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ABSTRACT

Software security researchers commonly reverse engineer and analyze current

malicious software (malware) to determine what the latest techniques malicious at-

tackers are utilizing and how to protect computer systems from attack. The most

common analysis methods involve examining how the program behaves during ex-

ecution and interpreting its machine-level instructions. However, modern malicious

applications use advanced anti-debugger, anti-virtualization, and code packing tech-

niques to obfuscate the malware’s true activities and divert security analysts. Malware

analysts currently do not have a simple method for tracing malicious code activity at

the instruction-level in a highly undetectable environment. There also lacks a simple

method for combining actual run-time register and memory values with statically

disassembled code. Combining statically disassembled code with the run-time values

found in the memory and registers being accessed would create a new level of analysis

possible by combining key aspects of static analysis with dynamic analysis.

This thesis presents EtherAnnotate, a new extension to the Xen Ether virtu-

alization framework and the IDA Pro disassembler to aid in the task of malicious

software analysis. This new extension consists of two separate components - an en-

hanced instruction tracer and a graphical annotation and visualization plug-in for

IDA Pro. The specialized instruction tracer places a malware binary into a virtu-

alized environment and records the contents of all processor general register values

that occur during its execution. The annotation plug-in for IDA Pro interprets the

output of the instruction tracer and adds line comments of the register values in ad-

dition to visualizing code coverage of all disassembled instructions that were executed

during the malware’s execution. These two tools can be combined to provide a new

level of introspection for advanced malware that was not available with the previous

state-of-the-art analysis tools.
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1. INTRODUCTION

There is currently a lack of malicious software analysis applications that allow

in-depth, internal information about instruction-level behavior in a single toolset.

Individually, dynamic analysis tools provide a fast method for obtaining high-level

behavior of an executable while static analysis tools provide a slow, human-intensive

method to obtain detailed information of what causes this observed behavior or un-

observed behavior. This thesis aims to provide a convergence of these two analysis

strategies in EtherAnnotate and demonstrate the ability for new analysis information

to be obtained through its use.

This section provides a background on malicious software and malware analysis

to help describe the basis for the new research presented. Section 2 provides a context

of previous research that this paper extends from. Section 3 describes the new tools

that were developed in detail and the design decisions behind them. Section 4 presents

a case study where the new analysis tools are used on a recent malicious botnet binary

and the benefits and limitations are analyzed. Section 5 presents a second case study

which compares EtherAnnotate against current analysis tools during an investigation

of the SpyEye Trojan malware. Finally, Section 6 weighs the benefits and limitations

of the current research and list potential areas of further development.

1.1. BACKGROUND ON MALICIOUS SOFTWARE

The idea of computer software that is able to secretly replicate itself and execute

automatically on newly infected machines originated in the late 1970’s with mainframe

computers and the early 1980’s with personal microcomputers. In 1975, John Walker

introduced the program PERVADE on the UNIVAC 1110 mainframe which would

secretly copy its caller program (a game called ANIMAL in this case) to all available

directories on the system [3]. Seven years later, one of the first modern viruses

(although not malicious in intention) was written and distributed by Rich Skrenta for

the popular Apple II series personal computer. The software was named Elk Cloner

and would hook itself into the reset handler of the Apple II computer, such that

when the system was rebooted for the 50th time a poem Rich wrote would appear
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on the screen [4]. As personal computers exploded in popularity and knowledge of

how to design software that can covertly spread to new machines grew, the number

of malicious software attacks in the wild accelerated and became increasingly difficult

to defend against.

Today, malware can spread globally to thousands of computers in only a matter

of days and performs much more sophisticated and damaging attacks to systems [5].

A new trend in malicious software has been the increased prevalence of botnets - a

covert overlay network of personal computers which have been infected by malware

and receive orders from a centralized or peer-to-peer “command and control” com-

munication channel. Single botnet variants have been able to infect over a million

computers and typically either steal financial information (76% of phishing attacks

are for financial gain according to Symantec’s 2009 threat report [6]) from these ma-

chines or use them to perform coordinated DDoS attacks against large corporations

or government entities [7]. Currently, the most prevalent strategy to mitigate botnet

attack potential is to reverse engineer the malicious binaries that are dropped and

determine the identities of the command and control servers. Once the identities of

command and control servers are known, either the ISP can be contacted to shut

the server down or security companies can try to have DNS servers not recognize the

malicious IP addresses.

The number of new malicious attacks developed and launched against machines

increases every year, becoming more advanced and requiring more skilled analysis to

detect and defend against. Additionally, the source of malicious attacks has migrated

from devious hackers launching small and simple attacks to criminal organizations and

even nation states organizing sophisticated, targeted attacks against their adversaries.

Defending against malicious computer attacks has become a tremendous and critical

industry and research market and the need for comprehensive analysis and rapid

response grows every year.

1.2. BACKGROUND ON MALWARE ANALYSIS

In order to protect their anonymity from security analysts and increase the

difficulty of defense, malware authors generally obfuscate their code and their com-

munication channels. A very common method for hiding data from security analysts
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is for the malicious code to detect if common analysis tools are being used and change

its behavior if they are detected. One such method is to detect changes in system

behavior that occur when a software debugger is attached to the running process

(anti-debugging). In Windows, attaching a debugger (e.g., OllyDbg or WinDBG)

sets a variety of system flags and causes small details in system behavior to change

compared to a system without a debugger attached to a process [8]. Malware will

commonly detect these changes and either exit without performing any malicious ac-

tivity or perform suspicious activity to draw the malware analyst away from the real

malicious activity. There are anti-anti-debugging tools that can be used with debug-

gers that try to hide the debugger from detection although these are complicated and

only prevent detection from known methods.

Another method malware authors use to detect that their software is being

watched is to detect that the code is executing inside a virtual machine (VM). An-

alysts commonly run malware inside of a virtual machine in order to sandbox the

code from infecting the host machine and to enable the ability to “rewind” the state

of the system. Malware can detect that it is running inside of a virtual machine by

checking for virtualized hardware, differences in certain instruction return values, and

backdoor I/O ports used by the hypervisor to communicate to the VM [9]. As vir-

tualization is increasingly utilized today to consolidate physical server hardware into

virtual hardware, virtualization detection is not as prevalent debugger detection. This

is because not performing malicious activity when inside of a VM would eliminate a

large percentage of potential victims.

Table 1.2 provides an overview of common analysis detection methods that are

able to detect three common analysis tools and how the EtherAnnotate implemen-

tation compares. Debugger and virtualization detection are previously described;

dynamic analysis detection refers to the detection of any kinds of runtimes analysis

tools being used to monitor the malware. Common detection methods for dynamic

analysis are searching through the process list for known analysis tool filenames and

checking the consistency of API function calls to check for tools that may hook these

functions and cause changes in their instructions. OllyDbg is a common instruction-

level debugger for applications, Process Monitor is a common dynamic analysis tool
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Table 1.1. Overview of Detection Method Effectiveness Against Analysis Tools
OllyDbg ProcMon CWSandbox EtherAnnotate

Debugger Yes, with plugins No No No
Virtualization No No Yes Yes
Dyn. Analysis No Yes Yes, hook detect. No

for monitoring application behavior, and CWSandbox is a virtualized sandbox envi-

ronment that hooks API calls to record behavior. EtherAnnotate is imperceptible

to any operating system level detection attacks since no modifications are made to

the guest OS. Alternatively, the only detection attacks known to the author against

EtherAnnotate would have to rely on virtualization timing and device detection for

the Xen framework. There have been multiple papers on virtualization detection that

mostly focus on VMware [9] and other Type II hypervisors [10], additional research

is needed to determine a concise list of methods to detect the Xen 3.x framework.

Lastly, malware authors can obfuscate their code to static analysis by encrypting

or scrambling the binary operation codes (opcodes) in the executable. The binary file

then has a separate routine that decrypts or unscrambles the obfuscated opcodes so

that the original source code can be executed. Analysts can subvert this technique by

watching the application with a debugger and dumping the process’s memory after

it has been decrypted. Most advanced malware utilize very advanced encryption

and scrambling techniques that may involve multiple processes or other obfuscation

techniques that deceive disassemblers.

1.3. BACKGROUND ON INSTRUCTION TRACING

The idea of recording the set of all instructions executed during a program or

computer’s execution is a technique that started with early computer debugging sup-

port in the early 1970’s. Barnes et al. published an early paper that implemented

an instruction tracer in the HP 2100A minicomputer’s firmware in order to aid in

software debugging [11]. In addition to tracing all instructions executed on a com-

puter, the HP 2100A could selectively trace only instructions occurring in a specific

memory area. Since the tracer was implemented in the computer’s firmware, it was

able to trace operating system execution and any program’s execution without any
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modification to the underlaying programs. Instruction tracing has not changed much

since the early implementations, although today most instruction trace applications

are userland applications (i.e., separated from the OS kernel and unprivileged) that

run underneath the operating system. Most common integrated development envi-

ronments (IDEs) and debuggers contain some sort of instruction or event tracing

today.

In a sense, the instruction trace capabilities presented in this thesis are closer

to the early HP 2100A tracer than modern tracing applications. The EtherAnnotate

instruction tracer runs in an elevated privilege environment much like the firmware

on the minicomputer - it runs on the Xen privileged Dom0 environment and commu-

nicates solely with the Xen hypervisor. This similarity allows for EtherAnnotate to

monitor and trace any operation of a guest operating system, including the operating

system’s execution itself. Additionally, as each instruction is recorded, the values of

currently accessed variables are also recorded in the EtherAnnotate instruction trace

log.

1.4. IMPORTANCE OF PROBLEM

New methods that provide a deeper understanding of malicious software as it

is discovered are necessary to provide adequate defense against future computer net-

work attacks. A solution needs to be able to quickly analyze new malicious samples

and help security analysts deduce how the malware works fast enough to develop

a response strategy. Once an initial defense strategy has been formulated, any in-

creased accuracy in attribution of the original authors or groups responsible for the

malware will help security labs and government agencies find and eliminate the cause

of the threats. Finally, any tools that provide a more detailed understanding of the

malware’s operations will allow analysts to better predict future attacks and behavior

which can lead to proactive defense.

1.4.1. Early Response and Defense. Previous large-scale attacks by

worms and botnets have clearly shown the necessity for an early response and de-

terrent in order to mitigate the possible damage of coordinated attacks [12]. For

these globally spreading worms, the previous research focuses mostly on detecting

the presence of the large network of victim computers and issuing security notices
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about potential attacks and methods for defense. For smaller-scale, targeted attacks

with binary payloads it may be more pertinent to instead focus on the intentions of

the attack that can be deduced through internal analysis of the malicious payload.

Typical dynamic code analysis techniques as described in Section 2.3.2 provide a

quick, high level overview of the behavior of a binary during runtime. A lower, more

detailed knowledge of a complex malicious binary typically requires a larger amount

of time to be invested in static code analysis as described in Section 2.3.1, usually by

reverse engineering the assembly language instructions [13]. The EtherAnnotate anal-

ysis toolset presented in this thesis provides a convenient method for adding runtime

dynamic analysis information to a binary’s disassembled instructions with a minimal

number of changes to the computer system.

1.4.2. Attribution of Directed Attacks. The attribution of cyber at-

tacks on computer systems is a growing concern for both corporate security [14] and

national security [15][16]. The Department of Defense commissioned report on tech-

niques for attributing cyber attacks defines the term attribution as “determining the

identity or location of an attacker or an attacker’s intermediary” [15] and this is one

of the core goals of malware analysis. Network attack attribution is particularly dif-

ficult because of the inherently redundant and anonymous nature of the Internet and

computer systems. Attackers may plant code that waits an extended period of time

before causing damage or may work through intermediary machines unrelated to the

originating computer system. Simply tracing the IP address of a recorded cyber at-

tack may not provide a target to the attacker’s personal computer (e.g., use of cyber

cafes or rerouting the attack through victim machines) and in cases of anonymizing

overlay networks it may not even be possible to trace the originating machine [17].

