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ABSTRACT

Affective computing is a recent research area in computer science which deals

with the design and development of systems that can recognize, interpret and process

human affects/emotions. Various research projects in the past have focused on affect

sensing and processing raw textual data. One such research effort conducted at

the Oak Ridge National Laboratory (ORNL) has introduced an affect propagation

algorithm which can generate affective relationships between entities contained in a

given textual document. The algorithm depends upon a set of real-valued numeric

parameters for which the best possible values are unknown.

This thesis describes three different contributions to ORNL’s research project.

Firstly, the affect propagation algorithm was implemented along with a visualiza-

tion environment. Secondly, an experimental framework was created for comparison

of different algorithms to optimize the affect propagation algorithm parameters. A

benchmark system was established for this purpose. Thirdly, different optimization

algorithms were implemented to optimize the affect propagation algorithm. The opti-

mization algorithms included variants of stochastic hill climbing, simulated annealing

and evolutionary algorithms.

This thesis explores the use of a diversity maintained evolutionary algorithm to

find the optimal parameter set for the affect propagation algorithm. A fitness sharing

scheme has been adopted to maintain population diversity of the evolutionary algo-

rithm. Statistical experimental studies are presented which show that the diversity

maintained evolutionary algorithm performs best, followed by the adaptive simulated

annealing algorithm, with respect to the best fitnesses achieved.
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1. INTRODUCTION

This section introduces the ORNL research project, its motivation, related work

and the optimization problem under consideration in this thesis. Section 1.1 explains

the motivation behind the research. Section 1.2 introduces the problem statement.

Section 1.3 elaborates previous research work done in this area. Section 1.4 explains

the challenges involved in the optimization problem pertaining to the research project.

Section 1.5 describes the contributions of this thesis towards the research project.

1.1. MOTIVATION

In contrast to popular beliefs, it has been found that human affects and emotions

play a pivotal role in rational thinking and social decision making [23, 28].

Quoting from the best-selling book “Descartes Error” by neuroscientist Antonio

Damasio [7],

“Before you reason toward the solution of any given problem, something quite

important happens: when the bad outcome connected with a given response option

comes into your mind, however fleetingly, you experience an unpleasant feeling. The

prefrontal cortices of the human brain consists of somatic markers - special instance

of feelings generated from secondary emotions - plays a major role here. The somatic

markers forces attention on the negative outcome to which a given action may head,

and functions as an automated alarm signal which says : beware of danger ahead if

you choose the option which leads to this outcome. The signal may lead you to reject,

immediately, the negative course of action and thus make you choose among other

alternatives. Similarly, when a positive somatic marker is juxtaposed, it becomes a

beacon of incentive.”

It has been observed from Damasio’s case studies that people with impaired

pre-frontal cortices, i.e., having damaged emotional systems, display gross defects of

planning, judgement and social appropriateness. These defects were caused due to

their inability to respond emotionally to the content of their thoughts.

The following two paragraphs are adopted with minor modifications from an

ORNL technical report [27] which was co-authored by the author of this thesis.
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Human affects mediates group communication and they have the innate capa-

bility of influencing social network processes - group formation, group recruitment,

intergroup conflicts, intergroup threats, group schism and dissolution. Shared beliefs

and attitudes increase group cohesion and group loyalty. Similary, in-group bias, out-

group antipathy and factionalization are the results of emotional disruptions inside

groups. In recent experimental tests, it has been found that sociopolitical concepts

are affectively charged and that this affective charge gets activated within a short time

period. Most citizens of a country, especially those with strong political attitudes,

are biased information processors [13].

A significant proportion of information coming from groups and social networks,

especially communications from internet sources such as blogs, email, forums, tweets

and chat, is textual. The ability to extract from text, topical information usable

in social network analysis, is the first step in deep social network analysis. Since

affects contain important facts pertaining to group states and processes, much of our

communications relies on the successful transmission, reception, identification, and

interpretation of affective states. Therefore, a critical element of deep social network

analysis will be the automated extraction and classification of affects toward various

entities of interest, based on an a priori defined basic affect set.

1.2. PROBLEM STATEMENT

For a given text document, we need to determine the affective relationships

between the entities referred inside the document.

1.2.1. Named Entities. Named entities as defined by the CoNLL-2003

Shared task [26] are proper names in the document which correspond either to

• Organization : named corporate, governmental, or other organizational entity

• Person : named person or family

• Location : name of politically or geographically defined location (cities, provinces,

countries, international regions, bodies of water, mountains, etc.)

Besides named entities, we consider events, topics, and issues also as simply ‘entities’.

1.2.2. Affect Categories. According to the Ortony, Clore and Collins

(OCC) emotion model [20], human affects can be classified into 22 categories. The
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different affect categories are shown in Table 1.1. Binary affects are the ones that act

between two entities while the unary ones applies only to a single entity. Half the

affect categories have positive attitude and the remaining half is negative.

Table 1.1: Table of affect categories

Unary Binary
Positive Negative Positive Negative

Joy Distress Happy-for Resentment
Pride Shame Pity Gloating
Gratification Remorse Admiration Reproach
Satisfaction Disappointment Love Hate
Relief Fear-confirmed Gratitude Anger

Hope Fear

1.2.3. Affect Entity Relationships. The different entities contained in a

document can be related with each other in terms of the affect categories. Depending

on whether the relationship applies to a single entity or two, the affect entity rela-

tionship can be either unary or binary. The affect propagation algorithm developed

at ORNL is an algorithm which employs a mathematical approach to derive affect

entity relationships from a given input text document.

1.2.4. Need for Optimization. The affect propagation algorithm is con-

trolled by a set of real-valued numeric parameters. A set of manually set parameter

values were assigned to the parameters for testing. However, the entity relationship

diagrams generated from the manual parameters consisted of a large number of irrel-

evant entity relations. Every entity in the input document was related to every other

entity in the document. Based on this it was postulated that to achieve meaningful

relationships, the numeric parameters of the affect propagation algorithm need to be

optimized.

1.3. RELATED WORK

This section is adopted with minor modifications from an ORNL technical re-

port [27] which was co-authored by the author of this thesis.
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Textual semantic analysis can be broadly classified into two categories: deno-

tation and connotation. Denotation refers to the direct meaning of text whereas

connotation refers to the affective or associational meaning of text. The connotative

aspect of text could be understood only by a precise understanding of the words in-

volved, the implicit commonsense knowledge and the affective relationship shared by

different entities in the text.

Early work on connotative analysis has been in the area of sentiment analysis

which is the assessment of opinion polarity with respect to a whole document or a

particular topic [21]. An important application of this research is opinion mining:

the automated classification of customer feedback on products [21]. The analysis

of complex group dynamics cannot be sufficiently understood by polarity alone. A

detailed analysis of affective meaning is required to fully understand group processes

underlying textual data.

There has been some effort put to extract affective meaning from text. An

important development was WordNet-Affect, which extends WordNet by defining a

hierarchy for affective meaning [30, 31]. The Linguistic Inquiry and Word Count

(LIWC) [22] was a significant attempt to provide in a software program a psycholin-

guistic summary of text characteristics at the document level. LIWC performs key-

word spotting of affective processes that includes positive emotions in addition to

negative emotions such as anxiety, anger, and sadness. Some investigators have at-

tempted to identify affect in text [2, 3, 17, 4, 11, 12] using either an affect lexicon or

supervised learning techniques. These efforts have mostly been directed at document-

level assessment of affect. Abbasi and Chen [1] studied the presence of violence and

hate-related affect in web forums operated by extremist political groups. Their re-

search elaborates the relevance of affect extraction techniques to the objectives of

intelligence analysis.

Liu, Lieberman, and Selker [12] recognized the significance of commonsense

knowledge in extracting the connotative/affective meaning from text. Their approach

utilized affective knowledge contained in the Open Mind Common Sense (OMCS)

database in the construction of their affect lexicon. In particular, they were in-

terested in the kind of real-world knowledge that revealed common-place affective

stances toward situations, things, people, organizations, concepts, and events. Sen-
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tences that contained affective meaning in OMCS were identified by spotting the

“emotion ground” signified by affect-saturated keywords. These emotion grounds

were used in models or templates to subsequently extract affect from documents. A

similar approach grounded in an affect lexicon augmented with commonsense knowl-

edge from OMCS was followed by [11]. However, their efforts to incorporate common-

sense knowledge were also burdened by the relatively unstructured sentence structures

found in the OMCS database.

The affect propagation algorithm used for the thesis research has utilized a

cognitive theory of emotion (affect) as the framework for modeling affective meaning

in text. According to the appraisal theory [19], affect is the response to cognitive

evaluations made by individuals and groups to outcomes associated with self, agents,

objects, and events. For example, admiration/reproach is a valenced reaction to an

approved/disapproved action of another agent. Pride/shame result from a similar

evaluation of an action focusing on the self as an agent. O’Rorke and Ortony’s

taxonomy considers 23 affects resulting from different types of appraisal, but of course

this number is somewhat arbitrary and the set can be enlarged.

All previous work in the extraction of affect in text has focused on classification

of documents or sentences into one of several affect categories, e.g., basic emotions.

We take this analysis a step further by considering the affective relationships between

entities in a document. Affects and extracted entities are represented as an affect-

entity relation network.

1.4. OPTIMIZATION CHALLENGE

The affect propagation algorithm is controlled by 11 real-valued parameters.

The search space of the parameter set is continuous (each parameter is in the range

<0,1> with infinite possible values) so the number of possible states is infinite.

Consider a brute-force search with 13 possible values (0.001, 0.01, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8., 0.9, 0.99, 0.999) for each parameter. Since there are 11 param-

eters in total, this would mean that the total number of evaluations would be 13ˆ11

= 1792160394037. Say for example, if a single evaluation takes 0.2 seconds (on a Pen-

tium IV 3.2 GHz machine with 3 GB RAM running Windows 7 Operating System),

the total number of hours taken for the complete execution would be 99564466 hours.
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Therefore, a pure brute-force approach is not practical here.

Now, let us consider n number of search points in the search space and from

these arbitrary points, let us perform hill climbing search to find a parameter set with

better fitness. From experimental study (discussed in Section 5.2) it has been found

that these n number of hill climbers (starting from n random search points) do not

lead to a single point on the search space, indicating a multi-modal search scenario.

Therefore, a pure hill-climbing approach is inappropriate.

It has also been seen from experimental study (discussed in observations from

Section 4.5) that the eleven parameters are dependent on each other. Therefore,

we cannot find an optimal solution to the problem by greedily optimizing a single

parameter at a time.

Thus, the complexity of the optimization problem we are facing here is combi-

natorial in nature. This indicates the use of computationally intelligent algorithms

like simulated annealing and evolutionary algorithms to find the best solution.

1.5. RESEARCH CONTRIBUTIONS

Affect entity relation modelling is a broad area of research. The contribution of

this thesis is towards three different aspects of the ORNL research project.

Firstly, the affect propagation algorithm was implemented in Java. The different

steps of the algorithm consist of complex mathematical formulae. The Java program-

ming language was chosen for implementation because of the availability of a wide

range of open source APIs and packages, especially for drawing graphical diagrams

and user interfaces. The open source package JUNG [18] was used to draw graphical

networks on the application GUI. Appropriate data structures for better performance

of the mathematical equations were also needed. For this purpose, most of the Java

data structures used involved hashing. However, an initial implementation of the al-

gorithm had a bad performance overhead and it took more than a minute for a single

execution of the affect propagation algorithm. Performance tuning of the application

was done by improving the execution times of parts of the algorithm. Algorithm steps

which took execution times of O(n3) and O(n2) were modified to have execution times

of O(n2) and O(n) respectively, resulting in 30 second evaluation time.

