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ABSTRACT 

 This study details the development and implementation of a finite element model 

within a commercial finite element code, Abaqus CAE, for the analysis of reinforced 

concrete (RC) bridge columns containing interlocking spirals subjected to combined 

loading conditions including axial, shear, bending, and torsional loads, including the 

post-peak response.  The model is a first of its kind attempt at simulating the response of 

RC columns with continuous spiral transverse reinforcement and subjected to combined 

loading conditions including torsion. The model is utilized to determine the quasi-static 

load-deformation response under various proportions of the input loads and 

displacements.  The resulting quasi-static load-deformations, i.e., ‘backbone’ 

relationships, are compared to those experimentally obtained for three 1/2-scale prototype 

RC bridge columns subjected to constant axial loading and slow reversed cyclic lateral 

loading resulting in combined flexural moment, shear, and torsional moment.  It was 

determined that such models can simulate the behavior of such columns with a 

reasonable level of error for unidirectional loading, but accurate torsional response and 

numerical stability of such models is difficult to obtain due to convergence errors 

resulting from a combination of inelastic material models and multi-body constraints 

used to couple the motion of the column’s constituent pieces together. Attempts were 

made to extend the finite element model to similar RC bridge columns repaired and 

strengthened with externally bonded fiber reinforced polymer (FRP) composite jackets, 

however such attempts resulted in convergence failure as the model approached inelastic 

behavior. 
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1. INTRODUCTION 

1.1. GENERAL 

The reinforcement of damaged or deficient structural members by external 

bonding of fiber reinforced polymer (FRP) composites has become increasingly 

widespread in recent decades.  This can be attributed to several factors ranging from the 

reduced cost of these systems to their inherent benefits over traditional repairs systems; 

being that they are lightweight, relatively easy to implement, and noncorrosive.  The 

effectiveness and efficiency of these repairs and/or retrofits involving FRP are dependent 

on the accuracy of the analysis used in their design. 

An element in any structural system can be subjected to one or more of four load 

types: axial forces, bending moments, shearing forces, and torsional moments.  The 

combination of these loads on a structural member can results in complex internal stress 

distributions due to the complexity in the loading conditions, the constituent relations of 

the materials composing the member, and/or the geometric conditions of the member.  

Analyzing the response of a perfectly elastic structural element subject to complex 

loadings can be challenging, but analyzing the nonlinear behavior of concrete structural 

elements provides yet another layer of difficulty.  The complexity of analysis of 

reinforced concrete (RC) members is made more complicated by the relative 

contributions of the internal reinforcing steel to the load resistance, the steel’s influence 

on the concrete behavior, and in the case of FRP-strengthened RC members the 

contribution of the FRP, all of which exhibit varying degrees of inelasticity or brittle 

behavior. 

In cases where complex loading, complex geometries, and/or complex material 

interactions exist it may be advantageous to discretize the structural member into a series 

of well understood discrete elements.  In this way one complex analysis can be simplified 

into many simpler analyses.  The stresses and/or strains imposed on a given element are 

dependent on those in an adjacent element.  The cumulative result of the deformations of 

these elements is analogous to the displacements of the structural member that they 

represent.  This process is collectively known as the finite element method (FEM), and 

the practical implementation and results are known as finite element analysis (FEA).  
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This process, which would be cumbersome by hand due to the large volume of 

calculations, is made practical through the use of computer software to handle the 

simultaneous solution of the system of thousands of equations that represent the internal 

responses of the elements and their interactions.  Through FEA even complex conditions 

can be analyzed and investigated to determine the load-response sensitivity to changes in 

geometry or material properties.  Once such a model is properly calibrated to 

experimental results it can be used to provide further insight into those physical 

experiments or to artificially expand upon their test matrix without the need for costly 

physical specimens.   

A logical first step in the development of models to simulate the behavior of FRP-

strengthened RC columns is to develop models that are proven to be able to simulate the 

behavior of precursory unstrengthened RC columns. This study outlines the development 

of such a model, which was the first of its kind for RC columns reinforced with 

continuous spiral transverse reinforcement and subjected to combined loading conditions 

including torsion. Then attempts were made to extend the model to the case of similar RC 

columns that were externally strengthened with FRP jackets. Although these attempts 

were unsuccessful, in this thesis work, lessons learned in this study can be used to help 

guide future studies for the simulation of FRP-strengthened RC columns with complex 

reinforcement and loading conditions.  

 

1.2. OBJECTIVE AND SCOPE 

 The objective of the research presented in this thesis is to develop a three-

dimensional (3D) finite element model of RC bridge columns with an oval shaped cross-

section and interlocking spiral transverse reinforcement.  The model is used to simulate 

the response of three such RC columns subjected to combined flexure, shear, torsion, and 

axial load.   

 Typically, geometric complexities associated with the helical spiral reinforcement 

would be simplified and simulated as discreet hoops of reinforcement, rather than a 

continuous spiral.  While this simplification allows for conformal meshing (where the 

elements of two bodies share the same nodes), it also precludes the possibility of 

accounting for higher order effects, such as variations in confinement due to the locking 
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and un-locking behavior of the spiral under torsion (Li & Belarbi, 2011).  In order to 

account for the phenomena unique to this reinforcement layout, helical reinforcement is 

simulated and the non-conformal meshes handled via constraints between the various 

bodies of the model.  

 The research presented within this thesis focuses mainly on the discussion of the 

development of this finite element model for unstrengthened RC columns and its 

correlation to experimental results published in the literature (Li, 2012).  The physical 

column specimens to which the model is compared were tested to failure and then later 

repaired with an externally bonded FRP jacket, repair grout, and in the case of two 

columns replacement bar segments attached with mechanical bar couplers in a follow up 

study (Yang, 2014).  Due to numerical stability issues, convergence of the modified 

version of finite element model, discussed in this thesis, could not be obtained for the 

repaired columns.  The simulation of these repaired columns is considered outside the 

scope of this thesis, and FRP repair is discussed only to provide context to the 

experimental study and future work discussed in Section 5.2.  

 

1.3. RESEARCH METHODOLOGY AND THESIS CONTENT 

 Because RC columns have been tested, and their behavior fully documented, the 

constitutive relations in the finite element model are developed in such a way to predict 

these known responses.  Section 2 of this thesis discusses, among other topics, a variety 

of material models that have been developed, tested, and reported by researchers, as well 

as those developed and implemented into the commercial finite element code Abaqus 

CAE, which was used in the development of the finite element model.  A description of 

the construction and test setup for both the original and repaired columns is presented in 

Section 3 of this thesis in order to give context to the setup of the finite element model 

and the corresponding simulation results of three columns that are presented in Section 4 

of this thesis. Section 5 summarizes work and provides conclusions and 

recommendations for future work. 
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2. LITERATURE REVIEW 

2.1. EXPERIMENTAL STUDIES 

 This section of the literature review provides an overview of experimental studies 

reported in the literature that are most closely related to this project.  Section 2.1.1 

focuses on studies involving unstrengthened RC columns, particularly experimental 

studies including oval shaped RC columns with interlocking spirals or studies that have 

utilized a similar test setup to the present study.  Of particular interest is the study by Li 

and Belarbi (2011), described in Section 2.1.1.2, that included the testing of the columns 

that were later repaired as part of the experimental portion of this study.  Section 2.1.2 

focuses on studies related to the repair of seismically damaged RC columns.  Again, 

focus is given to studies with a test setup or repair scheme similar to the present study, 

such as those where the repair technique included externally bonded FRP reinforcement 

and/or included considerations in the repair for fractured reinforcing bars. 

2.1.1. RC Columns.  This section begins by presenting historical works 

related to oval RC columns with interlocking spirals and concludes with an overview of 

the study that supplied the damaged columns that were repaired as part of the 

experimental portion of this project.  The construction of the specimens and their failure 

modes are presented for each of the studies in order to provide an impression of the 

behavior of oval columns with interlocking spirals.   

2.1.1.1. Tanaka H., (1990).  This study tested four 2.88 m tall RC columns under 

a constant axial load with a cyclic reversed lateral load applied at the cap resulting in 

combined shear and bending moment.  The results of this study were later published in 

the ACI Structural Journal (Tanaka & Park, 1993).  Of the four columns, one had a 23.6 

in. (600 mm) by 15.7 in. (400 mm) rectangular cross section with rectangular hoops.  The 

remaining three columns were 23.6 in. (600 mm) by 15.7 in. (400 mm) oval shaped 

columns with interlocking spirals.  Of the three oval columns, two were constructed with 

a spiral spacing of 3.15 in. (80 mm) and 2.95 in. (75 mm) in order to meet the minimum 

requirements for confinement and shear of the New Zealand concrete design code (NZS 

3101-Part 1, 1982) (NZS 3101-Part 2, 1982).  The third oval column was constructed 

with a spiral spacing of 100 mm.  The spiral spacings of 3.15 in. (80 mm), 3.94 in. (100 
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mm), and 2.95 in. (75 mm) result in transverse reinforcement ratios of 1.08%, 0.92%, and 

1.15%, respectively. The rectangular column had a transverse reinforcement ratio of 

2.17% with a spacing of 3.15 in. (80 mm).  The column details are shown in Figure 2.1.   

 In addition to varying the transverse reinforcement ratio, the constant axial load 

imposed during the test was varied as a percentage of the concrete nominal compressive 

strength multiplied by the gross area.  For both the rectangular column and the oval 

column with spiral spacing of 3.15 in. (80 mm), the axial load percentage was 10%.  For 

the oval column with spiral spacing of 3.94 in. (100 mm), the axial load percentage was 

30%.  For the oval column with a spiral spacing of 2.95 in. (75 mm), the axial load 

percentage was 50%.  Each column was loaded under displacement control to varying 

levels of displacement ductility (μΔ).  The load protocol consisted of one cycle of μΔ = 

±0.75 followed by two cycles of μΔ = ±2, ±4, ±6, ±8, etc.  The cycles increased by 

displacement ductility factors of two until failure. 

 The testing of the three oval columns was terminated when the first spiral 

fractured.  This occurred at μΔ = 10 for the column with a spiral spacing of 3.15 in. (80 

mm), during the loading towards μΔ = 12 for the column with spiral spacing of 3.94 in. 

(100 mm), and on the second cycle at μΔ = -12 for the column with spiral spacing of 2.94 

in. (75 mm).  In the oval columns, yielding of the spiral reinforcement due to 

confinement forces was observed at displacement ductility factors as low as μΔ = 3 or 4, 

while yielding due to shear did not occur until displacement ductility factors of between 

μΔ = 6 to 8.  In the rectangular column, yielding of the hoops was not observed at any 

displacement level during the test.  In all cases, buckling of the longitudinal 

reinforcement was observed at or above a displacement ductility factor of μΔ = 8.  In all 

cases, the measured maximum moment exceeded the value predicted by the code 

approach (ACI 318, 1989) (NZS 3101-Part 1, 1982) that had been used to determine the 

loading protocol.  However, the maximum moment was more accurately predicted by 

accounting for strain hardening of the reinforcement and using the concrete constitutive 

relation described by Mander, et al. (1988).  It was also found that the code approach 

resulted in conservative estimates of flexural strength, particularly when the axial load 

was relatively high, due to neglecting the effects of lateral confinement. 
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Figure 2.1 - Details of Columns (Tanaka and Park, 1993) 

(1 in. = 25.4 mm) 

 

 

 This study provided insight into the behavior of oval RC columns with 

interlocking spirals.  It showed that oval RC columns with interlocking spirals required 

substantially less transverse reinforcement than columns with rectangular hoops to 
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provide confinement of the concrete core.  Additionally, it showed the importance of 

using appropriate material models and the need to use alternative analysis methods, such 

as the combined beam-arch theory, to accurately predict the flexural strength of these 

types of columns. 

2.1.1.2. Li and Belarbi, (2011).  This study tested three oval shaped RC columns 

with interlocking spirals under combined loading with torsional moment-to-bending 

moment ratios (T/M) of 0.2, 0.4, and Infinity (pure torsion).  The columns were half-scale 

having an oval cross section of 610 mm by 915 mm with 25.4 mm of concrete cover.  

The columns were 3.35 m from the top of footing to the centerline of the applied lateral 

loads.  The longitudinal reinforcement was provided by 20 No. 8 (25 mm dia.) bars that 

provided a longitudinal reinforcement ratio of 2.13%.  The transverse reinforcement was 

provided by two interlocking spirals consisting of No. 4 (13 mm dia.) bars at a 70 mm 

pitch that provided a transverse reinforcement ratio of 1.32%.  The details of these 

columns are depicted in Figure 2.2. 

 All columns were tested with a constant axial load corresponding to 7% of the 

column’s axial capacity to account for superstructure dead load.  The initial cyclic 

loading was performed under force control at intervals equivalent to 10% of the 

anticipated yield load until first yielding of the longitudinal bars was observed for 

specimens tested under combined loading, or until first yielding of the transverse 

reinforcement for the specimen tested under pure torsion.  The displacement 

corresponding to first yielding of the reinforcement was defined as displacement ductility 

equal to one (μΔ = 1) for the specimens tested under combined loading or twist ductility 

equal to one (μθ = 1) for the specimen tested under pure torsion.  Loading was performed 

under displacement control after the point of first yield.  Three loading cycles were 

performed at each ductility stage in order to observe stiffness degradation characteristics. 

 All three specimens were tested to failure resulting in levels of severe damage 

including degradation of the core material.  The torque-twist relation was linear up to the 

cracking torsional moment, of approximately 50% of the yield torque, in the specimen 

subjected to pure torsion.  After cracking the torque-twist relationship became nonlinear 

with decreasing torsional stiffness.  During ‘positive’ ductility cycles the spirals tended to 

unlock, resulting in reduced confinement and greater spalling compared to the ‘negative’ 
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ductility cycles where the spirals locked.  This locking and unlocking resulted in 

asymmetric hysteresis loops with the ‘negative’ ductility cycles having greater load 

resistance.  The specimen subjected to pure torsion exhibited diagonal cracks that began 

to develop at mid height that lengthened and widened as the test progressed, and the 

concrete cover eventually spalled off.  Spalling of the concrete cover progressed to nearly 

the full height of the column, and a torsional hinge developed above mid-height where 

significant crushing of the core concrete occurred. 

 

 

 

Figure 2.2 - Details of Oval Columns with Interlocking Spirals (Li & Belarbi, 2011) 

(1 in. = 25.4 mm) 

 

 

 The two columns tested under T/M of 0.2 and 0.6 exhibited initial flexural cracks 

at approximately 40% of the yield strength.  The orientation of these cracks became more 
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inclined under repeated cycling and increased load. As the loading progressed, shear 

cracks began to form and additional flexural cracks began to form further up the column.  

For the specimen tested with a T/M of 0.6, yielding of the longitudinal bars was 

accompanied by yielding of the spiral reinforcement.  For the column tested with a T/M 

of 0.2, the spirals did not yield until a ductility factor of μΔ = 6.  For the column tested 

with a T/M of 0.2, spalling of concrete cover and formation of the plastic hinge occurred 

in the bottom 0.6 m of the column, while in the column tested at a ratio of 0.6, the 

spalling spread throughout the bottom two thirds of the column, and the plastic hinge 

developed higher.  The loading progressed until severe degradation of the core material in 

the plastic hinge and eventual buckling and rupture of longitudinal reinforcement 

occurred.  Similar to the specimen tested under pure torsion, an asymmetric hysteretic 

behavior was observed.  This was not only due to the locking and unlocking the spirals, 

as was present in the column tested under pure torsion, but also because one side of the 

specimen was always subjected to shear stress due to combination of the shear and 

torsional forces.  During the repeated cycling at the same ductility factor, it was found 

that the strength degradation between the first and second cycle was greater than between 

subsequent cycles.   

2.1.2. Repaired RC Columns.  This section begins by presenting historical  

works related to columns that were repaired.  The construction of the specimens and their 

failure modes are presented for each of the studies in order to provide an impression of 

the behavior of repaired columns. 

2.1.2.1. Lehman, Gookin, Nacmuli, and Moehle (2001).  In this study four  

circular reinforced concrete columns, which had been previously damaged under 

simulated seismic loading and were later repaired, under simulated seismic loading 

consisting of cyclic lateral loading and a constant axial load.  Three of the columns were 

constructed and severely damaged as part of another study (Lehman & Moehle, 1998), 

while the fourth column was only subjected to moderate damage, prior to repair, and was 

constructed as part of this 2001 study.   

 The four columns were originally constructed to be nearly identical, varying only 

in the longitudinal reinforcement ratio.  The columns were 24 in. (610 mm) diameter 8 ft. 

(3.8 m) tall, measured from the top of the footing to the centerline of the applied lateral 
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load.  The three columns originally constructed as part of the 1998 study contained 11, 

22, or 44 evenly spaced No. 5 (16 mm dia.) longitudinal reinforcing bars spaced to 

provide a longitudinal reinforcement ratio of 0.75%, 1.50%, or 3.00%, respectively.  

These three columns were denoted as 407S, 415S, and 430S, respectively.  The fourth 

column, constructed as part of the 2001 study, included 22 evenly spaced No. 5 (16 mm 

dia.) longitudinal reinforcing bars and was denoted as 415M. In all cases, transverse 

reinforcement was provided by spiral reinforcement comprised of a 0.25 in. (6mm) diam. 

wire spaced at 1.25 in. (32 mm) on center, for a transverse reinforcement ratio of 0.70%. 

The details of these columns are depicted in Figure 2.3. 

 Prior to repair each column was damaged under simulated seismic loading.  This 

consisted of a constant applied axial load and a cyclically applied lateral displacement.  

The axial load was selected to be 147 kips (654 kN) based on approximately 7% of the 

gross cross-sectional area of the column multiplied by the concrete compressive strength.  

The applied lateral displacement consisted of three fully reversed cycles at increasing 

displacement levels.  For displacement levels in the post-yield regime an additional fully 

reversed cycle was added with an amplitude 1/3 that of the previous three cycles.  These 

displacement levels monotonically increased by a factor of between 4/3 and 2, as shown 

in Figure 2.4. 

 The damage due to this loading varied between the specimens.  In the case of 

columns 407S, 415S, and 430S, they were tested until severe damage occurred and a 

strength reduction of more than 20% was observed.  This resulted in yielding of all 

longitudinal reinforcement, yielding and fracture of transverse reinforcement, crushing of 

core concrete, and extensive cracking and spalling of concrete cover within the plastic 

hinge region. In the case of column 415M, which was constructed identically to column 

415S, only a subset of the cycles applied to 415S were applied until a level of moderate 

damage occurred, as defined by ATC (1996).  The damage to 415M included yielding of 

the extreme longitudinal reinforcement, cracking with residual openings, and spalling of 

the concrete cover.  The damage to the four columns is summarized in Table 2.1. 
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Figure 2.3 - Original Column Geometry (Lehman, et al., 2001) 

(1 in. = 25.4 mm) 

 

 

 

Figure 2.4 - Imposed Lateral Displacement History (Lehman, et al., 2001) 

 

 

Table 2.1 - Column Damage Summary (Lehman, et al., 2001) 

Column 

Concrete Damage Reinforcing Steel Damage 

Damage 

Level 

Spalled 

height (in.) 

Core crush 

depth (in.) 

Yielding of 

longitudinal 

bars 

No. of 

bucked 

longitudinal 

bars 

No. of 

fracture 

longitudinal 

bars 

No. of 

fractured 

sprials 
407S 14 2 All bars 7 - 8 Severe 

415M* 15 0 Extreme bars 0 0 0 Moderate 

415S* 18 7 All bars 22 9 4 Severe 

430S 15 8 All bars 44 0 8 Severe 

*With exception of final damage state, Columns 415M and 415S were nominally identical 
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The damage states of the four columns as well as their construction provided for 

differing repair schemes.  Each of the repaired configurations is denoted with an “R” as a 

suffix. For example, the repaired configuration of column 430S is denoted 430SR.  An 

overview of what each repair entails follows. 

The repair of column 407S involving removal and replacement of the bottom 36 

in. (914 mm) with a 28 in. (711 mm) diameter section, 4 in. (102 mm) wider than the 

original column.  This wider section extended an addition 7 in. (178 mm) beyond where 

the column was severed.  Additionally, loose concrete was removed and the longitudinal 

reinforcement severed an additional 6 in. (178 mm) below the column base. Eleven new 

No. 5 (15.9 mm diameter) longitudinal reinforcement bars were spliced to the existing 

reinforcement via mechanical couples.  The use of mechanical couplers was deemed 

feasible due to the relatively low congestion afforded by the longitudinal reinforcement.  

