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ABSTRACT 

 Consumer preference for any product or product feature can be expressed in the 

form of a utility function. Many such utility functions form a part of a preference map, 

where each of these are expressed in terms of the attributes defining the product or the 

product feature. In order to optimize the design, it is required to optimize the overall 

utility function obtained by a mathematical combination of individual utility functions 

defined in the preference map. The objective of this research is to devise and implement 

an algorithm to optimize all the individual utility functions comprised in a preference 

map for a product or product feature. Executed together, this will optimize the overall 

utility function, U(x). So, an algorithm is needed to compute the optimal values for each 

attribute forming the individual utility functions by efficiently and thoroughly testing the 

entire allowed range of values in the function domain, i.e. the global optimum. The 

challenges faced in this include the presence of a complex space created by interactions 

between the various attributes in the preference map. This makes it prohibitive to solve 

using traditional algorithms. Thus, software agents aid in the computation as two or more 

software agents can collaborate on the task of optimization, enabling every single 

software agent to cater to a single attribute. Thus, any number of software agents can be 

employed to run synchronously so that all the concerned attributes can be efficiently 

optimized. 
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1.  INTRODUCTION 

The goal of new product development is to create products that match consumer 

preferences and thus will succeed in the marketplace.  These consumer preferences for 

products can be summarized in a utility function [1].  This utility function can then be 

optimized to find a set of best possible designs for a single consumer.  Consumer 

preference is the key to finding the best possible design. Optimal consumer preference 

leads to optimal design [2]. Optimization of consumer preference required in new product 

development [2] can be achieved in two steps. The first step involves optimizing a utility 

function for each product attribute and the second step is to evaluate the main utility 

function, which mathematically combines the individual utility functions corresponding 

to every product attribute. The complexity of evaluating the main utility function is a 

direct result of factors such as the number of attributes that make up the product and the 

degree of the utility functions involved. The main utility function can be evaluated with 

considerable ease when the number of product attributes and the degree of each utility 

function are both significantly less. However, when either or both of these increase, the 

computational complexity of the tasks of optimizing individual and overall utility 

functions in the preference map increases tremendously, causing a direct impact on 

computation time and resources utilized. One technique of efficiently optimizing 

individual utility functions and evaluating the overall utility function has been previously 

proposed [2]. This paper proposes the idea of assigning multiple synchronous software 

agents to optimize all utility functions and a main software agent to evaluate the main 

utility function. A software agent would be able to optimize a utility function using an 

optimization algorithm that it implements. This overall technique of optimizing a utility 
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function and evaluating the overall utility function has been algorithmically defined in 

this thesis. 

 

1.1.  OPTIMIZATION ALGORITHMS 

 An optimization algorithm is the technique of discovering an element x from a 

range of values defined by some constraints, where x is such that when substituted into an 

objective function, it yields the maximum or minimum output. Sometimes optimization 

problems are expressed by complex algorithms. Global optimization is optimization with 

the goal to discover the best possible elements, i.e. more than one element that could 

constitute the optimal solution set. Thus, global optimization is comprised of all 

techniques that can be used to find the best elements x*, in a set X with respect to criteria 

f Є F [3]. In order to ensure that the optimum obtained is global, the range of values used 

to solve the problem must cover the entire problem space or problem domain. The range 

must also preferably contain real numbers. 

 

1.2.  APPLICATION OF OPTIMIZATION ALGORITHM IN CONSUMER 

PREFERENCE 

           

 Consumer preference is an economic term that defines an option that has the 

greatest anticipated value to a consumer amongst a number of other options [3]. Thus 

consumer preference includes the options which may be neutrally acceptable to the 

consumer but signify an optimal choice to the consumer owing to the other options which 

are less preferable. Consumer preference can be summarized and formally expressed with 

mathematical functions called utility functions [2]. Various other optimization techniques 

which could be used in this scenario such as Simulated Annealing and Genetic 
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Algorithms have been compared and contrasted before [5]. Utility functions can be 

created with various feedback mechanisms and surveys which form a part of consumer 

preference tests. Having studied consumer preference, the statistical data obtained can be 

formally expressed in the form of utility functions. Thus for every product, there can be a 

utility function pertaining to a certain product feature. Every product feature can be a 

function of a certain number of attributes. Multiple such utility functions, which signify 

consumer preference for different product features, can be mathematically combined to 

obtain the main utility function which can be said to denote the consumer preference for 

the entire product. 