Secondly, testing the effectiveness of the algorithm and the optimization of its
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parameters required a benchmark system to be created. The affect entity relation

models extracted using the affect propagation algorithm had to be compared with

benchmark entity relation models manually tagged by expert analysts. To facilitate

the tagging process, a software application, namely the affect entity tagger, was devel-

oped. Using this application, an analyst could manually draw affect entity relationship

diagrams for a given benchmark set of documents. These relationship diagrams could

further be saved as xml files for a comparative analysis with the algorithm generated

diagrams. Further details of the benchmark system are provided in Section 3.1.

Thirdly, and most importantly, the contribution of this thesis is towards the

optimization of the affect propagation algorithm. Various optimization strategies

were investigated after analysing the search space using random search and grid search

heuristics (see Section 4). Among the different optimization algorithms included are

versions of hill-climbing, simulated annealing and evolutionary algorithms. Section 5

elaborates on the optimization algorithms used. The time taken for fitness evaluations

was expensive, each being around 30 seconds. So, the experimental setup for running

the optimization algorithms also required a high-speed environment. For this reason,

high speed computing clusters were used.
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2. AFFECT PROPAGATION ALGORITHM

This section explains with an example the affect propagation algorithm. Sec-

tion 2.1 gives an example of an Entity Relationship Model applied to an example

document. Section 2.2 explains the affect propagation algorithm using the example

document. Section 2.3 describes the implementation details and Section 2.4 elabo-

rates on the parameters used in the algorithm.

2.1. EXAMPLE AFFECT ENTITY RELATIONSHIP MODEL

Let us consider the text shown in Appendix B.

After reading the textual content, a document analyst can deduce United States,

Russia, Chechens and Putin as the named entities. Besides this the author of the

document is a default entity.

Figure 2.1: Example affect entity model
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Overall, the textual content depicts a hopeful affective relationship between

the two countries, United States and Russia. It also discusses a reproach feeling

towards the Chechens. The author expresses admiration, hope and love towards

Russia. Considering all possible affective evaluations, the analyst could produce an

affect entity relationship diagram as shown in Figure 2.1.

2.2. BASE ALGORITHM

The affect propagation algorithm developed at ORNL forms the basis for ex-

tracting affective relationships between entities in text documents without manual

intervention. In summary, it consists of the following steps:

1. Affective Words and Named Entity Detection

A seedlist of affective words for the 22 different affective categories from the

OCC Emotion Model [20] was created. The seedlist consists of all affective

words belonging to the 22 affect categories from the Oxford English dictionary,

as determined by a human expert specialised in psycholinguistic human affects

at ORNL. The seedlist words are further searched in the lexical database Word-

Net and a network graph is formed for all the direct synonyms of the seedlist

words. For all the 22 affect categories, 22 different affective networks are gener-

ated based on synonyms extracted via word sense (meaning or sense of the word

usage) detection from WordNet. For example, let us consider the affect category

‘Hope, Hopeful’. A partial seedlist of affect words belonging to the category is

shown in Appendix C. Each line in the seedlist consists of the affective word

with the part of speech in brackets and a number following a hash symbol (#)

representing different WordNet word senses of the respective word. These words

are searched in the WordNet database with respect to word sense, part of speech

and thereby all the direct synonyms are found. Figure 2.2 represents the cor-

responding network graph generated. Whenever the input document is parsed,

the algorithm searches from the network graph, all the affective words appear-

ing inside the document and they are highlighted. In the example document

from Appendix B, the words ‘expected’, ‘committed’, ‘prospect’, ‘opportunity’,

‘certain’ and ‘encourage’ are highlighted for the affect category ‘Hope, Hope-

ful’. To determine the intensities of the affect words in the affect network graph,
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the PageRank algorithm [6] is used. The PageRank algorithm attaches a score

denoting a degree of authority of the affect word on the affect network graph.

For example, the word ‘opportunity’ has a PageRank score of 0.003 (calculated

using the PageRank function in the OpenNLP package [34, 29]) inside the affect

network graph of ‘Hope, Hopeful’. All the PageRank scores in an affect network

graph add to 1.

The named entities inside the document are extracted using the Learning Based

Java Named Entity Tagger [24].

2. Qualifier and Negation Intensity Calculation

The qualifiers and negations of the affect words are detected in this step. The

effective intensity of the qualifiers and negations on the different affect words

is calculated relative to the PageRank score of the affect words from the affect

network graph. In the example document, the qualifier ‘rare’ appears before

the word ‘opportunity’ and it reduces the intensity of the affect ‘hope’.

3. Edge Weight Calculation

A network graph of all words from the input document is generated. Depending

on the occurrence of affect words, entities, periods, commas and conjunctions,

edge weights are determined for the graph. In general, punctuation reduces

edge weights. For example, suppose a comma appears after an affect word in a

sentence. The context of the sentence after the comma would be less influenced

by the affect word, which is reflected by a lower edge weight. Currently, the

graph is generated with words appearing in the order they exist inside the

document. Future changes of the algorithm would have aggregations happening

at specific word vertices. The second paragraph of the example generates the

graph as shown in Figure 2.3. The paragraph contains brackets which reduces

the corresponding weights given to the edges.

4. Random Walk With Restart

A Random Walk With Restart (RWR) algorithm is applied to the word graph

generated from the previous step. With each affect word token as the restarting

node, forward and reverse random walk ranks of different named entities are
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generated from the word graph. The forward and reverse random walk scores are

combined to determine unary and binary affective relationship scores of entities.

For example, the affect word ‘regard’ appears as the last word in the second

paragraph of the example document. With this word as the restarting node,

the random walk ranks for the entities like ‘Putin’ and ‘Russia’ are calculated.

In the second paragraph, since ‘regard’ comes after the entities ‘Putin’ and

‘Russia’, only the reverse random walk ranks are considered for them.

5. Combine Evidences

Many documents contain multiple affect tokens representing each affect cate-

gory. Therefore, when considering the affective relationship between entities

with respect to a category, we must aggregate the evidence from each affect to-

ken in that category. A model of reasoning with belief functions is used for this

purpose [14]. The positive and negative evidence of entity relationship scores

for the different affect categories are calculated. The evidence scores are com-

bined and represented as unary/binary relationships between entities. These

relationships are represented as edges on the final affect-entity graph network.

In the example document, the affect tokens ‘expected’, ‘committed’, ‘prospect’,

‘opportunity’, ‘certain’ and ‘encourage’ represent the ‘Hope, Hopeful’ category.

The positive and negative evidences for each of them are different with respect

to the surrounding context. All such evidence is combined and final unary/bi-

nary relationship vectors between the different entities are generated for the

affect category.

2.3. SOFTWARE IMPLEMENTATION

The software tool which implements the affect propagation algorithm is called

TEAMSTER. It is implemented using Java 1.5. The following are used for their

respective purposes:

• JUNG Package - drawing network graphs and using graph-walk algorithms [18].

• OpenNLP Package - Tokenizers, Part Of Speech (POS) Tagging and Sentence

detectors [34, 29].
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• WordNet - Searching for synonyms in the the synonym network graph [15].

• Learning Based Java Entity Tagger - To identify all the named entities in the

documents [24].

2.4. RESEARCH QUESTIONS

The Affect Propagation algorithm uses a set of real valued parameters for which

the best possible values are unknown. Table 2.1 lists the different real valued param-

eters in use.

For different parameter list vectors given manually, the algorithm generates

different Affect-Entity graphs. This leads us to the following four research questions:

1. What is the best possible parameter set for the Affect Propagation algorithm?

2. What fitness criterion determines the best parameter set solution vector?

3. Which optimization algorithm produces the best results?

4. Is the result of the affect propagation algorithm employing the optimal param-

eter set of sufficient quality to be useful?
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Figure 2.2: Affect network graph for the affect category ‘Hope, Hopeful’
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Figure 2.3: Document graph of second paragraph inside the example document
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3. AFFECT PROPAGATION ALGORITHM OPTIMIZATION

This section explains in detail the optimization problem along with the bench-

marking system. Section 3.1 elaborates the features of the benchmarking system.

Section 3.2 and Section 3.3 define the objective function and fitness function respec-

tively. Section 3.4 explains the so-called zero vector problem. Section 3.5 explains the

improved fitness function and Section 3.6 accounts for the best solution with respect

to the new fitness criteria.

3.1. BENCHMARKING

For finding the best parameter set for the Affect Propagation algorithm, there

is a need for a benchmark set of document affect entity annotations to which the

algorithm annotations can be compared.

3.1.1. MPQA Benchmark Corpus. The MPQA Opinion Corpus devel-

oped at the University of Pittsburgh, is a collection of news articles from a wide variety

of news sources gathered for annotating opinions and other private states (i.e., be-

liefs, emotions, sentiments, speculations etc.) [33, 5]. Articles from the MPQA corpus

were selected based on affect word occurrence. Articles with multiple affect words and

emotional statements were selected over documents without affective relationships.

The current benchmark document set consists of 50 documents. The documents had

to be annotated manually to determine all possible entity relationships. Manually

marking entities and affects on paper was a tedious task. There was a need to come

up with an easier way of generating the document affect entity relationships.

3.1.2. Affect Entity Tagger. The Affect Entity Tagger is the software tool

developed for manually annotating the benchmark set of documents.

The software tool facilitates:

• Marking affect words in the benchmark documents

• Marking entities and their synonymic labels in the benchmark document

• Annotating binary relationships between entity pairs as affect category rankings

• Annotating unary relationships of entities as affect category rankings
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• Saving document annotations as xml files for future use

• Modifying saved document annotations

The Affect Entity Tagger was programmed in Java. A Model View Controller

design pattern was used for the application design. The affects, entities and entity

relationships form different models in the application that are visualized by the GUI

panels which form the application view. The JUNG package [18] was used to generate

the entity relationship graphs.

3.1.3. Entity Relationship Vectors. The entity relationships are repre-

sented as 22 element Entity Relationship (ER) vectors on the Affect Entity Tagger.

Each element represents an affect category from the OCC Emotion Model. Each el-

ement has a value in the range -5 to 5, which represents the intensity of the affective

relationship in that affect category.

The following are some observations from the benchmark ER vectors:

• A negative affect intensity does not necessarily mean that the affective relation-

ship is of the opposite affect category. For example, consider the sentence:

“John does not hate Mary.”

The resulting affective relationship would have a negative value for the affect

hate from John towards Mary. But, that does not mean that there exists an

opposite affective relation i.e., love from John to Mary.

• In a majority of cases, most of the elements of an ER vector are zeroes. Gen-

erally, there does not exist documents which deduce an ER vector between two

entities with more than four non-zero affect elements.

• There exist entities which do not have any affective relationship with other

entities in a document. This happens in the absence of affectively charged

statements pertaining to the respective entity.