The use of mechanical couplers was deemed inappropriate for the more congested repairs 

(discussed further on in this section) and thus were unique to 407S.  Additionally, new 

No. 3 (9.5 mm diameter) spiral reinforcement was placed at a pitch spacing of 2.25 in. 

(57 mm) to match the original transverse reinforcement ratio.  The repair configuration of 

407S, 407SR, and the corresponding repair design details are shown in Figure 2.5. 

Despite nominally identical original construction, the different damages states of 

columns 415S and 415M required wildly different repairs.  The moderately damaged 

column, 415M, required a far less invasive repair as damage included only yielding of 

longitudinal reinforcement, cracking of concrete, and spalling of concrete cover.  To 

repair 415M the concrete cover was removed over the lower 18 in. (457 mm) of the 

column, cracks wider that 0.003 in. (0.07 mm) were epoxy injected in the lower portions 

of the column, and use of a concrete patching material to replace to spalled and removed 

concrete. As a result, the repaired configuration of 415M, 415MR, had geometry and 

reinforcement detailing nominally identical to the original column, as shown in Figure 

2.3. 

However, column 415S suffered severe damage including all the aspects of 

415M’s damage as well as buckling of all 22 longitudinal reinforcing bars, fracture of 

nine of the longitudinal reinforcing bars, increased spalling of concrete cover, and 

crushing of 7 in. (178 mm) of the concrete core.   
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Figure 2.5 - Repair Design for Column 407S (Repaired Designation 407SR)  

(Lehman, et al., 2001) (1 in. = 25.4 mm) 

 

 

This was repaired via placement of a so-called strong jacket in the damaged area.  

This strong jacket consisted of a 20 in. (508 mm) section containing ten double-headed 

No 6 reinforcing bars, which were embedded 9 in. (229 mm) below the base of the 

column. In order to ensure a flexural failure prior to reaching the columns shear capacity, 

the flexural strength above the jacket was reduced by severing six of the existing 

longitudinal reinforcing bars, 4 in. (102 mm) below the top of the jacket.  The force 

transfer from the existing longitudinal reinforcement to the additional longitudinal 

reinforcement, installed as part of the repair, was idealized as inclined compressive struts 

in the concrete between the old and new reinforcement.  This results in a horizontal 

imbalance which must be constrained by the addition of new transverse reinforcement.  

The requirement was assessed by determining the required transverse reinforcement, at 

yield stress, required to apply sufficient clamping force to transfer the longitudinal forces 

through friction, assuming a coefficient of friction of 0.5.  This approach required 3/8 in. 

(9.5 mm) diameter spiral reinforcement at spacing of no more than 1.7 in. (43 mm) to 
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transfer the longitudinal load.  The repair was constructed with a slightly reduced spacing 

of 1.5 in. (38 mm).  Additionally, the repair involved removal of the lower 22 in. (560 

mm) of concrete, damaged spiral reinforcement was removed in the bottom 10 in. (250 

mm) of the column, fractured bars were repaired with welded lap splices, existing cracks 

were epoxy injected, and new concrete was cast in the jacket. The repair configuration of 

415S, 415SR, and the corresponding repair design details are shown in Figure 2.6. 

The design of the repair for column 430S was similar to that of 415S; in that the 

repair design implemented a strong jacket at the base of the column.  Unlike the 

previously discussed repair design, however, the repair of 430S was intended to force 

failure below the jacket, as opposed to above.  For this reason, the jacket was designed to 

be 36 in. (914 mm), such that flexural failure was unlikely above the repair.  As the repair 

was designed to match previous flexural capacity and because there was a high level of 

uncertainty in the capacity of the existing reinforcement, the existing longitudinal 

reinforcement was severed at the base.  The capacity of these now severed reinforcing 

bars was offset by the placement of an additional 16 No. 6 (15.9 mm diameter) 

longitudinal reinforcing bars within the strong jacket.  These new reinforcing bars were 

anchored, with a headed side, 12 in. (305 mm) into the base. The design of the transverse 

reinforcement, within the repair, was done using the same procedure used to design the 

repair of 415S.  However, unlike 415S, where failure was designed to occur above the 

repair, the design of the transverse reinforcement in 430S’s repair was intended to 

transfer the ultimate stress capacity, 96 ksi (660 MPa), to the transverse reinforcement, 

through the friction mechanism previously discussed. This required transverse 

reinforcement consisting of a No. 3 spiral reinforcement at a pitch spacing no more than 

1.1 in. (28 mm).  The actual repair utilized a slightly lower pitch spacing of 1 in. (25 

mm). The repair configuration of 430S, 430SR, and the corresponding repair design 

details are shown in Figure 2.7. 

These four repaired columns, 407SR, 415MR, 415SR, and 430SR, were tested 

under the same loading, described earlier, and their results compared to that of their 

severely damaged counter-parts.  I.e. 407SR was compared to 407S, 430SR was 

compared to 430S, and both 415MR and 415SR were compared to the results of 415S. 
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Figure 2.6 - Repair Design for Column 415S (Repaired Designation 415SR)  

(Lehman, et al., 2001) (1 in. = 25.4 mm) 

 

 

Additionally, these results were compared to those of a force-displacement model 

developed under the previous study (Lehman & Moehle, 1998).This discrete model 

correlated the tip displacement, due to an applied force, resulting from the sum of shear 

deformation, bending deformation, and end rotation due to slip in the longitudinal 

reinforcement bond.  With ultimate displacement being estimated as that which causes a 

tensile strain value of 0.08 in./in. (0.08 mm/mm). As this model considers displacements 

discretely, as opposed to collectively as in a finite element model, it cannot account for 

loading outside of those which it was designed for (such as torsion).  Due to this 

limitation and an inability to capture post-peak behavior, a detailed overview of this 

model is considered out-of-scope for the purposes of this study. 
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Figure 2.7 - Repair Design for Column 430S (Repaired Designation 430SR)  

(Lehman, et al., 2001) (1 in. = 25.4 mm) 

 

 

In the case of 407SR, the strength and deformation capacity exceeded that of the 

original column (407S).  Reaching an applied load of 51 kips (11.4 kN), compared to 39 

kips (8.8 kN), and failing during the 7 in. (178 mm) displacement cycles, compared to 

during the 5 in. (127 mm) displacement cycles. Additionally, the response of this column 

was compared to that theoretical model developed under the previous study.  The 

predicted the flexural strength was reported to be within 1% of the measured strength, but 

a comparison of the theoretical and measured response indicates the model under 

predicted the displacement capacity of the repaired column.  This comparison to the 

theoretical model and to the original column are shown in Figure 2.8. 

Both 415SR and 415MR were tested to failure.  As this exceeded the loading and 

damage level encountered by 415M, the results of both 415MR and 415SR were 

compared to that of column 415S.   
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Figure 2.8 - Force-Displacement Response of 407SR Compared to: (a) 407S; and (b) 

Theoretical Response (Lehman, et al., 2001) (1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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 In the case of column 415SR, the repair design goal was to approximately match 

the load capacity and move the failure up above the newly placed strong jacket by 

reducing the flexural capacity at that location.  By reducing the distance from the load 

application point to the flexural failure point, the displacement capacity of the column 

was expected to be adversely affected.  415SR was also compared to the results of a 

model, which underpredicted the strength capacity by a reported 7% and over-predicted 

the maximum displacement by 13%, with a prediction of 5.8 in. (147 mm).  In the case of 

column 415MR, the repaired response was compared to 415S.  The response of these two 

columns was very similar with 415MR providing less resistance to the lower 

displacement levels.  This was attributed to the impacts of cyclic damage to the concrete 

impacting both the concrete’s compressive strength and bond capacity.  The paper 

suggests that the analytical model corrected for this by reducing the nominal compressive 

strength of the concrete by 50% and assuming a uniform bond capacity of 6√𝑓′𝑐 psi 

(0.5√𝑓′𝑐 MPa).  This was reported to bring the strength estimation within 10% of 

measured and to underestimate the displacement capacity by 12%.  However, the 

comparison of the measured to the calculated response, provided by the paper and shown 

in Figure 2.10, does not support these numbers; with the plotted values for strength being 

closer and the apparent displacement capacity being under predicted by more than 42%.  

It is this author’s belief that the presented force-displacement response represents the 

model prior to the aforementioned modifications.  The results of both 415MR and 415SR 

compared to the results of 415M and 415S, and theoretical results are shown in Figure 

2.9 and Figure 2.10, respectively. 

Similar to the previous three columns, the response of 430SR was compared to 

both that of the original column, 430S, and a theoretical response based on a model.  The 

design intent of repair of 430SR, to force flexural failure below the repair jacket, was 

effectively met with the plastic hinge forming in the lower portion of the jacket.  The 

strength and displacement capacities of the repaired configuration were both diminished, 

with 430SR never having slightly lower load capacity and failing to complete a full 7 in. 

(178 mm) displacement cycle.  The theoretical model again provided a good prediction of 

load capacity, with the prediction reported as being within 2% of the measure capacity, 

but predicted only a 4 in. (102 mm) displacement capacity.  It is noted that the model 
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predicted a displacement capacity of 5in. (127 mm), compared to a measure 7 in. 

(178 mm) capacity, for column 430S.  This indicated the model is capable of capturing 

the general trend of diminished deformation capacity of the repair column.  These results 

are shown in Figure 2.11.  

 This work shows three approaches to repairing circular reinforced concrete 

columns with spiral reinforcement.  One being the replacement of concrete and 

reinforcement in the flexural plastic hinge area, utilizing mechanical couplers, as 

employed in the repair of 407S.  The second repair method being the design and 

application of a strong jacket which was implemented in two different ways in the repair 

of columns 415S and 430S.  Where 415S was designed to force a flexural failure above 

the applied repair jacket while 430S was designed to force a flexural failure below the 

repair jacket. Finally, 415M was repaired with a less invasive repair involving epoxy 

injection of existing cracks and removal and replacement of loose concrete with a 

patching material.  These repaired columns were then tested to failure and the resulting 

force-displacement response compared to that of the original column.  Furthermore, 

results were compared to those of an analytical model which summed displacements from 

discrete sources up to the predicted failure load.  While this model proved capable of 

estimating maximum load resistance, it did not predict the displacement capacity of the 

columns well and did not model post-peak behavior.  Additionally, modification to 

account for cyclic damage were required for the model of 415MR, but no explanation as 

to why such modifications were not required for the more severely damaged columns was 

missing. 

2.1.2.2. Belarbi, Silva, and Bae (2008).  This study presented the test results of 

three columns that were cyclically tested under pure torsion, pure bending, and under 

combined loading with a T/M ratio of 0.2. The column that was tested under combined 

loading was consequently damaged, and was subsequently repaired using a flowable 

grout and an external FRP jacket.  This retrofitted column was then subjected to the same 

loading, i.e., with a T/M ratio of 0.2, that caused the initial damage.  
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Figure 2.9 - Force-Displacement Response of 415MR Compared to: (a) 415M; and (b) 

Theoretical Response (Lehman, et al., 2001) (1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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Figure 2.10 - Force-Displacement Response of 415SR Compared to: (a) 415S; and (b) 

Theoretical Response (Lehman, et al., 2001) (1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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Figure 2.11 - Force-Displacement Response of 430SR Compared to: (a) 430S; and (b) 

Theoretical Response (Lehman, et al., 2001) (1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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 All four column tests, the three original columns and the repaired column, were 

loaded initially under force control.  This was performed with a single cycle at 25%, 

50%, 75%, and 100% of the theoretical first yield, determined via moment-curvature 

analysis.  

 For the columns tested under pure bending and a combination of bending and 

torsion, the force controlled cycles were followed by displacement controlled cycles.  

These displacement cycles consisted of three cycles at each displacement level, with the 

same displacement levels being applied in to both columns tested at a torque-to-moment 

ratio of 0.2.  For the column tested under pure torsion the force controlled cycles were 

followed by displacement controlled cycles at rotation levels increasing at five degree 

increments. 

 For the columns tested with an applied lateral load, the pure bending column, the 

undamaged column tested with a T/M=0.2, and the repaired column tested with a 

T/M=0.2, the resulting load displacement relationship is plotted in Figure 2.12.  In 

addition, the figure presents the results of a moment curvature analysis, but does not 

specify which column or loading it corresponds to.  The applied torque to resulting twist, 

for the columns tested under pure torsion, the undamaged column tested with a T/M=0.2, 

and the repaired column tested with a T/M=0.2, is shown in Figure 2.13.  Similar to the 

previous figure, analytical results are presented without specifying which column or load 

it pertains to.  However, the two figures collectively show the repair’s ability to restore 

the flexural strength and ductility as well as exceed the torsional capacity of the original 

undamaged column. 

2.1.2.3. He, et al. (2013).  This study tested three RC columns that had been  

rapidly repaired after sustaining severe damage in a previous study (Prakash, Li, & 

Belarbi, 2012).  The columns were subjected to cyclic lateral loading with varying T/M 

ratios and a constant axial load.  The columns were originally built as 22 in. (560 mm) 

square columns with four No. 9 (29 mm dia.) reinforcing bars in the each of the corners 

and eight No. 8 (25 mm dia.) reinforcing bars in the column faces, resulting in a 

longitudinal reinforcement ratio of 2.13%.  Transverse reinforcement was provided by 

square and octagonal ties, enclosing all of the longitudinal reinforcement, constructed 

from No. 3 (10 mm dia.) reinforcing bars spaced at 3.25 in. (82 mm).   
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Figure 2.12 - Lateral Load-Displacement Relationship 

(Belarbi, et al. 2008) (1 kip = 4.448 kN, 1 in. = 25.4 mm) 

 

 

 

Figure 2.13 - Torque-Twist Relationship 

(Belarbi, et al. 2008) (1 kip-ft = 1.356 kN-m) 
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 A volumetric transverse reinforcement ratio of 1.32% was provided by the ties.  

The reinforcement details of the columns are shown in Figure 2.14.  The three columns 

had been tested previously with a constant axial load of approximately 150 kips (667 kN) 

under cyclic lateral loading resulting in pure bending (no torsion), bending with torsion 

with a T/M of 0.2, or bending with torsion at a T/M of 0.4.  In each of these columns, 

damage to the concrete included cracking, spalling of cover, and crushing of the core, as 

well as yielding and buckling of the longitudinal reinforcement and yielding and end-

hook straightening of the transverse reinforcement.  In the case of the column subjected 

to pure bending, two of the No. 9 (29 mm dia.) longitudinal reinforcing bars fractured at 

the base of the column at opposing corners.  

Due to the rapid nature of the repair, the repair materials were selected based on 

their ability to achieve their required strengths within the timeframe required for the rapid 

repair.  The CFRP, used in the external jacket, consisted of 20 in. (508 mm) wide dry 

unidirectional carbon fiber sheets with a nominal thickness of 0.0065 in. (0.165 mm) per 

ply.  The following material properties for the CFRP were given by the manufacturer: an 

ultimate tensile strength of 550 ksi (3800 MPa), an ultimate rupture strain of 16,700 

microstrain, and a Young’s modulus of 33,000 ksi (227 GPa).  A pre-extended micro 

concrete was selected to replace the damaged and removed concrete.  The compressive 

strength of the repair material was between 5410 psi (37.3 MPa) and 5855 psi (40.4 MPa) 

at the time of testing.   

 The repair designs were targeted at restoring ultimate strength only, due to the 

rapid nature of the repair, noting that in long-term repairs ductility and stiffness should be 

explicitly considered.  The repairs were designed assuming that buckled longitudinal 

reinforcement could only resist tensile forces, the compressive strength of the repair 

mortar would be 4000 psi (27.6 MPa) at the time of retesting, and that failure of the FRP 

anchorage system would not occur.  Initially the design of the transverse and longitudinal 

jacketing was conducted separately, followed by a sectional analysis to finalize the 

design.   
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Figure 2.14 - Details of Undamaged Square Columns (He, et al. 2013) 

 

 

The thickness of the transverse FRP jacket required for shear strength was 

selected based on the Caltrans criteria for seismic shear design of ductile concrete 

members (California Department of Transportation, 2006) with an effective strain of 

4,000 microstrain, while the thickness required for confinement was determined using a 
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Caltrans method using a dilating strain of 4,000 microstrain (California Department of 

Transportation, 2007).  The longitudinal reinforcement was designed to meet the yield 

capacity of the fractured bars and was applied to the extreme tension and compression 

faces of the column.  The subsequent design for the other two columns were 

modifications of the repair design for the first column and used a space truss model to 

determine the FRP jacket requirements to resist the additional torsion forces. 

Testing of the repaired columns was performed similarly to the original columns, 

with the initial cycle being performed under force control and the later cycles being 

performed under displacement control.  The repaired columns were tested under the same 

T/M as they had been tested previously.  In the case of the column tested under pure 

bending, the CFRP jacket came in contact with the anchorage system resulting in rupture 

of the fibers, and testing was terminated upon audible indication of rupturing of two 

longitudinal reinforcing bars at a lesser load than that carried by the undamaged column.  

The problems with the anchorage system detailing were addressed in the other two 

columns, and they were able to meet the capacity of the original undamaged columns.  

The testing of the column subjected to a T/M of 0.2 terminated as its capacity began to 

diminish significantly, while the testing of the column subjected to a T/M of 0.4 

terminated due to the rotational limit of the actuator connections being reached.  This 

study demonstrated that FRP jackets can not only be utilized to restore the capacity of 

severely damaged columns, but do so in a very rapid manner. 

 

2.2. ANALYTICAL WORKS 

Finite element modeling and analysis is the application of computational 

mechanics, which is to say it is the implementation of both mathematical models and 

numerical methods.  As such, this section focuses on summarizing the development of 

analytical and mathematical models that have been used to describe concrete behavior, 

describing recent studies performed using FEM to investigate concrete behavior, and 

lastly describing some facets of implementing concrete material models in a modern 

commercial finite element code, such as Abaqus CAE, that are related to this study. 

In recent decades, the implementation of finite element analysis in the research 

and prediction of RC behavior has increased dramatically.  This increase in use of FEA is 
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spurred on for a variety of reasons, among which is the rapid advancement in computer 

technology, that has allowed both increased availability and increased computing 

capacity as hardware has become both cheaper and more powerful.  This availability of 

cheap computing power is the catalyst for the progression of the FEM as the formulation 

of the element stiffness matrices, the solving of equations, the evaluation of mode shapes, 

and the evaluation of mode frequencies are all computationally intensive (Wilson, 2008).  

The result of this progress in computational capacity is an equally impressive growth in 

both size and complexity of simulations.  The resulting body of knowledge is too large to 

overview here; instead the remainder of this section will summarize the analytical models 

that have contributed the development of numerical methods for concrete, key facets of 

implementing concrete into a finite element model in modern commercial finite element 

software, and works most closely related to the present study. 

2.2.1. Drucker-Prager Yield Criterion.  The Drucker-Prager yield criterion was  

developed as a pressure dependent failure surface for soils and granular material (Drucker 

& Prager, 1952).  It is formulated on the basis of there being a linear relationship between 

the first stress invariant and the square root of the first deviatoric stress invariant.  The 

first deviatoric stress invariant is the first stress invariant minus three times the 

hydrostatic pressure.  This results in a yield surface resembling a smoothed version of the 

Mohr-Coulomb yield surface. 

The Drucker-Prager yield criterion differs from non-pressure dependent yield 

criteria, such as Von-Misses’ or Tresca’s, in its capacity to capture shear strength 

increases with increasing levels of hydrostatic pressure, a unique property of concrete and 

other granular materials (Yu, Teng, Wong, & Dong, 2010).  

2.2.2. Compression Field Theory.  The compression field theory, referred to as 

CFT, was formally presented by Collins in 1978 (Collins, 1978).  However, a version of 

CFT was presented by Collins and Mitchell in 1974 in which a “diagonal compression 

field theory” was applied to describe the behavior of symmetric reinforced concrete 

members subjected to pure torsion (Mitchell & Collins, 1974).  This model assumes that 

concrete does not have sufficient tensile capacity to prevent the concrete cover from 

spalling off the core at higher torsional moments.  As a result, the model assumes that all 
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shear flow occurs within the concrete core, which is bounded by the centerline of the 

transverse reinforcement. 

