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ABSTRACT 

The zigzag and offset path have been the two most popular path patterns for tool 

movement in machining process. Different from the traditional machining processes, the 

quality of parts produced by the metal deposition process is much more dependent upon 

the choice of deposition paths. Due to the nature of the metal deposition processes, 

various tool path patterns not only change the efficiency but also affect the deposition 

height, a critical quality for metal deposition process. This thesis presents the research 

conducted on calculating zigzag pattern to improve efficiency by minimizing the idle 

path. The deposition height is highly dependent on the laser scanning speed. The thesis 

also discussed the deposition offset pattern calculation to reduce the height variation by 

adjusting the tool-path to achieve a constant scanning speed. The results show the 

improvement on both efficiency and height. 
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1. INTRODUCTION 

Since its appearance in 80s of last century, Layered Manufacturing (LM) 

technology, also known as Rapid Prototyping (RP) has given industry an approach to 

achieve the goal of providing products with a shorter development time and a lower cost. 

It involves successively adding raw material, in layers, to create a solid part directly from 

a CAD model instead of removing material as in the traditional subtractive manufacturing 

processes such as machining. LM processes fabricate a physical part in an additive 

fashion, layer by layer. The metal rapid prototyping process is a potential technique that 

can produce fully functional parts directly from a CAD system and eliminate the need for 

an intermediate step. Among LM processes, direct laser deposition process is capable to 

fabricate fully dense metal parts directly from the CAD model. It is an additive process 

wherein a laser energy source is used to melt metal powder or wire on to a substrate. 

Such a process has drawn interest from aerospace, heavy machinery and other industries. 

Due to its complexity, such a process requires an automatic planning system to 

drive. Automatic deposition path planning is a critical component in the planning system. 

Path planning is a fundamental process planning task, which affects the final part's 

quality and building time. Path planning is defined as the process of generation of the 

sequence of paths that the nozzle or laser must follow in order to fill the part and any 

required support structures. The current common practice is to use commercial available 

machining CAD/CAM package or other specific planning systems to generate 2-D 

deposition path. However, the results obtained from these planning systems cannot meet 

all needs for metal deposition processes. Material additive process features are needed to 

be considered when generating deposition path. The typical 2-D path patterns are raster 

pattern which is also called zigzag path (Figure 1.1) and spiral-like pattern also called the 

offset path (Figure 1.2). Each of them has its own advantages and can be used to generate 

deposition path of a layer. Systems built on this principle include LENS [1], DMD [2]. 

Layer quality is reflected by the difference between the designed part and the built part, 

i.e. the amount of excess (overfilled) or insufficient (under-filled) material deposited, 

assuming that the part is well designed. 
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The condition of overfills (bumps or excess material) and under-fills (gaps or voids) in a 

layer is considered as layer evenness, which is majorly determined by tool-path. This 

research presents the study of the usage of different 2-D deposition tool-path patterns. 

Zigzag Pattern: In the Zigzag pattern, the nozzle tip moves back and forth parallel to the 

referenced directions. When the tip moves back and forth the laser is turned on and off 

repeatedly in order to control the material deposition. Because, if the zigzag path is 

continuous then there will be overfills at the tum points. However, to control the 

overfilling one solution is to control the speed of the nozzle. The nozzle undergoes 

acceleration and deceleration at the turning points i.e. decelerate the nozzle to zero speed 

at the turn point and accelerate to the predefined speed from the tum point. When the 

nozzle is decelerating and comes to a stop the laser is turned off. Similarly, when the 

nozzle starts accelerating the laser is turned on. So, the zigzag path is discontinuous at 

turning points. Thus, the tool-path represented at the turns and also at the jumps from one 

region to the other, to cover the entire area of the layer, is called the non-depositing tool

path. An efficient tool-path should have a lesser ratio of the non-depositing to the 

depositing tool-path. In this research, the zigzag path is optimized in order to improve the 

efficiency by reducing the idle or non-deposition path. 

Offset Pattern: In an offset pattern, offset segments for the geometry boundaries are 

generated and used as a guide for the nozzle to move along (Figure 1.3). The recursive

offset approach posts several problems. First, offsetting a single closed curve could result 

in multiple disconnected paths. This problem is often solved by lifting the tool, moving it 

across to the next starting point, and starting the next path. Second, paths generated this 

way do not guarantee to completely fill a desired 2D region. Because when there exist a 

sharp corner, portions of the offset curves are trimmed to ensure the desired offset 

distance. The deposition process can be considered as a constant-radius disk being swept 

along the computed path. Without appropriate overlapping, it leaves gaps between 

consecutive curves due to the greater-than-radius distance from the trimmed points to the 

comer (Figure 1.4). Thus, to handle the corners appropriate overlapping is to be 

considered. 