Affect categories are either binary (affect between two entities) or unary (affect

on a single entity). They could be either positive or negative. The binary/unary and

positive/negative distinctions are also embedded into the ER vectors.
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ER vectors are generated by the affect propagation algorithm. The algorithm

ER vectors have to be compared with the benchmark ER vectors for determining the

effectiveness of the algorithm parameters. A fitness criteria is required to evaluate

the quality of algorithm parameters.

3.2. OBJECTIVE FUNCTION

The quality of a solution generated by the affect propagation algorithm is in-

versely proportional to its error. The amount of error generated by a particular

parameter set is decided based on a distance measure between the algorithm ER vec-

tors and the benchmark ER vectors. We use a modified Euclidean distance as the

distance measure between the ER vectors. The raw affect vector values undergo a

sign-preserving square-root transformation to emphasize distance between low-valued

scores, and minimize distance between high-valued scores. For example, the distance

between 0 and +1 should exceed the distance between +4 and +5, as the former

represents a difference between relationship and non-relationship, whereas the latter

signifies only a slight difference between two very positive scores.

Let,

a be the 22 element ER vector obtained from the base algorithm,

b be the respective 22 element ER vector obtained from the benchmark

Modified Euclidean Distance,

d(a, b) =
√

(
√
a1 −
√
b1)2 + (

√
a2 −
√
b2)2 + ...+ (

√
a22 −

√
b22)2 =

√∑22
i=1 (
√
ai −
√
bi)2

(1)

Let,

ER be the total number of possible entity relations,

E be the total number of possible entities.

Objective function,

O =
ER∑
i=1

di(a, b)

E2
(2)
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Algorithms employed to optimize the parameters must minimize the objective

function. In the ideal case (no difference between algorithm ER vectors and bench-

mark ER vectors), the objective function returns zero.

3.3. FITNESS FUNCTION

Per definition, the fitness of a particular solution increases when a better solution

is found. So, a fitness function of the optimization problem would be the negation of

the previously discussed objective function.

Fitness function,

F = −O = −
ER∑
i=1

di(a, b)

E2
(3)

3.4. ZERO VECTOR PROBLEM

On careful algorithmic analysis it was found that a majority of good fitness

values obtained were generated when all the algorithm ER vectors were zero vectors.

This would mean that there does not exist any affective relationships between the

different document entities.

The reason for finding the zero vector solution as the best solution is that the

number of affective relationships the benchmark has found is very few compared to the

total number of possible affective relationships. Also, the number of affects pertaining

to a single entity relationship is less than 5 compared to the total possible 22 affects.

For example, consider an example document having 30 different named entities.

The number of possible entity relations is 302 = 900. From the manually tagged

affect entity graph, it can be observed that the document has only 40 entity relations

detected. So, there would be 900 − 40 = 860 benchmark ER vectors which are zero

vectors. Also, the document does not have more than 3 affect categories detected per

entity relationship. Therefore, zero vector ER solutions would give a higher fitness

score compared to most other ER vectors considered.

This problem is very similar to the famous evolutionary programming experi-

ment described in [9]. In this experiment a finite state machine was evolved to predict
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if the next input in a sequence of integers is a prime or not. Since the majority of

integers are non-prime, the most simple of finite state machines which simply always

predicts that the next input is non-prime will produce reasonably good results. There-

fore, because it is very difficult to find better performing more complex finite state

machines, the simple one-state finite state machine which always predicts non-prime

will have a strong evolutionary advantage which was confirmed experimentally.

The parameter set solutions which could escape the zero vector space could be

considered the best solutions. However, this approach would bias the solutions to a

fewer discovered affective relationships. In the same example, suppose the algorithm

finds correctly one of the 40 right entity relations. This increases its fitness and it is

higher than the zero vector solution. However, remaining 39 entity relations were not

found. Now consider a solution which detects 30 correct entity relations, along with

a set of 40 incorrect entity relations. Although 30 correct relations were found, the

fitness score is lower in this case because of the occurence of the wrong ones. Thus,

the fitness evaluation biases optimized solutions toward as few discovered affective

relationships as possible. There is a need to change the fitness criteria in this aspect.

3.5. IMPROVED FITNESS FUNCTION

To address the zero vector problem, an improved fitness function was developed.

The improved fitness score is the ratio of expected error of a random guesser to the

actual error generated by the affect propagation algorithm. The fitness ratio has a

semantic interpretation, in that fitness reflects the extent to which the algorithm can

improve upon an appropriate random guesser.

Let,

R represent that the affective relation is present,

NR represent that the affective relation is not present,

p be the probability of guessing that a relationship exists between any two

entities

q be the actual number of non-zero affective relationships in a document relative

to the number of potential relationships (the latter is equal to E2 where E is the

number of entities in a document)

The random guesser (RG) is modeled as a sequence of independent Bernoulli
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trials for each potential affective relationship where the choice objects are in the set

R, NR. The value of RG on a single Bernouli trial obeys the following expression:

RG =

 R p

NR 1− p
(4)

An appropriate random guesser is one that matches the algorithm’s propensity

to find a relation between an arbitrary entity pair. If r is the total number of non-zero

relations found by an algorithm, then the average probability of finding a relationship

between the entities, p̂ = r
E2 .

Table 3.1: Expected probabilitites arising from the random guess model

Ground Truth(baseline)
R NR

Random Guess
R pq p(1− q)
NR q(1− p) (1− p)(1− q)

The probabilities off the main diagonal in Table 3.1 represent error outcomes.

We have an exact value for the average error z, for the baseline corpus when the

model always predicts a non-relationship (z = 0.0262477). These are the zero-vector

solutions. A small proportion (q) of possible relations will actually be present, but

most (1-q) will be non-relations. In the benchmark corpus q = 0.10114. We can break

out the components of z and write z = ε × q + 0 × (1− q) where ε is the expected

random guess error when a relationship is falsely predicted (false positive) or an actual

relationship is missed by the algorithm (false negative). Therefore ε = z
q
. Further,

let 0 < d < 1 equal the expected proportional error experienced when a relationship

is correctly predicted but is still quantitatively off the mark. The expected random

guess error for a single relationship is:
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E (RG) = [0 + p̂ (1− q) + q (1− p̂) + dp̂q]× ε

=
([0 + p̂ (1− q) + q (1− p̂) + dp̂q]× z)

q

=
([p̂+ q + (d− 2) qp̂]× z)

q

=

{
1 +

[
1 + (d− 2) q

q

]
× p̂
}
× z

=

{
1 +

[
1 + (d− 2) q

q

]
×
(

r∑
E2

)}
× z (5)

Let E (Alg) be the objective function score (modified average Euclidean error)

of the affect propagation algorithm. The new fitness is given by:

F ′ =
1 + E (RG)

1 + E (Alg)
(6)

where, E (RG) ≥ 0 and E (Alg) ≥ 0, so F ′ ≥ 0.

When F ′ > 1, the algorithm predicts more accurately than a similar random

guessor. The improved fitness function eliminates the bias against finding relations.

Instead, it attempts to optimize the balance of false positives and false negatives,

leading to an optimum number of found relations.

In order to compute the fitness ratio, we require an estimate of the parameter

d. From an analysis of the available random solutions, the error for a correctly found

relationship to have quantitatively bad values was evaluated. The value thus obtained

is d = 0.44.

3.6. FITNESS VALUE UPPERBOUND

Let us determine the fitness of the best possible solution for the benchmark set

of documents. The total number of entity relations found is 487.

If there is an algorithm which finds exactly the same solution, then r = 487.

From Section 3.5, we know:

• d = 0.44
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• q = 0.10114226375908619

• r = 487

•
∑
E2 = 4815

• z = 0.2624773328544865

Applying these values to Equation 5 we get:

E (RG) ≈ {1 + 8.327× 0.10114} × 0.2625 ≈ 0.4834 (7)

In the ideal case, we would find the exact same benchmark solution and the

modified average Euclidean error E (Alg) is 0.

Therefore,

F ′best =
1 + 0.4834

1 + 0
= 1.4834 (8)

Although it is highly unlikely to find a solution which achieves the fitness F ′best,

the purpose of different optimization algorithms employed should be to attain a fitness

value closest to F ′best.
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4. GRID SEARCH HEURISTICS

This section elaborates various grid search heuristics applied to analyse the

optimization search space. Section 4.1 gives details in an analysis of the search space.

Section 4.2 lists the different grid search approaches. Section 4.3 explains the results

and a corresponding graphical analysis is given in Section 4.4. The final observations

of the grid search experiments are given in Section 4.5.

4.1. SEARCH SPACE ANALYSIS

As discussed in Section 1.4, a true brute-force search over all possible points on

the search space is infeasible for the optimization problem under consideration.

However, a biased grid search approach could be applied to analyse possible

parameter values. Each parameter lies in the range <0,1>. The set of possible values

taken for a single parameter are (0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

0.99, 0.999) along with the current best solution obtained from random search and

simulated annealing runs. Experimental trial runs indicated a higher probability for

high quality values to be present near the boundaries, so a finer search resolution was

employed near the boundaries.

4.2. GRID SEARCH APPROACHES

Six different approaches are considered for performing the grid search analysis.

Due to time constraints, all of the grid search analyses are performed using four

carefully selected benchmark documents representative of the entire set which have a

medium range of entities and entity relations. The four documents used were selected

by an expert analyst at ORNL.

4.2.1. Current Best Grid Search Analysis. An input parameter list CPL1

is taken which is the current best parameter list obtained from all previously done

fitness evaluations. Every parameter is changed from the 13 possible values keeping

the other parameters unchanged. For each parameter, the set of 13 parameter lists is

evaluated and the parameter value with best fitness is saved. A parameter list CPL2

of these best values for the parameters is thus generated. A total of 13 x 11 = 143

evaluations are performed for the analysis.
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4.2.2. Permuted Current Best Grid Search Analysis. From CPL1

and CPL2, all possible parameter lists are evaluated. Each parameter in the best

parameter list is assumed to have values either from CPL1 or CPL2. So, a total of

2ˆ11 = 2048 parameter lists are evaluated and a possible range of best parameter

lists is deduced.

4.2.3. Forward Greedy Grid Search Analysis. An input parameter list

FGPL1 is taken which is the current best parameter list obtained from all previously

done fitness evaluations. Every parameter is changed from the 13 possible values. For

each parameter, the set of 13 parameter lists is evaluated and the parameter value

with best fitness is taken as next FGPL1. Thus, a total of 13 x 11 = 143 evaluations

are performed. The final best fit parameter list is taken as FGPL2. This approach

differs from Section 4.2.1 approach in that the intermediate parameter list obtained

is retained for the next iteration.

4.2.4. Permuted Forward Greedy Grid Search Analysis. From FGPL1

and FGPL2, all possible parameter lists are evaluated. Each parameter in the best

parameter list is assumed to have values either from FGPL1 or FGPL2. So, a total

of 2ˆ11 = 2048 parameter lists are evaluated and a possible range of best parameter

lists is deduced.

4.2.5. Reverse Greedy Grid Search Analysis. The greedy grid search

analysis is done in the reverse order of occurrence of the parameters. An input

parameter list RGPL1 is taken which is the current best parameter list obtained

from all previously done fitness evaluations. Every parameter is changed from the 13

possible values. For each parameter, the set of 13 parameter lists is evaluated and the

parameter value with best fitness is taken as next RGPL1. The order of performing

the greedy evaluations is in the reverse order of parameters (with respect to the order

considered in approach discussed in Section 4.2.3). Thus, a total of 13 x 11 = 143

evaluations are performed. The final best fit parameter list is taken as RGPL2.

