

IMAGE ANALYSIS TECHNIQUES FOR VERTEBRA ANOMALY DETECTION IN

X-RAY IMAGES

by

MOHAMMED DAS

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2008

Approved by

_______________________________ _______________________________
Dr. Fikret Ercal, Co - Advisor Dr. R. Joe Stanley, Co - Advisor

_______________________________ _______________________________
Dr. Bruce M. McMillin Dr. Randy H. Moss

COPYRIGHT 2008

Mohammed Das

All Rights Reserved

 iii

ABSTRACT

 In this research, imaging techniques are investigated for the analysis and detection

of abnormalities in cervical and lumbar vertebrae. Detecting vertebra anomalies

pertaining to osteoarthritis such as claw, traction and anterior osteophytes can aide in

treatment plans for the patient. New size invariant features were developed for the

detection of claw, traction and anterior osteophytes in cervical spine vertebrae. Using a

K-means clustering and nearest centroid classification approach, the results were

generated that were capable of discriminating cervical vertebrae for presence of

anomalies related to osteophytes. The techniques developed can be integrated into

systems based on querying spine images to be classified for such anomalies.

 Computed tomography (CT) scan images of lumbar spine models are investigated

and three dimensional models are generated for studying the shape and structure of the

lumbar spine. Using the 3D models, techniques are developed for the detection of traction

in lumbar x-ray images. Using K-means clustering and nearest centroid classification,

attempts are made to classify lumbar spine images based on presence of traction.

 iv

ACKNOWLEDGEMENTS

 As a prelude to this thesis I would like to express my sincere gratitude to those

precious few without whose co-operation I would have been unable to engage in

attempting to accomplish all of my undertaken endeavors.

 At the outset I take the opportunity to thank my parents who have been a constant

source of strength throughout my life. They have always allowed me to venture out all

opportunities that have come across to me with all of their support. I am grateful to my

brother Husain Das who has always been a source of inspiration and whose constant

words of motivation have enabled me to work diligently and has taught me to face all

challenges dauntlessly.

 I express my sincere gratitude to Dr. Ronald Joe Stanley who has week-in and

week-out spared time to guide me and help me in the comprehension, analysis and

implementation of the work outlined here. Being an apprentice here, I have not only been

successful in completion of the projects undertaken here but have also had the

opportunity to research intensively on various aspects related medical image processing,

pattern classification, software development and software integration processes. The

experience and expertise that I have gained here will truly help me in all the future

endeavors in my life ahead.

 Special thanks go to Dr. Fikret Ercal, who being my academic advisor has guided

me through out in my graduate studies and in selection of all course work. I am thankful

to my thesis committee member Dr. Randy H. Moss and Dr. Bruce McMillin who have

examined my research work and provided insightful suggestions.

 Lastly, I am grateful to all those who have directly and indirectly helped me

during the course of my studies and my research.

 v

TABLE OF CONTENTS

 Page

ABSTRACT... iii

ACKNOWLEDGEMENTS... iv

TABLE OF CONTENTS...v

LIST OF ILLUSTRATIONS.. vii

LIST OF TABLES... ix

1. INTRODUCTION...1

1.1. ANOMALIES PERTAINING TO THE SPINE..1

1.2. THESIS OVERVIEW..6

2. SIZE-INVARIANT FEATURES FOR DISCRIMINATING CERVICAL
VERTEBRAE FOR THE PRESENCE OF ANAMOLIES.......................................7

2.1. ALGORITHMS FOR CALCULATING SIZE-INVARIANT FEATURES.......7

2.1.1. Overview of the problem...7

2.1.2. Determination of vertebral boundary ..7

2.1.3. Pre-processing involved towards calculation of size-invariant
convex-hull based features..8

2.1.4. Description of size-invariant convex-hull based features12

2.1.5. Preprocessing involved towards calculation of size-invariant features
based on flipping of vertebra over centroidal axes13

2.1.6. Description of size-invariant features based on flipping of vertebra
over centroidal axes ..17

2.2. EXPERIMENTS PERFORMED...18

2.2.1. Experimental Data...18

2.2.2. Generation of training and test sets ...20

2.2.3. Classification ...20

2.3. RESULTS AND CONCLUSION..23

2.3.1. Experimental Results...23

2.3.2. Conclusions ...28

 vi

3. ORIENTATION ESTIMATION OF LUMBAR VERTEBRAE IN X-RAY
IMAGES USING 3D MODELS..30

3.1. GENERATION OF 3D MODELS ..30

3.1.1. Overview of the problem...30

3.1.2. Azimuth and elevation angles ...32

3.1.3. Cropping the pedicle ...33

3.2. CREATING AND SAVING THE PROJECTION IMAGES38

3.2.1. Projection of 3D models..38

3.2.2. Storing and indexing of projection images..39

3.3. ALGORITHM TO COMPUTE ORIENTATION CHARACTERISTICS
OF LUMBAR VERTEBRAE ...41

3.3.1. Determination of vertebral boundary ..41

3.3.2. A customized algorithm for resizing images...42

3.3.3. Algorithm to compute the best matching 3D projection for each
lumbar vertebra ...44

3.4. EXPERIMENTS PERFORMED...51

3.4.1. Experimental Data...51

3.4.2. Training data and test data...53

3.4.3. Classification ...53

3.5. RESULTS AND DISCUSSION..56

3.5.1. Experimental Results...56

3.5.2. Conclusions ...56

APPENDICES

A. Read-Me file for the project ‘Discrimination of Cervical Vertebrae for
presence of Claw, Traction and Anterior Osteophytes’...59

B. Read- Me file for the project ‘NewDiscSpaceNarrowing’76

C. Read- Me file for the project ‘NewSubluxation’ ...81

BIBLIOGRAPHY..87

VITA..89

 vii

LIST OF ILLUSTRATIONS

Figure Page

1-1: Cervical spine x-ray image example from the NHANES image collection
archived at National Library of Medicine (NLM). Cervical vertebrae are
highlighted in the boxed region. ..2

1-2: The boundary shape of cervical vertebrae extracted from x-ray images......................3

1-3: Lumbar spine x-ray image example from the NHANES image collection
archived at National Library of Medicine (NLM). Lumbar vertebrae are
highlighted in the boxed region. ..4

1-4: The boundary shape of lumbar vertebrae extracted from x-ray images.5

2-1: A filled cervical vertebra. ...8

2-2: Filled convex hull of the cervical vertebra in Figure 2-1. ..9

2-3: Exclusive-OR region between filled vertebra D and convex hull H.10

2-4: Example of extraction of anterior, superior and inferior sides from exclusive-OR
of filled vertebra and convex hull. ...10

2-5: Image of cervical vertebra illustrating the posterior side bounded by dotted lines
which are passing through the centroid of the vertebra. ..12

2-6: Moment normalized vertebra image with the posterior side horizontal. The
centroidal axis parallel to the posterior edge divides the vertebra into two halves,
XT and XB...15

2-7: Moment normalized vertebra image with the superior side horizontal. The
centroidal axis parallel to the superior edge divides the vertebra into two halves,
YT and YB. ..16

3-1: 3D model of lumbar vertebra L1 obtained by segmentation and smoothening of
the layered CT scan images. ..31

3-2: 3D model for lumbar vertebra L2 obtained by segmentation and smoothening of
the layered CT scan images. ..32

3-3: Azimuth and elevation angles [16]...33

3-4: Top view of 3D model L1. ...34

3-5: Center blob from top view of 3D model for L1. ..34

3-6: 3D model L1 showing optimal pixel to cut off pedicle..35

3-7: 3D model for lumbar vertebra L1 after cropping out the pedicle...............................36

 viii

3-8: 3D model for lumbar vertebra L2 after cropping out the pedicle...............................36

3-9: 3D model for lumbar vertebra L3 after cropping out the pedicle...............................36

3-10: 3D model for lumbar vertebra L4 after cropping out the pedicle.............................37

3-11: 3D model for lumbar vertebra L5 after cropping out the pedicle.............................37

3-12: A projection of lumbar vertebra L1 at viewing angles (-90.0, 1.0). Lengths of
posterior and superior sides are labeled. ..40

3-13: A filled lumbar vertebra obtained by B-spline and image fill operation over the
36 boundary points...41

3-14: Exclusive-OR between lumbar vertebra LR and its optimal projection.47

 ix

LIST OF TABLES

Table Page

2-1: Distribution of cervical vertebrae dataset for detecting claw, traction and anterior
osteophytes...19

2-2: K-Means classification results for cervical vertebrae using six features.24

2-3: K-Means classification results for cervical vertebrae using seven features.25

2-4: Number of clusters used for each classification using K-means clustering over
six features (F1-F6). ..26

2-5: Number of clusters used for each classification using K-means clustering over
seven features (F1-F7)...27

2-6: K-Means classification results for cervical vertebrae using the five convex hull
based features...28

3-1: Computation times of resizing images for the investigated resizing functions..........44

3-2: Distribution of lumbar vertebrae cases based on type of lumbar vertebra.52

3-3: Areas obtained under Receiver Operating Characteristic (ROC) curve for
classifying lumbar vertebra L1-L5 for traction, respectively.56

1

1. INTRODUCTION

1.1. ANOMALIES PERTAINING TO THE SPINE

 Osteoarthritis is the term used to describe the deterioration of joints in the body

due to age, injury or disease. Osteoarthritis affects more than 16 million people in

America alone, with a higher probability of affecting people over the age of 75 years

[1]. Osteoarthritis can involve the loss of the cartilage tissue between bones or joints,

which can cause an increase in the friction of joints, leading to a sense of pain and over

time limiting the mobility of joints. An inflammation can also occur on these joints

affected by osteoarthritis which can be seen as an abnormal bone growth or bone spurs,

called as osteophytes [2, 3].

 The Lister Hill National Center for Biomedical Communications, an R&D

division of the National Library of Medicine (NLM), National Institutes of Health (NIH),

has been active in conducting research in the field of analysis of x-ray images of the spine

using computer assisted techniques. It has developed a system called the Web-based

Medical Information Retrieval System (WebMIRS) which provides online access to a

large repository of x-ray images of spines and other associated data that were surveyed as

a part of the National Health and Nutrition Examination Surveys (NHANES) [4]. Several

techniques have been developed that allow researchers and other groups to retrieve such

data efficiently. The conditions pertaining to the presence of osteoarthritis can be studied

using digitized radiographs like x-rays and computed tomography (CT) scans obtained by

Content Based Image Retrieval (CBIR) techniques. This research undertaking was

devoted to the development of computer aided techniques with use of x-rays and CT

scans in order to assist in the discrimination of variations of anterior osteophytes in

normal cervical and lumbar spine vertebrae.

 Several methods had been investigated to classify anterior osteophytes. Macnab’s

classification is based on radiology and pathology [5, 6], and involves a grading system

defined by a medical expert to assign severity levels to the Macnab classes. Macnab’s

2

classification defines claw and traction osteophytes. A claw osteophyte extends from the

vertebral rim and curves in the direction of the adjacent disc. A claw region is typically

triangular in shape and is curved at the tip of the region. A traction osteophyte tends to

protrude horizontally, is usually thick, does not tend to curve at the tips and does not

extend across the inter-vertebral disc space. The severity grading system includes three

grades for osteophytes as slight, moderate and severe. If a vertebra does not exhibit claw

or traction or does not exhibit a moderate or a severe grade for anterior osteophytes, the

vertebra is considered normal. These abnormalities can lead to friction between joints,

deterioration of the bone tissue and the cartilage tissue around the vertebra, causing pain

and also can limit the mobility of joints [2]. Hence, early detection of these anomalies can

be helpful in assisting the development of patient treatment plans.

Figure 1-1: Cervical spine x-ray image example from the NHANES image collection archived at

National Library of Medicine (NLM). Cervical vertebrae are highlighted in the boxed

region.

 Figure 1-1 presents an example of a cervical spine x-ray image. The highlighted

region shows the cervical spine vertebrae. Figure 1-2 provides the borders of cervical

3

vertebrae C3–C6, as determined by a domain expert at the National Library of Medicine

(NLM). For each cervical vertebrae provided in the data set a set of 36 points on the

vertebral boundary were provided which could define the shape of the vertebra. Also, for

each case truth values indicative of the presence of claw, traction and anterior

osteophytes were provided by a domain expert at NLM. Size-invariant descriptors based

on convex hull of vertebrae had been investigated [2] to classify lumbar vertebrae for the

presence of anterior osteophytes. A similar approach is adopted for classifying cervical

vertebrae for the presence of claw, traction and anterior osteophytes. The shape of a

normal vertebra is typically rectangular and hence similar to its convex hull, hence any

deviation from its regular rectangular shape could be tagged as a presence of an anterior

osteophyte. Figure 1-2 shows an example of cervical spine vertebrae where vertebra C3

shows a presence of traction and a moderate anterior osteophyte, C4 shows the presence

of claw and severe anterior osteophyte, and C5 shows a presence of traction. In this

research undertaking, new size-invariant descriptors are proposed for detecting claw,

traction and anterior osteophytes in cervical vertebrae. The new size-invariant features

proposed are based on comparing the opposite edges of the vertebra about axes passing

through its centroid.

Figure 1-2: The boundary shape of cervical vertebrae extracted from x-ray images.

 The use of 3D models of body joints is an active research field and can offer

newer avenues to be explored by studying 3D models of vertebral joints. Three-

4

dimensional modeling of lumbar vertebrae is discussed in this thesis which can be used in

detection of various deformations relating to the vertebral spine column like traction.

Traction as defined by Macnab’s classification is an osteophyte that is usually thick and

protrudes horizontally, which does not tend to curve at the tips and does not extend across

the inter-vertebral disc space. Figure 1-3 presents an example of a lumbar spine x-ray

image. The highlighted region shows the cervical spine vertebrae. Figure 1-4 provides the

borders of lumbar spine vertebrae L1–L5, as determined by a domain expert at the

National Library of Medicine (NLM).

Figure 1-3: Lumbar spine x-ray image example from the NHANES image collection archived at

National Library of Medicine (NLM). Lumbar vertebrae are highlighted in the boxed

region.

 The lumbar vertebrae are larger in size as compared to the cervical vertebrae.

Hence, we investigate into generating 3-D models to assist size-invariant features in

detecting anomalies in lumbar vertebrae. Three-dimensional models of lumbar vertebrae

5

are developed for estimating two-dimensional projected model representations for lumbar

vertebrae in x-ray images. The three-dimensional (3D) models of lumbar vertebrae, L1-

L5, are derived from cross-sectional CT images of a normal lumbar vertebra and

algorithms for combining them into 3D representations were provided by Dr. Sameer

Antani and Dr. Rodney Long at NLM. A data set of lumbar vertebrae is provided with

images and necessary textual data. For each lumbar vertebra provided in the data set a set

of 36 points on the vertebral boundary are provided which could define the shape of the

vertebra. The data set also consists of a truth table for each case indicating the presence

or absence of traction as provided by a domain expert at NLM. This thesis presents the

work done towards detection of traction based on K-Means clustering model

development from two-dimensional projections of the 3D modes models and nearest

centroid classification of lumbar spine x-ray images.