Figure 1.3 Offset Path Generated for the Machine Deposition 

Figure 1.4 Offset Path Deposited without Overlap between the 
Consecutive Paths due to which the Gaps are Created 

4 
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Although there is an overlap between the offset curves, the small angled sharp comers are 

not yet covered. In this research, a solution to handle the sharp comers is being studied. 

Different from the machining process, the deposition height is highly determined by the 

scanning speed given a constant laser power and material feeding rate. Using this 

characteristic, the offset path is generated and optimized to minimize the variation of the 

scanning speed to maintain the deposition height estimation. 
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2. RELATED WORK 

In layered manufacturing, the quality of the parts is still very much dependent 

upon the shape of the deposition paths [3], especially for direct metal deposition 

processes. Even though the deposition path patterns have been studied for a long time, 

including raster path, contour offsetting paths and spiral-like offsetting paths etc, there 

are still some problems or assumptions associated with different algorithms. 

In the zigzag pattern, the tip of the nozzle is moved back and forth parallel to 

referenced directions. The common zigzag pattern technique is to scan in the direction 

parallel to the longest side of the geometry results in the shortest deposition path. 

However, the angles of the zigzag paths are still the source of localized build errors 

which cause the unevenness aligned with the direction of paths in the build [3]. A zigzag 

pattern which is based on the optimal inclination of the tool and the tool path elements in 

the specific inclination and connecting the tool path elements to form a shortest path in 

the milling process is explained [ 4], illustrated in Figure 2. 

Figure 2.1 0° Inclination: Five Tool-Path Elements 
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Figure 2.2 90° Inclination: Thirteen Tool-Path Elements 

In an offset pattern, offset segments of the geometry boundaries are generated and 

used as a guide for the nozzle to move along. By tracing the offset paths, residual stress 

could be relieved before tracing the next adjacent edges. Therefore, stress-induced 

warping is reduced. This pattern includes pair-wise offset, pixel-based offset, Voronoi 

approaches and spiral-like offset. However, these approaches usually have some 

problems such as detecting the intersection of offset edges and removing invalid loops 

[5~7] and being computationally intensive [8] and numerically stable [9, 10]. Based on 

the work performed by Kao and Prinz [3], spiral offset paths are typically preferred for 

producing isotropic deposits. In [ 11], a modified approach to generate offsetting edges is 

introduced. This algorithm divides the deposition layer into some unconnected regions 

for which the offsetting paths will be generated for every single region component. 

Apparently, this method has more power to handle some complicated arbitrary shapes, 

especially those with inner loops. On the other hand, these tool-path generation methods 

do not consider the path effect on the scanning speed. The fabrication resolution can be 

improved by adjusting the power level [ 12]. Adjusting the offset tool-path to achieve a 

constant cutting force has been studied by Wang et al. [ 13]. Both of them have 

considered the effect of power and tool-path on the results. A similar concept has been 

developed for metal deposition process to reduce the variation of the deposition height. 
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In this research, a zigzag path generation is developed based on the hierarchy 

structures of a shape. A shape is divided into several sub-areas which are formed as a 

hierarchy graph structure. For offset pattern generation, the deposition height model is 

developed and relationship between the path and scanning speed model is used to 

optimize deposition path. 
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3. POWDER-BASED LASER METAL DEPOSITION PROCESS 

Lasers have a tremendous impact in manufacturing industries. With laser 

innovations, the world is now experiencing the use of optical energy in a wide range of 

applications from material processing to Rapid Prototyping (RP). The use of lasers, in 

conjunction with metal powder, is one of the latest extensions to rapid prototyping, which 

had earlier involved plastic parts exclusively. Rapid prototyping using lasers has enabled 

the fabrication of complex, near-net shape functional metal parts directly from a CAD 

model at a low cost and offers faster turnaround. Currently this technology is 

implemented under a variety of names such as Direct Light Fabrication (DLF), Laser 

Metal Forming (LMF), Laser Engineered Net Shaping (LENS), Direct Metal Deposition 

(DMD), Selective Laser Cladding (SLC), etc. Though the system description and 

specifications of each of these vary, they all rely on the same principle of part fabrication, 

i.e. layer by layer deposition [15]. 