 In the research presented by Orsborn et al. [2], a new approach to automatically 

generate product designs has been presented. It discusses the use of collaborative 

software agents as opposed to cooperative software agents to concurrently generate 

product designs that match consumer preference. In their research, software agents play 

the crucial roles of utility function optimizer and design generator. There are some key 

characteristics of software agents that encourage their use [2]. They are autonomous, 

adaptive, intelligent, efficient and portable. Since they are autonomous, they do not need 

human intervention. The system thus makes use of this feature of software agents to 

dynamically handle design generations, by continuously running agents and adding or 

removing them from the system as and when needed. Since this system is intended to be 

quick in its operation, a multi-agent platform employing collaborative software agents 

has been proposed in [2] to efficiently process a number of designs in the least possible 

time. With the aid of software agents, the computational complexity can be reduced 

considerably, making the process even faster. 
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1.3.  RESEARCH OBJECTIVE 

 The objective of this research is to devise an algorithm which could efficiently 

and accurately compute the global optimum for any utility function represented by a 

continuous function. The second goal is to combine the use of software agents with this 

algorithm to make the system autonomous, continuous and performance friendly. The 

most prominent aspect of the algorithm is its ability to obtain the global optimum of any 

continuous utility function, with any number of attributes. Thus irrespective of the 

number of attributes, the complexity of the utility function and the size of the problem 

domain, the algorithm can deduce the global optimum in the most efficient manner with 

the aid of agents designed for the system. 

 In this research, the swarm intelligence method of Continuous Ant Colony 

Optimization has been modified and adapted in order to obtain the best results in 

optimizing any kind of continuous function of any form, with any number of variable 

parameters. This technique has been implemented on utility functions generating color 

preferences of various users. In this thesis, the algorithm dynamic ant colony 

optimization has been obtained from CACO based algorithm proposed by L. Kuhn [6]. 

The utility functions indicating the color preferences of various users were optimized 

with the dynamic Continuous Ant Colony Optimization methodology, to explore the 

color choices efficiently and compute the most suitable color choice of every user. This 

was compared with the survey results obtained from the users to analyze the correctness 

of color preferences deduced by the algorithm.  
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1.4.  TOOLS AND SOFTWARE 

 A part of the research was to successfully simulate the algorithm on the test data 

obtained from users. The programming was done in Java. Agents were programmed to 

represent ants and various techniques were used to optimize the performance of the 

simulation. The system was designed to dynamically load the data set from spreadsheets 

containing the survey results of users. The specifications of the programming language, 

compiler and software tools used in the program have been listed below. 

 Eclipse IDE 

 Java Development Kit (JDK 5) 

 Java Runtime Environment (JRE 1.5)  

 Java Expression Parser (JEP 3.3.0) 

 JADE for Software Agents 

The specifications of hardware on which the program was run have been listed below. 

 Computer Type: PC  

 RAM: 3 GB 

 System Type: 32-bit (Windows) 

 Processor: Intel Core 2 Duo 2 GHz 

 

1.5.  OUTLINE OF THESIS 

 The next section of the thesis describes the literature review. Section 3 explains 

the algorithm in detail. Section 4 explains the implementation details of the system 

development. It also explains the design diagram in detail. In Section 5 various 

experiments and their results have been presented. It also presents a discussion of results 
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from the experiments. The conclusions from the experiments and the research are 

presented in Section 6. This section also explains some areas for future work in this 

research, with a brief explanation of how the future work can benefit the system 

developed in this research. 
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2.  BACKGROUND 

 Some preliminary background in the area of global optimization techniques found 

in the literature will be discussed in this section. A lot of work has been done in the area 

of discrete function optimization, which gives insight into the various methodologies 

used for global optimization of discrete functions. Some of the common discrete 

optimization problems are the traveling salesman problem, vehicle routing problem and 

minimum spanning tree problem. The most common discrete optimization problem is a 

linear programming problem. Various methods such as evolutionary algorithms, genetic 

algorithms and simulated annealing have been widely researched and applied to 

optimization problems. However very limited options are available for using an algorithm 

to globally optimize a non-discrete, continuous function. Amongst the algorithms that can 

be used for global optimization of continuous functions are evolutionary algorithms and 