CFT uses an equivalent stress block derived from the parabolic stress-strain 

distribution, proposed by Hognestad (Hognestad, 1951), to describe the behavior of 

concrete in compression.  Concrete compression struts are assumed to be placed at an 

angle, α, relative the cross section, resulting in both a shear flow and compression about 

the cross-section.  The magnitude of the force in the compression strut is a result of the 

applied torsional moment, and is averaged, or smeared, across the geometry.  The 

resulting axial forces that the compression struts provide are resisted by the longitudinal 

reinforcement, which provides a tensile force. 

2.2.3. Modified Compression Field Theory.  The modified compression field 

theory, referred to as MCFT, was developed at the University of Toronto as part of an 

experimental program that included the testing of 30 reinforced concrete panels subjected 

to in-plane shear and axial loads (Vecchio & Collins, 1986).  It is a simple analytical 

model for predicting the load-deformation response of RC elements subject to in-plane 

shear and normal forces and has formed the basis for several finite element models, such 

as secant-stiffness based formulation by Vecchio in 1989 (Vecchio, 1989).  That model 

was improved upon to create the analysis program known as TRIX by Vecchio in 1990 to 

include initial strains in materials.  The program TRIX was later used by Vecchio to 

account for the lateral expansion of concrete perpendicular to the principal compression 

forces, in order to account for expansion and confinement, leading to improved 

simulation of shear walls (Vecchio, 1992).  The experimental basis was provided by 

(Lefas, 1990), who tested a total of 13 walls with two geometric configurations, those 

with a height-to-width ratio of 1.0 and 2.0, under varying axial load conditions, and with 

a monotonically increasing lateral load. Those shear walls that possessed a height-to-

width ratio of 1.0 were denoted as SW11 thru SW17, and those with a height-to-width 

ratio of 2.0 were denoted as SW21 thru SW26.  The use of TRIX yielded the results in 

Figure 2.15 that shows the simulated, denoted as “Theoretical”, load response compared 

to experimental results, for a shear wall with a height-to-width ratio of 1.0 (SW16) and a 

height-to-width ratio of 2.0 (SW25), as obtained by (Lefas, 1990). 
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Figure 2.15 - Comparison of Experimental and Numerical Load-Deformation Response 

of Shear Walls using TRIX (Vecchio, 1992) (1 kip = 4.448 kN, 1 in. = 25.4 mm) 

 

 

2.2.4. Lee and Fenves (1998).  In 1998, Lee and Fenves proposed a modification  

to the model for concrete developed by Lubliner, et al. (1989), known as the Barcelona 

model.  In the Barcelona model, a fracture energy based scalar damage variable is used to 

account for all damage states, and elastic and plastic degradation values are used to 

account for diminishing stiffness (Lubliner, et al., 1989).  In this model, the yield 

function is a function of both the effective stress and damage variables, the generic form 

of which is shown in Equation 1, where 𝜎 represents the effective stress, and 𝜅 represents 

the damage variables. 

 

F(σ̅, κ) ≤ 0 (Eq. 1) 

 

 Using this definition of the yield function, where F is an isotropic scalar function 

with multiple hardening evolution, the plastic-damage model can be written as equations 

2a, 2b, and 2c that are subjected to the Kuhn-Tucker complimentary conditions, such that 
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𝜆 ̇ ≥ 0; �̇�𝐹 = 0; 𝑎𝑛𝑑 �̇��̇� = 0, where �̇� is a positive plastic multiplier.  Within the plastic-

damage models the strain tensor is represented by 휀, and the plastic portion of the strain 

tensor is represented by 휀𝑝. 

 

σ̅ = E0: (ε − εp) ∈ {σ̅|F(σ̅, κ) ≤ 0} (Eq. 2a) 

ε̇p = λ̇∇σΦ(σ̅) (Eq. 2b) 

κ̇ = λ̇H(σ̅, κ) (Eq. 2c) 

 

The total stress can then be evaluated using the relationship in Equation 3. 

 

σ = [1 − D(κ)]σ̅ (Eq. 3) 

 

 In Equation 3 the term 𝐷(𝜅), representing the stiffness degradation variable, is 

subject to 0 ≤ 𝐷(𝜅) < 1 and is determined using 𝐷(𝜅) = 1 − (1 − 𝐷𝑡)(1 − 𝐷𝑐), where 

𝐷𝑡 and 𝐷𝑐 are the tensile and compressive damage parameters, respectively.  This differs 

from the Barcelona model in which a single scalar damage variable was implemented.  

The addition of a second scalar damage parameter makes the model appropriate for 

simulating the cyclic behavior of concrete. 

 The model goes on to derive a damage evolution equation for a uniaxial case, �̇�𝑥, 

in terms of specific fracture energy, a function of the uniaxial damage variable, and the 

scalar plastic strain rate.  The scalar plastic strain rate is evaluated in the three-

dimensional case to derive a damage evolution equation in the multidimensional case, 

given by Equation 4a, where 𝛿 is the Kronecker delta, 휀�̇�𝑎𝑥
𝑝

 and 휀�̇�𝑖𝑛
𝑝

 are the maximum 

and minimum eigenvalues of the plastic strain tensor, and 𝑟(�̂�) is a weight function. The 

weight function 𝑟(�̂�) is a function equal to zero if �̂� = 0, else is it defined by 

Equation 4b. 

 

 휀̇𝑝 = 𝛿𝑡𝑁𝑟(�̂�)휀�̇�𝑎𝑥
𝑝 + 𝛿𝑐𝑁(1 − 𝑟(�̂�))휀�̇�𝑖𝑛

𝑝
 (Eq. 4a) 
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r(σ̂) =
(∑ 〈σ̂〉3

i=1 )

(∑ |σ̂|3
i=1 )

 (Eq. 4b) 

 

 Similar to the Barcelona model, the model proposed by Lee and Fenves 

implements cohesion parameters to make the yield surface more realistic for concrete 

materials.  In the model, cohesion is accounted for by making the yield surface a function 

of the largest principal stress, resulting in different behavior under compression and 

tension.  The implemented yield function takes the form shown in Equation 5, where 𝛼 

and 𝛽 are dimensionless constants, �̂�𝑚𝑎𝑥 is the algebraic maximum principal stress, and 

𝑐𝑐 is the compressive cohesion stress.  

 

F(σ, κ) =
1

1−α
[αI1 + √3J2 + β(κ)〈σ̂max〉] − cc(κ) (Eq. 5) 

 

 The yield surface in the plane stress space generated by this yield function is 

shown in Figure 2.16.   

 Since the model’s yield function is essentially a Drucker-Prager type (discussed in 

Section 2.2.1), being that the yield surface is dependent on the first stress invariant, Lee 

and Fenves implemented a Drucker-Prager type plastic potential function. Equation 6 

shows the plastic potential function of the Lee and Fenves model. 

 

Φ = √2J2 + αpI1 (Eq. 6a) 

Φ = ‖s‖ + αpI1 (Eq. 6b) 

 

where ‖𝑠‖ indicates the norm of the deviatoric stress. 

 The model was then implemented into a finite element framework to replicate the 

results of several experimental studies with generally good results.  A single element 

model was used to simulate monotonic uniaxial tension and compression of concrete; the 

results were then compared to the experimental works of Gopalaratnam and Shah (1985) 
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and Karsan and Jirsa (1969).  These showed good agreement, but the tensile softening 

curve was not as concave as recorded in the experimental studies.  Later in the paper a 

mesh sensitivity study was performed for the tensile case, and the softening curve became 

markedly more concave with improved mesh refinement.  Unfortunately, a direct 

comparison of the refined mesh to the experimental study was not presented, nor was a 

measure of error presented. 

 

 

 

Figure 2.16 - Yield Function in Plane Stress Space (Lubliner, et al. 1989) 

 

   

In addition to the uniaxial cases, biaxial tension and biaxial compression 

simulations were performed.  The later was shown to provide a good agreement with the 

1

1 − 𝛼
(𝛼𝐼1 + √3𝐽2 + 𝛽�̂�2) = 𝑐0 

1

1 − 𝛼
(𝛼𝐼1 + √3𝐽2 + 𝛽�̂�1) = 𝑐0 

�̂�1 

�̂�2 

𝑓𝑡𝑦 

𝑓𝑐𝑦 
(𝑓𝑏𝑦, 𝑓𝑏𝑦) 

 
 

1

1 − 𝛼
(𝛼𝐼1 + √3𝐽2) = 𝑐0 
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experimental work of Kupfer, Hilsdorf, and Rusch (1969).  In addition to monotonic 

loading, cyclic loadings were simulated for pure tension, pure compression, and tension-

compression; the results of these simulations were compared to the experimental works 

of Gopalaratnam and Shah (1985), Karsan and Jirsa (1969), and Reinhardt (1984), 

respectively.  Again, a single element model was used, and the softening curve for the 

pure tensile case was less concave than the experimental study.  In general, the cyclic 

simulations showed good agreement, though the model does not exhibit softening before 

peak load of subsequent cycles, similar to the phenomena known as the Bauschinger 

effect. 

 

2.3. FINITE ELEMENT WORKS 

As the body of work involving the finite element analysis of concrete and 

concrete structural members is too vast to summarize here, and is beyond the scope of 

this work, this section instead focuses on summarizing selected works that are most 

related to the present study.  Similarly, there exist many commercial finite element codes 

that can be implemented in the finite element analysis of concrete structural elements 

(Johnson, 2006).  As this study was performed using Abaqus CAE, the primarily focus is 

on studies that have used the Abaqus code for their framework.  Of particular interest is 

those studies that explore the behavior of concrete structural elements under combined 

loading, studies that include provisions for passive confinement of concrete, or those that 

examine the behavior of FRP strengthened concrete structural elements.  Furthermore, 

this section summarizes some proposed constitutive models for modeling concrete 

behavior under multi-axial stress states. 

2.3.1. Han, Yao, and Tao (2007).  Han, Yao, and Tao presented a pair of papers  

in 2007 on the behavior of concrete-filled steel tubes under pure torsion (Han, Yao, & 

Tao, 2007) and combined loadings (Han, Yao, & Tao, 2007) including compression-

torsion, bending-torsion, and compression-bending-torsion.  These papers present a finite 

element study that was developed to predict the behavior of both circular and square 

shaped concrete-filled steel tubes (CFST) and a set of simplified models to predict the 

ultimate strength of these types of members.   
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The finite element model was developed in the commercial code Abaqus CAE 

using the preexisting damaged plasticity model, in which the optional fracture energy 

based formulation for the tensile softening behavior, based on the work of Hillerborg, et 

al. (1976), was selected to represent the concrete.   

The results of this finite element analysis were compared to the published works 

of Gong (1989), Zhou (1990), Xu, et al. (1991), Han and Zhong ST (1995), and Beck and 

Kiyomiya (2003).  Once the validity of the model was established, a series of parametric 

studies was performed to determine the relationship between member strength and key 

parameters.   

In many ways, the analysis of CFST is similar to the analysis of concrete 

members strengthened or repaired with external FRP jacketing.  In both cases either the 

steel tube or the FRP jacket act as a passive confining system that increases both the 

compressive strength and ductility of the member.  The resulting behavior is similar to 

the point where ACI Committee 440 recommends using Mander’s model, which was 

originally developed for members confined by steel jackets, to analyze the apparent 

concrete strength and maximum usable compressive strain in circular concrete members 

with FRP jacketing (ACI 440, 2002). 

2.3.2. Prakash, Belarbi, and You (2010).  Prakash et al. tested a series of eight  

circular columns with varying height-to-depth ratios under combined loading.  Four 

columns with a height-to-depth ratio of 6 and four with a ratio of 3 were constructed and 

tested cyclically with vary ratios of torque to moment with a constant applied axial load.  

In each height-to-depth ratio a column was tested with a T/M of 0.0 (pure bending), 

infinity (pure torsion), 0.2, and 0.4.  All columns were 24 in. (610 mm) in diameter and 

constructed with twelve 1.0 in. (25 mm) diameter longitudinal reinforcing bars, resulting 

in a longitudinal reinforcing ratio of 2.10%, and spiral transverse reinforcement in 

varying ratios.  The columns with a height-to-depth ratio of 6 tested under pure torsion 

and pure bending were constructed with a spiral reinforcement ratio of 0.73%, and the 

remaining columns were constructed to with a spiral reinforcement ratio of 1.32%.  

Testing was conducted under load control, at intervals of 25%, 50%, 75%, and 100% of 

anticipated yield strength, until yielding of the first longitudinal bar, unless tested under 

pure torsion when load control was performed until yielding of the first spiral, denoted as 
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μΔ=1 and μθ=1, respectively.  After initial yielding of the reinforcement was observed, 

loading continued cyclically under displacement control, with three cycles at each 

displacement interval. 

 In addition to the experimental program, the study presented a three-dimensional 

nonlinear finite element analysis performed using the commercial code DIANA.  A linear 

8 node solid brick element, denoted as HX24L in DIANA, was implemented to represent 

the concrete material as well as a linear elastic ‘rigid’ material used to represent the cap 

and base.  Additionally, bar elements representing the steel were embedded within the 

solid ‘parent’ elements.  The model setup is shown graphically in Figure 2.17 and 

suggests that the spiral transverse reinforcement was simplified to be represented by 

circular reinforcing rings.  The Newton-Raphson method was implemented to obtain a 

solution with a maximum of twenty iterations using force and displacement fields, with 

values of 0.01 lbs. (0.045 N) and 0.01 in. (0.254 mm) respectively, as convergence and 

stopping criteria. 

 A total of 12 analysis cases were tested with this model setup, with all but six of 

those cases being experimentally tested as part of the study, as outlined in Table 2.2.  For 

those cases analyzed under pure bending, the model was run under displacement control 

at increments of 0.24 in. (6 mm) until 5.9 in. (150 mm), and results correlated well during 

the elastic responses to the experimental data.  This is short of the 17.7 in. (450 mm) 

experienced during the experimental portion of the study, however, due to issues with 

convergence.  Similar to the experimental results, the finite element model showed a 

marginal increase in capacity when the transverse reinforcement ration was increased 

from 0.73% to 1.32%. 

 The finite element models under pure torsion were loaded similarly, being loaded 

at 0.24 in. (6 mm) intervals with equal and opposite displacements being applied to each 

load point.  These pure torsion cases showed generally good agreement with 

experimental results, but had a reduced initial stiffness and did not exhibit asymmetric 

response due to the locking and unlocking effect.  The paper notes this lack of 

asymmetric behavior as being due to a neglect of the confinement effect present during 

locking.  However, if the graphical representation of the model presented in the paper, 
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shown in Figure 2.17, is accurate, then this lack of asymmetric behavior could also be 

due to the simplification of the reinforcement.   

 In the load cases that included combined loads, including bending, shear, and 

torsion, the finite element response was generally stiffer but predicted the overall 

behavior reasonably well; except in the case of the column tested with a high T/M of 0.4 

and ratio of transverse reinforcement of 0.73%.  This specimen failed suddenly and 

prematurely due to the complex internal load distributions post-cracking.   

 

 

Figure 2.17 - Finite Element Model Setup (Prakash, Belarbi, & You, 2010) 

 

 The paper goes on to present von Mises stress distributions on the column 

surfaces and through mid-section, cut parallel to the primary loading direction, and 

compares these stress distributions to photographs of the damage for the load cases that 

were validated with experimental results.  Locations where these stress distributions were 

concentrated tended to correspond to the locations of spalled and crushed concrete in the 

images of the experimental results. 
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Table 2.2 - Analysis Cases for Finite Element Model (Prakash, Belarbi, & You, 2010) 

Analysis 

Cases 

Height/Depth 

Ratio 

Torque/Moment 

Ratio 

Transverse 

Reinforcement (%) 

Experimentally 

Tested (Y/N) 

1 3 0 (Pure Bending) 0.73 N 

2 3 0.4 0.73 N 

3 3 ∞ (Pure Torsion) 0.73 N 

4 3 0 (Pure Bending) 1.32 Y 

5 3 0.4 1.32 Y 

6 3 ∞ (Pure Torsion) 1.32 Y 

7 6 0 (Pure Bending) 0.73 Y 

8 6 0.4 0.73 N* 

9 6 ∞ (Pure Torsion) 0.73 Y 

10 6 0 (Pure Bending) 1.32 N 

11 6 0.4 1.32 Y 

12 6 ∞ (Pure Torsion) 1.32 N 

* (Prakash, Belarbi, & You, 2010) states both FE and experimental results exist for 

this case, but it is not included in the experimental test matrix or description. 
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3. EXPERIMENTAL PROGRAM 

3.1. EXPERIMENTAL PROGRAM OVERVIEW 

This section summarizes the most relevant points of the experimental program, 

for which the test results served as the basis for validation and comparison of the finite 

element model developed in this study (discussed in Section 4). A complete description 

of the experimental program is included in the Ph.D. dissertations by Li (2012) and Yang 

(2014).  However, a description of the specimen construction, test procedure, and results 

are provided in this section in order to provide context and justification for the setup of 

the material model and to provide a benchmark for the validation of the simulation 

results. 

The experimental program consisted of essentially two parts.  The first part 

consisted of the construction and testing of the original undamaged columns, performed 

in a previous study (Li, 2012).  These results were used to develop the initial finite 

element model discussed in Section 4.  The second part of the experimental program 

consisted of repairing and retesting the columns from the first part of the study (Yang, 

2014).  The initial model was modified in an attempt to simulate these repaired columns 

through the alteration of existing material models and the edition of shell body 

representing the FRP jacketing used with the repair. Due to numerical stability issues, 

convergence of the modified finite element model could not be obtained for the repaired 

columns, as discussed in Section 4.   

 

3.2. OBJECTIVES 

 The first part of the experimental program sought to examine the behavior of oval 

shaped RC columns with interlocking spirals under a constant axial load and cyclic 

combined loading, including torsional moment, bending moment, and shear (Li, 2012).  

Six columns were included in the first part of the experimental program. For the purpose 

of this investigation, test results of three specimens selected from the first part of 

experimental program are intended to provide a benchmark for the development and 

validity of the finite element model described in this thesis. 
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 The second part of the experimental program sought to examine the effectiveness 

of techniques developed to repair three of the six severely-damaged columns when 

subjected to the same loading conditions (Yang, 2014).  As discussed in Section 3.3, two 

columns were repaired using the same repair procedure, while the third column was 

repaired using a different procedure. For the purpose of this investigation, test results of 

the two specimens from the second part of the experimental program with the same repair 

procedure are used to examine the flexibility of the model to include and account for the 

repair system employed.   

 

3.3. TEST MATRIX 

 This investigation examines the behavior of the three columns from the first part 

of the experimental program (Li, 2012) that were repaired and used in the second part 

(Yang, 2014), the construction of which is detailed in Section 2.1.1.2.  The columns are 

referred to as Calt-1, Calt-2, and Calt-3 in this thesis for consistency with the naming 

used in (Yang, 2014).  These three columns were nominally the same and tested under 

different torsional moment-to-bending moment ratios of 0.2, 0.6, and 0.2 respectively, 

with all but Calt-3 being oriented such that the primary bending force was along the weak 

axis, as shown in Figure 3.1.  Calt-3 was instead oriented such that the principal bending 

occurred 35° off the strong axis, as shown in Figure 3.2, which resulted in biaxial 

bending. 

 The repaired columns are referred to as R-Calt-1, R-Calt-2, and R-Calt-3 for 

consistency with the naming used in (Yang, 2014). Columns R-Calt-1 and R-Calt-2 were 

repaired using a similar procedure.  The repair procedure included removal of 

longitudinal bar segments and sections of the spiral ties within the plastic hinge region.  

The removed sections of longitudinal reinforcing bar were replaced with new reinforcing 

bar segments that were attached to the adjacent segments of original reinforcement by 

means of mechanical couplers.  After replacing the concrete in the plastic hinge region, 

an externally bonded CFRP jacket was installed in order to restore the shear and torsional 

strength that had previously been provided by the section of spiral ties that had been 

removed.  Columns R-Calt-1 and R-Calt-2 were tested under the same protocol as before 

they were repaired (Yang, 2014) (Yang, et al., 2015). 
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Figure 3.1 - Geometry and Reinforcement Details of Calt-1 and Calt-2 (1 in. = 25.4 mm) 
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Figure 3.2 - Geometry and Reinforcement Details of Calt-3 (1 in. = 25.4 mm) 
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 It should be noted that R-Calt-3 was also repaired and retested (Yang, 2014) 

(Yang, et al., 2015), but due to its novel repair system it is considered outside the scope 

of any future work based upon the model developed for this study.  A summary of test 

matrix is presented in Table 3.1. 

