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ABSTRACT 

 In this research, imaging techniques are investigated for the analysis and detection 

of abnormalities in cervical and lumbar vertebrae. Detecting vertebra anomalies 

pertaining to osteoarthritis such as claw, traction and anterior osteophytes can aide in 

treatment plans for the patient. New size invariant features were developed for the 

detection of claw, traction and anterior osteophytes in cervical spine vertebrae. Using a 

K-means clustering and nearest centroid classification approach, the results were 

generated that were capable of discriminating cervical vertebrae for presence of 

anomalies related to osteophytes. The techniques developed can be integrated into 

systems based on querying spine images to be classified for such anomalies. 

 

 Computed tomography (CT) scan images of lumbar spine models are investigated 

and three dimensional models are generated for studying the shape and structure of the 

lumbar spine. Using the 3D models, techniques are developed for the detection of traction 

in lumbar x-ray images. Using K-means clustering and nearest centroid classification, 

attempts are made to classify lumbar spine images based on presence of traction. 
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1. INTRODUCTION 

1.1. ANOMALIES PERTAINING TO THE SPINE 

 

 Osteoarthritis is the term used to describe the deterioration of joints in the body 

due to age, injury or disease. Osteoarthritis affects more than 16 million people in 

America alone, with a higher probability  of  affecting people over the age of 75 years 

[1]. Osteoarthritis can involve the loss of the cartilage tissue between bones or joints, 

which can cause an increase in the friction of joints, leading to a sense of pain and over 

time limiting the mobility of joints. An inflammation can also occur on these joints 

affected by osteoarthritis which can be seen as an abnormal bone growth or bone spurs, 

called as osteophytes [2, 3].  

 

 The Lister Hill National Center for Biomedical Communications, an R&D 

division of the National Library of Medicine (NLM), National Institutes of Health (NIH), 

has been active in conducting research in the field of analysis of x-ray images of the spine 

using computer assisted techniques. It has developed a system called the Web-based 

Medical Information Retrieval System (WebMIRS) which provides online access to a 

large repository of x-ray images of spines and other associated data that were surveyed as 

a part of the National Health and Nutrition Examination Surveys (NHANES) [4]. Several 

techniques have been developed that allow researchers and other groups to retrieve such 

data efficiently. The conditions pertaining to the presence of osteoarthritis can be studied 

using digitized radiographs like x-rays and computed tomography (CT) scans obtained by 

Content Based Image Retrieval (CBIR) techniques. This research undertaking was 

devoted to the development of computer aided techniques with use of x-rays and CT 

scans in order to assist in the discrimination of variations of anterior osteophytes in 

normal cervical and lumbar spine vertebrae. 

 

 Several methods had been investigated to classify anterior osteophytes. Macnab’s 

classification is based on radiology and pathology [5, 6], and involves a grading system 

defined by a medical expert to assign severity levels to the Macnab classes. Macnab’s 
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classification defines claw and traction osteophytes. A claw osteophyte extends from the 

vertebral rim and curves in the direction of the adjacent disc. A claw region is typically 

triangular in shape and is curved at the tip of the region. A traction osteophyte tends to 

protrude horizontally, is usually thick, does not tend to curve at the tips and does not 

extend across the inter-vertebral disc space. The severity grading system includes three 

grades for osteophytes as slight, moderate and severe. If a vertebra does not exhibit claw 

or traction or does not exhibit a moderate or a severe grade for anterior osteophytes, the 

vertebra is considered normal. These abnormalities can lead to friction between joints, 

deterioration of the bone tissue and the cartilage tissue around the vertebra, causing pain 

and also can limit the mobility of joints [2]. Hence, early detection of these anomalies can 

be helpful in assisting the development of patient treatment plans. 

 

 
 

Figure 1-1: Cervical spine x-ray image example from the NHANES image collection archived at 

National Library of Medicine (NLM). Cervical vertebrae are highlighted in the boxed 

region. 

 

 Figure 1-1 presents an example of a cervical spine x-ray image. The highlighted 

region shows the cervical spine vertebrae. Figure 1-2 provides the borders of cervical 
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vertebrae C3–C6, as determined by a domain expert at the National Library of Medicine 

(NLM). For each cervical vertebrae provided in the data set a set of 36 points on the 

vertebral boundary were provided which could define the shape of the vertebra. Also, for 

each case truth values indicative of the presence of claw, traction and anterior 

osteophytes were provided by a domain expert at NLM. Size-invariant descriptors based 

on convex hull of vertebrae had been investigated [2] to classify lumbar vertebrae for the 

presence of anterior osteophytes. A similar approach is adopted for classifying cervical 

vertebrae for the presence of claw, traction and anterior osteophytes. The shape of a 

normal vertebra is typically rectangular and hence similar to its convex hull, hence any 

deviation from its regular rectangular shape could be tagged as a presence of an anterior 

osteophyte. Figure 1-2 shows an example of cervical spine vertebrae where vertebra C3 

shows a presence of traction and a moderate anterior osteophyte, C4 shows the presence 

of claw and severe anterior osteophyte, and C5 shows a presence of traction. In this 

research undertaking, new size-invariant descriptors are proposed for detecting claw, 

traction and anterior osteophytes in cervical vertebrae. The new size-invariant features 

proposed are based on comparing the opposite edges of the vertebra about axes passing 

through its centroid. 

 
Figure 1-2: The boundary shape of cervical vertebrae extracted from x-ray images. 

 

 The use of 3D models of body joints is an active research field and can offer 

newer avenues to be explored by studying 3D models of vertebral joints. Three-
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dimensional modeling of lumbar vertebrae is discussed in this thesis which can be used in 

detection of various deformations relating to the vertebral spine column like traction. 

Traction as defined by Macnab’s classification is an osteophyte that is usually thick and 

protrudes horizontally, which does not tend to curve at the tips and does not extend across 

the inter-vertebral disc space. Figure 1-3 presents an example of a lumbar spine x-ray 

image. The highlighted region shows the cervical spine vertebrae. Figure 1-4 provides the 

borders of lumbar spine vertebrae L1–L5, as determined by a domain expert at the 

National Library of Medicine (NLM). 

 

 
 

Figure 1-3: Lumbar spine x-ray image example from the NHANES image collection archived at 

National Library of Medicine (NLM). Lumbar vertebrae are highlighted in the boxed 

region. 

 

 The lumbar vertebrae are larger in size as compared to the cervical vertebrae. 

Hence, we investigate into generating 3-D models to assist size-invariant features in 

detecting anomalies in lumbar vertebrae. Three-dimensional models of lumbar vertebrae 
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are developed for estimating two-dimensional projected model representations for lumbar 

vertebrae in x-ray images. The three-dimensional (3D) models of lumbar vertebrae, L1-

L5, are derived from cross-sectional CT images of a normal lumbar vertebra and 

algorithms for combining them into 3D representations were provided by Dr. Sameer 

Antani and Dr. Rodney Long at NLM.  A data set of lumbar vertebrae is provided with 

images and necessary textual data. For each lumbar vertebra provided in the data set a set 

of 36 points on the vertebral boundary are provided which could define the shape of the 

vertebra. The data set also consists of a truth table for each case indicating the presence 

or absence of traction as provided by a domain expert at NLM. This thesis presents the 

work done towards detection of traction based on K-Means clustering model 

development from two-dimensional projections of the 3D modes models and nearest 

centroid classification of lumbar spine x-ray images. 

 
 

Figure 1-4: The boundary shape of lumbar vertebrae extracted from x-ray images. 
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1.2. THESIS OVERVIEW 

 

 This thesis introduces image analysis techniques and pattern classification 

methods to determine anomalies related to the vertebral spine. Previously, computer 

assisted techniques were studied using radius of curvature and boundary gradient features 

for detecting anterior osteophytes in cervical vertebrae [7] and were also used in studying 

herniation classification of inter vertebral discs in lumbar vertebrae [8]. In this thesis, x-

ray images are used for cervical vertebrae and techniques are developed to detect 

anomalies and classify them accordingly. Also, the use of computed tomography scans 

for modeling of lumbar spine is investigated so as to allow visualizing the lumbar spine 

in three dimensional orientations. Attempts are made to detect the presence of traction in 

lumbar x-ray spine images by comparing them to projections of the 3D models. 

 

 The sections in the remainder of the thesis are explained below. Chapter 2 

describes the methods used and experiments performed for discriminating cervical 

vertebrae for presence of claw, traction, and anterior osteophytes. Sub-sections 2.1.3 and 

2.1.4 describe the procedure for calculating size-invariant features for cervical vertebrae 

based on the convex hull techniques and sub-sections 2.1.5 and 2.1.6 describe the 

procedure for calculating size-invariant features for cervical vertebrae by flipping across 

centroidal axes. Section 2.2 describes the experiments performed for the purpose of 

classifying the data set of cervical vertebrae using the size-invariant features calculated 

for each case. The results of the classification problem are mentioned and discussed in 

section 2.3. Chapter 3 investigates the use of three dimensional modeling of lumbar 

vertebrae in order to assist in developing methods to discriminate lumbar vertebrae based 

on the presence of traction. Sections 3.1 and 3.2 explain the generation of 3D models of 

lumbar vertebrae using computed tomography (CT) scans and the generation of the 

projections of 3D models at different viewing angles respectively. Section 3.3 describes 

an algorithm developed to compare lumbar vertebrae images with projections of 3D 

models at different viewing angles. The results and conclusions of the methodologies 

used are explained in section 3.5. 
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2. SIZE-INVARIANT FEATURES FOR DISCRIMINATING CERVICAL 

VERTEBRAE FOR THE PRESENCE OF ANAMOLIES 

2.1. ALGORITHMS FOR CALCULATING SIZE-INVARIANT FEATURES 

 

2.1.1. Overview of the problem 

 In this study, new size-invariant features are proposed for cervical vertebrae 

analysis, including anterior osteophytes discrimination and the detection of claw and 

traction. The proposed features extend previous research to detect anterior osteophytes 

[2], which utilized size-invariant-based descriptors to quantify deviations of a vertebra’s 

shape from its typical convex shape. This study proposes new size-invariant descriptors 

beyond the analysis of convex hulls.  

 

2.1.2. Determination of vertebral boundary 

 For each cervical vertebra in the data set we are provided with a text file which 

consists of ( )yx,  pair of coordinates of 36 points along the boundary of the vertebra. 

These 36 points are marked along the vertebra boundary by experienced radiologists and 

domain experts. For the purpose of calculating the size-invariant features, we need to 

compute the shape of the vertebra. A second order B-spline [2] algorithm was applied to 

the set of 36 coordinates that computes a set of connected points which make up the 

complete vertebra boundary. An image fill operation was performed upon the set of 

connected boundary pixels to get the completely filled vertebra. If ),( yxDD =  denotes 

the filled vertebra, then D  was defined by equation 2.1. Figure 2-1 shows a filled 

cervical vertebra to illustrate the procedure explained above. 
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⎩
⎨
⎧

=
  elsewhere.  0,

boundaryvertebratheonorinsideliesy)(x,if   1,
D   (2.1) 

 

 
 

Figure 2-1: A filled cervical vertebra. 

 

2.1.3. Pre-processing involved towards calculation of size-invariant convex-hull 

based features 

 The first five features developed for discrimination of claw, traction and anterior 

osteophytes were based on comparisons between vertebra image and the convex hull of 

the vertebra [3]. The convex hull of a set of points Q  is defined as the smallest convex 

simple polygon enclosing all the points of Q  [9]. In order to compute the convex hull of 

the vertebra image, we use the implementation of the Quickhull algorithm provided by 

Barber et al. [10]. The convex hull of the cervical vertebra in Figure 2-1 is shown in 

Figure 2-2. The convex hull image ),( yxHH =  is defined as,  
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⎩
⎨
⎧

=
  elsewhere.  0,

D ofhullconvextheinsideliesy)(x,if   1,
H            (2.2 ) 

 

 

 
 

Figure 2-2: Filled convex hull of the cervical vertebra in Figure 2-1. 

 

 Let X  be the exclusive-OR of the vertebra image D  with the filled convex hull 

image H . Figure 2-3 shows the exclusive-OR of the cervical vertebra shown in Figure 

2-1 with its convex hull. Figure 2-4 describes the areas obtained in X  pertaining to the 

different edges of the vertebra. The areas pertaining to the superior side, inferior side and 

the anterior side are labeled. 

 

),(),(),( yxHyxDyxX ⊕=         (2.3) 

⎩
⎨
⎧ ==∨==

=
otherwise   1,

0 y) H(x,y)D(x,  1y)H(x,y)D(x, if   0,
  y) X(x,   (2.4) 
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Figure 2-3: Exclusive-OR region between filled vertebra D and convex hull H. 

 

 
Figure 2-4: Example of extraction of anterior, superior and inferior sides from exclusive-OR of 

filled vertebra and convex hull. 

 

 Depending upon the vertebra under consider, X  may include one or more 

connected regions for each vertebral side showing a concave edge for the corresponding 

vertebra. Let XHD  Aand  A,A be the areas of vertebra image D , convex hull region H , 

and the exclusive-OR between D  and H . Let k  denote the number of distinct 
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connected regions in X  considering 8-connectivity. If iX , for k ..., 3, 2, 1,i = , denotes 

each of the distinct connected regions, then the set X  can be represented as U
k

i
iXX

1=

= . 

The centroid ( )DD yx ,  of the filled vertebra D  was calculated and the centroids 

( )ii yx , , k ..., 3, 2,1,i = , for each of the k  connected components within X  having 

areas k321  A..., , A, A,A  were calculated. Figure 2-5 shows the position of the centroid of 

the cervical vertebra in Figure 2-1. Since, this research undertaking was aimed at 

calculating abnormalities like claw, traction and osteophytes pertaining to the anterior 

side of vertebrae, it can be concluded that the information corresponding to the posterior 

region does not contribute in discriminating such anterior side abnormalities and hence 

can be considered irrelevant. Consider PX  to be the subset of set X , XX P ⊆ ; where 

PX  was computed as U
k

i
mP XX

1=

=  such that mX  does not belong to the posterior side of 

the vertebra. In order to identify if iX  belongs to the posterior side or not, we consider 

the positioning of the centroid ( )ii yx ,  corresponding to region iX . The region iX  was 

said to belong to the posterior side if Di xx >  and Di yy < . Such iX  are not included 

in the set PX . The area of the exclusive-OR region not including the posterior side was 

given by, ∑
=

=
k

i
iP AA

1

, for all i , such that, ki ≤≤1  and Pi XX ⊆ . In order to compute 

the area of pertaining only to the inferior side, we consider the subset IX  of X , 

XX I ⊆ , where U
k

i
mI XX

1=

= , such that mX  belongs to the inferior side of the vertebra. 