Swarm based optimization algorithms. The evolutionary algorithms are comprised of 

methods such as the genetic algorithm which uses a structure similar to chromosomes and 

iteratively applies some operators on the structure to present a solution to a potential 

problem [4]. The swarm based optimization algorithms mimic components of nature 

which form swarms, like flock of birds and ants. Their social behavior forms an integral 

part of the algorithm. Swarm based optimization algorithms are computationally 

inexpensive and fast. They use direct search methods which depend on evaluation of 

objective function, unlike most other techniques which use derivatives. Every swarm 

based optimization algorithm employs agents which can synchronously scan the search 

space to test different positions. Ants act as the search agents in case of ant colony 

optimization. The ant colony optimization is a relatively new field of study and has not 
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been extensively used to solve conventional optimization problems. It has been found to 

be well suited for only certain categories of optimization problems, such as in the areas of 

combinatorial optimization, scheduling and networks [4]. In order to apply ant colony 

optimization to an optimization problem, the problem needs to be modeled as a directed 

graph. Ant colony optimization is characterized by the use of the collective behavior of 

ants. In this technique, the best solutions provided by ants from previous iterations are 

used to base the movement of ants in the future iterations [6]. The optimization of 

consumer preference requires an optimization algorithm that utilizes software agents 

concurrently to evaluate solutions of design problems. In this context, the ant colony 

optimization proves to be the most appropriate technique. 

 The most unique adaptation of the ant colony optimization is the ant colony 

optimization for continuous spaces [6] which uses the movement of ants in order to direct 

them in multiple directions to solve continuous functions. It is modeled on the behavior 

of real ants but the movement of ants is designed to work for continuous functions. While 

ant colony optimization is intended to simply detect an optimum path within a graph, the 

continuous ant colony optimization (CACO) repeatedly computes the optimum path 

within small regions of the search space and uses the optimum path to relocate ants in 

further search iterations. CACO has been successfully tested on a variety of functions 

involving single variables [6]. It is far more adaptable to dynamically changing design 

spaces than most other methods [7]. Also, the computational complexity of this algorithm 

is less than most other leading algorithms such as Simulated Annealing, Monte Carlo 

simulation and Genetic Algorithms [7]. Methods such as Simulated Annealing are based 

on stochastic search methods. In Simulated Annealing, randomly generated moves which 
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satisfy a global acceptance criterion are executed. This method involves complex 

function evaluations in an iterative manner causing an impact on the computational 

complexity of the algorithm. Similarly, Monte Carlo simulation is another stochastic 

search based method that randomly evaluates samples from the search space to generate 

further iterations in the algorithm. Stochastic search methods coupled with higher 

computational complexity make these methods less preferable than ant colony 

optimization.  

 Ant colony optimization has been modified in numerous ways. One such version 

is the modified ant colony optimization (MACO) [8]. It proposes the idea of using a 

solution vector for each ant, which is constantly updated by making comparisons to 

outcomes from previous iterations. MACO was designed to work on functions involving 

up to two variables. This was inadequate to consider since this research requires 

application on multiple-variable functions. 

 Apart from the optimization techniques discussed above, some background 

research on software agents will now be presented in this section. Software agents are a 

relatively new concept and not much research has been done on them. The most common 

software agent frameworks that are being used in software agent development are the 

Java-based agent framework for multi-agent systems (JAFMAS) [11], Java Agent 

Development Framework JADE [12], Java Agent Template Lite (JATLite) [13] and Gaia 

Methodology [14]. Out of these, JADE was found to have the most robust architecture. It 

has also been widely used in developing software agents. JAFMAS is a relatively new 

framework and its communication mechanism is not centralized. Gaia methodology 

presents a methodology to create frameworks for software agent development; however it 
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is not a framework in itself. The main requirement from the framework for this research 

is the ability to create multiple collaborative agents which can be remotely deployed. This 

implies that it is essential that Remote Method Invocation (RMI) be a part of the 

framework. So, JADE proved to be the most appropriate framework for this research. 
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3. ALGORITHM 

This section explains CACO and the modifications made to it in order to adapt it 

to the requirements of this research. It further expounds the steps of the algorithm, which 

highlight the ability of this technique to reach global optima. This section begins with an 

introduction to the algorithm and further defines the basic terminology used in DACO. 

 

3.1. ALGORITHM FOR OPTIMIZATION 

 The algorithm used to optimize continuous functions is based on the iterative 

steps of sending out ants in various directions of the design space and tracing a path that 

would take the ants towards the global optimum. The objective of this research is to 

utilize the algorithm to search the problem domain and return all possible global optima. 

