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ABSTRACT 

The response of shallow and raft foundations is having a significant importance 

due to its complex behavior because of the semi-infinite soil media. Winkler's model is 

the simplest model to deal with the structure and soil. The Winkler model represents the 

foundation reaction as proportional to the soil displacement at a particular point, which 

results in the elasticity of the soil being the only parameter in consideration. But in reality 

the soil cohesiveness is having a significant contribution in soil structure interaction, and 

therefore the consideration of coupling effects of Winkler springs need to be accounted. 

Most of the existing elements either consider certain parameters of the foundation or 

assume an elastic beam and foundation response. In this research a new finite element 

formulation was developed in which these limitations were eliminated. This improved 

model can be viewed as a soil with a combination of cohesive behavior which transmits 

the rotation due to bending in addition to the Winkler effect. 

The non linear response of structures resting on this improved foundation model 

can be analyzed by assuming that the foundation resists compression and tension. In 

reality soil is very weak in tension and its tension capacity needs to be neglected, which 

leads to lift-off regions at different locations. This phenomenon becomes much more 

complicated by considering the inelastic soil structure behavior, which leads to a highly 

nonlinear problem. In order to estimate the necessary nonlinear soil parameters. an 

analytical procedure based on the Vlasov model is proposed. The presented solutions and 

applications show the superiority of the proposed nonlinear foundation model. 
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1. Inelastic analysis of semi-infinite foundation elements 

T. Ravi S Mullapudi a, Ashraf Ayoub a,* 

a Department of Civil and Environmental Engineering, Missouri University of Science 
and Technology, Rolla, MO 65409, USA 

Abstract 

The inelastic response of shallow and raft foundations are significantly complex due to 

the behavior of the surrounding semi-infinite soil media. The Winkler approach models 

the soil as a single layer, and assumes that the foundation reaction at a particular point is 

proportional to the soil displacement. In reality, the soil is a semi-infinite medium that 

can not be modeled as a single layer. In this paper a new finite element formulation was 

developed in which the soil can be viewed as a semi-infinite inelastic element that can 

resist bending, in addition to the well-known Winkler effect. A parametric analysis of an 

inelastic reinforced concrete foundation element is presented. 

Key Word'i: Beam on foundation; Vlasov foundation; Semi-infinite foundation; Mixed 

finite element; Hellinger-Reissner variational principle. 

1. Introduction 

The inelastic response of shallow and raft foundations are significantly complex due to 

the behavior of the surrounding semi-infinite soil media. Winkler ( 1867) developed a 

simple model that accounts for the behavior of both the foundation and soil. The Winkler 

model represents the soil beneath the foundation as a system of similar but mutually 

independent elastic springs. In this model, it is assumed that the foundation reaction at a 

particular point is proportional to the soil displacement. The Winkler model is considered 

therefore a single parameter model with the spring's elasticity as its only parameter. 

While this model is associated with closely spaced elastic springs, in reality these springs 

should be dependant on each other. To address these drawbacks, some modified 

• Corresponding author. Tel.: +I 713 743 4285; fax: +I 713 743 4260. 
E-mail address: asayoub@uh.edu (Ashraf Ayoub). 



approaches have been proposed such as the model developed by Vlasov ( 1966) , which 

belongs to the family of multiple-parameter foundation models. 
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The stiffness matrix of a beam on multiple-parameter foundation element can be 

derived based on different orders of displacement shape functions or by using the exact 

displacement function obtained from the solution ofthe differential equations governing 

the behavior. Biot (1937) studied the foundation as an elastic continuum and gave an 

exact solution to an infinite beam under a concentrated load. Kerr ( 1965) studied the 

foundation response using an elastic continuum approach by connecting each two spring 

layers with an interconnecting shear layer. Harr et al. ( 1969) analyzed elastic beams on 

semi-infinite elastic foundations based on Vlasov general variational method. Yang 

(1972) introduced a numerical iterative procedure on the basis of the finite element 

method for analyzing plates on elastic foundations. Zhaohua and Cook ( 1983) developed 

the finite element formulation of an elastic beam on two-parameter foundation using 

both, an exact displacement function and a cubic displacement function for the case of 

distributed loads acting along the entire beam length. Chiwanga and Valsangkar ( 1988) 

extended the approach for the case of a generalized distributed load. Their work though 

was limited to a specific combination of beam and foundation stiffnesses. Razaqpur and 

Shah ( 1991) further extended the work by considering beams and foundations with any 

stiffness. Shirima and Giger (1990) developed the stiffness matrix and nodal-action 

column vectors for a Timoshenko beam on a two-parameter foundation element. Morfidis 

and A vramidis (2002) derived the element stiffness matrix based on the exact solution of 

the differential equations with the ability to account for shear deformations, semi-rigid 

connections, and rigid end offsets. In most practical applications the foundation is 

typically assumed to be tensionless not elastic. Kaschiev and Mikhajlov ( 1995) used the 

finite element method as a general numerical technique to solve the problem of elastic 

beams on tensionless foundations for different loading conditions. Coskun (2003) studied 

the tensionless Pasternak formulation which results in lift off regions between the beam 

and foundation, and presented the roots of a nonlinear equation to calculate the contact 

length of the beam. Celep and Demir (2005) studied the tensionless behavior which 

showed that the problem becomes highly non-linear due to the lift off of the beam from 

the foundation. 
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In all previously described work, the beam was assumed elastic, while the foundation 

was assumed either elastic or tensionless. In reality, beams are typically made up of 

reinforced concrete, which can undergo deformation in the plastic range due to 

reinforcement yielding or concrete crushing. The analysis of inelastic beam on foundation 

elements is very complex due to the combined effect of beam plasticity as well as the 

spatial variation of soil resistance. To solve this problem displacement formulation 

requires more elements and also are plagued by instability problems. Ayoub and Filippou 

(2000) and Ayoub (2003) proposed a consistent mixed formulation based on a Hellinger­

Reissner variational principle for inelastic analysis of composite structures and inelastic 

beams on Winkler's foundations, respectively. The mixed formulation proved to 

overcome most of the difficulties associated with the standard displacement approach 

derived from a minimum potential energy principle (Zhaohua and Cook, 1983), and to 

provide a more efficient numerical platform for analysis of these types of structures. In 

this paper, the mixed approach was formulated for the problem of beams resting on semi­

infinite foundations by adopting a Vlasov approach, in which the soil parameters are 

determined based on a plane strain approach. 

In the next sections, Hellinger-Reissner finite element formulation for beams on 

Vlasov foundations are developed. The model is implemented in the finite element 

program FEAP, developed by R.L. Taylor, and described in details in Zienkiewicz and 

Taylor (1989). Numerical examples that compare the behavior of both models are then 

performed, and conclusions based on these results are derived. The governing equations 

of beams on Vlasov foundations are presented first. 