Binary file attribution provides a similar level of difficulty in determining the

original author or even a general location of the originating attack. Since malicious

binary files are most often spread autonomously, the computer that sent the file to the

victim can not reliably be used as the true attacker’s origin. Common techniques for

binary attribution rely instead on correlating similar binary files based on common

patterns that can be identified between many samples in a large binary library [18].

This attribution, typically using n-gram analysis or Bayesian analysis, builds on the

hypothesis that malware written by the same author or authors will contain traits of



7

those who wrote the original code - even in compiled form. Any uniquely identifying

information about a binary file can help with attribution; EtherAnnotate provides

a novel method for obtaining internal identifying strings not easily discovered using

current analysis methods.

1.5. CONTRIBUTIONS OF ETHERANNOTATE

The EtherAnnotate toolset presented in this thesis addresses the issues of provid-

ing a quick, in-depth analysis of malicious software by contributing a novel unification

of dynamic analysis and static analysis that is largely transparent to detection. The

EtherAnnotate toolset consists of two independent tools - an extension to the Xen

Ether malicious software analysis framework described in Section 3.2 and a plug-in to

the IDA Pro graphic disassembler described in Section 3.3. Previous static analysis

tools lack a transparent method for viewing the runtime data of a program’s exe-

cution in a visually coherent manner. The Ether additions allow for an instruction

tracer running outside of a virtual machine to monitor and transparently record the

variable values of a program while it executes. The IDA Pro plug-in takes the output

from the first tool and uses the variable values to annotate a graphical disassembly

of the malicious software’s code. Code coverage visualization is accomplished in-

side of IDA Pro by highlighting all instruction addresses listed in the EtherAnnotate

trace file. By combining the statically disassembled instructions of a malicious pro-

gram with annotations of its actual runtime values, this new visualization provides

an increased awareness of the program’s operations while a researcher performs static

code analysis. The author believes that this new toolset will contribute additional

knowledge to malware analysts and provide a starting point for additional research

in malware behavior analysis. Additionally, the later case studies in Section 4 and

Section 5 provide not only a comparison of analysis results from EtherAnnotate and

previous techniques, but also internal functionality insight of two popular malicious

applications.
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2. RELATED WORK

The work completed in this thesis integrates new functionality into previous re-

search done on the Xen virtualization framework and the Ether analysis framework.

The Xen Ether framework was originally designed as a malware analysis tool that

allows instruction tracing, system call tracing, and automatic unpacking of malicious

binaries. This research extends the Ether framework to also record all processor reg-

ister memory access and supplement IDA Pro disassemblies with that information. A

review of recent research into botnet protocol reverse engineering and static/dynamic

analysis will help illustrate the design choices of this thesis. Sections 2.1 and 2.2

present previous areas of research that this thesis builds off of and extends. Sec-

tion 2.3 presents the current tools available both in research and production for ana-

lyzing complex malware that EtherAnnotate seeks to improve upon.

2.1. XEN ETHER MALWARE ANALYSIS

2.1.1. IBM VM/370 Operating System. The idea and usefulness of

running multiple, different operating systems on a single computer system was first

realized in the 1970’s by researchers at IBM [19]. The IBM VM/370 system split the

computer’s operating system into two components, the control program (CP) and

the Conversational Monitor System (CMS). The CP ran underneath all virtualized

operating systems and provided resource management and control to all of the virtual

machines. The CMS provided a virtual terminal for each virtual machine that the user

could interface with and appeared as though they were interfacing with a bare-metal

operating system. A key design criteria for the VM/370 software was that all virtual

operating systems running on top of the CP would execute the same instructions as

if they were running on the machine by theirself. Additionally, all operations in the

virtual machines were guaranteed to provide the same output if they were running in

a virtual environment as if they were running on a physical processor.

At the time, the VM/370 operating system was noted for its novel ability to

allow multiple users concurrent access to a single computer and the added security

provided by address space isolation between the virtual machines. Unfortunately,
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the idea of virtualization did not move outside of IBM’s mainframes and into the

personal computing sector until the last decade. IBM’s VM/370 operating system

ran on top of its System/370 mainframe which was designed to allow virtual machines

to execute on the processor without interference [20]. One vital design aspect that

came from the System/360 hardware was to divide all instructions into two mutually

exclusive sets: privileged and unprivileged instructions. Privileged instructions affect

the operations of the entire machine while unprivileged instructions only cause local

changes and are commonly called by user applications. The System/370 hardware

required all privileged instructions to be handled by a specific program, and the

VM/370’s Control Program transparently handled these instructions for its virtual

machines. Additionally, the System/370 hardware was designed to support virtual

memory from its introduction and allowed for the control program to imperceptibly

share physical memory between the virtual machines. The x86 hardware, which has

become the standard processor architecture in personal computing, was not designed

to support virtual machines and many workarounds have been developed in recent

years to enable virtualization on PCs.

2.1.2. The Xen Hypervisor. In 2003, a research group based at the

University of Cambridge published Xen, an open source x86 virtual machine monitor

(VMM) which (eventually) allowed unmodified operating systems to run in isolated

virtual machines [21]1. Xen now supports x86-64, Itanium, and the PowerPC archi-

tectures and is one of the most popular open source virtualization solutions today.

Although it was designed around 30 years after the original VM/370 software was

written, Xen shares many core similarities to IBM’s original virtualization solution.

The Xen framework consists of a Type I hypervisor which runs in a bare-metal config-

uration below all operating systems and virtual machines. Goldman’s original paper

on computer virtualization describes two different types of hypervisors that still hold

true with present solutions [22]. A Type I hypervisor runs on the bare hardware and

all virtual operating systems on the machine run virtualized on top of the hypervisor

as in Figure 2.1. A Type II hypervisor allows a standard operating system to run on

the bare hardware first, then the hypervisor is loaded on top of the operating system

and runs virtual machines from this higher level as in Figure 2.2.

1This thesis will use the terms virtual machine monitor (VMM) and hypervisor interchangeably
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Figure 2.2. Logical Layout of a Type II Hypervisor

The Xen framework modifies the standard Type I hypervisor design such that

there is a single privileged virtual machine named Domain 0 (Dom0) and all other

virtual machines, called unprivileged guest domains (DomU), act like standard virtual
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Figure 2.3. Logical Layout of the Xen Hypervisor

machines in other frameworks. Dom0 is the first domain to boot after the hypervisor

is loaded by the computer’s BIOS, and provides an administrative interface to the

Xen hypervisor [23]. Typically, Dom0 is a modified Linux kernel that appears to be

a normal Linux OS with the addition of a list of administrative commands that can

instruct the hypervisor to create new VMs, modify existing VMs, shutdown existing

VMs, or perform other hypervisor commands. All of the regular VMs will be spawned

from Dom0 and run on top of the Xen hypervisor and communicate through the

emulated devices created in Dom0 as shown in Figure 2.3.

In 2006, AMD released processors with its new AMD-V hardware virtualization

extensions and Intel released a similar new feature in its Core 2 processors named

VT-x. These extensions to the x86 specification implement additional functionality

that allows the x86 processor to fulfill the classical virtualization requirements. In

1974, Popek and Goldberg published the seminal paper on the formal requirements

of a processor instruction set to be virtualizable; in it they state that an instruc-

tion set must allow for equivalence, resource control, and efficiency with regard to a

virtual machine [24]. While previous x86 virtualization techniques had to resort to

clever software design to emulate equivalence and handle resource control, the new

virtualization extensions provide additional controls that are based on Popek and

Goldberg’s description of how to design a virtual machine monitor.
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The VT-x extensions create a new execution mode called VMX mode which in

turn has two separate privilege levels, VMX root mode and VMX non-root mode.

VMX root mode was designed as the mode that a hypervisor would execute in and

thus is very similar to execution outside of VMX mode other than the addition of a

new set of VMX instructions and access to new VMX storage variables. In VMX non-

root mode, the processor execution is restricted so that certain privileged instructions

(as defined in Popek and Goldberg [24]) are trapped and cause a new event called

a VMEXIT. By causing VMX non-root privileged instructions to trap to a prede-

termined location in hardware, the VT-x extensions now allow the x86 hardware to

provide the dispatcher and interpreter aspects of a VMM natively. The VMM in root

mode can configure the processor to trap on more instructions and actions than set by

default; additional traps can be set for if a guest tries to access certain I/O ports or

control registers in the processor [25]. Because VMX mode splits execution into root

and non-root modes, a virtualized operating system can be run unmodified and with

its kernel operating in current privilege level (CPL) 0. All modern operating systems

run their kernel in CPL 0 and all applications in CPL 3 which allows the hardware

to restrict user-mode applications from executing privileged instructions [26]. Be-

fore virtualization extensions were introduced to x86, VMMs would have to make do

by typically running the VM kernel in CPL 1 and the VM applications in CPL 2;

however, VMX root and non-root modes now have a separate CPL for each.

Xen 3.0 added support for Intel’s VT-x technology which is required and used

extensively by the Xen Ether framework. These extensions allow fine-grained control

of the hypervisor with hardware guarantees of transparency for the equivalence and

resource control criteria.

2.1.3. Ether Malware Analysis Framework. In 2008, Dinaburg et

al. published a paper describing their new framework called Ether which builds a

malware analysis tool into the Xen hypervisor [27]. Their framework runs solely on

the Xen hypervisor and Dom0 without requiring any modifications to the virtualized

guest operating system in DomU. The separation of the analysis framework and the

guest operating system is furthered by extensively utilizing the Intel VT virtualiza-

tion extensions. Ether requires the use of Xen 3.0 and hardware-assisted virtualiza-

tion (HVM) guests which allows for the highest level of transparent malware analysis
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without the guest being able to detect analysis. Similar analysis using guest-based

virtualization (e.g., VMware [28] and VirtualBox [29]) or kernel-level analysis (e.g.,

VAMPiRE and CWSandbox) are not able to meet all of the transparency require-

ments presented. In the paper, the authors present five requirements of a transparent

malware analyzer that the Ether framework is able to fulfil:

• Higher Privilege: The malware analyzer must run at a higher hardware priv-

elege level than the guest operating system it is analyzing. Ether runs at the

highest privilege level, CPL -1 using Intel VT, while the guest operating sys-

tem’s kernel and userspace run at CPL 0 and 3 respectively.

• No Non-Privileged Side Effects: The malware analyzer must not induce

any side-effects in the guest operating system that a malicious program running

in the guest can detect. Ether has protected access to certain processor registers

and has isolated memory access to the guest through shadow page tables.

• Identical Basic Instruction Execution Semantics: All instructions exe-

cuted during analysis must have the same behavior as if they were running

directly on the processor (similar to Popek and Goldberg’s equivalence require-

ment). Ether uses the Intel VT virtualization extensions which rely on the same

hardware execution semantics as non-virtualized execution.

• Transparent Exception Handling: All exceptions must behave and return

during malware analysis as they would during normal execution. Ether only

traps certain exceptions, does not cause any new guest-detectable exceptions,

and does not modify the returned values of guest-generated exceptions.

• Identical Measurement of Time: A common attack to detect if a guest is

inside of a virtual machine is to measure the time required to execute a set of

instructions. If the analysis framework does not have a privileged clock that

it can modify to negate extra time taken for analysis and VM exits, then the

guest can detect the presence of virtualization. Intel’s VT extension provides

a separate execution cycle count in the hypervisor which can be used to offset

the logical clock return values.
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Figure 2.4. Logical Layout of the Xen Ether Framework

Once the Ether framework has been shown to provide transparent analysis into

a guest operating system, the authors present the implementation and examples of

analysis tools built on Ether. The main component of Ether, as seen in Figure 2.4,

runs in the Dom0 privileged Xen domain and provides user interaction to the analysis

tools. A small number of changes were made to the Xen hypervisor code to provide

abilities to trap different operations in the guest operating system. The main analysis

tools are split into instruction/memory write tracing and automated unpacking.