Figure 1-4: The boundary shape of lumbar vertebrae extracted from x-ray images.

6

1.2. THESIS OVERVIEW

 This thesis introduces image analysis techniques and pattern classification

methods to determine anomalies related to the vertebral spine. Previously, computer

assisted techniques were studied using radius of curvature and boundary gradient features

for detecting anterior osteophytes in cervical vertebrae [7] and were also used in studying

herniation classification of inter vertebral discs in lumbar vertebrae [8]. In this thesis, x-

ray images are used for cervical vertebrae and techniques are developed to detect

anomalies and classify them accordingly. Also, the use of computed tomography scans

for modeling of lumbar spine is investigated so as to allow visualizing the lumbar spine

in three dimensional orientations. Attempts are made to detect the presence of traction in

lumbar x-ray spine images by comparing them to projections of the 3D models.

 The sections in the remainder of the thesis are explained below. Chapter 2

describes the methods used and experiments performed for discriminating cervical

vertebrae for presence of claw, traction, and anterior osteophytes. Sub-sections 2.1.3 and

2.1.4 describe the procedure for calculating size-invariant features for cervical vertebrae

based on the convex hull techniques and sub-sections 2.1.5 and 2.1.6 describe the

procedure for calculating size-invariant features for cervical vertebrae by flipping across

centroidal axes. Section 2.2 describes the experiments performed for the purpose of

classifying the data set of cervical vertebrae using the size-invariant features calculated

for each case. The results of the classification problem are mentioned and discussed in

section 2.3. Chapter 3 investigates the use of three dimensional modeling of lumbar

vertebrae in order to assist in developing methods to discriminate lumbar vertebrae based

on the presence of traction. Sections 3.1 and 3.2 explain the generation of 3D models of

lumbar vertebrae using computed tomography (CT) scans and the generation of the

projections of 3D models at different viewing angles respectively. Section 3.3 describes

an algorithm developed to compare lumbar vertebrae images with projections of 3D

models at different viewing angles. The results and conclusions of the methodologies

used are explained in section 3.5.

7

2. SIZE-INVARIANT FEATURES FOR DISCRIMINATING CERVICAL

VERTEBRAE FOR THE PRESENCE OF ANAMOLIES

2.1. ALGORITHMS FOR CALCULATING SIZE-INVARIANT FEATURES

2.1.1. Overview of the problem

 In this study, new size-invariant features are proposed for cervical vertebrae

analysis, including anterior osteophytes discrimination and the detection of claw and

traction. The proposed features extend previous research to detect anterior osteophytes

[2], which utilized size-invariant-based descriptors to quantify deviations of a vertebra’s

shape from its typical convex shape. This study proposes new size-invariant descriptors

beyond the analysis of convex hulls.

2.1.2. Determination of vertebral boundary

 For each cervical vertebra in the data set we are provided with a text file which

consists of ()yx, pair of coordinates of 36 points along the boundary of the vertebra.

These 36 points are marked along the vertebra boundary by experienced radiologists and

domain experts. For the purpose of calculating the size-invariant features, we need to

compute the shape of the vertebra. A second order B-spline [2] algorithm was applied to

the set of 36 coordinates that computes a set of connected points which make up the

complete vertebra boundary. An image fill operation was performed upon the set of

connected boundary pixels to get the completely filled vertebra. If),(yxDD = denotes

the filled vertebra, then D was defined by equation 2.1. Figure 2-1 shows a filled

cervical vertebra to illustrate the procedure explained above.

8

⎩
⎨
⎧

=
 elsewhere. 0,

boundaryvertebratheonorinsideliesy)(x,if 1,
D (2.1)

Figure 2-1: A filled cervical vertebra.

2.1.3. Pre-processing involved towards calculation of size-invariant convex-hull

based features

 The first five features developed for discrimination of claw, traction and anterior

osteophytes were based on comparisons between vertebra image and the convex hull of

the vertebra [3]. The convex hull of a set of points Q is defined as the smallest convex

simple polygon enclosing all the points of Q [9]. In order to compute the convex hull of

the vertebra image, we use the implementation of the Quickhull algorithm provided by

Barber et al. [10]. The convex hull of the cervical vertebra in Figure 2-1 is shown in

Figure 2-2. The convex hull image),(yxHH = is defined as,

9

⎩
⎨
⎧

=
 elsewhere. 0,

D ofhullconvextheinsideliesy)(x,if 1,
H (2.2)

Figure 2-2: Filled convex hull of the cervical vertebra in Figure 2-1.

 Let X be the exclusive-OR of the vertebra image D with the filled convex hull

image H . Figure 2-3 shows the exclusive-OR of the cervical vertebra shown in Figure

2-1 with its convex hull. Figure 2-4 describes the areas obtained in X pertaining to the

different edges of the vertebra. The areas pertaining to the superior side, inferior side and

the anterior side are labeled.

),(),(),(yxHyxDyxX ⊕= (2.3)

⎩
⎨
⎧ ==∨==

=
otherwise 1,

0 y) H(x,y)D(x, 1y)H(x,y)D(x, if 0,
 y) X(x, (2.4)

10

Figure 2-3: Exclusive-OR region between filled vertebra D and convex hull H.

Figure 2-4: Example of extraction of anterior, superior and inferior sides from exclusive-OR of

filled vertebra and convex hull.

 Depending upon the vertebra under consider, X may include one or more

connected regions for each vertebral side showing a concave edge for the corresponding

vertebra. Let XHD Aand A,A be the areas of vertebra image D , convex hull region H ,

and the exclusive-OR between D and H . Let k denote the number of distinct

11

connected regions in X considering 8-connectivity. If iX , for k ..., 3, 2, 1,i = , denotes

each of the distinct connected regions, then the set X can be represented as U
k

i
iXX

1=

= .

The centroid ()DD yx , of the filled vertebra D was calculated and the centroids

()ii yx , , k ..., 3, 2,1,i = , for each of the k connected components within X having

areas k321 A..., , A, A,A were calculated. Figure 2-5 shows the position of the centroid of

the cervical vertebra in Figure 2-1. Since, this research undertaking was aimed at

calculating abnormalities like claw, traction and osteophytes pertaining to the anterior

side of vertebrae, it can be concluded that the information corresponding to the posterior

region does not contribute in discriminating such anterior side abnormalities and hence

can be considered irrelevant. Consider PX to be the subset of set X , XX P ⊆ ; where

PX was computed as U
k

i
mP XX

1=

= such that mX does not belong to the posterior side of

the vertebra. In order to identify if iX belongs to the posterior side or not, we consider

the positioning of the centroid ()ii yx , corresponding to region iX . The region iX was

said to belong to the posterior side if Di xx > and Di yy < . Such iX are not included

in the set PX . The area of the exclusive-OR region not including the posterior side was

given by, ∑
=

=
k

i
iP AA

1

, for all i , such that, ki ≤≤1 and Pi XX ⊆ . In order to compute

the area of pertaining only to the inferior side, we consider the subset IX of X ,

XX I ⊆ , where U
k

i
mI XX

1=

= , such that mX belongs to the inferior side of the vertebra.

Analogous to computing PX , any region iX was considered in computing IX , if and

only if, for the centroid ()ii yx , corresponding to region iX , the condition Di xx > and

Di yy > was true. The area of the exclusive-OR region pertaining only to the inferior

side of the vertebra was given as, ∑
=

=
k

i
iI AA

1

, such that, ki ≤≤1 and Ii XX ⊆ .

Similarly, the areas corresponding to the superior side of the vertebra, SA and the

anterior side of the vertebra, TA were calculated. The calculated values for areas were

12

used in computing the convex-hull based features for discrimination of claw, traction and

anterior osteophytes in cervical spine.

Figure 2-5: Image of cervical vertebra illustrating the posterior side bounded by dotted lines which

are passing through the centroid of the vertebra.

2.1.4. Description of size-invariant convex-hull based features

 For a given vertebra, the following features were calculated based on the

computations described in sub-section 2.1.3:

1) The ratio between the area of the filled vertebra and the area of the filled convex

hull of the vertebra,

H

D

A
AF =1 (2.5)

13

2) The ratio between the area of the exclusive-OR region without the posterior side

regions and the area of the filled convex hull of the vertebra,

H

PX

A
A

F =2 (2.6)

3) The ratio between the area of the exclusive-OR regions pertaining to the inferior

side of the vertebra and the area of the vertebra,

D

I

A
AF =3 (2.7)

4) The ratio between the area of the exclusive-OR regions pertaining to the superior

side of the vertebra and the area of the vertebra,

D

S

A
AF =4 (2.8)

5) The ratio between the area of the exclusive-OR regions pertaining to the anterior

side of the vertebra and the area of the vertebra,

D

T

A
AF =5 (2.9)

2.1.5. Preprocessing involved towards calculation of size-invariant features based on

flipping of vertebra over centroidal axes

 The next features that were computed were based on flipping the vertebra about

its centroidal axes. For this, first we consider the set of points D corresponding to the

completely filled vertebra as described in sub-section 2.1.1. The orientation of the

vertebra was estimated by computing the corner points of vertebra denoted by D . The

corner points can be computed from the topmost, leftmost, rightmost and bottommost

points of the vertebra.

14

 In order to make a comparison of the shapes of the posterior and anterior sides,

we first calculate the orientation of the vertebra along the posterior side by calculating the

slope of the line joining the end points of the posterior side. The corners points or the end

points of the posterior side correspond to the topmost and rightmost points of the vertebra

as can be seen in Figure 2-1. Now, the vertebra was rotated by the angle calculated from

the slope of the posterior side, such that the slope of the posterior side of the rotated

vertebra becomes zero, giving the vertebra a horizontal orientation along its posterior

side.

 Moment normalization [11] was applied to the rotated vertebra so as to eliminate

any skeweness from its alignment as shown in Figure 2-6. Let MNX denote the set of

points contained in the moment normalized vertebra with MNA corresponding to the area

described by the points in MNX . Next, the centroid ()MNMN yx , for the moment

normalized vertebra MNX was calculated. Using the centroid ()MNMN yx , , the set MNX

was divided into two disjoint sets TX and BX corresponding to top and bottom halves of

MNX , such that, for any point),(yxP in the set MNX ,),(yxP belongs to set TX if

MNyy ≤ and),(yxP belongs to the set BX if MNyy > . It can be easily seen that

MNBT XXX =∪ . Figure 2-6 clearly shows the sets MNX , TX and BX . As seen in

Figure 2-6, TX denotes the posterior half of the vertebra and BX denotes the anterior

half of the moment normalized vertebra in MNX .

{ }MNMNT yyXPP(x,y)X ≤∧∈= | (2.10)

{ }MNMNB yyXPP(x,y)X >∧∈= | (2.11)

15

XT

XB

Centroidal axis

Figure 2-6: Moment normalized vertebra image with the posterior side horizontal. The centroidal

axis parallel to the posterior edge divides the vertebra into two halves, XT and XB.

 In an attempt to make a comparison between the shapes of the posterior and

anterior edges, we first flip the anterior half of the vertebra in BX along the centroidal

axis of the moment normalized vertebra passing through the centroid ()MNMN yx , and

parallel to line joining the end points of the posterior edge. Let the flipped anterior half be

denoted by flippedBX _ . Finally, we compute the set RX as the exclusive-OR between TX ,

the posterior half and flippedBX _ , the flipped anterior half of the vertebra.

flippedBTR XXX _⊕= (2.12)

Let
XRA be the area of the exclusive-OR set RX .

 Similarly, in order to make comparisons between the edges of the vertebra

pertaining to the superior and inferior sides, we compute the orientation of the vertebra

along the superior side by calculating the slope of the line joining the end points of the

superior side of the vertebra. Using, the angle calculated from this slope, the vertebra was

rotated such the superior side of the vertebra has a horizontal alignment. Moment

normalization was performed so as to obtain the moment normalized vertebra MNY . The

set MNY and the set MNX correspond to the same vertebra, but are different as the

16

orientation of the vertebra in each case differs, although they have approximately the

same area MNA . Next, the points in set MNY were divided into two distinct sets TY

and BY , such points lying above the centroid of MNY belong to set TY , or set BY

otherwise. This is done by computing a line passing through the centroid ()MNMN yx , of

the vertebra and is parallel to the line joining the end points of the superior side. The set

TY corresponds to the vertebra half containing the superior side and the set BY

corresponds to the vertebra half containing the inferior side.

YT

YB

Centroidal axis

Figure 2-7: Moment normalized vertebra image with the superior side horizontal. The centroidal

axis parallel to the superior edge divides the vertebra into two halves, YT and YB.

 In order to compare the shapes of the superior and posterior sides, we first flip the

vertebra half BY containing inferior side about the centroidal axis parallel to the superior

side as shown in Figure 2-7. Let the flipped inferior side vertebra half be denoted by

flippedBY _ . Finally, we compute the set RY as the exclusive-OR between TY , the vertebra

half containing the superior side and flippedBY _ , the vertebra half containing the flipped

inferior side.

flippedBTR YYY _⊕= (2.13)

Let
YRA be area of the exclusive-OR set RY .

17

The calculated values for areas were used in computing novel features for discrimination

of claw, traction and anterior osteophytes in cervical spine.

2.1.6. Description of size-invariant features based on flipping of vertebra over

centroidal axes

For the given vertebra, the following features were calculated based on the computations

described in sub-section 2.1.5:

1) The ratio of the area obtained by exclusive-OR operation between the anterior and

the posterior sides of the moment normalized vertebra and the area of the moment

normalized vertebra,

MN

XR

A
A

F =6 (2.14)

2) The ratio of the area obtained by an exclusive-OR operation between the superior

and the inferior sides of the moment normalized vertebra and the area of the

moment normalized vertebra,

MN

YR

A
A

F =7 (2.15)

18

2.2. EXPERIMENTS PERFORMED

2.2.1. Experimental Data

The experimental data was provided by the National Library of Medicine (NLM), which

contained the following:

1) A data sheet consisting of a table where each row was a tuple τ,

()ISISIS o,o,t,t ,c ,c name,τ = . Here, the attribute name contained a string for

the vertebra name. The attributes Ic and Sc have values true/false indicating the

presence of claw on the superior and inferior sides of the vertebra respectively.

The attributes St and It have values true/false indicating the presence of

traction on the superior and inferior sides of the vertebra respectively. Lastly, the

attributes So and Io have enumerated labels { }severemoderate, slight,

indicating a grade for the presence of anterior osteophytes on the superior and

inferior sides of the vertebra.

2) For each vertebra in the data sheet, a text file was provided which contained

values representing ()yx , coordinates of 36 points along the vertebral boundary

for the corresponding vertebra.