 

 

Table 3.1 - Test Matrix for Experimental Study 

Study Specimen ID T/M Orientation of 

Weak Axis 

Bar Splice FRP Jacket 

11 Calt-1 0.2 0° N/A N/A 

Calt-2 0.6 0° N/A N/A 

Calt-3 0.2 35° N/A N/A 

22 Calt-1R 0.2 0° Sleeve 

anchors 

Unidirectional 

Calt-2R 0.6 0° Swaged 

anchors 

Unidirectional 

Calt-3R 0.2 35° None Bidirectional 

1. Li (2012) 

2. Yang (2014) 

 

 

3.4. TEST SETUP 

 The testing of both the undamaged and repaired columns took place at the 

Missouri S&T Structural Engineering Research Laboratory (SERL).  The tests were 

conducted adjacent to the SERL’s strong wall, which served as a reaction for the applied 

lateral load.  The footing of the column was placed between two concrete chairs.  These 

chairs were spaced far enough apart to allow for prestressing cables, used to apply axial 

load, passing through the column along the longitudinal axis and anchored beneath the 

column footing.  Hydro-stone was placed between the column footing and the chairs in 

order to provide a more uniform bearing surface.  Next, a pair of wide-flange steel beams 
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was placed across the footing and chairs on either side of the column.  These beams were 

in turn held in place by steel beams, comprised of two steel channels welded back to back 

with a ~1 in. (25 mm) space between them, that were placed perpendicular to the wide 

flange beams and anchored to the strong floor using prestressed Dywidag bars.  Together 

the steel beams, the reinforced concrete chairs, and the Dywidag anchors were intended 

to provide a fixed condition for the column footing. 

 Transverse (lateral) loading was applied to the cap of the columns by means of 

two actuators.  The actuators were both manufactured by MTS, and are models 243.45T 

and 243.7T. The 243.45T actuator has a total stroke of 20 in. (508 mm.) and a load 

capacity of 650 kN in compression and 445 kN in tension, while the 243.7T has a total 

stroke of 28 in. (712 mm) with a load capacity of 1460 kN in compression and 961 kN in 

tension.  These actuators were controlled in a closed-loop system using the FlexTest GT 

digital controller system manufactured by MTS and were connected to the SERL’s strong 

wall and to steel jigging.  The jigging was attached to the column cap by multiple 

prestressed Dywidag bars and allowed the actuators to attach in line with the faces of the 

column cap, 36 in. (914 mm) on center and 131 in. (3327 mm) from the top of the 

footing. The test setup and lateral loading are shown in Figure 3.3. 

 Equations 7, 8, and 9 provide the base shear (Vbase), the bending moment (M), and 

the torsional moment (T) applied by the two actuator loads (P1 and P2):   

 

Vbase = P1 + P2 (Eq. 7) 

M = (Vbase)*H (Eq. 8) 

T = (P1 - P2)*
d

2
 (Eq. 9) 

 

Where d is the on center spacing, 36 in. (914 mm), and H is the distance from the top of 

the footing to the elevation at which the load is applied, 131 in. (3327 mm). 

 Similarly, the nominal drift of the cap (Δavg) and the twist of the cap (θtwist) can be 

determined by the displacements of the actuators (Δ1 and Δ2).  These are shown in 

Equations 10 and 11. 
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Figure 3.3 - Test Setup  
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Δavg = [
(Δ1+Δ2)

2
] (Eq. 10) 

θtwist = sin−1 [
(Δ1−Δ2)

d
] (Eq. 11) 

 

 In addition to the transverse loading provided by the actuators, an axial load was 

provided by means of prestressing tendons running through a PVC duct in the center of 

the column along the longitudinal axis (shown in Figure 3.3). The tendons were anchored 

below the footing and above a hydraulic jack placed on top of the column caps. By 

appling a load with the hydraulic jack, the tendons are stressed resulting in an axial load 

that was measured by a pair of load cells placed between the hydraulic jack and the 

anchor for the prestressing tendons.  

 

3.5. INSTRUMENTATION 

 Electric resistive strain gages were affixed to both the longitudinal reinforcement 

and transverse reinforcement in order to ascertain the strain at the point where the gages 

were applied.  Additionally, linearly variable differential transformer (LVDT) rosettes 

and/or demec rosettes were implemented to determine the nominal strain state at the 

surface of the column.   Additional instrumentation included string potentiometers, used 

as displacement transducers, attached at various elevations that were used to determine 

the transverse displacement at that height.  In order to measure the axial load applied by 

the prestressing strands, a load cell was mounted between the cap and the prestressing 

anchor.  Lastly, the two actuators, used to provide the transverse load and torque, were 

outfitted with load cells and displacement transducers that were used to determine the 

imposed loading and global behavior.  For the purpose of this study the data collected by 

the load cells and displacement transducers in the actuators will be the focus of 

investigation. 
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3.6. MATERIALS AND CONSTRUCTION 

 This section will provide an overview of the materials utilized in both the 

constructions of the original columns and in later repair and strengthening of those 

columns. 

3.6.1. Original Columns.  Materials utilized in the construction of Calt-1, Calt-2,  

and Calt-3included the longitudinal steel reinforcing bars, the reinforcing bars used in the 

transverse spirals, and the concrete.  

 The concrete used in the construction of the columns was intended be a 5 ksi 

(34.5 MPa) compressive strength mixture by design, with a 1 in. (25.4 mm) maximum 

aggregate size, and utilized a high-range water reducer (super plasticizer) for improved 

workability and flow during placement.  6 in. x 12 in. (152.4 mm x 304.8 mm) cylindrical 

test specimens were cast and tested in accordance with ASTM C39-04 to ascertain the 

compressive strength at 28 days, f’c, and the compressive strength at the test day. The 

results are summarized in Table 3.2. 

 The reinforcing steel utilized for the longitudinal and spiral reinforcement 

conformed to ASTM A706 and were grade 60 reinforcing bars. Actual yield stress for the 

reinforcing steel, based on the 0.20% offset method, was 76.7 ksi (529 MPa) and 65.8 ksi 

(454 MPa) for the longitudinal and spiral reinforcement, respectively.  The bars utilized 

for longitudinal reinforcement were No. 8 (1.00 in. [25.4 mm] diameter) bars, while those 

utilized for the spiral reinforcement are No. 4 (0.50 in. [12.7 mm] diameter) bars. The 

properties of the reinforcing bars are summarized in Table 3.3. 

 

 

Table 3.2 - Measured Concrete Material Properties 

Column ID Calt-1 Calt-2 Calt-3 

28 Day 4,360 psi 

(30.1 MPa) 

5,670 psi 

(39.1 MPa) 

Not Reported 

On Test Date 5,430 psi 

(37.4 MPa) 

5,260 psi 

(36.3 MPa) 

5,860 psi 

(40.4 MPa) 
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Table 3.3 - Measured Reinforcing Steel Properties 

Reinforcing Bar 

Description 

Yield Strength Ultimate Strength 

Longitudinal (No. 8) Bars 76,700 psi 

(529 MPa) 

104,100 psi 

(718 MPa) 

Spiral (No. 4) Bars 65,800 psi 

(454 MPa) 

98,000 psi 

(676 MPa) 

 

 

3.6.2. Repaired Columns.  Repair materials that were used for R-Calt-1 and  

R-Calt-2 included concrete and flowable grout used to replace the damaged and removed 

concrete, the components of the FRP jacket, reinforcing steel bar segments attached with 

mechanical bar splices, and circular ties around the splices.   

 The damaged concrete that was removed during the repair was replaced by a 

combination of a high slump concrete and a pumpable grout.  These were selected to 

have a similar compressive strength as the existing concrete (i.e., 5 ksi [34.5 MPa] 

nominal compressive strength). 

 The reinforcing steel used to replace the segments of longitudinal reinforcing bars 

within the plastic hinge region and the steel used to provide circular ties at the top and 

bottom of the plastic hinge conformed to ASTM A706. The No. 8 (1.00 in. [25.4 mm] 

diameter) bars used to replace segments of the longitudinal reinforcing were determined 

to have a yield strength of 65.5 ksi (452 MPa) and an ultimate strength of 97.9 ksi (675 

MPa). 

 The mechanical couplers used in R-Calt-1 and R-Calt-2 were a bolt-grip (Lenton 

Lock from Erico) type and a cold-swaged connector (BarGrip from BarSplice) type, 

respectively.  For R-Calt-1 Erico Lenton Lock B series for No. 8 (1.00 in. [25.4] 

diameter) bars were implemented to splice the longitudinal rebar.  These are a bolt-grip 

type coupler that utilizes bolts whose heads shear off once the required torque is 

obtained.  In the case of R-Calt-2, BarSplice XL from BarSplice Inc for No. 8 (1.00 in. 

[25.4] diameter) bars were implanted. These are a swaged type coupler that utilizes a 

hydraulic crimping tool to cold work the coupler in order to form the connection.  
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 In the case of R-Calt-1 and R-Calt-2, layers of a 0.04 in. (1.0 mm) thick 

unidirectional carbon fiber (Tyfo® SCH-41) were used to create the eternally bonded 

jacket using a wet lay-up procedure.  The manufacturer specified properties for this 

material are: modulus of elasticity (EFRP) of 11,900 ksi (82,000 MPa), tensile strength (fu) 

of 121 ksi (834 MPa), and ultimate tensile strain (εut) of 0.0085 in./in. (0.0085 mm/mm). 

 

3.7. TEST PROCEDURE 

 The testing of the original column specimens in the first part of the experimental 

program occurred in two stages.  Each stage of loading was comprised of multiple load 

intervals.  During each interval, progressively greater loads or displacements were 

applied to the column cap via the two actuators in both the push and pull directions.  

 During the initial stage a force controlled approach was adopted wherein the load 

was incrementally increased at intervals based on 10% of the predicted yielding force.  

This was done until yielding of the first longitudinal bar (indicated by strain gage 

measurements) was observed.  This point was defined as displacement ductility one 

(μΔ=1) and marks the final force controlled interval before the second stage of loading.   

 During the second stage of loading the actuator displacements corresponding to 

displacement ductility one were incrementally factored up during subsequent load stages, 

under displacement controlled load.  At each displacement level three cycles were 

applied to observe stiffness degradation. 

 A similar approach was adopted for the repaired columns, wherein the columns 

were initially tested under force control, to maintain the desired torque-to-moment ratio, 

until the predicted yielding of the first longitudinal bar.  Then the columns were tested 

under displacement control, with three cycles being performed at each displacement 

level.  The comparison of the displacement histories for column Calt-1 and Calt-2 to their 

repaired counterparts, R-Calt-1 and R-Calt-2, can be seen in Figure 3.4. 

 

3.8. TEST RESULTS 

 This section presents the hysteretic load-deformation relationships of the three 

original columns the finite element model attempted to replicate.  These responses are 
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used in the development of the boundary conditions imposed on the model, a process 

explained in Section 4.5.2.  

 For the sake of brevity, the hysteretic load-deformation relationships of the 

repaired columns are not included in this section, because convergence of the modified 

finite element model could not be obtained for the repaired columns due to numerical 

stability issues. The hysteretic responses of the repaired columns are reported in (Yang, 

2014).  

 

 

 

Figure 3.4 - Loading protocol of Calt-1, R-Calt-1, Calt-2, and R-Calt-2. 

(Yang, et al., 2015) (1 in. = 25.4 mm) 
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3.8.1. Calt-1 Test Results.  The experimental response of Calt-2 is summarized 

within this section.  These results are presented in the form of the hysteresis response of 

the column’s base shear to cap displacement relationship and torque to twist relationship 

in Figure 3.5.  These results are used to determine the experimental backbone curves, 

presented in Section 4.5.2.1.   

The results for Calt-1 show that the column successfully completed three 

displacement controlled cycles at 1.0, 1.5, 3.0, 4.5, 6, 8, and 10 times the displacement to 

first yielding of the reinforcement (D1).  The column then failed during cycling at twelve 

times the D1 displacement. 

 

 

 

Figure 3.5 - Calt-1 Experimental Results; Shear-Displacement (left) Torque-Twist (right) 

(1 kip = 4.448 kN, 1 kip-ft = 1.356 kN-m, 1 in. = 25.4 mm) 

 

 

3.8.2. Calt-2 Test Results.  The experimental response of Calt-2 is summarized 

within this section.  These results are presented in the form of the hysteresis response of 

the column’s base shear to cap displacement relationship and torque to twist relationship 

in Figure 3.6.  These results are used to determine the experimental backbone curves, 

presented in Section 4.5.2.2. 

The results for Calt-2 show that the column successfully completed three 

displacement controlled cycles at 1, 2, 3, and 4 times the displacement to first yielding of 

the reinforcement (D1).  The column then failed during cycling at six times the D1 
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displacement.  It is worth noting that while cycling at six times the D1 displacement, the 

peak base shear was reached approximately 70% the way through the cycle. Additionally, 

both the peak torque and peak base shear decreased between the last load controlled cycle 

and first displacement control cycle. These two factors result in the short interval between 

the last two points of the backbone curves and the early ‘saw-tooth’ in the Calt-2 

backbone curves, presented in Section 4.5.2.2. 

 

 

 

Figure 3.6 - Calt-2 Experimental Results; Shear-Displacement (left) Torque-Twist (right) 

(1 kip = 4.448 kN, 1 kip-ft = 1.356 kN-m, 1 in. = 25.4 mm) 

 

 

3.8.3. Calt-3 Test Results.  The experimental response of Calt-3 is summarized  

within this section.  These results are presented in the form of the hysteresis response of 

the column’s base shear to cap displacement relationship and torque to twist relationship 

in Figure 3.7.  These results are used to determine the experimental backbone curves, 

presented in Section 4.5.2.3. 

 The results for Calt-3 show that the column successfully completed three 

displacement controlled cycles at 1, 2, 3, 5 and 6 times the displacement to first yielding 

of the reinforcement (D1).  Similar to Calt-2, Calt-3 exhibited a decrease in the peak 

torque and peak base shear between the last load controlled cycle and first displacement 

control cycle.  This results in the ‘saw-tooth’ in the early portions of the Calt-3 backbone 

curves, presented in 4.5.2.3. 
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Figure 3.7 - Calt-3 Experimental Results; Shear-Displacement (left) Torque-Twist (right) 

(1 kip = 4.448 kN, 1 kip-ft = 1.356 kN-m, 1 in. = 25.4 mm) 
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4. FINITE ELEMENT ANALYSIS 

4.1. FINITE ELEMENT ALANALYSIS OVERVIEW 

 This section provides a description of the finite element model developed in this 

study.  It begins with an overview of the process that led to development of the model 

(Section 4.2) followed by a more in-depth look at individual aspects of the model; 

examining first the simplification of the physical specimens geometry (Section 4.3), 

followed by a description of the mesh elements used to discretize the geometry 

(Section 4.4), an overview of boundary conditions imposed on the mesh (Section 4.5), 

and a description of the various material models that define the behavior of the model 

(Section 4.6). Section 4.7 describes the solution settings, whereas Section 4.8 discusses 

sources of errors. Section 4.9 presents the simulated load response of the model when 

displacements, equivalent to those imposed on the physical specimens, are imposed on 

the model. Lastly, Section 4.10 briefly describes the attempt to extend the model to the 

repaired, FRP-strengthened columns and the limitations encountered.  

 

4.2. MODELING METHODOLOGY 

 A top-down approach, wherein the geometry is separately defined from the mesh 

that is later associated to it, was adopted for the creation of the finite element model.  

Using the software Siemens NX 7.5, a three-dimensional solid model of the column and 

its reinforcement was generated, as illustrated in Figure 4.1.  This solid model was 

parametrically defined so as to allow for easy development of modified geometry for 

future studies.  The solid model was then simplified by replacing the solid bodies that 

represented the reinforcing steel with lines defined along the centerline of the solid 

bodies, by sectioning off the geometry at the top and bottom of the column and deleting 

the now separate cap and footing, and finally by replacing the cap with a solid body that 

lofts the column profile to a single point at the centroid of the cap, around which the 

actuators are assumed to act. Lastly, the top 1.0 in. (25.4 mm) and bottom 1.0 in. (25.4 

mm) were partitioned off of the solid representing concrete in order ‘soften’ the rigid 

boundary condition with an elastic buffer material.  This is done to prevent stress 

concentrations that would not otherwise arise due to the finite rigidity of the cap and 
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footing, that the boundary condition would otherwise assume them to be infinitely rigid. 

The resulting bodies from this process were then imported into Abaqus CAE using Initial 

Graphics Exchange Specification (IGES) files. These bodies and their purposes are 

described and discussed in Section 4.3. 

 

 

 

Figure 4.1 - Comprehensive Three-Dimensional CAD Model 

(Note: Dimensions Given in Figure 3.1 and Figure 3.2) 
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4.3. MODEL COMPONENTS 

 A total of 26 bodies were used to represent the column in finite element model.  

These can be categorized into five groups and are identified as such by different colors in 

Figure 4.2.   

 

 

 

Figure 4.2 - Model Components in Abaqus CAE 
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 Two groups of linear bodies were utilized to represent the reinforcing bars. The 

first of these is comprised of 20 linear bodies representing the No. 8 (1.00 in. [25.4 mm] 

diameter) longitudinal reinforcing bars, shown in red.  The second consists of two helical 

curves that represent the No. 4 (0.5 in. [12.7 mm] diameter) spiral reinforcement. 

 The remaining three groups were solid bodies that represent the concrete portion 

of the column and the cap.  The column comprised two of these groups. The first group 

represented the bulk of the column and is shown in a translucent grey and represents the 

middle 9 ft.-10 in. (3.0 m) of the 10 ft. (3.05 m) the column spans from the top of the 

footing to the bottom of the cap.  The second portion, shown in translucent green, 

consisted of the 1 in. [25.4 mm] slices of the column just below the cap and just above 

the footing. These bodies were taken separately from one another so that different 

material properties could be assigned at the very top and very bottom of the column.  As 

the constraints were infinitely rigid in the finite element model, it was necessary to define 

a portion of the column’s concrete, in the model, as a linear elastic material to prevent 

convergence issues stemming from unrealistic stress concentrations at the boundaries.  

The final group consisted of one solid body and was used to represent the column cap and 

transitions from a single point in the center of the cap to the column cross-section.  This 

shape was purely for convenience as the cap was represented by discrete rigid elements, 

described in Section 4.4.3, whose location and orientation were tied to a single reference 

point.  This allowed for loads and displacements to be defined at a single reference point, 

which existed at the tip of the solid. 

 

4.4. MESH ELEMENTS 

 Three types of bodies needed to be discretized through meshing. These are line 

bodies, solid bodies, and shell bodies.  Line bodies can be represented by beam and/or 

truss elements, solid bodies can be meshed with a variety of solid elements ranging from 

four node tetrahedral elements to polyhedral shapes with 14 or more faces, and shell 

bodies can be meshed using a variety of shell elements.  The different elements used in 

this model and their purposes are discussed further in Section 4.4.1 to Section 4.4.3. 
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4.4.1. Eight Node Brick Elements.  These elements were used to model all  

deformable solids in the model, including the concrete and the elastic buffer at the top 

and bottom of the column. The C3D8R element, used in this model, is a linear brick 

element with reduced integration. The term “reduced integration” refers to the element 

having only a single integration point, used to evaluate the material response, as 

compared to having eight integration points with the C3D8 linear brick element with full 

integration.  In general, this substantially reduces the computational demand but results in 

an increase in discretization error and, because the integration point is in the center of the 

element, eliminates the ability to evaluate stress concentrations at the boundary. The issue 

with increased discretization error, associated with reduced integration, is mitigated with 

sufficient levels of h-refinement, where more of the same order elements are utilized.  

This is convenient since the curved surfaces of the column require reasonably small 

spacing between nodes to properly discretize the geometry. Additionally, accurately 

accounting for contact stresses and boundary conditions is rendered superfluous by the 

elastic buffer at the top and bottom of the column, thereby eliminating the need for 

additional integration points at the boundary nodes.   