A general description of the method of fabricating a part involves utilizing a laser to melt 

metal powder injected by a nozzle and laying down clad tracks via a positioning system 

having a controlled motion as shown in the Figure 3.1. In some cases the lasers may be 

directed along a defined path and tracks are laid down on a stationary table. To control 

the deposition process it is necessary to understand the process system mechanics for 

which relations among various parameters need to be studied. The optimization of the 

process requires the measurements and control of parameters such as the powder feed 

rate, process speed, melt pool temperature and melt pool quality [ 15]. The applications of 

the powder based laser deposition process are Surface restoration on damaged areas, 

Repair or fabrication of components, Surface coating, Fabrication of dissimilar materials 

etc. 

Usually, a laser powder-based metal deposition process consists of a high power 

laser, powder delivery system, cladding nozzle, and motion control. In a typical laser 

powder-based metal deposition process, metal powders, injected into the laser focal zone, 

are melted and then re-solidify into fully dense metal in the wake of the moving molten 

pool created by the laser beam as shown in the Figure 3.2. Successive layers are then 
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stacked to produce the entire component volume of fused metal representing the desired 

CAD model. 

Yaxis 

! : ! ! 

Powder Stream 
¢=--: 

Powder 
F r 
. . . .. . """.· :': ., · .. :. ' . . . . . . . . . . . . .. . .. . . . . . 

Figure 3.1 Powder-Based Laser Metal Deposition Process Setup 

In this research, this process is used for the repair or fabrication of the machine 

parts. Different than other rapid prototyping processes, the laser powder-based metal 

deposition process will have the overlap between each track when the metal is deposited. 

As shown in the Figure 1.4, the deposition tracks will have gaps created if there is no 

overlap between each track. As the laser powder-based metal deposition process handles 

this problem, the gaps between the deposition tracks are eliminated. Some unmelted 

powder during one track deposition is melted when the laser scans the neighboring area 

and this effect may cause the uneven layer height deposition. To investigate this effect, 

experiments have been run using different laser scanning patterns in the Laser Aided 

Manufacturing Process (LAMP) lab at Missouri University of Science and Technology 

(Missouri S&T). LAMP's process is a multi-axis hybrid manufacturing process which 

can directly produce functional parts with machining accuracy [11]. The diode laser in 

the LAMP lab is used in this research to achieve better energy efficiency. 
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Figure 3.2 LAMP Deposition Process using the Laser Beam 
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4. 2-D PATH PLANNING 

2-D deposition pattern and strategy study has been investigated and the zigzag 

and offset pattern are selected for each sub-region based on geometric shape [14]. The 

two different tool-path generations are discussed below. 

4.1 2-D ZIGZAG PATH PLANNING 

A typical zigzag path consists of a number of parallel segments. The path travel 

direction and connection determines the efficiency. Path orientation determines the entire 

path length. In laser deposition process, the "idle" or non-working path should be as 

short as possible due to the energy consumption and potential material waste. Path 

connection determines the length of "idle" paths; thus, the tool-path orientation and path 

connection are two critical techniques in generating zigzag path. 

4.1.1 The Tool-path Direction Determination: Illustrated in Figure 2.1 and 

Figure 2.2, it can be observed that the tool-path with an inclination of 90° is having more 

number of non-depositing track paths compared to the one with 0° inclination. Also the 

total length of the tool-path for the 90° inclination is longer than the tool-path of 0° 

inclination. In this research, the bounding box concept is used to select the inclination 

direction for zigzag path instead of using the longest edge of a 2-D shape. The ratio of the 

longer edge to shorter edge of the bounding box is different, as shown in Figure 4.1 and 

Figure 4.2. This concept is used to determine the inclination direction. In this research, 

the bounding box with the largest ratio is used to generate zigzag path. In order to find 

the bounding box with the largest ratio for a 2-D shape, the shape is rotated and the 

bounding box at each orientation is obtained. For each step compare the ratio of the 

longer edge to the shorter edge of the newly generated bounding box. If the ratio is larger 

compared to the previous bounding box then consider the current one. This process is 

continued. Finally, the bounding box with the largest ratio among all is selected and the 

inclination direction for the zigzag path is determined. The inclination direction is the 

direction of the longest edge of the largest ratio bounding box. 
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El 

E2 

Figure 4.1 Bounding box with Large Ratio 

Ratio= El/E2 

El 

E2 

Figure 4.2 Bounding box with Smaller Ratio 

4.1.2 Graph structure construction: Once the ztgzag path orientation 1s 

determined, a series of parallel paths can be generated. Connecting these paths has many 

different ways which results in the difference in efficiency. A hierarchy graph is designed 

for zigzag paths and is used as guide for path connection, illustrated in Figure 4.3. Such a 

hierarchy structure is formed while generating the zigzag path as shown in Figure 4.4. 
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Figure 4.3 Zigzag Path Regions 

Figure 4.4 Hierarchy Graph Structure 
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When the first parallel is obtained, node (s) is (are) created for each segment. Each node 

contains a series of parallel segments, as shown in Figure 4.5. When topological 

relationship changes, the current node is complete and another new node is created to 

record the newly generated tool-path. A "parent-child" relationship is formed between 

these two nodes, as shown in Figure 4.6. 