Ether implements instruction tracing of the guest operating system by setting

the trap flag after each instruction which causes a debug exception and a VM-exit

event that the Xen hypervisor handles. The Ether analysis framework receives con-

trol of the system after debug exceptions induced by the trap flag being set which

allows EtherAnnotate to perform its analysis and instruction trace logging in between

each guest instruction. The process Ether uses to set the guest’s trap flag and give

EtherAnnotate control of the system is thoroughly documented in Section 3.2.2.

2.1.4. VERA Malware Visualization. In 2009, Quist et al. published

one of the first research tools which extended the Xen Ether analysis framework

- particularly to increase the speed at which malware analysts can deobfuscate a

binary [1]. The Visualization of Executables for Reversing and Analysis (VERA)

architecture the authors present takes a standard instruction trace file from Ether
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combined with the original malicious binary to generate a visualization of code flow

during execution. Figure 2.5 from the original VERA paper depicts an example of

running VERA on the unpacking loop of a binary packed with the Mew packer. The

visualization is an abstraction of the instruction trace that Ether recorded of the Mew-

packed binary where each node represents a basic block (list consecutive instructions

until branch) and each edge represents a branch to a different basic block which was

taken. The green nodes represent basic blocks of instructions which are non-existent

in the original binary, such as areas that have been allocated on the heap or are

self-modifying. The red nodes represent sections with high entropy, such as when

the binary is executing in newly unpacked areas of its memory (since the original

memory was packed and has high entropy, cf. encrypted data entropy). In the Mew

packer example, code flow originally loops in an initial unpacking loop which appears

to unpack the second, larger loop since the second loop executes in an area of high

entropy. The second unpacking loop is much more complicated than the first from

the visual inspection of many more branches and longer loops. Eventually, it appears

that the second unpacking loop allocates memory to place the original code into and

progresses into the original entry point (OEP).

Quist mentions that although there are similar programs available which provide

graph-based analysis, Ether and VERA are unique in that they do not require the

use of debuggers or guest state modifications. This allows VERA to provide analysis

transparently to the guest operating system and any malware that may try to detect

debuggers or analysis tools [8].

2.2. INSTRUCTION TRACE MALWARE ANALYSIS

A research paper by Sharif et al. was published in 2009 on a similar project in

that it uses protected instruction tracing as the foundation for malware analysis [30].

In their paper, the authors present a system called Rotalumé which executes malware

in a protected environment, records an instruction trace, and uses data-flow and taint

analysis to automatically reverse engineer emulator syntax and semantics. The paper

focuses on malware that has been protected using the increasingly common obfusca-

tion technique of emulation (common tools are Themida [31] and VMProtect [32]) .

An emulation protection scheme for binary obfuscation translates the original binary’s
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Figure 2.5. The Mew Unpacking Loop [1]

x86 instructions into bytecode instructions that can be interpreted by a program vir-

tual machine at runtime. This technique is similar to how Java programs are compiled

from their Java source code to an intermediate bytecode language that is executed

by the Java Virtual Machine (JVM) which translates the bytecode instructions into

the current architecture’s opcodes. Once a program has been protected using one

of these emulator protection tools, the malware analyst only has a binary file with

the protector’s emulator code and the malware’s bytecode which has unknown syntax

and semantics for most of the common protectors.
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The Rotalumé tool that Sharif et al. developed consists of three core strategies:

identifying the virtual program counter (VPC), identifying emulation behavior, and

extracting the syntax and semantics of the emulator. The authors developed a new

technique they call abstract variable binding which attempts to identify program

variables used during the execution of the program from an instruction trace. Their

goal is to find the VPC variable that emulators use as an index into the protected

executable’s bytecode to find the next instruction to execute, such as:

instruction = bytecode[VPC]

or

instruction = *VPC

The authors assume that most emulator protection methods will use this instruc-

tion fetching technique and develop a series of algorithms and rules for identifying

possible VPCs and using clustering to narrow the field down. Once the candidate

VPCs are narrowed down, the Rotalumé system uses dynamic taint analysis to find

execution read behavior that is common to decode-dispatch emulators. For each po-

tential VPC found in the first section, the second section does 2nd-pass analysis on

all other instructions to see how the VPC memory is read and used by other instruc-

tions. Once a loop has been detected that executes at least twice and appears to

be decoding bytecode using the candidate VPC and dispatching execution then that

cluster is identified as the correct VPC cluster. Finally, the system monitors how the

execution proceeds after a dispatch has been made and looks for bytecode instructions

that change the VPC to try to identify branching instructions. Identifying control

flow transfers allows the authors to build control-flow-graphs that assist in analysis

of the behavior of the emulator’s bytecode language.

EtherAnnotate began development around the time that the paper on Rotalumé

was published and uses some of the same ideas about process introspection from an

overlaid system, but focuses on the angle of internal algorithm analysis. Where Ro-

talumé focuses more on the automation of determining emulator protection semantics,

EtherAnnotate was developed as a tool that can provide run-time variable informa-

tion in a static analysis environment with a guarantee of transparency. Further work
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combining the variable identification techniques of Rotalumé and EtherAnnotate in

a second-pass analysis could provide more easily understood information about what

values were stored in program variables at run-time.

2.3. CURRENT TOOLS AND ETHERANNOTATE’S ADDITIONS

Current tools for malware analysis are divided into static analysis tools and

dynamic analysis tools. Static analysis describes a process of observing a program

without actually executing any of the code - this provides a safer method of analysis

with malware and usually provides more detailed information but lacks knowledge of

actual execution behavior. Dynamic analysis is the process of executing a program

and monitoring any aspect of its behavior - this method typically provides a faster

understanding of the broad characteristics of a program but can skip over many of the

program’s inner workings. EtherAnnotate aims to provide a collection of benefits from

both static and dynamic analysis in a single package while eliminating many of the

detection issues caused by using intrusive dynamic analysis tools such as debuggers.

2.3.1. Static Analysis Tools. Static code analysis tools provide information

about a binary file without executing the file, therefore providing a static image of

the actual code and data contained within the file. The most common static analysis

tool is a disassembler which takes the processor opcode instructions that are stored

as raw data within the executable binary file and coverts these opcode datum into

the assembly language mnemonics that are human-readable. Disassemblers provide

an accurate representation of what instructions the processor will execute when the

binary file is loaded by the operating system. However, since the x86 instruction set

has a variable-length set of instructions, there can be multiple disassemblies possible

and some more advanced disassemblers are able to detect anti-disassembly procedures

and produce the correct disassembly. In addition to disassemblers, there is another

class of static analysis tools called decompilers which try to convert an executable’s

assembly code into a reasonable representation in a high-level language such as C.

These tools are much less accurate than disassemblers since there are a vast magnitude

of ways a compiler can take a high-level source code file and compile it down to

assembly code. Additionally, compilers typically optimize their compiled assembly

language code for either increased speed or decreased size - these optimizations can
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make it more difficult to recreate the original source code as a side effect. The

following list is a brief summary of static analysis tools that are commonly used in

malware analysis:

• Ollydbg: One of the more common debugging tools, OllyDbg can also be used

for its disassembling abilities although it does require the application under

analysis to be executed up to a point. OllyDbg also has wide 3rd party support

and there are many plug-ins for hiding from malware, dumping a program’s

memory contents to a file, and other uses.

• IDA Pro: A disassembler that recently added debugging functionality, IDA

Pro provides a graphical representation of the disassembled code that separates

it from other disassemblers. There is also a 3rd party plug-in API for C++ and

Python that is used for EtherAnnotate’s visualization tool.

• Hex-Rays: A decompiler plug-in for IDA Pro, Hex-Rays is one of the more

advanced decompilers and will convert disassembled instructions into C-like

pseudocode.

• PEiD: Using a list of signatures from various packing tools and compilers, PEiD

provides identification information about binary executables. DLL and EXE

files can be loaded by PEiD and if there is a known signature for the program

that compiled the binary or the program that packed the binary, PEiD will

report that information.

2.3.2. Dynamic Analysis Tools. In contrast to static code analysis tools,

dynamic analysis tools provide a method for monitoring and analyzing how a program

behaves during its execution. Dynamic analysis typically provides a quicker method

for obtaining information about an executable but it also is typically not as detailed

as what can be obtained through static analysis. One type of tool that straddles both

dynamic and static analysis is a debugger. Debuggers for malware analysis work with

the disassembled instructions of a binary file and allow the analyst to step through

each line of execution, view the active memory of a process, set breakpoints for the

execution to pause at, and other useful run-time modifications. Most other dynamic

analysis tools provide some sort of monitoring about the program, be it file activity,
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network activity, system call logging, or other attributes that may define a program’s

behavior. The list below is a brief summary of common dynamic analysis tools that

are commonly used in malware analysis:

• OllyDbg: The main purpose of OllyDbg is as a assembly-level debugger and

it is one of the most popular applications in this regard. The program provides

access to all internal data structures of a process and allows for a variety of

breakpoints to be set based on different conditions.

• ProcMon: There are many different events a process can cause during its ex-

ecution and Process Monitor (ProcMon) allows the malware analyst to track

most possible events. Some examples of process events are file system manipu-

lations, registry manipulations, and certain Windows API system calls.

• oSpy: This program will hook certain Windows API system calls related to

sending network traffic and record both the contents of the function arguments

as well as the call stack to each system call. A conversation log can be generated

with the contents of each network message sent or received.

• RegShot: The Windows registry provides configuration data for most system

operations and applications on the operating system. Regshot takes a snap-

shot before and after a program executes and provides a means for showing

differences in the registry that occurred.
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3. METHODOLOGY

This section presents the design decisions and implementation details of the

EtherAnnotate plug-in for Xen Ether (Section 3.2) and IDA Pro (Section 3.3). Ad-

ditionally, an explanation of the intended workflow of a malware analyst using the

EtherAnnotate toolset is presented in Section 3.1. Section 3.2.2 provides a secondary

contribution of insight into how the virtual guests, Xen, and Xen Ether communicate

and the code flow between them as learned during the development of EtherAnno-

tate. In addition to the topics covered in this section, further methodology design

changes were made during the second case study and these changes are presented in

Section 3.4.

3.1. ETHERANNOTATE WORKFLOW

The EtherAnnotate toolset was designed for use by a malware analyst who wants

to gain insight into the inner-workings of advanced malicious software as it would be-

have on a physical system. The proposed solution as shown in Figure 3.1 utilizes

two common software packages - Xen for virtualization and IDA Pro for disassembly

visualization - and provides a simple workflow that only requires three main tasks to

complete. The first task of the workflow is to take a binary file (that may or may not

be known to be malicious) and execute the file while under the EtherAnnotate envi-

ronment. As the figure and Section 3.2 describe, the EtherAnnotate environment is

an analysis tool which is built upon the previously developed Ether and Xen toolsets.

As the binary is executed, a log file is produced which contains all instructions that

were executed, a list of all register values referenced in the instructions, and a list

of all possible string array values referenced. This file will be the EtherAnnotate

specialized instruction trace used for the visualization process.

The second main task is simply for the malware analyst to transfer the EtherAn-

notate instruction trace file to a workstation that had IDA Pro and the EtherAnnotate

plug-in installed. The final workflow task is for the analyst to load an unpacked ver-

sion of the original binary file into IDA Pro. Binary packing and unpacking is detailed

in Section 1.2 and there are well known methods to attempt unpacking such as using
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Figure 3.1. The Workflow for Analyzing Malware with EtherAnnotate

Xen Ether, automatic unpackers, or manually - but these techniques are outside the

scope of this paper. Once the unpacked version of the binary is loaded and disas-

sembled by IDA Pro, the analyst chooses to load the EtherAnnotate plug-in from

IDA’s menus and chooses the EtherAnnotate instruction trace file produced by the

first task. At this point, IDA will execute the plug-in’s code and produce the results

detailed in Section 3.3.