4.2.6. Permuted Reverse Greedy Grid Search Analysis. From RGPL1

and RGPL2, all possible parameter lists are evaluated. Each parameter in the best

parameter list is assumed to have values either from RGPL1 or RGPL2. So, a total

of 2ˆ11 = 2048 parameter lists are evaluated.
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4.3. GRID SEARCH RESULTS

Table 4.1 displays the approximate best parameter values for the first, third and

fifth approaches.

Table 4.2, Table 4.3 and Table 4.4 represent best parameter lists for the per-

muted approaches; second, fourth and sixth approaches respectively.

The rows in bold represent parameter best values which are in similar range for

all three approaches.

4.4. GRAPHICAL SEARCH SPACE ANALYSIS

From the previous section results, the scatter plots shown in Figure 4.1 and Fig-

ure 4.2 can be generated for individual parameters. The darker regions represent the

part of the search space where the likelihood of finding the best parameter solutions

is higher.

4.5. GRID SEARCH OBSERVATIONS

It is clear from the grid search experiments that most of the parameter best val-

ues are dependent on values assigned to the other parameters at that time. However,

very few parameters showed better results most of the time when they are included

in a particular range of values.

From the experiment results, we can say that when the parameters alpha, tBi-

nary and ghostAuthorRank are very low, the fitness values are good.

Approximately, the best values for the parameters alpha and tBinary appear to

lie in the range <0, 0.02>. The parameter ghostAuthorRank has a higher probability

to lie in the range <0, 0.01>.
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Table 4.2: Grid search analysis results of second approach

Parameter Name
Parameter
List1

Parameter
List2

Parameter
List3

affectWeightage 0.001 0.001 0.001

entityWeightage 0.9644988 0.9644988 0.9644988

sentenceEndWeightage 0.9070164 0.9070164 0.9070164

commaWeightage 0.7128705 0.7128705 0.7128705

quoteWeightage 0.6329861 0.6329861 0.001

alpha 0.0056172 0.0056172 0.0056172

tBinary 0.001 0.001 0.001

tUnary 0.1 0.1 0.1

tAuthor 0.3225383 0.4 0.4

rootTransformationConstant 0.3543188 0.3543188 0.3543188

ghostAuthorRank 3.67E-04 3.67E-04 0.001

No. of Relations Found 86 86 86

Fitness 1.21245 1.21245 1.21245
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Table 4.3: Grid search analysis results of fourth approach
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affectWeightage 0.001 0.001 0.001 0.001

entityWeightage 0.9 0.9 0.9 0.9

sentenceEndWeightage 0.9070164 0.9070164 0.99 0.99

commaWeightage 0.7128705 0.6 0.6 0.6

quoteWeightage 0.001 0.001 0.001 0.001

alpha 0.0056172 0.0056172 0.0056172 0.0056172

tBinary 0.001 0.001 0.001 0.001

tUnary 0.118542 0.118542 0.118542 0.118542

tAuthor 0.3225383 0.1 0.3225383 0.1

rootTransformation-
0.3543188 0.3543188 0.3543188 0.3543188

Constant

ghostAuthorRank 3.67E-04 3.67E-04 3.67E-04 3.67E-04

No. of Relations
83 83 83 83

Found

Fitness 1.21447 1.21447 1.21447 1.21447
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Table 4.4: Grid search analysis results of sixth approach
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affectWeightage 0.667086 0.667086 0.667086 0.667086 0.667086

entityWeightage 0.999 0.999 0.999 0.999 0.999

sentenceEndWeightage 0.9070164 0.9070164 0.9070164 0.9 0.9

commaWeightage 0.9 0.9 0.9 0.9 0.9

quoteWeightage 0.6329861 0.6329861 0.6329861 0.6329861 0.6329861

alpha 0.01 0.01 0.01 0.01 0.01

tBinary 0.013663 0.01 0.01 0.013663 0.01

tUnary 0.5 0.5 0.5 0.5 0.5

tAuthor 0.3225383 0.3225383 0.2 0.3225383 0.2

rootTransformation-
0.5 0.5 0.5 0.5 0.5

Constant

ghostAuthorRank 0.001 0.001 0.001 0.001 0.001

No. of Relations
74 74 74 74 74

Found

Fitness 1.21898 1.21898 1.21898 1.21898 1.21898
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Figure 4.1: Graphical grid search result 1
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Figure 4.2: Graphical grid search result 2
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5. OPTIMIZATION ALGORITHMS

This section describes different optimization algorithms investigated to solve

the optimization problem. Section 5.1, Section 5.2, Section 5.3 and Section 5.4 ex-

plain random search, hill-climbing, simulated annealing and evolutionary algorithms

respectively.

5.1. RANDOM SEARCH OPTIMIZER

The fitness evaluation is performed for a set of parameter lists randomly selected

from the optimization search space. The higher the fitness values, the better the

parameter list selected.

Algorithm 1 represents the pseudocode for the random search optimizer.

Algorithm 1 Random Search Optimizer Algorithm
Random Search Optimizer (executeRandomSearchOptimization())
1 size(documentSet) is the no. of documents in the benchmark document set
2 for i = 1 to NO OF EVALUATIONS do
3 parameterList = generateRandomParameterList()
4 cumulativeError = evaluateAEPropAlgorithm(parameterList, documentSet)
5 fitness = -1 × cumulativeError / (size(documentSet))
6 log(fitness)
7 endfor
8

9 evaluateAEPropAlgorithm(parameterList, documentSet)
10 for each document in documentSet do
11 cumulativeRelationError = 0
12 algorithmERList = getAlgorithmERList(document)
13 benchmarkERList = getBenchmarkERList(document)
14 for each relation in algorithmERList do
15 cumulativeRelationError = cumulativeRelationError
16 + calculateEuclideanDistance(algorithmERList(relation), benchmarkERList(relation))
17 endfor
18 endfor
19 return cumulativeRelationError
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Algorithm 2 Hill Climbing Algorithm
Hill Climbing Optimizer (executeHillClimbingOptimization())
1 for i = 1 to NO OF EVALUATIONS do
2 newParameterList = generateRandomParameterList()
3 currentFitness = -1 × calculateFitness(newParameterList, documentSet)
4 repeat
5 oldParameterList = newParameterList
6 previousFitness = currentFitness
7 newParameterList = stochasticFirstChoice(oldParameterList, currentFitness, ALPHA)
8 currentFitness = -1 × calculateFitness(newParameterList, documentSet)
9 until currentFitness > previousFitness
10 endfor
11

12 stochasticF irstChoice(oldParameterList, previousF itness, alpha)
13 resultList = generateNextParameterList(oldParameterList, alpha)
14 currentFitness = -1 × calculateFitness(resultList, documentSet)
15 if currentFitness > previousFitness then
16 return resultList
17 else
18 return stochasticFirstChoice(oldParameterList, previousFitness, alpha))
19 endif
20 return previousFitness
21

22 generateNextParameterList(parameterList, alpha)
23 for i = 1 to NO OF PARAMETERS do
24 V[i] = generateRandomNumberFromBetaDistribution()
25 resultList.setParameter(i, V[i])
26 endfor
27 return resultList
28

29 calculateF itness(parameterList, documentSet)
30 cumulativeError = evaluateAEPropAlgorithm(parameterList, documentSet)
31 fitness = cumulativeError / (size(documentSet))
32 return fitness
33

From a sample of 50 different runs of the random search optimizer, the average

fitness obtained is 1.0002 and the best fitness obtained is 1.0497. This is far less than

the best solution and a desirable range of fitness.
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Table 5.1: Parameter lists reached by 5 different hill-climbing starting points
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affectWeightage 0.55723 0.23546 0.34678 0.21789 0.99178

entityWeightage 0.9087 0.39874 0.98344 0.11238 0.8345

sentenceEndWeightage 0.78654 0.18673 0.76584 0.25643 0.7256

commaWeightage 0.6744 0.37402 0.0873 0.1765 0.4673

quoteWeightage 0.63298 0.4521 0.11332 0.29811 0.8621

alpha 0.0011 0.1154 0.2231 0.9721 0.00021

tBinary 0.5329 0.4325 0.41471 0.01613 0.18431

tUnary 0.6513 0.9076 0.1165 0.07691 0.78567

tAuthor 0.31083 0.3379 0.21654 0.00322 0.1222

rootTransformation-
0.7215 0.54801 0.1145 0.7892 0.6285

Constant

ghostAuthorRank 0.0001 0.12841 0.98701 0.314531 0.2891

5.2. HILL CLIMBING OPTIMIZER

The hill climbing search algorithm is shown in Algorithm 2. It is simply a

loop that continually moves in the direction of increasing value - that is, uphill. It

terminates when it reaches the highest peak where no neighbour has a higher value.

Hill-climbing algorithms have been modified with a number of variations. Stochas-
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tic hill climbing chooses at random from among the uphill moves; the probability of

selection can vary with the steepness of the uphill move. First-choice hill climbing

implements stochastic hill climbing by generating successors randomly until one is

generated that is better than the current state. This is a good strategy when a state

has many of successors. Random-restart hill climbing conducts a series of hill-climbing

searches from randomly generated initial states, stopping when a goal is found [25].

For the optimization problem under consideration, a first-choice stochastic hill

climbing approach is employed. As can be seen from the pseudo-code, random

searches on the search space are performed until a parameter list with a better fitness

value is obtained. This is done for a given maximum number of evaluations.

The hill-climbing algorithm reaches the local maximum fast and gets stuck there.

It almost never got out of the local maximum for the optimization problem of this

thesis. The best fitness obtained from the algorithm was 1.2214. Although the best

fitness achieved was better than the random search, it is not the best solution that

could be reached.

Furthermore, an experiment was conducted to see whether hill climbing done

from random starting points reach a single point on the search space. Table 5.1

shows parameter lists which were reached after hill climbing from five random starting

points. As can be seen, all of them reached different search points at the end. This

proves that the problem is a multi-modal optimization problem with the best solutions

present at different peaks of the search space.

5.3. SIMULATED ANNEALING OPTIMIZER

5.3.1. Base Simulated Annealing Optimizer. A hill-climbing algorithm

that never makes ‘downhill’ moves towards states with lower value is incomplete,

because it can get stuck on a local maximum. In contrast, a purely random walk -

that is, moving to a successor chosen uniformly at random from the set of successors

- is complete, but extremely inefficient. Therefore, it seems reasonable to try to

combine with a random walk in some way that yields both efficiency and completeness.

Simulated annealing is such an algorithm [25].
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Algorithm 3 Basic Simulated Annealing Algorithm
1 T = schedule[t]; schedule input determines the value of T as a function of time
2 oldParameterList = generateRandomParameterList()
3 currentFitness = calculateFitness(oldParameterList, documentSet)
4 previousFitness = currentFitness
5 while true do
6 if T = 0 then
7 return oldParameterList
8 endif
9 newParameterList = generateNextParameterList (oldParameterList, Alpha)
10 currentFitness = -1 × calculateFitness(newParameterList, documentSet)
11 deltaE = currentFitness - previousFitness
12 if deltaE > 0 then
13 oldParameterList = newParameterList
14 else
15 oldParameterList = newParameterList; only with probability edeltaE/T

16 endif
17 endwhile

The innermost loop of the basic simulated annealing algorithm (Algorithm 3)

is quite similar to hill climbing. Instead of picking the best move, however, it picks a

random move. If the move improves the situation, it is always accepted. Otherwise

the algorithm accepts the move with some probability less than 1. The probability

decreases with the ‘badness’ of the move. The probability also decreases as the

‘temperature’ T goes down: ‘bad’ moves are more likely to be allowed at the start

when temperature is high, and they become more unlikely as T decreases.