Analogous to computing PX , any region iX  was considered in computing IX , if and 

only if, for the centroid ( )ii yx ,  corresponding to region iX , the condition Di xx >  and 

Di yy >  was true. The area of the exclusive-OR region pertaining only to the inferior 

side of the vertebra was given as, ∑
=

=
k

i
iI AA

1

, such that, ki ≤≤1  and Ii XX ⊆ . 

Similarly, the areas corresponding to the superior side of the vertebra, SA  and the 

anterior side of the vertebra, TA  were calculated. The calculated values for areas were 
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used in computing the convex-hull based features for discrimination of claw, traction and 

anterior osteophytes in cervical spine. 

 

 

 
Figure 2-5: Image of cervical vertebra illustrating the posterior side bounded by dotted lines which 

are passing through the centroid of the vertebra. 

 

2.1.4. Description of size-invariant convex-hull based features 

 For a given vertebra, the following features were calculated based on the 

computations described in sub-section 2.1.3: 
 

1) The ratio between the area of the filled vertebra and the area of the filled convex 

hull of the vertebra,  

H

D

A
AF =1      (2.5) 
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2) The ratio between the area of the exclusive-OR region without the posterior side 

regions and the area of the filled convex hull of the vertebra, 

H

PX

A
A

F =2      (2.6) 

 

3) The ratio between the area of the exclusive-OR regions pertaining to the inferior 

side of the vertebra and the area of the vertebra, 

D

I

A
AF =3      (2.7) 

 

4) The ratio between the area of the exclusive-OR regions pertaining to the superior 

side of the vertebra and the area of the vertebra, 

D

S

A
AF =4      (2.8) 

 

5)  The ratio between the area of the exclusive-OR regions pertaining to the anterior 

side of the vertebra and the area of the vertebra, 

D

T

A
AF =5      (2.9) 

2.1.5. Preprocessing involved towards calculation of size-invariant features based on 

flipping of vertebra over centroidal axes 

 The next features that were computed were based on flipping the vertebra about 

its centroidal axes. For this, first we consider the set of points D  corresponding to the 

completely filled vertebra as described in sub-section 2.1.1. The orientation of the 

vertebra was estimated by computing the corner points of vertebra denoted by D . The 

corner points can be computed from the topmost, leftmost, rightmost and bottommost 

points of the vertebra.  
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 In order to make a comparison of the shapes of the posterior and anterior sides, 

we first calculate the orientation of the vertebra along the posterior side by calculating the 

slope of the line joining the end points of the posterior side. The corners points or the end 

points of the posterior side correspond to the topmost and rightmost points of the vertebra 

as can be seen in Figure 2-1. Now, the vertebra was rotated by the angle calculated from 

the slope of the posterior side, such that the slope of the posterior side of the rotated 

vertebra becomes zero, giving the vertebra a horizontal orientation along its posterior 

side. 

 

 Moment normalization [11] was applied to the rotated vertebra so as to eliminate 

any skeweness from its alignment as shown in Figure 2-6. Let MNX  denote the set of 

points contained in the moment normalized vertebra with MNA  corresponding to the area 

described by the points in MNX . Next, the centroid ( )MNMN yx ,  for the moment 

normalized vertebra MNX  was calculated. Using the centroid ( )MNMN yx , , the set MNX  

was divided into two disjoint sets TX  and BX  corresponding to top and bottom halves of 

MNX , such that, for any point ),( yxP  in the set MNX , ),( yxP  belongs to set TX  if 

MNyy ≤  and ),( yxP  belongs to the set BX  if MNyy > . It can be easily seen that 

MNBT XXX =∪ . Figure 2-6 clearly shows the sets MNX , TX  and BX . As seen in 

Figure 2-6, TX  denotes the posterior half of the vertebra and BX  denotes the anterior 

half of the moment normalized vertebra in MNX . 

 

{ }MNMNT yyXPP(x,y)X ≤∧∈= |    (2.10) 

 

{ }MNMNB yyXPP(x,y)X >∧∈= |    (2.11) 
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XT

XB

Centroidal axis

 
 

Figure 2-6: Moment normalized vertebra image with the posterior side horizontal. The centroidal 

axis parallel to the posterior edge divides the vertebra into two halves, XT and XB. 

 

 In an attempt to make a comparison between the shapes of the posterior and 

anterior edges, we first flip the anterior half of the vertebra in BX  along the centroidal 

axis of the moment normalized vertebra passing through the centroid ( )MNMN yx ,  and 

parallel to line joining the end points of the posterior edge. Let the flipped anterior half be 

denoted by flippedBX _ . Finally, we compute the set RX  as the exclusive-OR between TX , 

the posterior half and flippedBX _ , the flipped anterior half of the vertebra.  

 

flippedBTR XXX _⊕=     (2.12) 

 

Let 
XRA  be the area of the exclusive-OR set RX . 

 

 Similarly, in order to make comparisons between the edges of the vertebra 

pertaining to the superior and inferior sides, we compute the orientation of the vertebra 

along the superior side by calculating the slope of the line joining the end points of the 

superior side of the vertebra. Using, the angle calculated from this slope, the vertebra was 

rotated such the superior side of the vertebra has a horizontal alignment. Moment 

normalization was performed so as to obtain the moment normalized vertebra MNY . The 

set MNY  and the set MNX  correspond to the same vertebra, but are different as the 
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orientation of the vertebra in each case differs, although they have approximately the 

same area MNA . Next, the points in set MNY  were divided into two distinct sets TY  

and BY , such points lying above the centroid of MNY  belong to set TY , or set BY  

otherwise. This is done by computing a line passing through the centroid ( )MNMN yx ,  of 

the vertebra and is parallel to the line joining the end points of the superior side. The set 

TY corresponds to the vertebra half containing the superior side and the set BY  

corresponds to the vertebra half containing the inferior side. 

 

YT

YB

Centroidal axis

 
 

Figure 2-7: Moment normalized vertebra image with the superior side horizontal. The centroidal 

axis parallel to the superior edge divides the vertebra into two halves, YT and YB. 

 

 In order to compare the shapes of the superior and posterior sides, we first flip the 

vertebra half BY  containing inferior side about the centroidal axis parallel to the superior 

side as shown in Figure 2-7. Let the flipped inferior side vertebra half be denoted by 

flippedBY _ . Finally, we compute the set RY  as the exclusive-OR between TY , the vertebra 

half containing the superior side and flippedBY _ , the vertebra half containing the flipped 

inferior side.  

flippedBTR YYY _⊕=      (2.13) 

 

Let 
YRA  be area of the exclusive-OR set RY .  
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The calculated values for areas were used in computing novel features for discrimination 

of claw, traction and anterior osteophytes in cervical spine. 

 

2.1.6. Description of size-invariant features based on flipping of vertebra over 

centroidal axes 

For the given vertebra, the following features were calculated based on the computations 

described in sub-section 2.1.5: 

 

1) The ratio of the area obtained by exclusive-OR operation between the anterior and 

the posterior sides of the moment normalized vertebra and the area of the moment 

normalized vertebra, 

MN

XR

A
A

F =6      (2.14) 

 

2) The ratio of the area obtained by an exclusive-OR operation between the superior 

and the inferior sides of the moment normalized vertebra and the area of the 

moment normalized vertebra, 

MN

YR

A
A

F =7      (2.15) 

 



 

 

18

2.2. EXPERIMENTS PERFORMED 

 

2.2.1. Experimental Data 

The experimental data was provided by the National Library of Medicine (NLM), which 

contained the following: 

1) A data sheet consisting of a table where each row was a tuple τ, 

( )ISISIS o,o,t,t ,c ,c name,τ = . Here, the attribute name  contained a string for 

the vertebra name. The attributes Ic  and Sc  have values true/false  indicating the 

presence of claw on the superior and inferior sides of the vertebra respectively. 

The attributes St  and It  have values true/false  indicating the presence of 

traction on the superior and inferior sides of the vertebra respectively. Lastly, the 

attributes So  and Io  have enumerated labels { }severemoderate, slight,  

indicating a grade for the presence of anterior osteophytes on the superior and 

inferior sides of the vertebra. 

2) For each vertebra in the data sheet, a text file was provided which contained 

values representing ( )yx ,  coordinates of 36 points along the vertebral boundary 

for the corresponding vertebra. 

 

 The data set provided consisted of a total of 390 cervical vertebrae for which the 

proposed features were calculated in order to facilitate in determining the presence of 

claw, traction and anterior osteophytes. The 36 points along the vertebral boundary for 

each vertebra were provided to NLM by experienced radiologists and domain experts. 

For the entire dataset, three new classes of attributes ( )ot, c,  were introduced, of which 

c  and t  had values labeled true/false , where c  was indicative of the presence of claw 

and t  was indicative of the presence of traction. The attribute class, c , indicating the 

presence of claw was assigned a value true , if either sc , the attribute class for presence 

of claw at superior side or Ic , the attribute class for presence of claw at the inferior side 

had a value true ; otherwise it was assigned the value false . Similarly, the attribute class 
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t  for presence of traction was assigned values based on the values St  and It  

corresponding to the superior and inferior sides. The attribute o  had an enumerated label 

{ }severe moderate, slight,  indicating the presence of anterior osteophytes. This attribute 

was assigned a value labeled severe  if either, So , the superior side or Io , the inferior 

side label had a value severe ; else it was assigned a value labeled moderate  if either 

So  or Io  had a value moderate ; otherwise it was assigned a value labeled slight . For 

this research undertaking, the discrimination of anterior osteophytes was done for a 

normal/abnormal classification. Hence, for all the vertebra cases provided in the data set, 

the vertebra labels for anterior osteophytes bearing a label slight  were considered to be 

normal and vertebra labels having the label moderate  or severe  were considered to be 

abnormal. 

 

 The data set was stratified by the type of cervical vertebrae, which are C3 – C7. It 

was observed that the data set of 390 cervical vertebra consisted of 97 C3s, 99 C4s, 96 

C5s, 76 C6s and 22 C7s. The 390 entries in the data set when grouped by target variables 

c , t  and o  showed the following distribution. 

 
Table 2-1: Distribution of cervical vertebrae dataset for detecting claw, traction and anterior 

osteophytes. 

 Number of cervical vertebrae 

Claw/No claw 242/148 

Traction/No traction 212/178 

Anterior Osteophytes 
(abnormal/normal) 258/132 (82 severe , 176 moderate ) 

 

 

 The features 71 FF −  explained in section 2.1 are calculated for each vertebra 

provided in the data set. These features were developed keeping in mind the aim of this 

research undertaking which was investigation of cervical vertebra for the presence claw, 

traction and anterior osteophytes that have any characteristic deviations in their shape 
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from a normal rectangular shape. The features 51 FF −  which are based on comparisons 

with the convex hull of the vertebra and the features 76 FF −  which characterize the 

difference in curvature of the sides of the vertebra can be considered as the basis for 

detection of claw, traction and anterior osteophytes. 

 

2.2.2. Generation of training and test sets 

 In order to generate the training and test sets, first we integrated the features 

calculated for each vertebra and the data provided. The integrated data set hence 

consisted of tuples of the form, o) t, c, ,F ,F ,F,F,F,F,F(name,τ 7654321n = ; where 

name , c , t  and o  are as explained in sub-section 2.2.1 and 71 FF −  are the features 

calculated for the vertebra corresponding to name .  

 

 For classification of cervical vertebra for the presence of claw as claw/no claw, 

for the presence of traction as traction/no traction and the presence of anterior 

osteophytes as abnormal/normal, twenty randomly generated training sets and test sets 

were generated for each of the three classification problems. The data set was divided 

into training and the test sets. Ninety percent of the normal and abnormal feature vectors 

were used in the training set and the remaining ten percent for the test set.  

 

2.2.3. Classification 

 The three classification problems involved generating a model that could classify 

a given input vector into classes claw/no claw, traction/no traction, and abnormal/normal 

osteophytes, respectively. These classifications were performed on the data set of cervical 

vertebrae with features 61 FF −  and with features 71 FF −  separately. The following 

procedure was applied for each of the three classification problems (claw/no claw, 

traction/no traction and abnormal/normal osteophytes). For each of the 20 randomly 

generated training and test sets, first, the mean and standard deviation values, μ  and σ  

were calculated for all features F  in the feature set 71 FF −  of the training set.  
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Second, the feature vectors are normalized by subtracting each feature by its mean and 

dividing by its standard deviation. For each feature F  in the feature set, we calculate the 

normalized feature normF as, { }normnormnorm f F,ffF ∃∈∀= | , where normf  was calculated 

as, 
σ
μ-f f norm = , for normnorm Ff ∈ and Ff ∈ . Third, the number of clusters for each 

class (claw, no claw) was estimated by using subtractive clustering [12, 13]. Fourth, 

using the normalized featured vectors for the training data and the number of cluster 

estimated for each class, K-means clustering [14, 15] was performed to determine the 

cluster centers for each class. Fifth, we normalize the set of test vectors using the mean 

and standard deviation values obtained for the training set. Sixth, for each of the feature 

vectors in the test set, nearest centroid classification was performed. For each normalized 

feature vector in the test set taken, the Euclidean distance to the cluster centers of each 

class were computed. The minimum of the Euclidean distance was calculated and 

depending upon the class (claw, no claw) of the cluster center for which the Euclidean 

distance was of minimum value, a similar label was assigned to the test feature vector. 

Seventh, the true negative and true positive classification rates are computed for the test 

data. True positive refers to the percentage of test case vertebrae with claw being 

classified correctly and true negative refers to the percentage of test case vertebrae with 

no claw being classified correctly. Eighth, the process was repeated for all the 20 

randomly generated training and test sets. The entire procedure of classification was 

performed over the set of features 61 FF −  and the set of features 71 FF −  and 

corresponding results were generated. 