 

 

 

Figure 4.3 - Comparison of Medial Axis (Left) to Advancing Front (Right) Meshing 
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 The mesh for the solid bodies was generated using the medial axis algorithm in 

Abaqus CAE.  This method breaks the region to be meshed into several simpler regions 

and generates a structured mesh in each region.  This method results in a more regular 

mesh than the alternative “advancing front” meshing algorithm that generates layer after 

layer of elements, advancing from the boundaries of the region.  For the geometry of the 

column the medial axis algorithm results in a more regular and balanced mesh.  A 

comparison of the resulting meshes produced by these methods is presented in Figure 4.3. 

4.4.2. Two Node Beam Elements.  These elements were utilized to mesh both  

the longitudinal reinforcement and the transverse spiral reinforcement.  Beam elements, 

as opposed to truss elements, were utilized to account for the reinforcing bars resistance 

to bending and shear by restricting relative rotation between adjacent beam elements.  

The B31 element was selected for the role and is a Timoshenko beam element that 

accounts for transverse shear deformation.  This is because these elements assume plane 

sections remain plane but not necessarily perpendicular to the centerline of the beam 

element.  In two dimensions Timoshenko beam elements are governed by two equations, 

Equation 12 and Equation 13, that are defined in terms of deflection, δ, and rotation, ψ, 

where 𝑐𝑓 is the elastic foundation modulus of a beam element. 

 

−
𝑑

𝑑𝑥
[𝐺𝐴𝐾𝑠 (Ψ +

𝑑𝛿

𝑑𝑥
)] + 𝑐𝑓𝛿 = 𝑞 (Eq. 12) 

−
𝑑

𝑑𝑥
(𝐸𝐼

𝑑Ψ

𝑑𝑥
) + 𝐺𝐴𝐾𝑠 (Ψ +

𝑑𝛿

𝑑𝑥
) = 0 (Eq. 13) 

 

4.4.3. Discrete Rigid Elements.  These are a special type of shell element used to 

define the rigid body of the lofted cap used to impose the desired drift and twist at the top 

of the column. These elements are non-deformable quadrilateral and triangular shell 

elements, R3D4 and R3D3 respectively. By using discrete rigid elements to model the 

surface of the solid lofted shape the need to mesh the internal volume of the lofted cap is 

eliminated, and nodal values related the development of the stiffness matrix need not be 

stored, reducing the computational demand.  In these elements, the location of all nodes 

is dependent on the location and orientation of a reference point that in turn acts as the 

reaction point for any load imposed on the rigid body. 
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4.5. BOUNDARY CONDITIONS AND CONSTRAINTS 

 The way in which the bodies within the finite element model interact with each 

other and with the imposed boundary conditions can impact both the results and stability 

of the analysis. There were essentially three types of interactions present in this model. 

The first were reactionary boundary conditions that are constant conditions externally 

imposed on the model. These reactionary boundary conditions are discussed further in 

Section 4.5.1. Another type of external boundary condition is those intended to load the 

structure and change during the course of an analysis. These boundary conditions are 

discussed in Section 4.5.2.  Lastly, there were interactions between bodies in the model, 

where neighboring bodies act as each other’s boundary condition.  The interactions are 

discussed further detail in Section 4.5.3. 

4.5.1. Reactionary Boundary Conditions.  Constraints to prevent rigid body  

motion were defined along the lower face of the lower 1 in. (25.4 mm) thick elastic 

portion of the concrete and on the lowest nodes of each longitudinal reinforcing bar and 

each helical spiral reinforcement.  These constraints defined the motion in all six degrees 

of freedom as zero at the applicable nodes. 

4.5.2. Load and Displacement Imposing Boundary Conditions.  Loading of the  

model is achieved through the reference point on the discrete rigid body representing the 

cap of the column. In this model, the tip of the lofted cap was defined as the reference 

point.  This point allows for convenient loading of the finite element model by defining 

either load or fixed displacements at the reference point and recording the reaction force 

at the reference point. 

 The loading of the column and measurement of reactions was accomplished 

through the reference point in three key ways. Firstly, the axial load provide by the 

prestressing cables was simulated by apply a fixed load to this reference point.  This fixed 

load was applied in the first step of the simulation and consisted of a vertical load of 150 

kips (667 kN), and was defined such that it would follow any rotation of the reference 

point in subsequent steps.  In this way, the fixed load is always point along a vector 

between the reference point and the centroid of the surface where the cap-to-column 

interaction is defined.  This is similar to how the prestressing cables in the experimental 

study (see Section 3.4) have a tendency to act normal to the cap of the column.  
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Additionally, this reference point was subjected to fixed displacement boundary 

conditions to impose the desired drift and twist values, measured during the experimental 

study, during subsequent steps. Lastly the reaction forces on the reference node were 

used to determine the simulated base shear and torsional moment.   

 The magnitude of the desired drift and twist at the later load stages were 

prescribed based on the displacements corresponding to the peak moment recorded at the 

first cycle of each drift level in the experimental tests (see Section 3.8).  These peaks 

were used to form the experimental back-bone curves to which the model results were 

compared.  These peaks were taken from the first cycle of each positive displacement 

level (i.e. those load cycles primarily in the positive Y-axis of Figure 3.3a).  This was 

done in order to minimize the impact of hysteretic damage on the resulting back-bone 

curve to more closely approximate the static back-bone curve, which the model 

simulates, from the cyclic results.  The displacements imposed during the loading steps 

utilized a subset of the peaks to break the simulation down into convenient intervals for 

varying the solutions settings, as defined in Section 4.7, to reduce unnecessary 

computational effort during less computational demanding portions of the columns 

behavior.  For example, the solution requirements for the model prior to material 

nonlinearities is less demanding than during portion of simulation influenced heavily by 

both material and geometric nonlinearities; thus, it is beneficial to treat these portions of 

the simulation differently.  The subset of the peak values used to define the displacements 

for the various load steps is referred to hereafter as the control points.  The peak values 

and control points are abbreviated as PV and CP, respectively, throughout this thesis. 

4.5.2.1. Calt-1 peak values and control points.  Peak values and corresponding   

control points were selected from the experimental results, of cycles with positive 

displacements, that are summarized in Section 3.8.1 per the methods described in Section 

4.5.2 of this thesis. As the selection of these points is dependent on the maximum 

moment, which is derived from the measured base shear multiplied by the moment arm, 

the measured drift-shear relationship and corresponding peak values are plotted in Figure 

4.4.  These peak values and corresponding control points are then tabulated in Table 4.1. 

Additionally, the experimental backbone curves, to which the numerical results are 

compared, are derived from these peak values and are shown in Figure 4.5 and Figure 4.6 
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for the base shear-displacement relationship and torque-twist relationship, respectively, 

where displacement and twist are determined at the column cap. Finally, the torque-to-

moment ratio (T/M) of these peak values is presented in Figure 4.7 as a function of cap 

displacement.  

4.5.2.2. Calt-2 peak values and control points.  Peak values and corresponding  

control points were selected from the experimental results, of cycles with positive 

displacements, that are summarized in Section 3.8.2 per the methods described in Section 

4.5.2 of this thesis. As the selection of these points is dependent on the maximum 

moment, which is derived from the measured base shear multiplied by the moment arm, 

the measured drift-shear relationship and corresponding peak values are plotted in Figure 

4.8.  These peak values and corresponding control points are then tabulated in Table 4.2.  

Additionally, the experimental backbone curves, to which the numerical results are 

compared, are derived from these peak values and are shown in Figure 4.9 and Figure 

4.10 for the base shear-displacement relationship and torque-twist relationship, 

respectively, where displacement and twist are determined at the column cap. Finally, the 

torque-to-moment ratio (T/M) of these peak values is presented in Figure 4.11 as a 

function of cap displacement.  

4.5.2.3. Calt-3 peak values and control points.  Peak values and corresponding  

control points were selected from the experimental results, of cycles with positive 

displacements, that are summarized in Section 3.8.3 per the methods described in Section 

4.5.2 of this thesis. As the selection of these points is dependent on the maximum 

moment, which is derived from the measured base shear multiplied by the moment arm, 

the measured drift-shear relationship and corresponding peak values are plotted in Figure 

4.12.  These peak values and corresponding control points are then tabulated in Table 4.3.  

Additionally, the experimental backbone curves, to which the numerical results are 

compared, are derived from these peak values and are shown in Figure 4.13 and Figure 

4.14 for the base shear-displacement relationship and torque-twist relationship, 

respectively, where displacement and twist are determined at the column cap. Finally, the 

torque-to-moment ratio (T/M) of these peak values is presented in Figure 4.15 as a 

function of cap displacement. 
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4.5.3. Interactions and Kinematic Constraints Between Components. 

Kinematic relationship between the various components are required to be defined within 

the finite element model in order to ensure strain compatibility between the various 

components. In other words, interactions had to defined such that the equal and opposite 

loading applied between the bodies results in the one or more bodies deforming together. 

 Two types of interactions were utilized in the construction of this model.  The 

first was embedded constraints that were used to define the interaction between the 

concrete and the steel reinforcement. The second was tie constraints that were used to 

define the interactions between the mating surfaces of the inelastic and elastic solid 

bodies representing the concrete and the cap. 

 To define the embedded relationship of the reinforcing bar within the concrete a 

beam-in-solid embedded relationship was defined between the inelastic set of concrete 

and the set of reinforcement, both longitudinal and transverse, beam elements contained 

wholly within the inelastic portion of the concrete.  In this configuration, the inelastic 

concrete elements constitute what is referred to in Abaqus as the host element set, and the 

reinforcing bar elements constitute the embedded elements.  This embedded constraint 

cannot be extended to the elastic portions of the concrete, at the extreme top and bottom 

of the column, as this would result in nodes involved in the embedded relationship also 

being involved in the tie constraint discussed in following paragraph.  This results in an 

over constrained condition and the solver neglecting the constraint definition. 

 The remaining interactions defined in this model take the form of a surface-based 

tie constraint in which a constraint is formed between two surfaces on the geometry, a 

master and a slave surface.  In this approach a single slave node’s displacements are 

related to the displacements of multiple nodes on the master surface.  This results in 

reduced stress discontinuities in the vicinity of the interaction, sometimes referred to as 

numerical noise, as compared to other interaction definitions (Dassault Systems, 2010).  

This benefit can be numerically costly, particularly in models such as this where a large 

fraction of tied degrees of freedom exists.  However, the numerical noise, associated with 

other interaction definitions, can result in stability issues when combined with nonlinear 

materials models. 
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Figure 4.4 - Calt-1 Base Shear vs. Cap Displacement Experimental Results and 

Corresponding Peak Values (1 kip = 4.448 kN, 1 in. = 25.4 mm) 

 

 

Figure 4.5 - Calt-1 Base Shear-to-Cap Displacement Backbone Relationship 

(1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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Figure 4.6 - Calt-1 Torque-to-Cap Twist Backbone Relationship 

(1 kip-ft = 1.356 kN-m, 1 in. = 25.4 mm) 

 

 

Figure 4.7 - Calt-1 Peak Values from Torque to Moment (T/M) Relationship 

(1 in. = 25.4 mm) 
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Table 4.1 - Calt-1 Peak Values and Model Control Points 

Peak Value 

(PV) 

Identifier 

Control 

Point (CP) 

Identifier 

Cap 

Displacement 

(in.) 

Base Shear 

(kips) 

Cap Twist 

(degrees) 

Torque 

(kip-ft) 

0.1*Fy - 0.0261 4.7 0.0162 10.4 

0.2*Fy - 0.0638 9.3 0.0272 21.5 

0.3*Fy - 0.1129 14.4 0.0404 33.2 

0.4*Fy - 0.1678 19.6 0.0580 45.0 

0.5*Fy - 0.2459 24.6 0.0749 55.9 

0.6*Fy - 0.3546 29.8 0.1049 66.8 

0.7*Fy - 0.4849 34.9 0.1424 77.7 

0.8*Fy - 0.6321 40.1 0.1871 88.6 

0.9*Fy - 0.7852 44.0 0.2362 100.2 

D1 CP-1 0.9499 50.4 0.2972 110.3 

D1.5 CP-2 1.5744 66.4 0.4844 143.8 

D3 CP-3 3.1984 85.5 1.0928 200.2 

D4.5 CP-4 4.6146 87.7 1.5877 206.6 

D6 - 6.3378 83.7 2.1353 201.1 

D8 - 8.4624 81.7 3.010 191.7 

D10 - 10.6587 69.9 3.7848 125.7 

D12 - 12.2916 33.5 4.3721 49.5 

xD18 CP-5 17.9909 - 6.1632 - 

NOTES:  Peak Value xD18 was extrapolated for use as a control point that ensured 

the model ran to failure.  The displacements for xD18 are those of D12 

plus six times the displacements of D1. 

1 kip = 4.448 kN, 1 in. = 25.4 mm, 1 ft = 304.8 mm 
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Figure 4.8 - Calt-2 Base Shear vs. Cap Displacement Experimental Results and 

Corresponding Peak Values (1 kip = 4.448 kN, 1 in. = 25.4 mm) 

 

 

Figure 4.9 - Calt-2 Base Shear-to-Cap Displacement Backbone Relationship 

(1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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Figure 4.10 - Calt-2 Torque-to-Cap Twist Backbone Relationship  

(1 kip-ft = 1.356 kN-m, 1 in. = 25.4 mm) 

 

 

Figure 4.11 - Calt-2 Peak Values from Torque to Moment (T/M) Relationship  

(1 in. = 25.4 mm) 
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Table 4.2 - Calt-2 Peak Values and Model Control Points 

Peak Value 

(PV) 

Identifier 

Control 

Point (CP) 

Identifier 

Cap 

Displacement 

(in.) 

Base Shear 

(kips) 

Cap Twist 

(degrees) 

Torque 

(kip-ft) 

0.1*Fy - 0.0495 4.6 0.0555 39.1 

0.2*Fy - 0.2225 10.6 0.1200 74.7 

0.3*Fy - 0.2381 15.6 0.1929 119.1 

0.4*Fy - 0.3471 21.3 0.2689 158.3 

0.5*Fy - 0.5172 26.8 0.4069 197.6 

0.6*Fy - 0.7670 33.1 0.6763 236.7 

0.7*Fy - 0.9996 38.6 1.0339 275.3 

0.8*Fy - 1.2646 44.0 1.4592 316.5 

0.9*Fy - 1.5352 49.9 1.8955 356.9 

D1 CP-1 1.5738 47.8 2.0114 304.8 

D2 CP-2 3.1128 63.8 4.2524 413.9 

D3 CP-3 4.8354 64.2 6.7142 401.9 

D4 CP-4 6.3151 64.2 8.6015 306.8 

D6 - 6.5570 54.9 8.8832 127.5 

xD8 CP-5 9.7047 - 12.9805 - 

NOTES:  Peak Value xD8 is extrapolated for use as a control point that ensures the 

model runs to failure.  The displacements for xD8 are those of D6 plus 

two times the displacements of D1. 

1 kip = 4.448 kN, 1 in. = 25.4 mm, 1 ft = 304.8 mm 

 

 

4.6. MATERIAL MODELS 

 The mathematical models that describe the behavior of the materials are known 

collectively as the material models.  The resulting load-deformation behavior of a 

structural element is a function of the materials that it is composed of.   
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Figure 4.12 - Calt-3 Base Shear vs. Cap Displacement Experimental Results and 

Corresponding Peak Values (1 kip = 4.448 kN, 1 in. = 25.4 mm) 

 

 

Figure 4.13 - Calt-3 Base Shear-to-Cap Displacement Backbone Relationship 

(1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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Figure 4.14 - Calt-3 Torque-to-Cap Twist Backbone Relationship 

(1 kip-ft = 1.356 kN-m, 1 in. = 25.4 mm) 

 

 

Figure 4.15 - Calt-3 Peak Values from Torque to Moment (T/M) Relationship 

(1 in. = 25.4 mm) 
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Table 4.3 - Calt-3 Peak Values and Model Control Points 

Peak Value 

(PV) 

Identifier 

Control 

Point (CP) 

Identifier 

Cap 

Displacement 

(in.) 

Base Shear 

(kips) 

Cap Twist 

(degrees) 

Torque 

(kip-ft) 

0.1*Fy - 0.0470 7.5 0.0198 18.5 

0.2*Fy - 0.0822 16.7 0.0359 38.9 

0.3*Fy - 0.1271 25.5 0.0623 58.3 

0.4*Fy - 0.2166 34.4 0.0923 77.3 

0.5*Fy - 0.3684 43.1 0.1458 96.4 

0.6*Fy - 0.5604 52.0 0.2022 115.4 

0.7*Fy - 0.7671 60.8 0.2791 134.7 

0.8*Fy - 1.0000 69.4 0.3723 154.2 

0.9*Fy CP-1 1.2679 78.3 0.4726 173.7 

D1 CP-2 1.3192 76.0 0.5466 190.6 

D2 CP-3 2.5952 114.0 1.0836 234.2 

D3 - 3.9367 121.5 1.7403 249.7 

D4 - 5.3197 116.2 2.3335 228.7 

D5 CP-4 6.6597 112.8 2.8876 195.7 

D6 - 7.8321 95.0 3.4059 168.0 

xD8 CP-5 10.4705 - 4.5018 - 

NOTES:  Peak Value xD8 is extrapolated for use as a control point that ensures the 

model runs to failure.  The displacements for xD8 are those of D6 plus 

two times the displacements of D1. 

1 kip = 4.448 kN, 1 in. = 25.4 mm, 1 ft = 304.8 mm 

 

 

 As a result, reasonably accurate material models are a requisite to obtain realistic 

results through finite element modeling.  As such, the material models ought to exhibit 

similar characteristics to their physical counterparts in order for the finite element model 

to accurately simulate the behavior of the physical system.  The following sections detail 



 

 

73 

the material models used to represent the materials in both the original and repaired 

columns.   

4.6.1. Concrete.  The Concrete Damaged Plasticity (CDP) model in Abaqus was 

selected to represent concrete in the finite element model.  The CDP model is a derivative 

of the Drucker-Prager strength hypothesis, which is pressure dependent (as discussed in 

Section 2.2.1).  It results in a conical failure surface in stress space and a circular failure 

surface in the deviatoric stress space.  The CDP model in Abaqus has a yield surface 

based on that proposed by Lee and Fenves (1998) that is a modification of yield criterion 

proposed by Lubliner et al. (1989) (discussed in Section 2.2.4).  This adopted strength 

hypothesis is similar to the Drucker-Prager hypothesis except that it has a failure surface 

that may be non-circular in the deviatoric stress space, shown in Figure 4.16.  Instead, the 

failure surface is dependent on the ratio of the distance from the hydrostatic axis to the 

tension meridian and the distance from the hydrostatic axis to the compression meridian, 

denoted by Kc in Figure 4.16.  The yield function of Abaqus’ concrete damaged plasticity 

model is presented in Equation 14, where 𝛼 and 𝛽 are dimensionless constants, �̅� is the 

Mises equivalent effective stress, �̅� is the effective hydrostatic pressure, 휀̃𝑝𝑙 is the set of 

hardening variables, �̂�𝑚𝑎𝑥 is the maximum principal stress, 𝛾 is a coefficient accounting 

for stress states of triaxial compression, and 𝜎𝑐 is the compressive cohesion stress 

(Dassault Systems, 2010). 

 

𝐹(𝜎, 휀̃𝑝𝑙) =
1

1−𝛼
[�̅� − 3𝛼p̅ + 𝛽(휀̃𝑝𝑙)〈�̂̅�𝑚𝑎𝑥〉 − 𝛾〈−�̂�𝑚𝑎𝑥〉] − 𝜎𝑐(휀̃𝑝𝑙) ≤ 0 (Eq. 14) 

 

 This can be shown to be almost identical to the yield function presented by Lee 

and Fenves, with the addition of the “−𝛾〈−�̂�𝑚𝑎𝑥〉” term that enters the yield function in 

states of triaxial compression.  The term 𝛾 is a function of the constant Kc and can be 

evaluated by Equation 15. 

 

𝛾 =
3(1−𝐾𝑐)

2𝐾𝑐−1
 (Eq. 15) 
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Figure 4.16 - Yield Surface of the CDP in the Deviatoric Stress Space (Dassault Systems, 

2010) 

 

 

The model is defined in the software by a set of tables describing the uniaxial 

behavior of the concrete in tension and compression and a series of five parameters used 

to describe the behavior in a multiaxial stress state, namely ψ, ε, 𝑓𝑏0
𝑓𝑐0

⁄ , κ, and ν.  A key 

benefit of the CDP model is that these parameters have a specific physical interpretation.  