 The data set provided consisted of a total of 390 cervical vertebrae for which the

proposed features were calculated in order to facilitate in determining the presence of

claw, traction and anterior osteophytes. The 36 points along the vertebral boundary for

each vertebra were provided to NLM by experienced radiologists and domain experts.

For the entire dataset, three new classes of attributes ()ot, c, were introduced, of which

c and t had values labeled true/false , where c was indicative of the presence of claw

and t was indicative of the presence of traction. The attribute class, c , indicating the

presence of claw was assigned a value true , if either sc , the attribute class for presence

of claw at superior side or Ic , the attribute class for presence of claw at the inferior side

had a value true ; otherwise it was assigned the value false . Similarly, the attribute class

19

t for presence of traction was assigned values based on the values St and It

corresponding to the superior and inferior sides. The attribute o had an enumerated label

{ }severe moderate, slight, indicating the presence of anterior osteophytes. This attribute

was assigned a value labeled severe if either, So , the superior side or Io , the inferior

side label had a value severe ; else it was assigned a value labeled moderate if either

So or Io had a value moderate ; otherwise it was assigned a value labeled slight . For

this research undertaking, the discrimination of anterior osteophytes was done for a

normal/abnormal classification. Hence, for all the vertebra cases provided in the data set,

the vertebra labels for anterior osteophytes bearing a label slight were considered to be

normal and vertebra labels having the label moderate or severe were considered to be

abnormal.

 The data set was stratified by the type of cervical vertebrae, which are C3 – C7. It

was observed that the data set of 390 cervical vertebra consisted of 97 C3s, 99 C4s, 96

C5s, 76 C6s and 22 C7s. The 390 entries in the data set when grouped by target variables

c , t and o showed the following distribution.

Table 2-1: Distribution of cervical vertebrae dataset for detecting claw, traction and anterior

osteophytes.

 Number of cervical vertebrae

Claw/No claw 242/148

Traction/No traction 212/178

Anterior Osteophytes
(abnormal/normal) 258/132 (82 severe , 176 moderate)

 The features 71 FF − explained in section 2.1 are calculated for each vertebra

provided in the data set. These features were developed keeping in mind the aim of this

research undertaking which was investigation of cervical vertebra for the presence claw,

traction and anterior osteophytes that have any characteristic deviations in their shape

20

from a normal rectangular shape. The features 51 FF − which are based on comparisons

with the convex hull of the vertebra and the features 76 FF − which characterize the

difference in curvature of the sides of the vertebra can be considered as the basis for

detection of claw, traction and anterior osteophytes.

2.2.2. Generation of training and test sets

 In order to generate the training and test sets, first we integrated the features

calculated for each vertebra and the data provided. The integrated data set hence

consisted of tuples of the form, o) t, c, ,F ,F ,F,F,F,F,F(name,τ 7654321n = ; where

name , c , t and o are as explained in sub-section 2.2.1 and 71 FF − are the features

calculated for the vertebra corresponding to name .

 For classification of cervical vertebra for the presence of claw as claw/no claw,

for the presence of traction as traction/no traction and the presence of anterior

osteophytes as abnormal/normal, twenty randomly generated training sets and test sets

were generated for each of the three classification problems. The data set was divided

into training and the test sets. Ninety percent of the normal and abnormal feature vectors

were used in the training set and the remaining ten percent for the test set.

2.2.3. Classification

 The three classification problems involved generating a model that could classify

a given input vector into classes claw/no claw, traction/no traction, and abnormal/normal

osteophytes, respectively. These classifications were performed on the data set of cervical

vertebrae with features 61 FF − and with features 71 FF − separately. The following

procedure was applied for each of the three classification problems (claw/no claw,

traction/no traction and abnormal/normal osteophytes). For each of the 20 randomly

generated training and test sets, first, the mean and standard deviation values, μ and σ

were calculated for all features F in the feature set 71 FF − of the training set.

21

Second, the feature vectors are normalized by subtracting each feature by its mean and

dividing by its standard deviation. For each feature F in the feature set, we calculate the

normalized feature normF as, { }normnormnorm f F,ffF ∃∈∀= | , where normf was calculated

as,
σ
μ-f f norm = , for normnorm Ff ∈ and Ff ∈ . Third, the number of clusters for each

class (claw, no claw) was estimated by using subtractive clustering [12, 13]. Fourth,

using the normalized featured vectors for the training data and the number of cluster

estimated for each class, K-means clustering [14, 15] was performed to determine the

cluster centers for each class. Fifth, we normalize the set of test vectors using the mean

and standard deviation values obtained for the training set. Sixth, for each of the feature

vectors in the test set, nearest centroid classification was performed. For each normalized

feature vector in the test set taken, the Euclidean distance to the cluster centers of each

class were computed. The minimum of the Euclidean distance was calculated and

depending upon the class (claw, no claw) of the cluster center for which the Euclidean

distance was of minimum value, a similar label was assigned to the test feature vector.

Seventh, the true negative and true positive classification rates are computed for the test

data. True positive refers to the percentage of test case vertebrae with claw being

classified correctly and true negative refers to the percentage of test case vertebrae with

no claw being classified correctly. Eighth, the process was repeated for all the 20

randomly generated training and test sets. The entire procedure of classification was

performed over the set of features 61 FF − and the set of features 71 FF − and

corresponding results were generated.

 The procedure for classification of traction and anterior osteophytes was

analogous to the procedure for claw. The cluster centers for the classes of traction and no

traction are computed in the process of classifying traction. The procedure for classifying

anterior osteophytes was slightly modified. For anterior osteophytes, cluster centers were

calculated for each of the three classes slight, moderate and severe. For the test vectors,

Euclidean distances were computed to each of the cluster centers. If the minimum

Euclidean distance corresponded to a cluster center for class slight, then the test vector

22

was assigned the label normal. If the minimum Euclidean distance corresponded to a

cluster center for either the class moderate or the class severe, the test vector was

assigned a label abnormal.

23

2.3. RESULTS AND CONCLUSION

2.3.1. Experimental Results

 The results obtained from the experiments performed to classify cervical

vertebrae as claw/no claw, traction/no traction, abnormal/normal for anterior osteophytes

computed based on the six features and computed based on seven features are discussed

below. The classification was done over the provided data set of 390 cervical vertebrae.

Table 2-2 below contains the results of the experiments performed using the six features

61 FF − for classification of claw/no claw, traction/no traction and abnormal/normal for

anterior osteophytes for cervical vertebrae. Table 2-3 below contains the results of the

experiments performed using the seven features 71 FF − for classification of claw/no

claw, traction/no traction and abnormal/normal for anterior osteophytes for cervical

vertebrae as done for the six features 61 FF − . Table 2-2 and Table 2-3 show the results of

classifying the 20 randomly generated test sets using clustering techniques over the

classification models obtained for the training sets using six and seven features

respectively as discussed in sub-section 2.2.3.

 In Table 2-2 and Table 2-3, the column 1 gives the iteration of the training and

test sets generated. Columns 2 and 3 provide the results obtained for claw/no claw

classification, Columns 4 and 5 contain the results obtained for traction/no traction

classification and Columns 6 and 7 give the results for abnormal/normal classification for

detection of anterior osteophytes. All the vertebrae bearing grades moderate or severe

were considered abnormal and all the vertebrae bearing grades slight were considered

normal. Also note that 20 different training and test sets were generated for each

classification problem. The mean and standard deviation values for each classification

result were found are shown at end of Table 2-2 and Table 2-3.

24

Table 2-2: K-Means classification results for cervical vertebrae using six features.

Iter. % Correct
Claw

% Correct
No Claw

% Correct
Traction

% Correct
No Traction

% Correct
Abnormal

% Correct
Normal

1 84.00 71.43 91.67 80.00 85.19 83.33

2 88.00 78.57 79.17 100.00 92.59 66.67

3 88.00 64.29 83.33 86.67 96.30 66.67

4 80.00 78.58 87.50 93.33 77.78 83.33

5 84.00 71.43 83.33 93.33 81.48 83.33

6 80.00 78.58 100.00 73.33 92.59 66.67

7 84.00 92.86 79.17 100.00 85.19 83.33

8 96.00 57.14 79.17 100.00 81.48 66.67

9 88.00 71.43 83.33 86.67 85.19 66.67

10 88.00 78.58 87.50 80.00 85.19 66.67

11 92.00 64.29 91.67 73.33 81.48 83.33

12 80.00 78.58 83.33 86.67 92.59 83.33

13 84.00 71.43 83.33 86.67 77.78 75.00

14 80.00 78.57 83.33 86.67 85.19 83.33

15 84.00 85.72 83.33 86.67 77.78 83.33

16 96.00 57.14 83.33 86.67 85.19 83.33

17 76.00 85.71 91.67 66.67 81.48 75.00

18 92.00 71.43 87.50 73.33 74.07 91.67

19 84.00 85.72 83.33 80.00 81.48 83.33

20 88.00 64.29 95.83 60.00 85.19 66.67

Mean 85.80 74.29 86.04 84.00 84.44 77.08

Std.Dev. 5.43 9.67 5.62 10.90 5.84 8.50

25

Table 2-3: K-Means classification results for cervical vertebrae using seven features.

Iter. % Correct
Claw

% Correct
No Claw

% Correct
Traction

% Correct
No Traction

% Correct
Abnormal

% Correct
Normal

1 84.00 71.43 87.50 80.00 76.92 83.33

2 92.00 78.57 83.33 93.33 73.07 66.67

3 80.00 64.29 79.17 93.33 69.23 100.00

4 72.00 78.58 79.17 93.33 53.84 76.92

5 80.00 85.72 83.33 86.67 76.92 84.62

6 88.00 71.43 83.33 86.67 72.00 72.73

7 88.00 85.72 70.83 93.33 69.23 81.82

8 96.00 50.00 87.50 66.67 80.77 70.00

9 84.00 71.43 79.17 86.67 76.92 66.67

10 92.00 78.58 87.50 80.00 76.92 90.91

11 80.00 64.29 79.17 80.00 73.08 69.23

12 72.00 78.58 87.50 93.33 84.62 100.00

13 80.00 85.72 87.50 80.00 84.62 69.23

14 88.00 71.43 95.83 73.33 69.23 91.67

15 88.00 85.72 83.33 80.00 69.23 80.00

16 96.00 50.00 75.00 80.00 65.38 76.92

17 84.00 92.86 75.00 80.00 76.00 54.55

18 88.00 71.43 79.17 86.67 80.77 83.33

19 88.00 85.72 70.83 80.00 84.62 81.82

20 88.00 57.14 91.67 100.00 73.08 63.64

Mean 85.40 73.93 82.29 84.67 74.32 78.20

Std.Dev. 6.41 11.75 6.36 7.86 7.22 11.65

 Table 2-4 and Table 2-5 provide the number of clusters determined by the

subtractive clustering used over the training data set of six features and seven features

26

respectively. The number of clusters were determined for training data sets for each

classification task of claw/no claw, traction/no traction and abnormal/normal for anterior

osteophytes separately as the training data sets in each task differed. This process was

done for all iterations of K-means clustering and nearest centroid classification of the 20

randomly generated training sets.

Table 2-4: Number of clusters used for each classification using K-means clustering over six

features (F1-F6).

 Number of Clusters

Iter. Claw No
Claw Traction No

Traction
Severe

osteophytes
Moderate

osteophytes
Slight

osteophytes

1 4 5 3 6 8 4 4

2 4 8 3 5 8 3 3

3 4 6 3 6 6 4 3

4 4 5 3 5 5 4 3

5 4 7 3 6 8 4 5

6 4 6 3 8 7 4 3

7 5 6 3 5 8 5 4

8 4 7 3 5 6 3 4

9 4 5 4 5 9 3 4

10 4 8 3 8 6 3 5

11 4 6 3 5 8 3 4

12 4 5 3 5 6 3 4

13 4 7 4 6 6 6 4

14 4 6 3 5 6 4 4

15 5 6 3 5 7 3 4

16 4 7 3 5 7 4 3

17 5 7 2 5 6 3 3

18 5 8 2 5 8 4 4

19 4 8 3 7 7 4 3

20 4 6 3 8 7 3 3

27

Table 2-5: Number of clusters used for each classification using K-means clustering over seven

features (F1-F7).

 Number of Clusters

Iter. Claw No
Claw Traction No

Traction
Severe

osteophytes
Moderate

osteophytes
Slight

osteophytes

1 4 4 4 11 10 7 5

2 4 5 4 11 10 7 4

3 3 5 5 11 11 6 4

4 4 4 5 10 9 5 4

5 4 6 3 12 12 6 5

6 4 4 4 10 13 6 4

7 4 6 4 10 10 6 4

8 3 4 5 10 11 4 5

9 4 4 5 9 10 6 6

10 4 5 4 9 10 5 5

11 3 5 3 9 11 4 4

12 4 4 4 10 9 5 4

13 4 6 4 11 11 8 4

14 4 4 3 12 10 7 4

15 4 6 4 9 12 7 4

16 3 4 4 10 11 5 6

17 4 5 4 11 10 8 4

18 4 6 4 11 10 7 5

19 4 5 5 12 10 5 7

20 4 5 4 10 20 6 5

 In order to discuss the experimental results obtained using the six features and the

seven features, the results for the five convex hull features are generated so as to provide

a basis to discuss the contribution of features 6F and 7F in the classification process. A

summary of the results obtained for classification of claw, traction and anterior

28

osteophytes using the five convex hull based features are given in Table 2-6. Columns 2

and 3 represent the results obtained for claw/no claw classification, Columns 4 and 5

represent the results obtained for traction/no traction classification and Columns 6 and 7

represent the results for abnormal/normal classification for detection of anterior

osteophytes. All the vertebrae bearing grades moderate or severe were considered

abnormal and all the vertebrae bearing grades slight were considered normal. Columns 2-

7 provide the average results of percentage of cervical vertebrae in the data set that were

classified correctly for each class.

Table 2-6: K-Means classification results for cervical vertebrae using the five convex hull based

features.

 % Correct
Claw

% Correct
No Claw

% Correct
Traction

% Correct
No Traction

% Correct
Abnormal

% Correct
Normal

Mean 85.20 70.70 81.30 78.00 86.30 65.80

Std.Dev. 7.90 13.31 7.09 10.84 6.37 10.44

2.3.2. Conclusions

 New size invariant features were investigated and developed in order to improve

the results of classification for claw, traction and anterior osteophytes. It can be

concluded that the proposed size-invariant features show that they are capable of

discriminating cervical vertebrae for the presence of claw, traction and osteophytes as

seen by the results obtained in Table 2-2 and Table 2-3. The use of features 61 FF −

provided average discrimination rates of 85.80% for claw, 86.04% for traction and

84.44% for detecting anterior osteophytes and 74.29% for no claw, 84.00% for no

traction and 77.08% for normal vertebra with slight osteophyte. The use of features

71 FF − provided average discrimination rates of 85.40% for claw, 82.29% for traction

and 74.32% for detecting anterior osteophytes and 73.93% for no claw, 84.67% for no

traction and 78.20% for normal vertebra with slight osteophyte. Overall, the performance

compared to the results seen earlier for the five convex hull based features have been

29

improved. This leads to the fact that the features 6F and 7F provide novel information in

classification of cervical vertebrae for anomalies like claw, traction and anterior

osteophytes.

