs for eccentricity (see 9.6.7.2)

οк

ок

$f_t = \frac{P_i}{A} - \frac{P_i e}{S_t} + \frac{M_g}{S_t}$	$f_{ullet} = rac{P_i}{A} + rac{P_i \sigma}{S_{ullet}} - rac{M_E}{S_{ullet}}$		
		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.382 ksi	-0.386 ksi
Bottom stress at bottom fiber of the beam	$f_b =$	2.833 ksi	2.833 ksi

STRESSES AT HARP POINT				
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	-0.057 ksi	-0.065 ksi	ок
Bottom stress at bottom fiber of the beam	$f_b =$	2.542 ksi	2.300 ksi	ок
STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	M _g =	1414.3 ft-kips		
Top stress at top fiber of beam	f _t =	0.037 ksi	0.111 ksi	ок
Bottom stress at bottom fiber of the beam	f _b =	2.360 ksi	2.117 ksi	ок
HOLD-DOWN FORCES				

assume stress in strand before losses = 0.8f_u

layer 1	=	75.0 ksi
layer 2	=	204.6 ksi
layer 3	II	227.4 ksi
layer 4	=	227.4 ksi
layer 5	II	227.4 ksi
layer 6	=	227.4 ksi
layer 7	=	227.4 ksi
layer 8	II	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	=	227.4 ksi
layer 12	II	227.4 ksi
layer 13	II	227.4 ksi
layer 14	ı	227.4 ksi

prestress force per strand before any losses:

٠.			
layer 1	=	6.4 kips	
layer 2	=	17.4 kips	
layer 3	II	19.3 kips	
layer 4	=	19.3 kips	
layer 5	=	19.3 kips	
layer 6	II	19.3 kips	
layer 7	=	19.3 kips	
layer 8	=	19.3 kips	
layer 9	II	19.3 kips	
layer 10	=	19.3 kips	
layer 11	=	19.3 kips	
layer 12	=	19.3 kips	
layer 13	=	19.3 kips	
layer 14	=	19.3 kips	
p Angle	Ψ =	7.2 °	

layer 1	=	0.8 kips/strand
layer 2	=	2.3 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	=	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	=	2.5 kips/strand
layer 9	=	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	=	2.5 kips/strand
layer 13	=	2.5 kips/strand
layer 14	=	2.5 kips/strand
Total hold-down force	=	30.45 kips
•		

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	1.980 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	2.640 ksi	
for deck	=	2.400 ksi	

Tension:

Load Combination Service III

for the precast beam = -0.013 ksi

ок

οк

ок

οк

ок

STRESSES AT I	MIDSPAN	
Compression stresses at top fiber of beam	at midspan	at endspan
$f_{i} = \frac{P_{ps}}{A} - \frac{P_{ps}e}{S_{i}} + \frac{(M_{p} + M_{s})}{S_{t}}$	$\frac{1}{2} + \frac{(M_{w} + M_{\phi})}{S_{sy}}$	
Due to permanent loads f _t	g = 1.917 ksi	1.910 ksi
$f_{ty} = \frac{P_{yd}}{A} - \frac{P_{yd}\sigma}{S} + \frac{(M_{x} + M_{y})}{S} + \frac{(M_{y} + M_{y})}{S}$	$M_{\rm m} - M_b$ (M_{EI+1})	
$J_{tx} = \frac{1}{A} - \frac{1}{S_z} + \frac{1}{S_z} + \frac{1}{S_z}$	N _{eg} T N _{eg}	
Due to permanent loads and transient loads f _t	g = 2.283 ksi	2.275 ksi
Compression stresses at top fiber of deck	at midspan	at endspan
$f_{as} = rac{(M_{as} - 1)}{S_a}$	s = 0.056 ksi	0.056 ksi
$f_{w} = \frac{(M_{wy} + M_{y})}{S_{w}}$	+ M <u>rc+1</u>)	
Due to permanent loads and transient loads f _t	c = 0.644 ksi	0.644 ksi
Tension stresses at top fiber of deck	at midspan	at endspan
$f_{11} = \frac{P_{14}}{A} - \frac{P_{14}a}{S_1} - \frac{(M_R + M_1)}{S_3} - \frac{(3a)}{S_4}$	$I_{m} + M_{b} - 0.8 * M_{2.4}$	
$S_{ij} = \frac{1}{A} \cdot \frac{S_{ij}}{S_{ij}} \cdot \frac{S_{ij}}{S_{ij}} \cdot \frac{S_{ij}}{S_{ij}} \cdot \frac{S_{ij}}{S_{ij}}$	S ₂ ,	
Load Combination Service III f	_b = -1.719 ksi	-1.694 ksi

Strength Limit State POSITIVE MOMENT S	ECTION	
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	8381.5 ft-kips
effective length factor for compression members		
layer 1	k =	0.00
layer 2	k =	0.11
layer 3	k =	0.27
layer 4	k =	0.27
layer 5	k =	0.27
layer 6	k =	0.27
layer 7	k =	0.27
layer 8	k =	0.27
layer 9	k =	0.27
layer 10	k =	0.27
layer 11	k =	0.27
layer 12	k =	0.27
layer 13	k =	0.27
layer 14	k =	0.27
	c =	3.9 ft-kips
average stress in prestressing steel layer 1	f _{ps} =	93.8 ksi
layer 2	f _{ps} =	255.8 ksi
layer 3	f _{ps} =	284.2 ksi
layer 4	f _{ps} =	284.2 ksi
layer 5	f _{ps} =	284.2 ksi
layer 6	f _{ps} =	284.2 ksi
layer 7	f _{ps} =	284.2 ksi
layer 8	f _{ps} =	284.2 ksi
layer 9	f _{ps} =	284.2 ksi
layer 10	f _{ps} =	284.2 ksi
layer 11	f _{ps} =	284.2 ksi
layer 12	f _{ps} =	284.2 ksi
layer 13	f _{ps} =	284.2 ksi
layer 14	f _{ps} =	284.2 ksi
nominal flexure resistance		
	a =	3.28 in
$M_r = \Phi M_n$, $\Phi = 1.00$	ФМ _п =	7742.5 ft-kips
M=DC+W+LL+IM	M =	5833.6 ft-kips
NEGATIVE MOMENT S	ECTION	
M _u = 1.25DC+1.5DW+1.75(LL+IM)	M _u =	4837.2 ft-kips
·	a =	9.12 in
	ФМ _п =	4766.4 ft-kips
M=DC+W+LL+IM	M =	2869.7 ft-kips
·		
Shear Design		
CRITICAL SECTION	AT 0.59	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2877.0 ft-kips
•		
max shear	V _u =	405.0 kips
	-	· · · · · · · · · · · · · · · · · · ·

max moment

Applied factored normal force at the section $N_u =$

Angle of diagonal compressive stresses $\theta =$

M_u =

d_v =

Shear depth

2877.0 ft-kips

73.19 in

0

36.00°

STRAIN IN FLEXURAL TENSION REINFORCMENT $\frac{M_s}{s} + 0.5M_s + 0.5V_s \cos\theta - A_{po}f_{po}$ - ≤ 0.002 $E_{j}A_{j}+E_{g}A_{g}$ at midspan at endspan 0.494 ksi resultant compressive stress at centroid 0.493 ksi effective stress in prestressing strand after all losses layer 1 f_{po} = 30.3 ksi 31.4 ksi layer 2 f_{po} = 151.5 ksi 152.6 ksi layer 3 f_{po} = 172.8 ksi 173.9 ksi layer 4 f_{po} = 172.8 ksi 173.9 ksi layer 5 f_{po} = 172.8 ksi layer 6 173.0 ksi $f_{po} =$ layer 7 f_{po} = 173.2 ksi layer 8 f_{po} = 173.1 ksi layer 9 f_{po} = layer 10 f_{po} = layer 11 f_{po} = 174.2 ksi 174.8 ksi 174.8 ksi layer 12 f_{po} = 174.8 ksi layer 13 $f_{po} =$ layer 14 $f_{po} =$ 174.8 ksi 174.8 ksi strain in flexural tension at midspan at endspan layer 1 $\epsilon_x =$ 0.002000 0.002000 layer 2 $\epsilon_x =$ layer 3 $\epsilon_x =$ 0.002000 0.002000 0.002000 0.002000 layer 4 $\epsilon_x =$ 0.002000 0.002000 layer 5 $\epsilon_x =$ 0.002000 layer 6 $\varepsilon_x =$ 0.002000 layer 7 $\epsilon_x =$ 0.002000 layer 8 $\epsilon_x =$ 0.002000 layer 9 $\epsilon_x =$ 0.002000 0.002000 layer 11 $\varepsilon_x =$ 0.002000 layer 12 $\epsilon_x =$ 0.002000 layer 13 0.002000 $\varepsilon_x =$ layer 14 $\varepsilon_x =$ 0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

	at midspan	at endspan
$\Delta_p =$	3.35 in	3.29 in
$\Delta_g =$	-2.07 in	
$\Delta_g =$	-2.24 in	
$\Delta_s =$	-3.43 in	
		='

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

Δ =	1.28 in	1.22 in
Δ =	1.89 in	1.78 in

-2.32 in

Live load deflection limit = span/800 Deflection due to live load and impact

-1.80 in $\Delta_L =$ -1.35 in

 $\Delta_{sw} =$

οĸ

Deflection due to fire truck

Total Deflection after fire with fire truck

 $\Delta_L =$ -2.5431 in Δ = -1.5090 in

NOT OK

Parametric Design: <u>I-5 Overpass Case Study</u> Beam Design: <u>1/2</u>" Strand

Fire Exposure Status: Undamaged

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB						
Actual Thickness $t_{as} = 8.0 \text{ in}$						
Wearing Surface	=	0.5 in				
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in				
Compressive Strength	f'c =	4.00 ksi				
Unit Weight	w _c =	150.0 pcf				
Stress factor of compression block	β ₁ =	0.85				

BEAMS: AASHTO-PCI, BT-72 BULB-TEE					
Strength at release	f'ci =	5.5 ksi			
Strength at 28 days	f'c =	7 ksi			
Unit Weight	w _c =	150.0 pcf			
Overall Beam Length:					
@ end spans	L =	110 ft			
@ center span	L =	119 ft			
Design Spans:					
Non-composite beam @ end spans	L =	109 ft			
Non-composite beam @ center span	L =	118 ft			
Composite beam @ end spans	L =	110 ft			
Composite beam @ center span	L =	120 ft			
Beam Spacing	S =	12 ft			

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.5 in
	Area of single strand	A =	0.153 in^2
emperature of Layer	i i		
	layer 1 (bottom)	T =	68.00 °F
	layer 2	<u>T =</u>	68.00 °F
	layer 3	T = T =	68.00 °F
	layer 4 layer 5	<u> =</u> T =	68.00 °F 68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T=	68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
imate Strength	-		
intial = 277 ksi	layer 1 (bottom)	f _{pu} =	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	*		277 ksi
	layer 8	f _{pu} =	
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	$f_{pu} =$	277 ksi
	layer 12	$f_{pu} =$	277 ksi
	layer 13	$f_{pu} =$	277 ksi
	layer 14	$f_{pu} =$	277 ksi
d Strength	_		
intial = 250 ksi	layer 1 (bottom)	f _{py} =	250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	•		
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
ess Limits: ore transfer ≤ 0.75f _{pu} (in	itial = 207.6)		
ρu(layer 1 (bottom)	f _{pi} =	207.6 ksi
	layer 2	f _{pi} =	207.6 ksi
	layer 3		207.6 ksi
	•	f _{pi} =	
	layer 4	f _{pi} =	207.6 ksi

r 1 (bottom)	$f_{pi} =$	207.6 ksi
layer 2	$f_{pi} =$	207.6 ksi
layer 3	f _{pi} =	207.6 ksi
layer 4	f _{pi} =	207.6 ksi
layer 5	f _{pi} =	207.6 ksi
layer 6	f _{pi} =	207.6 ksi
layer 7	f _{pi} =	207.6 ksi
layer 8	$f_{pi} =$	207.6 ksi
layer 9	$f_{pi} =$	207.6 ksi
layer 10	$f_{pi} =$	207.6 ksi
layer 11	$f_{pi} =$	207.6 ksi
layer 12	f _{pi} =	207.6 ksi
layer 13	$f_{pi} =$	207.6 ksi
layer 14	f _{pi} =	207.6 ksi

at service limit state (after all losses) ≤ 0.80f_{py} (initial = 199.7)

f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
f _{pe} =	199.7 ksi
	$\begin{split} &f_{pe} = \\ &f$

Modulus of Elasticity

intial = 25982 ksi

layer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

ayer 1 (Bottom)	$f_y =$	60.0 ksi	68.00 °F
Layer 2 (Top)	$f_y =$	60.0 ksi	68.00 °F

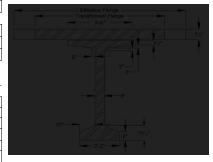
Modulus of Elasticity

Layer 1 (Bottom)

E =	29000.0 ksi

Area of steel at midspan (effective flange) Area of steel at endspan (effective flange)

2.79 in^2 A_{sm}= 2.48 in^2 Area of temperature and shrinkage steel (12" width) 0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flang Area of steel at endspan (effective flang Area of temperature and shrinkage steel (12" wid

ige)	$A_{sm}=$	12.6 in^2
ge)	A _{se} =	12.4 in^2
dth)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	I =	539,947 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in				
Distance from centroid to extreme top fiber	$y_t =$	35.4 in				
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3				
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$						
cast-in-place concrete deck	E _{cs} =	3834 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in b_f = Modular Ratio = E_{cs}/E_{c} 0.7559 Transformed flange width 83.9 in = Transformed flange area 629.3 in^2 Transformed haunch width = 31.7 in Transformed haunch area 15.9 in^2 Deck-distance to top fiber 3.75 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3			1.091.316 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,316 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.67 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme \underline{top} fiber slab	S _{tc} =	56,994.5 in^3

COMPOSITE BEAM AT ENDSPAN

• • •		• •
Effective Flange Width	b _f =	106.6 in
Modular Ratio = E _{cs} /E _c	n =	0.7559
Transformed flange width	=	80.6 in
Transformed flange area	=	604.4 in^2
Transformed haunch width	=	31.7 in
Transformed haunch area	=	15.9 in^2
Deck-distance to top fiber	$y_{td} =$	3.75 in

*min of three criteria

	Transformed Area	\mathbf{y}_{t}	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	273,455 in^4	539,947 in^4	813,402 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	5,660 in^4	0.33 in^4	5,660 in^4
Deck	604.4 in^2	76.25 in	46,082.8 in^3	215,472 in^4	2,833 in^4	218,305 in^4
Total	1387 2 in^2		75 302 0 in/3			1 037 366 in/4