 

 The procedure for classification of traction and anterior osteophytes was 

analogous to the procedure for claw. The cluster centers for the classes of traction and no 

traction are computed in the process of classifying traction. The procedure for classifying 

anterior osteophytes was slightly modified. For anterior osteophytes, cluster centers were 

calculated for each of the three classes slight, moderate and severe. For the test vectors, 

Euclidean distances were computed to each of the cluster centers. If the minimum 

Euclidean distance  corresponded  to  a  cluster center for class slight,  then the test vector 
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was assigned the label normal. If the minimum Euclidean distance corresponded to a 

cluster center for either the class moderate or the class severe, the test vector was 

assigned a label abnormal. 
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2.3. RESULTS AND CONCLUSION 

 

2.3.1. Experimental Results 

 The results obtained from the experiments performed to classify cervical 

vertebrae as claw/no claw, traction/no traction, abnormal/normal for anterior osteophytes 

computed based on the six features and computed based on seven features are discussed 

below. The classification was done over the provided data set of 390 cervical vertebrae. 

Table 2-2 below contains the results of the experiments performed using the six features 

61 FF −  for classification of claw/no claw, traction/no traction and abnormal/normal for 

anterior osteophytes for cervical vertebrae. Table 2-3 below contains the results of the 

experiments performed using the seven features 71 FF −  for classification of claw/no 

claw, traction/no traction and abnormal/normal for anterior osteophytes for cervical 

vertebrae as done for the six features 61 FF − . Table 2-2 and Table 2-3 show the results of 

classifying the 20 randomly generated test sets using clustering techniques over the 

classification models obtained for the training sets using six and seven features 

respectively as discussed in sub-section 2.2.3. 

 

 In Table 2-2 and Table 2-3, the column 1 gives the iteration of the training and 

test sets generated. Columns 2 and 3 provide the results obtained for claw/no claw 

classification, Columns 4 and 5 contain the results obtained for traction/no traction 

classification and Columns 6 and 7 give the results for abnormal/normal classification for 

detection of anterior osteophytes. All the vertebrae bearing grades moderate or severe 

were considered abnormal and all the vertebrae bearing grades slight were considered 

normal. Also note that 20 different training and test sets were generated for each 

classification problem. The mean and standard deviation values for each classification 

result were found are shown at end of Table 2-2 and Table 2-3.  
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Table 2-2: K-Means classification results for cervical vertebrae using six features. 

Iter. % Correct 
Claw 

% Correct 
No Claw 

% Correct 
Traction 

% Correct 
No Traction 

% Correct 
Abnormal 

% Correct 
Normal 

1 84.00 71.43 91.67 80.00 85.19 83.33 

2 88.00 78.57 79.17 100.00 92.59 66.67 

3 88.00 64.29 83.33 86.67 96.30 66.67 

4 80.00 78.58 87.50 93.33 77.78 83.33 

5 84.00 71.43 83.33 93.33 81.48 83.33 

6 80.00 78.58 100.00 73.33 92.59 66.67 

7 84.00 92.86 79.17 100.00 85.19 83.33 

8 96.00 57.14 79.17 100.00 81.48 66.67 

9 88.00 71.43 83.33 86.67 85.19 66.67 

10 88.00 78.58 87.50 80.00 85.19 66.67 

11 92.00 64.29 91.67 73.33 81.48 83.33 

12 80.00 78.58 83.33 86.67 92.59 83.33 

13 84.00 71.43 83.33 86.67 77.78 75.00 

14 80.00 78.57 83.33 86.67 85.19 83.33 

15 84.00 85.72 83.33 86.67 77.78 83.33 

16 96.00 57.14 83.33 86.67 85.19 83.33 

17 76.00 85.71 91.67 66.67 81.48 75.00 

18 92.00 71.43 87.50 73.33 74.07 91.67 

19 84.00 85.72 83.33 80.00 81.48 83.33 

20 88.00 64.29 95.83 60.00 85.19 66.67 

Mean 85.80 74.29 86.04 84.00 84.44 77.08 

Std.Dev. 5.43 9.67 5.62 10.90 5.84 8.50 
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Table 2-3: K-Means classification results for cervical vertebrae using seven features. 

Iter. % Correct 
Claw 

% Correct 
No Claw 

% Correct 
Traction 

% Correct 
No Traction 

% Correct 
Abnormal 

% Correct 
Normal 

1 84.00 71.43 87.50 80.00 76.92 83.33 

2 92.00 78.57 83.33 93.33 73.07 66.67 

3 80.00 64.29 79.17 93.33 69.23 100.00 

4 72.00 78.58 79.17 93.33 53.84 76.92 

5 80.00 85.72 83.33 86.67 76.92 84.62 

6 88.00 71.43 83.33 86.67 72.00 72.73 

7 88.00 85.72 70.83 93.33 69.23 81.82 

8 96.00 50.00 87.50 66.67 80.77 70.00 

9 84.00 71.43 79.17 86.67 76.92 66.67 

10 92.00 78.58 87.50 80.00 76.92 90.91 

11 80.00 64.29 79.17 80.00 73.08 69.23 

12 72.00 78.58 87.50 93.33 84.62 100.00 

13 80.00 85.72 87.50 80.00 84.62 69.23 

14 88.00 71.43 95.83 73.33 69.23 91.67 

15 88.00 85.72 83.33 80.00 69.23 80.00 

16 96.00 50.00 75.00 80.00 65.38 76.92 

17 84.00 92.86 75.00 80.00 76.00 54.55 

18 88.00 71.43 79.17 86.67 80.77 83.33 

19 88.00 85.72 70.83 80.00 84.62 81.82 

20 88.00 57.14 91.67 100.00 73.08 63.64 

Mean 85.40 73.93 82.29 84.67 74.32 78.20 

Std.Dev. 6.41 11.75 6.36 7.86 7.22 11.65 
 

 

 Table 2-4 and Table 2-5 provide the number of clusters determined by the 

subtractive clustering used over the training data set of six features and seven features 
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respectively. The number of clusters were determined for training data sets for each 

classification task of claw/no claw, traction/no traction and abnormal/normal for anterior 

osteophytes separately as the training data sets in each task differed. This process was 

done for all iterations of K-means clustering and nearest centroid classification of the 20 

randomly generated training sets. 

 
Table 2-4: Number of clusters used for each classification using K-means clustering over six 

features (F1-F6). 

 Number of Clusters 

Iter. Claw No 
Claw Traction No 

Traction 
Severe 

osteophytes
Moderate 

osteophytes 
Slight 

osteophytes

1 4 5 3 6 8 4 4 

2 4 8 3 5 8 3 3 

3 4 6 3 6 6 4 3 

4 4 5 3 5 5 4 3 

5 4 7 3 6 8 4 5 

6 4 6 3 8 7 4 3 

7 5 6 3 5 8 5 4 

8 4 7 3 5 6 3 4 

9 4 5 4 5 9 3 4 

10 4 8 3 8 6 3 5 

11 4 6 3 5 8 3 4 

12 4 5 3 5 6 3 4 

13 4 7 4 6 6 6 4 

14 4 6 3 5 6 4 4 

15 5 6 3 5 7 3 4 

16 4 7 3 5 7 4 3 

17 5 7 2 5 6 3 3 

18 5 8 2 5 8 4 4 

19 4 8 3 7 7 4 3 

20 4 6 3 8 7 3 3 
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Table 2-5: Number of clusters used for each classification using K-means clustering over seven 

features (F1-F7). 

 Number of Clusters 

Iter. Claw No 
Claw Traction No 

Traction 
Severe 

osteophytes
Moderate 

osteophytes 
Slight 

osteophytes

1 4 4 4 11 10 7 5 

2 4 5 4 11 10 7 4 

3 3 5 5 11 11 6 4 

4 4 4 5 10 9 5 4 

5 4 6 3 12 12 6 5 

6 4 4 4 10 13 6 4 

7 4 6 4 10 10 6 4 

8 3 4 5 10 11 4 5 

9 4 4 5 9 10 6 6 

10 4 5 4 9 10 5 5 

11 3 5 3 9 11 4 4 

12 4 4 4 10 9 5 4 

13 4 6 4 11 11 8 4 

14 4 4 3 12 10 7 4 

15 4 6 4 9 12 7 4 

16 3 4 4 10 11 5 6 

17 4 5 4 11 10 8 4 

18 4 6 4 11 10 7 5 

19 4 5 5 12 10 5 7 

20 4 5 4 10 20 6 5 
 

 

 In order to discuss the experimental results obtained using the six features and the 

seven features, the results for the five convex hull features are generated so as to provide 

a basis to discuss the contribution of features 6F  and 7F  in the classification process. A 

summary of the results obtained for classification of claw, traction and anterior 
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osteophytes using the five convex hull based features are given in Table 2-6. Columns 2 

and 3 represent the results obtained for claw/no claw classification, Columns 4 and 5 

represent the results obtained for traction/no traction classification and Columns 6 and 7 

represent the results for abnormal/normal classification for detection of anterior 

osteophytes. All the vertebrae bearing grades moderate or severe were considered 

abnormal and all the vertebrae bearing grades slight were considered normal. Columns 2-

7 provide the average results of percentage of cervical vertebrae in the data set that were 

classified correctly for each class. 

 
Table 2-6: K-Means classification results for cervical vertebrae using the five convex hull based 

features. 

 % Correct 
Claw 

% Correct 
No Claw 

% Correct 
Traction 

% Correct 
No Traction

% Correct 
Abnormal 

% Correct 
Normal 

Mean 85.20 70.70 81.30 78.00 86.30 65.80 

Std.Dev. 7.90 13.31 7.09 10.84 6.37 10.44 
 

 

2.3.2. Conclusions 

 New size invariant features were investigated and developed in order to improve 

the results of classification for claw, traction and anterior osteophytes. It can be 

concluded that the proposed size-invariant features show that they are capable of 

discriminating cervical vertebrae for the presence of claw, traction and osteophytes as 

seen by the results obtained in Table 2-2 and Table 2-3. The use of features 61 FF −  

provided average discrimination rates of 85.80% for claw, 86.04% for traction and 

84.44% for detecting anterior osteophytes and 74.29% for no claw, 84.00% for no 

traction and 77.08% for normal vertebra with slight osteophyte. The use of features 

71 FF −  provided average discrimination rates of 85.40% for claw, 82.29% for traction 

and 74.32% for detecting anterior osteophytes and 73.93% for no claw, 84.67% for no 

traction and 78.20% for normal vertebra with slight osteophyte. Overall, the performance 

compared to the results seen earlier for the five convex hull based features have been 



 

 

29

improved. This leads to the fact that the features 6F  and 7F  provide novel information in 

classification of cervical vertebrae for anomalies like claw, traction and anterior 

osteophytes.  

 

 It can be seen that the six features and the seven features provided better results 

for traction as compared to claw and anterior osteophytes. The results obtained by using 

the features 6F  and 7F  are very identical in discrimination of cervical vertebrae for 

presence of claw. For the case of discrimination of traction, the six features provided 

better results for the case where traction is correctly detected, that is the true positive 

cases, while the seven features provided slightly better results to detect the absence of 

traction correctly, that is the true negative cases. The seven features also provided better 

standard deviation values in detecting absence of traction. In the case of discriminating 

cervical vertebrae for anterior osteophytes, the six features provided far better results than 

the seven features. Another important observation to be made from Table 2-4 and Table 

2-5 is that the number of clusters required in the process of classification of anterior 

osteophytes using the seven features 71 FF −  is far greater than required for the six 

features 61 FF − . This can be one of the reasons that better results were obtained with six 

features for discriminating anterior osteophytes. 

 

 The overall goal of the research undertaking was to investigate and develop 

features characteristic to anomalies relating to osteoarthritis such as claw, traction and 

anterior osteophytes in cervical vertebrae and to develop techniques to classify them 

accordingly. It can be concluded that the proposed features can be incorporated into a 

content based image retrieval (CBIR) system to allow querying of images with conditions 

specific to anomalies like claw, traction and anterior osteophytes. 
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3. ORIENTATION ESTIMATION OF LUMBAR VERTEBRAE IN X-RAY 

IMAGES USING 3D MODELS 

3.1. GENERATION OF 3D MODELS 

 

3.1.1. Overview of the problem 

 This research proposes the use of 3D models to study the shape of lumbar spine 

vertebrae in order to assist in detection of anomalies like traction. This involves 

generating methods to create 3D models that can be studied and to develop techniques 

using size-invariant features for classification of lumbar spine vertebra images based on 

presence of traction. 

 

  The initial data that was provided by NLM consisted of a series of images for 

each lumbar vertebra L1-L5 developed using computed tomography (CT) scans and a set 

of algorithms implemented in Matlab®. These images and the initial algorithms for model 

generation were provided by the National Library of Medicine (NLM). The 

implementation of the provided algorithms performed as follows. First, for each lumbar 

vertebra L1-L5, the corresponding CT scan images were processed using segmentation 

tools and a set of binary images B  was generated for each L1-L5. Each of these two-

dimensional binary images b , ,Bb ∈ corresponded to the image of the vertebra when 

sliced. Since, the binary images b  represent the images of a sliced vertebra, hence, when 

these two-dimensional binary images b , ,Bb ∈  obtained from the layered CT scans are 

stacked one over the other, we get a three-dimensional structure J  that describes the 

shape of the lumbar vertebra. Third, a three dimensional smoothing operation was 

performed over J  to produce a smoothened shape of the vertebra, sJ . Last, the set of 

points in sJ  are applied a patch  routine available in Matlab®. The patch  routine 

displays the points sJ  to give a 3D structure which can be viewed as a solid object. The 

output of the patch  routine was the required 3D model iD  as defined in equation 3.1. 
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( )
⎪
⎩

⎪
⎨

⎧
=

otherwise.  0,
vertebra. lumbar the of     

 structure the on or inside point a is z) y, (x, if   1,
  z y, x,Di             (3.1) 

 

 

 The above procedure was repeated for all five sets of binary images, ,B  generated 

for the five lumbar vertebrae L1-L5. Hence, we get a set of 3D models 

{ }5 4, 3, 2, 1,i  D    D i == |  corresponding to each of the five lumbar vertebrae. The 3D 

models for lumbar vertebrae L1 and L2 are shown in Figure 3-1 and Figure 3-2, 

respectively. 