 It can be seen that the six features and the seven features provided better results

for traction as compared to claw and anterior osteophytes. The results obtained by using

the features 6F and 7F are very identical in discrimination of cervical vertebrae for

presence of claw. For the case of discrimination of traction, the six features provided

better results for the case where traction is correctly detected, that is the true positive

cases, while the seven features provided slightly better results to detect the absence of

traction correctly, that is the true negative cases. The seven features also provided better

standard deviation values in detecting absence of traction. In the case of discriminating

cervical vertebrae for anterior osteophytes, the six features provided far better results than

the seven features. Another important observation to be made from Table 2-4 and Table

2-5 is that the number of clusters required in the process of classification of anterior

osteophytes using the seven features 71 FF − is far greater than required for the six

features 61 FF − . This can be one of the reasons that better results were obtained with six

features for discriminating anterior osteophytes.

 The overall goal of the research undertaking was to investigate and develop

features characteristic to anomalies relating to osteoarthritis such as claw, traction and

anterior osteophytes in cervical vertebrae and to develop techniques to classify them

accordingly. It can be concluded that the proposed features can be incorporated into a

content based image retrieval (CBIR) system to allow querying of images with conditions

specific to anomalies like claw, traction and anterior osteophytes.

30

3. ORIENTATION ESTIMATION OF LUMBAR VERTEBRAE IN X-RAY

IMAGES USING 3D MODELS

3.1. GENERATION OF 3D MODELS

3.1.1. Overview of the problem

 This research proposes the use of 3D models to study the shape of lumbar spine

vertebrae in order to assist in detection of anomalies like traction. This involves

generating methods to create 3D models that can be studied and to develop techniques

using size-invariant features for classification of lumbar spine vertebra images based on

presence of traction.

 The initial data that was provided by NLM consisted of a series of images for

each lumbar vertebra L1-L5 developed using computed tomography (CT) scans and a set

of algorithms implemented in Matlab®. These images and the initial algorithms for model

generation were provided by the National Library of Medicine (NLM). The

implementation of the provided algorithms performed as follows. First, for each lumbar

vertebra L1-L5, the corresponding CT scan images were processed using segmentation

tools and a set of binary images B was generated for each L1-L5. Each of these two-

dimensional binary images b , ,Bb ∈ corresponded to the image of the vertebra when

sliced. Since, the binary images b represent the images of a sliced vertebra, hence, when

these two-dimensional binary images b , ,Bb ∈ obtained from the layered CT scans are

stacked one over the other, we get a three-dimensional structure J that describes the

shape of the lumbar vertebra. Third, a three dimensional smoothing operation was

performed over J to produce a smoothened shape of the vertebra, sJ . Last, the set of

points in sJ are applied a patch routine available in Matlab®. The patch routine

displays the points sJ to give a 3D structure which can be viewed as a solid object. The

output of the patch routine was the required 3D model iD as defined in equation 3.1.

31

()
⎪
⎩

⎪
⎨

⎧
=

otherwise. 0,
vertebra. lumbar the of

 structure the on or inside point a is z) y, (x, if 1,
 z y, x,Di (3.1)

 The above procedure was repeated for all five sets of binary images, ,B generated

for the five lumbar vertebrae L1-L5. Hence, we get a set of 3D models

{ }5 4, 3, 2, 1,i D D i == | corresponding to each of the five lumbar vertebrae. The 3D

models for lumbar vertebrae L1 and L2 are shown in Figure 3-1 and Figure 3-2,

respectively.

Figure 3-1: 3D model of lumbar vertebra L1 obtained by segmentation and smoothening of the

layered CT scan images.

32

Figure 3-2: 3D model for lumbar vertebra L2 obtained by segmentation and smoothening of the

layered CT scan images.

3.1.2. Azimuth and elevation angles

 The 3D models for each lumbar vertebra iD generated from layered CT scan

images can be rotated to provide different views of the lumbar vertebrae. Matlab®

incorporates two parameters that are azimuth angle and elevation angle which are used to

define the orientation of a 3D object. With reference to the Matlab® documentation [16],

the definitions of these angles are explained here. Let x be the axis in the right direction,

y be the axis in the direction straight ahead going away and z be the axis in the up

direction as depicted in Figure 3-3. Then, the azimuth angle is defined as the viewing

angle in the xy plane with positive values indicating counter-clockwise rotation from the

viewpoint and vice-versa. The elevation angle was defined as the viewing angle made

above or below the xy plane, here positive values of elevation angle indicate that the

angle was made above the xy plane and negative values of elevation angle indicate that

the angle was made below the xy plane. An illustration of these angles is as shown in

Figure 3-3. For this study, the orientation of lumbar vertebrae will be described using the

pair of these two angles, ()el_angleaz_angle, , where angleaz _ represents the azimuth

33

angle of viewing the object and the angleel _ represents the elevation angle of the

viewing the object. All angles mentioned in this study are measured in degrees, unless

specified otherwise. The orientation corresponding to ()0 90,- represents the front view

of the object.

Figure 3-3: Azimuth and elevation angles [16].

3.1.3. Cropping the pedicle

 As seen for 3D models for lumbar vertebrae L1 and L2 in Figure 3-1 and Figure

3-2, the set D consists of 3D models that represent the complete structure of lumbar

vertebrae L1-L5. For this research undertaking, we required only the vertebrae without

their pedicle portion that connects to the vertebral column. Hence, we revert back to the

algorithms explained in sub-section 3.1.1. The given algorithms were modified so as to

cut out the pedicle portion from each of the 3D models, iD .

 To cut out the pedicle portion, we first needed to compute the top view of the

vertebra in order to compute the position from where the pedicle portion of the vertebra

begins to project out. The smoothened three-dimensional structure, sJ which was

obtained by stacking all the binary images in the set B , represents the structure of the

34

lumbar vertebra model as described in sub-section 3.1.1. In order to proceed with the

cropping of the pedicle, we need to find the top view image of the three-dimensional

structure sJ . To compute the top view projection of sJ , a logical AND operation was

performed over all the binary images b , Bb ∈ , that make up the structure of sJ . The top

view image obtained for L1 is shown in Figure 3-4. In the top view image, we compute

the location from where the pedicle is attached to the rest of the vertebra. Using this

location we crop the pedicle out from the remaining structure of the vertebra so as to

retain only the vertebra part.

Figure 3-4: Top view of 3D model L1.

Figure 3-5: Center blob from top view of 3D model for L1.

Point of maximum
change in slope pc

Point of maximum
change in slope

35

Figure 3-6: 3D model L1 showing optimal pixel to cut off pedicle.

 The center dark blob in the top view image in Figure 3-4 was segmented out as

shown in Figure 3-5 as a white blob. For the segmented center blob, a set of points bB

are determined, such that every point p in bB lies on the boundary of the bottom half of

the center blob. From the set of point bB , a point cp is found such that the change of

slope for the curve defined by the points in bB is the greatest. This point cp denotes the

optimum position from where the pedicle part should be separated out from the rest of the

vertebra. This point cp was then transformed to its equivalent position ()zy,x,j ,

sJj ∈ , where sJ is the three dimensional structure of the lumbar vertebra described in

sub-section 3.1.1. The point j is illustrated in Figure 3-6. All the pixels beyond the

vertical orthogonal plane parallel to the yz plane and passing through the point j are

then changed to background pixels, hence eliminating the pedicle part from the vertebra.

Let this structure be called cJ . Next, the patch routine available in Matlab was then

applied to the vertebra structure without the pedicle, cJ , to generate the required 3D

model. This process was repeated for all the complete 3D models in set D to generate

j(x, y, z)
Point of maximum
change in slope

36

the required 3D models cD . Figure 3-7 through Figure 3-11 show the 3D lumbar

vertebrae models generated after cropping the pedicle.

Figure 3-7: 3D model for lumbar vertebra L1 after cropping out the pedicle.

Figure 3-8: 3D model for lumbar vertebra L2 after cropping out the pedicle.

Figure 3-9: 3D model for lumbar vertebra L3 after cropping out the pedicle.

37

Figure 3-10: 3D model for lumbar vertebra L4 after cropping out the pedicle.

Figure 3-11: 3D model for lumbar vertebra L5 after cropping out the pedicle.

38

3.2. CREATING AND SAVING THE PROJECTION IMAGES

3.2.1. Projection of 3D models

 In an attempt to employ 3D models of lumbar vertebrae in discriminating the

presence of traction in lumbar vertebrae, we need to compare the structure of 3D models

to the structure of vertebrae in our data set. In this research, we compute the orientation

of the 3D models at different angles and find the best matching orientation of the 3D

models to the two dimensional vertebrae boundaries found for vertebrae in the x-ray

images. The lumbar vertebrae boundaries were determined from their respective files

provided by NLM, containing 36 points along the vertebra boundary, using the same

procedure as presented in section 2.1.1. The lumbar vertebrae from x-ray images were

then matched to the corresponding 3D models of lumbar vertebrae of the same type, L1-

L5.

 The lumbar vertebrae models generated are three dimensional in structure, the

data set of the vertebrae to be discriminated for traction can be provided in form of x-rays

or other two dimensional image forms. Hence, in order to compare the provided vertebrae

with the 3D models, it was required to find the two dimensional projection of the 3D

models at different combination for the angles of orientation. The different orientation

angles used in this study are between 100- and 80- for azimuth angle and 10- and 10

for elevation angle with an interval of 0.5 for each. The range of different values for the

azimuth and elevation angles is given by azRange and elRange respectively.

(){ }40t0 t0.5 100- azRange ≤≤+= | (3.2)

(){ }40t0 t0.5 10- elRange ≤≤+= | (3.3)

39

 The sets azRange and elRange both contain 41 different values. For each

azRangeangleaz ∈_ and elRangeangleel ∈_ , the projections of a 3D model

corresponding to a combination pair of ()el_angleaz_angle, gives a total of 1,681

different projection of the 3D model.

3.2.2. Storing and indexing of projection images

 In order to compute the orientation characteristics of lumbar vertebrae in the data

set provided, it was required to generate the projections of a corresponding 3D model for

all 1,681 different combinations of ()el_angleaz_angle, to find the best match. The

process of computing the projections of a 3D model for all different angles had to be

performed for each case of lumbar vertebrae in the experimental data set. The process of

generating the projection for a 3D model was time consuming and was recurring for each

experimental case. Hence, it was decided to compute all the different projections for each

of the 3D models icD , store them and retrieve them whenever needed. For each 3D

model icD , we obtain a set iP , which contained the 1,681 different projections of that

lumbar vertebra model. Next, it was required to save the all the projection images

obtained for all the five models for lumbar vertebrae L1-L5, and to index them for easy

retrieval. The indexing of the projection images involves creating a index for each

projection images based on, first, the label indicating the type of lumbar vertebra viz.

L1-L5 and second, the pair of angles ()el_angleaz_angle, which determined the

orientation of the corresponding 3D model for which the projection was obtained. The

filenames used for projection images contained a label indicating the type of lumbar

vertebra and the corresponding ()el_angleaz_angle, angles of the projection. Hence, the

filenames of the projection images themselves act as an index, which can be used for

indexing of these projection images.

 While indexing and storing the projection images, the aspect ratio of the projected

vertebra model was also calculated. The comparison of projection images of the vertebra

models with the lumbar vertebra images in the data set needed to be performed to

40

compute its orientation characteristics. It was required to calculate the aspect ratios of the

projection images as the resolution of the projection images and the resolution of the

vertebra images in the experimental data set could differ non-linearly.

 For all the vertebrae provided in the data set, it was seen that the resolution of the

vertebrae images in the data was much higher than that of the projection images of 3D

models. Hence, in order to make the projection images comparable in size to that of the

vertebrae in the dataset, it was required to resize the projection images for each vertebra

in the dataset. The length of the posterior side and the length of the superior side are

chosen as representative of the aspect ratios of the projection of the 3D models of lumbar

vertebrae. The length of the posterior side of the lumbar vertebra in the projection image

DpostDist3 and the length of the superior side DtopDist3 are calculated for each of

the projection images, iP , for all the five 3D models. In order to calculate DpostDist3

and DtopDist3 , first the corner pixels of the projection of the 3D vertebra model in the

images iP are computed. Using, the corner pixels, the lengths of the sides can be

calculated, Figure 3-12 illustrates the lengths of the posterior and superior sides that are

calculated. Also, using the corner pixels the slope of the posterior side DslopePost 3 for

the projected vertebra iP was computed.

Figure 3-12: A projection of lumbar vertebra L1 at viewing angles (-90.0, 1.0). Lengths of posterior

and superior sides are labeled.

41

3.3. ALGORITHM TO COMPUTE ORIENTATION CHARACTERISTICS OF

LUMBAR VERTEBRAE

3.3.1. Determination of vertebral boundary

 For each lumbar vertebra in the data set we are provided with a text file which

consists of ()y x, pairs of coordinates of 36 points along the boundary of the vertebra.

These 36 points are marked along vertebra boundary by experienced radiologists and

domain experts. In order to determine the orientation characteristics of the lumbar

vertebra by comparison to the 3D models, we need to compute the shape of the lumbar

vertebra. A second order B-spline [2] algorithm was applied to the set of 36 coordinates

which computes a set of connected points that make up the complete vertebra boundary.

An image fill operation was performed upon the set of connected boundary pixels to get

the completely filled vertebra as shown in Figure 3-13. If),(yxLL ff = denotes the

filled vertebra, then fL was defined as,

()
⎩
⎨
⎧

=
 elsewhere. 0,

boundary vertebratheonorinsideliesy)(x,if 1,
y x,Lf (3.4)

Figure 3-13: A filled lumbar vertebra obtained by B-spline and image fill operation over the 36

boundary points.

42

3.3.2. A customized algorithm for resizing images

 Each lumbar vertebra fL needs to be compared with all the projections iP of its

corresponding 3D model in order to compute the best matching 3D projection for that

lumbar vertebra to determine its orientation characteristics. The resolution of each lumbar

vertebra and the resolution of the projections iP of the 3D models were expected to vary

non-linearly. It was seen that the resolution of lumbar vertebrae in the provided data set

was much larger compared to the resolution of the projection images. Hence, the

projection images are to be resized by up–sampling. Also, the aspect ratios of projections

of 3D models and of the lumbar vertebrae are different, that is, the size of projections

along the posterior edge and the size of the projections along the superior edge vary by

different factors to that of the lumbar vertebrae images. Therefore, projection images are

to be resized by a factor M along one dimension and a different factor N along the

other dimension. The resize algorithm provided in Matlab® was customized so as to

resize the rows of the input image by a factor M and the columns of the input image by

a factor N . This was done by first resizing the projection image only for the row

dimension by a factor M , and then next, the resulting image was then resized only for

the column dimension by a factor N to produce the resized projection image. Hence, the

resizing of the projection image iP using different resizing factors M and N could be

performed to get the resized projection image
1RP .