The hierarchy graph not only defines the different areas (regions) of a 2-D shape 

following the zigzag orientation but also defines the path connection sequences, as shown 

in Figure 4.7. The graph is complete when all the regions are connected, as shown in 

Figure 4.8 . In this hierarchy graph, the level is assigned to each node. The parents of the 

same child are assigned as the same level. 

Figure 4.5 First two nodes are A and B 



Figure 4.6 Nodes A and Bare complete due to the topological change. Nodes C 
and Dare created. Nodes A and Bare parents ofNode C 

/ 
+--c-------~----~~~~~~ (J 

E 

G 

Figure 4.7 The Graph is Continuously Formed 

16 



17 

-----------------------

G 

Figure 4.8 Final Graph 

In order to avoid unnecessary "back and forth" movement, the left top point is taken as 

the starting points. It is very clear that the sequence A (Figure 4.9) is more efficient than 

the sequence B (Figure 4.1 0) since the "jump" between node A and D is longer. The 

bounding box is represented as 'BB', the tool-path orientation is given by l5P. The 

starting point of the tool-path is selected based on the bounding box (BB) and is 

represented using 'TP'. The Getintersection function will output the deposition tracks of 

the layer. The intersection point of this deposition track is represented using 'IP'. The 

graph is represented using 'NG'. The zigzag path generation method is summarized 

below: 

Input (2D Shape S, Zigzag Path Interval t) 

Output: Zigzag path 

Begin 

GetBoundingBox (S) -+ BB 



End 

GetPathOrientation (BB) -+ DP 
GetTopLocation(BB) -+ TP 

GetlntersectionPoint -+ IP 

Getlntersection(TP, S) 

While (no more intersection) 

If (First Intersection) 

CreateNode-+ NodeList 

Else 

If (Topological relationship changes) 

EndCurrentNode 

PutCurrentNodelntoGraph -+ NG 

CreateNode-+ NodeList 

Else 

End 

End 

PutPath/ntoNode 

---+ 

ComputeNextlntersectionPoint (t, DP) 

EndWhile 

Do breath Search in NG 

OutputZigZagPath 

Figure 4.9 Zigzag Path Travel Sequence A 

Figure 4.10 Zigzag Path Travel Sequence B 
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4.1.3 Graph Data Structure: A graph consists of a number of data items, each of 

which is called a vertex. Any vertex may be connected to any other, and these 

connections are called edges [ 16]. The following Figure 4.11 shows a graph in which the 

vertices are numbered from 1 to 5. The edges represent the connection between these 

numbered nodes. Two vertices in a graph are adjacent if they form an edge. The graph in 

the Figure 4.11 has bidirectional edges. There is no specific direction mentioned from 

one vertex to the other. The connection can be in either ways. Such kinds of graphs are 

called the undirected graphs. An undirected graph is connected if, for any pair of vertices, 

there is a path between them. The graph in the figure is connected. 

Figure 4.11 Undirected Connected graph 

While graphs are a very common data structure used in a wide array of different 

problems, there is no built-in graph data structure. Part of the reason is because an 

efficient implementation of a Graph class depends on a number of factors specific to the 

problem at hand. For example, graphs are typically modeled in either one of two ways: 

• As an adjacency matrix 

• As an adjacency list 

These two techniques differ m how the nodes and edges of the graph are 

maintained internally by the Graph class. 

Adjacency Matrix : A two-dimensional Boolean matrix, in which the rows and columns 

represent source and destination vertices and entries in the matrix indicate whether an 

edge exists between the vertices associated with that row and column [17]. Operations 
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with a graph represented by an adjacency matrix are faster. However, if a graph is large 

such a big matrix to represent a graph can't be used, so collection of adjacency lists is 

used, which is more compact. Using adjacency lists is preferable, when a graph is sparse, 

i.e. lEI is much less than IVI2, but if lEI is close to IVI2, choose adjacency matrix, because 

in any case 0 (IVI2) memory is used. Here E is the number of edges and V is the number 

of vertices. 