3.2. XEN ETHER MEMORY MANIPULATION ANALYSIS

The first half of the EtherAnnotate plug-in consists of modifications to the

Xen Ether malware analysis framework in order to record additional data about the

malicious program’s state during execution. Specifically, the plug-in provides logged
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access to the run-time values of all referenced registers and uses a simple heuristic to

also record all potential string array references by pointers.

3.2.1. Hardware and Software for Development. A computer built with

an Intel Core2Duo E6400 processor (with Intel VT-x) and 1GB of DDR2 RAM was

used during both development of EtherAnnotate and the further analysis provided

in Section 4. The Debian Lenny 5.0 Linux distribution was installed as the Dom0

operating system running on top of Xen 3.1. Finally, Xen Ether 0.1 was installed

via the official instructions2 with a Windows XP SP2 DomU guest used for analysis

which was allocated 256MB of RAM.

3.2.2. Retrieving Instruction Trace from Malware Sample. The goal of

the Xen portion of EtherAnnotate is to single step a single virtualized guest program

and record the register values during each instruction. In order to enable single

stepping of a processor, the x86 architecture provides a single bit Trap Flag (TF)

that can be set in the FLAGS register. The FLAGS register is a status register on

x86 processors that contains various bit-flags that control or describe the state of

the processor. If the Trap Flag is set to true then the processor will make a call

to interrupt 1 (INT 1) after each instruction is executed. This interrupt is typically

used by kernel debuggers which would set this flag on the physical processor when

running in a bare-metal environment. In the Xen virtualization environment however,

the hypervisor creates a Virtual-Machine Control Structure (VMCS) for each virtual

processor of each virtual machine. The VMCS is a structure defined in the Intel VT-x

documentation that the hardware virtualization extensions use to store the state of

each virtual processor. In addition to virtual registers and flags that the hardware

processor has, the VMCS contains VM-specific control fields to set which operations

should trap into the hypervisor, where the processor should start executing during

a VM-exit exception, and metadata about the cause of a VM-exit [25]. The Xen

hypervisor can trap on specific interrupts and has been modified by Ether to allow

analysis code to be run while the virtual processor is paused at each instruction.

The process that Ether uses to enable single stepping of a virtual guest is pre-

sented in Figure 3.2. The code flow originates in the original Xen hypervisor, specifi-

cally the call to vmx properly set trap flag() which is normally used by Xen to properly

2http://ether.gtisc.gatech.edu/source.html (released April, 2009)
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handle returning execution to the guest during a VM-enter. If single stepping was

selected during the Ether configuration, then the original Xen code diverges into a

section which sets the Trap Flag for the virtual processor and also sets the VMCS

exception bitmap such that the Xen hypervisor will trap on the next exception. This

causes the guest to return, execute a single instruction which triggers an INT 1 ex-

ception due to the Trap Flag being set, and the Xen hypervisor catches this exception

and sends code execution to vmx handle debug exception(). Still inside the Xen hy-

pervisor (code modified by Ether), the code receives the debug exception (which

signifies interrupt 1 was triggered) and if Ether has enabled single stepping then it

makes a call to the next Xen Ether hypervisor function, ether handle instruction().

It is in this instruction handler that the Xen hypervisor finally gives control to the

Ether Dom0 code by sending an ETHER NOTIFY INSTRUCTION message to the

Dom0 code via a shared memory page. In the Ether main loop (and code section

where EtherAnnotate modifications were made), the program awaits messages sent

from the hypervisor - when an ETHER NOTIFY INSTRUCTION message arrives,

it calls a final function named disasm instruction() which handles the disassembly of

a virtual guest’s current instruction.

The previous actions were required in order to force the virtual guest operating

system to essentially pause after each instruction it executes, allowing the Ether-

Annotate code to execute and analyze the virtual guest’s state while it is paused.

Figure 3.3 continues where Figure 3.2 ended and describes the data and code flow

used to parse individual machine instructions and capture the register and memory

values. First, an additional step is required before vmx handle debug exception() is

called; the EtherAnnotate algorithm does not need to see all instructions executed

on a virtual processor but is only interested in viewing the instructions executed by

a single process within the virtual guest. When the user executes the EtherAnno-

tate analysis program, one of the command arguments is the malware filename, Nm,

which the user wishes to filter by. Every operating system uses its own method for

loading a process into memory and executing it and fortunately the Ether developers

determined how Windows XP SP2 loads processes and can determine the current

executing process by filename. Once Ether detects that Windows has switched to a

process whose filename matches the filter provided by the user, Ether will determine
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the value of Control Register 3 (CR3), CR3m and instruct the hypervisor to trap

whenever CR3’s value is changed to CR3m. This is useful since CR3 is a processor

register (virtualized to the guest) used for virtual memory addressing and always

contains the page directory base register (PDBR) which is unique for each process on

an operating system [26]. Therefore, if another process Px with the same filename as

the malware (Nx = Nm) is executed after the malicious program Pm has started then

Ether will only single step execution for Pm since ∀x, CR3x 6= CR3m.



26

At this point, Ether has enabled single stepping for a specific malware process

based on a filename argument provided by the end-user and the guest is paused for

analysis. The Ether code originally called disasm instruction() which would use lib-

disasm3 to parse the x86 opcode into a human-readable string and log the disassmbled

instruction to a file. EtherAnnotate modifies this section of code to also record the

values of all registers which appear in the operands of the instruction and also fol-

low pointer values to possible strings in memory. Algorithm 1 describes the process

that EtherAnnotate uses to log instruction register values and the potential string

arrays that the reference values point to in memory. Ether already uses libdisasm’s

x86 disasm() function to generate a structure containing all information about each

instruction, so Algorithm 1 begins after this call. For each trapped instruction of the

guest operating system, EtherAnnotate first uses the libdisasm library to parse the

instruction’s operation code (opcode, the raw binary language a processor interprets)

and determine if one of the x86 general registers is used - EAX, EBX, ECX, EDX,

ESP, EBP, EDI, or ESI. Next, for each operand om that contains a register value, the

value of that register is stored into val by accessing internal Xen state structures for

the virtual machine under analysis. If val is of non-zero value, then the code proceeds

in an attempt to treat om as a pointer and find the value of the memory it references.

To do this, a call is made to the internal Xen function domain read current(val) which

does a mapping from the virtual machine’s virtual memory into the host machine’s

virtual memory and returns the value stored at the address val. Next, the algorithm

uses a basic heuristic to determine if the register in om is pointing to a string array

(run-time strings will be useful in analysis) by searching for ASCII characters. The

current value in memory that the pointer points to is checked to see if it is within

the printable ASCII characters (0x20 to 0x7F); if it is, then the value is copied into

a buffer, the address is incremented by one byte, and the loop repeats. Once either

a predefined maximum number of characters have been copied from the string or a

non-ASCII character is reached then the loop completes and all processing for the

current instruction is finished other than logging the results out to the EtherAnnotate

instruction trace file.

3http://bastard.sourceforge.net/libdisasm.html
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ALGORITHM 1 Register and C String Array Logging

var: string[MAX SIZE] {Limited to 32 bytes in prototype}
var: ∀i, regi ∈ Σ
var: Λ = all printable ASCII characters
for instruction Im in Pm do

for operand om in Im do
if om ∈ Σ then

val = xen state.register values[om] {Store value of all registers used in
operands}
if val 6= 0 then

ptr val = domain read current(val) {If value is not null, assume it’s a
pointer and load memory at value}
j = 1
while ptr val[j] ∈ Λ and j < MAX SIZE do

string[j] = ptr val[j] {If memory value contains ASCII characters,
store them in a buffer}
j = j + 1

end while
end if

end if
end for
print Im : (∀i, om) : (∀j, ptr valj : string[j]) {Log all register values and their
possible string references for each instruction}

end for

The worst-case runtime complexity of this algorithm is O(IRS) where I is the

total number of instructions that are traced, R is the average number of operands

containing register values per instruction, and S is the maximum string length con-

straint set by the analyst. Ether already requires O(I) time to single-step and perform

an instruction trace and EtherAnnotate adds to Ether’s instruction trace runtime by

O(RS). The x86 instruction set only contains instructions with a possible zero to three

operands, so in the worst-case scenario all instructions will contain three operands -

all of which contain register values (extremely unlikely). Therefore, the worst-case

runtime complexity that EtherAnnotate adds to the previous Ether instruction trace

operation is O(3S). Realistically, the call to domain read current() takes the most

amount of additional time since it requires a hypercall into the Xen hypervisor and

must wait for data to be returned.
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Table 3.1. Performance Analysis Between Ether Tracing and EtherAnnotate Tracing
Ether Size EA Size Ether Time EA Time

calc.exe 932 KB 2,221 KB 260.4s 253.8s
iexpress.exe 804 KB 2,003 KB 84.3s 84.9s
winmine.exe 364 KB 815 KB 64.3s 65.2s
notepad.exe 146 KB 414 KB 73.1s 76.2s
ipconfig.exe 262 KB 656 KB 111.4s 117.8s
SpyEye.exe 127,593 KB 347,358 KB 268.2 296.4

To examine the experimental performance of EtherAnnotate’s additions to the

Xen Ether code, multiple binaries were traced using each system and the amount of

time taken was recorded. Since Xen EtherAnnotate’s instruction tracer runs indepen-

dently from the virtual machine (can not induce programs to be executed inside of

the guest), the best method for recording the time taken was to start the timer with

the launch of EtherAnnotate then manually start the program to be traced in the

guest. This timing method is not particularly accurate, but should can at least give

an estimate to the amount of overhead incurred by the EtherAnnotate code additions.

Since each timing had to be completed manually, each program was just run once with

the timer for each condition - tracing with Ether and tracing with EtherAnnotate.

Additionally, the size of the trace files created by both Ether and EtherAnnotate

are compared in order to present the storage overhead of using EtherAnnotate. The

timing and storage comparisons are shown in Table 3.1. The percentage increases

incurred on the storage and time requirements for using EtherAnnotate are displayed

in Table 3.2. Finally, the percentage increases are visualized in Figure 3.4 as well as

the best linear fit equation for the data.

3.2.3. Retrieving Memory Values During Execution. For each operand

that contains a general purpose register, the EtherAnnotate code parses Xen’s internal

structure for the virtual machine under analysis and stores the current value of the

register used in the operand. If the register’s value is 0, then no further action is taken

for that specific operand (this is a simple heuristic to determine if a register has a

useful value). The algorithm next assumes that whatever value the register holds

could potentially be a pointer to a string array. A call to domain read current(val) is
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Table 3.2. Percentage Difference in Time and Speed of Ether and EtherAnnotate
EA % Additional Size EA % Additional Time

calc.exe +138.3% -2.53%
iexpress.exe +149.1% +0.71%
winmine.exe +123.9% +1.40%
notepad.exe +183.6% +4.24%
ipconfig.exe +150.4% +5.75%
SpyEye.exe +172.2% +10.51%

Average: +152.9% +3.35%

made which is an internal Xen function that maps a guest domain’s virtual memory

address into the host machine’s physical memory address and allows EtherAnnotate

to read memory at a specific location in the guest. If register holds a pointer value

to a location in the guest’s memory which contains printable ASCII characters, then

the string array is copied out of memory into a buffer until either a non-printable

ASCII character is reached or 32 bytes have been copied (the static size limit was

an implementation limitation and not a limitation of the methodology). Finally, the

instruction mnemonic, the values of registers referenced in the instruction operands,

and any possible string arrays pointed to are logged into a text file for each instruction

in the malware’s trace.

3.3. IDA PRO ANNOTATION PLUGIN

While logging all register values and potential string values of a malicious pro-

gram during its runtime may be useful for analysis, a graphical representation of

this data would provide a significantly more useful tool to the malware analyst. The

EtherAnnotate IDA Pro plug-in provides a simple method for loading a custom Ether-

Annotate instruction trace and annotating disassembled instructions with their run-

time values in a meaningful graphical representation. The IDA Pro Disassembler4 is

one of the most popular and robust software disassembler tools available to malware

analysts. In addition to providing a disassembler for many common processor archi-

tectures, the IDA Pro application has a Software Development Kit (SDK) that can

be used to build plug-ins that are able to access and manipulate many of the internal

4http://www.hex-rays.com/idapro/ (last updated December, 2009)
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and GUI aspects of IDA Pro. The SDK provided by the original developers requires

the plug-in developer to write their plug-in in the C language and recompile their

code for each revision.