 For each lumbar vertebra fL , the resize operation was to be performed for each

projection iP . The resizing operation was the dominating factor in determining the

computation time of the entire process of determining the orientation characteristics of

the vertebra fL . Hence, an attempt was made to optimize the resizing operation in order

to reduce its computation time. Since, the images to be resized are binary images, the

resizing of projection images was performed using only the boundary points of the object

in the image. This resizing operation was performed using different resizing factors along

the row and column dimension. The optimization in resizing images is explained by the

following procedure. First, for the projection image iP , let M and N be the row and

43

column scaling factors, respectively, between the projection image iP and vertebra

image. Second, boundary extraction [17] was performed on the projection image iP so as

to produce tP , the boundary of the projection in the image with thickness of one pixel.

The boundary extraction can expressed as a set difference operation given by Gonzalez et

al. [17] as,

()B ,Perode P P iit
ˆ−= (3.5)

where, ()B ,Perode i
ˆ refers to the erosion operation of iP with B̂ , and B̂ refers to the

structuring element taken as,

 1 1 1

=B̂ 1 1 1
 1 1 1

 (3.6)

 Third, the customized resize algorithm was applied to tP using M and N as

resizing factors to produce a resized boundary of the projection tRP . Fourth, an image fill

operation was performed on tRP to generate the resized projection of the 3D model,
2RP .

1RP and
2RP refer to the same resized projection image, but are computed differently.

1RP was computed by applying the customized resize algorithm with resizing factors M

and N , while
2RP was computed by extracting the boundary of the projection iP , next

applying the resizing operation with resizing factors M and N , and lastly performing

an image fill to produce
2RP . The computation time for both the procedure were recorded

over a randomly chosen test set of iP as shown in Table 2-1. The results show that the

second method of resizing projection images has better computation time. The results

show that the second method of resizing images consistently provided an approximate

reduction in computation time by 40% on an average for the resize operation over the

randomly chosen projection images. The resizing operation directly depends upon the

44

number of points in an image to be resized. Hence, the second method performed faster

as the number of points in the projection image was reduced by only considering the

points at the boundary of the projection.

Table 3-1: Computation times of resizing images for the investigated resizing functions.

Resizing factors (M, N)
used to resize iP

Time to compute

1RP (sec.)
Time to compute

2RP (sec.)

(2.389, 1.734) 0.235 0.125

(2.528, 1.734) 0.234 0.156

(2.583, 2.037) 0.282 0.141

(3.35, 2.064) 0.281 0.203

(5.024, 3.169) 0.437 0.297

(5.452, 2.843) 0.390 0.265

(2.478, 1.536) 0.250 0.156

(2.691, 1.956) 0.234 0.172

3.3.3. Algorithm to compute the best matching 3D projection for each lumbar

vertebra

 In order to compute the best matching 3D projection for each lumbar vertebra, the

operations to be performed on the images can take large computation time. Since most of

the operations to be performed on images directly depend on the number of pixels in the

image, the images are thus cropped to optimize the computation time. The minimum

required resolution was calculated to be imgColsimgRows × and was set as the

resolution for all the images required during computation of intermediate and final results

for the given experimental case. The filled vertebra),(yxLf was cropped to the size

 imgCols imgRows × to get the set of points),(yxL , where imgRowsx ≤≤1 and

imgColsy ≤≤1 .

45

 The aspect ratios of the vertebra L are calculated. For this the coordinates the off

the corner pixels of the vertebra L are computed. Using the coordinates of the corner

pixels, the length of the posterior side postDist and the length of the superior side

topDist are calculated. Using the coordinates of the corner pixels of the posterior side,

the slope of the posterior side slopePost of vertebra was also calculated. The value of

slopePost was used to rotate the vertebra defined by the set of points in L such that the

posterior side of the resulting vertebra was exactly vertical. The resulting vertebra was

then translated (shifted) such that the centroid ()LL yx , was positioned at the center of

the image which corresponds to the position ⎟
⎠
⎞

⎜
⎝
⎛

2
imgCols ,

2
imgRows

. Let the set of

points in the translated lumbar vertebra be denoted by RL .

⎩
⎨
⎧

=
 elsewhere. 0,

vertebratheonpointaisy)(x,if 1,
yxLR),((3.7)

where, imgRowsx ≤≤1 , imgColsy ≤≤1 , and the centroid of RL was given by,

() ⎟
⎠
⎞

⎜
⎝
⎛=

2
imgCols ,

2
imgRowsyx LL , (3.8)

 The following process explains the process of computing the best matching

projection of 3D models for the vertebra RL . The vertebra RL was to be compared with

the projections of all the combinations of azimuth and elevation angles

()el_angle az_angle, of the 3D vertebra model icD corresponding to the type of vertebra

L1-L5. For each combination of ()el_angleaz_angle, , we retrieve the projection image

iP of 3D model icD and the following procedure was carried out. First, the aspect

ratios, DpostDist 3 and DtopDist 3 , and the slope of the posterior side, DslopePost 3 ,

46

for the projection iP were retrieved, as explained in sub-section 3.2.2. Second, using the

value of DslopePost 3 , the projection image iP was rotated such that the posterior side

of the projection becomes exactly vertical generating a rotated form of the projection θP .

Note that θP was just the rotated form of iP , hence the aspect ratios and other

characteristics of iP and θP remain the same. Third, the resizing factors were calculated

using the values DpostDist3 and DtopDist3 for the projection θP and the values

postDist and topDist for the lumbar vertebra RL . The resizing of the projection θP was

necessary because the resolution of θP and RL can differ. All of the vertebra cases

explored in our experimental data set showed that the resolution of RL was much higher

than that of θP . Therefore, resizing of θP was performed by up-sampling to make the

resolution of θP suitable for comparing with vertebra RL . For all the projections for

different combinations of ()el_angleaz_angle, the resolutions differed non-linearly.

Accordingly, the resizing of projection images was performed at run-time for each

vertebra case RL to be studied. The resizing factors calculated are,

DpostDist
postDistM

3
= (3.9)

DtopDist
topDistN

3
= (3.10)

 Fourth, the projection θP was resized using the customized resizing operation

explained in sub-section 3.3.2 to produce the resized projection image. The set of points

in the resized projection image are then translated such that its centroid ()PP yx , lies at

the center of the image, then its image size was reduced to imgCols imgRows × by

cropping out background pixels from the image boundaries. Let the resized projection

image be RP . The centroid for RP was () ⎟
⎠
⎞

⎜
⎝
⎛=

2
,

2
,

imgColsimgRowsyx PP . Fifth, the

47

projection image RP and the vertebra RL were compared by taking an exclusive-OR,

defined as,

),(),(),(yxPyxLyxX RR ⊕= (3.11)

Figure 3-14: Exclusive-OR between lumbar vertebra LR and its optimal projection.

 Figure 3-14 shows the exclusive-OR obtained for the lumbar vertebra in Figure

3-13 of type L1 and its best matching projection of the cropped 3D model
1cD . The

exclusive-OR was representative of the comparison between the lumbar vertebra RL and

the 3D projection, RP , at a particular combination of viewing angles

()el_angle az_angle, . Sixth, the area of region described by the set points in X was

calculated and is denoted by XA . The above procedure was repeated for each

combination of ()el_angle az_angle, for a lumbar vertebra fL . Hence, we get a set of

values corresponding to XA for each projection corresponding to a combination pair of

()el_angle az_angle, . A table xorAreas was maintained that maps each combination

()el_angle az_angle, of the projections to the area of the exclusive-OR image, XA

computed for those viewing angles.

48

() XAangleelangleazxorAreas =_,_ (3.12)

 Now, the best matching projection opP of the 3D model, { }iop PP ∈ , for the

vertebra fL was determined based on which projection iP of the 3D model had the least

exclusive-OR area found from the table xorAreas . The viewing angles of the 3D model

corresponding to the best matching projection describe the orientation characteristics of

the lumbar vertebra fL . Let opX denote the exclusive-OR for best matching projection

opP , ()elOptimal azOptimal, be the viewing angles of the 3D model corresponding to

the projection opP and the area of the exclusive-OR opX can found as,

()elOptimalazOptimal,xorAreasA opX = . Thus, the orientation characteristics for the

lumbar vertebra fL are computed and, opX , ()elOptimal azOptimal, and opXA are

computed for each lumbar vertebra fL and are saved. The following algorithm

summarizes the process of calculating orientation features for lumbar vertebrae.

Inputs:

 Shape36Filename The text file containing the coordinates of 36 points on the

 boundary of the vertebra.

 ModelInfoFilename The file where aspect ratios of projections are stored.

Outputs:

 azOptimal The azimuth angle of orientation for the vertebra of the

 given case.

 elOptimal The elevation angle of orientation for the vertebra of the

 given case.

49

Algorithm:

1. ←inL Read the 36 coordinates of vertebra boundary points from the file

Shape36Filename.

2. ()inb LSplineBL −←

3. ()bf LImage_fillL ←

4. Calculate ()imgColsimgRows , , which are the minimum dimensions of the image

required to represent the given vertebra fL .

5. ()←bottom right, left, top, Calculate corner pixels of the of vertebra fL .

6. Calculate length of posterior side and length of superiorside,

 () ()22 yrightytopxrightxtoppostDist −+−=

 () ()22 yleftytopxleftxtoptopDist −+−=

7. Calculate the slope of the posterior side of vertebra fL ,

()
()xrightxtop

yrightytopslopePost
..
..

−
−

=

8. Compute L with the following steps; using the value of slopePost rotate fL such

that the posterior side was vertical, crop the image to imgCols imgRows × , next

translate (shift) the points in the vertebra image such that the centroid lies at

⎟
⎠
⎞

⎜
⎝
⎛

2
imgCols ,

2
imgRows .

9. index , is the value indicating the type of lumbar vertebra L1-L5 for the given case.

10. (){ }40t0 t0.5 100- azRange ≤≤+= |

11. (){ }40t0 t0.5 10- elRange ≤≤+= |

12. For each azRangeangleaz ∈_

12.1. For each elRangeangleel ∈_

12.1.1. Retrieve projection iP for the angles ()el_angle az_angle, for the 3D

model corresponding to index .

12.1.2. Compute θP , by rotating iP such that posterior side of the projection was

vertical.

50

12.1.3. Retrieve aspect ratios DpostDist 3 and DtopDist3 , from the file

ModelInfoFilename corresponding to ()el_angle az_angle, and index .

12.1.4. Resizing factors,

DpostDist
postDistM

3
← ;

DtopDist
topDistN

3
←

12.1.5. ()NMPResizeP θR ,,←

12.1.6. Crop RP to size imgColsimgRows × and translate the points in the

projection such that the centroid of the projection lies at

⎟
⎠
⎞

⎜
⎝
⎛

2
imgCols ,

2
imgRows .

12.1.7. Compute exclusive-OR X between lumbar vertebra and current

projection,

),(),(),(yxPyxLyxX RR ⊕=

12.1.8. ()XAreaAX ←

12.1.9. () XAel_angle az_angle,xorAreas ←

13. ()xorAreasminimumminArea ←

14. Find the values, azRangeazOptimal ∈ and elRangeelOptimal ∈ such that

() minAreaelOptimal azOptimalxorAreas =, .

15. Save X and RP corresponding to ()elOptimalazOptimal , .

51

3.4. EXPERIMENTS PERFORMED

3.4.1. Experimental Data

 The experimental data was provided by the National Library of Medicine (NLM),

which contained the following:

1) A data sheet consisting of a table where each row was a tuple τ,

)o,o ,t,t ,c ,c (name,τ ISISIS= . Here, the attribute name contained a string

for the vertebra name. The attributes Ic and Sc have values true/false indicating

the presence of claw on the superior and inferior sides of the vertebra

respectively. The attributes St and It have values true/false indicating the

presence of traction on the superior and inferior sides of the vertebra respectively.

Lastly, the attributes So and Io have enumerated labels

{ }severe moderate, slight, indicating a grade for the presence of anterior

osteophytes on the superior and inferior sides of the vertebra.

2) For each vertebra in the data sheet, a text file was provided which contained

values representing ()yx , coordinates of 36 points along the vertebral boundary

for the corresponding vertebra.

 This study aims at discriminating lumbar vertebrae for the presence of traction

and hence, only the truth labels for the presence of traction are required and so, the tuples

in the data sheet are reduced to)t ,t (name,τ IS= . The data set provided consisted of a

total of 261 lumbar vertebrae for which the proposed orientation characteristics were

calculated in order to facilitate in determining the presence of traction in the lumbar

vertebrae. The 36 points along the vertebral boundary for each vertebra were provided to

NLM by experienced radiologists and domain experts. For the entire dataset, a new class

of attributes t was introduced, which had values labeled true/false , where t was

indicative of the presence of traction for that lumbar vertebra. The attribute class, t ,

indicative of the presence of traction was assigned a value true , if either st , the attribute

52

class for presence of traction at superior side or It , the attribute class for presence of

traction at the inferior side had a value true ; otherwise it was assigned the value false .

 The data set was stratified by the type of lumbar vertebrae, which was L1 – L5. It

was observed that the data set of 261 lumbar vertebrae consisted of 12 L1s, 42 L2s, 75

L3s, 78 L4s and 54 L5s. The 261 entries in the data set when grouped by the target

variables t showed the following distribution.

Table 3-2: Distribution of lumbar vertebrae cases based on type of lumbar vertebra.

Type of Lumbar vertebra Number of Lumbar vertebrae
(Traction \ No Traction)

L1 9/3

L2 21/21

L3 35/40

L4 27/51

L5 17/37

 The features 51 FF − as explained in [2, 3] are calculated for each lumbar

vertebrae provided in the data set. The features 51 FF − based on the convex hull of the

vertebrae were developed in order to discriminate lumbar vertebra for the presence of

traction. These are the same features as explained in section 2.1 The feature 51 FF − were

also calculated the optimal projection opP , obtained for each lumbar vertebra in the data

set. The optimal projections opP describe the orientation characteristics of the lumbar

vertebrae, as explained in sub-section 3.3.3. Let the features calculated for the optimal

projections be denoted by pp FF 51 − .

53

3.4.2. Training data and test data

 In order to generate the training set, we integrate the features pp FF 51 − calculated

for the optimal projection opP for each lumbar vertebra in the data set and the optimal

orientation characteristics with the data provided by NLM. Hence, the integrated data set

obtained consisted of a set of tuples of the form,

()elOptimalazOptimal,,F,F ,F ,F ,F name,τ p5p4p3p2p1m = , where, azOptimal and

elOptimal are the orientation characteristics and pp FF 51 − correspond to the features

calculated for the optimal projection opP for the lumbar vertebra in the data set

corresponding to name .