5.3.2. Adaptive Simulated Annealing Optimizer.

The basic simulated annealing algorithm is modified with better scaling and

stopping criteria as discussed in [32]. The newer algorithm is based on the generalized

method of Bohachevsky et al. It automatically adjusts the step sizes to reflect the

local slopes and function values, and controls the random directions to point favorably

toward potential improvements.

When the fitness score is relatively flat we permit a wide range of search pa-

rameters to prevail in order to stimulate a new and productive direction of search.

Conversely, when great improvements in fitness are observed, the scope of parameter

search is narrowed under the assumption that the algorithm is ‘on the right track’.
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Accordingly, we utilize a symmetric Beta distribution to model the variable step size

for the modification of parameter values.

The initial parameter set used is the parameter set with the best fitness value

from all the random fitness evaluations performed earlier.

Let,

α and β represent the shape parameters of the Beta distribution,

γ represent a multiplicative constant for adaptive step size selection,

pf be the previous fitness on a particular iteration,

cf be the current fitness on a particular iteration,

Then,

α = β =

γ ×
(
pf
cf

)θ
∀pf ≥ cf

γ ×
(
cf
pf

)θ
∀pf < cf

(9)

A greater difference between the current and previous fitness scores will generate

a lesser variable and more peaked Beta distribution. Every parameter has a 0.5

probability of modification during each iteration.

The adaptive simulated algorithm is shown in Algorithm 4

5.4. EVOLUTIONARY ALGORITHMS

5.4.1. Background. Evolutionary Algorithms (EAs) are population based

optimization algorithms inspired by the Darwinian theory of biological evolution.

According to Darwin’s theory of natural selection, a population of individuals within

some environment that has limited resources would compete for the resources causing

natural selection (survival of the fittest). The survival of an individual is determined

by a fitness criteria with respect to the resources available. The individual’s survival

is also influenced by cross-over and mutation happening inside the genetic pool.

Similarly, for an optimization problem, a population of possible solutions of the

problem is evaluated based on a fitness function. In general, an EA consists of the

following steps:
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Algorithm 4 Adaptive Simulated Annealing Algorithm
Adaptive Simulated Annealing Optimizer (executeASAOptimization())
1 for i = 1 to NO OF EVALUATIONS do
2 oldParameterList = generateRandomParameterList()
3 currentFitness = calculateFitness(oldParameterList, documentSet)
4 T = INITIAL TEMPERATURE // initial temperature
5 previousFitness = currentFitness
6 iter = 1
7 Converge = FALSE
8 totUnder = 0
9 repeat
10 alpha = (maximum(previousFitness/currentFitness, currentFitness/previousFitness)Theta

11 newParameterList = generateNextParameterList(oldParameterList, alpha)
12 currentFitness = calculateFitness(newParameterList, documentSet)
13 deltaE = currentFitness - previousFitness
14 randomNum = generateRandomRealNumberInRange(0, 1)
15 if deltaE < 0 OR randomNum <=e−deltaE/(T×previousF itness) then
16 log(currentFitness)
17 previousFitness = currentFitness
18 oldParameterList = newParameterList
19 endif
20 if absoluteValueOf(deltaE)<= K then
21 totUnder++
22 else
23 totUnder = 0
24 endif
25 if iter > Jmin AND totUnder >= Jc then
26 Converge = TRUE
27 else
28 Converge = FALSE
29 endif
30 T = Decay × T
31 iter++
32 until iter <= Jmax AND Converge = FALSE
33 endfor
34

35 generateNextParameterList(parameterList, alpha)
36 for i = 1 to NO OF PARAMETERS do
37 V[i] = generateRandomNumberFromBetaDistribution()
38 if V[i] <= Qprob then
39 Brand = generateRandomNumberFromBetaDistribution()
40 endif
41 if Brand <= 0.5 then
42 resultList.setParameter(i, 2×Brand* V[i])
43 else
44 resultList.setParameter(i, V[i] + (2×Brand-1)×(1- V[i])
45 endif
46 endfor
47 return resultList
48
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• Encoding of solutions to the problem as individuals of a population.

• Initialization of an initial population.

• Evaluation of individual quality using a fitness function.

• Selection operations - Parent selection done for selecting parents before recom-

bination/mating. Survival selection for selecting individuals from the offspring

pool for the next generation.

• Reproduction operations - using cross-over and mutation operators.

For the affect propagation algorithm optimization, the solution encoding is done

as real valued vectors of the eleven different parameters. The encoding strategy and

fitness function used are elaborated in Section 3.1.3.

5.4.2. Base Evolutionary Algorithm. A basic evolutionary algorithm

with minimal EA features was devised. The pseudocode is shown in Algorithm 5.

The population is initialized with random real valued parameter set vectors (see

Algorithm 6).

Parent selection is performed using a tournament selection of ten individuals (see

Algorithm 7). I.e., ten indivuals from the current population are randomly selected

and they compete with each other for getting selected as the parent. The individual

with the best fitness is selected as the winner.

Recombination of selected two parents is performed using uniform cross-over

(see Algorithm 8). Each parameter in the offspring is randomly selected from one of

the two parent parameter lists.

Mutation of the offsprings is carried out by selecting a random parameter set

from the beta distribution (see Algorithm 9). The beta distribution is chosen because

the values returned lie in the range <0,1> which is the same range needed for each

of the parameters.

Survivor selection is done using tournament selection of ten offsprings at a time.

The best fitness achieved from the algorithm was 1.2235 (from 10 different runs)

which was far less than the best fitness we had till now from Adaptive Simulated

Annealing Optimizer (which was 1.279). So there is a need to change the strategies

in the evolutionary algorithm to make it perform better.
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5.4.3. Evolutionary Algorithm with Fitness Sharing. The base EA

was enhanced with measures to monitor and control diversity in the population.

The enhanced algorithm is represented in Algorithm 10. The output results of the

algorithm is discussed in Section 6.

• Diversity Metric

A genotype diversity measure was used to measure the population diversity.

This would represent the extent to which the individuals in the population are

different. We have used the genotype diversity measure explained in [16]. The

pseudocode for the diversity calculation is shown in Algorithm 14.

Let,

P represent population size,

N represent no. of parameters,

xij represent individual parameter value

Centroid of ith parameter,

ci =

∑j=P
j=1 xij

P
(10)

Moment of inertia along the centroid,

I =
i=N∑
i=1

j=P∑
j=1

(xij − ci)2 (11)

• Fitness Sharing

Fitness sharing is one of the explicit schemes to maintain population diversity.

The fitnesses of individuals are adjusted prior to selection (see Algorithm 11)

in order to allocate individuals to niches in proportion to the niche fitness [10].

This scheme works by considering each possible pairing of individuals i and

j within the population (including i with itself) and calculating a distance

d(i,j) between them (see Algorithm 12). The distance measure used here is
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the Euclidean distance. The fitness F of each individual i is then adjusted

according to the number of individuals falling within some prespecified distance

σshare using a power-law distribution (see Algorithm 13):

F ′ (i) =
F (i)∑

j sh (d (i, j))
, (12)

where the sharing function sh(d) is a function of the distance d given by

sh (d) =

1−
(

d
σshare

)α
ifd ≤ σshare,

0 otherwise
(13)

• EA Parameter Tuning

There were various algorithm specific parameters for which the best values had

to be determined. From different runs of the algorithm, the parameter values

were finalised based on how well the diversity was maintained all throughout

the fitness evaluations.

The constant value α determines the shape of the sharing function: For α = 1

the function is linear, whereas for values greater than this the effect of similar

individuals in reducing a solution’s fitness falls off more rapidly with distance.

From experimental observations, it was observed that using a linear function

gives the best result for this optimization problem.

The parameter σshare decides both how many niches can be maintained and the

granularity with which different niches can be discriminated. A default value

in the range 5-10 is recommended [8]. It was experimentally determined that a

value of 5 for σshare gave the best results for this research.
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Algorithm 5 Base Evolutionary Algorithm
1 population = initializePopulation()
2 log(population)
3 globalPopulation = population
4 initialBestIndividual = findBestParameterList(population)
5 log(initialBestIndividual)
6 for i = 1 to NO OF GENERATIONS do
7 offsprings.clear()
8 for j = 1 to CHILDREN POPULATION SIZE do
9 parentsForSelection = population
10 parent1 = selectIndividualFromTournamentSelection(parentsForSelection)
11 parentsForSelection.remove(parent1)
12 parent2 = selectIndividualFromTournamentSelection(parentsForSelection)
13 child = performUniformCrossover(parent1, parent2)
14 randomNum = getRandomNumber(0,1)
15 if randomNum < MUTATION RATE then
16 child = performBetaMutation(child)
17 endif
18 fitness = calculateFitness(child, documentSet)
19 child.setFitness(fitness)
20 log(child)
21 offsprings.add(child)
22 parentsForSelection.clear()
23 endfor
24 populationForSurvivorSelection.clear()
25 populationForSurvivorSelection.addAll(population)
26 populationForSurvivorSelection.addAll(offsprings)
27 population.clear()
28 for j = 1 to POPULATION SIZE do
29 survivor = selectIndividualFromTournamentSelection(populationForSurvivorSelection)
30 population.add(survivor)
31 populationForSurvivorSelection.remove(survivor)
32 endfor
33 localBestIndividual = findBestParameterList(population)
34 log(localBestIndividual)
35 globalPopulation.addAll(population)
36 globalBestIndividual = findBestParameterList(globalPopulation)
37 log(globalBestIndividual)
38 endfor
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Algorithm 6 Population Initialization
1 initializePopulation()
2 for i = 1 to POPULATION SIZE do
3 parameterList = generateRandomParameterList()
4 fitness = calculateFitness(parameterList, documentSet)
5 parameterList.setFitness(fitness)
6 population.add(parameterList)
7 endfor
8 return population

Algorithm 7 Tournament Selection
1 selectIndividualFromTournamentSelection(population)
2 for i = 1 to TOURNAMENT SIZE do
3 individual = selectRandom(population)
4 tournamentPopulation.add(individual)
5 population.remove(individual)
6 endfor
7 selectedIndividual = findBestParameterList(tournamentPopulation)
8 return selectedIndividual

Algorithm 8 Performing Uniform Crossover
1 performUniformCrossover(parent1, parent2)
2 for i = 1 to NO OF PARAMETERS do
3 parent = selectRandom(parent1, parent2)
4 child.setParameter(i) =parent.getparameter(i)
5 endfor
6 return child
7