Total area of Composite Section	A _c =	1387 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,037,366 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	54.28 in
Distance from centroid to extreme top fiber of beam	$y_{tg} =$	17.72 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.72 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,110.7 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	58,548.3 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	40,336.0 in^3

Shear Forces and Bending Moments

1	,,,,		
	DE	ΔD	פת

Beam self-weight	w _{beam} =	0.799 k/f	
8 in. deck weight	w _{deck} =	1.200 k/f	
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	>
Curvature in plans is less than 4°=	0	OK	ſ
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
FD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	$K_g =$	2,309,429.79 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_8}{12 * L * \ell_3^3}\right)^{0.1}$$

DFM = 0.905 lanes/beam

one design lane loaded:

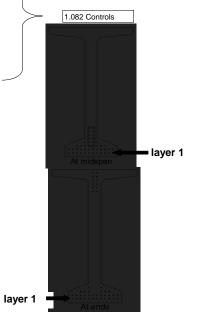
$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_g}{12^+ L^- l_s^3}}^{0.1}$$

DFM = 0.614 lanes/beam

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S'}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

		At Midspan		At Ends	
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	=	
layer 6	2	12	-		
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-		2	70	
Harped Stra	and Group (in	cluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

0.905 Controls

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth $strand\ eccentricity\ at\ midspan = (y_b\text{-}y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

28.9 kips

Prestress Losses

E	LASTIC SHORTE	NING	
	assumed loss	=	9.00%
orce per strand at transfer			
	layer 1	=	28.9 kips
	layer 2	=	28.9 kips
	layer 3	=	28.9 kips
	layer 4	=	28.9 kips
	layer 5	=	28.9 kips
	layer 6	=	28.9 kips
	layer 7	=	28.9 kips
	layer 8	=	28.9 kips
	layer 9	=	28.9 kips
	layer 10	=	28.9 kips
	layer 11	=	28.9 kips
	layer 12	=	28.9 kips
	layer 13	=	28.9 kips

layer 14

		at midspan	at endspan
Total prestressing force at release	$P_i =$	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

assume relative humidity = 70%

CREEP OF	CREEP OF CONCRETE					
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as t _{cgp}	$\Delta f_{cdn} =$	1.563 ksi				
		at midspan	at endspan			
loss due to creep	$\Delta f_{pCR} =$	24.3 ksi	24.3 ksi			

loss due to relaxation after transfer			at midspan	at endspan
	layer 1	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 2	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 3	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 4	$\Delta f_{pR2} =$	2.1 ksi	2.1 ksi
	layer 5	$\Delta f_{pR2} =$	2.1 ksi	
	layer 6	$\Delta f_{pR2} =$	2.1 ksi	
	layer 7	$\Delta f_{pR2} =$	2.1 ksi	
	layer 8	$\Delta f_{pR2} =$	2.1 ksi	
	layer 9	$\Delta f_{pR2} =$		2.1 ksi
	layer 10	$\Delta f_{pR2} =$		2.1 ksi
	layer 11	$\Delta f_{pR2} =$		2.1 ksi
	layer 12	$\Delta f_{pR2} =$		2.1 ksi
	layer 13	$\Delta f_{pR2} =$		2.1 ksi
	layer 14	$\Delta f_{pR2} =$		2.1 ksi
TOT	AL LOSSES	S AT TRANS	SEED	

TOTAL LOSSES AT TRANSFER				
total loss $\Delta f_{pES} = \Delta f_{pi}$				
stress in tendons after transfer $f_{pt} = f_{pi} \Delta f_{pi}$	at midspan	at endspan		
layer 1 f _{pt} =	190.6 ksi	190.6 ksi		
layer 2 f _{pt} =	190.6 ksi	190.6 ksi		
layer 3 f _{pt} =	190.6 ksi	190.6 ksi		
layer 4 f _{pt} =	190.6 ksi	190.6 ksi		
layer 5 f _{pt} =	190.6 ksi			
layer 6 f _{pt} =	190.6 ksi			
layer 7 f _{pt} =	190.6 ksi			
layer 8 f _{pt} =	190.6 ksi			
layer 9 f _{pt} =		190.6 ksi		
layer 10 f _{pt} =		190.6 ksi		
layer 11 f _{pt} =		190.6 ksi		
layer 12 f _{pt} =		190.6 ksi		
layer 13 f _{pt} =		190.6 ksi		
layer 14 f _{pt} =		190.6 ksi		
force per strand = f _{pt} *strand area	at midspan	at endspan		
layer 1 =	29.2 kips	29.2 kips		
layer 2 =	29.2 kips	29.2 kips		
layer 3 =	29.2 kips	29.2 kips		
layer 4 =	29.2 kips	29.2 kips		
layer 5 =	29.2 kips			
layer 6 =	29.2 kips			
layer 7 =	29.2 kips			
layer 8 =	29.2 kips			
layer 9 =		29.2 kips		
layer 10 =		29.2 kips		
layer 11 =		29.2 kips		
layer 12 =		29.2 kips		
layer 13 =		29.2 kips		
layer 14 =		29.2 kips		
Total prestressing force after transfer P _i =	1284.8 kips	1284.8 kips		
Initial loss = $(\Delta f_{pi})/(f_{pi})$	at midspan	at endspan		
layer 1 % =	8.2%	8.2%		
layer 2 % =	8.2%	8.2%		
layer 3 % =	8.2%	8.2%		
layer 4 % =	8.2%	8.2%		
layer 5 % =	8.2%			
layer 6 % =	8.2%			
layer 7 % =	8.2%			
layer 8 % =	8.2%			
layer 9 % =		8.2%		
layer 10 % =		8.2%		
layer 11 % =		8.2%		
layer 12 % =		8.2%		
layer 13 % =		8.2%		
layer 14 % =		8.2%		

OK OK OK OK OK OK OK OK OK

	JEKVIO	E LOADS	at andonen
otal Losses layer 1	$\Delta f_{DT} =$	at midspan 49.9 ksi	at endspan 49.9 ksi
layer 2	$\Delta f_{pT} =$ $\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$ $\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$ $\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$ $\Delta f_{pT} =$	49.9 ksi	49.9 KSI
layer 6	$\Delta f_{pT} =$ $\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$ $\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$	40.0 Kgi	49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$ $\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$ $\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$ $\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$ $\Delta f_{pT} =$		49.9 ksi
tress in tendon after all losses = f _{pi} -∆f _{pt}	ΔipT =	at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	137.7 KSI
layer 6		157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =	137.7 K31	157.7 ksi
layer 10	f _{pe} =		157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		157.7 ksi
layer 13	f _{pe} =		157.7 ksi
layer 14	f _{pe} =		157.7 ksi
اعران الطورة heck prestressing stress limit at service limit state: fpe			107.7 Kgi
layer 1	= 0.0 ipy	199.7 ksi	7
layer 2	=	199.7 ksi	_
layer 3	=	199.7 ksi	_
layer 4	=	199.7 ksi	_
layer 5		199.7 ksi	_
layer 5	=	199.7 ksi	-
lover 6	=		
layer 6		100 7 kgi	
layer 7	=	199.7 ksi	
layer 7 layer 8	=	199.7 ksi	
layer 7 layer 8 layer 9	=	199.7 ksi 199.7 ksi	
layer 7 layer 8 layer 9 layer 10	= = =	199.7 ksi 199.7 ksi 199.7 ksi	
layer 7 layer 8 layer 9 layer 10 layer 11	= = = =	199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	= = = = =	199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	= = = = =	199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	= = = = =	199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	
layer 7 layer 8 layer 9 layer 10 layer 11 layer 12 layer 13	= = = = =	199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi 199.7 ksi	

force	ner	strand	= f.	.*strar	nd a	rea
10100	PUI	otiana	- '0	eoua	iu u	···

ind = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.6 kips	1061.6 kips

layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer		
STRESS LIMITS FOR CO	ONCRET	Έ
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22*√f′ci	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft
Bending moment at transfer length	$M_g =$	116.4 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	10.78 in
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	19.51 in
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in
Eccentricity of the strand group at transfer length:	e _h =	17.09 in
Eccentricity at end of beam:	e =	16.05 in

Calcs for eccentricity (see 9.6.7.2)

ок ок

οк ок

ок οк

$f_z = \frac{F_1}{A} - \frac{P_1 e}{S_1} + \frac{M_z}{S_t}$	$f_{\phi} = \frac{P_i}{A} + \frac{P_i e}{S_{\phi}} - \frac{M_I}{S_{\phi}}$
	at midspan at endspan

Top stress at top fiber of beam	$f_t =$	0.342 ksi	0.342 ksi
Bottom stress at bottom fiber of the beam	f _b =	3.021 ksi	3.021 ksi
-			

STRESSES AT HARP POINT					
Bending moment due to beam weight at 0.3L	$M_g =$	1184.2 ft-kips			
Top stress at top fiber of beam	$f_t =$	0.032 ksi	0.032 ksi		
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi		
STRESSES A	AT MIDS	PAN			
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips			
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.211 ksi		
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi		

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	4.4 kips/strand
=	53.39 kips
	= = = = = = = = = = =

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

Due to permanent loads for load con	nbination	Service i
for the precast beam	=	3.150 ksi
for deck	=	1.800 ksi
Due to permanent and transient loads for lo	ad combir	nation Service I
for the precast beam	=	4.200 ksi
for deck	=	2.400 ksi

Tension:

Load Combination Service III

-0.016 ksi for the precast beam =

ок

ок

ок

ок

οк

STRESSES A	AT MIDS	<u>PAN</u>		
Compression stresses at top fiber of beam		at midspan	at endspan	
$f_z = \frac{P_{ge}}{A} - \frac{P_{ge}S}{S_z} + \frac{(M_z + M_s)}{S_z} + \frac{(M_{us} + M_s)}{S_{tg}}$				
Due to permanent loads	$f_{tg} =$	2.041 ksi	2.041 ksi	
$f_{ig} = rac{P_{ge}}{A} - rac{P_{ge}e}{S_{\star}} + rac{(M_g + M_{\star})}{S_{\star}}$ -	_ (<i>M</i> ₌₌ +	$(M_{\bullet})_{\perp}(M_{BA})$		
$J_{ig} = \frac{1}{A} - \frac{1}{S_i} + \frac{1}{S_i}$	S_{i}			
Due to permanent loads and transient loads	f _{tg} =	2.444 ksi	2.444 ksi	
Compression stresses at top fiber of deck		at midspan	at endspan	
$f_{ic} = rac{(M_{f w})}{2}$	S _{ev}	0.042 ksi	0.042 ksi	
$f_{tr} = \frac{(M_{vo} + h)}{h}$			0.042 KSI	
Due to permanent loads and transient loads	$f_{tc} =$	0.488 ksi	0.488 ksi	
Tension stresses at top fiber of deck		at midspan	at endspan	
$f_{Tg} = \frac{P_{pq}}{A} + \frac{P_{pq}s}{S_c} - \frac{(M_g + M_s)}{S_c} - \frac{(M_g + M_s)}{S_c}$	(M ₁₀ +	$M_s + 0.8*M_{H+1}$		
$A S_{\bullet} S_{\bullet}$		S _{br}		
Load Combination Service III	f _b =	-0.393 ksi	-0.393 ksi	

POSITIVE MOMENT S		
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	8381.5 ft-kips
effective length factor for compression members		
layer 1	k =	0.28
layer 2	k =	0.28
layer 3	k =	0.28
layer 4	k =	0.28
layer 5	k =	0.28
layer 6	k =	0.28
layer 7	k =	0.28
layer 8	k =	0.28
layer 9	k =	0.28
layer 10	k =	0.28
layer 11	k =	0.28
layer 12	k =	0.28
layer 13	k =	0.28
layer 14	k =	0.28
	c =	5.7 ft-kips
rage stress in prestressing steel layer 1	f _{ps} =	270.9 ksi
layer 2	f _{ps} =	270.9 ksi
layer 3	f _{ps} =	270.9 ksi
layer 4	f _{ps} =	270.9 ksi
layer 5	f _{ps} =	270.9 ksi
layer 6	f _{ps} =	270.9 ksi
layer 7	$f_{ps} =$	270.9 ksi
layer 8	f _{ps} =	270.9 ksi
layer 9	$f_{ps} =$	270.9 ksi
layer 10	$f_{ps} =$	270.9 ksi
layer 11	f _{ps} =	270.9 ksi
layer 12	f _{ps} =	270.9 ksi
layer 13	f _{ps} =	270.9 ksi
layer 14	f _{ps} =	270.9 ksi
minal flexure resistance		
	a =	4.85 in
$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	10906.2 ft-kips
NEGATIVE MOMENT S	ECTION	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-4837.2 ft-kips
	a =	0.20 in
	$\Phi M_n =$	5099.1 ft-kips
	<u> </u>	·
ar Design		
CRITICAL SECTION A	AT 0.59	
V _u = 1.25DC+1.5DW+1.75(LL+IM)	V _u =	405.0 kips
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	M _u =	-2684.4 ft-kips
or		,
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips
·		
max shear	V _u =	405.0 kips

2877.0 ft-kips

73.19 in

0

36.00°

M_u =

d_v =

N_u =

Shear depth

Applied factored normal force at the section

Angle of diagonal compressive stresses

STRAIN IN FLEXURAL TENSION REINFORCMENT $\frac{\overline{M}_{\bullet}}{+0.5M_{\bullet}+0.5M_{\bullet}\cot\theta-A_{pol/po}}$ -≤0.002 $E_sA_s + E_sA_u$ at midspan at endspan 0.994 ksi 0.994 ksi resultant compressive stress at centroid effective stress in prestressing strand after all losses 162.8 ksi 162.8 ksi layer 1 $f_{po} =$ layer 2 f_{po} = 162.8 ksi 162.8 ksi layer 3 162.8 ksi 162.8 ksi f_{po} = layer 4 f_{po} = 162.8 ksi 162.8 ksi layer 5 162.8 ksi $f_{po} =$ layer 6 162.8 ksi f_{po} = layer 7 f_{po} = 162.8 ksi 162.8 ksi layer 8 f_{po} = layer 9 $f_{po} =$ 162.8 ksi layer 10 162.8 ksi f_{po} = layer 11 162.8 ksi f_{po} = layer 12 f_{po} = 162.8 ksi layer 13 162.8 ksi $f_{po} =$ layer 14 f_{po} = 162.8 ksi strain in flexural tension at midspan at endspan layer 1 $\epsilon_x =$ 0.002000 0.002000 layer 2 0.002000 0.002000 $\epsilon_x =$ 0.002000 0.002000 layer 3 $\varepsilon_x =$ layer 4 0.002000 0.002000 layer 5 0.002000 ε_x = layer 6 ε_x = 0.002000 layer 7 0.002000 $\varepsilon_x =$ 0.002000 layer 8 $\varepsilon_x =$ layer 9 ε_x = 0.002000 0.002000 layer 10 $\varepsilon_x =$ layer 11 $\epsilon_x =$ 0.002000 layer 12 0.002000 $\varepsilon_x =$ layer 13 $\varepsilon_x =$ 0.002000 layer 14 0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