3.3.1. IDA Python Development Environment. During EtherAnno-

tate’s development, the formatting and information stored in the log files from Xen

Ether changed as new design ideas emerged and thus was more pragmatic to use an

SDK better suited for rapid, agile development. Fortunately, a developer for the F-

Secure security company named Gergely Erdélyi published an extension of the official

IDA Pro SDK, named IDAPython5, which uses the Python language and provides all

5http://d-dome.net/idapython/ (last updated July, 2009)
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of the original functionality of the IDA Pro SDK in a scripting language which favors

rapid prototyping.

3.3.2. Enhancements to IDA Disassemblies. The goal of EtherAn-

notate’s IDA Pro enhancements was to provide malware analysts with strategically

targeted run-time register and memory values in a easily comprehensible graphical

addition. The first half of this research’s approach creates comment annotations for

all disassembled instructions which are listed in a corresponding Xen EtherAnnotate

trace log. For each instruction listed in the log file from the Xen-side, the IDA Pro

plug-in uses regular expression pattern matching to store the instruction mnemonic

string, the address in code memory of the instruction, and any annotations for that

instruction that were recorded by EtherAnnotate. Then, for each annotation found,

a comment is added or amended to the address location in IDA Pro with the contents

of the annotation. An example of the annotations taken from a sample malware’s

decryption routine is presented in Figure 3.5. In this figure, only the potential string

array values are displayed and from these it appears that the code is incrementally

decoding various strings each time the section is called. The lines of instructions that

are highlighted in green are instructions that were executed during the EtherAnno-

tate trace, the instructions with a white background were not executed during the

trace.

The second half of the EtherAnnotate IDA Pro plug-in consists of a simple

method for conveying code coverage in IDA’s graph layout mode. For each instruction

that the malware executed during analysis under Xen EtherAnnotate, the address of

that instruction is located in IDA Pro’s disassembly and the background of that line

is colored such that a quick analysis of the code will make the code flow path obvious.

Finally, Algorithm 2 provides an overview of the IDA Pro plug-in’s actions taken to

annotate all instructions and render colorized code coverage.

The runtime complexity of the annotation algorithm is only O(IA) where I

is the total number of instructions in the trace file and A is the average number

of annotations per instruction file. Each instruction can have a maximum of three

operands (see Section 3.2.2), and in the worst-case each of these operands will also

contain a register which points to a string value - giving a maximum of 6 annotations
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Figure 3.5. Example of Annotated Instructions during a Decryption Routine

per line (3 register values, and 3 string values). Therefore, the worst-case runtime of

the annotation algorithm is linear in O(6I).

3.4. IMPROVEMENTS MADE DURING CASE STUDIES

At the start of the second case study of this thesis (Section 5), the author’s goal

was to find a popular malicious binary that detects and evades common dynamic

analysis tools. As it turned out, one of the core challenges in front of this goal

was the lack of speed that EtherAnnotate that truly manifested during analysis of

complex malware that requires many instructions to execute. This issue had been

known on the Xen-side since early development and was caused by an unknown bug

with the interaction between EtherAnnotate and Xen. Once the speed bug was fixed

as described in Section 3.4.1, it was then apparent that the IDA Pro EtherAnnotate
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ALGORITHM 2 Annotation and Code Coverage Visualization

trace file = LOAD(malware.trace)
for Line L in trace file do

instruction string = regular expression match
instruction address = regular expression match
annotations = regular expression match
SetColor(instruction address, GREEN)
for annotationi in annotations do

MakeComm(instruction address, annotationi)
end for

end for

plug-in was also too slow for effective malware analysis - the IDA Pro speed increases

are described in Section 3.4.2.

3.4.1. Xen EtherAnnotate Speed Increases. From almost the begin-

ning of development EtherAnnotate’s development the tool would analyze the same

instructions many times in a row instead of just once each like they were actually

executed. The trace file would contain each instruction repeated a variable number

of times, but almost always more than once, but the execution of the program in

the virtual machine would be consistent with execution while not tracing (instruc-

tions were only executed once in the virtual machine). Since EtherAnnotate would

cause Xen to trap each instruction multiple times, the execution of EtherAnnotate’s

instruction tracing function was many orders of magnitude slower than Ether’s orig-

inal instruction tracer. The reason of this issue was never discovered until when the

author was analyzing malware during the second case study.

Prior to the second case study, the slowness issue was assumed to be caused by

the addition of the domain read current() function to Ether’s original instruction

tracer. This was the only function used in EtherAnnotate that called into the inter-

nals of Xen and allows EtherAnnotate to retrieve the memory value at the address

contained in a register while the virtual machine is paused for each instruction. Since

smaller binary files were used during development and testing, a simple workaround

was designed which checked if the processor’s instruction pointer (EIP) had changed

since the last time Ether received an instruction trace event from Xen. If it was found

that the value of EIP had not changed from the previous instruction trace event,
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Ether would then return control to Xen and not execute EtherAnnotate’s code. This

workaround eliminated multiple instructions being recorded into the EtherAnnotate

trace files but did not eliminate the extreme speed decrease.

During the second case study, the culprit of this issue was discovered to be

the method that domain read current() uses to read memory from a Xen virtual

machine. The domain read current() function is located in the Ether userland

source file syscalls.c which simply redirects to another userland function call,

ether readguest(). The function domain read current() is located in the user-

land source file ether.c which sends a domctl message containing the address of

memory to retrieve, a buffer to store the value in, and the command XEN DOMCTL

ETHER READ GUEST. A domctl message is the system that Xen uses to allow userland

applications in Dom0 make command requests to the Xen hypervisor (a hypercall).

All of the Xen Ether domctl command handlers are located in the Xen hypervi-

sor source file /xen/common/domctl.c in the function do domctl(u domctl). This

function takes a domctl command and determines what actions should be taken and

what values returned to the caller based on a switch table of the domctl command

(XEN DOMCTL ETHER READ GUEST in this example). The key element of this function

that caused Xen to trap on the same instruction multiple times is that before the

switch table there is a call to domain pause(d) which pauses the current domain.

This call to pause the current domain is understandable since all of the original Xen

domctl commands would be used while the virtual machine is running (e.g., to check

the status of the virtual CPU). However, at this point in EtherAnnotate’s code the

virtual machine has already been paused since it is being single stepped through the

malicious binary’s execution. A second call to domain pause(d) while the virtual

machine is already paused has undefined behaviour and in this case appears to cause

the virtual machine to not step to its next instruction for a significant amount of

time.

In order to alleviate the problem found above, the /xen/common/domctl.c Xen

hypervisor function was patched so that the virtual machine will not be paused during

XEN DOMCTL ETHER READ GUEST domctl commands. An example of the runtime speed

up that this patch created is the SpyEye trojan used for the second case study. With

the original Xen EtherAnnotate code, this instruction trace would take three to four
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Figure 3.6. Area of Xen Ether Source Code Changed for Pausing

Figure 3.7. Area of Xen Ether Source Code Changed for Unpausing

hours until execution finished. After the patch, the trace would only require around

ten minutes until the SpyEye binary had finished execution. Figure 3.6 shows the

modifications made to create a conditional pause and Figure 3.7 shows the same

modification made for a conditional unpause.

3.4.2. IDA Pro EtherAnnotate Porting to C++. The original IDA

Pro EtherAnnotate plug-in described in Section 3.3 was developed in the IDAPython

API which is a wrapper API for the official IDA Pro C++ API. This decision made

sense during development since the trace file format was changing as the Xen-side

development progressed and Python provided native libraries for regular expressions

which were used to parse the input trace files. However, once larger traces were now

practical produce with the significantly faster Xen EtherAnnotate tool, these trace

files were too large to be processed in a timely manner with the IDAPython plug-in.
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For example, an EtherAnnotate trace of the Conficker.C worm was over 10GB and

only took a matter of minutes to generate with Xen EtherAnnotate. However, a

similar trace file from the SpyEye trojan was 700MB and did not finish after being

run for over 12 hours with the IDAPython plug-in. Clearly, processing a 10GB would

take a significantly longer (although linarly) amount of time when a 700MB trace

taking 12 hours is already too long to be practical for analysis.

The Python language is an interpreted language which is inherently slower than

compiled languages such as C or C++. Additionally, the IDAPython library is a wrap-

per around the IDA Pro C++ API which means that an API call to the IDAPython

library must be parsed by IDAPython first and then sent to the native C++ API.

Because of these two traits of IDAPython, it was decided that porting the Ether-

Annotate plug-in to the native C++ API would be the best tactic for increasing

processing speeds. A direct port of Algorithm 2 was first attempted using the Boost6

regular expression library for C++ to accomodate the regular expression portions of

the original Python plug-in. As the port developed, it was discovered that including

the Boost regular expression matching calls significantly increased the runtime of the

C++ plug-in and even sometimes eclipsed the Python plug-in’s runtime. Therefore,

the Boost library regular expression calls were removed and the algorithm was opti-

mized to only use the C++ native string functions to parse each line of the trace log

file. The final C++ plug-in runtimes for parsing EtherAnnotate instruction trace files

was found to be significantly faster than the original IDAPython plug-in. The previ-

ous example of the SpyEye Trojan’s 700MB trace which did not complete execution

after 12 hours now finishes in under 10 minutes.

6http://www.boost.org/ (last updated February, 2010)
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4. CASE STUDY OF MEGAD BOTNET DROPPER

This section presents a case study performed to analyze a malicious botnet

binary file with the new EtherAnnotate tool developed in this thesis. Section 4.1

gives a detailed analysis of the malware following the same steps as during the actual

case study. Section 4.2 reports on the findings of the analysis, including the actions

that the malware takes, the goals of each section of the code, and how the annotated

instruction traces and code coverage indicators helped analysis.

4.1. MALWARE ANALYSIS USING ANNOTATED TRACING

The analysis performed in this section is analogous to what a computer security

lab would complete when analyzing newly seen malware. A sample malware binary

labeled as the MegaD botnet7 was downloaded from the Offensive Computing8 repos-

itory which stores live malware that other users have found. Once the sample was

retrieved, it was loaded onto a Windows XP SP2 Xen image with the EtherAnnotate

framework installed. The sample was executed once with the annotated instruction

tracing tool recording all instructions that were executed and all register values during

the execution. Afterward, the Xen image was restored to a clean state and the mal-

ware was again loaded onto the image. The sample was executed a second time while

the Ether automatic unpacking tool monitored and stored any layers of unpacking

that appeared.

After running the MegaD sample through the annotated instruction trace tool

and the Ether unpacking tool, an instruction trace file and a single unpacked layer

binary were now available to help static analysis. The unpacked binary can be loaded

into the IDA Pro disassembler and the IDA Python EtherAnnotate plug-in will an-

notate all instructions using the trace file previously generated as shown earlier in

Figure 3.5.

4.1.1. Part I - Loading Functions. After loading the annotated binary

into IDA, it appears that the first part of the code is a large loop from visual inspec-

tion of the code coverage in Figure 4.1. Further inspection of the actual instruction

7MD5: 5AFEB6643C8E1A83A3B32908F3921829
8http://offensivecomputing.net/ (accessed March, 2010)
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trace confirms that the first 99.9% of the instructions executed are related to this

loop (most likely a code decryption routine which is decrypting code for the final

0.1% of instructions executed). It was discovered during this case study that either

IDA Python or the annotation plug-in cannot handle extremely large trace files (this

particular file contains over 2.7 million executed instructions) so the trace had to be

divided into the last 0.1% in order to properly annotate the rest of the code. The

large box at the bottom of Figure 4.1 is where the code jumps to after it has fin-

ished the main loop; Figure 4.2 presents the final lines of the loop in more detail.