Adjacency list: An adjacency list is implemented as an array of lists, with one list of 

destination nodes for each source node [ 17]. The main idea of this way is storing a linked 

list of adjacent vertices for each vertex. For a graph with a sparse adjacency matrix an 

adjacency list representation of the graph occupies less space, because it does not use any 

space to represent edges that are not present. The adjacency list for the graph in Figure 

4.11 is shown below in the Figure 4.12 

1 

2 

3 

4 

5 

Figure 4.12 Adjacency List Representation of the Graph 

The graph data structure used to store the zigzag path in this research also uses the 

adjacency list representation. The disadvantage of the adjacency list representation is 

that for storing the edges the vertex information is replicated. For example, in the Figure 

4.12 the vertex 1 has an edge with vertex 2. Here the linked list of the vertex 1 has stored 

the vertex 2 as an edge by replicating it. Also the linked list of the vertex 2 stored vertex 

1 as an edge by replicating it. So, in order to reduce the memory wastage for replicating 

the vertex information, the edges used in the zigzag graph structure has no data field. It 
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uses two pointers one to point the vertex which forms the edge and the other to connect to 

the next set of edges for the respective vertex. Here, instead of replicating the vertex 

information the pointer points back to the vertex which has to be replicated. So, the 

memory used for the data field is reduced by using a pointer which uses fixed memory 

space of 4 bytes in a 32-bit system. If the data field occupies less than 4 bytes then this 

method will not be effective. However, if the data field occupies more than 4 bytes then 

this method is helpful. In the graph structure used in storing the zigzag path, the data field 

of the nodes of the graph has linked list which stores the sub-area/region information of 

the slice. So, this method saves a huge memory in this case as it will not replicate the 

linked list in the edge information. 

The graph data structure used in the zigzag path planning has the vertex 

information represented as a Node. The fields in the Node class are represented in the 

Figure 4.13. The edge between the nodes is represented by using the Edge class. The 

fields in the Edge class do not have the data field. Instead 'n_next' pointer is created 

which points back to the node which makes the edge. The Edge class fields are shown in 

the Figure 4.14. 

,r_.-----------.. 
f~ Node<T> 

Tern plate Class 

El Fields 

# data 
.. ~ 
~ new_edge 

.·~ • .:!.) status 

.-~ 
~ v list 

El Met hods 

·~ Node 

Figure 4.13 Fields and Methods ofthe Node class 
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~ n_next 
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.. -·· ' 

Figure 4.14 Fields and Methods ofthe Node class 

The graph structure using the adjacency list representation is shown below in the Figure 

4.15 . Each node in the array of nodes is pointed to by a linked list of edge information. In 

normal graph data structure the edge type is also same as the node type. However, in this 

case the edge is a different class and the node is a different class. The edge does not store 

the node information. Instead, uses a pointer to point to the node whose information is to 

be stored. To obtain the optimal zigzag path all the nodes in the graph should be covered 

once by the shortest path. While applying this method a condition that the sub-regions are 

to be covered breadth wise is considered. As shown in Figure 4.18 the regions are 

covered breadth-wise. Region 1 followed by Region 2 which is in the same level is 

covered before going to Region 3 which is in the next level. 

Initially the zigzag path for the slice has been computed usmg the shortest 

distance between the depositing (yellow lines) and the non-depositing (red lines) paths. 

The layer is not divided into regions. Each deposition track is stored in the linked list 

with its starting and ending points (Figure 4.16). With respect to the starting point of the 

deposition path, each of the next tracks is selected based on the shortest distance from the 

current deposition track to the remaining tracks which are not yet connected. 



23 

Nodes 
Edges 

Nodt<T> 

f•l 
------------------~-------------------? ~ 

( fd9o<T> :• ) fd9o<T> '• f fd9o<T> ; 
Ttmplltt C~ 

o:i fields 

jl data I 
# new_edge I .. 
#status 

I r 

! J' vl1st 

I j B Methods 

l. V Node I 
) 

Node<T> ~] Templltt Cim 

S fi~ds 

;ii data 

!} ""'-'"9e 
.. 