Deflection	due	to to	ntal	self	weigh	t

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800 Deflection due to live load and impact

Deflection due to fire truck Total Deflection after fire with fire truck

		at midspan	at endspan
	$\Delta_p =$	3.97 in	3.97 in
	$\Delta_g =$	-1.49 in	
	$\Delta_g =$	-1.44 in	
	$\Delta_s =$	-1.95 in	
ſ			

Δ _{sw} =	0.59 III	

Δ =	2.48 in	2.48 in
Δ =	4.49 in	4.49 in

=	1.80 in
$\Delta_L =$	-0.83 in

-0.7520 in $\Delta_{l} =$ Δ= 3.8033 in

οк

ок

Parametric Design: <u>I-5 Overpass Case Study</u> Beam Design: <u>1/2</u>" Strand

Fire Exposure Status: Damaged

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB						
Actual Thickness $t_{as} = 8.0 \text{ in}$						
Wearing Surface	=	0.5 in				
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in				
Compressive Strength	f'c =	2.95 ksi				
Unit Weight	w _c =	150.0 pcf				
Stress factor of compression block	β ₁ =	0.85				

BEAMS: AASHTO-PCI, BT-72 BULB-TEE						
Strength at release	f'ci =	5.5 ksi				
Strength at 28 days	f'c =	7 ksi				
Unit Weight	w _c =	150.0 pcf				
Overall Beam Length:						
@ end spans	L =	110 ft				
@ center span	L =	119 ft				
Design Spans:		•				
Non-composite beam @ end spans	L =	109 ft				
Non-composite beam @ center span	L =	118 ft				
Composite beam @ end spans	L =	110 ft				
Composite beam @ center span	L =	120 ft				
Beam Spacing	S =	12 ft				

	PRESTRESSING STR		1
	Diameter of single strand		0.5 in
Famous exercises (1)	Area of single strand	A =	0.153 in^2
Temperature of I	-	T =	68 00 ∘⊏
	layer 1 (bottom) layer 2		68.00 °F 68.00 °F
	layer 3	T=	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8	T =	68.00 °F
	layer 9 layer 10	T = T =	68.00 °F 68.00 °F
	layer 11	T=	68.00 °F
	layer 12		68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
JItimate Strengt			
intial =	277 ksi layer 1 (bottom)	-:-	277 ksi
	layer 2	f _{pu} =	277 ksi
	layer 3	f _{pu} =	277 ksi
	layer 4	f _{pu} =	277 ksi
	layer 5	f _{pu} =	277 ksi
	layer 6	f _{pu} =	277 ksi
	layer 7	f _{pu} =	277 ksi
	layer 8	f _{pu} =	277 ksi
	layer 9	f _{pu} =	277 ksi
	layer 10	f _{pu} =	277 ksi
	layer 11	f _{pu} =	277 ksi
	layer 12	f _{pu} =	277 ksi
	layer 13	f _{pu} =	277 ksi
	layer 14	$f_{pu} =$	277 ksi
ield Strength			
intial =	250 ksi layer 1 (bottom)		250 ksi
	layer 2	f _{py} =	250 ksi
	layer 3	f _{py} =	250 ksi
	layer 4	f _{py} =	250 ksi
	layer 5	f _{py} =	250 ksi
	layer 6	f _{py} =	250 ksi
	layer 7	f _{py} =	250 ksi
	layer 8	f _{py} =	250 ksi
	layer 9	f _{py} =	250 ksi
	layer 10	f _{py} =	250 ksi
	layer 11	f _{py} =	250 ksi
	layer 12	f _{py} =	250 ksi
	layer 13	f _{py} =	250 ksi
	layer 14	f _{py} =	250 ksi
Stress Limits:	0.754 (0.96-1, 007.0)		
erore transter ≤	0.75f _{pu} (initial = 207.6)		
	layer 1 (bottom)	-	207.6 ksi
	layer 2	F*	207.6 ksi
	layer 3	f _{pi} =	207.6 ksi
	layer 4	f _{pi} =	207.6 ksi
	layer 5	f _{pi} =	207.6 ksi
	layer 6	f _{pi} =	207.6 ksi
	layer 7	f _{pi} =	207.6 ksi
	layer 8	$f_{pi} =$	207.6 ksi
	layer 9	$f_{pi} =$	207.6 ksi
	layer 10	$f_{pi} =$	207.6 ksi
	layer 11	f _{pi} =	207.6 ksi
	layer 12	f _{pi} =	207.6 ksi
	layer 13	f _{pi} =	207.6 ksi

at service limit state (after all losses) $\leq 0.80 f_{py}$ (initial = 199.7)

ksi ksi ksi
ksi
ksi

Modulus of Elasticity

intial = 25982 ksi

ayer 1 (bottom)	E =	25982.0 ksi
layer 2	E =	25982.0 ksi
layer 3	E =	25982.0 ksi
layer 4	E =	25982.0 ksi
layer 5	E =	25982.0 ksi
layer 6	E =	25982.0 ksi
layer 7	E =	25982.0 ksi
layer 8	E =	25982.0 ksi
layer 9	E =	25982.0 ksi
layer 10	E =	25982.0 ksi
layer 11	E =	25982.0 ksi
layer 12	E =	25982.0 ksi
layer 13	E =	25982.0 ksi
layer 14	E =	25982.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	37.8 ksi	1508.00 °F

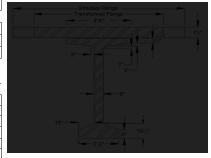
Modulus of Elasticity

Layer 1 (Bottom)

E = 29000.0 ksi

Area of steel at midspan (effective flange)

2.79 in^2 Area of steel at endspan (effective flange) 2.48 in^2 Area of temperature and shrinkage steel (12" width) 0.31 in^2


Layer 2 (Top)

Area of steel at midspan (effective flan-Area of steel at endspan (effective flang Area of temperature and shrinkage steel (12" wid

nge)	A _{sm} =	12.6 in^2
nge)	A _{se} =	12.4 in^2
dth)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM						
Area of cross-section of beam	A =	767.0 in^2				
Overall depth of beam	H =	72.0 in				
Moment of Inertia	l =	539,947 in^4				
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in				
Distance from centroid to extreme top fiber	$y_t =$	35.4 in				
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3				
Section modulus for the extreme top fiber	S _t =	15421.0 in^3				
Weight	$W_t =$	799.0 plf				
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$						
cast-in-place concrete deck	E _{cs} =	3293 ksi				
precast beam at release	E _{ci} =	4496 ksi				
precast beam at service loads	E _c =	5072 ksi				

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width 111.0 in $b_f =$ Modular Ratio = E_{cs}/E_{c} 0.6492 Transformed flange width 72.1 in = Transformed flange area 540.4 in^2 Transformed haunch width 27.3 in Transformed haunch area 13.6 in^2 Deck-distance to top fiber $y_t =$ 4.82 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	$I + A(y_{bc} - y_b)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	200,066 in^4	539,947 in^4	740,013 in^4
Haunch	13.6 in^2	72.25 in	985.0 in^3	5,183 in^4	0.33 in^4	5,184 in^4
Deck	540.4 in^2	75.18 in	40,630.2 in^3	271,882 in^4	1,449 in^4	273,331 in^4
Total	1321.1 in^2		69,687.3 in/3			1,018,528 in^4

A _c =	1321 in^2
h _c =	80 in
I _c =	1,018,528 in^4
y _{bc} =	52.75 in
$y_{tg} =$	19.25 in
y _{tc} =	27.25 in
S _{bc} =	19,308.4 in^3
S _{tg} =	52,912.3 in^3
S _{tc} =	57,577.7 in^3
ו ו	$h_{c} = 1$ $I_{c} = 1$ $y_{bc} = 1$ $y_{tg} = 1$ $y_{tc} = 1$ $S_{bc} = 1$

COMPOSITE BEAM AT ENDSPAN

b _f =	106.6 in
n =	0.6492
=	69.2 in
ш	519.0 in^2
=	27.3 in
=	13.6 in^2
y _{td} =	5.00 in
	n = = = = = =

*min of three criteria

	Transformed Area	y _t	Ay_t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc} - y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	245,903 in^4	539,947 in^4	785,850 in^4
Haunch	13.6 in^2	72.25 in	985.0 in^3	4,371 in^4	0.28 in^4	4,371 in^4
Deck	519.0 in^2	77.50 in	40,221.1 in^3	166,398 in^4	1,200 in^4	167,598 in^4
Total	1299.6 in^2		69.278.3 in/3			957.819 in^4

Total area of Composite Section	A _c =	1300 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	957,819 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	53.31 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.69 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.69 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	17,968.5 in^3
Section modulus for the extreme top fiber of beam	$S_{tg} =$	51,235.1 in^3
Section modulus for the extreme top fiber slab	$S_{tc} =$	35,880.6 in^3

Shear Forces and Bending Moments

1	,,,,	,,,,		,,,		
	ם	E	J	2	ADS	

Beam self-weight	w _{beam} =	0.799 k/f	Ì
8 in. deck weight	w _{deck} =	1.200 k/f	İ
1/2 in. haunch weight	W _{haunch} =	0.022 k/f	İ
			İ
LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	ı >
Curvature in plans is less than 4°=	0	OK	ı [
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW -	0.263 k/f

Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.5404
Longitudinal stiffness parameter	$K_g =$	2,689,204.22 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{1.6} * \left(\frac{S}{L}\right)^{1.2} * \left(\frac{K_g}{12 \times L * t_s^3}\right)^{0.1}$$

DFM = 0.917 lanes/beam

one design lane loaded:

$$DFM = 0.75 + {\binom{S}{14}}^{0.4} * {\binom{S}{L}}^{0.2} * {\binom{K_8}{12 * L * L^3}}^{0.}$$

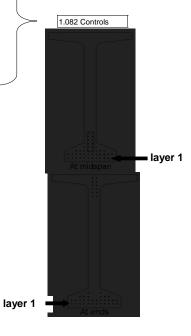
DFM = 0.622 lanes/beam

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$


DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

At Midspan			At Ends		
from bottom No. of Distance from Bottom		Distance from Bottom	No. of	Distance from Bottom	
layer 1	12	2	12	2	
layer 2	12	4	12	4	
layer 3	8	6	6	6	
layer 4	4	8	2	8	
layer 5	2	10	-	<u>-</u> -	
layer 6	2	12	-	-	
layer 7	2	14	-	-	
layer 8	2	16	-	-	
layer 9	-	-	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
Harped Str	and Group (ir	ncluded in above totals)			
layer 3	2	6			
layer 4					
layer 5	layer 5 2 10				
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth $strand\ eccentricity\ at\ midspan = (y_b-y_{bs})$

y _{bs} =	5.82 in
e _c =	30.78 in

Prestress Losses

ELASTIC SHORTENING				
	assumed loss	=	9.00%	
Force per strand at transfer				
	layer 1	=	28.9 kips	
	layer 2	=	28.9 kips	
	layer 3	=	28.9 kips	
	layer 4	=	28.9 kips	
	layer 5	=	28.9 kips	
	layor 6	_	28 0 kine	

layer 4	=	28.9 kips
layer 5	=	28.9 kips
layer 6	=	28.9 kips
layer 7	=	28.9 kips
layer 8	=	28.9 kips
layer 9	=	28.9 kips
layer 10	=	28.9 kips
layer 11	=	28.9 kips
layer 12	=	28.9 kips
layer 13	=	28.9 kips
layer 14	II	28.9 kips

		at midspan	at endspan
Total prestressing force at release	P _i =	1271.6 kips	1271.6 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	$f_{\rm cgp} =$	2.938 ksi	2.938 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 2	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 3	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 4	$\Delta f_{pES} =$	17.0 ksi	17.0 ksi
layer 5	$\Delta f_{pES} =$	17.0 ksi	
layer 6	$\Delta f_{pES} =$	17.0 ksi	
layer 7	$\Delta f_{pES} =$	17.0 ksi	
layer 8	$\Delta f_{pES} =$	17.0 ksi	
layer 9	$\Delta f_{pES} =$		17.0 ksi
layer 10	$\Delta f_{pES} =$		17.0 ksi
layer 11	$\Delta f_{pES} =$		17.0 ksi
layer 12	$\Delta f_{pES} =$		17.0 ksi
layer 13	$\Delta f_{pES} =$		17.0 ksi
layer 14	$\Delta f_{pES} =$		17.0 ksi

SHRII	NKAGE			
Shrinkage = (17-0.15*Relative Humidity)	$\Delta f_{pSR} =$	6.5 ksi	—	assume relative humidity = 70%

RELAXATION OF PRESTRESSING STRANDS loss due to relaxation after transfer at endspan $\begin{array}{c|c} \text{layer 1} & \Delta f_{pR2} = \\ \text{layer 2} & \Delta f_{pR2} = \end{array}$ 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi 2.1 ksi