 

 

 

 
 

Figure 3-1: 3D model of lumbar vertebra L1 obtained by segmentation and smoothening of the 

layered CT scan images. 
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Figure 3-2: 3D model for lumbar vertebra L2 obtained by segmentation and smoothening of the 

layered CT scan images. 

 

3.1.2. Azimuth and elevation angles 

 The 3D models for each lumbar vertebra iD  generated from layered CT scan 

images can be rotated to provide different views of the lumbar vertebrae. Matlab® 

incorporates two parameters that are azimuth angle and elevation angle which are used to 

define the orientation of a 3D object. With reference to the Matlab® documentation [16], 

the definitions of these angles are explained here. Let x  be the axis in the right direction, 

y  be the axis in the direction straight ahead going away and z  be the axis in the up 

direction as depicted in Figure 3-3. Then, the azimuth angle is defined as the viewing 

angle in the xy  plane with positive values indicating counter-clockwise rotation from the 

viewpoint and vice-versa. The elevation angle was defined as the viewing angle made 

above or below the xy  plane, here positive values of elevation angle indicate that the 

angle was made above the xy  plane and negative values of elevation angle indicate that 

the angle was made below the xy  plane. An illustration of these angles is as shown in 

Figure 3-3. For this study, the orientation of lumbar vertebrae will be described using the 

pair of these two angles, ( )el_angleaz_angle, , where angleaz _  represents the azimuth 
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angle of viewing the object and the angleel _  represents the elevation angle of the 

viewing the object. All angles mentioned in this study are measured in degrees, unless 

specified otherwise. The orientation corresponding to ( )0 90,-  represents the front view 

of the object. 

 

 
 

Figure 3-3: Azimuth and elevation angles [16]. 

 

3.1.3. Cropping the pedicle 

 As seen for 3D models for lumbar vertebrae L1 and L2 in Figure 3-1 and Figure 

3-2, the set D  consists of 3D models that represent the complete structure of lumbar 

vertebrae L1-L5. For this research undertaking, we required only the vertebrae without 

their pedicle portion that connects to the vertebral column. Hence, we revert back to the 

algorithms explained in sub-section 3.1.1. The given algorithms were modified so as to 

cut out the pedicle portion from each of the 3D models, iD .  

 

 To cut out the pedicle portion, we first needed to compute the top view of the 

vertebra in order to compute the position from where the pedicle portion of the vertebra 

begins to project out. The smoothened three-dimensional structure, sJ  which was 

obtained by stacking all the binary images in the set B , represents the structure of the 
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lumbar vertebra model as described in sub-section 3.1.1. In order to proceed with the 

cropping of the pedicle, we need to find the top view image of the three-dimensional 

structure sJ . To compute the top view projection of sJ , a logical AND   operation was 

performed over all the binary images b , Bb ∈ , that make up the structure of sJ . The top 

view image obtained for L1 is shown in Figure 3-4. In the top view image, we compute 

the location from where the pedicle is attached to the rest of the vertebra. Using this 

location we crop the pedicle out from the remaining structure of the vertebra so as to 

retain only the vertebra part. 
 

 

 
 

Figure 3-4: Top view of 3D model L1. 

 

 
 

Figure 3-5: Center blob from top view of 3D model for L1. 

 

 

Point of maximum 
change in slope pc

Point of maximum 
change in slope 



 

 

35

 

 

  

 
 

Figure 3-6: 3D model L1 showing optimal pixel to cut off pedicle. 

 

 The center dark blob in the top view image in Figure 3-4 was segmented out as 

shown in Figure 3-5 as a white blob. For the segmented center blob, a set of points bB  

are determined, such that every point p  in bB  lies on the boundary of the bottom half of 

the center blob. From the set of point bB , a point cp  is found such that the change of 

slope for the curve defined by the points in bB  is the greatest. This point cp  denotes the 

optimum position from where the pedicle part should be separated out from the rest of the 

vertebra. This point cp  was then transformed to its equivalent position ( )zy,x,j , 

sJj ∈ , where sJ  is the three dimensional structure of the lumbar vertebra described in 

sub-section 3.1.1. The point j  is illustrated in Figure 3-6. All the pixels beyond the 

vertical orthogonal plane parallel to the yz  plane and passing through the point j  are 

then changed to background pixels, hence eliminating the pedicle part from the vertebra. 

Let this structure be called cJ . Next, the patch  routine available in Matlab was then 

applied to the vertebra structure without the pedicle, cJ , to generate the required 3D 

model. This process was repeated for all the complete 3D models in set D  to generate 

j(x, y, z)
Point of maximum 
change in slope 
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the required 3D models cD . Figure 3-7 through Figure 3-11 show the 3D lumbar 

vertebrae models generated after cropping the pedicle. 

 

 
Figure 3-7: 3D model for lumbar vertebra L1 after cropping out the pedicle. 

 

 
Figure 3-8: 3D model for lumbar vertebra L2 after cropping out the pedicle. 

 
Figure 3-9: 3D model for lumbar vertebra L3 after cropping out the pedicle. 
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Figure 3-10: 3D model for lumbar vertebra L4 after cropping out the pedicle. 

 

 

 

 
Figure 3-11: 3D model for lumbar vertebra L5 after cropping out the pedicle. 
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3.2. CREATING AND SAVING THE PROJECTION IMAGES 

 

3.2.1. Projection of 3D models 

 In an attempt to employ 3D models of lumbar vertebrae in discriminating the 

presence of traction in lumbar vertebrae, we need to compare the structure of 3D models 

to the structure of vertebrae in our data set. In this research, we compute the orientation 

of the 3D models at different angles and find the best matching orientation of the 3D 

models to the two dimensional vertebrae boundaries found for vertebrae in the x-ray 

images. The lumbar vertebrae boundaries were determined from their respective files 

provided by NLM, containing 36 points along the vertebra boundary, using the same 

procedure as presented in section 2.1.1. The lumbar vertebrae from x-ray images were 

then matched to the corresponding 3D models of lumbar vertebrae of the same type, L1-

L5. 

 

 The lumbar vertebrae models generated are three dimensional in structure, the 

data set of the vertebrae to be discriminated for traction can be provided in form of x-rays 

or other two dimensional image forms. Hence, in order to compare the provided vertebrae 

with the 3D models, it was required to find the two dimensional projection of the 3D 

models at different combination for the angles of orientation. The different orientation 

angles used in this study are between 100-  and 80-  for azimuth angle and 10-  and 10  

for elevation angle with an interval of 0.5  for each. The range of different values for the 

azimuth and elevation angles is given by azRange  and elRange  respectively. 

 

( ){ }40t0  t0.5  100-  azRange ≤≤+= |    (3.2) 

( ){ }40t0  t0.5  10-  elRange ≤≤+= |    (3.3) 
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 The sets azRange  and elRange  both contain 41  different values. For each 

azRangeangleaz ∈_  and elRangeangleel ∈_ , the projections of a 3D model 

corresponding to a combination pair of ( )el_angleaz_angle,  gives a total of 1,681  

different projection of the 3D model.  

 

3.2.2. Storing and indexing of projection images 

 In order to compute the orientation characteristics of lumbar vertebrae in the data 

set provided, it was required to generate the projections of a corresponding 3D model for 

all 1,681  different combinations of ( )el_angleaz_angle,  to find the best match. The 

process of computing the projections of a 3D model for all different angles had to be 

performed for each case of lumbar vertebrae in the experimental data set. The process of 

generating the projection for a 3D model was time consuming and was recurring for each 

experimental case. Hence, it was decided to compute all the different projections for each 

of the 3D models icD , store them and retrieve them whenever needed. For each 3D 

model icD , we obtain a set iP , which contained the 1,681  different projections of that 

lumbar vertebra model. Next, it was required to save the all the projection images 

obtained for all the five models for lumbar vertebrae L1-L5, and to index them for easy 

retrieval. The indexing of the projection images involves creating a index for each 

projection images based on, first, the label indicating the type of lumbar vertebra viz. 

L1-L5 and second, the pair of angles ( )el_angleaz_angle,  which determined the 

orientation of the corresponding 3D model for which the projection was obtained. The 

filenames used for projection images contained a label indicating the type of lumbar 

vertebra and the corresponding ( )el_angleaz_angle,  angles of the projection. Hence, the 

filenames of the projection images themselves act as an index, which can be used for 

indexing of these projection images. 

 

 While indexing and storing the projection images, the aspect ratio of the projected 

vertebra model was also calculated. The comparison of projection images of the vertebra 

models with the lumbar vertebra images in the data set needed to be performed to 
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compute its orientation characteristics. It was required to calculate the aspect ratios of the 

projection images as the resolution of the projection images and the resolution of the 

vertebra images in the experimental data set could differ non-linearly. 

 

 For all the vertebrae provided in the data set, it was seen that the resolution of the 

vertebrae images in the data was much higher than that of the projection images of 3D 

models. Hence, in order to make the projection images comparable in size to that of the 

vertebrae in the dataset, it was required to resize the projection images for each vertebra 

in the dataset. The length of the posterior side and the length of the superior side are 

chosen as representative of the aspect ratios of the projection of the 3D models of lumbar 

vertebrae. The length of the posterior side of the lumbar vertebra in the projection image 

DpostDist3  and the length of the superior side DtopDist3  are calculated for each of 

the projection images, iP , for all the five 3D models. In order to calculate DpostDist3  

and DtopDist3 , first the corner pixels of the projection of the 3D vertebra model in the 

images iP  are computed. Using, the corner pixels, the lengths of the sides can be 

calculated, Figure 3-12 illustrates the lengths of the posterior and superior sides that are 

calculated. Also, using the corner pixels the slope of the posterior side DslopePost 3  for 

the projected vertebra iP  was computed. 

 
Figure 3-12: A projection of lumbar vertebra L1 at viewing angles (-90.0, 1.0). Lengths of posterior 

and superior sides are labeled. 
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3.3. ALGORITHM TO COMPUTE ORIENTATION CHARACTERISTICS OF 

LUMBAR VERTEBRAE 

 

3.3.1. Determination of vertebral boundary 

 For each lumbar vertebra in the data set we are provided with a text file which 

consists of ( )y x,  pairs of coordinates of 36 points along the boundary of the vertebra. 

These 36 points are marked along vertebra boundary by experienced radiologists and 

domain experts. In order to determine the orientation characteristics of the lumbar 

vertebra by comparison to the 3D models, we need to compute the shape of the lumbar 

vertebra. A second order B-spline [2] algorithm was applied to the set of 36 coordinates 

which computes a set of connected points that make up the complete vertebra boundary. 

An image fill operation was performed upon the set of connected boundary pixels to get 

the completely filled vertebra as shown in Figure 3-13. If ),( yxLL ff =  denotes the 

filled vertebra, then fL  was defined as, 

 

( )
⎩
⎨
⎧

=
  elsewhere.  0,

boundary vertebratheonorinsideliesy)(x,if  1,
y x,Lf     (3.4) 

 

 
 

Figure 3-13: A filled lumbar vertebra obtained by B-spline and image fill operation over the 36 

boundary points. 
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3.3.2. A customized algorithm for resizing images 

 Each lumbar vertebra fL  needs to be compared with all the projections iP  of its 

corresponding 3D model in order to compute the best matching 3D projection for that 

lumbar vertebra to determine its orientation characteristics. The resolution of each lumbar 

vertebra and the resolution of the projections iP  of the 3D models were expected to vary 

non-linearly. It was seen that the resolution of lumbar vertebrae in the provided data set 

was much larger compared to the resolution of the projection images. Hence, the 

projection images are to be resized by up–sampling. Also, the aspect ratios of projections 

of 3D models and of the lumbar vertebrae are different, that is, the size of projections 

along the posterior edge and the size of the projections along the superior edge vary by 

different factors to that of the lumbar vertebrae images. Therefore, projection images are 

to be resized by a factor M  along one dimension and a different factor N  along the 

other dimension. The resize algorithm provided in Matlab® was customized so as to 

resize the rows of the input image by a factor M  and the columns of the input image by 

a factor N . This was done by first resizing the projection image only for the row 

dimension by a factor M , and then next, the resulting image was then resized only for 

the column dimension by a factor N  to produce the resized projection image. Hence, the 

resizing of the projection image iP  using different resizing factors M  and N  could be 

performed to get the resized projection image 
1RP . 

 

 For each lumbar vertebra fL , the resize operation was to be performed for each 

projection iP . The resizing operation was the dominating factor in determining the 

computation time of the entire process of determining the orientation characteristics of 

the vertebra fL . Hence, an attempt was made to optimize the resizing operation in order 

to reduce its computation time. Since, the images to be resized are binary images, the 

resizing of projection images was performed using only the boundary points of the object 

in the image. This resizing operation was performed using different resizing factors along 

the row and column dimension. The optimization in resizing images is explained by the 

following procedure. First, for the projection image iP , let M  and N  be the row and 
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column scaling factors, respectively, between the projection image iP  and vertebra 

image. Second, boundary extraction [17] was performed on the projection image iP  so as 

to produce tP , the boundary of the projection in the image with thickness of one pixel. 

The boundary extraction can expressed as a set difference operation given by Gonzalez et 

al. [17] as, 

( )B ,Perode  P  P iit
ˆ−=     (3.5) 

where, ( )B ,Perode i
ˆ  refers to the erosion operation of iP  with B̂ , and B̂  refers to the 

structuring element taken as,  

 

 1 1 1 

=B̂ 1 1 1 
 1 1 1 

 (3.6) 

 

 

 Third, the customized resize algorithm was applied to tP  using M  and N  as 

resizing factors to produce a resized boundary of the projection tRP . Fourth, an image fill 

operation was performed on tRP  to generate the resized projection of the 3D model, 
2RP . 

1RP  and 
2RP  refer to the same resized projection image, but are computed differently. 

1RP  was computed by applying the customized resize algorithm with resizing factors M  

and N , while 
2RP  was computed by extracting the boundary of the projection iP , next 

applying the resizing operation with resizing factors M  and N , and lastly performing 

an image fill to produce 
2RP . The computation time for both the procedure were recorded 

over a randomly chosen test set of iP  as shown in Table 2-1. The results show that the 

second method of resizing projection images has better computation time. The results 

show that the second method of resizing images consistently provided an approximate 

reduction in computation time by 40% on an average for the resize operation over the 

randomly chosen projection images. The resizing operation directly depends upon the 
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number of points in an image to be resized. Hence, the second method performed faster 

as the number of points in the projection image was reduced by only considering the 

points at the boundary of the projection.  