2. Governing Equations of Beams on Vlasov Foundations 

The equilibrium of an element of length dx of a beam element resting on a Vlasov 

foundation as shown in Fig. I is given by: 
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w 

I __ LI:::I::"TT~ 
M I' I' dl' M dM 

( )~~-~~ ) 

Fig. I. Infinitesimal segment of a beam on Vlasov foundation 

V:x + ( W- p) = 0 

M +V=O 
(1) 

,X 

Where V, and M denote the shear force and bending moment, respectively; p is the 

total foundation load per unit length acting on the beam, w denotes the distributed load 

on the beam, and a comma denotes derivation. According to Vlasov's hypothesis, and 

assuming linear soil behavior, the foundation load per unit length is related to the 

transverse displacement as follow: 

p = k 1v(x)- knr v.u (x) (2) 

Where v is the vertical displacement of the beam, k1 is the Winkler's modulus and km 

is Vlasov's parameter that depends on both the soil and foundation characteristics. For 

inelastic behavior, both parameters are based on nonlinear functions as will be described 

later. The foundation force term corresponding to Vlasov's parameter can be viewed as 

an additional moment resistance provided by the foundation following elementary thin­

plate theories. Accordingly, the Winkler force t 1 , and Vlasov force t, which can be 

viewed as a moment applied to the beam by foundation, are defined respectively as 

follows: 

From Eqs. (I )-(3): 

t 1 = krv 

tm = k.,v,x 

M -t +t -w=O .xx m,x f 

(3) 

(4) 

The values of the two foundation parameters k1and km are evaluated as proposed by 

Vlasov ( 1966). These equations account for the semi-infinite dimension of the underlying 



soil by adopting a plane strain approach. In general the soil beneath the foundation has 

different stratums with different thicknesses and different soil properties. As a result, the 

normal stress in the soil changes with respect to the depth. Vlasov derived an equation 

that represents the different layer properties with a single equivalent layer with elastic 

modulus and Poisson ratio of E11 and v0 , respectively. The normal stress is assumed to be 

constant within this equivalent layer. According to Vlasov analysis, Zhaohua and Cook 

( 1983) evaluated the parameters for foundations of infinite depth as follow: 

5 

(5) 

where l , J'' E bh' A= 2D(I-l',;l and D= h , 

f"h 12(1-v;) 
(6) 

The elastic constants of the equivalent layer Eo and v0 are defined as: 

E v 
E =-'-and v =-.,-

o 1-v2 0 1-v 
X X 

(7) 

y is a coefficient that depends on the elastic properties of the foundation and 

determines the rate of decrease of displacements over the foundation depth: hand hare 

the width and height ofthe beam section, respectively. Eb andEs are the elastic moduli of 

the beam and soil, respectively and uh and Us are the Poisson ratios of the beam and soil, 

respectively. 

The curvature at a section x is related to the transverse displacements by: 

"-xx- X= 0 (8) 

where x is the section curvature. 

The internal moment ofthe beam M(x) is related to the curvature x by a nonlinear 

constitutive relation 

M(x) = g(x(x)) (9) 

In this study the nonlinear relation in Eq. (9) is derived from a discretization of the 

cross section of the beam into several fibers with nonlinear uniaxial stress-strain relations 



6 

fc1r the constituent materials. For a nonlinear soil rather than the elastic one assumed by 

Ylasov. the two f()l(ndation forces t 1 and 1,11 are related to their respective deformations 

by two other non I in ear relations as follows: 

(I 0) 

In the next sections. the strong form Eqs. (1)-(4) and (8)-(10) are solved for using the 

finite element method. Due to the nonlinear nature of Eqs. (9) and (I 0). a Newton­

Raphson iteration strategy is used. The following discussion refers to a single Newton­

Raphson iteration denoted by subscript i. 

3. Hellinger-Reissner Formulation of Beam on Vlasov Foundation 

In a I Jell inger-Reissner formulation. the differential equations are solved based on 

both a displacement and a force field (mixed formulation). For the foundation problem. 

Ayoub (2003) proved earlier that this mixed approach is very advantageous from a 

numerical standpoint. Accordingly: 

v(x) = a(x)v ( I I ) 

In addition M(x) = b(x)M ( 12) 

where M (x) is the bending moment. and b(x) is a matrix of""' force interpolation 

functions, and M is the vector of element end moments. 

The finite element formulation is derived by considering the f(1llowing two variational 

equations that correspond to the compatibility Eq. (8) and the equilibrium Eq. ( 4): 

c)/ 1, = J(5M' (xJ[v"- x }In= 0 (13) 
n 

81,. = fc)\• 1 (x)[M" +1 1 -111,, -H']dO=O n = [o. L] ( 14) 
!l 

Using an incremental Newton-Raphson iterative technique to solve the nonlinear Eq. 

( 13 ): 

5 r = ('> r-l + _!!___ 5 r-l dM' = o 
.\/ .\1 eM \1 

(IS) 
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The left hand side of Eq. ( 15) is: 

t5I;, = ft5M' (.yJ[ v',.,- x' ]dn = 0 n = [o. L] ( 16) 
n 

Substituting the predefined force interpolation functions into Eq. ( 16 ): 

t5I;, =t5M' fb'(xJ[v~,,-x']dn=O O=[O,L) ( 17) 
n 

The second term in Eq. ( 15) is equal to: 

f-6 1;71dM' = (5M 1 ( Jb(x)' cr~,(x ~v dQ- Jb(x) 1 ~x(x) dQ) dM' .., [ ;) ) ;) 1/-l .., 1/-l l 
c M n cv eM n eM (x) 

= [6M 1 ( Jb(x)'a,,(x) cJv 1'- 1 
dQ- Jb(x) 1 (.f- 1 )'- 1(x)b(x)dQ)ldM' 

n cJM n 

n = [o.L] ( 18) 

Eq. ( 18) could be written as: 

~c51,'-1 1dM' =c5M' <Jb(x)' a (x)dQ)dv' -JM' <Jb(x)' (k'-1r-1(x)b(x)dQ)dM' aM · ··'·' 
ll ll 

O=[O.L) (19) 

The first term in Eq. (15) is equal to: 

c51;71 =8M' [- Jb' (X)X'- 1(.Y)d0+ Jb'v'~,1 (x)dQ] 
ll ll 

=i>'M' [- Jb' (X)X'-'(x)d0+ Jb'a.n(x)d0\·'-1] 

- ll !l 

O=[O.L) (20) 

Substituting Eqs. ( 19) and (20) into Eq. ( 15) and using the arbitrariness of 8M yields: 

(21) 

where T = Jb 1 (x)a,,(x)dQ O=[O.L] (22) 
(l 
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F'-1 = fb 1 (x)f'-1(x)b(x)dQ, f(x) = f:'- 1(x) = k- 1(x), Q = (0, L) (23) 
i! 

v;.- 1 = fb 1 (x)x'-1(x)dQ-Tv'-1 Q = (0, L) (24) 
n 

F is the element flexibility matrix, and vr is the element residual deformation vector. 