TOTAL LOSSES	AT TRAI	NSFER	
total loss $\Delta f_{pES} = \Delta f_{pi}$	711 1100	101 211	
stress in tendons after transfer $f_{\text{pt}} = f_{\text{pi}} - \Delta f_{\text{pi}}$		at midspan	at endspan
layer 1	f _{pt} =	190.6 ksi	190.6 ksi
layer 2	f _{pt} =	190.6 ksi	190.6 ksi
layer 3	f _{pt} =	190.6 ksi	190.6 ksi
layer 4	f _{pt} =	190.6 ksi	190.6 ksi
layer 5	f _{pt} =	190.6 ksi	
layer 6	f _{pt} =	190.6 ksi	
layer 7	f _{pt} =	190.6 ksi	
layer 8	f _{pt} =	190.6 ksi	
layer 9	f _{pt} =		190.6 ksi
layer 10	f _{pt} =		190.6 ksi
layer 11	f _{pt} =		190.6 ksi
layer 12	f _{pt} =		190.6 ksi
layer 13	f _{pt} =		190.6 ksi
layer 14	f _{pt} =		190.6 ksi
force per strand = f _{pt} *strand area	F.	at midspan	at endspan
layer 1	=	29.2 kips	29.2 kips
layer 2	=	29.2 kips	29.2 kips
layer 3	=	29.2 kips	29.2 kips
layer 4	=	29.2 kips	29.2 kips
layer 5	=	29.2 kips	
layer 6	=	29.2 kips	
layer 7	=	29.2 kips	
layer 8	=	29.2 kips	
layer 9	=	,	29.2 kips
layer 10	=		29.2 kips
layer 11	=		29.2 kips
layer 12	=		29.2 kips
layer 13	=		29.2 kips
layer 14	=		29.2 kips
Total prestressing force after transfer	P _i =	1284.8 kips	1284.8 kips
_			
Initial loss = $(\Delta f_{pi})/(f_{pi})$		at midspan	at endspan
layer 1	% =	8.2%	8.2%
layer 2	% =	8.2%	8.2%
layer 3	% =	8.2%	8.2%
layer 4	% =	8.2%	8.2%
layer 5	% =	8.2%	
layer 6	% =	8.2%	
layer 7	% =	8.2%	
layer 8	% =	8.2%	
layer 9	% =		8.2%
layer 10	% =		8.2%
layer 11	% =		8.2%
layer 12	% =		8.2%
layer 13	% =		8.2%
layer 14	% =		8.2%

OK OK OK OK OK OK OK OK

Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 2	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 3	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 4	$\Delta f_{pT} =$	49.9 ksi	49.9 ksi
layer 5	$\Delta f_{pT} =$	49.9 ksi	
layer 6	$\Delta f_{pT} =$	49.9 ksi	
layer 7	$\Delta f_{pT} =$	49.9 ksi	
layer 8	$\Delta f_{pT} =$	49.9 ksi	
layer 9	$\Delta f_{pT} =$		49.9 ksi
layer 10	$\Delta f_{pT} =$		49.9 ksi
layer 11	$\Delta f_{pT} =$		49.9 ksi
layer 12	$\Delta f_{pT} =$		49.9 ksi
layer 13	$\Delta f_{pT} =$		49.9 ksi
layer 14	$\Delta f_{pT} =$		49.9 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	157.7 ksi	157.7 ksi
layer 2	f _{pe} =	157.7 ksi	157.7 ksi
layer 3	f _{pe} =	157.7 ksi	157.7 ksi
layer 4	f _{pe} =	157.7 ksi	157.7 ksi
layer 5	f _{pe} =	157.7 ksi	
layer 6	f _{pe} =	157.7 ksi	
layer 7	f _{pe} =	157.7 ksi	
layer 8	f _{pe} =	157.7 ksi	
layer 9	f _{pe} =		157.7 ksi
layer 10	f _{pe} =		157.7 ksi
layer 11	f _{pe} =		157.7 ksi
layer 12	f _{pe} =		157.7 ksi
layer 13	f _{pe} =		157.7 ksi
layer 14	f _{pe} =		157.7 ksi
check prestressing stress limit at service limit state: fpe	e ≤ 0.8*fpy		_
layer 1	=	199.7 ksi	
layer 2	=	199.7 ksi	
layer 3	=	199.7 ksi	
layer 4	=	199.7 ksi	
layer 5	=	199.7 ksi	
layer 6	=	199.7 ksi	
layer 7	=	199.7 ksi	
layer 8	=	199.7 ksi	
layer 9	=	199.7 ksi	
layer 10	=	199.7 ksi	
· · · · · · · · · · · · · · · · · · ·	=	199.7 ksi	
layer 11		400 71 '	1
layer 11 layer 12	=	199.7 ksi	
layer 11 layer 12 layer 13	=	199.7 ksi	
layer 11 layer 12			
layer 11 layer 12 layer 13	-	199.7 ksi	
layer 11 layer 12 layer 13	-	199.7 ksi	at endspan

force	nor	strand	_ 1	٠ *	etrand	area
loice	pei	Stranu	= 1	pe	Straniu	area

nd = f _{pe} *strand area		at midspan	at endspan
layer 1	=	24.1 kips	24.1 kips
layer 2	=	24.1 kips	24.1 kips
layer 3	=	24.1 kips	24.1 kips
layer 4	=	24.1 kips	24.1 kips
layer 5	=	24.1 kips	
layer 6	=	24.1 kips	
layer 7	=	24.1 kips	
layer 8	=	24.1 kips	
layer 9	=		24.1 kips
layer 10	=		24.1 kips
layer 11	=		24.1 kips
layer 12	=		24.1 kips
layer 13	=		24.1 kips
layer 14	=		24.1 kips
		at midspan	at endspan
Total prestressing force after all losses	P _{pe} =	1061.7 kips	1061.7 kips

layer 1	% =	24.0%	24.0%
layer 2	% =	24.0%	24.0%
layer 3	% =	24.0%	24.0%
layer 4	% =	24.0%	24.0%
layer 5	% =	24.0%	
layer 6	% =	24.0%	
layer 7	% =	24.0%	
layer 8	% =	24.0%	
layer 9	% =		24.0%
layer 10	% =		24.0%
layer 11	% =		24.0%
layer 12	% =		24.0%
layer 13	% =		24.0%
layer 14	% =		24.0%
Average final losses, %	% =	24.0%	24.0%

Stresses at Transfer		
STRESS LIMITS FOR CO	ONCRET	E
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = -0.0948*√f'ci ≤ -0.2	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22*√f'ci	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	2.5 ft	
Bending moment at transfer length	$M_g =$	116.4 ft-kips	
center of 12 strands to top fiber of beam at the end	=	7.00 in	ì
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in	
center of 12 strands and top fiber of beam at transfer length	=	10.78 in	
center of gravity of 32 strands and bottom fiber of beam	=	3.88 in	
center of gravity of all strands and the bottom fiber of beam at transfer length	Ш	19.51 in	
center of gravity of all strands and the bottom fiber of beam at the end	=	20.55 in	
Eccentricity of the strand group at transfer length:	e _h =	17.09 in	v
Eccentricity at end of beam:	e =	16.05 in	

Calcs for eccentricity (see 9.6.7.2)

ок

ок ок

οк ок

$f_z = \frac{P_z}{A} - \frac{P_z e}{S_z} + \frac{M_z}{S_z}$	f, -	$=\frac{P_1}{A}+\frac{P_1e}{S_0}-\frac{M_s}{S_0}$	
		at midspan	at endspan
Top stress at top fiber of beam	f. =	0 342 ksi	0 342 ksi

Bottom stress at bottom fiber of the beam 3.021 ksi

STRESSES AT HARP POINT					
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips			
Top stress at top fiber of beam	$f_t =$	0.035 ksi	0.035 ksi		
Bottom stress at bottom fiber of the beam	f _b =	3.300 ksi	3.300 ksi		
STRESSES A	STRESSES AT MIDSPAN				
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips			
Top stress at top fiber of beam	$f_t =$	0.220 ksi	0.211 ksi		
Bottom stress at bottom fiber of the beam	f _b =	3.144 ksi	3.189 ksi		
HOLD-DOWN FORCES					

assume stress in strand before losses = 0.8f_u

layer 1	=	221.4 ksi
layer 2	=	221.4 ksi
layer 3	=	221.4 ksi
layer 4	=	221.4 ksi
layer 5	=	221.4 ksi
layer 6	=	221.4 ksi
layer 7	=	221.4 ksi
layer 8	=	221.4 ksi
layer 9	=	221.4 ksi
layer 10	=	221.4 ksi
layer 11	=	221.4 ksi
layer 12	=	221.4 ksi
layer 13	=	221.4 ksi
layer 14	=	221.4 ksi
		,

prestress force per strand before any losses:

layer 1	=	33.9 kips
layer 2	=	33.9 kips
layer 3	=	33.9 kips
layer 4	=	33.9 kips
layer 5	=	33.9 kips
layer 6	=	33.9 kips
layer 7	=	33.9 kips
layer 8	=	33.9 kips
layer 9	=	33.9 kips
layer 10	=	33.9 kips
layer 11	=	33.9 kips
layer 12	=	33.9 kips
layer 13	=	33.9 kips
layer 14	=	33.9 kips
Harp Angle	Ψ =	7.2 °

Hold-down force/strand

layer 1	=	4.4 kips/strand
layer 2	=	4.4 kips/strand
layer 3	=	4.4 kips/strand
layer 4	=	4.4 kips/strand
layer 5	=	4.4 kips/strand
layer 6	=	4.4 kips/strand
layer 7	=	4.4 kips/strand
layer 8	=	4.4 kips/strand
layer 9	=	4.4 kips/strand
layer 10	=	4.4 kips/strand
layer 11	=	4.4 kips/strand
layer 12	=	4.4 kips/strand
layer 13	II	4.4 kips/strand
layer 14	II	4.4 kips/strand
Total hold-down force	II	53.39 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

Due to permanent loads for load combination Service i				
for the precast beam	=	3.150 ksi		
for deck	=	1.328 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		
for deck	=	1.770 ksi		

Tension:

Load Combination Service III

for the precast beam = -0.016 ksi

ок

ок

ок

ок

ок

STRESSES A	AT MIDS	<u>PAN</u>	
Compression stresses at top fiber of beam		at midspan	at endspan
$f_2 = \frac{P_{pe}}{A} = \frac{P_{pe}A}{S_2} + \frac{(M_z + 1)^2}{S_2}$	<u>M,)</u> (.	$\frac{M_{\infty} + M_{s})}{S_{rg}}$	
Due to permanent loads	$f_{tg} =$	2.048 ksi	2.048 ksi
$f_{ig} = \frac{P_{go}}{A} - \frac{P_{go}e}{S_t} + \frac{(M_g + M_{\gamma})}{S_t}$	+ (M + + Su	$\frac{(\boldsymbol{M}_{\boldsymbol{\theta}})}{S_{\boldsymbol{y}}} + \frac{(\boldsymbol{M}_{\boldsymbol{L}\boldsymbol{U}+1})}{S_{\boldsymbol{y}}}$	
Due to permanent loads and transient loads	$f_{tg} =$	2.527 ksi	2.527 ksi
Compression stresses at top fiber of deck		at midspan	at endspan
$f_{\mathbf{k}} = \frac{\langle M_{\eta} \rangle}{1}$	tr		
Due to permanent loads	f _{tc} =	0.042 ksi	0.042 ksi
$f_{w} = \frac{(M_{w} + I)}{I}$	$\frac{M_o + M_L}{S_w}$	₍₊₁)	
Due to permanent loads and transient loads	f _{tc} =	0.483 ksi	0.483 ksi
Tension stresses at top fiber of deck		at midspan	at endspan
$f_{12} = \frac{P_{ps}}{A} - \frac{P_{ps}\theta}{S_{\phi}} - \frac{(M_1 + M_2)}{S_{\phi}}$	<u>(M, +</u>	$M_b + 0.8 * M_{E-1}$	
A S,		S'es	
Load Combination Service III	f _b =	-0.431 ksi	-0.431 ksi

	Streng	th	Limit	State
--	--------	----	-------	-------

POSITIVE MOMENT SI	ECTION		-
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	8381.5 ft-kips	
effective length factor for compression members	,		1
layer 1	k =	0.28	
layer 2	k =	0.28	
layer 3	k =	0.28	
layer 4	k =	0.28	
layer 5	k =	0.28	
layer 6	k =	0.28	
layer 7	k =	0.28	
layer 8	k =	0.28	
layer 9	k =	0.28	
layer 10	k =	0.28	
layer 11	k =	0.28	
layer 12	k =	0.28	
layer 13	k =	0.28	
layer 14	k =	0.28	
	c =	7.7 ft-kips	
layer 1 layer 2	f _{ps} = f _{ps} =	268.9 ksi 268.9 ksi	
- I			
layer 3	f _{ps} =	268.9 ksi	
layer 4	f _{ps} =	268.9 ksi	•
layer 5	f _{ps} =	268.9 ksi	
layer 6	f _{ps} =	268.9 ksi	
layer 7	f _{ps} =	268.9 ksi	
layer 8	f _{ps} =	268.9 ksi	
layer 9	f _{ps} =	268.9 ksi	
layer 10	f _{ps} =	268.9 ksi	
layer 11	f _{ps} =	268.9 ksi	
layer 12	f _{ps} =	268.9 ksi	
layer 13	f _{ps} =	268.9 ksi	
layer 14	f _{ps} =	268.9 ksi	
ominal flexure resistance			ī
	a =	6.52 in	
$M_r = \Phi M_n, \Phi = 1.00$	$\Phi M_n =$	10697.9 ft-kips	ok
NEGATIVE MOMENT S	ECTION		_
$M_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$M_u =$	-4837.2 ft-kips	
	a =	0.17 in	
	$\Phi M_n =$	3527.5 ft-kips	NOT O
ear Design			-
CRITICAL SECTION A			1
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u =	405.0 kips	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips]
or			1
$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	V _u = M _u =	364.8 kips	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$		-2877.0 ft-kips	

 $V_u =$

M_u =

 $d_v =$

 $N_u =$

Shear depth

405.0 kips

2877.0 ft-kips

73.19 in

0

36.00°

max shear

Applied factored normal force at the section

max moment

Angle of diagonal compressive stresses

STRAIN IN FLEXURAL TENSION REINFORCMENT

N FLEXURAL TENORS. $\frac{M_1}{2} + 0.5N_1 + 0.5V_1 \cot \theta - A_{10}J_{10} \le 0.002$ $E_{r}A_{r}+E_{p}A_{p}$

resultant compressive stress at centroid effective stress in prestressing strand after all losses

	at midspan	at endspan
f _{pc} =	1.035 ksi	1.035 ksi

iosses			
layer 1	$f_{po} =$	163.0 ksi	163.0 ksi
layer 2	$f_{po} =$	163.0 ksi	163.0 ksi
layer 3	$f_{po} =$	163.0 ksi	163.0 ksi
layer 4	$f_{po} =$	163.0 ksi	163.0 ksi
layer 5	$f_{po} =$	163.0 ksi	
layer 6	f _{po} =	163.0 ksi	
layer 7	$f_{po} =$	163.0 ksi	
layer 8	$f_{po} =$	163.0 ksi	
layer 9	$f_{po} =$		163.0 ksi
layer 10	$f_{po} =$		163.0 ksi
layer 11	f _{po} =		163.0 ksi
layer 12	f _{po} =		163.0 ksi
layer 13	f _{po} =		163.0 ksi
layer 14	f _{po} =		163.0 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\varepsilon_x =$	0.002000	0.002000
layer 3	$\varepsilon_x =$	0.002000	0.002000
layer 4	$\epsilon_x =$	0.002000	0.002000
layer 5	$\epsilon_x =$	0.002000	
layer 6	$\varepsilon_x =$	0.002000	
layer 7	$\varepsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\epsilon_x =$		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	$\epsilon_x =$		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