 
Table 3-1: Computation times of resizing images for the investigated resizing functions. 

Resizing factors (M, N)
used to resize iP  

Time to compute 

1RP  (sec.) 
Time to compute 

2RP  (sec.) 

(2.389, 1.734) 0.235 0.125 

(2.528, 1.734) 0.234 0.156 

(2.583, 2.037) 0.282 0.141 

(3.35, 2.064) 0.281 0.203 

(5.024, 3.169) 0.437 0.297 

(5.452, 2.843) 0.390 0.265 

(2.478, 1.536) 0.250 0.156 

(2.691, 1.956) 0.234 0.172 
 

 

3.3.3. Algorithm to compute the best matching 3D projection for each lumbar 

vertebra 

 In order to compute the best matching 3D projection for each lumbar vertebra, the 

operations to be performed on the images can take large computation time. Since most of 

the operations to be performed on images directly depend on the number of pixels in the 

image, the images are thus cropped to optimize the computation time. The minimum 

required resolution was calculated to be imgColsimgRows ×  and was set as the 

resolution for all the images required during computation of intermediate and final results 

for the given experimental case. The filled vertebra ),( yxLf  was cropped to the size 

 imgCols  imgRows ×  to get the set of points ),( yxL , where imgRowsx ≤≤1  and 

imgColsy ≤≤1 .  
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 The aspect ratios of the vertebra L  are calculated. For this the coordinates the off 

the corner pixels of the vertebra L  are computed. Using the coordinates of the corner 

pixels, the length of the posterior side postDist  and the length of the superior side 

topDist  are calculated. Using the coordinates of the corner pixels of the posterior side, 

the slope of the posterior side slopePost  of vertebra was also calculated. The value of 

slopePost  was used to rotate the vertebra defined by the set of points in L  such that the 

posterior side of the resulting vertebra was exactly vertical.  The resulting vertebra was 

then translated (shifted) such that the centroid ( )LL yx ,  was positioned at the center of 

the image which corresponds to the position ⎟
⎠
⎞

⎜
⎝
⎛

2
imgCols  ,

2
imgRows

. Let the set of 

points in the translated lumbar vertebra be denoted by RL . 

 

⎩
⎨
⎧

=
  elsewhere.  0,

vertebratheonpointaisy)(x,if  1,
yxLR ),(    (3.7) 

 

where, imgRowsx ≤≤1 , imgColsy ≤≤1 , and the centroid of RL  was given by,  

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛=

2
imgCols  ,

2
imgRowsyx LL ,     (3.8)  

 

 

 The following process explains the process of computing the best matching 

projection of 3D models for the vertebra RL . The vertebra RL  was to be compared with 

the projections of all the combinations of azimuth and elevation angles 

( )el_angle az_angle,  of the 3D vertebra model icD  corresponding to the type of vertebra 

L1-L5. For each combination of ( )el_angleaz_angle, , we retrieve the projection image 

iP   of 3D model icD  and the following procedure was carried out. First, the aspect 

ratios, DpostDist 3  and DtopDist 3 , and the slope of the posterior side, DslopePost 3 , 
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for the projection iP  were retrieved, as explained in sub-section 3.2.2. Second, using the 

value of DslopePost 3 , the projection image iP  was rotated such that the posterior side 

of the projection becomes exactly vertical generating a rotated form of the projection θP . 

Note that θP  was just the rotated form of iP , hence the aspect ratios and other 

characteristics of iP  and θP  remain the same. Third, the resizing factors were calculated 

using the values DpostDist3  and DtopDist3 for the projection θP  and the values 

postDist  and topDist  for the lumbar vertebra RL . The resizing of the projection θP  was 

necessary because the resolution of θP  and RL  can differ. All of the vertebra cases 

explored in our experimental data set showed that the resolution of RL  was much higher 

than that of  θP . Therefore, resizing of θP  was performed by up-sampling to make the 

resolution of θP  suitable for comparing with vertebra RL . For all the projections for 

different combinations of ( )el_angleaz_angle,  the resolutions differed non-linearly. 

Accordingly, the resizing of projection images was performed at run-time for each 

vertebra case RL  to be studied. The resizing factors calculated are,  

 

DpostDist
postDistM

3
=      (3.9) 

DtopDist
topDistN

3
=      (3.10) 

 

 Fourth, the projection θP  was resized using the customized resizing operation 

explained in sub-section 3.3.2 to produce the resized projection image. The set of points 

in the resized projection image are then translated such that its centroid ( )PP yx ,  lies at 

the center of the image, then its image size was reduced to imgCols  imgRows × by 

cropping out background pixels from the image boundaries. Let the resized projection 

image be RP . The centroid for RP  was ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

2
,

2
,

imgColsimgRowsyx PP . Fifth, the 
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projection image RP  and the vertebra RL  were compared by taking an exclusive-OR, 

defined as,  

 

),(),(),( yxPyxLyxX RR ⊕=         (3.11) 

 

 

 
 

Figure 3-14: Exclusive-OR between lumbar vertebra LR and its optimal projection. 

 

 

 Figure 3-14 shows the exclusive-OR obtained for the lumbar vertebra in Figure 

3-13 of type L1 and its best matching projection of the cropped 3D model 
1cD . The 

exclusive-OR was representative of the comparison between the lumbar vertebra RL  and 

the 3D projection, RP , at a particular combination of viewing angles 

( )el_angle az_angle, . Sixth, the area of region described by the set points in X  was 

calculated and is denoted by XA . The above procedure was repeated for each 

combination of ( )el_angle  az_angle,  for a lumbar vertebra fL . Hence, we get a set of 

values corresponding to XA  for each projection corresponding to a combination pair of  

( )el_angle  az_angle, . A table xorAreas  was maintained that maps each combination 

( )el_angle  az_angle,  of the projections to the area of the exclusive-OR image, XA  

computed for those viewing angles. 
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( ) XAangleelangleazxorAreas =_,_    (3.12) 

 

 Now, the best matching projection opP  of the 3D model, { }iop  PP ∈ , for the 

vertebra fL  was determined based on which projection iP  of the 3D model had the least 

exclusive-OR area found from the table xorAreas . The viewing angles of the 3D model 

corresponding to the best matching projection describe the orientation characteristics of 

the lumbar vertebra fL . Let opX  denote the exclusive-OR for best matching projection 

opP , ( )elOptimal  azOptimal,  be the viewing angles of the 3D model corresponding to 

the projection opP  and the area of the exclusive-OR opX  can found as, 

( )elOptimalazOptimal,xorAreasA opX =  . Thus, the orientation characteristics for the 

lumbar vertebra fL  are computed and, opX , ( )elOptimal azOptimal,  and opXA  are 

computed for each lumbar vertebra fL  and are saved. The following algorithm 

summarizes the process of calculating orientation features for lumbar vertebrae. 

 

 

Inputs: 

 Shape36Filename The text file containing the coordinates of 36 points on the  

    boundary of the vertebra. 

 ModelInfoFilename The file where aspect ratios of projections are stored. 

 

Outputs: 

 azOptimal  The azimuth angle of orientation for the vertebra of the  

    given case. 

 elOptimal  The elevation angle of orientation for the vertebra of the  

    given case. 
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Algorithm: 

1. ←inL  Read the 36 coordinates of vertebra boundary points from the file 

Shape36Filename. 

2. ( )inb LSplineBL −←  

3. ( )bf LImage_fillL ←  

4. Calculate ( )imgColsimgRows , , which are the minimum dimensions of the image 

required to represent the given vertebra fL . 

5. ( )←bottom right, left, top,  Calculate corner pixels of the of vertebra fL . 

6. Calculate length of posterior side and length of superiorside, 

 ( ) ( )22 .... yrightytopxrightxtoppostDist −+−=  

 ( ) ( )22 .... yleftytopxleftxtoptopDist −+−=  

7. Calculate the slope of the posterior side of vertebra fL , 

 
( )
( )xrightxtop

yrightytopslopePost
..
..

−
−

=   

8. Compute L  with the following steps; using the value of slopePost  rotate  fL  such 

that the posterior side was vertical, crop the image to imgCols  imgRows × , next 

translate (shift) the points in the vertebra image such that the centroid lies at  

⎟
⎠
⎞

⎜
⎝
⎛

2
imgCols  ,

2
imgRows . 

9. index , is the value indicating the type of lumbar vertebra L1-L5 for the given case. 

10. ( ){ }40t0  t0.5    100-    azRange ≤≤+= |  

11. ( ){ }40t0  t0.5    10-    elRange ≤≤+= |  

12. For each azRangeangleaz ∈_  

12.1. For each elRangeangleel ∈_  

12.1.1. Retrieve projection iP  for the angles ( )el_angle az_angle,  for the 3D 

model corresponding to index . 

12.1.2. Compute θP , by rotating iP  such that posterior side of the projection was 

vertical. 
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12.1.3. Retrieve aspect ratios DpostDist 3  and DtopDist3 , from the file 

ModelInfoFilename corresponding to ( )el_angle az_angle,  and index . 

12.1.4. Resizing factors, 

DpostDist
postDistM

3
← ; 

DtopDist
topDistN

3
←   

12.1.5. ( )NMPResizeP θR ,,←  

12.1.6. Crop RP  to size imgColsimgRows ×  and translate the points in the 

projection such that the centroid of the projection lies at 

⎟
⎠
⎞

⎜
⎝
⎛

2
imgCols  ,

2
imgRows . 

12.1.7. Compute exclusive-OR X  between lumbar vertebra and current 

projection, 

),(),(),( yxPyxLyxX RR ⊕=   

12.1.8. ( )XAreaAX ←  

12.1.9. ( ) XAel_angle az_angle,xorAreas ←  

13. ( )xorAreasminimumminArea ←  

14. Find the values, azRangeazOptimal ∈  and elRangeelOptimal ∈  such that 

( ) minAreaelOptimal azOptimalxorAreas =, . 

15. Save X  and RP  corresponding to ( )elOptimalazOptimal , . 
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3.4. EXPERIMENTS PERFORMED 

 

3.4.1. Experimental Data 

 The experimental data was provided by the National Library of Medicine (NLM), 

which contained the following: 

1) A data sheet consisting of a table where each row was a tuple τ, 

)o,o ,t,t ,c ,c (name,τ ISISIS= . Here, the attribute name  contained a string 

for the vertebra name. The attributes Ic  and Sc  have values true/false  indicating 

the presence of claw on the superior and inferior sides of the vertebra 

respectively. The attributes St  and It  have values true/false  indicating the 

presence of traction on the superior and inferior sides of the vertebra respectively. 

Lastly, the attributes So  and Io  have enumerated labels 

{ }severe moderate, slight,  indicating a grade for the presence of anterior 

osteophytes on the superior and inferior sides of the vertebra. 

2) For each vertebra in the data sheet, a text file was provided which contained 

values representing ( )yx ,  coordinates of 36 points along the vertebral boundary 

for the corresponding vertebra. 

 

 This study aims at discriminating lumbar vertebrae for the presence of traction 

and hence, only the truth labels for the presence of traction are required and so, the tuples 

in the data sheet are reduced to )t ,t (name,τ IS= . The data set provided consisted of a 

total of 261 lumbar vertebrae for which the proposed orientation characteristics were 

calculated in order to facilitate in determining the presence of traction in the lumbar 

vertebrae. The 36 points along the vertebral boundary for each vertebra were provided to 

NLM by experienced radiologists and domain experts. For the entire dataset, a new class 

of attributes t  was introduced, which had values labeled true/false , where t  was 

indicative of the presence of traction for that lumbar vertebra. The attribute class, t , 

indicative of the presence of traction was assigned a value true , if either st , the attribute 
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class for presence of traction at superior side or It , the attribute class for presence of 

traction at the inferior side had a value true ; otherwise it was assigned the value false . 

 

 The data set was stratified by the type of lumbar vertebrae, which was L1 – L5. It 

was observed that the data set of 261 lumbar vertebrae consisted of 12 L1s, 42 L2s, 75 

L3s, 78 L4s and 54 L5s. The 261 entries in the data set when grouped by the target 

variables t  showed the following distribution. 

 

 
Table 3-2: Distribution of lumbar vertebrae cases based on type of lumbar vertebra. 

Type of Lumbar vertebra Number of Lumbar vertebrae 
(Traction \ No Traction) 

L1 9/3 

L2 21/21 

L3 35/40 

L4 27/51 

L5 17/37 

 

 

 The features 51 FF −  as explained in [2, 3] are calculated for each lumbar 

vertebrae provided in the data set. The features 51 FF −  based on the convex hull of the 

vertebrae were developed in order to discriminate lumbar vertebra for the presence of 

traction. These are the same features as explained in section 2.1 The feature 51 FF −  were 

also calculated the optimal projection opP , obtained for each lumbar vertebra in the data 

set.  The optimal projections opP  describe the orientation characteristics of the lumbar 

vertebrae, as explained in sub-section 3.3.3. Let the features calculated for the optimal 

projections be denoted by pp FF 51 − . 
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3.4.2. Training data and test data 

 In order to generate the training set, we integrate the features pp FF 51 −  calculated 

for the optimal projection opP  for each lumbar vertebra in the data set and the optimal 

orientation characteristics with the data provided by NLM. Hence, the integrated data set 

obtained consisted of a set of tuples of the form, 

( )elOptimalazOptimal,,F,F ,F ,F ,F name,τ p5p4p3p2p1m = , where, azOptimal  and 

elOptimal  are the orientation characteristics and pp FF 51 −  correspond to the features 

calculated for the optimal projection opP  for the lumbar vertebra in the data set 

corresponding to name . 

 

 To generate the test data set, we integrate the features 51 FF −  calculated for the 

lumbar vertebrae in the data set with the optimal orientation characteristics computed for 

each lumbar vertebra and the truth labels indicating the presence of the traction as 

provided in the data by NLM. Hence, the test data set consisted of set of tuples of the 

form, t)elOptimal,azOptimal,,F,F,F ,F ,F (name,τ 54321n = ; where t  was the label 

indicating the presence of traction, as explained in sub-section 3.4.1 and 51 FF −  are the 

features calculated for the lumbar vertebra corresponding to name . 