Similarly. using an incremental Newton-Raphson technique to solve the nonlinear Eq. 

( 14): 

(25) 

The second term of the right hand side of Eq. (25) is equal to: 

!_SI'- 1dv' =liiv'(Ja(x) 1 b(xl'''\1(x)r·-
1 d0.+ fa(.x)' cl 1 (x)l'-

1 
+ fa(x) 1 <7l,,.(x) av'(x)~·- 1 d0.)1d,' 

()\' I' U 1\ (]\• U iJ\'' f) I av'(x) rl\' J 

~ r'iv 1 l J aL>d,, b(x )dn] riM (x)' + l J a(x )1 k'1 ,_ 1 ( x)a( x)dU + J a (x )1, ,g;,,'- 1 ( x )a ( x) , d!l )] dv' 
n n u 

O=[O,L) (26) 

The first term of the right hand side of Eq. (25) is equal to: 

/il:- 1 = dv 1 [ fa(x) 1,, b(x)M'- 1 (x)dQ + Ja(x)1t~- 1 (x)dQ + fa(x) 1,(,~ 1 (x)dQ +BTl 
o o n 

n=[OJ] (27) 

Substituting Eqs. (26) and (27) in Eq. (25), and from the arbitrariness of Sv. we get: 

I 

T / IM' K'- 1 / I K'-1 /' = P-T 1 M'-1 -M'-1 -MH ( + I ( v + Ill ( v I Ill (28) 

Where K71 = fa 1 (x)k~- 1 (x)a(x)dx is the Winkler foundation element stiffness matrix. 
() 

k1 (x) = g>(x) is the foundation force tangent stiffness term. 

I 

K;,~ 1 = Ja 1, (x)k,',~ 1 (x)a, (x)d• is the Vlasov foundation element stitTness matrix. 
II 
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I 

k",(x) = ,~;"(x) is the foundation moment tangent stiffness term, M'1- 1 = Ja 1 (x)t;-1(x)d\ 
() 

I 

is the Winkler foundation element resisting load vector, M;,~ 1 = Ja~,(x)t;,~ 1 (x)cl\ is the 

Vlasov foundation element resisting load vector, T is as defined before in Eq. (22), and P 

is the vector of applied external loads accounting for the boundary term BT. 

Writing Eqs. (21) and (28) in matrix form: 

[ -;: (29) 

It is important to note that at convergence, the residual deformation vector v,. reduces 

to zero inside each clement satisfying compatibility. As discussed by Ayoub (200 I), two 

algorithms for the mixed formulation exist. In the first algorithm, the system of equations 

in Eq. (29) is solved for globally with the displacements and moments as degrees of 

freedom. This algorithm, however, results in oscillations of results. In the second 

algorithm, the moment degrees of freedom are condensed out from the first of Eqs. (29) 

at the element level resulting in a generalized displacement stiffness matrix. Accordingly: 

An internal element iteration is required in order to zero the residual deformation 

vector v r in every element. In addition, in accordance with the Babuska-Brezzi (B-B) 

stability condition ( 1973, 1974), the order of the displacement interpolation functions 

needs to be larger by two than that of the force interpolation functions. The algorithm 

used lt)llows the same procedure as the one discussed in Ayoub (200 I). Numerical 

examples to evaluate the perltmnance ofthe model are presented next. 

4. Evaluation of Model by Numerical Studies 

4.1. Inelastic Beam on Tensionless V/asov Foundation 

The numerical example represents reinforced concrete beams resting on tensionless 

foundations, which arc quite common in structural design. These primary and secondary 

beams are useful to connect different columns such that the load will be transferred to the 
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soil more evenly. The reinforced concrete beam, shown in Fig. 2(a), has a length of I 0 m, 

and a rectangular cross-section with a width and depth of 400 mm and 500 mm. 

respectively. The beam is having 4 No.I 0 (32.26 mm diameter) longitudinal bars at the 

top and bottom. These bars are uniformly spaced along the width with a concrete cover of 

50mm. No.3 (9.53 mm diameter) steel stirrups are provided with a spacing of200 mm. 

The concrete compressive strength is assumed to be 42.0 MPa (6 ksi). Each beam section 

is discretized into 16 fibers with uniaxial stress-strain relations for the constituent 

materials, as discussed in Eq. (9). The concrete stress-strain behavior followed the Kent 

and Park model ( 1971) (Fig. 2(b )), and assuming its Young's modulus to be Eh=25113 

MPa and its Poisson ratio to be vb =0.2. The steel's stress-strain curve is assumed to be 

elastic perfectly plastic with a yield stress of 413MPa (60 ksi) and a Young's modulus of 

200,000 MPa (29,000 ksi). The underlying soil is Ottawa Sand with properties as given 

by Park and Desai (2006) as follows: elastic modulus Es= 193 MPa, Poisson ratio,., c~o.4, 

and r =1.5. The soil behavior is assumed tensionless and elasto-plastic in compression. 

From Eqs. (5)-(7) the values of the foundation elastic parameters were found to be: k1 

=113.2 MPa and k111=1 0,076,000 N. A central vertical load is applied proportionally 

under displacement control. A mesh consisting of62 displacement-based elements with 

fifth order polynomials was shown to represent the converged solution. 

(b) f 

I' .,!1111J1)lll 
f'' .. A 

' 
: • • • • I I'" ]oo),,,,,,ludn••ll•,, 

(II) :"11(111)111 I 
~ '" ,,, ],.,,,.,,,,],,.,] "·" lz 

IUm ... ... f f I z, I ' ' ,ooo2- ooo2' 
r l'J.l (I \1Pa .. A ll ~I,, 

I' f f 1 Zt• -0 002) 
-~~~~- -------·------

\' " llllfl:' 1:-:0 1: 

Fig. 2. (a) Reinforced concrete beam on tensionless foundation: (b) Kent and Park 
model for concrete. 