i' status 
/' vlist 

BMethods 

Y Node 

Nodt<l> ~-
Ttmpllte CIIss 

8 Fitlds 

,.{1 d1ta 

Ji ""'-'"9e 
;(I status 
if' vlist 

I B Methods 

l ""' Node 

Ttmplat t~ CI!ISS . [ Tt mplattCiass Template CIIss 

I 
9 Fields 

9 e_nut 
1 ., edge ~tatus 

I 'J n_n~t 

I 8 Methods 

.., Edge , _____ , 

i3 Fields 

~ e_next 
~ !dge_status 

Q n_next 

B Methods 

·'< Edge 

fd9o<T> 
Ttmplate CIE> 

8 Fields 

~ e_next 

.:, edge_status 
<I n_next 

I B Methods 

i " Edge 

~':1 Fields 

'I e_next 

1 ¥ edge_natus 
(j n ne-xt 

I B Meth~s 
" Edge 

\.~----~ 

&lge<T> 
Tt mplatt CII <S 

[3 Fields 

{I e_next 

j >I edge_sutus 
1 9 n next 

I B Metll~s 
v Edge 

[~ ' 

----1111~ .:, tdge_status 

., n_ntxt 

' a Methods I 
- "- E-dg-e _ _ .) 

Figure 4.15 Graph Structure for the Zigzag Path Planning using Adjacency List 
Representation 

This process is continued until all the deposition tracks are covered (Figure 4.17). 

The path obtained using this method has many unnecessary back and forth jumps. The 

circled region in the Figure 4.17 is covered by making an unnecessary jump. So, to avoid 

these jumps the algorithm mentioned in the section 4.1.2 is implemented. In this 

algorithm the slice is divided into sub-regions as shown in the Figure 4.18. For example, 

the sub-regions in the Figure 4.18 are numbered 1 to 5 with each sub-region separated by 

purple line. Now these sub-sections are stored as nodes in the graph and the shortest path 

which will cover all the sub-regions is computed as shown in the Figure 4.18. 
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Figure 4.16 The Deposition Tracks before Zigzag Path is Generated 

Figure 4.17 Zigzag Path having Unnecessary Jump to Cover the Circled Area 
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Figure 4.18 Zigzag Path with Reduced Number of Jumps 

4.2 OFFSET TOOL-PATH GENERATION 

The offset tool-path for machining processes has been researched widely. Simple 

offset or contour tool-path has been common practice in industry for a while. Although 

such path pattern has been used to generate tool-path for metal deposition process, the 

character of material additive process is still not fully incorporated into tool-path 

generation. For example, the different overlap of tool path does not change the final 

machined shape for a regular machining process. However, the different overlaps in the 

tool-path for a laser metal deposition process have huge impact on layer height. The 

research on offset tool-path generation in this thesis is to maintain the deposition height 

by varying the speed. 

4.2.1 Characters of the Metal Deposition Process: 

Deposition height vs. laser scanning speed: The deposition height is determined 

by the scanning speed with constant laser power and material (or powder) feed rate. 
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Figure 4.19 shows the relationship between the deposition height and scanning speed. 

The height is the average of 5-layer single track deposition. The experiment is performed 

using LAMP system at Missouri S&T. The tracks are measured using a 3D laser scanner 

(NEXTENGINE Desktop 3D scanner, Model 2020i). Therefore, changing the scanning 

speed is able to vary the deposition height. 

Deposition bead shape: The ideal shape of a deposition bead is a cap as shown in 

Figure 4.20. However, due to the heat transfer phenomena, the center of the laser spot 

always has the highest temperature. For most of the materials, the deposition bead is a 

bell-like shape as shown in Figure 4.21. The height profile can be modeled as, 

Hr = f(r), r :::;; R (1) 

where R is the radius of laser spot. 

An empirical model can be constructed for different materials with different laser 

scanning speed 
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Figure 4.19 Experiment Result Relating to Track Height and Scanning 
speed given Laser Power of 850W and a Powder Flow Rate of 12gpm 
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Figure 4.20 Ideal Deposition Bead Shape 

Figure 4.21 Realistic Bell Shape for a Deposition Bead 
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Overlap effect: The overlap of the tool-path in the machining process is to guarantee that 

the machining tool covers the entire area to be machined. In laser metal deposition 

process, the overlap also serves another purpose. The cross section of a deposition track 

for most metal materials is also bell-like; thus the overlap between tracks also helps to 

maintain the height. It is obvious that a small overlap leads to less deposition and a large 

overlap can lead to over deposition. The deposition P of any location can be given by 

(2) 
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where ai is an empirical coefficient for different metal materials. There are n deposition 

locations nearby location P with a distance less than the laser spot or bead size. This 

model considers the add-on effect of the material additive process. 