 To generate the test data set, we integrate the features 51 FF − calculated for the

lumbar vertebrae in the data set with the optimal orientation characteristics computed for

each lumbar vertebra and the truth labels indicating the presence of the traction as

provided in the data by NLM. Hence, the test data set consisted of set of tuples of the

form, t)elOptimal,azOptimal,,F,F,F ,F ,F (name,τ 54321n = ; where t was the label

indicating the presence of traction, as explained in sub-section 3.4.1 and 51 FF − are the

features calculated for the lumbar vertebra corresponding to name .

3.4.3. Classification

 The classification problem here involved generating a model that can classify a

given case of lumbar vertebra for the presence of traction into classes traction/no traction.

To generate the trained model for each model L1 – L5 the following procedure was

applied to the corresponding training sets. First, for each feature pF in the set of features

pp FF 51 − of the training data, the mean and the standard deviation values, μ and σ

were calculated for all features pF in the feature set 51 FF − of the training set.

54

 Second, the features are normalized by subtracting its mean from each feature and

dividing by its standard deviation. For each feature pF in the feature set, we calculate the

standardized feature normpF as, { }normpnormnormp f ,FffF ∃∈∀= | , where normf was

calculated as,
σ
μ-f f norm = , for normpnorm Ff ∈ and pFf ∈ . Third, the number of clusters

for the class no traction was found using subtractive clustering [12, 13]. All the features

pF were calculated based on the projection images of 3D models which are

representative of a normal lumbar vertebra without any traction. Hence, all the tuples in

pF belong to the class no traction. Fourth, using the normalized featured vectors for the

training data and the number of clusters estimated for each class, K-means clustering

[14,15] was performed to determine the cluster centers for the class no traction. The

cluster centers for the training set corresponding to each lumbar vertebra L1 – L5 are

saved along with their corresponding mean and standard deviation values of each feature.

 For each of the feature vectors in the test set corresponding to each lumbar

vertebra L1 – L5, nearest centroid classification was performed. First, each feature F in

the test set 51 FF − was standardized using z-score score normalization. For each feature

F in the feature set 51 FF − , using the mean and standard deviation values calculated and

from the training set features, we calculate the normalized feature normF as,

{ }normnormnorm f F, f fF ∃∈∀= | , where normf was calculated as,
σ
μ-f f norm = , for

normpnorm Ff ∈ and pFf ∈ . Second, the cluster centers calculated and saved for the

training set are retrieved. Third, for each normalized feature vector, minDist the

minimum of the Euclidean distance to each of the cluster centers was calculated. Fourth,

the ordered pair of ()minDist name, was latched to either the list stabnormalLi or

normalList depending upon the label t indicating the presence or absence of traction for

this feature vector. Fifth, the two lists of Euclidean distances are input to a routine which

computes the area under the Receiver Operating Characteristics (ROC) curve [18] based

on the true positive and true negative cases obtained for the test set. True positive refers

to the test case vertebrae with traction being classified correctly and true negative refers

55

to the test case vertebrae with traction being classified incorrectly. Sixth, the area under

the ROC curve is recorded. This process is repeated for all the five lumbar vertebrae L1 –

L5 providing the value of the area under the respective ROC curves.

56

3.5. RESULTS AND DISCUSSION

3.5.1. Experimental Results

 The results obtained from the experiments performed in section 3.4 to classify

lumbar vertebrae as traction/no traction using the convex hull based size invariant

features is discussed below. The experiments were performed over the provided data set

of 261 lumbar vertebrae whose distribution is provided in Table 3-2. The classification

was performed by generating a training model using K-means clustering over the size-

invariant features computed for the best matching projection of each lumbar vertebra in

the data set. The test set was generated by computing the size-invariant features using the

lumbar vertebra x-ray images for each lumbar vertebra in the data set. Hence, the training

set consisted of 261 tuples generated using the best matching projection of the provided

lumbar vertebrae and the test set consisted of 261 tuples generated using the x-ray images

of the lumbar vertebrae.

Table 3-3: Areas obtained under Receiver Operating Characteristic (ROC) curve for classifying

lumbar vertebra L1-L5 for traction, respectively.

Type of Lumbar vertebra Area under Receiver Operating
Characteristic (ROC) curve

L1 0.89

L2 0.68

L3 0.60

L4 0.53

L5 0.60

3.5.2. Conclusions

 In this research, methods were investigated and implemented to model lumbar

vertebra in three dimensional structures. Several conclusions can be drawn from the

approaches adopted in this research undertaking. First, computed tomography (CT) scan

57

images were used to generate three dimensional models of lumbar vertebrae. The cross

sectional CT scan images were used to produce layered slices of the lumbar vertebrae

obtained by segmentation which could generate the 3D models. Hence, CT scan images

could be used to generate 3D models of lumbar vertebrae successfully in order to study

their shapes and structures.

 Second, in order to compare the 3D models of lumbar vertebrae with 2D images

from x-ray images of lumbar vertebrae, the projections of 3D models were computed at

different viewing angles. This enabled comparing the 3D models with the x-ray image

vertebrae. Indexing and storing of these projection images was performed, so that the

computation times for each x-ray image were improved in overall calculation of

orientation characteristics of each case.

 Third, a 3D model was generated from the CT scans provided for a particular case

where the lumbar vertebrae did not show any presence of traction. Hence, the 2D

projection images of the 3D models for the lumbar vertebrae L1 – L5 were used to

represent normal vertebrae. The shape and size invariant features calculated over the

optimal projection images of each case were used to represent the characteristics of

normal vertebrae which were input to a K-Means clustering algorithms to provide

clustering-based models for vertebrae L1 – L5 to represent normal vertebrae. The shape

and size invariant features calculated for the images obtained from x-ray images were

used for testing. The experimental results did not show that the projections of the 3D

model used provided features that were capable of distinguishing normal lumbar

vertebrae from cases where traction was present for each type of lumbar vertebrae L1 –

L5 vertebrae. The classification results for L1 were more encouraging than for the other

lumbar vertebra cases for L2 – L5. However, there were only 12 lumbar vertebra x-ray

images in the provided data set corresponding to L1 to support the accuracy of the model

in predicting the presence of traction in lumbar vertebrae.

 Fourth, it was observed that the 3D models and the resulting projection images

had superior and inferior sides of the vertebra with convex edges. A majority of the x-ray

58

images of lumbar vertebra showed superior and inferior sides having more flat like or

concave edges. One of the major difficulties in generating the 2D projections

representative of a vertebra based on the 3D CT scan-based model and the x-ray image

vertebra is the resolution disparity. The CT scan images and the resulting projections of

3D models were much smaller in size and varied non-linearly in row and column aspect

with the corresponding x-ray image vertebra. Several variations of resizing functions

have been investigated for generating the 2D projections of the 3D models of the vertebra

having similar dimensions to that of the x-ray image vertebrae for comparison using the

exclusive–OR approach for orientation determination.

 Fifth, another consideration or limitation in the experimental results presented is

the relative limited data set for each vertebra in generating clustering models to represent

them. The shapes of the lumbar vertebrae L1 – L5 differ. Model generation and clustering

analysis for each case was considered separately. The distribution of the lumbar vertebrae

in the provided data set is given by Table 3-2. It can be observed that the provided data

set for each case is limited and therefore the clustering models generated for each are

relatively inefficient in classifying lumbar vertebrae for presence of traction.

59

A

Read-Me file for the project ‘Discrimination of Cervical Vertebrae for presence of

Claw, Traction and Anterior Osteophytes’

APPENDIX

60

A.1. MATLAB to C++ conversion

 The document describes the procedure which allows calling MATLAB routines

from C/C++. The method used here was to create a wrapper function around MATLAB

routines and then creating Dynamic Linked Libraries for it to be used in C/C++.

We divided the procedure into two major steps:

1. Creating the Dynamic Linked Libraries for using the MATLAB routines.

2. Creating the workspace in C/C++ developer environment with the libraries

included.

A.1.1. Creating the Dynamic Linked Libraries for using the MATLAB routines:

 The Dynamic Linked Libraries are created through the ‘mcc’ command in the

MATLAB compiler. The syntax of the command used to create the DLL files was:

mcc -W lib:<lib_name> -T link:lib <file1> <file2> … <fileN>

where,

- The option ‘-W lib:<string>’ creates wrapper functions for each .m file into a library.

- file1, file2,…,fileN are names of the .m MATLAB files stored in the same directory.

These .m files are supposed to define the MATLAB routines which we want to call

from C/C++.

- ‘lib_name’ was the name of the library that we wish to create.

- The option ‘-T link:lib’ specifies the target to be a library file.

After executing the above command several files are generated and stored in the current

directory of the MATLAB compiler. The description of these files was given below:

1. C/C++ Header and Source code files:

A wrapper C source file (here <file_name>.c) which contains a function of the library

providing the C interface to each of the files <file1.m>, <file2.m>….<fileN.m>. A header

61

(here <file_name>.h) was also generated which contains the prototype for each of the

export function defined in the wrapper C source file. This header file must be included in

all applications that need to these exported functions. Another C source file

<file_name>_mcc_component_data.c was generated which includes all necessary

information about path and initializations that are need by the MATLAB compiler or the

MCR to use the library.

2. Module definition file:

A module definition file (.def) was created to provide all the information about the export

functions. This file was used to link to the library.

3. Component Technology File (CTF):

A Component Technology File (CTF) file was an archive of all MATLAB related files

(M-files) that are encrypted and together provided a deployable package.

4. Dynamic Link Library (.dll) file:

This was the shared library (binary) that was created. In this example a file with name

<file_name>.dll will be generated and was loaded each time the calling function makes a

call to any of the routines defined in it. For Operating Systems other than Windows, a

different kind of a shared library may be required.

 Several others exports file are created along with the above files. All of the above

8 files that are generated are stored in the same directory which was the current working

directory in MATLAB while running the ‘mcc’ command. As far as the process of

MATLAB to C++ code conversion goes, it was just required to include these files in the

workspace of C++.

A.1.2. Creating the workspace in C/C++ developer environment with the libraries

included:

 The first step here was to open a C/C++ developer environment like Microsoft

Visual C++ and creating a new Console application project (workspace).

62

In this new project, we include all of the files generated by the ‘mcc’ command; it was a

good idea to copy all of these files to the workspace directory of this project. The C++

code which was to be written here was the code which will provide the input parameters

(if any) to the MATLAB routines to be called.

Consider a library ‘libcal’ generated for a M-File with function defined as :

function[o1 o2] = calculate(i1, i2, i3)

To call such a function defined in an M-file the following need to be done in the C++

program:

1) Include all libraries related to libcal, which were generated by the ‘mcc’

command.

2) Declare a variable in C++ for each of the input and output parameters, and also

initialize or derive values for the input parameters.

 Example: double I1, I2, I3, O1, O2;

3) Now declare a variable pointer with ‘mxArray*’ for each of them, this was a

datatype used to store array for passing to MATLAB.

 Example: mxArray *in1, *in2, *in3, *in4, *in5, *out1, *out2;

4) Allocate appropriate space for each of these mxArray pointers.

 Example: in1=mxCreateDoubleMatrix(1,1,mxREAL);

 out1=mxCreateDoubleMatrix(1,1, mxREAL);

 where, 1,1 -> signify the [row x column] dimensions of the array

 mxREAL -> specifies that values to be real numbers.

5) Copy contents of variables I1, I2, I3 into in1, in2, in3 which will be the input

values to the MATLAB routine ‘calculate’.

 Example: memcpy(mxGetPr(in1), &I1, sizeof(double));

 where, memcpy() was a function in C++ which copies a block of memory

 from one memory location to another which was defined in the

63

 library string.h.

 &I1, was the memory location of the input value I1.

 sizeof(double), specifies the amount of bytes to be copied.

6) Now, call the function ‘libcalInitialize()’ (defined in the library) to start the

MATLAB compiler or the MCR.

7) Call the function ‘mlfcalculate(2, &out1, &out2, in1, in2, in3)’, which also

defined in the libcal library. This calls the ‘calculate’ function in the M-file and

results are stored in out1, out2.

8) Note the difference in the definition of calculate function in M-file and its C++

counterpart ‘mlfcalculate’. The output parameters of calculate routine in M-file

are pointers which appear in the parameter list of the ‘mlfcalculate’ function. The

first parameter of the ‘mlfcalculate’ function specifies the number of parameters

which represent the left hand side variables in the ‘calculate’ routine and the

remaining are the right hand side variables.

9) Now, call the fuction ‘libcalTerminate (defined in the library) to close the

MATLAB compiler or the MCR.

10) Now, the results from the MATLAB routine are stored in out1, out2 which are of

data type mxArray*. So, we copy the contents of these variables into our C++

variables O1, O2 which are of type double.

 Example: memcpy(&O1, mxGetPr(out1), sizeof(double));

11) De-allocate space to all the mxArray pointers (and any other pointers also).

Freeing space allocated to mxArray pointers was done by the call

‘mxDestroyArray(mxArry*);

 Example: mxDestroyArray(in1);

12) Now, compile and run the C++ project.

64

A.2. K-Means Classifier for detecting Claw

 The K-Means Classifier for detecting Claw was a project which calculates

features on single vertebra and then applies K-Means clustering technique to classify it as

NORMAL or ABNORMAL for the presence or absence of claw.

The initial workspace that was provided included the following files:

- compute_convex_hull_features_36Points.m

- compute_convex_hull_features_6features.m

- mergepts.m

- moment_norm.m

- connectspline.m

- kmeans_2class_kNearest_subcluster.m

- computeVectorDistance2class.m

 The ‘compute_convex_hull_features_36Points.m’ was MATLAB script which

read the co-ordinates of vertebra points from .shp36 file. This was done over a large

number of files stored in the local directory. For every set of such vertebra points, the

‘compute_convex_hull_features_6features’ function was called from its corresponding

M-file ‘compute_convex_hull_6features.m’. This function in all calculates six features

and the image area of the vertebra and returns to the calling script. The features

calculated for all the vertebrae are then stored in an Excel Spread Sheet (xls). The

function defined in mergepts.m and connectspline.m are used in the

compute_convex_hull_features_36Points.m and the function defined in moment_norm

was used by the compute_convex_hull_6features.m.