 

3.4.3. Classification 

 The classification problem here involved generating a model that can classify a 

given case of lumbar vertebra for the presence of traction into classes traction/no traction. 

To generate the trained model for each model L1 – L5 the following procedure was 

applied to the corresponding training sets. First, for each feature pF  in the set of features 

pp FF 51 −  of the training data, the mean and the standard deviation values, μ  and σ  

were calculated for all features pF  in the feature set 51 FF −  of the training set.  
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 Second, the features are normalized by subtracting its mean from each feature and 

dividing by its standard deviation. For each feature pF  in the feature set, we calculate the 

standardized feature normpF as, { }normpnormnormp f ,FffF ∃∈∀= | , where normf  was 

calculated as, 
σ
μ-f f norm = , for normpnorm Ff ∈ and pFf ∈ . Third, the number of clusters 

for the class no traction was found using subtractive clustering [12, 13]. All the features 

pF  were calculated based on the projection images of 3D models which are 

representative of a normal lumbar vertebra without any traction. Hence, all the tuples in 

pF  belong to the class no traction. Fourth, using the normalized featured vectors for the 

training data and the number of clusters estimated for each class, K-means clustering 

[14,15] was performed to determine the cluster centers for the class no traction. The 

cluster centers for the training set corresponding to each lumbar vertebra L1 – L5 are 

saved along with their corresponding mean and standard deviation values of each feature.  

 

 For each of the feature vectors in the test set corresponding to each lumbar 

vertebra L1 – L5, nearest centroid classification was performed. First, each feature F  in 

the test set 51 FF −  was standardized using z-score score normalization. For each feature 

F  in the feature set 51 FF − , using the mean and standard deviation values calculated and 

from the training set features, we calculate the normalized feature normF  as, 

{ }normnormnorm f   F,  f  fF ∃∈∀= | , where normf  was calculated as, 
σ
μ-f f norm = , for 

normpnorm Ff ∈ and pFf ∈ . Second, the cluster centers calculated and saved for the 

training set are retrieved. Third, for each normalized feature vector, minDist  the 

minimum of the Euclidean distance to each of the cluster centers was calculated. Fourth, 

the ordered pair of ( )minDist name,  was latched to either the list stabnormalLi  or 

normalList depending upon the label t  indicating the presence or absence of traction for 

this feature vector. Fifth, the two lists of Euclidean distances are input to a routine which 

computes the area under the Receiver Operating Characteristics (ROC) curve [18] based 

on the true positive and true negative cases obtained for the test set. True positive refers 

to the test case vertebrae with traction being classified correctly and true negative refers 
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to the test case vertebrae with traction being classified incorrectly. Sixth, the area under 

the ROC curve is recorded. This process is repeated for all the five lumbar vertebrae L1 – 

L5 providing the value of the area under the respective ROC curves.  



 

 

56

3.5. RESULTS AND DISCUSSION 

  

3.5.1. Experimental Results 

 The results obtained from the experiments performed in section 3.4 to classify 

lumbar vertebrae as traction/no traction using the convex hull based size invariant 

features is discussed below. The experiments were performed over the provided data set 

of 261 lumbar vertebrae whose distribution is provided in Table 3-2. The classification 

was performed by generating a training model using K-means clustering over the size-

invariant features computed for the best matching projection of each lumbar vertebra in 

the data set. The test set was generated by computing the size-invariant features using the 

lumbar vertebra x-ray images for each lumbar vertebra in the data set. Hence, the training 

set consisted of 261 tuples generated using the best matching projection of the provided 

lumbar vertebrae and the test set consisted of 261 tuples generated using the x-ray images 

of the lumbar vertebrae. 

 
Table 3-3: Areas obtained under Receiver Operating Characteristic (ROC) curve for classifying 

lumbar vertebra L1-L5 for traction, respectively.  

Type of Lumbar vertebra Area under Receiver Operating 
Characteristic (ROC) curve 

L1 0.89 

L2 0.68 

L3 0.60 

L4 0.53 

L5 0.60 

 

3.5.2. Conclusions 

 In this research, methods were investigated and implemented to model lumbar 

vertebra in three dimensional structures. Several conclusions can be drawn from the 

approaches adopted in this research undertaking. First, computed tomography (CT) scan 
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images were used to generate three dimensional models of lumbar vertebrae. The cross 

sectional CT scan images were used to produce layered slices of the lumbar vertebrae 

obtained by segmentation which could generate the 3D models. Hence, CT scan images 

could be used to generate 3D models of lumbar vertebrae successfully in order to study 

their shapes and structures. 

 

 Second, in order to compare the 3D models of lumbar vertebrae with 2D images 

from x-ray images of lumbar vertebrae, the projections of 3D models were computed at 

different viewing angles. This enabled comparing the 3D models with the x-ray image 

vertebrae. Indexing and storing of these projection images was performed, so that the 

computation times for each x-ray image were improved in overall calculation of 

orientation characteristics of each case.  

 

 Third, a 3D model was generated from the CT scans provided for a particular case 

where the lumbar vertebrae did not show any presence of traction. Hence, the 2D 

projection images of the 3D models for the lumbar vertebrae L1 – L5 were used to 

represent normal vertebrae. The shape and size invariant features calculated over the 

optimal projection images of each case were used to represent the characteristics of 

normal vertebrae which were input to a K-Means clustering algorithms to provide 

clustering-based models for vertebrae L1 – L5 to represent normal vertebrae. The shape 

and size invariant features calculated for the images obtained from x-ray images were 

used for testing. The experimental results did not show that the projections of the 3D 

model used provided features that were capable of distinguishing normal lumbar 

vertebrae from cases where traction was present for each type of lumbar vertebrae L1 – 

L5 vertebrae. The classification results for L1 were more encouraging than for the other 

lumbar vertebra cases for L2 – L5. However, there were only 12 lumbar vertebra x-ray 

images in the provided data set corresponding to L1 to support the accuracy of the model 

in predicting the presence of traction in lumbar vertebrae.  

 

 Fourth, it was observed that the 3D models and the resulting projection images 

had superior and inferior sides of the vertebra with convex edges. A majority of the x-ray 
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images of lumbar vertebra showed superior and inferior sides having more flat like or 

concave edges. One of the major difficulties in generating the 2D projections 

representative of a vertebra based on the 3D CT scan-based model and the x-ray image 

vertebra is the resolution disparity.  The CT scan images and the resulting projections of 

3D models were much smaller in size and varied non-linearly in row and column aspect 

with the corresponding x-ray image vertebra.  Several variations of resizing functions 

have been investigated for generating the 2D projections of the 3D models of the vertebra 

having similar dimensions to that of the x-ray image vertebrae for comparison using the 

exclusive–OR approach for orientation determination.  

 

 Fifth, another consideration or limitation in the experimental results presented is 

the relative limited data set for each vertebra in generating clustering models to represent 

them. The shapes of the lumbar vertebrae L1 – L5 differ. Model generation and clustering 

analysis for each case was considered separately. The distribution of the lumbar vertebrae 

in the provided data set is given by Table 3-2. It can be observed that the provided data 

set for each case is limited and therefore the clustering models generated for each are 

relatively inefficient in classifying lumbar vertebrae for presence of traction. 
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A  

Read-Me file for the project ‘Discrimination of Cervical Vertebrae for presence of 

Claw, Traction and Anterior Osteophytes’ 
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A.1. MATLAB to C++ conversion 

 The document describes the procedure which allows calling MATLAB routines 

from C/C++.  The method used here was to create a wrapper function around MATLAB 

routines and then creating Dynamic Linked Libraries for it to be used in C/C++. 

 

We divided the procedure into two major steps: 

1. Creating the Dynamic Linked Libraries for using the MATLAB routines. 

2. Creating the workspace in C/C++ developer environment with the libraries 

included. 

 

A.1.1. Creating the Dynamic Linked Libraries for using the MATLAB routines: 

 The Dynamic Linked Libraries are created through the ‘mcc’ command in the 

MATLAB compiler. The syntax of the command used to create the DLL files was: 

 
mcc -W lib:<lib_name> -T link:lib <file1>  <file2> … <fileN> 

 

where, 

- The option ‘-W lib:<string>’  creates wrapper functions for each .m file into a library. 

- file1, file2,…,fileN are names of the .m MATLAB files stored in the same directory. 

These .m files are supposed to define the MATLAB routines which we want to call 

from C/C++.  

- ‘lib_name’ was the name of the library that we wish to create. 

- The option ‘-T link:lib’ specifies the target to be a library file. 

 

After executing the above command several files are generated and stored in the current 

directory of the MATLAB compiler. The description of these files was given below: 

 

1. C/C++ Header and Source code files: 

A wrapper C source file (here <file_name>.c) which contains a function of the library 

providing the C interface to each of the files <file1.m>, <file2.m>….<fileN.m>. A header 
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(here <file_name>.h) was also generated which contains the prototype for each of the 

export function defined in the wrapper C source file. This header file must be included in 

all applications that need to these exported functions. Another C source file 

<file_name>_mcc_component_data.c was generated which includes all necessary 

information about path and initializations that are need by the MATLAB compiler or the 

MCR to use the library. 

 

2. Module definition file: 

A module definition file (.def) was created to provide all the information about the export 

functions. This file was used to link to the library. 

 

3. Component Technology File (CTF): 

A Component Technology File (CTF) file was an archive of all MATLAB related files 

(M-files) that are encrypted and together provided a deployable package. 

 

4. Dynamic Link Library (.dll) file: 

This was the shared library (binary) that was created. In this example a file with name 

<file_name>.dll will be generated and was loaded each time the calling function makes a 

call to any of the routines defined in it. For Operating Systems other than Windows, a 

different kind of a shared library may be required. 

 

 Several others exports file are created along with the above files. All of the above 

8 files that are generated are stored in the same directory which was the current working 

directory in MATLAB while running the ‘mcc’ command. As far as the process of 

MATLAB to C++ code conversion goes, it was just required to include these files in the 

workspace of C++. 

 

A.1.2. Creating the workspace in C/C++ developer environment with the libraries 

included: 

 The first step here was to open a C/C++ developer environment like Microsoft 

Visual C++ and creating a new Console application project (workspace). 
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In this new project, we include all of the files generated by the ‘mcc’ command; it was a 

good idea to copy all of these files to the workspace directory of this project. The C++ 

code which was to be written here was the code which will provide the input parameters 

(if any) to the MATLAB routines to be called.  

 

Consider a library ‘libcal’ generated for a M-File with function defined as : 

function[o1 o2] = calculate(i1, i2, i3) 

 

To call such a function defined in an M-file the following need to be done in the C++ 

program: 

 

1) Include all libraries related to libcal, which were generated by the ‘mcc’ 

command. 

2) Declare a variable in C++ for each of the input and output parameters, and also 

initialize or derive values for the input parameters. 

 Example: double I1, I2, I3, O1, O2; 

3) Now declare a variable pointer with ‘mxArray*’ for each of them, this was a 

datatype used to store array for passing to MATLAB. 

 Example: mxArray *in1, *in2, *in3, *in4, *in5, *out1, *out2; 

4) Allocate appropriate space for each of these mxArray pointers. 

 Example:  in1=mxCreateDoubleMatrix(1,1,mxREAL); 

   out1=mxCreateDoubleMatrix(1,1, mxREAL); 

 where,   1,1 -> signify the [row x column] dimensions of the array  

   mxREAL -> specifies that values to be real numbers. 

5) Copy contents of variables I1, I2, I3 into in1, in2, in3 which will be the input 

values to the MATLAB routine ‘calculate’. 

 Example: memcpy(mxGetPr(in1), &I1, sizeof(double)); 

 where,   memcpy() was a function in C++ which copies a block of memory  

   from one memory location to another which was defined in the  
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   library string.h. 

   &I1, was the memory location of the input value I1. 

   sizeof(double), specifies the amount of bytes to be copied. 

6) Now, call the function ‘libcalInitialize()’ (defined in the library) to start the 

MATLAB compiler or the MCR. 

7) Call the function ‘mlfcalculate(2, &out1, &out2, in1, in2, in3)’, which also 

defined in the libcal library. This calls the ‘calculate’ function in the M-file and 

results are stored in out1, out2. 

8) Note the difference in the definition of calculate function in M-file and its C++ 

counterpart ‘mlfcalculate’. The output parameters of calculate routine in M-file 

are pointers which appear in the parameter list of the ‘mlfcalculate’ function. The 

first parameter of the ‘mlfcalculate’ function specifies the number of parameters 

which represent the left hand side variables in the ‘calculate’ routine and the 

remaining are the right hand side variables. 

9) Now, call the fuction ‘libcalTerminate (defined in the library) to close the 

MATLAB compiler or the MCR. 

10) Now, the results from the MATLAB routine are stored in out1, out2 which are of 

data type mxArray*. So, we copy the contents of these variables into our C++ 

variables O1, O2 which are of type double. 

 Example: memcpy(&O1, mxGetPr(out1), sizeof(double)); 

11) De-allocate space to all the mxArray pointers (and any other pointers also). 

Freeing space allocated to mxArray pointers was done by the call 

‘mxDestroyArray(mxArry*); 

 Example: mxDestroyArray(in1);   

12) Now, compile and run the C++ project.  
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A.2. K-Means Classifier for detecting Claw 

 

 The K-Means Classifier for detecting Claw was a project which calculates 

features on single vertebra and then applies K-Means clustering technique to classify it as 

NORMAL or ABNORMAL for the presence or absence of claw. 

 

The initial workspace that was provided included the following files: 

- compute_convex_hull_features_36Points.m 

- compute_convex_hull_features_6features.m 

- mergepts.m 

- moment_norm.m 

- connectspline.m 

- kmeans_2class_kNearest_subcluster.m 

- computeVectorDistance2class.m 

 

 The ‘compute_convex_hull_features_36Points.m’ was MATLAB script which 

read the co-ordinates of vertebra points from .shp36 file. This was done over a large 

number of files stored in the local directory. For every set of such vertebra points, the 

‘compute_convex_hull_features_6features’ function was called from its corresponding 

M-file ‘compute_convex_hull_6features.m’. This function in all calculates six features 

and the image area of the vertebra and returns to the calling script. The features 

calculated for all the vertebrae are then stored in an Excel Spread Sheet (xls). The 

function defined in mergepts.m and connectspline.m are used in the 

compute_convex_hull_features_36Points.m and the function defined in moment_norm 

was used by the compute_convex_hull_6features.m. 