4.2.2 Realistic Speed Profile: In typical process planning, a nominal speed is 

used for entire deposition path. However, due to dynamics of each axis, each axis has to 

accelerate or decelerate while changing the travel direction; thus, the machine cannot 

maintain an ideal constant speed. For Fadal CNC machine used in LAMP system, it is 

observed that the speed is dropped dramatically (more than 90%) when make a sharp 

angle tum (angle less than 20°). Figure 4.22 shows a speed profile for a circle. The speed 

variation is about 35%. The speed variation is lowered to 5% when a polygon 

approximated circle is used. Based on these observations, the strategy of offset path 

adjustment is to use polygon segments to remove the sharp angle. 

4.2.3 Tool-path Adjustment Approach: 

Sharp angle identification and processing: Assuming a B-Spline or a polygon 

model in the input geometry, the sharp angle point can be identified by tracing the angle 

between the edges. In this offset adjustment process, the tool-path along the boundary is 

not changed in order to maintain the required shape; thus the adjustment takes place on 

the path next to the boundary 
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Figure 4.22 The Speed Profile ofFADAL 3016L for a Circle 
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Let P be the point at a sharp angle on the offset path and ?;; is the corresponding 

point on the outer path, shown in Figure 4.23. In order to adjust the tool-path and remove 

the sharp angle, it is obvious that the point P should move along the direction P;;P shown 

in Figure 4.24. However, the moving direction is P P0 for the concave vertex shown in 

Figure 4.25. P;;P or P"P;; is along with bisector line. Moving P along this direction can 

have the equal impact on the neighboring path since the points on the bisector line have 

equal distance to both edges which form the angle. The first guessing point is given by 

___, ..... ..... 
PN = P + L *a* T (3) 

where T is the track width, a is a coefficient for track width and 0.25 < a < 0.5 . a is 

determined by the sharpness of the angle. The sharper the angle, the greater a is. The 
..... --+ ..... 

resultant direction obtained after the dot product of P and P0 is given by L 

Figure 4.23 Vertex at a Sharp Angle 
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Figure 4.24 Convex Vertex Moving Direction 

.... 
p 

Figure 4.25 Concave Vertex Moving Direction 
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When a new point?;; is created as shown in Figure 4.26, the edges which are around the 

vertex P are checked. The following procedures for convex vertex are applied: 

1. Find the vertices of the edge. 

2. Identify points along the edges of the angle so that the length of vectors which they 
~ --+ ---+ --+ 

form with P0 are just longer than P0 P. In Figure 11, SN1 , SN2 are created points. 

3. Form the new edges s;;;P, s;;;P and put them into edges list and remove the un

needed edges, edge E2 , E3 are removed. 
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Figure 4.26 The New Point Identification 
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Void fill path: The other issue is that some void appears when the tool-path adjustment is 

performed. As shown in Figure 4.27, the void occurs in the center area. An extra path is 

created to fill the gap which is given by: 

... -+ -+( b ) 
S = p + L * sin(a/2) + l * T (4) 

-+ --+ -+ 
E = PN- L * T (5) 

where S and E are the vertices of the edge, a is the angle at the corresponding point at the 

outer path. b is a coefficient for overlap effect. 

Deposition profile 

I 

" 
Figure 4.27 The Void Created After Tool-Path Adjustment 
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5. EXAMPLES 

The presented algorithm has been implemented in VC++ using OpenCascade 

geometry kernel. Figure 5.1 shows a zigzag path example. The total deposition length is 

327.0 mm and the length of idle path is 40.8mm so the efficiency is 88.9%. A random 

orientation is selected to generate the path and the efficiency is dropped to less than 80%. 

Figure 5.2 shows the similar example with hole. However, the efficiency is dropped to 80% 

as the idle path has to jump over holes. The proposed work can generate efficient tool

path for most cases. However, it is also found that this approach does not obtain the most 

efficient path for very few cases. The reasons for this issue can be: 

• The bounding box with the greatest ratio is not found due to search accuracy. 

• The breath searching for the hierarchy structure does not yield the best solution. 

Figure 5.1 Zigzag Path Generated for a Star 
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Figure 5.2 Zigzag Path Generated for a Star with Holes 

The offset path generated in Figure 5.3 shows multiple disconnected regions. The 

number of disconnected regions increases as the number of holes increase. Figure 5.3 and 

Figure 5.4 are two different examples which have multiple holes and the offset path 

generated has multiple disconnected regions. This problem is solved by lifting the tool , 

moving it across to the next starting point, and starting the next path. Thus, the deposition 

for the disconnected regions is handled. 