Live load deflection limit = span/800 Deflection due to live load and impact

Deflection due to fire truck Total Deflection after fire with fire truck

	at midspan	at endspan
$\Delta_p =$	3.97 in	3.97 in
$\Delta_g =$	-1.49 in	
$\Delta_g =$	-1.44 in	
$\Delta_s =$	-1.95 in	

 $\Delta_{sw} =$ 0.59 in

Δ =	2.48 in	2.48 in
Λ =	4 49 in	4 49 in

1.80 in -0.90 in

$\Delta_L =$	-0.8144 in
Δ =	3.7408 in

ок

ок

Parametric Design: <u>I-5 Overpass Case Study</u>

Beam Design: 3/8" Strand
Fire Exposure Status: Undamaged

(PCI Bridge Design Manual Section 9.6)


Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	4.00 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE

Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	la 4 (b.atta.ar)	_	C0 00 %F
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7 layer 8	T = T =	68.00 °F 68.00 °F
	layer 9	T =	68.00 °F
	layer 10	T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	<u>T</u> =	68.00 °F
	layer 13	T =	68.00 °F
Ultimate Strength	layer 14	T =	68.00 °F
intial = 284 k	si layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	f _{pu} =	284 ksi
Yield Strength	ſ		
intial = 257 k	* ` '	f _{py} =	257 ksi
	layer 2	f _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	t _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13 layer 14	f _{py} =	257 ksi 257 ksi
Stress Limits:	layer 14	f _{py} =	257 KSI
before transfer ≤ 0.75f _p	(initial = 213.2)		
- p	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
	layer 6	f _{pi} =	213.2 ksi
	layer 7	f _{pi} =	213.2 ksi
	layer 8	f _{pi} =	213.2 ksi
	layer 9	$f_{pi} =$	213.2 ksi
	layer 10	$f_{pi} =$	213.2 ksi
	layer 11	$f_{pi} =$	213.2 ksi
	layer 12	$f_{pi} =$	213.2 ksi
	layer 13	$f_{pi} =$	213.2 ksi
	layer 14	$f_{pi} =$	213.2 ksi
	•		

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

5) = 0.001py (1111tial 1	_ 200.1)	
layer 1 (bottom)	f _{pe} =	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	$f_{pe} =$	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	$f_{pe} =$	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
laver 14	F =	25898.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	60.0 ksi	68.00 °F

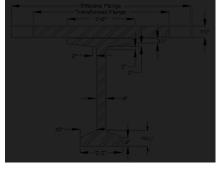
Modulus of Elasticity

Layer 1 (Bottom) E =

Layer 2 (Top) E = 29000.0 ksi 29000.0 ksi

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	A _{sm} =	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2
(Top)		


Layer 2 (Top)

Area of steel at midspan (effective flange)	A _{sm} =	12.6 in^2
Area of steel at endspan (effective flange)	A _{se} =	12.4 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.2 in^2

Cross-sectional Properties

NON-COMPOSITE BEAM	
--------------------	--

NON-COMPOSITE BEAM				
Area of cross-section of beam	A =	767.0 in^2		
Overall depth of beam	H =	72.0 in		
Moment of Inertia	l =	539,947 in^4		
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in		
Distance from centroid to extreme top fiber	y _t =	35.4 in		
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3		
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3		
Weight	$W_t =$	799.0 plf		
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$				
cast-in-place concrete deck	$E_{cs} =$	3834 ksi		
precast beam at release	E _{ci} =	4496 ksi		
precast beam at service loads	E _c =	5072 ksi		

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7559
Transformed flange width	=	83.9 in
Transformed flange area	II	629.3 in^2
Transformed haunch width	=	31.7 in
Transformed haunch area	=	15.9 in^2
Deck-distance to top fiber	$y_t =$	3.75 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	250,443 in^4	539,947 in^4	790,390 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	4,906 in^4	0.33 in^4	4,906 in^4
Deck	629.3 in^2	76.25 in	47,985.0 in^3	293,069 in^4	2,950 in^4	296,019 in^4
Total	1412.2 in^2		77.204.1 in^3		•	1.091.316 in^4

Total area of Composite Section	A _c =	1412 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,091,316 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.67 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.33 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.33 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,961.9 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	62,972.4 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	56,994.5 in^3

COMPOSITE BEAM AT ENDSPAN

CINII COLLE DEAM AL	LINDOI A	14
Effective Flange Width	$b_f =$	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.7559
Transformed flange width	=	80.6 in
Transformed flange area	=	604.4 in^2
Transformed haunch width	II	31.7 in
Transformed haunch area	=	15.9 in^2
Deck-distance to top fiber	y _{td} =	3.75 in

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	273,455 in^4	539,947 in^4	813,402 in^4
Haunch	15.9 in^2	72.25 in	1,146.9 in^3	5,660 in^4	0.33 in^4	5,660 in^4
Deck	604.4 in^2	76.25 in	46,082.8 in^3	215,472 in^4	2,833 in^4	218,305 in^4
Total	1387.2 in^2		75.302.0 in^3			1.037.366 in^4

Total area of Composite Section	A _c =	1387 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,037,366 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	54.28 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	17.72 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	25.72 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,110.7 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	58,548.3 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	40,336.0 in^3

Shear Forces and Bending Moments DEAD LOADS

Beam self-weight w _{beam} =	0.799 k/f
8 in. deck weight w _{deck} =	1.200 k/f
1/2 in. haunch weight W _{haunch} =	0.022 k/f
,	

LRFD Specifications: Art. 4.6.2.2.1			
Width of Deck Constant		OK	
Number of beams is not less than four N _b =	4	OK	
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK	
Curvature in plans is less than 4°=	0	OK	
Cross-section of the bridge is consistent with one of the cross sections given by LRFD specs		ОК	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	X _a =	59.0 ft
distance from nearest edge to point B	X _b =	39.8 ft
_RFD Specifications: Art. 4.6.2.2.1		-
Width of Deck Constant		OK
Number of beams is not less than four N_b =	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	ОК
Curvature in plans is less than 4°=	0	ок

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	N _b =	4
Modular ratio between beam & deck materials	n =	1.3229
Longitudinal stiffness parameter	$K_g =$	2,309,429.79 in^4

at center span:

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_{J}}{12*L*L^{\frac{4}{3}}}\right)^{0.1}$$

DFM = 0.905 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_g}{12*L*t_i^3}\right)^{0.1}$$

$$| DFM = | 0.614 | lanes/beam$$

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

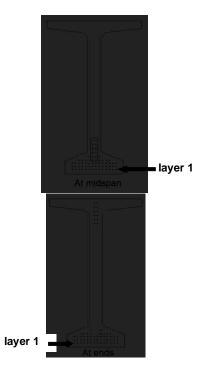
$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

1.082 Controls

		At Midspan		At Ends	
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom	
layer 1	14	2	14	2	
layer 2	14	3.5	14	3.5	
layer 3	14	5	14	5	
layer 4	10	6.5	8	6.5	
layer 5	4	8	2	8	
layer 6	2	10	-	-	
layer 7	2	12	-	-	
layer 8	2	14	-	-	
layer 9	2	16	2	60	
layer 10	-	-	2	62	
layer 11	-	-	2	64	
layer 12	-	-	2	66	
layer 13	-	-	2	68	
layer 14	-	-	2	70	
	64		64		
Harped Stra	and Group (ir	cluded in above totals)			
layer 3	2	6			
layer 4	2	8			
layer 5	2	10			
layer 6	2	12			
layer 7	2	14			
layer 8	2	16			

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})


y _{bs} =	5.44 in
e _c =	31.16 in

Prestress Losses

ELASTIC SHORTENING assumed loss = 6.00%

Force per strand at transfer

layer 1	II	17.0 kips
layer 2	=	17.0 kips
layer 3	=	17.0 kips
layer 4	II	17.0 kips
layer 5	=	17.0 kips
layer 6	=	17.0 kips
layer 7	=	17.0 kips
layer 8	=	17.0 kips
layer 9	=	17.0 kips
layer 10	=	17.0 kips
layer 11	=	17.0 kips
layer 12	=	17.0 kips
layer 13	=	17.0 kips
layer 14	=	17.0 kips

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

SHRINKAGE Shrinkage = (17-0.15*Relative Humidity) assume relative humidity = 70% $\Delta f_{pSR} =$ 6.5 ksi

CREEP OF CONCRETE				
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f_{cgp}		1.587 ksi		
•		at midspan	at endspan	
loss due to creep	$\Delta f_{pCR} =$	17.8 ksi	16.6 ksi	

RELAXATION OF PRESTRESSING STRANDS

loss due to relaxation after transfer

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$		2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$	<u> </u>	2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$

stress in tendons after transfer $f_{pt} = f_{pi}$ - Δf_{pi}

	at midspan	at endspan
f _{pt} =	199.3 ksi	199.9 ksi
$f_{pt} =$	199.3 ksi	199.9 ksi
$f_{pt} =$	199.3 ksi	199.9 ksi
$f_{pt} =$	199.3 ksi	199.9 ksi
$f_{pt} =$	199.3 ksi	199.9 ksi
$f_{pt} =$	199.3 ksi	
$f_{pt} =$	199.3 ksi	
$f_{pt} =$	199.3 ksi	
$f_{pt} =$	199.3 ksi	199.9 ksi
$f_{pt} =$		199.9 ksi
	at midspan	at endspan
=	16.9 kips	17.0 kips
=	16.9 kips	17.0 kips
=	16.9 kips	17.0 kips
=	16.9 kips	17.0 kips
=	16.9 kips	17.0 kips
=	16.9 kips	
=	16.9 kips	
=	16.9 kips	
=	16.9 kips	17.0 kips
=		17.0 kips
P _i =	1047.8 kips	1054.0 kips
	f _{Dt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = f _{pt} = = = = = = = = = = = = = = = = = = =	fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 199.3 ksi fpt 16.9 ksi at midspan 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips 16.9 kips

force per strand = f_{pt} *strand area

Initial loss =	$(\Delta f_{pi})/(f_{pi})$
----------------	----------------------------

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK

TOTAL LOSSES A	T SERVI	CE LOADS	
Total Losses		at midspan	at endspan
layer 1	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 2	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 3	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 4	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 5	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 6	$\Delta f_{pT} =$	41.1 ksi	
layer 7	$\Delta f_{pT} =$	41.1 ksi	
layer 8	$\Delta f_{pT} =$	41.1 ksi	
layer 9	$\Delta f_{pT} =$	41.1 ksi	40.5 ksi
layer 10	$\Delta f_{pT} =$		40.5 ksi
layer 11	$\Delta f_{pT} =$		40.5 ksi
layer 12	$\Delta f_{pT} =$		40.5 ksi
layer 13	$\Delta f_{pT} =$		40.5 ksi
layer 14	$\Delta f_{pT} =$		40.5 ksi
Stress in tendon after all losses = f_{pi} - Δf_{pt}		at midspan	at endspan
layer 1	f _{pe} =	172.0 ksi	172.7 ksi
layer 2	f _{pe} =	172.0 ksi	172.7 ksi
layer 3	f _{pe} =	172.0 ksi	172.7 ksi
layer 4	f _{pe} =	172.0 ksi	172.7 ksi
layer 5	f _{pe} =	172.0 ksi	172.7 ksi
layer 6	f _{pe} =	172.0 ksi	
layer 7	f _{pe} =	172.0 ksi	
layer 8	f _{pe} =	172.0 ksi	
layer 9	f _{pe} =	172.0 ksi	172.7 ksi
layer 10	f _{pe} =		172.7 ksi
layer 11	f _{pe} =		172.7 ksi
layer 12	f _{pe} =		172.7 ksi
layer 13	f _{pe} =		172.7 ksi
layer 14	f _{pe} =		172.7 ksi
check prestressing stress limit at service limit state:	fpe ≤ 0.8*	fpy	
layer 1	=	205.4 ksi	
layer 2	=	205.4 ksi	
I		005.41.1	

layer 3

layer 4

layer 5

layer 6

layer 7

layer 8

layer 9

layer 10

layer 11

layer 12

layer 13

layer 14

=

=

=

=

=

=

=

=

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi 205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

205.4 ksi

ок
oĸ
oĸ
oĸ
oĸ
ок
oĸ
oĸ
oĸ
ок
oĸ
ок
ок
ок

force	ner	strand	= f.	.*sti	rand	area

		at midspan	at endspan
layer 1	=	14.6 kips	14.7 kips
layer 2	=	14.6 kips	14.7 kips
layer 3	=	14.6 kips	14.7 kips
layer 4	=	14.6 kips	14.7 kips
layer 5	=	14.6 kips	14.7 kips
layer 6	=	14.6 kips	
layer 7	=	14.6 kips	
layer 8	=	14.6 kips	
layer 9	=	14.6 kips	14.7 kips
layer 10	=		14.7 kips
layer 11	=		14.7 kips
layer 12	=		14.7 kips
layer 13	=		14.7 kips
layer 14	=		14.7 kips
		at midspan	at endspan
II losses	Pne =	935.9 kips	939.2 kips

Total prestressing force after all losses P_{pe} =

Final losses,	% = (Δf_{DT})/(f_{Di})
---------------	-------	--------------------------------

layer 1	% =	19.3%	19.0%
layer 2	% =	19.3%	19.0%
layer 3	% =	19.3%	19.0%
layer 4	% =	19.3%	19.0%
layer 5	% =	19.3%	19.0%
layer 6	% =	19.3%	
layer 7	% =	19.3%	
layer 8	% =	19.3%	
layer 9	% =	19.3%	19.0%
layer 10	% =		19.0%
layer 11	% =		19.0%
layer 12	% =		19.0%
layer 13	% =		19.0%
layer 14	% =		19.0%
Average final losses, %	% =	19.3%	19.0%

Stresses at Transfer		
STRESS LIMITS FOR CO	ONCRET	Έ
Compression = 0.6f'ci	f _{ci} =	3.300 ksi
Tension		
without bonded reinforcement = $-0.0948*\sqrt{f'_{ci}} \le -0.2$	=	-0.200 ksi
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	=	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	II	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	II	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length		15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	ı	15.30 in
Eccentricity of the strand group at transfer length:	e _h =	21.36 in
Eccentricity at end of beam:	e =	21.30 in

Calcs for eccentricity (see 9.6.7.2)