Figs. 3- 10 show the behavior ofboth the displacement and mixed models using 8 

elements with different order of interpolation functions. Figs. 3 and 4 show the load -

midspan displacement behavior of the Vlasov beam using the displacement and mixed 
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formulations, respectively. For the displacement formulation, two shape functions were 

used. namely cubic hermitian polynomials and fifth order polynomials. For the mixed 

model, two force interpolation functions were used, namely linear bending moment 

functions along with the hermitian displacement functions: and cubic moment functions 

along with the fifth order displacement functions. In the figures points A. A· and A" 

represent yield points for the converged. higher order and lower order solutions. 

respectively. Similarly, points 8, B' and B" represent the corresponding points for the 

ultimate state. The plots reveal that the mixed model can capture the yielding point more 

accurately, while having a higher convergence rate than the displacement model. In fact. 

tor the displacement model, little difference could be observed between using the low 

order hermitian functions and the fifth order polynomials. while 14 mixed elements with 

cubic moments were sunicient to reach convergence. The superiority ofthe mixed model 

could be explained by considering the distribution ofthe local parameters along the 

length ofthe beam, namely the curvature, bending moment, and f(mndation forces. These 

parameters are shown in Figs. 5- I 0 for both the displacement and mixed models. 
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Fig. 3. Load-displacement response of RC beam on tensionless Vlasov t()LIIldation 
(disp. model) 
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Figs. 5 and 7 show the curvature and bending moment distributions for the 

displacement model using both the hermitian cubic polynomials and lifth order 

polynomials. Due to the high value of the bending moment at midspan. the curvature is 

localized in this region as shown in Fig. 5. The displacement model can not capture this 

phenomenon accurately. even if using the higher order formulation. since it is based on 

polynomial displacement shape functions. Fig. 9 shows the foundation force distribution 

ofthe Vlasov beam with the displacement model. 

The same plots were repeated for the mixed model. Figs. 6 and 8 show the curvature 

and bending moment distributions. respectively. Since the mixed model is based on 

approximating the smooth bending moment through the force interpolation functions. it 

can accurately represent the curvature localization in the plastic zone. as shown in Fig. 6. 

In tact. the higher order mixed formulation with cubic moment distributions produce 

results almost identical to the converged solution. The t()undation vertical l(wcc is shm\ n 

in Fig. I 0. The deflected shape. as well as the lift off at the beam ends\\ here the 

foundation force vanishes. was captured rather well. 

4.2. Numerical Correlation with Experimental Re.mlts 

Numerical analysis using the mixed model was conducted for the Aluminum shear 

wall foundation structure SSG04-06 tested by Gajan et al. (2006) under an increasing 

wall lateral load. The footing is 2.8 m x 0.65 m. and has a Young·s modulus of70.000 

MPa. The underlying soil is Nevada sand with modulus of elasticity 45 MPa. Poisson 

ratio 0.4. The yield ofthe soil is assumed to be at 35% of its bearing capacity. From Fqs. 
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(5)- (7) the values ofthe foundation parameters were found to be: y =1.5. k1=13.5 MPa 

and km= 12. 170,000 N. Fig. II shows the monotonic envelope of the moment-rotation plot 

at the middle of the foundation for both the Vlasov and well-known Winkler models, as 

well as the experimental results. From the figure. it is observed that the Vlasov model is 

able to predict the behavior reasonably well, while the Winkler model under-predicts the 

foundation moment capacity. 

... ~ ............ -....... ,. ... .. • 

... 

--VI.'"'\ \1o,kl 

\\, 111~k1 r>..1odc:l 

• 1\)'elllllO.::Illc'IIIC:]\l)' 

....... ......... 

Fig. II. Footing moment-rotation response of Gajan et al. specimen SSG04-06 

5. Conclusions 

This paper presents a new inelastic element for the analysis of semi-infinite foundation 

problems. The element is derived from a two-field mixed formulation, where f'lxces and 

deformations are approximated with independent interpolation functions. The nonlinear 

response ofthe foundation is analyzed following a Vlasov approach to represent the 

semi-infinite soil medium. Numerical examples to evaluate the performance of the model 

were conducted. The studies revealed the superiority of the proposed mixed model in 

evaluating the inelastic complex behavior of these types of structures. 
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Abstract 

This paper presents an inelastic element for the analysis of beams resting on two­

parameter foundations. The element is derived from a two field mixed formulation with 

independent approximation of forces and displacements. The values for the two 

parameters of the foundation are derived through an iterative technique that is based on 

an assumption of plane strain for the soil medium. This iterative behavior is repeated at 

each time step of the nonlinear solution algorithm. The nonlinear response of structures 

resting on this improved two-parameter foundation model is analyzed following both a 

Vlasov and a Pasternak approach. Numerical examples that clarify the advantage of the 

newly developed model are conducted. These studies confirmed the importance of 

accounting for the foundation second parameter. and the etriciency and accuracy ofthe 

proposed model. 

Key Words: Two-parameter foundation; Winkler foundation; Pasternak foundation: 

Vlasov foundation: Mixed finite element. 

1. Introduction 
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The inelastic response of shallow and raft foundations is significantly complex due to 

the behavior of the surrounding semi-infinite soil media. Winkler's model [I] is the 

simplest element that account tor the behavior of both the foundation and soil. The 

Winkler approach models the soil as a single layer, and assumes that the foundation 

reaction at a particular point is proportional to the soil displacement. The Winkler model 

is considered therefore a single-parameter model with the spring's elasticity as its only 

parameter. While this model is associated with closely spaced independent elastic 

• Corresponding author. Tel.: +I 713 743 4285. 
r,·-mail address: asayoub(i1!uh.edu (Ashraf Ayoub). 
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springs, in reality these springs should be dependant on each other. To address these 

drawbacks, several modified approaches have been proposed such as the ones developed 

by Filonenko-Borodich [2], Hetenyi [3], Pasternak [4], and Vlasov and Leontiev (5]. 

These models belong to the family of multiple-parameter foundation models because. in 

addition to the first parameter spring's elasticity, they assumed a second parameter that 

accounts tor the effect of the adjacent soil medium. In this paper, the Pasternak (4]. and 

Ylasov and Leontiev [5] models were adopted. In the Pasternak model, the shear 

interaction between the Winkler spring elements is considered. The shear layers consist 

of incompressible vertical elements which deform only in transverse shear. In the Ylasov 

and Leontiev model, the second parameter is considered by extending the Pasternak 

spring elements with a consideration ofthe effect ofthe soil on both sides of the beam. 