Algorithm 9 Performing Beta Mutation
1 performBetaMutation(child)
2 for i = 1 to NO OF PARAMETERS do
3 mean = child.getParameter(i)
4 alpha = mean × [(mean(1-mean)/IDEAL VARIANCE) - 1]
5 beta = (1 - mean) × [(mean(1-mean)/IDEAL VARIANCE) - 1]
6 distribution = betaDistribution(alpha, beta)
7 randomNum = distribution.random()
8 child.setParameter(i, randomNum)
9 endfor
10 return child
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Algorithm 10 Evolutionary Algorithm with Fitness Sharing
1 population = initializePopulation()
2 log(population)
3 globalPopulation = population
4 initialBestIndividual = findBestParameterList(population)
5 log(initialBestIndividual)
6 for i = 1 to NO OF GENERATIONS do
7 offsprings.clear()
8 for j = 1 to CHILDREN POPULATION SIZE do
9 parentsForSelection = population
10 parent1 = selectIndividualFromTournamentSelection(parentsForSelection)
11 parentsForSelection.remove(parent1)
12 parent2 = selectIndividualFromTournamentSelection(parentsForSelection)
13 child = performUniformCrossover(parent1, parent2)
14 randomNum = getRandomNumber(0,1)
15 if randomNum < MUTATION RATE then
16 child = performBetaMutation(child)
17 endif
18 fitness = calculateFitness(child, documentSet)
19 child.setFitness(fitness)
20 log(child)
21 offsprings.add(child)
22 parentsForSelection.clear()
23 endfor
24 populationForSurvivorSelection.clear()
25 populationForSurvivorSelection.addAll(population)
26 populationForSurvivorSelection.addAll(offsprings)
27 population.clear()
28 for j = 1 to POPULATION SIZE do
29 survivor = selectIndividualFromTournamentSelection(populationForSurvivorSelection)
30 population.add(survivor)
31 populationForSurvivorSelection.remove(survivor)
32 endfor
33 population = shareFitness(population)
34 genotypeDiversity = calculateGenotypeDiversity(population)
35 log(genotypeDiversity)
36 localBestIndividual = findBestParameterList(population)
37 log(localBestIndividual)
38 globalPopulation.addAll(population)
39 globalBestIndividual = findBestParameterList(globalPopulation)
40 log(globalBestIndividual)
41 endfor
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Algorithm 11 Fitness sharing strategy
1 shareF itness(population)
2 for i = 1 to POPULATION SIZE do
3 distancePerParamList = 0
4 for j = 1 to POPULATION SIZE do
5 euclideanDistance = calculateEuclideanDistance(population.get(i), population.get(j))
6 distancePerParamList += shForFitnessSharing(euclideanDistance)
7 endfor
8 newFitness = population.get(i).getFitness()/distancePerParameterList
9 population.get(i).setFitness(newFitness)
10 endfor
11 return population

Algorithm 12 Euclidean distance calculation
1 calculateEuclideanDistance(ParameterLista, ParameterListb)
2 euclideanDistance = 0.0
3 d = 0.0
4 for i = 1 to NO OF PARAMETERS do
5 d += (a.getParam(i)− b.getParam(i))2

6 endfor
7 euclideanDistance =

√
d

8 return euclideanDistance

Algorithm 13 Calculating sh for fitness sharing
1 shForF itnessSharing(d)
2 if V[i] <= Qprob then
3 if d <= FITNESS SHARE SIGMA then
4 return (1-Math.pow((d/FITNESS SHARE SIGMA),FITNESS SHARE ALPHA))
5 else
6 return 0
7 endif
8 endif
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Algorithm 14 Genotype diversity calculation
1 calculateGenotypeDiversity(population)
2 centroidList = calculateCentroid(population)
3 momentOfInertia = calculateMomentOfInertia(population, centroidList)
4 return momentOfInertia
5

6 calculateCentroid(population)
7 for i = 1 to NO OF PARAMETERS do
8 centroidList.add(0.0)
9 endfor
10 for i = 1 to NO OF PARAMETERS do
11 for each pList in population do
12 centroidList.set(i,centroidList.get(i)+pList.getParam(i))
13 endfor
14 endfor
15 for i = 1 to NO OF PARAMETERS do
16 centroidList.set(i, centroidList.get(i)/POPULATION SIZE)
17 endfor
18 return centroidList
19

20 calculateMomentOfInertia(population, centroidList)
21 momentOfInertia = 0
22 for each pList in population do
23 for i = 1 to NO OF PARAMETERS do
24 momentOfInertia += (pList.getParam(i)− centroidList.get(i))2

25 endfor
26 endfor
27 return momentOfInertia
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6. RESULTS AND DISCUSSION

This section discusses the results obtained by applying the optimization algo-

rithms. Section 6.1 lists the set of algorithmic parameters used. Section 6.2 gives

details on the best fitnesses from different algorithms and Section 6.3 gives the best

parameter set from all algorithms and corresponding example affect entity relation

models.

6.1. EXPERIMENTAL SETUP

The different optimization algorithms investigated have a set of algorithm spe-

cific parameter values. These are listed in Table 6.1 to Table 6.5.

For all the experiments run, a linear aggregation of document words is performed

in the base algorithm. This means that the random walk performed at the third step

of the base algorithm is actually deterministic in the experiments described here. For

each node in the document graph, there are only two connecting edges, one forward

and one reverse.

Except for the grid search heuristics, all other approaches used a set of 50

documents from the MPQA document corpus. Due to time constraints, the whole set

of 50 documents was not used for grid search heuristics. Instead, a set of 4 carefully

selected documents having a median amount of entities and entity relationships was

used. For purposes of experimental comparison in this section, the reduced set is

assumed to be a sufficiently good approximation of the full set, but obviously this

may not actually be the case and further investigation of the grid search heuristics

employing the full set are needed to verify this.

Table 6.1: Random search algorithm parameters

Algorithm Parameter Parameter Value
Number of Evaluations 50
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Table 6.2: Hill climbing algorithm parameters

Algorithm Parameter Parameter Value
Number of Evaluations 50
Alpha 15

Table 6.3: Adaptive simulated annealing algorithm parameters

Algorithm Parameter Parameter Value
Initial Temperature 5
Theta (rescaling constant for adaptive
step size selection)

5

Decay (temperature decay factor) 0.98
Qprob (probability of mutating a single
dimension in the ParameterList)

0.5

Jmin (minimum number of iterations) 100
Jmax (maximum number of iterations) 500
Jc (sequence length for stopping crite-
rion)

10

K (change threshold for stopping crite-
rion)

0.001

Initialization Random Best Individual
Termination Condition 5000 evals

6.2. BEST FITNESSES FROM DIFFERENT APPROACHES

The best fitnesses achieved from the different approaches are represented in

Table 6.6. The fitness scores are calculated from a sample of 10-20 different runs of

the individual algorithms. More samples were not taken due to time constraints. The

best global best fitness of an algorithm is the best fitness achieved from all the runs

of the algorithm. The average global best fitness is the average of the best fitnesses

obtained from all the runs.

Table 6.6 shows that the highest best global best fitness is obtained by the

fitness shared EA followed by the adaptive simulated annealing algorithm. Among

all the algorithms used, the highest average global best fitness was achieved by the
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evolutionary algorithm. Therefore, statistically there is a higher probability that

the EA can achieve a better solution. Also, the standard deviation with regards to

average best fitness remains lowest for the EA. Figure 6.1 represents the fitness ranges

achieved by the different approaches as a box plot. From the statistical analysis and

the box plot, it is evident that the EA with fitness sharing covered a smaller span of

fitness values compared to other algorithms. Apparently, among all the algorithms

experimented, the EA is the best approach for the optimization problem.

6.2.1. Fitness Improvement on the Best Run. Figure 6.2 represents the

fitness improvement achieved by the initial best run of the EA with fitness sharing

(without parameter tuning). The graph shows the result in comparison to that of the

adaptive simulated annealing. As can be seen, the EA population diversity decreased

drastically from around 1200 fitness evaluations. Parameter set 1 in Table 6.7 was

used for this case.

After proper parameter tuning, the diversity of the population was maintained.

With reference to [8], the value of sigma lies in the range 5-10. Keeping all other

parameters constant, the best fitness is obtained when the sigma value was 5. The

best achieved fitness was using the linear function. A population size greater than 100

and an offspring size greater than 30 achieved fitnesses well below the normal range

of best fitnesses. Table 6.7 shows the effects of further tuning of the parameters on

the fitness. For each set of EA parameters used, the EA was executed 12 times. The

best fitness is achieved by the set of parameters shown in bold. The same set of

parameters had the best average fitness over all its runs. The different parameters

used do not show much standard deviation from the average best fitness.

Figure 6.3 represents the fitness improvement achieved by the best run after

diversity maintenance. As in the previous graphs, there is an initial peak to the EA

diversity which happens because the EA is continuously increasing its diversity till a

reasonable range is achieved. Random initialization typically results in a number of

genotypes being clustered together which is suboptimal for diversity and the initial

rapid increase in diversity is due to the diversity measure breaking up these clusters.

After the peak is reached, the population diversity is preserved at the higher level all

throughout the remaining fitness evaluations. With proper diversity maintenance, its

seen that the EA maximum fitness is higher compared to simulated annealing and it



51

is attained earlier with a lower number of fitness evaluations. The EA achieves better

fitness around 1400 fitness evaluations and continues to be better than simulated

annealing for all rest of the fitness evaluations. It is interesting to note that although

the simulated annealing fitness evaluations began with a parameter list having better

fitness, in the long run it could not beat fitness of the population based EA search.

A statistical analysis of the best fitnesses obtained from the two optimization

algorithms is also performed. The best fitnesses obtained from 17 runs each of the

evolutionary and simulated annealing algorithms are analysed. At each fitness eval-

uation, the average best fitness is evaluated and plotted as shown in Figure 6.4. The

EA shows a higher average best fitness consistently after 900 fitness evaluations.

The average best fitnesses of all the runs substantiates that there is a higher

probability for the EA to achieve a better fitness at each instance of fitness evaluation.

6.3. FINAL BEST PARAMETER SET

Table 6.8 displays the final list of parameters obtained.

It is interesting to note that all the grid search heuristics observations turned

out to be true. The parameters alpha, tBinary and ghostAuthorRank are very small

as expected. A Wilcoxon rank sum test [35] was conducted between the best fitnesses

obtained from simulated annealing algorithm and evolutionary algorithm executions

(see Appendix A). The results prove that the mean value of best fitnesses of both

algorithms are dissimilar, so the EA which has the higher mean is statistically signif-

icantly better.

6.4. EXAMPLE DOCUMENTS AND AFFECT-ENTITY NETWORKS

Figure 6.5 - Figure 6.7 represent affective relationships from the optimized affect

propagation algorithm along with the benchmarks. The algorithm uses the set of

parameters in Table 6.8. These examples demonstrate the following:

• Almost all benchmarked affective relationships were discovered.

• Many affective relationships discovered were not documented in the benchmark

diagram, and hence they are incorrect relationships. Consider the example

shown in Figure 6.5. The affect entity diagram from the algorithm displays an
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affective relationship of fear, hope and pity from the entity ‘Chechens’ to the

entity ‘Putin’. However, this relationship is absent in the benchmark diagram.

• Symmetric affective relationships were discovered. For example, in Figure 6.7

the algorithm discovers symmetrical relationship of admiration and fear between

the entities ‘Author’ and ‘Bush’.

• Over-diffusive spreading of affect through the documents. This means that the

same affect category appears between more entities in the document than is

actually the case. Figure 6.5 displays the spreading of the affect category hope.