The dilation angle, ψ, is interpreted as the internal friction angle and is typically taken at 

36° or 40° (Kmiecik & Kaminski, 2011).  It was taken as 36° for the development of this 

model.  The plastic potential eccentricity, ε, can be calculated as the ratio of the tensile 

strength to the compressive strength and alters the shape of the plastic potential curve in 

meridional plan (deviatoric stress vs.  pressure), where an eccentricity of zero results in a 

straight line, corresponding to the Drucker-Prager criterion.  The default value of 0.1 was 

adopted for the development of this model.  𝑓𝑏0
𝑓𝑐0

⁄  is simply the ratio of the concrete 

strength under biaxial compression to the concrete strength under uniaxial compression, 

for which a value of 1.25 was adopted.   κ is simply the constant Kc, described above, that 
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is used to determine 𝛾 for cases of triaxial compression. For this a value of 0.7 was 

adopted based on the work of (Yu, Teng, Wong, & Dong, 2010). Lastly, a viscosity 

parameter, ν, can be entered to allow the material to temporarily exceed the plastic 

potential surface in order to handle convergence issues in some cases.  The viscosity 

parameter should be kept to a minimum or set at zero, when model stability allows, or 

otherwise minimized in order to avoid unnecessary error.  A small value of 0.002 was 

selected to improve stability in the model. 

 As previously mentioned in this section, the CDP model requires tables to be 

input describing the uniaxial behavior of the concrete.  For compression these tables take 

the form of a stress vs. plastic strain table and an optional compressive damage vs. plastic 

strain table.  The later was left blank in this study due to a lack of cyclic material testing 

and its implementation being largely unnecessary due to the monotonic loading imposed 

in this model.  Similar tables exist for the tensile behavior, although Abaqus does allow 

for the tensile behavior to be alternatively defined on the basis of stress vs. displacement 

or based on a fracture energy formulation.  For the purpose of this study, the tensile stress 

vs. plastic strain method was implemented.   

4.6.1.1. Compression stress-strain relationship. For the purpose of this study,  

the compressive stress vs. strain relationship was derived based on the Hognestad 

relationship (Hognestad, 1951) in which the first portion of the constitutive relationship is 

described by a parabola given in Equation 16. 

 

𝑓𝑐 = 𝑓"𝑐 [
2𝜖𝑐

𝜖0
− (

𝜖𝑐

𝜖0
)

2

] (Eq. 16) 

 

where 𝜖𝑐 is the strain and 𝑓𝑐 is the stress at a given point in the relationship.  The term 𝜖0 

is the strain at the apex of the parabola and is taken as 1.8 times 𝑓"𝑐 divided by the 

concrete modulus of elasticity.  𝑓"𝑐 is taken as a reduction of the compressive strength of 

concrete cylinders 𝑓′𝑐, generally on the order of 85% to 90% of 𝑓′𝑐, in order to account 

for differences between cylinder strength and member strength. These differences occur 

due to the relatively fast loading rate of test cylinders, vertical migration of bleed water, 

and variation in where/how the concrete is cured.  In the case of this study, the migration 
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of bleed water is expected to result in a reduced water-to-cement ratio at the location of 

the plastic hinge, and the loading was applied relatively quickly.  As such 𝑓"𝑐 was taken 

as 𝑓′𝑐 in the material inputs.  As seen in Table 3.2, the nominal 28 day compressive 

strength varied between the columns utilized in the test.  Additionally, in the case of Calt-

2 the compressive strength at the time of testing was less than that at 28 days.  This 

brings a level of uncertainty to the value of 𝑓′𝑐 obtained experimentally.  As a result the 

design value for the compressive strength of the concrete, 5,000 psi (34.5 MPa), was 

assumed for use in the finite element model. 

 The value of the concrete elastic modulus was taken based on Equation 17, which 

is permitted by the ACI 318 code (2014). 

 

𝐸𝑐 = 57,000√𝑓′𝑐 (Eq. 17) 

 

 The second portion of Hognestad relationship is described by a linear relationship 

extending from the apex of the parabola to the limiting strain of 3,800 microstrain.  

During this portion of the relationship, the stress decreases linearly by 15%. 

 The model inputs differ from Hognestad’s distribution in five key ways.  Firstly, 

as the concrete is passively confined by the spiral reinforcement, the ultimate 

compressive strain is dramatically increased to approximately 7,600 microstrain.  This is 

so that the model more accurately represents the more ductile behavior of the confined 

concrete.  This effect is illustrated for hoop-confined concrete in the relationship 

proposed by Mander et al. (1988).  For the purpose of this study, double the strain limit of 

3,800 microstrain, as proposed by Hognestad, was utilized for a value of approximately 

7,600 microstrain.  This closely resembles the limit shown in (Yu, Teng, Wong, & Dong, 

2010).  Additionally, two stages were added to the stress strain behavior. The first is a 

rapid decrease in stress to a value of 700 psi (4.8 MPa) between plastic strain values of 

8,000 microstrain and 8,790 microstrain.  From there, it continues at this final stress value 

indefinitely.  The fourth variation is to provide for a longer period of linear behavior in 

the model, the initial compressive stress-strain relationship is held linear up to a value of 

stress of 3,200 psi (22.1 MPa).  Lastly, to aid in model convergence, the transitions 

between the various stages of the stress-strain relationship are subjectively blended.  This 
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blending pushes the strain corresponding to peak stress from a strain of 2230 microstrain, 

as suggested by Hognestad, to 2670 microstrain.  The result is a stress-strain relationship 

that approximates the Hognestad relationship but is distinctly different, as can be seen in 

Figure 4.17.  

 

 

 

Figure 4.17 - Input Compressive Stress-Strain Relationship Compared to the Hognestad 

Relationship (1951) (1 psi = 0.00689 MPa, 1 in./in. = 1 mm/mm) 

 

 

 To verify the compression behavior of the concrete material model, a series of 

small finite element models were created.  In these models a 1 in. (25 mm) cube was 

meshed with 64 regular hexahedral elements and subjected to an axial displacement.  

Two transverse faces, adjacent to one another, were constrained with symmetry 

constraints, and the remaining two faces were loaded with various levels of pressure to 

simulate active confinement.  The resulting model is analogous to a 2 in. (50 mm) by 2 

in. (50 mm) by 1 in. (25 mm) regular hexahedron compressed about the short (axial) 

dimension. Stress, in the axial direction, was extracted from a central node along the edge 

that divides the two symmetry constrained faces and compared to the nominal strain.  The 

resulting stress-strain relationship without any active confining stress is compared to the 
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model inputs in Figure 4.18.  Here it can be seen that the small amount of passive 

confinement provided by the surrounding material, due to poisson’s effect, increased the 

peak stress by approximately 20%. The effect of active confinement pressure, as 

illustrated in Figure 4.19, is even more pronounced. 

 

 

 

Figure 4.18 - Element Test Results Compared to Model Inputs  

(1 psi = 0.00689 MPa, 1 in./in. = 1 mm/mm) 

 

 

4.6.1.2. Tensile stress-strain relationship. The stress vs. plastic strain  

relationship utilized in this study was greatly simplified with the objective of reducing 

computation demands.  The magnitude of the tensile forces in the concrete are anticipated 

to be negligible relative to the tensile forces in the longitudinal reinforcement.  As a result 

the inputs were greatly simplified.  The tensile stress increases linearly to a value of 1.0% 

of 𝑓′𝑐, then increases linearly to a value of 1.1% of 𝑓′𝑐 over the next 10 microstrain, and 

finally remains at a constant 1.1% of 𝑓′𝑐. This can be seen in Figure 4.20. 



 

 

79 

 

Figure 4.19 - Influence of Active Confinement Pressure on Material Model Response  

(1 psi = 0.00689 MPa, 1 in./in. = 1 mm/mm) 

 

 

 It is noted that this increase and plateau in tensile stress with increasing strain is 

not realistic.  In reality tensile stress increases relatively linearly until it reaches the 

tensile strength of the concrete, at which point a fracture process zone forms in the 

vicinity of the peak stress.  The result of the fracture process zone is a rapid decrease in 

tensile stress with increased elongation until a crack is fully formed and the tensile stress 

ceases to exist.  

 The sudden decrease in tensile stress that exists in reality can cause stability 

issues in the simulation. This is due in part to interactions between the stiffness matrix 

and the constraint equations governing the interaction between the multiple bodies, where 

during the process of obtaining a converged constraint between bodies the impact by the 

body interactions may become invalid forcing reassessment of the stiffness matrix and 

reiteration of the constraints.  As a result, the solver may take additional iterations within 

a given increment.  This can lead to the number of increments exceeding the limits set by 

the solver, resulting in an aborted solution.  For this reason, the tensile stress-strain 

relationship was set to minimize sudden changes in secant modulus with increased 

elongation.   



 

 

80 

 

Figure 4.20 - Input Uniaxial Stress-Strain Relationship for Concrete Material  

(1 psi = 0.00689 MPa, 1 in./in. = 1 mm/mm) 

 

 

4.6.2. Steel Reinforcement.  The steel reinforcing bars were modeled using the 

classical metal plasticity model in Abaqus using the Mises yield surface, which provides 

an isotropic yield surface.  A table of stress vs. plastic strain are entered to define both the 

initial yield point and the hardening behavior.  A yield strength of 60 ksi (420 MPa) was 

utilized in the development of the material inputs, despite the higher values shown in 

Table 3.3.  This was done in part due to uncertainty in the reported values, as discussed in 

the previous section, and also due to the size effect associated with testing a smaller 

volume of material relative to that represented within the model.  Insufficient data were 

available to quantify this size effect on a statistical basis, and as such the minimum 

tensile yield strength, specified by ASTM A706, of 60 ksi (420 MPa) was adopted. 

 For the purpose of this study, the behavior of the reinforcing steel was simplified 

as an effectively elastic-perfectly plastic behavior.  The inputs are based on a linear 

elastic response up to yielding and a constant stress from the point of yielding to the 

ultimate strain, with the exception of modifications made at the elastic-to-plastic 

transition point to assist convergence.  These alterations at the elastic-to-plastic transition 

consisted of a gradual change in stiffness to aid in convergence, which results in the peak 
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response that is slightly higher than the desired yield stress of 60 ksi (420 MPa) by 4.2%.  

Beyond the ultimate strain, a sharp decrease in stress is input, to account for fracture, and 

will result in a concentration of plastic strain during simulation.  At 1000 microstrain past 

the ultimate strength the stress is reduced to 85% of ultimate strength, at an additional 

1000 microstrain past ultimate strength the stress is reduced to 30% of the ultimate 

strength, and finally after an additional 1000 microstrain beyond the ultimate strength the 

stress is reduced to 15% of ultimate, as shown in Figure 4.21.  Sudden changes in tangent 

stiffness were avoided to prevent numerical issues, and as a result smooth transitions 

were implemented at transitions. 

 

 

 

Figure 4.21 - Input Stress-Strain Relationship for Reinforcement 

(1 psi = 0.00689 MPa, 1 in./in. = 1 mm/mm)  

 

 

4.7. SOLUTION SETTINGS 

 As the modeling outlined in this thesis is subject to geometric nonlinearities, 

material nonlinearities, and interactions between several bodies it was necessary to 

modify the solution and convergence settings in Abaqus CAE from their defaults in order 
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to obtain a solution.  This was done cautiously and only when necessary, as such these 

settings vary between the various loading steps, outlined in Section 4.5.2. 

 For the first two steps, where the boundary conditions are set and where the axial 

load applied, the solver defaults are adopted.  In the subsequent steps the values of I0 and 

IR are increased from 4 to 8 and from 8 to 10, respectively. I0 represents the number of 

equilibrium iterations allowed.  After which the solver checks to ensure that the residuals 

are not increasing in two consecutive iterations.  As the model is subject to multiple 

interactions of nonlinear materials, the convergence is expected to be nonmonotonic, 

require an increase in I0 compared to the defaults. IR is the number of equilibrium 

iterations after which the rate of convergence check is performed. The default value is 8. 

In cases where convergence is nonquadratic and this cannot be corrected by using the 

unsymmetric equation solver for the step, the logarithmic convergence check should be 

eliminated by setting this parameter to a high value.  As the flow potential for the 

concrete material model adopted is asymmetric, the unsymmetric equation solver is 

required, the only a higher value of IR is applicable to correcting convergence rate issues.  

The value of 10 was adopted as it is the recommended value for discontinuous analyses.  

 In both cases higher values, up to an order of magnitude greater, were tested to try 

to alleviate convergence issues related to the Calt-3 model and repaired column models.  

Additionally, the solution control parameters for field equation tolerances were also 

increased, up to an order of magnitude beyond their defaults, in an attempt to alleviate 

convergence issues.  These attempts had no impact on the ability of the models to 

converge, and thus only default control parameters were utilized in the models discussed 

in this study. 

 Additionally, both the length of the step and the incrementation settings were 

varied to effectively control the discretization of the application of loads and 

displacements.  That is to say that a step, in which loads and displacements have been 

prescribed, is broken into a series of increments such that the loads and/or displacements 

are not applied all at once.  Instead the model is solved at many points between the state 

at the beginning of the step and the final state commanded at the end of the step.  This 

incrementation can be fixed or varied automatically by the solver, such that when a 

converged solution cannot be obtained for a given increment the solver will retry with a 
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progressively smaller increment until a converged solution can be met.  The step lengths 

and incrementation settings are outline in Table 4.4. 

 

 

Table 4.4 - Step Incrementation Settings 

Step 

Step End Point 

End Point Step Length 

Incrementation 

Initial 

Increment 

Max 

Increment 

Min 

Increment 

1 Initial State* N/A* N/A* N/A* N/A* 

2 Axial Load Applied 1 1 1 1.0E-05 

3 CP-1 1 0.001 0.002 1.0E-10 

4 CP-2 1 0.001 0.002 1.0E-15 

5 CP-3 1 0.001 0.002 1.0E-15 

6 CP-4 1 0.001 0.002 1.0E-15 

7 CP-5 6 0.005 0.005 0.005 

* The initial step is set up by the solver and is used to define the boundary constraints 

defined in Section 4.5.1 and the interactions defined in Section 4.5.3. 

 

 

 In all steps the direct linear equation solver was utilized.  This utilizes Gaussian 

elimination to solve the system equations at each increment.  This is done in conjunction 

with an asymmetric matrix storage, which is necessitated by the non-associated flow rule 

assumed in the concrete material model, detailed in Section 4.6.1, that is to say the plastic 

potential is not equal to the yield function.  Newton’s method is utilized to handle the 

nonlinearities of the solution wherein, prior to each increments solution the residual load 

vector, taken as the difference of the internal element loads and external loading, then a 

linear solution is performed with the residual loads and convergence checks performed.  

If convergence is not met, the stiffness matrix is updated, the residual loads reevaluated, 

and a new solution obtained.  This iteration continues until the solution converges.  

Details of the implementation of these methods and solution techniques in the software 

are available in the (Abaqus Theory Manual, 2010). 
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4.8. DISCUSSION OF ERRORS 

 There are a variety of errors that are inherent in the process of simulating the real 

physical response of a system.  These errors can provide context to the results and can be 

categorized into two broad categories.  The first category includes errors of idealization 

that contains the various errors inherent in the construction of the numerical model.  The 

second includes errors of discretization that contains the errors resulting from 

discretization of the model and solution of the model.  The following sections discuss 

these two types of errors as they pertain to this numerical study. 

4.8.1. Errors of Idealization.  These errors can be understood as those errors  

associated with assumptions made during the development of a finite element model, that 

is to say these are the errors associated with conceptualization.  The remainder of this 

section will discuss some key errors of this type as they pertain to this study. 

 A large number of errors of this type exist in the way the experimental data were 

interpreted for the development of this model.  For the purpose of this model, it was 

assumed that the entirety of the deformation measured during the experiment was 

accumulated in the span of the column from the base of the cap to the top of the footing.  

This is inherently false as the measurements are not only a function of the deformation in 

the test specimen, including the cap and footing, but also any deformation in the test 

fixture and any slippage or freeplay in the test fixture.  While the majority of deformation 

is in the area being simulated, each experimentally obtained value also includes a 

component of deformation from the rest of the test assembly.  Thus, at any prescribed 

displacement based on experimental measurement applied to the model should be 

expected to result in a model response corresponding to a slightly higher displacement on 

the physical specimen.  As a result, this error resulting from the scope of the domain is 

expected to result in a stiffer behavior within the elastic regime of the columns response. 

 An additional error, expected to produce a stiffer behavior in the simulated 

column response, is induced by the quasi-static modeling approach discussed in Section 

4.5.2,  wherein the cyclic behavior of the experimental column is compared to a 

simulated load-deformation response of a column that is progressively deformed.  As 

such, no effects of cyclic loading and unloading, multiple cycles at the same 
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load/displacement level, and reversed loading are accounted for in the simulated 

response.  

Similarly, the direction in which the measured actuator deflections are assumed to 

act imparts additional error.  The measured deflections are assumed to act purely in the 

direction of primary loading.  However, this is almost certainly not the case as some of 

the measured deflection is due to transverse and/or vertical drift.  Thus, by imposing this 

measured total deflection as a single component of deflection in the model, the model 

experiences a greater total deflection than was imposed.  As a result of this error the 

model would be expected to produce a response corresponding to a greater measured 

deflection than that which was applied. 

 Other errors of idealization pertain to the various material constitutive relationship 

utilized in this model.  These material models are discussed in more detail in Section 4.6.  

As note previously, this study utilizes design value approximations of the material 

properties applied to the material models contained within Abaqus.  Both of these facts 

introduce error into the model. Some error is the result of difference between the assumed 

design values and the actual properties of the materials utilized in the experiment. Further 

error is introduced by limitations of the material models themselves.  That is to say the 

material models are not perfect.  As pointed out by others (Yu, Teng, Wong, & Dong, 

2010), all numerous studies utilizing concrete plasticity models have utilized various, and 

often considerably different, yield criteria, hardening rules, and/or plastic flow rules in 

their simulation of concrete.  These studies often show similarly ‘good’ results despite 

these variations. (Yu, Teng, Wong, & Dong, 2010) went on to argue that these results 

provide only the necessary but not sufficient evidence for the accuracy and reliability of 

the proposed models.  That is to say that while the studies show good agreement within 

the scope of which the constitutive relationship was tested, it does not imply robustness 

for cases outside the verified range of applicability.  Their study went on to conclude that, 

among other things, a concrete material model ought to include a yield criteria that 

includes the impact of the third deviatoric stress, a hardening/softening rule that is a 

function of the confining pressure, a damage variable that is a function of the 

confinement, and a flow rule that is a function of both the magnitude and rate of 

confining pressure.  While the concrete damaged plasticity model in Abaqus does 
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account for the third deviatoric stress in its yield criteria, thereby accounting for 

variations in shear strength between biaxial and triaxial compression, it does not factor 

the confining pressure into its formulation of its hardening rule, its flow rule, and its 

damage variables.  As such the model can only approximate the behavior of concrete 

under active and passive confinement to the limits of its formulation.  

 Similarly, the isotropic plasticity model utilized to represent the steel reinforcing 

bar cannot account for the Bauschinger effect via kinematic or mixed mode hardening. 

As this model was developed to simulate the quasi-static behavior of the columns, this 

simplification is assumed to be negligible but does limit this model’s applicability to 

other situations. The impact of these limitations are more difficult to quantify, and the 

inputs, outlined in Section 4.6, are intended to mitigate these errors.  A complete 

discussion of errors and limitations associated with the material models utilized is beyond 

the scope of this study. 

4.8.2. Errors of Discretization.  These errors can be understood as those errors  

associated with the numerical interpretation of the model.  These are the errors associated 

with discretization of the domain and those associated with the solution method.  These 

are most commonly associated with the mesh of the model and can generally be 

attributed to having an insufficient number of degrees of freedom to appropriate 

characterize the domain and solution over the domain.   

For the purpose of this study an appropriate mesh was established by first 

determining an appropriate meshing method and element types, as described in Section 

4.4.  The suitability of the elements is often governed by their compatibility with the 

various material models and solvers available in Abaqus.  