The stiffness matrix of an elastic beam on multiple-parameter foundation element can 

be derived based on different orders of displacement shape functions or by using the 

exact displacement function obtained from the solution of the ditTerential equations 

governing the behavior. Biot [61 studied the foundation as an clastic continuum and 

derived an exact solution to an infinite beam under a concentrated load. Kerr f71 studied 

the foundation response using an elastic continuum approach by connecting each two 

spring layers with an interconnecting shear layer. Reissner [8] formulated the problem of 

an elastic plate on an elastic foundation by assuming a transition condition at the interior 

of the foundation layer along the cylindrical surface. Harr et al. [9] analyzed beams on 

elastic foundations based on Vlasov general variational method in which the elastic 

foundation is represented by a single layer. Yang [I 0] introduced a numerical iterative 

procedure on the basis of the finite element method for analyzing plates on clastic 

foundations. Zhaohua and Cook [II] developed the finite element formulation of an 

elastic beam on two-parameter foundation using both. an exact displacement function. 

and a cubic displacement function tor the case of distributed loads acting along the entire 

beam length. Chiwanga and Yalsangkar [ 12] extended the approach for the case of a 

generalized distributed load. Shirma and Giger [15] developed the stiffness matrix and 

nodal-action column vectors tor a Timoshenko beam on two-parameter foundation 

element. Razaqpur and Shah f 14] derived the stiffness matrix and nodal load vector of an 

element representing a beam on two-parameter elastic foundation using polynomial 
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displacement shape functions. Vallabhan and Das [15] developed a unique iterative 

technique to determine the values of the Vlasov parameters used in [9]. De Rosa [ 16] 

studied the free vibration ofTimoshenko beams on two-parameter foundations by 

considering the second parameter either as the total rotation of the beam or the bending 

rotation only. Hou and Tseng [ 17] used cubic polynomial expressions tor the total 

deflection and bending slope of the beam, and derived the mass and stiffness matrices of 

the element from energy expressions. Patel et al. [ 18] further modified the formulation of 

beam on two-parameter elements by considering geometric nonlinearity with Von 

Karman's strain-displacement relations. Onu [19] presented a formulation with an 

explicit free of meshing stiffness matrix with the consideration of shear deformation 

effects. Morfidis and A vramidis [20] derived the element stiffness matrix based on the 

exact solution of the differential equations with the ability to account tor shear 

deformations, semi-rigid connections, and rigid offsets. Coskun [21] studied the 

tensionless Pasternak formulation which results in lift-off regions between the beam and 

foundation, and presented the roots of a nonlinear equation to calculate the contact length 

of the beam. In most practical applications though, the foundation is typically assumed to 

be tensionless not elastic. Celcp and Demir [22] studied the tensionless behavior of 

beams resting on Winkler foundations, which showed that the problem becomes highly 

nonlinear due to the lift-offofthe beam from the foundation. Kaschiev and Mikh~jlov 

[23] used the finite element method as a general numerical technique to solve the 

problem of elastic beams on tensionless foundations for different loading conditions. 

Ayoub and Filippou [24] and Ayoub [25] proposed a consistent mixed formulation f(lr 

inelastic analysis of composite structures. The mixed formulation proved to overcome 

most of the ditlicultics associated with the standard displacement approach and to 

provide a more etlicient numerical platf(mn for analysis of these types of structures. 

Ayoub [26] confirmed the advantages of the mixed formulation over displacement-based 

formulations for beams on Winkler foundations. 

The objective of this paper is to adopt the numerically efficient mixed formulation tor 

developing a new element for inelastic analysis of beams resting on two-parameter 

foundations. In the next sections, both a displacement and a mixed finite clement 

formulation tor beams on two-parameter foundations are developed. The models arc 



implemented in the finite element program FEAP, developed by R.L. Taylor, and 

described in details in Zienkiewicz and Taylor [27]. Numerical examples that compare 

the behavior of both models are then performed, and conclusions based on these results 

are derived. The governing equations of beams on two-parameter foundations are 

presented first. 

2. Governing Equations for Beams on Two-Parameter Foundations 

2. I. Equilibrium 

The equilibrium of an element of length d"t of a beam element resting on a two­

parameter foundation, as shown in Fig. (I), is given by: 

21 

v.+(w-t.)c=(} 
. r I ( I ) 

M +V=O 
,X 

(2) 

11' 

r .L-:-Iu~:r=r~=:-~ 
\I I' 1· dl' If d.\1 

( l [l ~~~~--11 ) 
~- .. 

Fig. I. Infinitesimal segment of a beam on two-parameter 1t1tll1dation 

Where V and M denote the shear force and bending moment. respectively. 11 is the 

foundation force per unit length, w denotes the distributed load on the beam. and a 

comma denotes a derivative. According to the two-parameter foundation hypothesis. and 

assuming linear soil behavior, the foundation force per unit length is related to the 

transverse displacement as follow: 

II = k I v(x)- kill vr, (X) (3) 
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Where kt is the Winkler's modulus and km is a second parameter that depends on both the 

soil and foundation characteristics. For inelastic behavior, both parameters will be based 

on nonlinear functions as will be described later. The foundation force term 

corresponding to the second parameter can be viewed as an additional moment resistance 

provided by the foundation following elementary thin-plate theories. Accordingly, the 

foundation moment per unit length, assuming linear behavior, is defined as follows: 

1111 = k111Vx 

From equations (I) to (3 ): 

M -I +I - HJ = () .xx m.x f ,., 

The values of the two foundation parameters ktand km are typically evaluated based 

on two-parameter equations [5]. For an approximate analysis, Vlasov and Leonticv [5] 

assumed the transverse displacement v(x,y) as a function of a vertical surface 

(4) 

(5) 

displacement v(x) and a shape function h(y). These equations were derived for a beam 

of finite width resting on an elastic foundation layer in a plane strain condition. as shown 

in Fig. 2: 

Beam 
Oj .... 

X L 

lv ~ .... 

' y lv ~ u II 

Foundation 

Fig. 2. Beam on elastic foundation 

v(x,y) = v(x)h(y) (6) 

Where h(O) =I. h(H) = 0: H being the depth ofthe soil layer. and 



sinh r(l- ~) 
h(y) = ---'-------'­

sinh r 

Based on these assumptions, the parameters krand k111 are evaluated as: 

k = (I- v,) E,h ysinh ycosh y + y~ 
.t (1+v,)(l-2vJH 2sinh 2 y 

k = E,hH sinh ycosh y- y 
Ill 2(1+l/.,.) 2 . h' ysm -y 
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(7) 

(8) 

(9) 

The r parameter is a coefficient that determines the rate of decrease of the 

displacements over the depth of the foundation and is evaluated from the equation given 

below [5]: 

(I 0) 

Where E,, v, are elastic modulus and Poisson ratio of the soil, respectively and L is 

the soil length. For the Vlasov model, an additional soil length. typically taken as twice 

the beam length on both of its sides is assumed. This length was proven to be sutlicicnt to 

capture the semi-infinite soil effect [20]. In the Pasternak model, this additional soil 

length is ignored. 

To determine the parameter r an iterative method developed by Vallabhan and Das 

[ 15] is adopted as follows: First assume a value of r and calculate the k 1 and kill 

parameters form Eqs. (8) and (9). respectively. With these parameters computed. the new 

surface displacement v(x) is evaluated. The parameter r is then recalculated from Eq. 

(I 0), and compared to the previously evaluated r value. The process is repeated at each 

time step ofthe nonlinear solution algorithm until convergence is achieved within an 

acceptable tolerance. 
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2.2. Compatihili(v 

The curvature at a section x is related to the transverse displacements by: 

v"- x = 0 (I I) 

where v is the vertical displacement ofthe beam, and x is the curvature. 