Further analysis using OllyDbg helped determine that this initial decryption loop is

part of the publicly available Ultimate Packer for eXecutables (UPX) program which

compresses and obfuscates binary executables9.

So far, the code coverage and instruction trace have been used to quickly find

that the MegaD binary executes a relatively small loop a very large number of times

and finally jumps to a separate section of code once it has finished. At the current

analysis location in Figure 4.2, it appears that the code pushes seven sets of addresses

to the stack and then jumps to another location in memory (an import address of

a system call in the import table). After further analysis of this particular binary,

it turns out that this is a common method for calling a new function, possibly to

obfuscate the call, and is described in more detail in Section 4.2.2.

Since the Ether unpacking tool does a raw dump of a process from memory as it

is executing, it does not obtain a properly formatted PE executable formated binary.

One side-effect of this is that the table of imported system functions contained inside

of every PE file is not properly referenced or formatted. While IDA Pro will usually

annotate imported function names with their arguments (which helps the malware

analyst), it is necessary to manually rename imported functions to their Windows

system call names in IDA when using an Ether dump. The names associated with

function addresses can be found online10 and an example of how IDA appears before

and after are presented in Figures 4.3 and 4.4 respectively.

Once all of the initial clean-up and analysis is done in IDA Pro, the analysis

process can start to look at the decrypted functions that are now run by the malware

9http://upx.sourceforge.net/ (last updated September, 2009)
10http://www.newsvoter.com/Binary/dll/index.html (accessed March, 2010)
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Figure 4.1. The initial decryption loop of MegaD

Figure 4.2. Final lines of decryption routine and jump to malicious code
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Figure 4.3. Example of the Unpacked Import Table

Figure 4.4. Jump Sequence after Imports have been Fixed
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and see if the annotations from EtherAnnotate assist in the investigation. The first

action that the MegaD binary takes after decryption is to call the Windows system

function GetVersionEx which returns operating system version information into an

OSVERSIONINFO struct 11. This is a fairly common method that malware uses

to determine what version of the Windows OS it is running on (9x, XP, or Vista/7

mostly) and is needed in order to properly load some functions and DLLs later. The

next section of code is displayed in Figure 4.5 and uses various MMX registers and

MMX-based instructions to decrypt and store the string “kernel32.dll” into the EDX

register and push it onto the stack. First, the MMX instruction set is an extension to

the x86 instruction set and provides registers and instructions designed to efficiently

handle certain floating point operations [26]. The code here appears to be converting

integer values from the standard registers into floating point values, manipulating

them, and then converting back to integer values in the standard registers. Second,

the annotations provided in this code section make it much more obvious that the

goal of this sequence of instructions is to stealthily load a known DLL’s filename out

of memory. A non-malicious program would have typically done a simple direct load

of a character string’s address which would have been easily traceable in a debugger

(which is not what this malware author wanted). Finally, like the jump sequence

mentioned above, this pattern of loading a DLL filename string out of memory using

floating point manipulation will occur throughout the rest of this part of the malware.

After the first code section, further analysis of the next few sections shows

that the code follows a pattern of loading function name strings and calling GetPro-

cAddress12. GetProcAddress is another Windows system function commonly seen in

malware along with LoadLibrary13; it retrieves the address of an exported function

from a DLL and returns the address. Figure 4.6 shows a zoomed out graph view of

the rest of this part of code - each green code block contains MMX-based code to

load a function name string, call GetProcAddress, and continue to the next block to

the right. Again, the annotations in each code block provide the exact function name

being loaded that would otherwise be obfuscated by the floating point operations.

11http://msdn.microsoft.com/en-us/library/ms724451(VS.85).aspx (accessed Mar., 2010)
12http://msdn.microsoft.com/en-us/library/ms683212(VS.85).aspx (accessed Mar., 2010)
13http://msdn.microsoft.com/en-us/library/ms684175(VS.85).aspx (accessed Mar., 2010)



42

Figure 4.5. Using MMX Registers and Instructions to Load Strings

After all of the needed functions have been loaded with the above technique,

the malware finally jumps to a new section, performs a few checks, and finally pushes

ResumeThread onto the stack to be called on return and then returns. It appears

that the code has potentially been injected into a system application, paused the

system application’s actual code flow, loaded its own functionality into the system

application, and resume execution of the host application. This is a common technique

of malware and is similar to parasitic relationships among organic creatures where

the malicious code hides in the host application and subtly manipulates its actions.

4.1.2. Part II - Decryption and File Dropping. The final section of the

MegaD malware decrypts a section of memory and drops the decrypted data into a

.bat file for execution. The first goal of this section is to retrieve the current path
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Figure 4.6. Load all needed DLL exported functions.

Figure 4.7. Portion of code generating the BAT filename from the current process’s
filename

of the running application, which the malware achieves by calling the GetSystemDi-

rectoryA function (again, this is only known due to the annotation of the string as

it is stored in a register). Next, the code jumps around without calling too many

functions but appears to be allocating memory on the heap using the VirtualAlloc

Windows system call - this will be useful when combined with the actions found

further in the code. Eventually, both the filename and path of the current process

is determined and put into the canonical Windows path format (no slashes, colons,

or other symbols ommitted). The annotations are particularly useful in the function

shown in Figure 4.7 where it appears that the filename of the original program is used

to generate the filename of the .bat file that will be dropped.
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Figure 4.8. The arguments being passed to CreateFileA. Arithmetic operations on
register values is currently not supported.

The final section of this malware consists of a long sequence of instructions,

starting with a CreateFile function call followed by many WriteFile calls and ending

with a CloseHandle call. The CreateFile function call in Figure 4.8 demonstrates how

the current implementation of EtherAnnotate lacks the ability to parse certain register

values. The final PUSH instruction uses arithmetic operations on a register value

before being referenced; the annotation code cannot currently parse this operation

and therefore there is no annotation for this line. It would have been quite useful

to know the filename being written to, along with other variables throughout the

code, but it can be deduced from the previous sections that it will be a .bat filename

generated in the previous section. The WriteFile calls write multiple data buffers

into the file, followed by DOS batch commands such as “goto”, “if exists”, and “del”.

Without further analysis outside of the IDA Pro disassembly, the author was not able

to determine exactly what this batch file would perform on execution. After the file

handle has been closed, the malware calls ExitProcess and the instruction trace ends.

4.2. REVIEW OF FINDINGS

From the analysis in the previous section, it was determined that this malicious

binary’s goal is to inject itself into another executing process, inconspicuously load

required DLLs and functions, create a new file based on some sort of hash of the

original filename, and write decrypted binary data into this batch file. Much of this

investigation’s results come from standard reverse engineering analysis techniques,
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but the inclusion of runtime register values in the annotations made some of the

more complicated analysis much easier.

4.2.1. Benefits of Annotation and Code Coverage. The benefits of

adding code coverage to the EtherAnnotate IDA Pro plugin are the most immediately

realized, especially in this example. At the beginning of the case study in Section 4.1.1,

it was found that the malware checks which version of Windows it is running on and

diverts into one of three code paths from there on out. As it turns out, it can

be determined by visual analysis of which code sections have been colored green

that the vast majority of instructions in this binary were not executed during the

EtherAnnotate trace. Therefore, much of the code disassembled by IDA Pro can be

ignored during a quick analysis since it is visually indicated that the program never

executed those instructions.

The advantages of having register-value annotations in IDA Pro were touched on

during the previous section’s analysis. In this example with MegaD, the best example

was how the annotation captured the function and DLL name strings that were being

loaded through obfuscated means. Without the annotation, these values would have

been extremely hard to determine since they were not stored in plaintext in the binary.

An alternative method to figure out the values would be to run dynamic analysis tools

on the binary (such as ProcMon or Process Explorer) which can determine what

exported DLL functions a program loads during runtime. However, these dynamic

analysis tools only help determine values that are used during a system call while the

program is executing, whereas the EtherAnnotate plug-in captures all string values of

registers during any instruction. While testing EtherAnnotate with other malicious

binaries, decryption of botnet messages and connection commands have been noticed

in the annotations which could aid reverse engineering the protocol of new botnets.

4.2.2. The Mysterious Jump Signature. Before touching on the limits

of the current EtherAnnotate tool, a short analysis of the jump signature first seen

in Figure 4.2 may provide more insight on how the malware obfuscates its code.

Figure 4.9 provides an example of what a standard call and return instruction se-

quence typically look like in C-compiled programs. Typically, function arguments are

pushed onto the stack prior to a function call; when the instruction pointer jumps to

the function code, it accesses these values on the stack as its arguments. Likewise, a
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Figure 4.9. Example of a call instruction and return instruction in calc.exe

function typically terminates and returns code flow back to its caller by executing a

retn instruction. The processor determines where to set the instruction pointer after

the retn statement by checking the top value on the stack, or the address in ESP [33].

However, in the MegaD code, almost all functional blocks of instructions have the

jump sequence in Figure 4.2 where a number of pushes are made followed by a single

jump instruction.

It turns out that this obfuscation technique first jumps to the final location

specified in the actual jmp instruction and then uses the mechanisms of the retn

instruction to sequentially call all of the other values pushed onto the stack. When

each call to each pushed address reaches its final instruction and is ready to return, the

return value on the stack is always the previously pushed address in the original code

section. For example, in Figure 4.2 the sequence of calls made is GetCurrentProcess

(initial jmp), GetTickCount, 0x40C2B4 (jumps to GetCurrentThread), GetLastError,

GetCommandLineA, and finally an address labeled “start” during prior analysis.

Since the results of each call are not pushed to the stack before calling the next
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function, it appears that this jump signature is purely an obfuscation and that the

first legitimate call is the local address towards the beginning of the signature.

4.2.3. Limitations of EtherAnnotate Analysis. Although the Ether-

Annotate provides valuable, new information about what string values registers hold

during runtime, there are some situations that the plugin currently does not handle.

The situations where EtherAnnotate currently cannot resolve the data stored in a

memory location can be separated into two instruction operand categories: complex

register referencing and direct memory access. Complex register referencing encom-

passes all instructions with operands where the registers are not directly referenced

(e.g., MOV [EAX+EBP], 0x05 would be a complex register reference). This analysis

deficit is purely implementation-specific and can be resolved by adding extra function-

ality to the Xen-side of the EtherAnnotate plug-in that will recognize more libdisasm

disassembly operands. Similarly, direct memory access encompasses all instructions

with operands that refer to memory addresses instead of processor registers (e.g., PUSH

DS:[0x432C03]). These instructions may or may not have additional operands that

are registers, but they all directly access a memory location without going through

a register. Like the complex register referencing, additional functionality would need

to be added to handle the libdisasm parsing for direct memory access. Additionally,

since the current plug-in only pulls register data from Xen, more functionality would

have to be added to map the Xen virtual machine’s virtual memory into the actual

host memory. This would allow the EtherAnnotate plug-in to directly access what

value is stored at that address.
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5. CASE STUDY OF SPYEYE CYBERCRIME TROJAN

This section presents a second case study, focusing on how analysis using Ether-

Annotate compares to current dynamic and static analysis tools. The target of this

case study is a binary created by the cybercrime software toolkit (crimeware) called

SpyEye. The SpyEye toolkit is sold for $500 on Russian underground forums and

allows an attacker to build a custom Trojan bot that can capture a wide array of

personal information once installed on a victim’s computer and send the information

back to a central server [2]. Section 5.1 describes the process used to decide to evaluate

EtherAnnotate on the SpyEye Trojan and why the other candidate malware were not

able to be analyzed. Section 5.2 summarizes the previous reverse engineering work

done on SpyEye by security labs and researchers and Section 5.3 presents the new

analysis using EtherAnnotate. Finally, Section 5.4 gives a study of EtherAnnotate’s

benefits compared to the other commonly used malware analysis tools.