For the offset deposition tool-path generation with holes using OpenCascade, an 

algorithm has been used. The OpenCascade handles only the tool-path generation for a 

closed outer wire. If the layer has holes in it the offset tool-path cannot be generated 

directly. As the tool-path is generated at each offset, a check is performed if the offset 

tool-path intersects with any of the set of holes of that layer. If there is an intersection 

then a cut operation is performed and the newly obtained tool-path is used to perform 

next offset. Else if there is no intersection then perform offset on the original tool-path 

itself. Using this algorithm, the offset tool-path for a layer with holes is generated. Figure 

5.3 and Figure 5.4 show two examples for the offset tool-path generation with holes. 
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Figure 5.3 Offset Path for a Complex Shape with Holes 

Figure 5.4 Offset Path for a Star with Holes 
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After the offset tool-path is generated by handling various cases, the offset tool

path adjustment at the sharp comers is to be handled. When the material is deposited 

along the generated tool-path then the sharp comers of the layer have under-fills as the 

offset distance is not maintained constant at these points. The sharp comer is handled 

only if the angle at the comer is less than 90°. If the angle is more than 90° then the 

offset distance is maintained the same at the comers as well. 

In the research presented in this thesis, the sharp angle is defined as less than 90°. 

In Figure 5.5, an offset path without adjustment is shown. No sharp angle in this shape is 

found thus no adjustment is made. Figure 5.6 shows an offset example which has sharp 

comers and which are to be handled. The offset tool-path is adjusted using the sharp 

comer handling and void fill method. Figure 5.7 shows an offset example with an 

adjustment. It is clearly shown that all sharp angles (greater than 90°) are removed. On 

the other hand, the offset path adjustment is only based on angle analysis and does not 

consider the overlap effect in the close path situation as shown in Figure 5. 7. 

Figure 5.5 An Offset Example without Path Adjustment 
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Figure 5.6 Offset Example before Path Adjustment 

Figure 5.7 Offset Example after Path Adjustment 
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6. CONCLUSION 

In this thesis, vanous tool-path generations for the power based laser metal 

deposition process are studied. The most commonly used tool-path patterns for the 

deposition process are the zigzag tool-path and the offset tool-path. In this thesis, 

approaches to generate the zigzag tool-path and offset tool-path are presented. 

Firstly, the zigzag path is generated by using the shortest distance method. 

Comparison between this method and the method using the bounding box and hierarchy 

graph structure for zigzag tool-path generation process is done. The bounding box of the 

layer with the greatest ratio of its longest edge to its shortest edge is considered. The 

direction of the longest edge of the bounding box defines the deposition path and the 

direction of the shortest edge defines the "idle" or connecting path direction. The 

efficiency of the zigzag tool-path is measured based on the ratio between the non

depositing and the depositing tracks. A hierarchy graph structure has been used to sort the 

parallel paths and generate an efficient sequence to avoid "waste" travel time. The 

bounding box with the greatest ratio and hierarchy graph structure is very helpful in 

finding an efficient way to connect the zigzag path. For most cases, the approach is 

suitable to find an efficient solution. The advantages of using this approach are listed 

below: 

• Reduce the overall travel time by shortening the non-deposition track length 

• Improve the material usage by reducing the waste on the non-deposition track 

Secondly, the offset path is generated by handling different cases like the offset 

tool-path generation with holes in the layer. The offset path with holes has multiple 

disconnected regions. The number of disconnected regions increases as the number of 

holes increase. This problem is solved by lifting the tool, moving it across to the next 

starting point, and starting the next path. Thus, the deposition for the disconnected 

regions is handled. The deposition on the offset tool-path generated had gaps between 

the tracks. To handle this, an offset tool-path adjustment based on overlap and speed 

profile is studied. The overlap between the tracks will reduce the gaps created and the 

speed of the tool helps to control the amount of material deposition. However, the gaps 
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created at the sharp angles were not handled by the overlap. The offset distance at the 

sharp angles is greater than the desired offset distance. Thus, when the material is 

deposited there are under-fills at the shape angles. To overcome the problem due to the 

sharp angles in the geometry causing inconsistency in the speed, a void fill method based 

on overlap and bead profile is studied. The advantages of this approach are: 

• Material is deposited based on the speed profile which reduces the overfills 

• Under-fills at the sharp angles is handled 

• Total strength of the deposition part increases as the overfills and under-fills are 

handled 

In the future, the matrix-based offset path can be studied to fully utilize the 

deposition profile. However, such an approach is very time consuming. Therefore, a 

quick offset path generation for layers will be needed. Mapping an offset path to different 

layers could provide a solution. 
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