2.3. Material Constitutive Laws 

The internal moment of the beam M{.t) is related to the curvature X by a nonlinear 

constitutive relation 

M(x) = g(x(x)) ( 12) 

In this study the nonlinear relation in (12) is derived from a tiber discretization ofthe 

cross section of the beam with nonlinear uniaxial stress-strain relations for the constituent 

materials. The two foundation forces 11 and 1111 are related to their respective 

deformations by two other nonlinear relations as follows: 

1 = a .. ( v) & t = ,"r (vI) t h t 111 c....,m ( 13) 

In the next sections, the strong form equations (I) to (5) and (II) to ( 13) arc solved for 

using the tinite element method. Due to the nonlinear nature of equations ( 12) and ( 13 ). a 

Newton-Raphson iteration strategy is used. The following discussion refers to a single 

Newton-Raphson iteration denoted by subscript i. 

3. Displacement Formulation of Beam on Two-Parameter Foundation 

In a displacement formulation. the differential equations arc solved based on a 

displacement field. Accordingly: 

v(x) = a(x)V ( 14) 

where v(x) is the vertical displacement. and a(x) is a matrix of 17" shape functions. 17" 

depends on the order of displacement shape functions. and V is the vector of clement end 

displacements. 

The finite element formulation is considered by deriving the weighted integral of the 

equilibrium equation: 



where , denotes derivation. 

Integrating by parts twice the first term and once the third term, and ignoring the 

distributed load term w: 

J5v(x)~"Mdr+ J5v_1,(x)t111dt+ J5v1(x)t 1dt+BT=O 
l l l 

where the Boundary term BT equals to 

'

l 1'- I' BT=5vM,_ -5v,M -5vt,11 _ 
' 0 " (I ,\ (I 

The consistent linearization of the nonlinear force-deformation relation for the 

beam and foundation yield: 

M l =k'-1A) I Ml-1 
u.l.r.r + 

I kl-1 A I 1-1 
1111 = 111 u.Vx +1111 

Where k, k111 , krare the derivatives of the nonlinear functions g, gill, and g 1 • 

Substituting ( 17) into ( 16): 

1 I I 
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( 15) 

( 16) 

( 17) 

f)r,, I (xl[ r 11'l1',1 + ,\r 1 }tr+ f)r, 1 (.\') [ k;.,-l I'll·,'+ t;., I ]dr+ fsr 1 (X) [ k; I Ar + (I }tr = lrl (IS) 

" 
Substituting the predefined displacement shape functions a(x) into ( 12). we get: 

liv' r fa' .. (x) k'-'a H dx + fa : (x )k;;' a·' dx + fa' (X )k;-· a d•j ,~\' 1 
l n o 1' ( 19) 

= liv' r P- fa', (x) ~r-' dx- fa: (x~;,;' dx- f•' (x )1', ' d•j l (l (I 0 
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From the arbitrariness of t5v, we get: 

(20) 

where 

/. 

K'-1 = fa:,,(x)k'- 1(x)a,,(x)dr, is the beam element stiffness matrix, 
0 

where k(x) is the beam section stiffness term 

I. 

K'1- 1 = far (x)k;- 1 (x)a(x)dt, is the Winkler foundation element stiffness matrix, 
() 

where k 1 (x) is the foundation force stiffness term 

I. 

K;,~ 1 = fa1,(x)k,;~ 1 (x)a,(x)dt, is the two-parameter foundation element stiffness matrix. 
0 

where k111 (X) is the foundation moment stiffness term 

/. 

M'-1 = fa 1,,M'-1(x)dr, is the beam element resisting load vector 
0 

/. 

M',-1 = far (x)t;~ 1 (x)dr, is the Winkler foundation element resisting load vector 
0 

/. 

M;~1 = fa~,(x)t;,~ 1 (x)dx, is the two-parameter foundation element resisting load vector 
0 

and P is the vector of applied external loads. 

4. Mixed Formulation of Beam on Two-Parameter Foundation 

In a two-field mixed formulation, the differential equations are solved based on both a 

displacement and a force field. For the foundation problem. it was proven earlier that this 

mixed approach is very advantageous from a numerical standpoint [26]. Accordingly. and 

similar to (14): 

v(x) = a(x)V (21) 

In addition M(x) = b(x)M (22) 



Where M(x) is the bending moment, and b(x) is a matrix of n111 force interpolation 

functions, and M is the vector of element end moments. 
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The finite element formulation is considered by deriving the weighted integral forms 

of both the compatibility and equilibrium equations: 

J 8 M 1 (x) [ v,, -X }Lr = 0 
!! 

Jov 1(x)[ M_,, -tm.x +11 -w }ix = 0 
f! 

The incremental section constitutive law is inverted an substituted in (23 ). 

Accordingly: 

I. 

foM 1(X) [ v,,; (x)- f'- 1fuU'- z'-1 }Lr = 0 

(I 

where f'- 1 is the section flexibility term at the previous Newton-Raphson iteration. 

Substituting the predefined displacement shape functions and force interpolation 

functions into the weak form (26), we get: 

(23) 

(24) 

(25) 

(26) 

<1M' {l ~ b'(x) a,,(x) d¥ l v' -l ~ b' (xl.r' (x) b(x) d¥ l liM' - ~ b' (x) x ,_, (x)<h t = 0 

(27) 

from the arbitrariness of c5M, we get: 

Substituting v' by v'-1 + ~v', (28) becomes: 

T ~v'- F'- 1 ~M' -v ,_1 = 0 
r 

(29) 
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where 

I 

T = Jb 1 (x)a"(x)dx. 
{) 

(I 

(30) 

where F is the element flexibility matrix, and v,. is the element residual deformation 

vector. 

Integrating by parts twice the first term and once the second term in (24), we get: 

I. I. I 

f5v1"(x) M' (x)d'<+ f5v/(x) t;Jx)dx + f5v 1(x) t~ (x)dx =Boundary Tenns (BT) 

0 0 0 

(31) 

The incremental force-deformation relations of the foundation take the form 

t' = k'- 1 fl ' + t'- 1 a d t' = k'- 1 fl ,' + t'- 1 
t .t v .t n m m ~ m (32) 

Substituting (32) into (31) results in 

I I I 

ft5v_,/(x) M' (x)dx + ft5v/(x) [k;,~ 1 ~v' +1~~ 1 }tx + ft5v 1(x) [ k~- 1 ~v' + ~~- 1 ]d\ = BT (33) 

{) 0 

Substituting the predefined displacement shape functions and force interpolation 

functions into the weak form (33), we get: 

5v1 {' f•',,<x) b(x)c/x1M' + f• ,' (x) [ k;,;' t.v' +(,;'Jet<+ f•' (x) [ k;-' ill'' + t;-' }~<fl = BT l () () (I 

(34) 

From the arbitrariness of Sv and replacing M' = M'- 1 + ~M'. (34) is rewritten as: 

(35) 

where K',-1 K'- 1 , M',-1 , M'-1 are as defined in (14), Tis as defined before in (30). and P 
'I 111 . 111 

is the vector of applied external loads. 