 The ‘kmeans_2class_kNearest_subcluster.m’ was a MATLAB script which read

the features of the vertebrae from the Excel Spread Sheet. It also read variables from the

‘Parameters_claw.mat’ file (MAT-file) which stored the trained clusters for classification

of vertebrae on the basis of presence or absence of Claw. It also included the mean and

65

standard deviation values for all features. Each set of features (corresponding to one

vertebra) are normalized using the mean and standard deviation values from the MAT-

file. This normalized set of features along with the cluster centers for classifications are

given as input to the function defined in ‘computeVectorDistance2class.m’. In this

function the actual classification takes place. With the normalized features it checks the

distances of each feature to it

 For the project KMeans Classifier for detecting claw, the above MATLAB code

needed to be converted to C++. It was also required that the classification be done for one

given vertebra at a time. The working of the code explained above worked on a large set

of vertebrae images in Batch-mode. Hence, the two files that were changed from the

above code were:

- compute_convex_hull_features_36Points.m

- kmeans_2class_kNearest_subcluster.m

 The changes made to compute_convex_hull_features_36Points.m, so that it

worked on a single vertebra were made and stored in the same file. The code of

kmeans_2class_kNearest_subcluster.m was rewritten in C++ which worked upon a set of

features for only one vertebra. This code then calls the computeVectorDistance2class

function.

 Also, in the provided workspace calculated the six features were calculated and

stored in an Excel Spread Sheet. Then, the Kmeans classifier script was run for

classifying by reading back the features from the Excel Spread Sheet. This project

calculates the six features and then run the classification program on it, thus eliminating

the use the Excel Spread Sheet.

A.2.1. Creating the Dynamic Linked Libraries for using the MATLAB routines:

 All the files described above are kept in a single folder. In the MATLAB

compiler, set the current working directory to the directory where all the files are stored

and then, run the command:

66

mcc -W lib:libfcmc -T link:lib compute_convex_hull_features_36Points

computeVectorDistance2class

After running this command, the files that are generated in the current directory are:

- libfcmc.c

- libfcmc.h

- libfcmc_mcc_component_data.c

- libfcmc.dll

- libfcmc.lib

- libfcmc.exports

- libfcmc.exp

- libfcmc.ctf

A.2.2. Creating the workspace in C/C++ developer environment with the libraries

included:

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project.

Include the following files in the source code:

#include<iostream>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<string.h>

#include"mat.h"

#include"libfcmc.h"

#pragma comment(lib, "libmat.lib")

#pragma comment(lib, "libmx.lib")

#pragma comment(lib, "libfcmc.lib")

The C++ implementation was divided into these parts:

1) Reading the MAT-file and extracting the cluster centers for classification and

extracting the mean and standard deviation values for these features.

67

2) Reading the .shp36 files to get the vertebra points and then calling an appropriate

MATLAB routine to calculate features.

3) Calling the MATLAB routine to classify for the presence or absence of claw

based on the values of these features.

 The file name of the .shp36 file was an input parameter taken as a command line

argument. The filename to be passed here was to be the absolute path on the local

machine or a relative path can be given if the .shp36 file in stored in the same or one the

subfolders of the current workspace. Hence, the process can be worked on any .shp36 file

just by passing different file names at different calls.

 A class called ‘Data’ was created which stores all the values of features for a

vertebra also it stores all the values extracted from the MAT file, which are the centers of

the classification clusters and the mean and standard deviation values of the features.

Several functions are defined that work on these member variables. Keeping a separate

class for the features values and for the classification parameters was considered

redundant as the program was just suppose to work on one given vertebra at a time.

 Since, there are more than one function calls to the MATLAB routines, the

initialization and termination of the MATLAB compiler are done close to the entry and

exit points of the C++ program.

The call to the program was given on the command prompt as:

C:\<WorkSpaceDir>\KMeansClassifier_Claw C:\vertebra\C01235_3.shp36

68

A.3. K-Means Classifier for detecting Traction

 The K-Means Classifier for detecting Traction was a project which calculates

features on single vertebra and then applies K-Means clustering technique to classify it as

NORMAL or ABNORMAL for the presence or absence of traction.

The initial workspace that was provided included the following files:

- compute_convex_hull_features_36Points.m

- compute_convex_hull_features_6features.m

- mergepts.m

- moment_norm.m

- connectspline.m

- kmeans_2class_kNearest_subcluster.m

- computeVectorDistance2class.m

 The ‘compute_convex_hull_features_36Points.m’ was MATLAB script which

read the co-ordinates of vertebra points from .shp36 file. This was done over a large

number of files stored in the local directory. For every set of such vertebra points, the

‘compute_convex_hull_features_6features’ function was called from its corresponding

M-file ‘compute_convex_hull_6features.m’. This function in all calculates six features

and the image area of the vertebra and returns to the calling script. The features

calculated for all the vertebrae are then stored in an Excel Spread Sheet (xls).

The function defined in mergepts.m and connectspline.m was used in the

compute_convex_hull_features_36Points.m and the function defined in moment_norm

was used by the compute_convex_hull_6features.m.

 The ‘kmeans_2class_kNearest_subcluster.m’ was a MATLAB script which read

the features of the vertebrae from the Excel Spread Sheet. It also read variables from the

‘Parameters_traction.mat’ file (MAT-file) which stored the trained clusters for

classification of vertebrae on the basis of presence or absence of Traction. It also

69

included the mean and standard deviation values for all features. Each set of features

(corresponding to one vertebra) are normalized using the mean and standard deviation

values from the MAT-file. This normalized set of features along with the cluster centers

for classifications are given as input to the function defined in

‘computeVectorDistance2class.m’. In this function the actual classification takes place.

With the normalized features it checks the distances of each feature to it

 For the project KMeans Classifier for detecting traction, the above MATLAB

code needed to be converted to C++. It was also required that the classification be done

for one given vertebra at a time. The working of the code explained above worked on a

large set of vertebrae images in Batch-mode. Hence, the two files that were changed from

the above code were:

- compute_convex_hull_features_36Points.m

- kmeans_2class_kNearest_subcluster.m

 The changes made to compute_convex_hull_features_36Points.m, so that it

worked on a single vertebra were made and stored in the same file. The code of

kmeans_2class_kNearest_subcluster.m was rewritten in C++ which worked upon a set of

features for only one vertebra. This code then calls the computeVectorDistance2class

function.

 Also, in the provided workspace calculated the six features were calculated and

stored in an Excel Spread Sheet. Then, the Kmeans classifier script was run for

classifying by reading back the features from the Excel Spread Sheet. This project

calculates the six features and then run the classification program on it, thus eliminating

the use the Excel Spread Sheet.

A.3.1. Creating the Dynamic Linked Libraries for using the MATLAB routines:

 All the files described above are kept in a single folder. In the MATLAB

compiler, set the current working directory to the directory where all the files are stored

and then, run the command:

70

mcc -W lib:libfcmt -T link:lib compute_convex_hull_features_36Points

computeVectorDistance2class

After running this command, the files that are generated in the current directory are:

- libfcmt.c

- libfcmt.h

- libfcmt_mcc_component_data.c

- libfcmt.dll

- libfcmt.lib

- libfcmt.exports

- libfcmt.exp

- libfcmt.ctf

A.3.2. Creating the workspace in C/C++ developer environment with the libraries

included:

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project.

Include the following files in the source code:

#include<iostream>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<string.h>

#include"mat.h"

#include"libfcmt.h"

#pragma comment(lib, "libmat.lib")

#pragma comment(lib, "libmx.lib")

#pragma comment(lib, "libfcmt.lib")

The C++ implementation was divided into these parts:

1) Reading the MAT-file and extracting the cluster centers for classification and

extracting the mean and standard deviation values for these features.

71

2) Reading the .shp36 files to get the vertebra points and then calling an appropriate

MATLAB routine to calculate features.

3) Calling the MATLAB routine to classify for the presence or absence of traction

based on the values of these features.

 The file name of the .shp36 file was an input parameter taken as a command line

argument. The filename to be passed here was to be the absolute path on the local

machine or a relative path can be given if the .shp36 file in stored in the same or one the

subfolders of the current workspace. Hence, the process can be worked on any .shp36 file

just by passing different file names at different calls.

 A class called ‘Data’ was created which stores all the values of features for a

vertebra also it stores all the values extracted from the MAT file, which are the centers of

the classification clusters and the mean and standard deviation values of the features.

Several functions are defined that work on these member variables. Keeping a separate

class for the features values and for the classification parameters was considered

redundant as the program was just suppose to work on one given vertebra at a time.

 Since, there are more than one function calls to the MATLAB routines, the

initialization and termination of the MATLAB compiler are done close to the entry and

exit points of the C++ program.

The call to the program was given on the command prompt as:

C:\<WorkSpaceDir>\KMeansClassifier_Traction C:\vertebra\C01235_3.shp36

72

A.4. K-Means Classifier for detecting Anterior Osteophytes

 The K-Means Classifier for detecting Osteophytes was a project which calculates

features on single vertebra and then applies K-Means clustering technique to classify it as

NORMAL or ABNORMAL (Severe or Moderate) for the presence or absence of

Osteophytes.

The initial workspace that was provided included the following files:

- compute_convex_hull_features_36Points.m

- compute_convex_hull_features_6features.m

- mergepts.m

- moment_norm.m

- connectspline.m

- kmeans_2class_kNearest_subcluster.m

- computeVectorDistance3class.m

 The ‘compute_convex_hull_features_36Points.m’ was MATLAB script which

read the co-ordinates of vertebra points from .shp36 file. This was done over a large

number of files stored in the local directory. For every set of such vertebra points, the

‘compute_convex_hull_features_6features’ function was called from its corresponding

M-file ‘compute_convex_hull_6features.m’. This function in all calculates six features

and the image area of the vertebra and returns to the calling script. The features

calculated for all the vertebrae are then stored in an Excel Spread Sheet (xls).

The function defined in mergepts.m and connectspline.m was used in the

compute_convex_hull_features_36Points.m and the function defined in moment_norm

was used by the compute_convex_hull_6features.m.

 The ‘kmeans_2class_kNearest_subcluster.m’ was a MATLAB script which read

the features of the vertebrae from the Excel Spread Sheet. It also read variables from the

‘Parameters_Osteophytes.mat’ file (MAT-file) which stored the trained clusters for

73

classification of vertebrae on the basis of presence or absence of Osteophytes. It also

included the mean and standard deviation values for all features. Each set of features

(corresponding to one vertebra) are normalized using the mean and standard deviation

values from the MAT-file. This normalized set of features along with the cluster centers

for classifications are given as input to the function defined in

‘computeVectorDistance3class.m’. In this function the actual classification takes place.

With the normalized features it checks the distances of each feature to it

 For the project KMeans Classifier for detecting Osteophytes, the above MATLAB

code needed to be converted to C++. It was also required that the classification be done

for one given vertebra at a time. The working of the code explained above worked on a

large set of vertebrae images in Batch-mode. Hence, the two files that were changed from

the above code were:

- compute_convex_hull_features_36Points.m

- kmeans_2class_kNearest_subcluster.m

 The changes made to compute_convex_hull_features_36Points.m, so that it

worked on a single vertebra were made and stored in the same file. The code of

kmeans_2class_kNearest_subcluster.m was rewritten in C++ which worked upon a set of

features for only one vertebra. This code then calls the computeVectorDistance3class

function.

 Also, in the provided workspace calculated the six features were calculated and

stored in an Excel Spread Sheet. Then, the Kmeans classifier script was run for

classifying by reading back the features from the Excel Spread Sheet. This project

calculates the six features and then run the classification program on it, thus eliminating

the use the Excel Spread Sheet.

A.4.1. Creating the Dynamic Linked Libraries for using the MATLAB routines:

 All the files described above are kept in a single folder. In the MATLAB

compiler, set the current working directory to the directory where all the files are stored

74

and then, run the command:
mcc -W lib:libfcmo -T link:lib compute_convex_hull_features_36Points

computeVectorDistance3class

After running this command, the files that are generated in the current directory are:

- libfcmo.c

- libfcmo.h

- libfcmo_mcc_component_data.c

- libfcmo.dll

- libfcmo.lib

- libfcmo.exports

- libfcmo.exp

- libfcmo.ctf

A.4.2. Creating the workspace in C/C++ developer environment with the libraries

included:

In Microsoft Visual Studio .NET 2005, create a new Win32 Console project. Include the

following files in the source code:

#include<iostream>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<string.h>

#include"mat.h"

#include"libfcmo.h"

#pragma comment(lib, "libmat.lib")

#pragma comment(lib, "libmx.lib")

#pragma comment(lib, "libfcmo.lib")

The C++ implementation was divided into these parts:

1) Reading the MAT-file and extracting the cluster centers for classification and

extracting the mean and standard deviation values for these features.

75

2) Reading the .shp36 files to get the vertebra points and then calling an appropriate

MATLAB routine to calculate features.

3) Calling the MATLAB routine to classify for the presence or absence of

osteophytes based on the values of these features.

 The file name of the .shp36 file was an input parameter taken as a command line

argument. The filename to be passed here was to be the absolute path on the local

machine or a relative path can be given if the .shp36 file in stored in the same or one the

subfolders of the current workspace. Hence, the process can be worked on any .shp36 file

just by passing different file names at different calls.

 A class called ‘Data’ was created which stores all the values of features for a

vertebra also it stores all the values extracted from the MAT file, which are the centers of

the classification clusters and the mean and standard deviation values of the features.

Several functions are defined that work on these member variables. Keeping a separate

class for the features values and for the classification parameters was considered

redundant as the program was just suppose to work on one given vertebra at a time.

 Since, there are more than one function calls to the MATLAB routines, the

initialization and termination of the MATLAB compiler are done close to the entry and

exit points of the C++ program.

The call to the program was given on the command prompt as:

C:\<WorkSpaceDir>\KMeansClassifier_Osteophytes C:\vertebra\C01235_3.shp36

76

B

Read- Me file for the project ‘NewDiscSpaceNarrowing’

APPENDIX

77

B.1. New Disc Space Narrowing using Self Organizing Maps

 The New Disc Space Narrowing was a project which calculates features on a pair

of consecutive vertebrae and then using K-means and a Self Organizing Map clustering

technique classifies the degree of disc space narrowing into four grades (0-3), where 0

represents normal spacing and 3 represents significant narrowing.

The initial workspace that was provided included the following files:

- mainPairVertebraBoundaryPoints.m

- generateVertebraBoundaryPair.m

- connect_spline.m

- KMeansModel_individualTest.m

- discSpaceNarrowing a VC++ project workspace.

 The ‘mainPairVertebraBoundaryPoints.m’ was a MATLAB script which reads

the co-ordinates of vertebra boundary points of two vertebrae from their respective

.shp36 files. The ‘generateVertebraBoundaryPair.m’ and ‘connect_spline.m’ routines are

called by this function to generate the complete boundary of each vertebra. This function

saved the coordinate points of the complete boundary into a text file.

 The discSpaceNarrowing VC++ project workspace reads this text file to get the

complete boundary of the two vertebrae under analysis. It then computes the four Disc

Space Narrowing features for the given pair of vertebrae. The computed features are

written to another text file.

 The ‘KMeansModel_individualTest.m’ was a MATLAB script which was used to

classify the given DSN features of a pair of vertebrae according to the degree of disc

space narrowing. It grades the features between 0-3, where 0 signifies a normal spacing

between the pair of vertebrae and 3 represents substantial narrowing.