οк ок

$$f_{s} = \frac{P_{i}}{A} - \frac{P_{i}s}{S_{i}} + \frac{M_{g}}{S_{i}}$$

$$f_{\phi} = \frac{P_{i}}{A} + \frac{P_{i}s}{S_{\phi}} - \frac{M_{g}}{S_{\phi}}$$

$$f_b = \frac{P_t}{A} + \frac{P_t s}{S_b} - \frac{M_s}{S_b}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	$f_b =$	2.906 ksi	2.906 ksi

STRESSES AT	T HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.736 ksi	2.621 ksi	
STRESSES A	AT MIDS	PAN	_	
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.320 ksi	0.345 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	
HOLD DOWN FOR	0=0			

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	II	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	II	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	II	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
Ψ =	7.2 °
	= = = = = = = = = = = = = = = = = = = =

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	II	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	II	2.5 kips/strand
layer 9	II	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	II	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi	
for deck	=	1.800 ksi	
Due to permanent and transient loads for load combination Service I			
for the precast beam	=	4.200 ksi	

2.400 ksi

Tension:

Load Combination Service III

for the precast beam -0.016 ksi

for deck =

STRESSES AT MIDS	PAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{i} = \frac{P_{po}}{A} - \frac{P_{po}s}{S_{s}} + \frac{(M_{s} + M_{s})}{S_{s}} + \frac{(M_{s} + M_{s})}{S_{s}}$	$\frac{M_{\infty}+M_{\bullet})}{S_{n}}$		
Due to permanent loads $f_{tg} =$	2.105 ksi	2.102 ksi	
$f_{tg} = \frac{P_{\mu\nu}}{A} - \frac{P_{\mu\nu}e}{S_{\tau}} + \frac{(M_{g} + M_{s})}{S_{\tau}} + \frac{(M_{wu} + M_{s})}{S_{tg}}$	$\frac{+M_{\bullet})}{s} + \frac{(M_{IE+1})}{S_{te}}$		
Due to permanent loads and transient loads ftg =	2.508 ksi	2.505 ksi	
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{us} + M_s)}{S_{tr}}$	<u>.)</u>		
Due to permanent loads f _{tc} =	0.042 ksi	0.042 ksi	
$f_{ss} = \frac{(M_{us} + M_{s} + M_{L})}{S_{ss}}$	_{(Z+1})		
Due to permanent loads and transient loads f _{tc} =	0.488 ksi	0.488 ksi	(
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ig} = \frac{P_{gg}}{A} + \frac{P_{gg}\theta}{S_{g}} - \frac{(M_{g} + M_{s})}{S_{g}} - \frac{(M_{uo} + M_{s})}{S_{g}}$	$M_b + 0.8*M_{II+1}$) S_{Lc}		
Load Combination Service III f _b =	-0.792 ksi	-0.781 ksi	

Strength Limit State

POSITIVE MOMENT SECTION					
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	8381.5 ft-kips			
effective length factor for compression members		•			
layer 1	k =	0.27			
layer 2	k =	0.27			
layer 3	k =	0.27			
layer 4	k =	0.27			
layer 5	k =	0.27			
layer 6	k =	0.27			
layer 7	k =	0.27			
layer 8	k =	0.27			
layer 9	k =	0.27			
layer 10	k =	0.27			
layer 11	k =	0.27			
layer 12	k =	0.27			
layer 13	k =	0.27			
layer 14	k =	0.27			
	C =	4.6 ft-kips			

	prestressing	

layer 1	$f_{ps} =$	279.4 ksi
layer 2	$f_{ps} =$	279.4 ksi
layer 3	$f_{ps} =$	279.4 ksi
layer 4	$f_{ps} =$	279.4 ksi
layer 5	$f_{ps} =$	279.4 ksi
layer 6	f _{ps} =	279.4 ksi
layer 7	f _{ps} =	279.4 ksi
layer 8	$f_{ps} =$	279.4 ksi
layer 9	$f_{ps} =$	279.4 ksi
layer 10	$f_{ps} =$	279.4 ksi
layer 11	f _{ps} =	279.4 ksi
layer 12	$f_{ps} =$	279.4 ksi
layer 13	$f_{ps} =$	279.4 ksi
layer 14	f _{ps} =	279.4 ksi

nominal flexure resistance

$M_r = \Phi M_n, \ \Phi = 1.00$	$\Phi M_n =$	9196.5 ft-kips	ок
	a =	3.92 in	

NEGATIVE MOMENT SECTION

$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-4837.2 ft-kips	
	a =	0.20 in	
	$\Phi M_n =$	5099.1 ft-kips	

ок

Shear Design

CRITICAL SECTION AT 0.59

$V_u = 1.25DC + 1.5DW + 1.75(LL + IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	$M_u =$	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips

 $\begin{array}{ccc} \text{max shear} & V_{\text{u}} = & 405.0 \text{ kips} \\ \text{max moment} & M_{\text{u}} = & 2877.0 \text{ ft-kips} \\ \text{Shear depth} & d_{\text{v}} = & 73.19 \text{ in} \\ \text{Applied factored normal force at the section} & N_{\text{u}} = & 0 \\ \text{Angle of diagonal compressive stresses} & \theta = & 36.00 \,^{\circ} \end{array}$

STRAIN IN FLEXURAL TENSION REINFORCMENT

 $\frac{\frac{M_a}{d_\tau} + 0.5N_a + 0.5V_a \cot \theta - A_{pe}f_{pe}}{\frac{d_\tau}{B.A. + B.A.}} \le 0.002$

resultant compressive stress at centroid effective stress in prestressing strand after all losse

	at midspan	at endspan
f _{pc} =	0.909 ksi	0.911 ksi

all losses			
layer 1	f _{po} =	176.7 ksi	177.3 ksi
layer 2	$f_{po} =$	176.7 ksi	177.3 ksi
layer 3	f _{po} =	176.7 ksi	177.3 ksi
layer 4	f _{po} =	176.7 ksi	177.3 ksi
layer 5	f _{po} =	176.7 ksi	
layer 6	$f_{po} =$	176.7 ksi	
layer 7	$f_{po} =$	176.7 ksi	
layer 8	f _{po} =	176.7 ksi	
layer 9	f _{po} =		177.3 ksi
layer 10	$f_{po} =$		177.3 ksi
layer 11	$f_{po} =$		177.3 ksi
layer 12	f _{po} =		177.3 ksi
layer 13	f _{po} =		177.3 ksi
layer 14	f _{po} =		177.3 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\varepsilon_x =$	0.002000	0.002000
layer 2	$\epsilon_x =$	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\epsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\varepsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\varepsilon_x =$		0.002000
layer 14	ε _x =		0.002000

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_{\rm g} =$ -1.44 in $\Delta_{\rm s} =$ -1.95 in	$\Delta_g =$	-1.49 in
$\Delta_{\rm s}$ = -1.95 in	$\Delta_g =$	-1.44 in
	$\Delta_s =$	-1.95 in

at midspan

3.27 in

Deflection due to total self weight

 $\Delta_{\rm sw} = -0.11 \, \text{in}$

 $\Delta_p =$

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	1.81 in
Δ =	3.24 in	3.27 in

Live load deflection limit = span/800 Deflection due to live load and impact = 1.80 in $\Delta_L =$ -0.83 in

Deflection due to fire truck

 $\Delta_L = -0.7520 \text{ in}$ $\Delta = 2.4129 \text{ in}$

Total Deflection after fire with fire truck

ok ok

at endspan

3.29 in

Parametric Design: <u>I-5 Overpass Case Study</u>

Beam Design: 3/8" Strand Fire Exposure Status: Damaged

(PCI Bridge Design Manual Section 9.6)

Material Properties

CAST-IN-PLACE SLAB			
Actual Thickness	t _{as} =	8.0 in	
Wearing Surface	=	0.5 in	
Structural thickness = Actual - Wearing Surface	$t_s =$	7.5 in	
Compressive Strength	f'c =	2.95 ksi	
Unit Weight	w _c =	150.0 pcf	
Stress factor of compression block	$\beta_1 =$	0.85	

BEAMS: AASHTO-PCI, BT-72 BULB-TEE

Strength at release	f'ci =	5.5 ksi
Strength at 28 days	f'c =	7 ksi
Unit Weight	w _c =	150.0 pcf
Overall Beam Length:		
@ end spans	L =	110 ft
@ center span	L =	119 ft
Design Spans:		
Non-composite beam @ end spans	L =	109 ft
Non-composite beam @ center span	L =	118 ft
Composite beam @ end spans	L =	110 ft
Composite beam @ center span	L =	120 ft
Beam Spacing	S =	12 ft

	PRESTRESSING STR	RANDS	
	Diameter of single strand	d =	0.4 in
	Area of single strand	A =	0.085 in^2
Temperature of Layer	laver 1 (hottom)	т –	68 UU o E
	layer 1 (bottom) layer 2	T = T =	68.00 °F 68.00 °F
	layer 3	T =	68.00 °F
	layer 4	T =	68.00 °F
	layer 5	T =	68.00 °F
	layer 6	T =	68.00 °F
	layer 7	T =	68.00 °F
	layer 8 layer 9	T =	68.00 °F 68.00 °F
	layer 10	T = T =	68.00 °F
	layer 11	T =	68.00 °F
	layer 12	T =	68.00 °F
	layer 13	T =	68.00 °F
	layer 14	T =	68.00 °F
Ultimate Strength		,	0041-1
intial = 284 ksi	layer 1 (bottom)	f _{pu} =	284 ksi
	layer 2	f _{pu} =	284 ksi
	layer 3	f _{pu} =	284 ksi
	layer 4	f _{pu} =	284 ksi
	layer 5	f _{pu} =	284 ksi
	layer 6	f _{pu} =	284 ksi
	layer 7	f _{pu} =	284 ksi
	layer 8	f _{pu} =	284 ksi
	layer 9	f _{pu} =	284 ksi
	layer 10	f _{pu} =	284 ksi
	layer 11	f _{pu} =	284 ksi
	layer 12	f _{pu} =	284 ksi
	layer 13	f _{pu} =	284 ksi
	layer 14	$f_{pu} =$	284 ksi
Yield Strength			0==1 :
intial = 257 ksi	layer 1 (bottom)	f _{py} =	257 ksi
	layer 2	t _{py} =	257 ksi
	layer 3	f _{py} =	257 ksi
	layer 4	f _{py} =	257 ksi
	layer 5	f _{py} =	257 ksi
	layer 6	f _{py} =	257 ksi
	layer 7	f _{py} =	257 ksi
	layer 8	f _{py} =	257 ksi
	layer 9	t _{py} =	257 ksi
	layer 10	f _{py} =	257 ksi
	layer 11	f _{py} =	257 ksi
	layer 12	f _{py} =	257 ksi
	layer 13	f _{py} =	257 ksi
	layer 14	f _{py} =	257 ksi
Stress Limits:	ial – 212 2\		
before transfer ≤ 0.75f _{pu} (initi			040 0 los:
	layer 1 (bottom)	f _{pi} =	213.2 ksi
	layer 2	f _{pi} =	213.2 ksi
	layer 3	f _{pi} =	213.2 ksi
	layer 4	f _{pi} =	213.2 ksi
	layer 5	f _{pi} =	213.2 ksi
		$f_{pi} =$	213.2 ksi
	layer 6	-	040 01 '
	layer 7	f _{pi} =	213.2 ksi
	layer 7 layer 8	$f_{pi} = f_{pi} =$	213.2 ksi
	layer 7 layer 8 layer 9	$f_{pi} =$ $f_{pi} =$ $f_{pi} =$	213.2 ksi 213.2 ksi
	layer 7 layer 8 layer 9 layer 10	$f_{pi} = f$	213.2 ksi 213.2 ksi 213.2 ksi
	layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pi} = f$	213.2 ksi 213.2 ksi 213.2 ksi 213.2 ksi
	layer 7 layer 8 layer 9 layer 10 layer 11 layer 12	$f_{pi} = f$	213.2 ksi 213.2 ksi 213.2 ksi 213.2 ksi 213.2 ksi
	layer 7 layer 8 layer 9 layer 10 layer 11	$f_{pi} = f$	213.2 ksi 213.2 ksi 213.2 ksi 213.2 ksi

at service limit state (after all losses) $\leq 0.80f_{py}$ (initial = 205.4)

layer

1 (bottom)	$f_{pe} =$	205.4 ksi
layer 2	f _{pe} =	205.4 ksi
layer 3	f _{pe} =	205.4 ksi
layer 4	f _{pe} =	205.4 ksi
layer 5	$f_{pe} =$	205.4 ksi
layer 6	f _{pe} =	205.4 ksi
layer 7	f _{pe} =	205.4 ksi
layer 8	f _{pe} =	205.4 ksi
layer 9	$f_{pe} =$	205.4 ksi
layer 10	f _{pe} =	205.4 ksi
layer 11	f _{pe} =	205.4 ksi
layer 12	f _{pe} =	205.4 ksi
layer 13	f _{pe} =	205.4 ksi
layer 14	f _{pe} =	205.4 ksi

Modulus of Elasticity

intial = 25898 ksi

layer 1 (bottom)	E =	25898.0 ksi
layer 2	E =	25898.0 ksi
layer 3	E =	25898.0 ksi
layer 4	E =	25898.0 ksi
layer 5	E =	25898.0 ksi
layer 6	E =	25898.0 ksi
layer 7	E =	25898.0 ksi
layer 8	E =	25898.0 ksi
layer 9	E =	25898.0 ksi
layer 10	E =	25898.0 ksi
layer 11	E =	25898.0 ksi
layer 12	E =	25898.0 ksi
layer 13	E =	25898.0 ksi
laver 14	F=	25898.0 ksi

MILD STEEL REINFORCING BARS

Yield Strength

Layer 1 (Bottom)	f _y =	60.0 ksi	68.00 °F
Layer 2 (Top)	f _v =	37.8 ksi	1508.00 °F

767.0 in^2

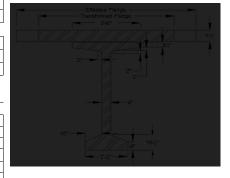
Modulus of Elasticity

Layer 1 (Bottom) E =

Layer 2 (Top) E = 29000.0 ksi 29000.0 ksi

Layer 1 (Bottom)

Area of steel at midspan (effective flange)	$A_{sm}=$	2.79 in^2
Area of steel at endspan (effective flange)	A _{se} =	2.48 in^2
Area of temperature and shrinkage steel (12" width)	A _{s*} =	0.31 in^2
(Top)		


Layer 2 (Top) Area of steel at midspan (effective flange) 12.6 in^2 12.4 in^2 A_{se}=

Area of steel at endspan (effective flange) Area of temperature and shrinkage steel (12" width) 0.2 in^2