29 

Writing equations (29) and (35) in matrix form: 

[
-f1 1 

T/ 
T ][~M~l [ V

1
_, ] 

Kl-l + Kl-l ~ I = p-T 1 MI-l~ MI.-I MI-l 
I 111 V I + m 

(36) 

It is important to note that at convergence, the residual deformation vector v, reduces 

to zero inside each element satisfying compatibility. As discussed by Ayoub and Filippou 

124], two algorithms for the mixed formulation exist. In the first algorithm, the system of 

equations in (36) is solved for globally with the displacements and moments as degrees of 

freedom. This algorithm, however, results in oscillations of results. In the second 

algorithm. the moment degrees of freedom are condensed out from the first of equations 

(36) at the element level resulting in a generalized displacement stiffness matrix. 

Accordingly: 

(37) 

An internal element iteration is required in order to zero the residual deformation 

vector v r in every element. The algorithm used follows the same procedure as the one 

discussed in Ayoub [25]. 

4.1. Stability of Mixed Formulation 

The order and continuity of stress and displacement interpolation functions are very 

important parameters in a mixed formulation. For stability ofthe formulation the rank of 

matrix T in the expression T 1 ( F1
_, r' Tin Eq. (3 7) should not be larger than the rank of 

the flexibility matrix F for the limit case where the foundation stiffness matrix is zero. 

For this to be the case the number of unknowns n;, in vector v after excluding their rigid 

body modes should be less or equal to the number of unknowns n, in vector M: 

(38) 

While condition (38) is necessary for stability of the problem. there is no accuracy gain 

by increasing the order of the force field beyond that of the deformation tield that 

respects the strain- displacement compatibility condition. The equality condition of(38). 

i.e. n, = n;, is therefore the most efficient choice fi·om a computational standpoint. As a 



result. the Babuska-Brezzi (8-B) stability conditions [28-29] for the beam on two­

parameter f()lmdation element states that the order of the displacement interpolation 

functions needs to be larger by two than that of the force interpolation functions. 

5. Evaluation of Model by Numerical Studies 

5. I. Elastic Beam on V/a.mv Foundation 

30 

The proposed two-parameter model with Pasternak and Vlasov effect (effect ofthe 

soil on either side of the beam is considered) was evaluated by analyzing a beam of tlnite 

length resting on an elastic foundation, which was tlrst studied by Shirma and Ginger 

1131. 

The beam length is 5m. width b=0.4m and depth h=I.Om. The beam is made out of 

timber with an elastic modulus Eh= I 0.500 MPa and Poisson ratio vb = 0.25 . The elastic 

foundation is sandy clay with an elastic modulus Es=45.4 MPa. Poisson 

ratio vs = 0.25 and y =l.O. From equations (8) to (I 0). the values of the f()lmdation 

parameters are: k1= 3.081 MPa and k111 =12,449.000 N. 

The beam has free ends and is subjected to a concentrated moment of 50 kNm applied 

at the center as shown in Fig. (3 ). The beam is discretized into 4 mixed elements with 

cubic moment interpolation functions. Five integration points were assumed for each 

finite clement. Since the problem is elastic, the load is applied at mid span under load 

control. To evaluate the effect ofthe semi-infinite foundation, the beam is analyzed using 

a Winkler. Pasternak. and Vlasov formulation. Fig. (4) shows the midspan moment 

rotation behavior of all models. From the figure. at the highest moment value of 50 kN .m. 

the Winkler rotation was found to be 2.8 times larger than the Vlasov rotation. Fig. (5) 

shows the deflected shape of the models. Because ofthe added rotational resistance due 

to the Vlasov parameter. the end deflection of the Winkler foundation is about three times 

that of the Vlasov foundation. Furthermore. due to the effect of the soil on both sides of 

the beam in the Vlasov modeL its end deflection is 2.1 times less than that of the 

Pasternak model. The bending moment is slightly underestimated if ignoring the Ylasov 

or Pasternak effects. as shown in Fig. (6). 

The same beam with free ends is analyzed assuming the j()undation to be tensionless. 

as shown in Fig. (7). An axial force P that equals I 00 kN is applied under load control. 
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while a moment M is applied incrementally under displacement control. Fig. (8) shows 

the midspan moment rotation behavior of the beam for the Vlasov and Winkler 

foundations, respectively using a mixed model with cubic moment interpolation 

functions. The Vlasov foundation moment resistance is found to be about 2.8 times larger 

than that of the Winkler foundation moment resistance at a rotation of 0.0 I rad. Fig. (9) 

shows the foundation vertical displacement of both models at the ultimate load. which 

reveals that the Winkler model is having slightly larger deformations than the Vlasov 

model. From Fig. (I 0), which shows the foundation rotation for both models at the 

ultimate load, the Winkler model has a rotation II% higher than that of the Vlasov 

model. The preceding discussion confirms the need to account for the semi-infinite soil 

effects in analyzing beam on foundation problems. 

2500 mm 2."00 llllll -
Fig. 3. Beam with free ends 
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Fig. 4. Moment-rotation response of free beam 