78

 The inputs to the ‘KMeansModel_individualTest.m’ script are the DSN features

which are read from the output file generated by the VC++ workspace

‘discSpaceNarrowing’. This routine also requires an already trained model to test the new

set of features for the purpose of classifying them. The trained model was stored in a

MAT-file stored in the same directory. Two other MAT-files provide the mean and the

standard deviation values of all the DSN features which are used to normalize the input

feature vector.

 In the project New Disc Space Narrowing, the given workspace functions were

linked so that at every run of the solution, the disc space narrowing features were

calculated for a given pair of vertebra, its classification according to the Kmeans and Self

organizing maps was done and finally it generated a grade (0-3) as its output, specifying

the degree of disc space narrowing.

The following M-files were changed:

- mainPairVertebraBoundaryPoints.m

- KMeansModel_individualTest.m

 Both these Matlab scripts were changed to Matlab functions by putting the code

within the scripts into a wrapper function. Now these functions are called from the VC++

workspace by creating a DLL for them. Creation of the DLLs and the new VC++

workspace are explained below:

B.1.1. Creating the Dynamic Linked Libraries for using the MATLAB routines:

 All the files described above are kept in a single folder. In the MATLAB

compiler, set the current working directory to the directory where all the M-files are

stored and then, run the command:

mcc -W lib:libdsn -T link:lib kmeansmodeltest

 generatevertebraboundarypairshape36

79

After running this command, the files that are generated in the current directory are:

- libdsn.c

- libdsn.h

- libdsn_mcc_component_data.c

- libdsn.dll

- libdsn.lib

- libdsn.exports

- libdsn.exp

- libdsn.ctf

B.1.2. Creating the workspace in C/C++ developer environment with the libraries

included:

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project; copy

the discSpaceNarrowing VC++ workspace files into this new project. Include the

following files in the source code files.

#include<iostream>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<string.h>

#include"mat.h"

#include"libdsn.h"

#pragma comment(lib, "libmx.lib")

#pragma comment(lib, "libdsn.lib")

 The header files and libraries ‘libmat’ and ‘libmx’ are found in the

<matlab_root>\extern\include and <matlab_root>\extern\lib. The files generated by the

MATLAB compiler on the ‘mcc’ command are copied to the current directory of this

VC++ workspace.

 The code of the existing discSpaceNarrowing VC++ workspace used dynamic

memory allocations, due to which warnings may be generated while running the same

80

code in the NewDiscSpaceNarrowing VC++ project. To disable these warnings, open the

‘NewDiscSpaceNarrowing’ project in Visual Studio .NET 2005 (or any other

environment), in the ‘Solution Explorer’ frame, right click on

‘NewDiscSpaceNarrowing’, now click ‘Properties’. In the window that opens up, go to

ConfigurationProperties>C/C++>CodeGeneration. Now click on tab (on the right side)

‘Basic Runtime Checks’ and change its value to ‘Stack Frames (/RTCs)’ by selecting it

from the drop-down menu. Click Apply and OK.

 The main() function in the discSpaceNarrowing VC++ workpace was changed. It

was converted to a function: DiscSpaceNarrowing_c(Pair*) and another file was created

named ‘NewDiscSpaceNarrowing.cpp’ where the entry point i.e. main() function of the

program was placed from where the function call to DiscSpaceNarrowing_c() was made.

 A class named ‘Pair’ was created which encapsulates all features and necessary

data related to a pair of vertebra, which are needed for the calculation of the DSN

features and it’s grading. All newly added functions are also encapsulated in this class.

 The file names of the .shp36 files of the vertebrae under investigation are input

parameters taken as command line arguments. These command line arguments are the

absolute paths of these .shp36 files on the local machine or relative paths can be given if

the .shp36 files are stored in the same or one the subfolders of the current workspace.

 Since, there are more than one function calls to several MATLAB routines, the

initialization and termination of the MATLAB compiler are done close to the entry and

exit points of the C++ program.

The call to the program was given on the command prompt as:

C:\<WorkSpaceDir>\NewDiscSpaceNarrowing C:\vertebra\C01235_3.shp36

 C:\vertebra\C01235_4.shp36

81

C

Read- Me file for the project ‘NewSubluxation’

APPENDIX

82

C.1. NewSubluxation using a neural network

 The NewSubluxation was a project which calculates features on a group of

adjacent cervical vertebrae and then simulates a neural network to calculate a score for

the given group of the cervical vertebrae.

The initial workspace that was provided included the following files:

- subluxationFeatures.m

- getScore.m

- connectspline.m

 The ‘subluxationFeatures.m’ was a MATLAB script which did the major

computational part of the feature calculations. It read the images of adjacent vertebrae

from the local machine, and it then generated an image consisting of all the cervical

vertebrae by logically ORing each of the input images. Several image processing tools

were applied to the image of the complete cervical vertebrae. Also, the centroids and

areas of each vertebra that make up the complete image were calculated and used for

feature calculation.

 The features calculated were output to a text file on the local machine. Also, the

‘subluxationFeatures.m’ script worked on several groups of cervical vertebrae in batch

mode. The getScore.m was a MATLAB script that runs the simulation of a neural

network using the inbuilt ‘sim’ function defined in the Neural Network toolbox. The

MATLAB function connectspline.m was called by the subluxationFeatures.m to generate

a more complete boundary of a vertebra based on the inputs of a .shp36 file.

 In the NewSubluxation project, the given M-files needed to be linked so that on

every run of the solution, the subluxation features are calculated for a given group of

adjacent cervical vertebrae, and a score was generated for it.

The following M-files were changed:

83

- subluxationFeatures.m

- getScore.m

 Both these Matlab scripts were changed to Matlab functions by putting the code

within the scripts into a wrapper function. An additional MATLAB function

‘compute_subluxationFeatures.m’ was created, this was the function which was called

from VC++, it processes input arguments received and then calls the function in

‘subluxationFeatures.m’. Creation of the DLLs and the new VC++ workspace are

explained below:

C.1.1. Creating the Dynamic Linked Libraries for using the MATLAB routines:

 All the files described above are kept in a single folder. In the MATLAB

compiler, set the current working directory to the directory where all the M-files are

stored and then, run the command:

mcc -W lib:libsublx -T link:lib compute_subluxationFeatures getScore

After running this command, the files that are generated in the current directory are:

- libsublx.c

- libsublx.h

- libsublx_mcc_component_data.c

- libsublx.dll

- libsublx.lib

- libsublx.exports

- libsublx.exp

- libsublx.ctf

 The ‘getScore.m’ function uses the ‘sim.m’ function defined in the Neural

Network toolbox of MATLAB. By generating the libraries (libsulx files), a C/C++

interface was created that can be used to call the functions compute_subluxation.m and

getScore.m. These functions can use all the MATLAB built-in functions within their

84

codes. Although, the use of functions from the Neural Network toolbox can generate

warnings as these are not included in the MATLAB compiler which gets loaded via the

uses of these libraries. Hence, to alleviate this problem, we add (copy) all the functions of

the Neural Network toolbox in the same directory where the other M-functions are stored.

 These functions are found in the local directory (on a machine where MATLAB

was installed) : <matlabroot>\nnet\nnet\@network\

The files that are to be copied are:

- adapt.m

- disp.m

- display.m

- gensim.m

- init.m

- loadobj.m

- network.m

- revert.m

- sim.m

- train.m

 Two additional files can be found in the same directory which are: ‘subasgn.m’

and ‘subsref.m’. These files are necessarily not to be copied to our current directory with

other M-files, this compulsion was put because the functions defined in these two M-files

are not required in our implementation and can generate warnings while creating the

libraries and using them in our C++ program.

 Now with all the required M-functions placed in one folder, generate the required

‘libsulx’ libraries with the –mcc command provided above.

85

C.1.2. Creating the workspace in C/C++ developer environment with the libraries

included:

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project

NewSubluxation. Include the following files in the source code files:

#include<iostream>

#include<cmath>

#include<string>

#include<cstring>

#include"mat.h"

#include"libsublx.h"

#pragma comment(lib, "libmat.lib")

#pragma comment(lib, "libmx.lib")

#pragma comment(lib, "libsublx.lib")

 The header files and libraries named ‘libmat’ and ‘libmx’ are found in the

<matlab_root>\extern\include and <matlab_root>\extern\lib. The files generated by the

MATLAB compiler on the ‘mcc’ command are copied to the current directory of this

VC++ workspace.

 The #pragma directives declared above can be avoided in the source code, if these

library files are included that was added to the Solution in VC++.

 The NewSubluxation project works on several adjacent cervical vertebrae to

calculate the subluxation features and to calculate a score based on these features. Hence,

the execution of NewSubluxation project requires the filenames of the vertebrae files

(.shp36 files). The file names of these .shp36 files of the vertebrae under investigation are

provided as input parameters taken as command line arguments. Each of these command

line arguments are the absolute paths of these .shp36 files on the local machine or relative

paths can be given if the .shp36 files are stored in the same or one of the subfolders of the

current workspace.

 The main() function that was the entry point of the NewSubluxation project’s

code encapsulates these filenames into list and also initializes a string containing the

86

filename of the trained model to be used while calculating the score for the features that

will be calculated. Hence, a different trained model can be used by changing this value in

the code. It then calls the NewSubluxation() function with the list of vertebrae filenames

and the trained model’s filename as input. The number of input arguments can vary, for

the purpose of feature calculation, it was required that either four (C3-C6) or five (C3-

C7) filenames of adjacent vertebrae be passed. The trained model included here, will test

the features generated for vertebrae C3-C6 irrespective of the number of filenames passed

for feature calculation.1

 A class named ‘Cervicals’ and a class named ‘Vertebra’ are created for the

implementation of this project. The Vertebra class encapsulates all the properties of a

single vertebra like boundary points, etc and necessary functions to operate on them. The

Cervicals class encapsulates a list of objects of the Vertebra class and other data related

to this group of vertebrae required to calculate the subluxation features and the score. All

newly added functions are also encapsulated in these classes.

 Since, there are more than one function calls to several MATLAB routines, the

initialization and termination of the MATLAB compiler are done close to the entry and

exit points of the C++ program.

 When required to calculate the subluxation features on vertebra C3-C6, the call to

the program was given on the command prompt was as:

1 The trained model can be replaced, by changing the filename that was initialized in the main() routine.

> C:\<WorkSpaceDir>\NewSubluxation C:\vertebra\C01235_3.shp36 C:\vertebra\C01235_4.shp36

 C:\vertebra\C01235_5.shp36 C:\vertebra\C01235_6.shp36

87

BIBLIOGRAPHY

[1] Fact Sheet: Osteoarthritis. American College of Rheumatology, Atlanta, GA, 1994.

[2] Cherkuri M., Stanley R.J., Long L.R., Antani S.K., Thoma G.R. “Anterior osteophyte

discrimination in lumbar vertebrae using size-invariant features.” Computerized

Medical Imaging and Graphics 2004; 28(1/2), pp. 99–108

[3] Stanley R.J., Antani S.K., Long L.R., Thoma G.R., Gupta K., Das M. “Size-invariant

descriptors for detecting regions of abnormal growth in cervical vertebrae.”

Computerized Medical Imaging and Graphics; 32(1) (2007), pp. 44–52.

[4] Long L.R. and Thoma G.R., “Image query and indexing for digital x-rays.” In Proc.

SPIE Conference on Storage and Retrieval for Image and Video Databases VII, San

Jose, CA, 1999; vol. 3656, pp. 12–21.

[5] Heggeness M.H., Doherty B.J. “Morphologic study of lumbar vertebral osteophytes.”

South Med J 1998; 91(2), pp. 187–9.

[6] Pate D., Goobar J., Resnick D., Haghighi P., Sartoris D.J., Pathria M.N. “Traction

osteophytes of the lumbar spine: radiographic-pathologic correlation.” Radiology

1988; 166(3), pp. 843–6.

[7] Stanley R.J. and Long L.R. “A radius of curvature-based approach to cervical spine

vertebra image analysis.” Copper Mountain, CO. Proc 38th Annual Rocky Mountain

Bioengineering Symposium 2001; 37, pp. 385–390.

[8] Tsai M.D., Jou S.B., Hsieh M.S. “A new method for lumbar herniated inter-vertebral

disc diagnosis based on image analysis of traverse sections.” Computerized Medical

Imaging and Graphics 2002; 26(6), pp. 369–380.

[9] Manber U, Introduction to Algorithms: A Creative Approach. Addison-Wesley

Longman Publishing Co., Inc. Boston, MA; 1989.

[10] Barber C., Dobkin D., Huhdanpaa H. “The Quickhull algorithm for convex hulls.”

ACM Transactions on Mathematical Software 1996; 22(4), pp. 469–83.

88

[11] Horn B. Robot Vision. 1st ed. MIT Press; Cambridge, MA; 1986. ISBN: 0-262-

08159-8.

[12] Chiu S. “Fuzzy model identification based on cluster estimation.” Intell Fuzzy Syst J

1994; 2(3), pp. 267–78.

[13] Yager R. and Filev D. “Generation of fuzzy rules by mountain clustering.” Intell

Fuzzy Syst J 1994; 2(3), pp. 209–19.

[14] Seber G.A.F. Multivariate observations. Wiley; New York; 1984.

[15] Han J. and Kamber M. Data mining: Concepts and Techniques. Morgan-Kaufman;

San Francisco, CA; 2000. ISBN: 1-55860-489-8.

[16] The Matlab Online Reference, MathWorks Inc. Product Doucumentation, R2007b.

“http://www.mathworks.com/access/helpdesk/help/techdoc/index.html”.

[17] Gonzalez R. and Woods R. Digital Image Processing. Addison-Wesley Longman

Publishing Co., Boston, MA., 1992. ISBN: 0201508036.

[18] Hanley J.A. and McNeil B.J., “The meaning and use of the area under a Receiver

Operating Characteristic (ROC) curve.” Radiology, 1982; 143(1), pp. 29–36.

89

VITA

 The author, Mohammed Sadiq Das, was born on March 27, 1985 in the city of

Bombay, India where he grew up and received his primary and secondary education from

Bhavans A. H. Wadia High School. With an interest in the subjects of Mathematics and

Computers, a desire to experiment with gadgets and devices, and an inclination towards

computer programs he furthered his studies in fields of science and engineering at the

University of Mumbai (Bombay), India to receive his Bachelor of Engineering in

Information Technology in June 2006. Here, he had opportunities to learn and showcase

his knowledge in areas of Component based Software Development, Networking and

Image Processing. With a desire to learn more at core of the technologies, he then went

on to pursue an M.S. degree in Computer Science at the University of Missouri-Rolla.

During the course of this graduate studies, he had the opportunity to research intensively

on various aspects of Medical Image Processing and Pattern classification under the

supervision of Dr. Ronald Joe Stanley. In his free time, he enjoys playing soccer and

chess, and has also had the opportunity to represent his college soccer team at various

levels.

	MohammedDas_Thesis_final.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