Cross-sectional Properties

NON-COMPOSITE E	BEAM	
Area of cross-section of beam	A =	
Overall depth of beam	H =	
Moment of Inertia	=	

Overall depth of beam	H =	72.0 in
Moment of Inertia	l =	539,947 in^4
Distance from centroid to extreme bottom fiber	$y_b =$	36.6 in
Distance from centroid to extreme top fiber	$y_t =$	35.4 in
Section modulus for the extreme bottom fiber	$S_b =$	14915.0 in^3
Section modulus for the extreme top fiber	$S_t =$	15421.0 in^3
Weight	$W_t =$	799.0 plf
Modulus of Elasticity = $33000^*(W_c^1.5)^*(\sqrt{f_c})$		
cast-in-place concrete deck	E _{cs} =	3293 ksi
precast beam at release	E _{ci} =	4496 ksi
precast beam at service loads	E _c =	5072 ksi

COMPOSITE BEAM AT MIDSPAN

Effective Flange Width	$b_f =$	111.0 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6492
Transformed flange width	=	72.1 in
Transformed flange area	II	540.4 in^2
Transformed haunch width	=	27.3 in
Transformed haunch area	=	13.6 in^2
Deck-distance to top fiber	$y_t =$	5.00 in

*min of three criteria

	Transformed Area	Уb	Ay _b	$A(y_{bc}-y_b)^2$	I	I +A(y _{bc} -y _b)2
Beam	767.0 in^2	36.60 in	28,072.2 in^3	198,297 in^4	539,947 in^4	738,244 in^4
Haunch	13.6 in^2	72.25 in	985.0 in^3	5,222 in^4	0.28 in^4	5,222 in^4
Deck	540.4 in^2	75.01 in	40,535.6 in^3	269,381 in^4	1,200 in^4	270,581 in^4
Total	1321.1 in^2		69.592.7 in^3			1.014.046 in^4

Total area of Composite Section	A _c =	1321 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	1,014,046 in^4
Distance from centroid to extreme bottom fiber of beam	$y_{bc} =$	52.68 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	19.32 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	27.32 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	19,249.5 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	52,484.2 in^3
Section modulus for the extreme top fiber slab	$S_{tc} =$	57,174.2 in^3

COMPOSITE BEAM AT ENDSPAN

70 mm	,,	
Effective Flange Width	$b_f =$	106.6 in
Modular Ratio = E_{cs}/E_{c}	n =	0.6492
Transformed flange width	=	69.2 in
Transformed flange area	=	519.0 in^2
Transformed haunch width	=	27.3 in
Transformed haunch area	=	13.6 in^2
Deck-distance to top fiber	y _{td} =	5.11 in

*min of three criteria

	Transformed Area	y _t	Ay _t	$A(y_{bc}-y_t)^2$	I	$I + A(y_{tc}-y_t)^2$
Beam	767.0 in^2	36.60 in	28,072.2 in^3	247,166 in^4	539,947 in^4	787,113 in^4
Haunch	13.6 in^2	72.25 in	985.0 in^3	4,393 in^4	0.28 in^4	4,393 in^4
Deck	519.0 in^2	77.61 in	40,280.8 in^3	167,253 in^4	1,049 in^4	168,302 in^4
Total	1299.6 in^2		69.338.0 in^3			959.808 in^4

Total area of Composite Section	A _c =	1300 in^2
Overall Depth of the Composite Section	h _c =	80 in
Moment of Inertia	I _c =	959,808 in^4
Distance from centroid to extreme bottom fiber of beam	y _{bc} =	53.35 in
Distance from centroid to extreme top fiber of beam	y _{tg} =	18.65 in
Distance from centroid to extreme top fiber of slab	y _{tc} =	26.65 in
Section modulus for the extreme bottom fiber of beam	S _{bc} =	17,990.3 in^3
Section modulus for the extreme top fiber of beam	S _{tg} =	51,467.9 in^3
Section modulus for the extreme top fiber slab	S _{tc} =	36.017.1 in^3

Shear Forces and Bending Moments

DEAD LOADS

Beam self-weight w _{beam} =	0.799 k/f
8 in. deck weight w _{deck} =	1.200 k/f
1/2 in. haunch weight W _{haunch} =	0.022 k/f
,	

Barrier and wearing surface loads are equally distributed among the 4 beams

Barrier Wt	Wt =	0.150 k/f
Dead load of future wearing surface	DW =	0.263 k/f

LIVE LOADS		
Fire truck live load front load (Point A)	P _{live} =	48.0 kips
Fire truck live load back load (Point B)	P _{live} =	22.0 kips
distance between two loads		19.2 ft
distance from nearest edge to point A	x _a =	59.0 ft
distance from nearest edge to point B	x _b =	39.8 ft
RFD Specifications: Art. 4.6.2.2.1		
Width of Deck Constant		OK
Number of beams is not less than four $N_b =$	4	OK
Beams are parallel and approximately of the same stiffness		OK
Roadway part of the overhang, $d_e \le 3.0$ ft, $d_e =$	1.5	OK
Curvature in plans is less than 4°=	0	OK

Barrier and wearing surface loads are equally distributed among the 4 beams

Bridge Type-- "k" (LRFD Table 4.6.2.2.1-1)

Number of design lanes = w/12 = 3 lanes

Distribution Factor for Bending Moment:

Beams spacing	S =	12.0 ft
Depth of concrete slab	t _s =	7.5 in
Beam Span	L =	120.0 ft
Number of Beams	$N_b =$	4
Modular ratio between beam & deck materials	n =	1.5404
Longitudinal stiffness parameter	K _q =	2,689,204.22 in^4

$$DFM = 0.75 + \left(\frac{S}{9.5}\right)^{0.6} * \left(\frac{S}{L}\right)^{0.2} * \left(\frac{K_{J}}{12*L*t_{3}^{3}}\right)^{0}$$

DFM = 0.917 lanes/beam

one design lane loaded:

$$DFM = 0.75 + \left(\frac{S}{14}\right)^{0.4} * \left(\frac{S}{L}\right)^{0.3} * \left(\frac{K_g}{12*L*t_j^3}\right)^{0.1}$$

$$| DFM = | 0.622 | lanes/beam$$

0.905 Controls

Distribution Factor for Shear Force

both end spans and center span:

$$DFV = 0.2 + \left(\frac{S}{12}\right) - \left(\frac{S}{35}\right)^2$$

DFV = 1.082 lanes/beam

one design lane loaded:

$$DFV = 0.36 + \left(\frac{S}{25}\right)$$

DFV = 0.840 lanes/beam

1.082 Controls

		At Midspan	At Ends	
from bottom	No. of	Distance from Bottom	No. of	Distance from Bottom
layer 1	14	2	14	2
layer 2	14	3.5	14	3.5
layer 3	14	5	14	5
layer 4	10	6.5	8	6.5
layer 5	4	8	2	8
layer 6	2	10		-
layer 7	2	12		-
layer 8	2	14		-
layer 9	2	16	2	60
layer 10	-	-	2	62
layer 11	-	-	2	64
layer 12	-	-	2	66
layer 13	-	-	2	68
layer 14	-	-	2	70
•	64		64	
Harped Stra	and Group (ir	ncluded in above totals)		
layer 3	2	6		
layer 4	2	8		·
layer 5	2	10		
layer 6 2		12		
layer 7	2	14		
layer 8	2	16		

distance from the center of gravity of strands to the bottom fiber of the beam = 7% of the beam depth strand eccentricity at midspan = (y_b-y_{bs})

y _{bs} =	5.44 in		
e _c =	31.16 in		

layer

Prestress Losses

ELASTIC SHORTENING assumed loss = 6.00%

Force per strand at transfer

layer 1	II	17.0 kips
layer 2	=	17.0 kips
layer 3	=	17.0 kips
layer 4	=	17.0 kips
layer 5	=	17.0 kips
layer 6	=	17.0 kips
layer 7	=	17.0 kips
layer 8	=	17.0 kips
layer 9	=	17.0 kips
layer 10	=	17.0 kips
layer 11	=	17.0 kips
layer 12	=	17.0 kips
layer 13	=	17.0 kips
layer 14	=	17.0 kips

	■ layer 1
At midspan	
1 At ends	

		at midspan	at endspan
Total prestressing force at release	P _i =	1088.0 kips	1054.0 kips
Sum of concrete stresses at the center of gravity of prestressing tendons due to prestressing force at transfer and the self-weight of the member at sections of maximum moment	f _{cgp} =	2.412 ksi	2.307 ksi
Loss due to shortening		at midspan	at endspan
layer 1	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 2	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 3	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 4	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 5	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 6	$\Delta f_{pES} =$	13.9 ksi	
layer 7	$\Delta f_{pES} =$	13.9 ksi	
layer 8	$\Delta f_{pES} =$	13.9 ksi	
layer 9	$\Delta f_{pES} =$	13.9 ksi	13.3 ksi
layer 10	$\Delta f_{pES} =$		13.3 ksi
layer 11	$\Delta f_{pES} =$		13.3 ksi
layer 12	$\Delta f_{pES} =$		13.3 ksi
layer 13	$\Delta f_{pES} =$		13.3 ksi
layer 14	$\Delta f_{pES} =$		13.3 ksi

SHRINKAGE Shrinkage = (17-0.15*Relative Humidity) assume relative humidity = 70% $\Delta f_{pSR} =$ 6.5 ksi

CREEP OF CONCRETE					
Change of stresses at center of gravity of prestressing due to permanent loads except the loads acting at time of applying prestressing force, calculated at the same section as f _{cgp}	$\Delta f_{cdp} =$	1.593 ksi			
		at midspan	at endspan		
loss due to creep	$\Delta f_{pCR} =$	17.8 ksi	16.5 ksi		

loss due to relax	ation after transfer
-------------------	----------------------

		at midspan	at endspan
layer 1	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 2	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 3	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 4	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 5	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 6	$\Delta f_{pR2} =$	2.9 ksi	
layer 7	$\Delta f_{pR2} =$	2.9 ksi	
layer 8	$\Delta f_{pR2} =$	2.9 ksi	
layer 9	$\Delta f_{pR2} =$	2.9 ksi	2.9 ksi
layer 10	$\Delta f_{pR2} =$		2.9 ksi
layer 11	$\Delta f_{pR2} =$		2.9 ksi
layer 12	$\Delta f_{pR2} =$		2.9 ksi
layer 13	$\Delta f_{pR2} =$		2.9 ksi
layer 14	$\Delta f_{pR2} =$		2.9 ksi

TOTAL LOSSES AT TRANSFER

total loss $\Delta f_{pES} = \Delta f_{pi}$

stress in tendons after transfer $f_{pt} = f_{pi}\text{-}\Delta f_{pi}$

S - Alpi			
ons after transfer $f_{pt} = f_{pi} - \Delta f_{pi}$		at midspan	at endspan
layer 1	f _{pt} =	199.3 ksi	199.9 ksi
layer 2	2 f _{pt} =	199.3 ksi	199.9 ksi
layer 3	f _{pt} =	199.3 ksi	199.9 ksi
layer 4	4 f _{pt} =	199.3 ksi	199.9 ksi
layer 5	f _{pt} =	199.3 ksi	199.9 ksi
layer 6	f _{pt} =	199.3 ksi	
layer 7	$f_{pt} =$	199.3 ksi	
layer 8	f _{pt} =	199.3 ksi	
layer 9	f _{pt} =	199.3 ksi	199.9 ksi
layer 10	f _{pt} =		199.9 ksi
layer 11	f _{pt} =		199.9 ksi
layer 12	2 f _{pt} =		199.9 ksi
layer 13	f _{pt} =		199.9 ksi
layer 14	4 f _{pt} =		199.9 ksi
nd = f _{pt} *strand area		at midspan	at endspan
layer 1	1 =	16.9 kips	17.0 kips
layer 2	2 =	16.9 kips	17.0 kips
layer 3	3 =	16.9 kips	17.0 kips
layer 4	4 =	16.9 kips	17.0 kips
layer 5	5 =	16.9 kips	17.0 kips
layer 6	6 =	16.9 kips	
layer 7	7 =	16.9 kips	
layer 8	3 =	16.9 kips	
layer 9	=	16.9 kips	17.0 kips
layer 10) =		17.0 kips
layer 11	1 =		17.0 kips
layer 12	2 =		17.0 kips
layer 13	3 =		17.0 kips
layer 14	4 =		17.0 kips
Total prestressing force after transfe	r P _i =	1047.8 kips	1054.0 kips

force per strand = f_{pt}^* strand area

Initial loss = $(\Delta f_{pi})/(f_{pi})$

		at midspan	at endspan
layer 1	% =	6.5%	6.2%
layer 2	% =	6.5%	6.2%
layer 3	% =	6.5%	6.2%
layer 4	% =	6.5%	6.2%
layer 5	% =	6.5%	6.2%
layer 6	% =	6.5%	
layer 7	% =	6.5%	
layer 8	% =	6.5%	
layer 9	% =	6.5%	6.2%
layer 10	% =		6.2%
layer 11	% =		6.2%
layer 12	% =		6.2%
layer 13	% =		6.2%
layer 14	% =		6.2%

c)	k
c)	K
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
c)	k
		0000000000000

TOTAL LOSSES AT SERVICE LOADS							
Total Losses at midspan at ends							
laye	r 1 $\Delta f_{pT} =$	41.1 ksi	40.5 ksi				
laye	r 2 Δf _{pT} =	41.1 ksi	40.5 ksi				
laye	r 3 Δf _{pT} =	41.1 ksi	40.5 ksi				
laye	r 4 Δf _{pT} =	41.1 ksi	40.5 ksi				
laye	r 5 Δf _{pT} =	41.1 ksi	40.5 ksi				
laye	r 6 Δf _{pT} =	41.1 ksi					
laye	r 7 Δf _{pT} =	41.1 ksi					
laye	r 8 Δf _{pT} =	41.1 ksi					
laye	r 9 Δf _{pT} =	41.1 ksi	40.5 ksi				
layer	10 $\Delta f_{pT} =$		40.5 ksi				
layer	11 $\Delta f_{pT} =$		40.5 ksi				
layer	12 $\Delta f_{pT} =$		40.5 ksi				
layer	13 $\Delta f_{pT} =$		40.5 ksi				
layer	14 $\Delta f_{pT} =$		40.5 ksi				
Stress in tendon after all losses = f _{pi} -∆f _{pt}		at midspan	at endspan				
laye	r 1 f _{pe} =	172.1 ksi	172.7 ksi				
laye	r 2 f _{pe} =	172.1 ksi	172.7 ksi				
laye	r 3 f _{pe} =	172.1 ksi	172.7 ksi				
laye	r 4 f _{pe} =	172.1 ksi	172.7 ksi				
laye	r 5 f _{pe} =	172.1 ksi	172.7 ksi				
laye	r 6 f _{pe} =	172.1 ksi					
laye	r 7 f _{pe} =	172.1 ksi					
laye	r 8 f _{pe} =	172.1 ksi					
laye	r 9 f _{pe} =	172.1 ksi	172.7 ksi				
layer	10 f _{pe} =		172.7 ksi				
layer	11 f _{pe} =		172.7 ksi				
layer	12 f _{pe} =		172.7 ksi				
layer	13 f _{pe} =		172.7 ksi				
layer			172.7 ksi				
check prestressing stress limit at service limit stat	e: fpe ≤ 0.8*	fpy	·				
laye	r 1 =	205.4 ksi					
laye	r 2 =	205.4 ksi					

check prestressing stress limit at service limit state	: fpe ≤ 0.8*fpy
--	-----------------

layer 1	II	205.4 ksi
layer 2	=	205.4 ksi
layer 3	=	205.4 ksi
layer 4	=	205.4 ksi
layer 5	=	205.4 ksi
layer 6	=	205.4 ksi
layer 7	=	205.4 ksi
layer 8	=	205.4 ksi
layer 9	=	205.4 ksi
layer 10	=	205.4 ksi
layer 11	=	205.4 ksi
layer 12	=	205.4 ksi
layer 13	=	205.4 ksi
layer 14	=	205.4 ksi