Figure 6.6 and Figure 6.7 show spreading of the affect category admiration.

Table 6.4: Base evolutionary algorithm parameters

Algorithm Parameter Parameter Value
Population Size 50 or 100
Tournament Size 10
Offspring Population Size 20
Mutation Rate 0.2
Ideal Variance 0.003
Initialization Random
Termination Condition 5000 evals
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Figure 6.1: Span of best fitnesses from different approaches

Figure 6.2: Best run of EA with fitness sharing before parameter tuning
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Table 6.5: Fitness shared evolutionary algorithm parameters

Algorithm Parameter Parameter Value
Population Size 50 or 100
Tournament Size 3 or 5 or 10
Offspring Population Size 30
Mutation Rate 0.2
Ideal Variance 0.003
Sigma for Fitness Share 4 or 5 or 6
Alpha for Fitness Share 0.5 or 1 or 2
Initialization Random
Termination Condition 5000 evals

Table 6.6: Best fitnesses from different approaches

Approach
Best Global Best
Fitness

Average Global
Best Fitness (Stan-
dard Deviation)

Manual Parameters 1.0513 1.0513 (0)
Random Search 1.0497 0.9992 (0.0428)
Best Grid Search Heuristics 1.219 1.219 (0)
Hill Climbing Search 1.2214 1.1892 (0.0322)
Adaptive Simulated An-
nealing

1.279 1.2615 (0.0164)

Base Evolutionary Algo-
rithm

1.2235 1.1912 (0.0142)

Evolutionary Algorithm
with Fitness Sharing

1.2849 1.275 (0.0083)
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Figure 6.3: Best run of EA with fitness sharing after parameter tuning

Figure 6.4: Comparison of average best fitness improvement achieved by simulated
annealing and evolutionary algorithms
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Table 6.8: Final best parameter list generated after EA parameter tuning

Parameter Parameter Value
affectWeightage 0.999999882
entityWeightage 0.992598855
sentenceEndWeightage 0.997672876
commaWeightage 0.983690331
quoteWeightage 0.166119085
alpha 3.02E-05
tBinary 0.004666844
tUnary 2.86E-92
tAuthor 0.999997076
rootTransformationConstant 0.195870871
ghostAuthorRank 3.47E-08



58

(a) Benchmark affect-entity diagram
for document 23.18.15-25073

(b) Optimized affect propagation diagram for document 23.18.15-25073

Figure 6.5: Affect-entity diagram example 1
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(a) Benchmark affect-entity diagram for doc-
ument 21.50.57-15245

(b) Optimized affect propagation diagram for document 21.50.57-15245

Figure 6.6: Affect-entity diagram example 2
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(a) Benchmark affect-entity diagram for docu-
ment 21.07.24-24231

(b) Optimized affect propagation diagram for document 21.07.24-24231

Figure 6.7: Affect-entity diagram example 3
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7. CONCLUSION AND FUTURE WORK

7.1. CONCLUSION

The focus of this thesis was to optimize the affect propagation algorithm. Var-

ious optimization algorithms have been attempted for the purpose. Among all the

optimization techniques applied, the technique using evolutionary algorithm was the

most successful one, giving a higher best fitness statistically. The evolutionary al-

gorithm used an explicit diversity maintenance mechanism in which the fitnesses of

individuals were adjusted prior to selection in an attempt to allocate individuals to

niches in proportion to the niche fitness.

The four research questions posed in Section 2.4 are answered as follows:

1. What is the best possible parameter set for the Affect Propagation algorithm?

After extensive investigation of different optimization algorithms, the best pa-

rameter set found is shown in Table 6.8.

2. What fitness criterion determines the best parameter set solution vector?

An enhanced fitness measure as explained in Section 3.5 is used to find the best

solution. The fitness function is the ratio of expected error of a random guesser

to the actual error generated by the algorithm.

3. Which optimization algorithm produces the best results?

A statistical analysis (see Section 6.2) of results from different optimization

algorithms indicates that the fitness shared EA is the best approach tested.

4. Is the result of the affect propagation algorithm employing the optimal param-

eter set of sufficient quality to be useful?

Although sophisticated optimization strategies were applied, the quality of the

final affect entity relation models remains sub par compared to the benchmark

ones. It is not certain if there exists a better solution for the problem, but it

appears more likely that the problem lies with the affect propagation algorithm.
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Significant changes are needed before it can approach the accuracy of human

judgement of affective meaning in text.

7.2. FUTURE WORK

The following two paragraphs are adopted with minor modifications from an

ORNL technical report [27] which was co-authored by the author of this thesis.

Many tasks and challenges remain before affective computing can begin to claim

to be a mature research area. The performance of the affect extraction algorithms

could be improved significantly by a more thorough accounting of context effects in

documents. Different sentence constructions such as active versus passive voice ought

to exert different influences on the mechanism of affect propagation. Word sense

disambiguation can also be quite important.

An important future direction would be to extend the analysis from single

to multiple documents. The evolution of affective relationships can be tracked by

performing change detection on the structure of the affect-entity relation network

over time-ordered multiple texts from a single source. Entities can also be clustered

on the basis of affective similarity. A dynamic analysis of the affect-induced entity

space properly displayed in an evolution panel would provide indications of formation

and/or dissolution of clusters or groups with shared affect.

Instead of the linear approach, the second step of the base algorithm can utilize

various node aggregation schemes based on affect words, entities or noun phrases for

generating the document word graph.

The current strategy for all the optimization algorithms uses only a training set

of input documents. In the future, a tagged set of test documents from the MPQA

corpus needs to be used to analyse the effectiveness of the final optimized set of

parameters on documents not yet trained during optimization. This would help to

generalize the parameter set solution for any arbitrary document.

All the future changes to the affect propagation algorithm would also affect the

optimization strategy by which the best set of parameters are selected. Any change

to the base algorithm would require validation of the parameters selected. Hence,

there can be changes to the optimization technique used.
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For EA population diversity maintenance, currently we are using the fitness

shared approach. Fitness sharing allocates individuals to peaks only in proportion to

their fitness. So there is a higher likelihood for a best solution near to the lower fitness

peak not to be uncovered. In the future the crowding technique can be investigated

wherein the population is distributed evenly amongst the peaks. Furthermore, a

combination of fitness sharing and crowding techniques can be tested. These changes

would also require parameter tuning to find the best fit EA parameters.

Similar to the prime number predicting finite state machine experiment de-

scribed in Section 3.4, the optimization problem considered in this thesis faced the

problem that the optimal solutions were all sparse, so evolving parameter sets which

caused solutions with no entity relationships to be produced appeared to be of reason-

ably good quality and therefore had an evolutionary advantage (the so-called “zero

vector problem”), until a special fitness function was created which specifically ad-

dressed this through the use of the ratio of the expected error of a random guesser to

the actual error generated by the base algorithm. This technique can be generalized

for use in other problem domains which have in common that there are easy-to-evolve

solutions with relatively high fitness.



APPENDIX A

WILCOXON RANK SUM TEST
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Similar to a t test, the Wilcoxon Rank Sum Test is used to determine whether

there is a significant difference between the means of two distributions. Specifically,

we are trying to determine whether the two samples came from the same distributions

or not. The Wilcoxon Rank Sum Test is used in place of the t test when either of the

samples do not appear to be normally distributed and when the sample size is too

small.

The Wilcoxon Rank Sum Test is a hypothesis test and has the following Null

Hypothesis and Alternate Hypothesis:

H0 - Null Hypothesis states that the two samples came from population distri-

butions having similar means.

H1 - Alternate Hypothesis states that the two samples come from population

distributions with dissimilar means.

Table A.1 represents the list of best fitnesses obtained for both adaptive simu-

lated annealing (ASA) and evolutionary algorithm (EA) executions.

• Step 1 : Count the samples in each column

n1 = 16

n2 = 17

• Step 2 : Rank all samples according to sample size. This is shown in Table A.2.

• Step 3 : Combine all samples and rank them. This is shown in Table A.3.

• Step 4 : Re-sort the rows according to algorithm. This is shown in Table A.4.

• Step 5 : Calculate the sum of the ranks (N1 and N2) for each algorithm. This

is shown in Table A.5 and Table A.6.

• Step 6 : Determine whether R = N1 or N2. R is taken from the sample with

the smaller size. n1 = 16 and n2 = 17 so sample group 1 is smaller. Therefore,

R = N1 = 191.5

• Step 7 : Calculate Z Score and Z Critical to determine whether the sample

groups come from different populations.
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When n1 and n2 are both > 10, the normal distribution can approximate the

distribution of R.

Z Score Calculation

Calculate µr and σr

µr = [n1 ∗ (n1 + n2 + 1)]/2 (A.1)

σr = SQRT [(n1 ∗ n2 ∗ (n1 + n2 + 1))/12] (A.2)

µr = [16 ∗ (16 + 17 + 1)]/2 = 272 (A.3)

σr = SQRT [(16 ∗ 17 ∗ (16 + 17 + 1))/12] = 27.76 (A.4)

Calculating the Z Score,

Z = (R− µr)/σr = −2.89 (A.5)

|Z| = 2.89 (A.6)

Calculating Z Critical,

Zcrit = NORMSINV (1− a/2) (A.7)

For example, for a = 0.05 (for 95 percent certainty) and two-tailed test

Zcrit = NORMSINV (1− 0.05/2) = NORMSINV (0.975) = 1.96 (A.8)

Since |Z| is greater than Zcrit, we reject the null hypothesis. Therefore, the

means of the two best fitness populations are different and there does not exist

a relationship between the best fitnesses obtained from simulated annealing and

the evolutionary algorithm.
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Table A.1: Best fitnesses from ASA and EA

Adaptive Simulated Annealing Evolutionary Algorithm
1.2763 1.2765
1.279 1.2572
1.278 1.2849
1.2524 1.2731
1.2246 1.2672
1.2716 1.2721
1.2654 1.2614
1.256 1.2753
1.2713 1.2801
1.2492 1.2812
1.2771 1.2631
1.2678 1.2824
1.2556 1.2771
1.2763 1.281
1.2358 1.2846
1.248 1.2794

1.2792
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Table A.2: Best fitnesses ranked with respect to sample size

Fitness Algorithm
1.2765 EA
1.2572 EA
1.2849 EA
1.2731 EA
1.2672 EA
1.2721 EA
1.2614 EA
1.2753 EA
1.2801 EA
1.2812 EA
1.2631 EA
1.2824 EA
1.2771 EA
1.281 EA
1.2846 EA
1.2794 EA
1.2792 EA
1.2763 ASA
1.279 ASA
1.278 ASA
1.2524 ASA
1.2246 ASA
1.2716 ASA
1.2654 ASA
1.256 ASA
1.2713 ASA
1.2492 ASA
1.2771 ASA
1.2678 ASA
1.2556 ASA
1.2763 ASA
1.2358 ASA
1.248 ASA
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Table A.3: Ranked best fitnesses after combining

Rank Fitness Algorithm
1 1.2246 ASA
2 1.2492 ASA
3 1.2524 ASA
4 1.256 ASA
5 1.2572 EA
6 1.2614 EA
7 1.2631 EA
8 1.2654 ASA
9 1.2672 EA
10 1.2678 ASA
11 1.2713 ASA
12 1.2716 ASA
13 1.2721 EA
14 1.2731 EA
15 1.2753 EA
16 1.2763 ASA
17 1.2765 EA