 The appropriate level of refinement was determined by creating a baseline mesh 

for the model.  This model is then loaded and constrained according to its intended 

purpose.  For this study the displacement controls utilized in the Calt-1 model were 

implemented for determining an appropriate mesh.  The material models were then 

simplified to a linear elastic model for reduced computational demand.  Lastly this mesh 

model was run with increasing level refinement, achieved by increasing the number of 

elements.  Typically, the resulting error in the energy norm would then be examined until 

it reached a suitably low level. However, this value cannot be established for a mesh that 
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contains beam elements, and thus this method could not be implemented. In lieu of this, a 

sample response, in this case total reaction force at the control point, was extracted and 

compared to the total model variables, i.e., the number of degrees of freedom in the mesh 

plus lagrangian multipliers. This is shown in Figure 4.22.  This shows a suitably stable 

response, with the last three levels of refinement resulting in only a 0.42% change in 

reaction force with an 87% increase in total model variables.  This resulted in a nominal 

beam element length of 2.5 in. (63.5 mm) and 3.0 in. (76.2 mm), for the longitudinal and 

transverse reinforcement, respectively.  Similarly, the edge seed size for the solid mesh 

representing the concrete was selected as 1.5 in. (38.1 mm) as a result of this mesh 

sensitivity study.  

 

 

 

Figure 4.22 - Sample Response of Mesh Evaluation Model (1 lb = 0.445 kN) 

 

 

 Another error of discretization is associated with the solution method employed.  

That is to say the incremental-iterative nature of the solver, as discussed in Section 4.7, 

results in an error. Similar to how the number of degrees of freedom are associated with 

the discretization error of the mesh, the incrementation over a given step dictates the 

discretization of the solver.  While Abaqus contains methods for automatically adjusting 

increment size to reach a suitable level of convergence, these were found to be ineffective 

for this model and often led to excessive iterations and an inability to converge in 
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subsequent increments.  As a result, a suitably small fixed increment size was set for each 

step.  This increases the computational demand, as a small increment size must be fixed 

in portions of a step where it is not necessary, but was found to be necessary for this 

study.  These are outlined for the various load steps in Table 4.4, where the control points 

are defined in Table 4.1, Table 4.2, and Table 4.3 for the columns Calt-1, Calt-2, and 

Calt-3, respectively.  

 

4.9. DISCUSSION OF RESULTS 

 The results of the finite element model’s predicted response of the original 

columns, Calt-1, Calt-2, and Calt-3 as compared to the response observed during the 

physical testing, are presented in this section.   

4.9.1. Results of Calt-1 Finite Element Model.  Results are presented within this  

section and are compared to the experimental backbone curves presented in Section 

4.5.2.1. Figure 4.23 presents the base shear-to-displacement relationship predicted by the 

model, Figure 4.25 presents the torque-to-twist relationship predicted by the model, and 

Figure 4.26 presents the corresponding torque-to-moment ratio against the drift of the 

cap. 

 The base shear-to-displacement relationship predicted by the model is in 

relatively good agreement with the experimental results.  As expected, due to a number of 

the errors discussed in Section 4.8, the model initially predicts an overly stiff response.  

This is likely due to compliance in the physical test setup and other displacement not 

associated with deformation of the column that is not reflected in the measured values.  

This overly stiff response continues up to the peak base shear capacity predicted by the 

model, of 82.2 kip (366 kN), at a displacement of 3.0 in (76.2 mm). Thereafter the 

experimental backbone curve exceeds the model prediction as it continues to its higher 

peak value of 87.7 kip (390 kN).   

 It is worth noting that the base shear from the model is taken as the sum of both 

the reaction forces and concentrated forces at the control point.  The reaction forces are 

those which result from the applied displacement, and the concentrated forces are those 

which result from the applied axial load.  As the column in the model deflects the axial 

load remains parallel to the centerline of the column at the cap, and as a result the 
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corresponding concentrated forces act to oppose the reaction forces.  While this sum 

more accurately depicts the applied loading in the model, the reaction forces are a better 

analog of the actuator loads to which the model is being compared. The peak reaction 

force of 86.5 kips (385 kN) is reached at a slightly greater displacement of 3.16 in. (80.3 

mm) and better matches the experimental results.  Both measures, either the model 

reaction force value or the sum of reaction forces and concentrated forces, are imperfect 

compared to the physical experiment as the former neglects the influence of the 

prestressing tendons, and the later neglects the forces resulting from the prestressing 

tendons acting along the height of the model.  As such the two values effectively bound 

the solution, and both show good agreement with the experimental results for peak base 

shear. 

 Additionally, the shape of the predicted base shear to displacement relationship is 

in good agreement with the experimental results, with the predicted base shear value 

being within 15% of the measured value for the first 11 in. (279 mm) of displacement.  

However, the model response is excessively ductile with a sudden loss of capacity not 

occurring until a cap displacement of approximately 13.5 in. (343 mm), while the 

physical test specimen lost a substantial amount of capacity during the hysteric cycling 

corresponding to the D10 peak value at a displacement of approximately 10.7 in. (272 

mm).  While some of this lost capacity may be due to the cyclic nature of the test, it is 

worth noting that most of the errors of idealization discussed in Section 4.8.1 would tend 

to cause the physical specimen to fail at higher measured displacements, as a number of 

unattributed sources would be adding to the measured displacements. 

 Unfortunately, the torque to twist relationship was not as well predicted. As 

expected, due to a number of the errors discussed in Section 4.8, the model initially 

predicts an overly stiff response.  However, the torque response suddenly plateaus off at a 

torque of 33.8 kip-ft (45.8 kN-m) at a twist of only 0.06 degrees.  This is before the first 

displacement step, which ends in the imposed displacements of CP-1 in Table 4.1.  

Examining the von mises stresses in transverse reinforcement through the end of this step 

indicates stresses never exceeded 8.42 ksi (58.1 MPa), as shown in Figure 4.24.   
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Figure 4.23 - Calt-1 Model Results | Base Shear-to-Displacement 

(1 kip = 4.448 kN, 1 in. = 25.4 mm) 

 

 

Figure 4.24 - Calt-1 Transverse Reinforcement | Von Mises Stress | 

At CP-1 Displacements 
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 This indicates that the issue is not due to premature yielding of the transverse 

reinforcement elements but rather an issue with transfer of load to the transverse 

reinforcement, within the framework of the model.  This poor prediction of one aspect of 

the model’s response, namely the torque-to-twist relationship, may have a wider reaching 

impact as the overall model response, and physical response of the columns, are not 

independent. It has been shown in (Prakash, Li, & Belarbi, 2012) that the shear, bending, 

and torsional capacity of columns are related.  As such, inaccurate torque-to-twist 

response would be expected to impact the base shear-to-displacement response as well, 

thereby inducing error.  However, the model’s torque-to-twist response deviates from the 

experimental results early on, and no corresponding change in behavior can be observed 

in the base shear-to-displacement response of the model.  As a result, it is unclear what 

impact the erroneous torque-to-twist response has on the base shear-to-displacement 

relationship. 

 

 

 

Figure 4.25 - Calt-1 Model Results | Torque-to-Twist (1 kip-ft = 1.356 kN-m) 
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Figure 4.26 - Calt-1 Model Results | Torque-to-Moment Ratio (1 in. = 25.4 mm) 

 

 

4.9.2. Results of Calt-2 Finite Element Model.  Results are presented below and  

compared to the experimental backbone curves presented in Section 4.5.2.2. Figure 4.27 

presents the base shear-to-displacement relationship predicted by the model, Figure 4.28 

presents the torque-to-twist relationship predicted by the model, and Figure 4.29 presents 

the corresponding torque-to-moment ratio against the drift of the cap. 

 The base shear-to-displacement relationship predicted by the model is in 

relatively good agreement with the experimental results.  As expected, due to a number of 

the errors discussed in Section 4.8, the model initially predicts an overly stiff response.  

This is likely due to compliance in the physical test setup and other displacement not 

associated with deformation of the column that is not reflected in the measured values.  

This overly stiff response continues up to the peak base shear capacity predicted by the 

model, of 75.7 kip (336.6 kN), at a displacement of 3.41 in (86.7 mm). This overly stiff 

response continues to failure, which occurs at a displacement of 6.35 in (161.3 mm) at 

base shear load of 64.5 kip (286.9 kN).  This is in good agreement with the experimental 
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results at the nearest experimental control point, corresponding to D4 in Table 4.2, where 

the measured response was 64.2 kip (285.4 kN) at a displacement of 6.32 in (160.4 mm). 

 It is worth noting that the base shear from the model is taken as the sum of both 

the reaction forces and concentrated forces at the control point.  The reaction forces are 

those which result from the applied displacement, and the concentrated forces are those 

which result from the applied axial load.  As the column in the model deflects the axial 

load remains parallel to the centerline of the column at the cap, and as a result the 

corresponding concentrated forces act to oppose the reaction forces.  While this sum 

more accurately depicts the applied loading in the model, the reaction forces are a better 

analog of the actuator loads to which the model is being compared. The peak reaction 

force of 81.0 kips (360.2 kN) is reached at a slightly greater displacement of 3.80 in. 

(96.6 mm).  Both measures, either the model reaction force value or the sum of reaction 

forces and concentrated forces, are imperfect compared to the physical experiment as the 

former neglects the influence of the prestressing tendons, and the later neglects the forces 

resulting from the prestressing tendons acting along the height of the model.  As such the 

two values effectively bound the solution, and both are in reasonable agreement with the 

experimental results for peak base shear. 

 Additionally, the shape of the predicted base shear to displacement relationship is 

in reasonable agreement with the experimental results, with the predicted base shear 

value being within a maximum of 37.6% of the measured value.  However, the peak error 

occurs relatively early on and begins to decrease at displacements greater than 1.6 in 

(40.7 mm), and decreases below 20% before peak displacement shear occurs.  The error 

continues to decrease for the remainder of the simulation. 

 As with Calt-1, the torque-to-twist response degraded prematurely.  This began at 

a torque of approximately 77.8 kip-ft (105.5 kN-m) and a twist of approximately 0.1 

degree.  Unlike Calt-1, the torque response did not initially drop.  Instead the tangent 

stiffness suddenly degraded.  The predicted torque response gradually increased with 

displacement until failure.  

 As noted in Section 4.9.1, the influence of increased torsional loading should be a 

decrease in both the flexural and shear capacities of the column.  Neither the Calt-1 nor 

Calt-2 models accurately predicted the torque-to-twist response observed, and thus the 
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validity of the simulated torque influence on flexural capacity is questionable.  It is worth 

nothing that the model does predict a reduced flexural capacity with the increased twist 

imposed on Calt-2.  The Calt-2 peak base shear, 75.7 kip (337 kN), is reduced by 

approximately 8% compared to the Calt-1 peak base shear of 82.2 kip (366 kN). While 

this shows that the model correctly predicts a diminished flexural capacity, it does not 

predict the magnitude of this decrease well.  The Calt-2 measured peak base shear of 64.2 

kip (285.4 kN) represents a decreased capacity of approximately 27% when compared to 

the Calt-1 measured peak base shear of 87.7 kip (390 kN).  This inability to accurately 

reproduce the reduced flexural capacity with increased torque/twist is believed to be a 

symptom of the model’s inability to accurately predict the torque-to-twist response. 

 

 

 

Figure 4.27 - Calt-2 Model Results | Base Shear-to-Displacement 

(1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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Figure 4.28 - Calt-2 Model Results | Torque-to-Twist (1 kip-ft = 1.356 kN-m) 

 

 

Figure 4.29 - Calt-2 Model Results | Toque-to-Moment Ratio (1 in. = 25.4 mm) 
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4.9.3. Calt-3 Finite Element Modeling.  The model used for Calt-3 was unique  

from either Calt-1 or Calt-2 in that it was loaded 35 degree off the strong axis, as opposed 

to across the weak axis.  As such all bodies in the Calt-3 model were rotated 55 degrees, 

such that X-axis in the model was oriented 35 degrees off the model’s strong axis. 

 Results of Calt-3 finite element model are presented below and compared to the 

experimental backbone curves presented in Section 4.5.2.3. Figure 4.30 presents the base 

shear-to-displacement relationship predicted by the model, Figure 4.31 presents the 

torque-to-twist relationship predicted by the model, and Figure 4.32 presents the 

corresponding torque-to-moment ratio against the drift of the cap.  The Calt-3 model 

resulted in convergence failure at a base displacement of 1.27 in (32.3 mm). 

 

 

 

Figure 4.30 - Calt-3 Model Results | Base Shear-to-Displacement 

(1 kip = 4.448 kN, 1 in. = 25.4 mm) 
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 Up to the convergence failure, the base shear-to-displacement relationship 

predicted by the model was in relatively good agreement with the experimental results. 

As expected, due to a number of the errors discussed in Section 4.8, the model initially 

predicts an overly stiff response.  This is likely due to compliance in the physical test 

setup and other displacement not associated with deformation of the column that is not 

reflected in the measured values.  This was quickly replaced with an overly soft response, 

as the experimental results quickly showed a greater base shear than the model, beyond 

the initial base displacements. This soft response continued until the model failed to 

converge, which was immediately proceeded by a short but pronounced loss in strength. 

This sudden drop in capacity prior to convergence failure was also observed in the 

torque-to-twist response.  However, the simulated torque values plateaued prematurely at 

a value of approximately 41.1 kip-ft (55.7 kN-m) and gradually decreased to 37.7 kip-ft 

(51.1 kN-m). 

 

 

 

Figure 4.31 - Calt-3 Model Results | Torque-to-Twist (1 kip-ft = 1.356 kN-m) 
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 As with Calt-1 and Calt-2, the torque-to-twist response degraded prematurely.  

This began at a torque of approximately 41.1 kip-ft (55.7 kN-m) and a twist of 

approximately 0.08 degrees.  Similar to Calt-1, the torque response initially dropped and 

plateaued off at 37.6 (51.0 kN-m) until the model failed to converge.  Just prior to 

convergence failure the torque response dropped from 37.7 (51.1 kN-m), to 33.5 (45.4 

kN-m), and rebounded to 35.3 (47.9 kN-m) in the last 0.011 degrees of twist prior to 

failure.  It is unclear if this dramatic change in torque response in a relatively short 

amount of time is related to the convergence failure; however, sudden changes in material 

stiffness can lead to convergence issues. 

 

 

 

Figure 4.32 - Calt-3 Model Results | Torque-to-Moment Ratio (1 in. = 25.4 mm) 

 

 

4.10. EXTENSION OF THE MODEL 

Several attempts were made to extend the finite element model to similar RC 

bridge columns repaired and strengthened with externally bonded fiber reinforced 

polymer (FRP) composite jackets. The aim was to replicate the response of repaired 
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columns R-Calt-1 and R-Calt 2 discussed in Section 3.  The cursory attempts to model 

the columns with an external jacket of shell elements, representing the FRP 

reinforcement of the repaired columns, all resulted in convergence failure as the model 

approached inelastic behavior, similar to what occurred with the finite element model of 

Calt-3 (Section 4.9.3).  These efforts to extend the finite element model to the repaired 

configurations also included removal of the elements representing the portions of the 

spiral reinforcement removed as part of the repair (Section 3.3).  No attempt to modify 

the properties of the elements representing the longitudinal reinforcement in the area of 

the splices was attempted as the local change in stiffness, associated with the larger cross 

section of bar and splice assembly, was assumed to be negligible in the overall response 

of the column. Additionally, it has been shown in coupon level testing that the couplers 

were capable of reaching loading consistent with yielding of the reinforcing bar and often 

facilitated failure away from the splice (Yang, 2014).  As such it would not be expected 

that the inclusion of the couplers would significantly alter the model’s response, due to 

the localized nature of stiffness changes, and would not be expected to alter the local 

failure mode of the longitudinal reinforcement within the framework of the model. 

 In attempting to obtain convergence for these preliminary modeling attempts 

linear isotropic properties were assigned to the shell elements in order to eliminate the 

possibility of convergence issues due to material parameters, to no effect.  This suggests 

that the error, and resulting failure of the model, is a result of the several multi-body 

interactions and their effect on one another. While Abaqus precludes these constraints 

interacting on a single node, it does not preclude them acting on different nodes of the 

same element.  As a result, there is potential for interactions between the surface tie 

constraints, between the surface of the concrete and the shell elements of the FRP jacket, 

and the nearby embedded constraints, of the reinforcing bars within the concrete. These 

interactions between kinematic constraints could be the source of some of the 

convergence difficulties experienced not only in the repaired RC column models but also 

the unstrengthened RC column models as well, due to the proximity of the embedded 

constraints to the upper and lower surfaces/constraints of the concrete.   

 In an effort to overcome these issues several modifications to the step 

incrementation and solution settings were attempted.  These included increasing the 
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duration of the step and reducing the incrementation to the minimum allowable value. 

Additionally, both the number of equilibrium iterations allowed and the number of 

equilibrium iterations allowed between the rate of convergence checks, I0 and IR 

respectively, were increased dramatically.  These changes in combination result in a 

massive increase in computational expense as the set of equilibrium equations need to be 

solved more often to discern the impact of the same change in displacement.  

Additionally, the tolerances on field residuals, i.e., error, were increased in hopes that a 

stable solution could be obtain at the expense of accuracy.  Unfortunately, neither 

approach had any noted impact on the ability of the repaired models, or the Calt-3 model, 

to reach convergence or even an increase in the displacement level at which convergence 

could be obtained. 
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5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1. CONCLUSIONS 

 This thesis outlined the development of a three-dimensional (3D) finite element 

model of reinforced concrete (RC) bridge columns with an oval shaped cross-section and 

interlocking spiral transverse reinforcement.  A non-conformal meshing approach was 

adopted wherein the groups of elements representing the concrete, reinforcing bars, and 

other bodies were discretely meshed with defined interaction between them, as opposed 

to techniques where the bodies would share nodal locations.  This approach allows for the 

helical spiral transverse reinforcement to be accurately represented without resulting in 

skewed or invalid elements within the encompassing solid elements representing the 

concrete. 

 The model was used to simulate the response of three RC columns subjected to 

combined flexure, shear, torsion, and axial load.  The first of which, Calt-1, was loaded 

transversely to the weak axis with displacements consistent with those that produced a 

desired torque-to-moment ratio of 0.2 in the experimental study.  The second, Calt-2, was 

loaded transversely to the weak axis with displacements consistent with those that 

produced a desired torque-to-moment ratio of 0.6 in the experimental study.  The final 

column, Calt-3, was loaded 35 degrees off the weak axis with displacements consistent 

with those that produced a desired torque-to-moment ratio of 0.2 in the experimental 

study.   Additionally, unsuccessful attempts were made to extend the model to assess the 

response of RC columns externally strengthened with FRP jackets.  

Conclusions from this study are summarized as follows: 

1. The model had mixed successes when attempting to simulate the response of the 

RC columns in this study.  In the case of Calt-1, the model predicted the bending 

response well, but it failed to produce a realistic torsion-to-twist response.  The 

peak base shear capacity predicted by the model [82.2 kip (366 kN)] was 94% of 

the experimental value [87.7 kip (390 kN)]. Similarly, the model was able to 

predict the bending response of Calt-2, although not with the same accuracy seen 

with Calt-1, and failed to reproduce the torque-to-twist response.  The peak base 

shear capacity predicted by the model [75.7 kip (336.6 kN)] was 118% of the 
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experimental value [64.2 kip (285.4 kN)]. Although the results of the model are in 

reasonable agreement with those from the experiment, the model underestimated 

the reduction in flexural capacity (relative to that of Calt-1) caused by the larger 

torque-to-moment ratio. The measured peak base shear of Calt-2 had a decreased 

capacity of approximately 27% when compared to the measured peak base shear 

of Calt-1, whereas the model predicted an 8% reduction in peak base shear for 

Calt-2 relative to Calt-1.  The inability to accurately reproduce the reduced base 

shear (and therefore flexural capacity) with increased torque/twist is believed to 

be a symptom of the model’s inability to accurately predict the torque-to-twist 

response. 

2. Unlike Calt-1 or Calt-2, the model was unable to reach a converged solution when 

presented with the biaxial bending condition of Calt-3. It is unclear if the 

convergence failure is related to the dramatic change in torque response exhibited 

by the model in a relatively short amount of time; however, sudden changes in 

material stiffness can lead to convergence issues. 