5.1. FINDING A MALICIOUS BINARY FOR COMPARATIVE

ANALYSIS

The goal of this case study was to show the benefits and differences of the

EtherAnnotate analysis tool compared to other commonly used static and dynamic

analysis tools. The majority of reverse engineering information on malicious software

is located on security labs’ websites and blogs as well as on a few various Internet

forums focused on malware analysis and reverse engineering. One especially useful

site for finding malware to study is an online malicious binary repository hosted

on Offensive Computing14 as well as a forum for discussing malware and requesting

samples. On this site, a security researcher can search by a file’s hash, filename, or

anti-virus signature name to find over a million different malicious binaries stored on

their servers. However, finding a malicious file that executes easily (e.g., does not need

a server to be up, does not inject into other processes, etc...) and behaves in ways

to hinder analysis is not a simple challenge. The search for a binary for the second

14http://offensivecomputing.net/
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case study was narrowed down to a botnet by the name Conficker and a crimeware

Trojan named SpyEye, which their variants are described as:

• Conficker.A: The first version of the Conficker worm, runs as an EXE file but

did not perform noticeable malicious activity.

• Conficker.C: A later version of Conficker that uses P2P communication, does

not allow dynamic analysis tools to run and is a DLL that needs to be started

as a service.

• SpyEye: - A new crimeware Trojan EXE that spawns a remote thread in

explorer.exe and then communicates back to a command & control server.

The Conficker.A worm, released in early 2009, was the first that the author

looked at as a candidate because of the large amount of previous research done on

Conficker and its variants [34]. However, after running the sample15 in both a VMware

sandbox and inside of Xen EtherAnnotate, neither environment showed evidence that

the worm was behaving maliciously. This was deduced by looking at Wireshark

network traces, Process Monitor output, RegShot output, and the EtherAnnotate

trace file. Additionally, even after the Conficker.A variant had been unpacked from

its original UPX packing, the EtherAnnotate trace file was over 10GB which was

deemed to be too large for practical analysis in the IDA Pro plug-in (this was before

the plug-in was ported to C++ as described in Section 3.4.2).

The next candidate malware that was examined was the Conficker.C vari-

ant, also released in 2009, since there was a relatively large amount of previous

research on its behavior as well [35]. The Conficker.C variant was delivered as a

DLL library16 instead of an executable file and was designed to be dropped into

the C:\Windows\System32 directory and loaded as a service. The Ether instruc-

tion tracer was not designed specifically for tracing DLL files since their execution

trace comes from another program loading the DLL into memory and calling its

functions, but attempts were made by the author to allow for DLL tracing. The

Conficker.C variant was able to be loaded in the Xen environment by moving the

15MD5: d60960adb601613ec330eb36690ea59e
16MD5: 5e279ef7fcb58f841199e0ff55cdea8b
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DLL file into the System32 directory, changing a non-essential service’s (Network

Location Awareness) configuration in the Windows Registry to point to the new

Conficker DLL, and rebooting the virtual machine. Upon restart, the worm would

attempt to contact command & control servers as seen in Wireshark network trace

logs and would cause dynamic analysis programs such as Process Monitor and Process

Explorer to automatically close upon execution. However, the Conficker.C’s execu-

tion was unable to be traced in this method since Windows uses the svchost.exe

executable to load multiple Windows services DLLs - tracing svchost.exe would

produce a trace containing interleaved execution of all services running under that

process. Two workarounds were designed that allowed a single service to be run-

ning under an instance of the svchost.exe binary; however, the Conficker.C DLL

would load under neither of these workarounds. The first workaround consists of

changing the value in the Windows registry for the non-essential service such that

it loads the DLL with a renamed copy of svchost.exe instead of the original.

By changing the value of \HKLM\SYSTEM\CurrentControlSet\Services\<Service
Name>\ImagePath to point to the renamed copy of svchost.exe instead of the orig-

inal path. This modification will cause the service to load the Conficker.C DLL at

startup and will be loaded by its own, personal instance of svchost.exe. The second

workaround consists of creating a new service group that only contains the Con-

ficker.C DLL service which causes one of the instances of svchost.exe to be running

only the Conficker.C code [36]. Both of these workaround require the TimeoutPeriod

value to be added to the registry as described in [37] so that the service does not

timeout while the process is being single-stepped.

These changes did allow for a benign services to be loaded by themselves and

traced, but the Conficker.C refused to be loaded when any of these changes were

made to the system. Further research would need to be done in order to determine

the best methods for tracing DLL services in Windows using the Xen Ether tracer

without modifying the underlying guest system.

The final malware candidate was the SpyEye Trojan which is a custom-built

binary file that can be generated by purchasing the SpyEye building software from

Russian sources. This file is an EXE executable and was able to run and cause

malicious behavior while under analysis although it only attempted to contact the
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Figure 5.1. A screenshot of the SpyEye Trojan builder [2]

command & control servers, which have been shut down, and then went dormant.

Additionally, although this Trojan has only been active since the beginning of 2010

there is a relatively large number of reverse engineering reports that focus mostly on

the builder but also on some of its communication [2][38][39]. Figure 5.1 provides a

sample screenshot of the SpyEye builder that an attacker would use to generate the

SpyEye Trojan that will be examined in this section. This thesis presents a new,

in-depth look into the actions of the SpyEye Trojan as it loads itself into memory

and checks for previous infections.

5.2. PREVIOUS ANALYSIS OF SPYEYE TROJAN

5.2.1. Trojan Installation. The Trojan is typically installed in the wild

using the TrojanDropper:Win32/Spyeye malicious binary that a user has been con-

vinced to execute on their system. This dropper binary connects to a server and

downloads the Trojan:Win32/Spyeye binary that will be analyzed in this section [40].

According to the Microsoft Malware Protection Center’s report on SpyEye, the mal-

ware installs itself in the %SystemDrive%\cleansweep.exe\ cleansweep.exe path
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and creates a mutex named “ CLEANSWEEP ” to guarantee that only one in-

stance of the Trojan is running at a time. Additionally, the Trojan creates a value in

the Windows registry that instructs the operating system to load cleansweep.exe on

system start-up and also injects itself into currently running processes.

5.2.2. Trojan Payload. Once the SpyEye malware has installed itself on the

system and injected itself into one of the processes currently running, it starts to take

actions to hide itself and steal sensitive user data. The Trojan manages to hide the

actual process by injecting itself into another process and executing there; the Trojan

hides its files and registry values by using rootkit techniques to hook low-level APIs

and modify the query results for files and registry values. The SpyEye binary uses

similar techniques to hook various system functions that handle HTTP traffic and

records login information such as form data and keystrokes. Finally, once the Trojan

has captured data, it will send the data to various command & control servers (most

likely the servers hosted by whoever built the Trojan using the SpyEye toolkit).

5.3. ETHERANNOTATE ANALYSIS OF SPYEYE TROJAN

The SpyEye Trojan binary that was analyzed using the EtherAnnotate toolset

was downloaded from the Offensive Computing repository17 and was packed with

the UPX packing software. Once this case study began, the author realized that

the current implementation of EtherAnnotate was too slow to finish in a practical

amount of time and key changes were made to both the Xen and IDA Pro aspects

of the toolset and are described in Section 3.4. The malware was initially unpacked

using QUnpack in order to reduce the size of the EtherAnnotate trace file and speed

up the IDA Pro annotations. However, after running the malware and looking at the

annotated disassembly in IDA Pro it became apparent that the malware is able to

detect that it had been modified and unpacked. Figure 5.2 shows the area in code

where this check occurs and it is apparent from the code coverage visualization that

instead of calling CreateRemoteThread() the code instead jumps past the call. The

call to CheckFileModifications shown in Figure 5.2 was renamed by the author during

analysis to help identify key areas of the disassembly and the internals of the function

consist of multiple calls to VirtualQueryEx(). VirtualQueryEx() is a Windows API

17MD5: 9d2a48be1a553984a4fda1a88ed4f8ee
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Figure 5.2. A screenshot of the SpyEye check for file modifications

function that retrieves information about pages within the virtual address space of the

specified process - in this case, it is examining its own pages for modifications. Upon

noticing this anti-analysis technique, the SpyEye Trojan was run through the Xen

EtherAnnotate tool without unpacking it first. The trace was loaded into IDA Pro

again and this time the code coverage visualization showed that the binary did not

jump around the CreateRemoteThread() call and instead made the call using values

from explorer.exe. Additionally, HTTP queries were noticed in the Wireshark logs to

the servers textttvinodelam.nett.cn and fw.ename.cn which match the description of

previous research [39].
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5.3.1. Initialization and Anti-Tamper Checks. Once a trace was cre-

ated that followed the SpyEye malware through its malicious behavior, the trace was

loaded into IDA Pro using the EtherAnnotate C++ plug-in and its behavior was

analyzed. The malware first checks if there is already a system mutex with the name

“ CLEANSWEEP ”, as described in previous research, and jumps around the ma-

licious code if there is - system mutexes are commonly used by malware to leave their

fingerprint on infected machines. The core infection routine happens at 0x403754

and consists of modification of the file as described above, checks to make sure the

code is going to be injected into certain system files, and the CreateRemoteThread()

call that performs the injection. The code first grabs the name of the process in which

the code is executing and then goes through a series of calls to the string comparison

function lstrcmpiA() to check that the code is not going to be injected into certain

system files. Figure 5.3 shows a screenshot from IDA Pro with the EtherAnnotate

annotations during part of the system file check sequence.

5.3.2. Injection into Explorer.exe. The next key aspect of the ini-

tialization sequence is to find the base memory address of the process that SpyEye

wants to inject itself into. The code for this begins at 0x403469 and consists of

a call to VirtualQueryEx to retrieve the base address and then a loop which calls

WriteProcessMemory that copies the SpyEye payload into explorer.exe’s memory. If

the analyst takes notice to the values returned by VirtualQueryEx and the arguments

passed into WriteProcessMemory in Figure 5.4, it becomes apparent that the base

address for explorer.exe is 0x0e600000. This is important to notice since it confirms

that WriteProcessMemory is writing data from the SpyEye binary’s own memory into

a location in explorer.exe’s memory, but also confirms later that the call to CreateR-

emoteThread passes in a function from explorer.exe as the lpStartAddress argument.

Figure 5.5 shows the call to CreateRemoteThread with the EtherAnnotate reg-

ister value annotations as well as the function argument names added by the author.

From the previous realization that 0x0e600000 is the base address for explorer.exe and

that SpyEye wrote portions of its code to this process, it can be determined that the

lpStartAddress argument of 0x0ea6148a is the location of that copied code. Brows-

ing in IDA Pro to 0x0040148a in the SpyEye disassembly will reveal the instructions

that were copied into explorer.exe and executed under that process. However, since
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Figure 5.3. A screenshot of the SpyEye injection checks

the execution was carried out under the explorer.exe process and not the SpyEye.exe

process, EtherAnnotate is currently unable to trace those instructions since it does

process tracing by a filename and CR3 filter.

5.4. COMPARISON OF ANALYSIS TOOLS

The SpyEye Trojan was additionally analyzed using a variety of common analy-

sis tools and techniques to evaluate how EtherAnnotate compares in versatility. The

malware was loaded onto a Windows XP SP2 virtual machine along with an Ubuntu

Linux virtual machine in a VMware team. Running inside of a virtual machine was

required for these experiments in order to make containment of malicious behavior

easier and more reliable than running on bare-metal. The Linux virtual machine was

running Wireshark to monitor network traffic and was configured to act as the router
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Figure 5.4. A screenshot of SpyEye injecting its code into explorer.exe

for the Windows virtual machine. Additionally, the Linux guest was configured to

respond to all DNS requests with its own IP address instead of querying an actual

DNS server for the network. This DNS spoofing allows for network aliveness checks

in the Windows guest to at least succeed, making it appear that the host the guest

program is looking for is alive but not doing anything.