18.5 1.2771 EA
18.5 1.2771 ASA
19 1.278 ASA
20 1.279 ASA
21 1.2801 EA
22 1.2812 EA
23 1.2824 EA
24 1.2849 EA



70

Table A.4: Best fitnesses re-sorted after combining

Rank Fitness Algorithm
1 1.2246 ASA
2 1.2358 ASA
3 1.248 ASA
4 1.2492 ASA
5 1.2524 ASA
6 1.2556 ASA
7 1.256 ASA
8 1.2572 EA
9 1.2614 EA
10 1.2631 EA
11 1.2654 ASA
12 1.2672 EA
13 1.2678 ASA
14 1.2713 ASA
15 1.2716 ASA
16 1.2721 EA
17 1.2731 EA
18 1.2753 EA

19.5 1.2763 ASA
19.5 1.2763 ASA
21 1.2765 EA

22.5 1.2771 EA
22.5 1.2771 ASA
24 1.278 ASA
25 1.279 ASA
26 1.2792 EA
27 1.2794 EA
28 1.2801 EA
29 1.281 EA
30 1.2812 EA
31 1.2824 EA
32 1.2846 EA
33 1.2849 EA
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Table A.5: Best fitnesses summed for simulated annealing

Rank Fitness Algorithm
1 1.2246 ASA
2 1.2358 ASA
3 1.248 ASA
4 1.2492 ASA
5 1.2524 ASA
6 1.2556 ASA
7 1.256 ASA
11 1.2654 ASA
13 1.2678 ASA
14 1.2713 ASA
15 1.2716 ASA

19.5 1.2763 ASA
19.5 1.2763 ASA
22.5 1.2771 ASA
24 1.278 ASA
25 1.279 ASA

Sum, N1 = 191.5

Table A.6: Best fitnesses summed for evolutionary algorithm

Rank Fitness Algorithm
8 1.2572 EA
9 1.2614 EA
10 1.2631 EA
12 1.2672 EA
16 1.2721 EA
17 1.2731 EA
18 1.2753 EA
21 1.2765 EA

22.5 1.2771 EA
26 1.2792 EA
27 1.2794 EA
28 1.2801 EA
29 1.281 EA
30 1.2812 EA
31 1.2824 EA
32 1.2846 EA
33 1.2849 EA

Sum, N2 = 369.5
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This appendix shows the listing of the complete text document used to explain

the affect propagation algorithm in Section 2.2.

Leaders o f the United Sta t e s probably withheld t h e i r breath Monday

evening whi l e watching on t e l e v i s i o n what Russian Pres ident Vladimir

Putin was about to say to h i s people . After Putin ’ s statement they

rubbed t h e i r palms at l ength . I t amounted to much more than what one

could have expected . The m i l i t a r y grea t power that towers over

Afghanistan has committed i t s e l f to overthrow the r u l i n g Taliban

system , and has pledged to support the US ‘ ‘ ant i−t e r r o r i s m m i l i t a r y

opera t i on ” now being prepared . Putin has exceeded the ‘ ‘ p o s i t i v e

n e u t r a l i t y p o l i c y ” h i s country ( the Sov i e t Union at the time ) has

pursued during the Gulf War, and whose cont inued v a l i d i t y the

m i l i t a r y l e a d e r s a l s o regarded as d e s i r a b l e . The s i t u a t i o n in which

Putin has agreed to open former Sov i e t m i l i t a r y a i r f i e l d s to

American armed f o r c e s in three ( former Sov i e t ) Centra l Asian

c o u n t r i e s could be regarded as dramatic . These c o u n t r i e s are

Ta j ik i s tan , Uzbekistan and Turkmenistan . Although these are

sove r e i gn s ta t e s , and the f i n a l d e c i s i o n would have been in t h e i r

hands , people f a m i l i a r with the ac tua l ba lance o f power i n d i c a t e

that the se s t a t e s would have done nothing , had Moscow wanted a

d i f f e r e n t th ing to happen .

One cannot underest imate the s i g n i f i c a n c e o f the f a c t that Russia has

opened i t s a i r s p a c e . True , Putin only permitted ( Americans ) to

d e l i v e r v ia Russian a i r s p a c e a id to the ‘ ‘ thea t e r o f the ant i−
t e r r o r i s m m i l i t a r y operat ions , ” ( i . e . not s o l d i e r s and weapons ) .

Never the l e s s , t h i s amounts to such high degree o f Russian−American

cooperat ion in a wartime s i t u a t i o n , the two s i d e s have never

a t ta ined during the past 10 years . And Putin has e s t a b l i s h e d the

prospect o f tak ing f u r t h e r s t ep s in t h i s regard .

Accordingly , Russia has j o in ed the ant i−t e r r o r i s t c o a l i t i o n o f the

United Sta t e s v i r t u a l l y without r e s e r v a t i o n . Putin has wr i t t en the

name o f Moscow on the r e g i s t r a t i o n page o f the American s i d e . He

wanted to become an a l l y , and that ’ s what he has become . But making
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t h i s complex d e c i s i o n was not easy f o r him . Reformers to ld Putin

a l l a long that he should take advantage o f ‘ ‘ the ra r e opportunity

f o r ( Russia ) to become i n t e g r a t e d with the c i v i l i z e d world . ” But

main stream Russian m i l i t a r y p o l i c y has been to keep a d i s t anc e

from America , the country that has been h i s t o r i c a l l y r e s p o n s i b l e

f o r ‘ ‘ educat ing ” the Taliban that had caused the demise o f Sov i e t

occupat ion f o r c e s in Afghanistan . In the end , a c e r t a i n

c o n s i d e r a t i o n that d i f f e r e d from the above two proved to be

d e c i s i v e . I t had to do with Chechnya . Putin has no g r e a t e r d e s i r e

than to pre sent to the West the Chechen independence movement as a

chapter o f ‘ ‘ i n t e r n a t i o n a l t e r r o r . ” He did not succeed with that so

f a r . He was c r i t i c i z e d more than recogn i z ed f o r h i s p o l i c y . At

t h i s time however , he taught a l e s s o n to the Americans . After the

Americans had promised everyth ing good and nice , Putin remarked

almost as an a s i d e that the events in Chechnia ‘ ‘ could be

i n t e r p r e t e d only in the context o f the s t r u g g l e aga in s t

i n t e r n a t i o n a l t e r r o r i sm . ” In r e a l i t y , Putin asked f o r a f r e e hand

regard ing Chechnia , some understanding , or even that the Americans

look the other way . Putin did not r e c e i v e what he sought in a quick

response from Washington , namely , that the State Department would

cont inue to encourage p o l i t i c a l d i a l ogue between Moscow and the

Chechen i n s u r g e n t s . Never the l e s s , one could not f a i l tak ing note o f

the f a c t that in the same response the United Sta t e s c a l l e d upon

the Chechens to ‘ ‘ u n c o n d i t i o n a l l y and without de lay to terminate

every contact with i n t e r n a t i o n a l t e r r o r i s t groups , ” and that they

accept Putin ’ s o f f e r to make peace . I f we view t h i s warning aga in s t

the background that Putin ’ s government has always seen Usama Bin

Ladin ’ s hands behind ‘ ‘ Chechen ter ror i sm , ” we were w i tne s s ing a

l a t e r e c o g n i t i o n o f Moscow ’ s views .

The Russian Pres ident has understood t h i s American r e c o g n i t i o n . In

Ber l in , where he was the cente r o f stormy c e l e b r a t i o n , he

v ind i ca t ed f o r h i m s e l f the deeper truth that may be seen behind

t e r r o r . He argued that had the West not cont inued to keep a l i v e

during the past s e v e r a l years the Cold War s t e r eo t ype o f a th r ea t

from the East , but would have concentrated in s t ead on ter ror i sm ,

the common enemy , the twin towers o f New York may not have

c o l l a p s e d . ‘ ‘ Accordingly , at t h i s time i t i s your turn to think , ”
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Putin sa id . Fee l ing l i k e a t rue a l l y , he was ab le to ask f o r a

p lace f o r Russia almost in consp i cuous l y − in NATO. This would have

been a joke only yesterday . Today , at the th r e sho ld o f expansion ,

i t i s no l onge r a joke .

Listing 1: Complete listing of the example text document
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This appendix shows a partial seedlist of affect words belonging to the ‘Hope

Hopeful’ affect category.

Hope , Hopeful

1 . (n) a n t i c i p a t i o n #1, ( v ) a n t i c i p a t e#5

2 . (n) expectancy #1, ( v ) expect #1, (n) expec ta t i on#2

3 . ( j ) o p t i m i s t i c #1#2, (n) optimism#1#2

4 . ( v ) t r u s t#4#5

5 . ( v ) d e s i r e#2

6 . (n) wish#1#2, ( v ) wish#1#2#3#4

7 . (n) promise#2, ( j ) promis ing#1#2

8 . (n) want#4

9 . (n) v e l l e i t y#1

10 . ( v ) look#8

11 . ( v ) await#1

12 . ( v ) look forward#1

13 . ( v ) look to#1

14 . ( j ) p o s i t i v e#1

15 . ( j ) b u l l i s h#1

16 . ( j ) upbeat#1

17 . ( j ) rose−co l o r ed#1

18 . ( j ) rosy#1

19 . ( j ) sanguine#1

20 . ( j ) a f f i r m a t i v e#2

21 . (n) f a i t h#2

22 . (n) con f idence#1#2#3, ( j ) c on f i d en t#1#2

23 . (n) assurance #1, (n) a s surednes s#1

24 . (n) su r ene s s #1, ( j ) sure#1#3, ( r ) s u r e l y #1, ( r ) f o r sure#1

25 . ( j ) c e r t a i n #2#4, ( r ) c e r t a i n l y #1, ( r ) f o r c e r t a i n#1

26 . (n) r ea s su rance #1, ( v ) r e a s s u r e #1#2, ( j ) r e a s s u r i n g#1

27 . ( j ) encouraged#1, (n) encouragement#2#3, ( j ) encourag ing #1, ( v )

encourage#1#2#3

28 . ( j ) bucked up#1, ( v ) buck up#1

29 . (n) c o n v i c t i o n#1

30 . (n) assumption#7, ( v ) assume#1

31 . (n) presumption#1, ( v ) presume#4

32 . (n) a s p i r a t i o n #1#2, ( v ) a s p i r e#1

33 . ( v ) draw a bead on#2
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34 . ( v ) shoot f o r#1

35 . (n) ambition #1, ( j ) ambit ious#1

36 . (n) l ong ing#1

37 . ( v ) long f o r

38 . (n) c rav ing#1

39 . (n) yearning #1, ( v ) yearn#1

40 . ( v ) hunger f o r

41 . ( v ) dream of

42 . ( v ) heart s e t on

43 . ( v ) bent upon

44 . ( v ) fancy#1#2

45 . ( v ) e n v i s i o n#1

46 . ( v ) p i c t u r e#1

47 . (n) hanker ing #1, ( v ) hanker#1

48 . (n) yen#1

49 . ( v ) count on#1, ( v ) count ing on

50 . (n) chance#1#5

51 . ( j ) lucky#3

52 . (n) opportunity#1

Listing 2: Seedlist words of the affect category ‘Hope Hopeful’
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