 

 The ‘kmeans_2class_kNearest_subcluster.m’ was a MATLAB script which read 

the features of the vertebrae from the Excel Spread Sheet. It also read variables from the 

‘Parameters_claw.mat’ file (MAT-file) which stored the trained clusters for classification 

of vertebrae on the basis of presence or absence of Claw. It also included the mean and 
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standard deviation values for all features. Each set of features (corresponding to one 

vertebra) are normalized using the mean and standard deviation values from the MAT-

file. This normalized set of features along with the cluster centers for classifications are 

given as input to the function defined in ‘computeVectorDistance2class.m’. In this 

function the actual classification takes place. With the normalized features it checks the 

distances of each feature to it 

 

 For the project KMeans Classifier for detecting claw, the above MATLAB code 

needed to be converted to C++. It was also required that the classification be done for one 

given vertebra at a time. The working of the code explained above worked on a large set 

of vertebrae images in Batch-mode. Hence, the two files that were changed from the 

above code were: 

- compute_convex_hull_features_36Points.m 

- kmeans_2class_kNearest_subcluster.m 

 

 The changes made to compute_convex_hull_features_36Points.m, so that it 

worked on a single vertebra were made and stored in the same file. The code of 

kmeans_2class_kNearest_subcluster.m was rewritten in C++ which worked upon a set of 

features for only one vertebra. This code then calls the computeVectorDistance2class 

function. 

 

 Also, in the provided workspace calculated the six features were calculated and 

stored in an Excel Spread Sheet. Then, the Kmeans classifier script was run for 

classifying by reading back the features from the Excel Spread Sheet. This project 

calculates the six features and then run the classification program on it, thus eliminating 

the use the Excel Spread Sheet. 

 

A.2.1. Creating the Dynamic Linked Libraries for using the MATLAB routines: 

 All the files described above are kept in a single folder. In the MATLAB 

compiler, set the current working directory to the directory where all the files are stored 

and then, run the command: 
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mcc -W lib:libfcmc -T link:lib compute_convex_hull_features_36Points 

computeVectorDistance2class 

 

After running this command, the files that are generated in the current directory are: 

- libfcmc.c 

- libfcmc.h 

- libfcmc_mcc_component_data.c 

- libfcmc.dll 

- libfcmc.lib 

- libfcmc.exports 

- libfcmc.exp 

- libfcmc.ctf 

 

A.2.2. Creating the workspace in C/C++ developer environment with the libraries 

included: 

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project. 

Include the following files in the source code: 

 

#include<iostream> 

#include<stdlib.h> 

#include<conio.h> 

#include<math.h> 

#include<string.h> 

#include"mat.h" 

#include"libfcmc.h" 

#pragma comment(lib, "libmat.lib") 

#pragma comment(lib, "libmx.lib") 

#pragma comment(lib, "libfcmc.lib") 
 

 

The C++ implementation was divided into these parts: 

 

1) Reading the MAT-file and extracting the cluster centers for classification and 

extracting the mean and standard deviation values for these features. 
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2) Reading the .shp36 files to get the vertebra points and then calling an appropriate 

MATLAB routine to calculate features. 

3) Calling the MATLAB routine to classify for the presence or absence of claw 

based on the values of these features. 

 

 The file name of the .shp36 file was an input parameter taken as a command line 

argument. The filename to be passed here was to be the absolute path on the local 

machine or a relative path can be given if the .shp36 file in stored in the same or one the 

subfolders of the current workspace. Hence, the process can be worked on any .shp36 file 

just by passing different file names at different calls. 

 

 A class called ‘Data’ was created which stores all the values of features for a 

vertebra also it stores all the values extracted from the MAT file, which are the centers of 

the classification clusters and the mean and standard deviation values of the features. 

Several functions are defined that work on these member variables. Keeping a separate 

class for the features values and for the classification parameters was considered 

redundant as the program was just suppose to work on one given vertebra at a time. 

 

 Since, there are more than one function calls to the MATLAB routines, the 

initialization and termination of the MATLAB compiler are done close to the entry and 

exit points of the C++ program. 

 

The call to the program was given on the command prompt as: 

 

C:\<WorkSpaceDir>\KMeansClassifier_Claw C:\vertebra\C01235_3.shp36 
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A.3. K-Means Classifier for detecting Traction 

 

 The K-Means Classifier for detecting Traction was a project which calculates 

features on single vertebra and then applies K-Means clustering technique to classify it as 

NORMAL or ABNORMAL for the presence or absence of traction. 

 

The initial workspace that was provided included the following files: 

- compute_convex_hull_features_36Points.m 

- compute_convex_hull_features_6features.m 

- mergepts.m 

- moment_norm.m 

- connectspline.m 

- kmeans_2class_kNearest_subcluster.m 

- computeVectorDistance2class.m 

 

 The ‘compute_convex_hull_features_36Points.m’ was MATLAB script which 

read the co-ordinates of vertebra points from .shp36 file. This was done over a large 

number of files stored in the local directory. For every set of such vertebra points, the 

‘compute_convex_hull_features_6features’ function was called from its corresponding 

M-file ‘compute_convex_hull_6features.m’. This function in all calculates six features 

and the image area of the vertebra and returns to the calling script. The features 

calculated for all the vertebrae are then stored in an Excel Spread Sheet (xls). 

The function defined in mergepts.m and connectspline.m was used in the 

compute_convex_hull_features_36Points.m and the function defined in moment_norm 

was used by the compute_convex_hull_6features.m. 

 

 The ‘kmeans_2class_kNearest_subcluster.m’ was a MATLAB script which read 

the features of the vertebrae from the Excel Spread Sheet. It also read variables from the 

‘Parameters_traction.mat’ file (MAT-file) which stored the trained clusters for 

classification of vertebrae on the basis of presence or absence of Traction. It also 
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included the mean and standard deviation values for all features. Each set of features 

(corresponding to one vertebra) are normalized using the mean and standard deviation 

values from the MAT-file. This normalized set of features along with the cluster centers 

for classifications are given as input to the function defined in 

‘computeVectorDistance2class.m’. In this function the actual classification takes place. 

With the normalized features it checks the distances of each feature to it 

 

 For the project KMeans Classifier for detecting traction, the above MATLAB 

code needed to be converted to C++. It was also required that the classification be done 

for one given vertebra at a time. The working of the code explained above worked on a 

large set of vertebrae images in Batch-mode. Hence, the two files that were changed from 

the above code were: 

- compute_convex_hull_features_36Points.m 

- kmeans_2class_kNearest_subcluster.m 

 

 The changes made to compute_convex_hull_features_36Points.m, so that it 

worked on a single vertebra were made and stored in the same file. The code of 

kmeans_2class_kNearest_subcluster.m was rewritten in C++ which worked upon a set of 

features for only one vertebra. This code then calls the computeVectorDistance2class 

function. 

 

 Also, in the provided workspace calculated the six features were calculated and 

stored in an Excel Spread Sheet. Then, the Kmeans classifier script was run for 

classifying by reading back the features from the Excel Spread Sheet. This project 

calculates the six features and then run the classification program on it, thus eliminating 

the use the Excel Spread Sheet. 

 

A.3.1. Creating the Dynamic Linked Libraries for using the MATLAB routines: 

 All the files described above are kept in a single folder. In the MATLAB 

compiler, set the current working directory to the directory where all the files are stored 

and then, run the command: 
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mcc -W lib:libfcmt -T link:lib compute_convex_hull_features_36Points 

computeVectorDistance2class 

 

After running this command, the files that are generated in the current directory are: 

- libfcmt.c 

- libfcmt.h 

- libfcmt_mcc_component_data.c 

- libfcmt.dll 

- libfcmt.lib 

- libfcmt.exports 

- libfcmt.exp 

- libfcmt.ctf 

 

A.3.2. Creating the workspace in C/C++ developer environment with the libraries 

included: 

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project. 

Include the following files in the source code: 

 

#include<iostream> 

#include<stdlib.h> 

#include<conio.h> 

#include<math.h> 

#include<string.h> 

#include"mat.h" 

#include"libfcmt.h" 

#pragma comment(lib, "libmat.lib") 

#pragma comment(lib, "libmx.lib") 

#pragma comment(lib, "libfcmt.lib") 
 

 

The C++ implementation was divided into these parts: 

 

1) Reading the MAT-file and extracting the cluster centers for classification and 

extracting the mean and standard deviation values for these features. 
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2) Reading the .shp36 files to get the vertebra points and then calling an appropriate 

MATLAB routine to calculate features. 

3) Calling the MATLAB routine to classify for the presence or absence of traction 

based on the values of these features. 

 

 The file name of the .shp36 file was an input parameter taken as a command line 

argument. The filename to be passed here was to be the absolute path on the local 

machine or a relative path can be given if the .shp36 file in stored in the same or one the 

subfolders of the current workspace. Hence, the process can be worked on any .shp36 file 

just by passing different file names at different calls. 

 

 A class called ‘Data’ was created which stores all the values of features for a 

vertebra also it stores all the values extracted from the MAT file, which are the centers of 

the classification clusters and the mean and standard deviation values of the features. 

Several functions are defined that work on these member variables. Keeping a separate 

class for the features values and for the classification parameters was considered 

redundant as the program was just suppose to work on one given vertebra at a time. 

 

 Since, there are more than one function calls to the MATLAB routines, the 

initialization and termination of the MATLAB compiler are done close to the entry and 

exit points of the C++ program. 

 

The call to the program was given on the command prompt as: 

 

C:\<WorkSpaceDir>\KMeansClassifier_Traction C:\vertebra\C01235_3.shp36 



 

 

72

A.4. K-Means Classifier for detecting Anterior Osteophytes 

 

 The K-Means Classifier for detecting Osteophytes was a project which calculates 

features on single vertebra and then applies K-Means clustering technique to classify it as 

NORMAL or ABNORMAL (Severe or Moderate) for the presence or absence of 

Osteophytes. 

 

The initial workspace that was provided included the following files: 

- compute_convex_hull_features_36Points.m 

- compute_convex_hull_features_6features.m 

- mergepts.m 

- moment_norm.m 

- connectspline.m 

- kmeans_2class_kNearest_subcluster.m 

- computeVectorDistance3class.m 

 

 The ‘compute_convex_hull_features_36Points.m’ was MATLAB script which 

read the co-ordinates of vertebra points from .shp36 file. This was done over a large 

number of files stored in the local directory. For every set of such vertebra points, the 

‘compute_convex_hull_features_6features’ function was called from its corresponding 

M-file ‘compute_convex_hull_6features.m’. This function in all calculates six features 

and the image area of the vertebra and returns to the calling script. The features 

calculated for all the vertebrae are then stored in an Excel Spread Sheet (xls). 

The function defined in mergepts.m and connectspline.m was used in the 

compute_convex_hull_features_36Points.m and the function defined in moment_norm 

was used by the compute_convex_hull_6features.m. 

 

 The ‘kmeans_2class_kNearest_subcluster.m’ was a MATLAB script which read 

the features of the vertebrae from the Excel Spread Sheet. It also read variables from the 

‘Parameters_Osteophytes.mat’ file (MAT-file) which stored the trained clusters for 
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classification of vertebrae on the basis of presence or absence of Osteophytes. It also 

included the mean and standard deviation values for all features. Each set of features 

(corresponding to one vertebra) are normalized using the mean and standard deviation 

values from the MAT-file. This normalized set of features along with the cluster centers 

for classifications are given as input to the function defined in 

‘computeVectorDistance3class.m’. In this function the actual classification takes place. 

With the normalized features it checks the distances of each feature to it 

 

 For the project KMeans Classifier for detecting Osteophytes, the above MATLAB 

code needed to be converted to C++. It was also required that the classification be done 

for one given vertebra at a time. The working of the code explained above worked on a 

large set of vertebrae images in Batch-mode. Hence, the two files that were changed from 

the above code were: 

- compute_convex_hull_features_36Points.m 

- kmeans_2class_kNearest_subcluster.m 

 

 The changes made to compute_convex_hull_features_36Points.m, so that it 

worked on a single vertebra were made and stored in the same file. The code of 

kmeans_2class_kNearest_subcluster.m was rewritten in C++ which worked upon a set of 

features for only one vertebra. This code then calls the computeVectorDistance3class 

function. 

 

 Also, in the provided workspace calculated the six features were calculated and 

stored in an Excel Spread Sheet. Then, the Kmeans classifier script was run for 

classifying by reading back the features from the Excel Spread Sheet. This project 

calculates the six features and then run the classification program on it, thus eliminating 

the use the Excel Spread Sheet. 

 

A.4.1. Creating the Dynamic Linked Libraries for using the MATLAB routines: 

 All the files described above are kept in a single folder. In the MATLAB 

compiler, set the current working directory to the directory where all the files are stored 
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and then, run the command: 
mcc -W lib:libfcmo -T link:lib compute_convex_hull_features_36Points 

computeVectorDistance3class 

 

After running this command, the files that are generated in the current directory are: 

- libfcmo.c 

- libfcmo.h 

- libfcmo_mcc_component_data.c 

- libfcmo.dll 

- libfcmo.lib 

- libfcmo.exports 

- libfcmo.exp 

- libfcmo.ctf 

 

A.4.2. Creating the workspace in C/C++ developer environment with the libraries 

included: 

In Microsoft Visual Studio .NET 2005, create a new Win32 Console project. Include the 

following files in the source code: 

 

#include<iostream> 

#include<stdlib.h> 

#include<conio.h> 

#include<math.h> 

#include<string.h> 

#include"mat.h" 

#include"libfcmo.h" 

#pragma comment(lib, "libmat.lib") 

#pragma comment(lib, "libmx.lib") 

#pragma comment(lib, "libfcmo.lib") 
 

The C++ implementation was divided into these parts: 

 

1) Reading the MAT-file and extracting the cluster centers for classification and 

extracting the mean and standard deviation values for these features. 
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2) Reading the .shp36 files to get the vertebra points and then calling an appropriate 

MATLAB routine to calculate features. 