ок
ок
ок
ок
ок
ок
ок
ок
ок
ок
ок
ок
OK
ок

force	ner	strand	= f.	.*sti	rand	area

		at midspan	at endspan
layer 1	=	14.6 kips	14.7 kips
layer 2	=	14.6 kips	14.7 kips
layer 3	=	14.6 kips	14.7 kips
layer 4	II	14.6 kips	14.7 kips
layer 5	II	14.6 kips	14.7 kips
layer 6	=	14.6 kips	
layer 7	=	14.6 kips	
layer 8	II	14.6 kips	
layer 9	II	14.6 kips	14.7 kips
layer 10	=		14.7 kips
layer 11	=		14.7 kips
layer 12	=		14.7 kips
layer 13	II		14.7 kips
layer 14	=		14.7 kips
		at midspan	at endspan
II loccoc	D -	026.2 kins	020 E king

Total prestressing force after all losses P_{pe} =

inal losses, $\% = (\Delta t_{pT})/(t_{pi})$				
	layer 1	% =	19.3%	19.0%
	layer 2	% =	19.3%	19.0%
	layer 3	% =	19.3%	19.0%
	layer 4	% =	19.3%	19.0%
	layer 5	% =	19.3%	19.0%
	layer 6	% =	19.3%	
	layer 7	% =	19.3%	
	layer 8	% =	19.3%	
	layer 9	% =	19.3%	19.0%
		0.1		40.007

layer 10 19.0% layer 11 layer 12 19.0% % = 19.0% layer 14 % = 19.0% % = 19.3% 19.0%

Average final losses, %

Stresses at Transfer

STRESS LIMITS FOR CONCRETE

Compression = 0.6f' _{ci}	f _{ci} =	3.300 ksi		
Tension				
without bonded reinforcement = -0.0948* $\sqrt{f'_{ci}} \le$ -0.2	=	-0.200 ksi		
with bonded auxiliary reinforcement =0.22* $\sqrt{f'_{ci}}$	=	-0.016 ksi		

STRESSES AT TRANSFER LENGTH SECTION

Transfer Length = 60*(strand diameter)	II	1.9 ft
Bending moment at transfer length	$M_g =$	87.7 ft-kips
center of 12 strands to top fiber of beam at the end	=	7.00 in
center of 12 strands to bottom fiber of beam at the harp point	=	11.00 in
center of 12 strands and top fiber of beam at transfer length	=	9.84 in
center of gravity of 32 strands and bottom fiber of beam	=	3.98 in
center of gravity of all strands and the bottom fiber of beam at transfer length	=	15.24 in
center of gravity of all strands and the bottom fiber of beam at the end	II	15.30 in
Eccentricity of the strand group at transfer length:	e _h =	21.36 in
Eccentricity at end of beam:	e =	21.30 in

Calcs for eccentricity (see 9.6.7.2)

οк οк

$$f_{s} = \frac{P_{i}}{A} - \frac{P_{i}s}{S_{i}} + \frac{M_{s}}{S_{i}}$$

$$f_{s} = \frac{P_{i}}{A} + \frac{P_{i}s}{S_{s}} - \frac{M_{s}}{S_{s}}$$

$$f_b = \frac{P_t}{A} + \frac{P_t s}{S_b} - \frac{M_s}{S_b}$$

		at midspan	at endspan
Top stress at top fiber of beam	$f_t =$	-0.017 ksi	-0.017 ksi
Bottom stress at bottom fiber of the beam	f _b =	2.906 ksi	2.906 ksi

STRESSES AT	T HARP	POINT		
Bending moment due to beam weight at 0.3L	$M_g =$	1188.0 ft-kips		
Top stress at top fiber of beam	f _t =	0.173 ksi	0.169 ksi	
Bottom stress at bottom fiber of the beam	$f_b =$	2.736 ksi	2.621 ksi	
STRESSES A	AT MIDS	PAN	_	
Bending moment due to beam weight at 0.5L	$M_g =$	1414.3 ft-kips		
Top stress at top fiber of beam	$f_t =$	0.320 ksi	0.345 ksi	
Bottom stress at bottom fiber of the beam	f _b =	2.554 ksi	2.438 ksi	
HOLD DOWN FOR	0=0			

HOLD-DOWN FORCES

assume stress in strand before losses = 0.8f_u

layer 1	=	227.4 ksi
layer 2	=	227.4 ksi
layer 3	II	227.4 ksi
layer 4	II	227.4 ksi
layer 5	=	227.4 ksi
layer 6	=	227.4 ksi
layer 7	II	227.4 ksi
layer 8	II	227.4 ksi
layer 9	=	227.4 ksi
layer 10	=	227.4 ksi
layer 11	II	227.4 ksi
layer 12	=	227.4 ksi
layer 13	=	227.4 ksi
layer 14	=	227.4 ksi

prestress force per strand before any losses:

=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
=	19.3 kips
Ψ =	7.2 °
	= = = = = = = = = = = = = = = = = = = =

Hold-down force/strand

layer 1	=	2.5 kips/strand
layer 2	=	2.5 kips/strand
layer 3	=	2.5 kips/strand
layer 4	=	2.5 kips/strand
layer 5	II	2.5 kips/strand
layer 6	=	2.5 kips/strand
layer 7	=	2.5 kips/strand
layer 8	II	2.5 kips/strand
layer 9	II	2.5 kips/strand
layer 10	=	2.5 kips/strand
layer 11	=	2.5 kips/strand
layer 12	II	2.5 kips/strand
layer 13	II	2.5 kips/strand
layer 14	II	2.5 kips/strand
Total hold-down force	=	30.45 kips

Stresses at Service Loads STRESS LIMITS FOR CONCRETE

Compression:

Due to permanent loads for load combination Service I

for the precast beam	=	3.150 ksi		
for deck	=	1.328 ksi		
Due to permanent and transient loads for load combination Service I				
for the precast beam	=	4.200 ksi		

1.770 ksi

Tension:

Load Combination Service III

for the precast beam -0.016 ksi

for deck =

STRESSES AT	MIDSPAN		
Compression stresses at top fiber of beam	at midspan	at endspan	
$f_{i} = \frac{P_{so}}{A} - \frac{P_{so}s}{S_{s}} + \frac{(M_{s} + M_{s})}{S_{s}}$	$\frac{(M_{-}+M_{+})}{S_{n}}$		
Due to permanent loads f	t _{tg} = 2.112 ksi	2.110 ksi	(
$f_{tg} = \frac{P_{po}}{A} - \frac{P_{po}P}{S_{+}} + \frac{(M_{g} + M_{*})}{S_{+}} + \frac{(M_{g} + M_{*})}{S_{+}}$	$\frac{\boldsymbol{M}_{yy} + \boldsymbol{M}_{y})}{S_{tx}} + \frac{(\boldsymbol{M}_{LX,1})}{S_{tx}}$		
Due to permanent loads and transient loads f	t _{tg} = 2.596 ksi	2.593 ksi	(
Compression stresses at top fiber of deck	at midspan	at endspan	
$f_{tr} = \frac{(M_{wo})}{S_t}$	+M,)		
Due to permanent loads f	t _{tc} = 0.042 ksi	0.042 ksi	
$f_{ss} = \frac{(M_{us} + M_{s})}{S_{ss}}$	$+M_{LL+1}$		
Due to permanent loads and transient loads f	t _{tc} = 0.486 ksi	0.486 ksi	
Tension stresses at top fiber of deck	at midspan	at endspan	
$f_{ig} = \frac{P_{ge}}{A} + \frac{P_{ge}s}{S_b} - \frac{(M_g + M_s)}{S_b} - \frac{(A_g + M_s)}{S_b}$	$M_{us} + M_{\delta} + 0.8*M_{IL+1}$ S_{Lc}		
Load Combination Service III f	f _b = -0.834 ksi	-0.822 ksi	(

Strength Limit State

POSITIVE MOMENT SECTION						
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$ $M_u = 8381.5 \text{ ft-kips}$						
effective length factor for compression members						
layer 1	k =	0.27				
layer 2	k =	0.27				
layer 3	k =	0.27				
layer 4	k =	0.27				
layer 5	k =	0.27				
layer 6	k =	0.27				
layer 7	k =	0.27				
layer 8	k =	0.27				
layer 9	k =	0.27				
layer 10	k =	0.27				
layer 11	k =	0.27				
layer 12	k =	0.27				
layer 13	k =	0.27				
layer 14	k =	0.27				
	C =	6.2 ft-kips				

	prestressing	

layer 1	f _{ps} =	277.7 ksi
layer 2	$f_{ps} =$	277.7 ksi
layer 3	$f_{ps} =$	277.7 ksi
layer 4	$f_{ps} =$	277.7 ksi
layer 5	$f_{ps} =$	277.7 ksi
layer 6	$f_{ps} =$	277.7 ksi
layer 7	$f_{ps} =$	277.7 ksi
layer 8	$f_{ps} =$	277.7 ksi
layer 9	$f_{ps} =$	277.7 ksi
layer 10	$f_{ps} =$	277.7 ksi
layer 11	$f_{ps} =$	277.7 ksi
layer 12	$f_{ps} =$	277.7 ksi
layer 13	$f_{ps} =$	277.7 ksi
layer 14	f _{ps} =	277.7 ksi

5.28 in

nominal flexure resistance

$M_r = \Phi M_n$, $\Phi = 1.00$	$\Phi M_n =$	9055.9 ft-kips
NEGATIVE MOMENT S	SECTION	
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-4837.2 ft-kips
	a =	0.17 in
	ΦM _n =	3527.5 ft-kips

a =

NOT OK

at endspan

0.946 ksi

ок

Shear Design

ai Design		
CRITICAL SECTION	AT 0.59	
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	$V_u =$	405.0 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2684.4 ft-kips
or		
$V_u = 1.25DC+1.5DW+1.75(LL+IM)$	V _u =	364.8 kips
$M_u = 1.25DC+1.5DW+1.75(LL+IM)$	M _u =	-2877.0 ft-kips
max shear	$V_u =$	405.0 kips
max moment	$M_u =$	2877.0 ft-kips
Shear denth	d =	73 19 in

Angle of diagonal compressive stresses $\theta =$ STRAIN IN FLEXURAL TENSION REINFORCMENT

N_u =

f_{pc} =

OTTAIN IN LE	-XONAL I LINGION	CHILL OLOMEITI	
M_{\star} .	$0.5N_g + 0.5V_g \cot \theta - A$		
 +	O 100 + O 10 EUC 9 - V	pe ⁷ po	
e _ "",		—— < 0 002	
7	$E_sA_s+E_sA_{sc}$		

resultant compressive stress at centroid effective stress in prestressing strand after al

Applied factored normal force at the section

all losses			
layer 1	f _{po} =	176.9 ksi	177.5 ksi
layer 2	f _{po} =	176.9 ksi	177.5 ksi
layer 3	f _{po} =	176.9 ksi	177.5 ksi
layer 4	$f_{po} =$	176.9 ksi	177.5 ksi
layer 5	$f_{po} =$	176.9 ksi	
layer 6	$f_{po} =$	176.9 ksi	
layer 7	$f_{po} =$	176.9 ksi	
layer 8	$f_{po} =$	176.9 ksi	
layer 9	$f_{po} =$		177.5 ksi
layer 10	$f_{po} =$		177.5 ksi
layer 11	$f_{po} =$		177.5 ksi
layer 12	f _{po} =		177.5 ksi
layer 13	f _{po} =		177.5 ksi
layer 14	f _{po} =		177.5 ksi

0

36.00°

at midspan

0.943 ksi

strain in flexural tension

		at midspan	at endspan
layer 1	$\epsilon_x =$	0.002000	0.002000
layer 2	ε _x =	0.002000	0.002000
layer 3	$\epsilon_x =$	0.002000	0.002000
layer 4	$\varepsilon_x =$	0.002000	0.002000
layer 5	$\varepsilon_x =$	0.002000	
layer 6	$\epsilon_x =$	0.002000	
layer 7	$\epsilon_x =$	0.002000	
layer 8	$\varepsilon_x =$	0.002000	
layer 9	$\epsilon_x =$		0.002000
layer 10	$\epsilon_x =$		0.002000
layer 11	$\epsilon_x =$		0.002000
layer 12	$\varepsilon_x =$		0.002000
layer 13	$\epsilon_x =$		0.002000
layer 14	ε _x =		0.002000

at midspan

3.27 in

-1.49 in

-1.44 in

-1.95 in

at endspan

3.29 in

Deflection and Camber

Deflection due to Prestressing Force at Transfer Deflection due to Beam Self-Weight at Transfer Deflection due to Beam Self-Weight at Erection Deflection due to Haunch and Deck

$\Delta_{sw} =$	-0.11 in

 $\Delta_p = \Delta_g =$

 $\Delta_g =$

 $\Delta_s =$

Deflection due to total self weight

Total Deflection at transfer Total Deflection at erection

Δ =	1.79 in	1.81 in
Δ =	3.24 in	3.27 in

Live load deflection limit = span/800
Deflection due to live load and impact

= 1.80 in $\Delta_L =$ -0.90 in

Deflection due to fire truck

Total Deflection after fire with fire truck

ľ	$\Delta_L =$	-0.8127 in
	Δ =	2.3521 in

ок

ок