3. The cursory attempts to model the columns with an external jacket of shell 

elements, representing the FRP reinforcement of the repaired columns in the 

experimental study, all resulted in convergence failure as the model approached 

inelastic behavior, similar to what occurred with the model of unstrengthened 

column Calt-3.  In attempting to obtain convergence for these preliminary 

modeling attempts, linear isotropic properties were assigned to the shell elements 

in order to eliminate the possibility of convergence issues due to material 

parameters, to no effect.  This suggests that the error, and resulting failure of the 

model, is a result of the several multi-body interactions and their effect on one 

another. While Abaqus precludes these constraints interacting on a single node, it 

does not preclude them acting on different nodes of the same element.  As a 

result, there is potential for interactions between the surface tie constraints, 

between the surface of the concrete and the shell elements of the FRP jacket, and 

the nearby embedded constraints, of the reinforcing bar within the concrete. These 

interactions between kinematic constraints could be the source of some of the 

convergence difficulties experienced not only in the repaired RC column models 
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but also the unstrengthened RC column models as well, due to the proximity of 

the embedded constraints to the upper and lower surfaces/constraints of the 

concrete. 

 

5.2. RECOMMENDATION FOR FUTURE INVESTIGATION 

 It has been shown by Prakash, Li, and Belarbi (2012) that the shear, bending, and 

torsional capacity of columns are related.  As such, inaccurate torque-to-twist response 

would be expected to impact the base shear-to-displacement response as well, thereby 

inducing error.  In the case of Calt-1 and Calt-2, although the base shear-to-displacement 

response of the model was in general agreement with the experimental results, it is 

unclear what impact the erroneous torque-to-twist response had on the base shear-to-

displacement relationship (see Conclusion 1 in Section 5.1). Therefore, additional efforts 

are needed to improve the model under combined bending and torsion. 

 From Conclusion 3 in Section 5.1, it is recommended that further efforts be spent 

examining the proximity and number of elements separating multiple kinematic 

constraints.  This would require a larger parametric study than the complexity of the 

model presented in this study would allow, due to computational demand.  Consequently, 

this effort would warrant the creation an additional experimental effort to devise smaller, 

less complicated test specimens for calibrating the model.  These experimental efforts 

could consist of concrete filled steel tubes CFST with a thin-walled steel exterior with 

varying levels of internal reinforcement embedded within them.  These CFST specimens 

could then be tested under combinations of shear, bending, and torsion to develop an 

experimental database. This database would form a suitable foundation on which to build 

and calibrate a series of finite element models examining the rate of convergence and 

accuracy as a function of meshing parameters, with focus on the mesh formulation 

between the elements representing the internal reinforcement and the elements 

representing the external steel jacket.  This would also form an experimental foundation 

for a deeper understanding of the interaction of axial, shear, bending, and torsional 

loading in RC columns. 
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APPENDIX 

SAMPLE INPUT DECK FOR PLAIN RC COLUMN 

*Heading 

** Job name: CT1-DV-V5 Model name: Notional-Caltrans1-V5-DV 

** Generated by: Abaqus/CAE 6.11-2 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Cap-Sweep 

*Node 

      1,   6.38836575,  -11.7978296,         144. 

 

[...] 

 

   353,  -10.2386055,   2.64560556,   145.920944 

*Element, type=R3D3 

1, 104, 107, 108 

 

[...] 

 

334, 352, 351, 342 

*Element, type=R3D4 

 5,  84, 116,  15,   2 

 

[...] 

 

361, 352, 342, 336, 353 

*End Part 

**   
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*Part, name=Col-sans-elast 

*Node 

      1,  -13.2712831,   1.96800494,         143. 

 

[...] 

 

  34080,  -4.22588825,   12.1772785,          25. 

*Element, type=C3D8R 

    1,    52,   113,     9,     1,   478,   539,   435,   427 

  

[...] 

 

30968, 33600, 33267, 33268, 33654, 34026, 33693, 33694, 34080 

*Nset, nset=_PickedSet2, internal, generate 

     1,  34080,      1 

*Elset, elset=_PickedSet2, internal, generate 

     1,  30968,      1 

** Section: Column 

*Solid Section, elset=_PickedSet2, material="Original Concrete-V8" 

, 

*End Part 

**   

*Part, name=Elastic-Foot 

*Node 

      1,  -13.2712831,   1.96800494,          25. 

 

[...]    

    

    852,  -4.11437702,   11.9996805,          24. 

*Element, type=C3D8R 

  1,  52, 113,   9,   1, 478, 539, 435, 427 
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[...]  

  

392, 402,  34,  35, 426, 828, 460, 461, 852 

*Nset, nset=_PickedSet2, internal, generate 

   1,  852,    1 

*Elset, elset=_PickedSet2, internal, generate 

   1,  392,    1 

** Section: Elastic_Analog 

*Solid Section, elset=_PickedSet2, material=Elastic_Concrete 

, 

*End Part 

**   

*Part, name=Elastic-hat 

*Node 

      1,  -13.2712831,   1.96800494,         144. 

 

[...]    

    

    852,  -4.22588825,   12.1772785,         143. 

*Element, type=C3D8R 

  1,  52, 113,   9,   1, 478, 539, 435, 427 

   

[...] 

 

392, 372,  39,  40, 426, 798, 465, 466, 852 

*Nset, nset=_PickedSet2, internal, generate 

   1,  852,    1 

*Elset, elset=_PickedSet2, internal, generate 

   1,  392,    1 

** Section: Elastic_Analog 

*Solid Section, elset=_PickedSet2, material=Elastic_Concrete 
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, 

*End Part 

**   

*Part, name=Rebar-Long 

*Node 

      1,   12.5045366,   9.14109516,         144. 

 

[...]    

    

    980,   9.17722321,   13.1064329,         26.5 

*Element, type=B31 

 1,  1, 41 

 

[...] 

  

960, 980,  40 

*Nset, nset=_PickedSet2, internal, generate 

   1,  980,    1 

*Elset, elset=_PickedSet2, internal, generate 

   1,  960,    1 

*Nset, nset=_PickedSet3, internal 

  19, [...], 510 

*Elset, elset=_PickedSet3, internal, generate 

 433,  480,    1 

*Nset, nset=_PickedSet4, internal 

  21, [...], 557 

*Elset, elset=_PickedSet4, internal, generate 

 481,  528,    1 

*Nset, nset=_PickedSet5, internal 

  17, [...], 463, 

*Elset, elset=_PickedSet5, internal, generate 
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 385,  432,    1 

*Nset, nset=_PickedSet6, internal 

  23, [...], 604, 

*Elset, elset=_PickedSet6, internal, generate 

 529,  576,    1 

*Nset, nset=_PickedSet7, internal 

  19, [...], 510 

*Elset, elset=_PickedSet7, internal, generate 

 433,  480,    1 

*Nset, nset=_PickedSet8, internal, generate 

   1,  980,    1 

*Elset, elset=_PickedSet8, internal, generate 

   1,  960,    1 

*Nset, nset=Base_Long, generate 

  2,  40,   2 

** Region: (Rebar_Long:Picked), (Beam Orientation:Picked) 

*Elset, elset=_I1, internal 

   1, [...], 960 

** Section: Rebar_Long  Profile: Number8 

*Beam Section, elset=_I1, material=Longitudinal_Reinforcement-v5, poisson = 0.3, 

temperature=GRADIENTS, section=CIRC 

0.501 

-1.,0.,0. 

*Orientation, name=Ori-3 

1., 0., 0., 0., 1., 0. 

1, 0. 

** Region: (Rebar_Long:Picked), (Beam Orientation:Picked), (Material 

Orientation:Picked) 

*Elset, elset=_I2, internal, generate 

 385,  432,    1 

** Section: Rebar_Long  Profile: Number8 
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*Beam Section, elset=_I2, material=Longitudinal_Reinforcement-v5, poisson = 0.3, 

temperature=GRADIENTS, section=CIRC 

0.501 

-1.,0.,0. 

*Orientation, name=Ori-1 

1., 0., 0., 0., 1., 0. 

1, 0. 

** Region: (Rebar_Long:Picked), (Beam Orientation:Picked), (Material 

Orientation:Picked) 

*Elset, elset=_I3, internal, generate 

 433,  480,    1 

** Section: Rebar_Long  Profile: Number8 

*Beam Section, elset=_I3, material=Longitudinal_Reinforcement-v5, poisson = 0.3, 

temperature=GRADIENTS, section=CIRC 

0.501 

-1.,0.,0. 

*Orientation, name=Ori-2 

1., 0., 0., 0., 1., 0. 

1, 0. 

** Region: (Rebar_Long:Picked), (Beam Orientation:Picked), (Material 

Orientation:Picked) 

*Elset, elset=_I4, internal, generate 

 481,  528,    1 

** Section: Rebar_Long  Profile: Number8 

*Beam Section, elset=_I4, material=Longitudinal_Reinforcement-v5, poisson = 0.3, 

temperature=GRADIENTS, section=CIRC 

0.501 

-1.,0.,0. 

*Orientation, name=Ori-4 

1., 0., 0., 0., 1., 0. 

1, 0. 
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** Region: (Rebar_Long:Picked), (Beam Orientation:Picked), (Material 

Orientation:Picked) 

*Elset, elset=_I5, internal, generate 

 529,  576,    1 

** Section: Rebar_Long  Profile: Number8 

*Beam Section, elset=_I5, material=Longitudinal_Reinforcement-v5, poisson = 0.3, 

temperature=GRADIENTS, section=CIRC 

0.501 

-1.,0.,0. 

*End Part 

**   

*Part, name=Rebar-Ties 

*Node 

      1,   6.47384453,  -9.06812191,          24. 

 

[...]    

    

   1968,   9.47804165,  -3.98013902,    143.87793 

*Element, type=B31 

  1,   1,   5 

 

[...]   

   

1966, 1968,    4 

*Nset, nset=_PickedSet2, internal, generate 

    1,  1968,     1 

*Elset, elset=_PickedSet2, internal, generate 

    1,  1966,     1 

*Nset, nset=_PickedSet3, internal, generate 

    1,  1968,     1 

*Elset, elset=_PickedSet3, internal, generate 
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    1,  1966,     1 

** Section: Rebar_Tie  Profile: Number4 

*Beam Section, elset=_PickedSet2, material=Longitudinal_Reinforcement-v5, poisson = 

0.3, temperature=GRADIENTS, section=CIRC 

0.252 

0.,0.,-1. 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Cap-Sweep-1, part=Cap-Sweep 

          0.,           0.,           0. 

          0.,           0.,           0.,           0.,           0.,           1., 34.9999996046105 

*End Instance 

**   

*Instance, name=Rebar-Long-1, part=Rebar-Long 

          0.,           0.,           0. 

          0.,           0.,           0.,           0.,           0.,           1., 34.9999996046105 

*End Instance 

**   

*Instance, name=Rebar-Ties-1, part=Rebar-Ties 

          0.,           0.,           0. 

          0.,           0.,           0.,           0.,           0.,           1., 34.9999996046105 

*End Instance 

**   

*Instance, name=Elastic-hat-1, part=Elastic-hat 

          0.,           0.,           0. 

          0.,           0.,           0.,           0.,           0.,           1., 34.9999996046105 
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*End Instance 

**   

*Instance, name=Elastic-Foot-1, part=Elastic-Foot 

          0.,           0.,           0. 

          0.,           0.,           0.,           0.,           0.,           1., 34.9999996046105 

*End Instance 

**   

*Instance, name=Col-sans-elast-1, part=Col-sans-elast 

          0.,           0.,           0. 

          0.,           0.,           0.,           0.,           0.,           1., 34.9999996046105 

*End Instance 

**   

*Node 

      1,  -1.8497393e-13,  -1.26227543e-14,         155. 

*Nset, nset=_PickedSet19, internal 

 1, 

*Nset, nset=_PickedSet20, internal, instance=Cap-Sweep-1, generate 

   1,  353,    1 

*Elset, elset=_PickedSet20, internal, instance=Cap-Sweep-1, generate 

   1,  361,    1 

*Nset, nset=_PickedSet22, internal 

 1, 

*Nset, nset=_PickedSet23, internal 

 1, 

*Nset, nset=_PickedSet33, internal, instance=Col-sans-elast-1, generate 

     1,  34080,      1 

*Elset, elset=_PickedSet33, internal, instance=Col-sans-elast-1, generate 

     1,  30968,      1 

*Nset, nset=_PickedSet34, internal, instance=Col-sans-elast-1, generate 

     1,  34080,      1 

*Elset, elset=_PickedSet34, internal, instance=Col-sans-elast-1, generate 
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     1,  30968,      1 

*Nset, nset=_PickedSet37, internal, instance=Elastic-Foot-1, generate 

 427,  852,    1 

*Elset, elset=_PickedSet37, internal, instance=Elastic-Foot-1, generate 

   1,  392,    1 

*Elset, elset=Embed_Long, instance=Rebar-Long-1 

   2,   [...], 959 

*Elset, elset=Embed_Tie, instance=Rebar-Ties-1 

   10,   [...], 1957 

*Elset, elset=_CP-4-Cap-Sweep-1_SPOS, internal, instance=Cap-Sweep-1, generate 

 174,  333,    1 

*Surface, type=ELEMENT, name=CP-4-Cap-Sweep-1 

_CP-4-Cap-Sweep-1_SPOS, SPOS 

*Elset, elset=__PickedSurf30_S1, internal, instance=Elastic-hat-1, generate 

   1,  392,    1 

*Surface, type=ELEMENT, name=_PickedSurf30, internal 

__PickedSurf30_S1, S1 

*Elset, elset=__PickedSurf31_S1, internal, instance=Col-sans-elast-1, generate 

   1,  392,    1 

*Surface, type=ELEMENT, name=_PickedSurf31, internal 

__PickedSurf31_S1, S1 

*Elset, elset=__PickedSurf32_S2, internal, instance=Elastic-hat-1, generate 

   1,  392,    1 

*Surface, type=ELEMENT, name=_PickedSurf32, internal 

__PickedSurf32_S2, S2 

*Elset, elset=__PickedSurf35_S2, internal, instance=Col-sans-elast-1, generate 

 30577,  30968,      1 

*Surface, type=ELEMENT, name=_PickedSurf35, internal 

__PickedSurf35_S2, S2 

*Elset, elset=__PickedSurf36_S1, internal, instance=Elastic-Foot-1, generate 

   1,  392,    1 
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*Surface, type=ELEMENT, name=_PickedSurf36, internal 

__PickedSurf36_S1, S1 

** Constraint: CP-Cap-Sweep-1-Concrete-Col-1 

*Tie, name=CP-Cap-Sweep-1-Concrete-Col-1, adjust=yes, no rotation, type=SURFACE 

TO SURFACE 

_PickedSurf30, CP-4-Cap-Sweep-1 

** Constraint: Cap 

*Rigid Body, ref node=_PickedSet19, elset=_PickedSet20 

** Constraint: Foot-Body 

*Tie, name=Foot-Body, adjust=yes, no rotation 

_PickedSurf36, _PickedSurf35 

** Constraint: Hat-Body 

*Tie, name=Hat-Body, adjust=yes, no rotation 

_PickedSurf32, _PickedSurf31 

** Constraint: Long_to_Col 

*Embedded Element, host elset=_PickedSet33 

Embed_Long 

** Constraint: Tie_to_Col 

*Embedded Element, host elset=_PickedSet34 

Embed_Tie 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=Elastic_Concrete 

*Elastic 

 2e+06, 0.2 

** Elasto-plastic Approximation with plateu of AVG(Fy, Fu) 

** E = 29,000 ksi 

** Y = 90.4 ksi 

** e_u = 12.2% 
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**  

*Material, name=Longitudinal_Reinforcement-v5 

*Density 

 0.1, 

*Elastic 

 2.9e+07,0. 

*Plastic 

57000.,         0. 

58000.,      3e-05 

59000.,    4.5e-05 

59500.,      6e-05 

61000., 0.00337333 

62500.,       0.01 

60000.,      0.115 

59500.,      0.118 

59000.,      0.119 

58000.,       0.12 

55000.,      0.121 

42500.,      0.122 

25000.,      0.123 

12000.,      0.124 

 7000.,      0.125 

 3750.,       0.13 

 1900.,      0.135 

 1150.,       0.14 

  975.,      0.145 

  950.,       0.15 

** f_cu = 5.0ksi 

*Material, name="Original Concrete-V8" 

*Elastic 

 4.0305e+06, 0.2 
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*Concrete Damaged Plasticity 

36.,  0.01,  1.25,   0.7, 0.002 

*Concrete Compression Hardening 

 3181.82,      0. 

 3299.09,   3e-05 

 3417.27,  0.0001 

 3533.64, 0.00017 

 3643.64, 0.00023 

   3750.,  0.0003 

 3851.82, 0.00036 

   3950., 0.00043 

 4042.73, 0.00049 

 4132.73, 0.00056 

 4216.36, 0.00063 

 4297.27, 0.00069 

 4372.73, 0.00076 

 4444.55, 0.00082 

 4511.82, 0.00089 

 4575.45, 0.00096 

 4633.64, 0.00102 

 4688.18, 0.00109 

 4737.27, 0.00115 

 4783.64, 0.00122 

 4823.64, 0.00128 

 4860.91, 0.00135 

 4893.64, 0.00142 

 4921.82, 0.00148 

 4945.45, 0.00155 

 4965.45, 0.00161 

 4980.91, 0.00168 

 4991.82, 0.00175 
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 4998.18, 0.00181 

   5000., 0.00188 

 4625.45,  0.0027 

   4250., 0.00352 

 3875.45, 0.00434 

   3500., 0.00516 

 3125.45, 0.00598 

 2340.82,  0.0065 

 1404.49,   0.007 

  936.33,  0.0075 

 702.247,   0.008 

*Concrete Tension Stiffening 

50.,    0. 

55., 1e-05 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Fix_Col Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

_PickedSet37, ENCASTRE 

** Name: Fix_Long Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Rebar-Long-1.Base_Long, ENCASTRE 

** ---------------------------------------------------------------- 

**  

** STEP: Load 

**  

*Step, name=Load 

*Static 

1., 1., 1e-05, 1. 

**  
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** LOADS 

**  

** Name: Conc_Force   Type: Concentrated force 

*Cload, follower 

_PickedSet22, 3, -150000. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT, frequency=10 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=10 

*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Disp1 

**  

*Step, name=Disp1, nlgeom=YES, inc=10000000, unsymm=YES 

*Static 

0.001, 1., 1e-10, 0.002 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Disp1 Type: Displacement/Rotation 

*Boundary 

_PickedSet23, 1, 1, 0.949885 
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_PickedSet23, 6, 6, 0.00518777 

**  

** CONTROLS 

**  

*Controls, reset 

*Controls, analysis=discontinuous 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT, frequency=25 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=10 

*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Disp2 

**  

*Step, name=Disp2, nlgeom=YES, inc=100000000, unsymm=YES 

*Static 

0.001, 1., 1e-15, 0.001 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Disp1 Type: Displacement/Rotation 

*Boundary 
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_PickedSet23, 1, 1, 1.57443 

_PickedSet23, 6, 6, 0.00845357 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT, frequency=25 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=10 

*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Disp3 

**  

*Step, name=Disp3, nlgeom=YES, inc=10000000, unsymm=YES 

*Static 

0.001, 1., 1e-15, 0.001 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Disp1 Type: Displacement/Rotation 

*Boundary 

_PickedSet23, 1, 1, 3.19843 

_PickedSet23, 6, 6, 0.0190722 

**  

** OUTPUT REQUESTS 
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**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT, frequency=25 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=10 

*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Disp4 

**  

*Step, name=Disp4, nlgeom=YES, inc=10000000, unsymm=YES 

*Static 

0.001, 1., 1e-15, 0.001 

**  

** BOUNDARY CONDITIONS 

**  

** Name: Disp1 Type: Displacement/Rotation 

*Boundary 

_PickedSet23, 1, 1, 4.61462 

_PickedSet23, 6, 6, 0.0277108 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 
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**  

*Output, field, variable=PRESELECT, frequency=25 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=10 

*End Step 

** ---------------------------------------------------------------- 

**  

** STEP: Disp5 

**  

*Step, name=Disp5, nlgeom=YES, inc=100000000, unsymm=YES, convert sdi=NO 

*Static, direct=NO STOP 

0.0005, 6.,  

**  

** BOUNDARY CONDITIONS 

**  

** Name: Disp1 Type: Displacement/Rotation 

*Boundary 

_PickedSet23, 1, 1, 17.9909 

_PickedSet23, 6, 6, 0.107568 

**  

** CONTROLS 

**  

*Controls, reset 

*Controls, parameters=time incrementation 

7, 9, , , , , , , , ,  

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 
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**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT, frequency=40 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT, frequency=10 

*End Step 
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