The first analysis experiment was to run the SpyEye Trojan on the Windows

guest with no analysis programs running. This was done to achieve a control group

(at least for network behavior) in case other analysis tools caused the SpyEye malware

to change its behavior. The Wireshark network trace was similar to that captured

during EtherAnnotate analysis; five identical POST requests and one GET request

are made to the vinodelam.nett.cn domain. The POST requests contain a sequence of

formatted messages containing bot identifiers, time zone information about the guest,

language information about the guest, and the Windows OS version of the guest. The

GET request appears to be a registration scheme for the command & control server;

it sends the ID of the guest, version information about programs on the guest, and
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Figure 5.5. A screenshot of SpyEye creating a new thread inside explorer.exe

a CRC identifier for the bot. These protocol exchanges were previously published in

the Microsoft Malware Protection Center report [40].

The second experiment was to run the SpyEye Trojan inside of the stock Olly-

Dbg debugger to determine if any anti-debugging mechanisms are present in SpyEye.

The Linux guest was running Wireshark as before and recorded another similar net-

work trace. From this experiment, it was deduced that the SpyEye binary does not

contain any obvious debugger detection mechanisms; although, the program was exe-

cuted without any breakpoints or single-stepping which can cause certain detections

to occur. For the third experiment, the SpyEye binary was loaded on the Windows

guest again and this time monitored using Process Monitor and Regshot, providing

information on event logging and registry changes respectively. The Process Mon-

itor results showed that SpyEye wrote two files, C:\cleansweep.exe\config.bin
and C:\cleansweep.exe\cleansweep.exe, and then suddenly explorer.exe process

executes the cleansweep.exe file. From the previous analysis with EtherAnnotate,

this event becomes clear that explorer.exe is performing malicious activity because

SpyEye did a code injection attack on the process. The files written to disk were

referenced in previously published analysis [40]. Regshot did not provide any registry

changes other than those typical of launching a program in Windows XP. Finally, the
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Figure 5.6. Snapshot of Wireshark Network Trace with Control Experiment

SpyEye binary was run through PEiD in order to see what signature identification

could be produced for the packer and PEiD reported that UPX 3.0 had been used.

Although there appear to be no anti-analysis techniques employed in the SpyEye

binary, the information that EtherAnnotate provides goes beyond the basic analy-

sis possible with previous tools. The EtherAnnotate trace could not follow beyond

the code injection into explorer.exe, but the annotations from before the injection

provided detailed information on how the malware behaved. The check for file con-

sistency was not apparent in the information provided by the previous tools and was

useful to determine the conditions in which SpyEye executes. Additionally, the pro-

cess for determining which process to inject, finding the base memory address of that

process, and injecting the code into memory allocated inside of the guest process are

complex procedures that EtherAnnotate described and could potentially be used to

identify future malware.
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6. CONCLUSIONS

6.1. PRESENTED SOLUTION TO MALWARE ANALYSIS PROBLEM

This thesis has described EtherAnnotate, a research tool for malicious software

security analysts which presents a merger of information gathered in dynamic analysis

and visualized in a static analysis disassembly view. By applying the EtherAnnotate

tool to a malicious binary program, a researcher is able to statically view what values

variables and memory addresses the program held during its actual runtime. Further

more, since EtherAnnotate’s tracing module is built upon the Xen Ether framework,

it is transparent to the execution of the malware for all anti-debugging attacks and

most anti-VM attacks. The insight that will be obtained by using this novel toolset

will hopefully allow future malware analysts to better detect and defend against the

increasingly advanced malicious attacks on computer systems.

6.2. STRENGTHS OF THE CURRENT SYSTEM

EtherAnnotate is unique in that it allows dynamic malware analysis that is com-

pletely undetectable by the common anti-debugging malware obfuscations. Because

the Ether framework has a higher privilege than both the guest kernel and guest

applications, EtherAnnotate can monitor any actions of malicious binaries without

the need to modify the state of the guest operating system. The only possible known

attacks against Ether and thus EtherAnnotate’s transparency are by detecting vir-

tualized devices and detecting timing inconsistencies. The properties and behavior

of the host system’s devices can be passed through to the guest or potentially emu-

lated by the hypervisor with additional implementation work. Local timing attacks

for virtualization detection can be subverted by utilizing the Intel VT-x TSC offset

which causes the guest’s virtual processor to return purposefully skewed clock time

in order to hide the additional time taken during VM-exits. Xen currently utilizes

the VT-x TSC offset feature, but checking the time using remote data is impossible

to easily detect or defend against. Since EtherAnnotate is transparent to the guest
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operating system in these ways, its presence as a tool in the malware analysts reper-

toire will force malware authors to fall back to anti-VM detection techniques that

rely on remote timing analysis in order to evade detection. However, using anti-VM

techniques is becoming less and less appealing to malware authors as more companies

and individuals start using virtual machines. A larger virtualization user-base elim-

inates a substantial number of possible adversarial targets since VM-detection only

detects that a VMM is present, not that analysis is occurring. This compromise and

restriction of available obfuscation actions of malicious binaries is one of the more

interesting and open areas of research in the virtualization introspection field.

EtherAnnotate’s integration of data collected during dynamic analysis with the

static disassembly generated by IDA Pro opens new possibilities for in-depth anal-

ysis. Previously, the most common method to visually inspect the run-time values

of a program with the disassembled instructions would be to run a trace of the pro-

gram using an application such as OllyDbg and stepping through each line of code

to see the values at each line. The tools presented in this thesis improve on previous

integration techniques in three ways: transparent tracing, visual trace annotations,

and heuristics for data recording. The transparent tracing benefits described in the

previous section provide the malware analyst with a guarantee that the malware un-

der analysis will have identical behavior inside of EtherAnnotate as it would on a

bare-metal environment (other than possible anti-VM detection). There are tools,

such as plug-ins for OllyDbg, which can guard against anti-debugging detection but

these previous tools can only defend against known techniques and are not guaranteed

to work in all cases - EtherAnnotate gives the analyst this guarantee. The closest

visual tracing tool currently available is probably IDA Pro’s recently added tracing

ability shown in Figure 6.1. The IDA Pro tracing functionality provides a record

of all instructions executed and a list of register values for all operands of these in-

structions. It does not follow register values to detect possible pointers to strings

and the IDA Pro debuggers do not have any defenses against anti-debugging attacks.

For example, the trace show in Figure 6.1 was from a benign program which utilized

many different anti-debugging techniques and crashed before unpacking itself by de-

tecting the breakpoints IDA Pro had set. Additionally, the IDA Pro trace appears in

a separate window from the actual disassembly and the end-user analyst must toggle
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Figure 6.1. Example Instruction Trace from IDA Pro’s Debugger

between the two windows to correlate what the register values were at each instruc-

tion - having this information on a single window using EtherAnnotate’s comments

seems much more practical. Finally, the last major strength of EtherAnnotate is the

heuristic for determining run-time string values and visualizing them in the IDA Pro

disassembly. If a botnet binary is going to decrypt and encrypt data that it receives

and sends to its Command & Control server, EtherAnnotate can capture the plain-

text strings before being encrypted. A malware researcher analyzing the code can

follow the program’s flow using the colorized code coverage and use the annotations

provided to understand the botnet’s protocol and walk through how the encryption

algorithm works.

6.3. ISSUES THAT LIMIT USEFULNESS

Although EtherAnnotate provides many new opportunities to combine runtime

variable values with a graphical disassembly for better understanding of malware,

there are many areas of the toolset that can be improved for better usability and

better analysis. The first area for improvement is the overall speed of analysis - the

bug fix described in Section 3.4.1 and the port to C++ described in Section 3.4.2

tremenduously increased performance, but more can be done. After running many
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EtherAnnotate traces on different types of files, the author noticed that although

Ether starts to single-step immediately after a program is executed, the instruction

trace does not record anything for approximately the first minute. During this time,

it appears that the Windows executable loader code is allocating memory and initial-

izing data structures for the binary that is about to execute. Further research should

be done in determining the process that Windows uses to load an executable before

the code flow is handed off to the executable’s entry point - if this loading process

is what’s taking up time before a trace, it should not be single-stepped. In addition,

although some runtime performance analysis was recorded in Section 3.2.2, it would

be interesting to record more data more accurately in order to provide benchmarks

for future research.

One of the main limitations of EtherAnnotate for analysis purposes is the lack

of support for certain classes of instructions. Currently, the only instruction classes

that are supported for analysis are instructions that directly reference register names

(e.g., MOV EAX, EBX or PUSH ECX). This is due to the prototype implementation that

EtherAnnotate originated from and currently only does simple string parsing to de-

termine what registers are present in the instruction mnemonic. It should be fairly

easy to add support for all instruction classes, such as registers with mathematical

operations (e.g., MOV [EAX+0x4], ESP), in the future by creating more robust pars-

ing algorithms for the libdisasm mnemonics provided in Xen Ether. Additionally, the

current code only searches for values for CPU registers but many instructions directly

reference memory locations. However, it turns out that this is not a true limitation

since the x86 instruction set does not allow direct manipulation of memory values.

Memory values must first be loaded into a general purpose register, manipulated us-

ing this register, and then the result is stored back into a memory address. Because of

this process, only recording the register values will in fact capture all of the pertinent

data of the operations.

The limitation that was most obvious during this thesis’s case studies was that

the instruction tracing ability only works for a single process’s execution. This is not

a problem for most applications, but malware will often inject its code into a second

process and hide its continuing execution there. The SpyEye Trojan did exactly this

and hid its truly malicious activity inside of explorer.exe. A start to finding a usable
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solution to this problem would be to monitor system calls made by the process and

record the information passed to CreateRemoteThread class (or any other calls that

start code flow in a separate process). Once a call is made that spawns a thread or

process in a separate binary file, the injected process’s name can be recorded and a

separate EtherAnnotate trace could start on this process. Additionally, a memory

dump of the injected process would need to be made in order to obtain the executable

with the injected code intact. These additions to EtherAnnotate should not prove to

be too difficult since Ether provides methods for system call tracing and its unpacking

tool makes memory dumps of processes at runtime.

6.4. FUTURE WORK

EtherAnnotate is one of the first extensions to the Xen Ether framework which

will hopefully expand to provide more analysis tools in new areas that were not

previously possible. One of the areas which has the most potential for future research

is designing smarter heuristics for data collection during the Xen EtherAnnotate

trace algorithm. Currently, the algorithm simply checks if a register’s value points

to a character string array of ASCII printable bytes up to a certain length. During

design, research was started to determine what signature the memory allocation and

memory free Windows system calls leave on the memory they affect. Identifying the

structures left in around these memory allocations could help provide a more accurate

recognition of string values. However, compilers that do not follow the Microsoft

standards for string allocation, or programs written in raw assembly, will not have

these same signatures so a generic heuristic is also required. Additionally, many

Windows API functions will accept and return Unicode strings instead of ASCII

strings. The Unicode character set is 16-bits wide compared to 8-bit ASCII and

thus contain a much larger set of possible characters. When the printable ASCII

characters are represented in Unicode, each letter’s lower 8-bits are equivalent to the

ASCII-encoded character and the upper 8-bits are 0x00. These strings will currently

not be recorded by the string parsing heuristic since it stops recording a string when

it detects a NULL byte (0x00).

Now that there is a transparent system for recording runtime values of malicious

binaries, future research into what can be correlated from this data may prove useful in
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classification. Most current malware classification systems work by building statistical

correlations of the data present inside of a malicious binary file to other previously seen

binary files. Another classification method is to attempt the same type of correlation

based on the network activity or other observable events caused by a binary. Both of

these areas have shown promise in previous research and would be cause to examine

the potential of using internal runtime data for program correlation and attribution.

For instance, a malicious botnet binary may send and receive encrypted traffic to

a centralized command & control server that would not easily correlate to other

instances on the botnet since each message appears random. However, by monitoring

the application in EtherAnnotate the data should appear as a string variable at the

point in the binary where encrypted network traffic is decrypted. This additional

information could prove useful for increasing the resilience of malware identification

and attribution.
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