3) Calling the MATLAB routine to classify for the presence or absence of 

osteophytes based on the values of these features. 

 

 The file name of the .shp36 file was an input parameter taken as a command line 

argument. The filename to be passed here was to be the absolute path on the local 

machine or a relative path can be given if the .shp36 file in stored in the same or one the 

subfolders of the current workspace. Hence, the process can be worked on any .shp36 file 

just by passing different file names at different calls. 

 

 A class called ‘Data’ was created which stores all the values of features for a 

vertebra also it stores all the values extracted from the MAT file, which are the centers of 

the classification clusters and the mean and standard deviation values of the features. 

Several functions are defined that work on these member variables. Keeping a separate 

class for the features values and for the classification parameters was considered 

redundant as the program was just suppose to work on one given vertebra at a time. 

 

 Since, there are more than one function calls to the MATLAB routines, the 

initialization and termination of the MATLAB compiler are done close to the entry and 

exit points of the C++ program. 

 

The call to the program was given on the command prompt as: 

 

C:\<WorkSpaceDir>\KMeansClassifier_Osteophytes C:\vertebra\C01235_3.shp36 
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B  

Read- Me file for the project ‘NewDiscSpaceNarrowing’ 

 

APPENDIX 
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B.1. New Disc Space Narrowing using Self Organizing Maps 

 The New Disc Space Narrowing was a project which calculates features on a pair 

of consecutive vertebrae and then using K-means and a Self Organizing Map clustering 

technique classifies the degree of disc space narrowing into four grades (0-3), where 0 

represents normal spacing and 3 represents significant narrowing. 

 

The initial workspace that was provided included the following files: 

- mainPairVertebraBoundaryPoints.m 

- generateVertebraBoundaryPair.m 

- connect_spline.m 

- KMeansModel_individualTest.m 

- discSpaceNarrowing a VC++ project workspace. 

 

 The ‘mainPairVertebraBoundaryPoints.m’ was a MATLAB script which reads 

the co-ordinates of vertebra boundary points of two vertebrae from their respective 

.shp36 files. The ‘generateVertebraBoundaryPair.m’ and ‘connect_spline.m’ routines are 

called by this function to generate the complete boundary of each vertebra. This function 

saved the coordinate points of the complete boundary into a text file. 

 

 The discSpaceNarrowing VC++ project workspace reads this text file to get the 

complete boundary of the two vertebrae under analysis. It then computes the four Disc 

Space Narrowing features for the given pair of vertebrae. The computed features are 

written to another text file. 

 

 The ‘KMeansModel_individualTest.m’ was a MATLAB script which was used to 

classify the given DSN features of a pair of vertebrae according to the degree of disc 

space narrowing. It grades the features between 0-3, where 0 signifies a normal spacing 

between the pair of vertebrae and 3 represents substantial narrowing. 
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 The inputs to the ‘KMeansModel_individualTest.m’ script are the DSN features 

which are read from the output file generated by the VC++ workspace 

‘discSpaceNarrowing’. This routine also requires an already trained model to test the new 

set of features for the purpose of classifying them. The trained model was stored in a 

MAT-file stored in the same directory.  Two other MAT-files provide the mean and the 

standard deviation values of all the DSN features which are used to normalize the input 

feature vector. 

 

 In the project New Disc Space Narrowing, the given workspace functions were 

linked so that at every run of the solution, the disc space narrowing features were 

calculated for a given pair of vertebra, its classification according to the Kmeans and Self 

organizing maps was done and finally it generated a grade (0-3) as its output, specifying 

the degree of disc space narrowing. 

 

The following M-files were changed: 

- mainPairVertebraBoundaryPoints.m 

- KMeansModel_individualTest.m 

 

 Both these Matlab scripts were changed to Matlab functions by putting the code 

within the scripts into a wrapper function. Now these functions are called from the VC++ 

workspace by creating a DLL for them. Creation of the DLLs and the new VC++ 

workspace are explained below: 

 

B.1.1. Creating the Dynamic Linked Libraries for using the MATLAB routines: 

 All the files described above are kept in a single folder. In the MATLAB 

compiler, set the current working directory to the directory where all the M-files are 

stored and then, run the command: 

 
mcc -W lib:libdsn -T link:lib kmeansmodeltest  

      generatevertebraboundarypairshape36 
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After running this command, the files that are generated in the current directory are: 

- libdsn.c 

- libdsn.h 

- libdsn_mcc_component_data.c 

- libdsn.dll 

- libdsn.lib 

- libdsn.exports 

- libdsn.exp 

- libdsn.ctf 

 

B.1.2. Creating the workspace in C/C++ developer environment with the libraries 

included: 

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project; copy 

the discSpaceNarrowing VC++ workspace files into this new project. Include the 

following files in the source code files. 

 

#include<iostream> 

#include<stdlib.h> 

#include<conio.h> 

#include<math.h> 

#include<string.h> 

#include"mat.h" 

#include"libdsn.h" 

#pragma comment(lib, "libmx.lib") 

#pragma comment(lib, "libdsn.lib") 
 

 The header files and libraries ‘libmat’ and ‘libmx’ are found in the 

<matlab_root>\extern\include and <matlab_root>\extern\lib. The files generated by the 

MATLAB compiler on the ‘mcc’ command are copied to the current directory of this 

VC++ workspace. 

 

 The code of the existing discSpaceNarrowing VC++ workspace used dynamic 

memory allocations, due to which warnings may be generated while running the same 
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code in the NewDiscSpaceNarrowing VC++ project. To disable these warnings, open the 

‘NewDiscSpaceNarrowing’ project in Visual Studio .NET 2005 (or any other 

environment), in the ‘Solution Explorer’ frame, right click on 

‘NewDiscSpaceNarrowing’, now click ‘Properties’. In the window that opens up, go to 

ConfigurationProperties>C/C++>CodeGeneration. Now click on tab (on the right side) 

‘Basic Runtime Checks’ and change its value to ‘Stack Frames (/RTCs)’ by selecting it 

from the drop-down menu. Click Apply and OK. 

 

 The main() function in the discSpaceNarrowing VC++ workpace was changed. It 

was converted to a function: DiscSpaceNarrowing_c(Pair*) and another file was created 

named ‘NewDiscSpaceNarrowing.cpp’ where the entry point i.e. main() function of the 

program was placed from where the function call to DiscSpaceNarrowing_c() was made.  

 

 A class named ‘Pair’ was created which encapsulates all features and necessary 

data related to a pair of vertebra, which are needed for the calculation of the DSN 

features and it’s grading. All newly added functions are also encapsulated in this class. 

 

 The file names of the .shp36 files of the vertebrae under investigation are input 

parameters taken as command line arguments. These command line arguments are the 

absolute paths of these .shp36 files on the local machine or relative paths can be given if 

the .shp36 files are stored in the same or one the subfolders of the current workspace.  

 

 Since, there are more than one function calls to several MATLAB routines, the 

initialization and termination of the MATLAB compiler are done close to the entry and 

exit points of the C++ program. 

 

The call to the program was given on the command prompt as: 

 
C:\<WorkSpaceDir>\NewDiscSpaceNarrowing C:\vertebra\C01235_3.shp36   

       C:\vertebra\C01235_4.shp36 
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C   

Read- Me file for the project ‘NewSubluxation’ 

 

APPENDIX 
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C.1. NewSubluxation using a neural network 

 The NewSubluxation was a project which calculates features on a group of 

adjacent cervical vertebrae and then simulates a neural network to calculate a score for 

the given group of the cervical vertebrae. 

  

The initial workspace that was provided included the following files: 

- subluxationFeatures.m 

- getScore.m 

- connectspline.m 

 

 The ‘subluxationFeatures.m’ was a MATLAB script which did the major 

computational part of the feature calculations. It read the images of adjacent vertebrae 

from the local machine, and it then generated an image consisting of all the cervical 

vertebrae by logically ORing each of the input images. Several image processing tools 

were applied to the image of the complete cervical vertebrae. Also, the centroids and 

areas of each vertebra that make up the complete image were calculated and used for 

feature calculation. 

 

 The features calculated were output to a text file on the local machine. Also, the 

‘subluxationFeatures.m’ script worked on several groups of cervical vertebrae in batch 

mode. The getScore.m was a MATLAB script that runs the simulation of a neural 

network using the inbuilt ‘sim’ function defined in the Neural Network toolbox. The 

MATLAB function connectspline.m was called by the subluxationFeatures.m to generate 

a more complete boundary of a vertebra based on the inputs of a .shp36 file. 

 

 In the NewSubluxation project, the given M-files needed to be linked so that on 

every run of the solution, the subluxation features are calculated for a given group of 

adjacent cervical vertebrae, and a score was generated for it. 

 

The following M-files were changed: 
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- subluxationFeatures.m 

- getScore.m 

 

 Both these Matlab scripts were changed to Matlab functions by putting the code 

within the scripts into a wrapper function. An additional MATLAB function 

‘compute_subluxationFeatures.m’ was created, this was the function which was called 

from VC++, it processes input arguments received and then calls the function in 

‘subluxationFeatures.m’. Creation of the DLLs and the new VC++ workspace are 

explained below: 

 

C.1.1. Creating the Dynamic Linked Libraries for using the MATLAB routines: 

 All the files described above are kept in a single folder. In the MATLAB 

compiler, set the current working directory to the directory where all the M-files are 

stored and then, run the command: 

 
mcc -W lib:libsublx -T link:lib compute_subluxationFeatures getScore 

 

After running this command, the files that are generated in the current directory are: 

- libsublx.c 

- libsublx.h 

- libsublx_mcc_component_data.c 

- libsublx.dll 

- libsublx.lib 

- libsublx.exports 

- libsublx.exp 

- libsublx.ctf 

 

 The ‘getScore.m’ function uses the ‘sim.m’ function defined in the Neural 

Network toolbox of MATLAB. By generating the libraries (libsulx files), a C/C++ 

interface was created that can be used to call the functions compute_subluxation.m and 

getScore.m. These functions can use all the MATLAB built-in functions within their 
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codes. Although, the use of functions from the Neural Network toolbox can generate 

warnings as these are not included in the MATLAB compiler which gets loaded via the 

uses of these libraries. Hence, to alleviate this problem, we add (copy) all the functions of 

the Neural Network toolbox in the same directory where the other M-functions are stored. 

 

 These functions are found in the local directory (on a machine where MATLAB 

was installed) : <matlabroot>\nnet\nnet\@network\ 

 

The files that are to be copied are:  

- adapt.m 

- disp.m 

- display.m 

- gensim.m 

- init.m 

- loadobj.m 

- network.m 

- revert.m 

- sim.m 

- train.m 

 

 Two additional files can be found in the same directory which are: ‘subasgn.m’ 

and ‘subsref.m’. These files are necessarily not to be copied to our current directory with 

other M-files, this compulsion was put because the functions defined in these two M-files 

are not required in our implementation and can generate warnings while creating the 

libraries and using them in our C++ program. 

 

 Now with all the required M-functions placed in one folder, generate the required 

‘libsulx’ libraries with the –mcc command provided above. 
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C.1.2. Creating the workspace in C/C++ developer environment with the libraries 

included: 

 In Microsoft Visual Studio .NET 2005, create a new Win32 Console project 

NewSubluxation. Include the following files in the source code files: 

 

#include<iostream> 

#include<cmath> 

#include<string> 

#include<cstring> 

#include"mat.h" 

#include"libsublx.h" 

#pragma comment(lib, "libmat.lib") 

#pragma comment(lib, "libmx.lib") 

#pragma comment(lib, "libsublx.lib") 
 

 The header files and libraries named ‘libmat’ and ‘libmx’ are found in the 

<matlab_root>\extern\include and <matlab_root>\extern\lib. The files generated by the 

MATLAB compiler on the ‘mcc’ command are copied to the current directory of this 

VC++ workspace. 

 

 The #pragma directives declared above can be avoided in the source code, if these 

library files are included that was added to the Solution in VC++. 

 

 The NewSubluxation project works on several adjacent cervical vertebrae to 

calculate the subluxation features and to calculate a score based on these features. Hence, 

the execution of NewSubluxation project requires the filenames of the vertebrae files 

(.shp36 files). The file names of these .shp36 files of the vertebrae under investigation are 

provided as input parameters taken as command line arguments. Each of these command 

line arguments are the absolute paths of these .shp36 files on the local machine or relative 

paths can be given if the .shp36 files are stored in the same or one of the subfolders of the 

current workspace.  

 

 The main() function that was the entry point of the NewSubluxation project’s 

code encapsulates these filenames into list and also initializes a string containing the 
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filename of the trained model to be used while calculating the score for the features that 

will be calculated. Hence, a different trained model can be used by changing this value in 

the code. It then calls the NewSubluxation() function with the list of vertebrae filenames 

and the trained model’s filename as input. The number of input arguments can vary, for 

the purpose of feature calculation, it was required that either four (C3-C6) or five (C3-

C7) filenames of adjacent vertebrae be passed. The trained model included here, will test 

the features generated for vertebrae C3-C6 irrespective of the number of filenames passed 

for feature calculation.1 

 

 A class named ‘Cervicals’ and a class named ‘Vertebra’ are created for the 

implementation of this project. The Vertebra class encapsulates all the properties of a 

single vertebra like boundary points, etc and necessary functions to operate on them. The 

Cervicals class encapsulates a list of objects of the Vertebra class and other data related 

to this group of vertebrae required to calculate the subluxation features and the score. All 

newly added functions are also encapsulated in these classes. 

 

 Since, there are more than one function calls to several MATLAB routines, the 

initialization and termination of the MATLAB compiler are done close to the entry and 

exit points of the C++ program. 

 

 When required to calculate the subluxation features on vertebra C3-C6, the call to 

the program was given on the command prompt was as: 

 

 

 

                                                 

 

 
1 The trained model can be replaced, by changing the filename that was initialized in the main() routine. 

> C:\<WorkSpaceDir>\NewSubluxation C:\vertebra\C01235_3.shp36 C:\vertebra\C01235_4.shp36

   C:\vertebra\C01235_5.shp36 C:\vertebra\C01235_6.shp36 
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