32 

- \ l.o~· '' I •llllld.ott• 111 \li\<'d \h•d..:l 1 cllhtc III(IJ\JC!II, 

---! ,J,I<'I!I.J~ I •>lillol.ill•'IL \h\<.\J \lo>Jd l<.lli'l< llJ<Illl<..:lll 1 

1\ .. ,kkT lo>Liild.oll• io\1;\c'd\J.,,!.Jo,LJbi,!l\PIIK'lll> 

_, 

L.:ngth alnng hcamtnll 

Fig. 5. Vertical displacement for free beam 

.II 

~(I 

"E 
~~~ 

;i: 
-:! 111 
c 
§ II -
i!! 
~ . -I !I 

J 
- .. ~0 

-~u 

--W 

Length along beam tm) 

Fig. 6. Bending moment distribution for free beam 

~~()(\ 111111 ~)00 111111 .... .. 
Fig. 7. Tensionless beam with free ends 



600 

-- Vla~ov foundataon m•xed model (cub•c moment) 
500 

; · · W1nkler foundation mxed model (cubic moment) 

-: 400 

i 300 
c 

~ 200 

= ~ 100 

0 

0 0.002 0.004 0.006 0.008 0.0\ 

Rotation {md) 

Fig. 8. Tensionless foundation moment-rotation for free beam 

30 

~ 20 

~ 10 

E 
.1! 
c. 

.i!/ 

~ -10 

'f 
-~ -20 

-30 

--Vlasov foundataon m1xed model {cubic moment) 

------·Winkler foundation mixed model (cubic moment) 

0 

l.e~th aim~ beam(m) 

Fig. 9. Tensionless foundation vertical displacement for free beam 

0.01 ., 0.0098 

! 0.0096 

c 0.0084 

-~ 0.0092 
--VIasov foundal1on rnixed model e 0.000 

(GUbic moment) 

-~ 0.0088 .. 0.0086 
--Winkler foundation mixed model 

"" (cubic moment) 
!§ 0.0084 
~ ... 0.0082 

0.008 

IA·ngth along beam (m) 

Fig. I 0. Tensionless foundation rotation for free beam 

33 



34 

5.2. Inela.\·tic Beam on Two-Parameter Foundation 

The second numerical example represents an inelastic beam resting on a tensionless 

foundation. The main objective of this example is to compare the behavior of the 

Winkler one-parameter model. to the Pasternak and Vlasov two-parameter models. The 

beam is shown in Fig. (II). and has a length of I 0 m. and a square cross-section with I 00 

mm dimension. For the Pasternak model, an additional soil length that equals twice the 

beam length on both of its sides was used. The adjacent soil effect on the beam depends 

on the soil modulus and depth of the soil layer. For the Ylasov model, an additional soil 

length of twice the foundation length (20m) was added on both sides of the beam. The 

beam uniaxial stress-strain relation is elasto-plastic with Young's modulus E = 200 GPa. 

yield strength of207 MPa, and a hardening slope that equals 1.4%. The beam section is 

subdivided into 16 fibers. The underlying soil is I 0 m Nevada Sand with properties as 

given by Pradhan and Desai [30] as follows: elastic modulus Es=40.85 MPa. and Poisson 

ratio v, =0.316 .The soi I parameters are being calculated with the analytical method 

proposed by Vallabhan and Das [15] and described in equations (6) to (I 0). 

The loading condition consists of a transverse force and a moment acting at midspan. 

which is typical of foundation structures. The transverse force equals 70 kN. and is 

applied under load control. while the moment is applied incrementally under 

displacement control. The converged midspan moment rotation behavior of the beam is 

shown in Fig ( 12) tor the mixed model with 32 elements. In the figure. points A. A· and 

A., represent yield points for the Ylasov. Pasternak and Winkler models. respectively. 

Similarly. points B. B' and B" represent the corresponding points at the ultimate state. 

The plot reveals that the stiffness is highest tor the Vlasov model and is lowest for the 

Winkler model. The Vlasov model has also a higher yield and ultimate moment 

capacities, while the Winkler model has the lowest. The same plot is repeated in Fig. ( 13) 

using the displacement-based model. The distribution of the local parameters along the 

length ofthe beam. namely the bending moment. curvature. vertical displacement. 

rotation, and foundation forces are shown in Figs. (I 4-20) at the ultimate load stage. 

These figures reveal that the displacement model did not achieve convergence. even with 

32 elements. 
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Fig. ( 14) shows the curvature distributions ofthe Winkler, Pasternak, and Vlasov 

models using the mixed formulation, while Fig. ( 15) shows the same distributions using 

the displacement formulation. The plots revealed that the mixed model was able to 

capture the curvature localization near the midspan and accurately predict the maximum 

curvature. The displacement modeL however, failed to capture this behavior as it 

underestimated the maximum beam curvature value by a factor of2.3. This is in part due 

to the assumed displacement shape functions, which can not represent the steep curvature 

distribution accurately. 

As observed in Figs. ( 16) and ( 17) the lift-off at the beam ends where the foundation 

force vanishes is severe for the Winkler model, and is much less for the Pasternak and 

Vlasov models. In addition, Fig. ( 17) reveals that the lift-off region is slightly higher tor 

the Pasternak than for the Vlasov model, and that the foundation force is much smaller 

tor the Pasternak than tor the Vlasov model. Furthermore, From Fig. ( 16 ). due to 

consideration ofthe surrounding soil effect, the displacement at midspan is also much 

lower f(x the Vlasov and Pasternak models than tor the Winkler model. The beam 

bending moment values along the length are higher tor the Vlasov than for the Pasternak 

and Winkler models. as shown in Fig. ( 18), due to the additional moment resistance 

provided by the semi-infinite soil ellects. The foundation rotation along the beam length 

is higher tor the Winkler model than tor the Pasternak and Vlasov models as shovm in 

Fig. ( 19). The foundation moment resistance is zero for the Winkler model: while it is 

higher for the Vlasov model than tor the Pasternak modeL as shown in Fig. (20). 

5.3. Shear Wall Foundation Structure 

Numerical analysis using the mixed model was conducted tor the Aluminum shear 

wall f(Jundation structure SSG04-06 tested by Ciajan et al. [ 31 J under an increasing lateral 

load. The footing is 2.8 m x 0.65 m, and has a Young's modulus of70.000 MPa. The 

underlying soil is Nevada sand with modulus of elasticity 45 MPa and Poisson ratio 0.4. 

The yield Ioree of the soil is 1238 kN/m. which is assumed to be at 35% of its bearing 

capacity. Fig. (21) shows the monotonic envelope of the moment-rotation plot at the 

middle ofthe foundation for both the Vlasov and Winkler models. as well as the 

experimental results. From the figure. it is observed that the Ylasov model is able to 

predict the behavior reasonably welL while the Winkler model under-predicts the 
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moment capacity of the foundation. Fig. (22) shows the foundation force distribution at 

the ultimate load. The maximum foundation force equals 1504 kN/m. which exceeds the 

soil yield force, indicating that the soil has undergone inelastic deformations. 
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6. Conclusions 

The paper presents a new inelastic element for the analysis of two-parameter beam on 

foundation problems. The element is derived from a two-field mixed formulation. where 

forces and deformations are approximated with independent interpolation functions. An 

iterative rational procedure to estimate the values of the two parameters of the foundation 

based on an assumption of plane strain for the soil medium was presented. This iterative 

behavior is conducted at each loading step of the nonlinear solution algorithm. The 

nonlinear response of structures resting on this newly developed two-parameter 

foundation model is analyzed following both a Vlasov and a Pasternak approach. 

Numerical examples to compare the behavior of the one-parameter and two-parameter 

models were conducted. The studies confirmed the importance of including the second 

parameter in estimating the foundation behavior, and revealed that accounting tor the 

effect of the soil on both sides ofthe beam by adopting a Vlasov approach can 

substantially affect the nonlinear response. The studies also confirmed the superiority of 

the proposed mixed model in evaluating the inelastic complex behavior of these types of 

structures. 
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