This requires some modifications to the original continuous ant colony optimization so 

that it is possible to return all best solutions, not just a single solution, from the design 

space for an n-variable function of any degree. This modified continuous ant colony 

optimization is explained in steps in this section. 

 

3.2 COMPONENTS OF THE SYSTEM 

 Before understanding the algorithm, some background of ant colony optimization 

and design spaces is needed which is explained below.  

 The algorithm has been devised with the intention of optimizing utility functions 

which represent the consumer preferences for a product. The variables in the utility 

function signify the attributes of the product or product feature. For example, let the 

product that is being designed be a box and the system is expected to optimize its volume 

in order to optimize its design. The attributes of the box are length, breadth and height. 
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Utility functions for each attribute would be u(l), u(b) and u(h), indicating optimal 

consumer preference for length, breadth and height, respectively. The main utility 

function would be another function U = u(l)* u(b) *u(h), since the main utility function 

represents optimal volume. Thus main utility function is the product of optimal attributes 

of the box. This main utility function is a direct reflection of the preference of consumers 

for a particular design of the box.  

 In ant colony optimization, a colony of ants is prepared, where each ant is a thread 

of program holding some relevant information. In real life, ants follow the trace of other 

ants which have crossed their path. The ants trace other ants that have passed along the 

same path by sensing the presence of pheromone which is a chemical substance left 

behind by ants following a track towards the food source. In the virtual world application, 

the ants are threads of program, the food source is the global optimum and the pheromone 

is the best possible solution on the way. The ants constantly update the best possible 

solution. Thus there are some basic components of this optimization system based on 

CACO, which need to be understood before proceeding with the algorithm. They are as 

follows: 

1. Step size: It indicates the least possible value the optimized variable can take. 

Since, the application of this system is in the field of optimizing design features 

for a product, the least value that can be assumed by the attributes of the product 

is restricted. In color preference optimization, the RGB components of color are 

optimized. The RGB components can change in steps of 1, there cannot be a color 

235.5, there can be only 235 or 236. Thus step size in this case becomes 1. This 
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step size can be used to round off the final optimum obtained into a preferred 

precision that suits the product. 

2. Ant : Ant is a thread of program that is performing a search on a certain region of 

the design space. The ant also updates the best solutions on the way so that other 

ants can use it to trace the path towards global optimum. 

3. Pheromone: For real ants, pheromone is the chemical substance left behind by 

ants to guide other ants coming along the same path. The pheromone trail helps 

ants find the path that most other ants have used in the past [6]. This path is more 

likely to be followed by the other ants which come upon the same trail. Also, in 

cases where ants run into obstacles, the pheromone trail is used by ants to 

converge back on their previous path. In this system, the pheromone is a variable 

that holds the information of all the best solutions that have come up in a certain 

direction. 

4. Direction Vector: It is the set of directions which can be taken in the design space 

to search for prospective solutions. Each direction in this vector is unique and 

indicates a certain direction along which ants can move to find the best solution in 

that direction. 

5. Iteration:  Iteration in the algorithm indicates completion of one round of search 

in the current region of interest in a particular direction. 

6. Generation: If one iteration has been completed in all possible directions, then a 

generation of search is said to have been completed. After every generation of 

search ends, a new generation starts with the first direction and an updated region 

of interest to search in. 
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7. Search radius: At a time, the ants search only for values in a region of interest. 

This region of interest is specified by a search radius which is considerably large 

in the beginning of the algorithm to evaluate and checks a large range of values 

and reduces towards the end to converge on a local optimum. At a point in time, 

in a certain iteration, the ants search for values only within the search radius. 

8. Nest: The centre point of the search radius is the nest. The entire idea of leading 

the ants towards finding the optimum rests on updating the nest to the coordinates 

of the best known solution, after each iteration completes. 

9. Design Space: The design space is the plot of the function to be optimized. In the 

function to be optimized, each variable corresponds to an axis in the space and 

substituting various values to each variable gives some points on the graph. These 

points constitute the entire plot representing the function. Each variable of the 

function is an attribute of the entire product. In case of the color preference 

optimization, if the function R=u(r) indicates the utility function of red 

component for a particular user, then r indicates the number of survey responses 

corresponding to that level of redness in the color and R indicates the effect of 

that redness on the user’s utility [9]. 

 

3.3 DYNAMIC ANT COLONY OPTIMIZATION 

  The algorithm makes use of the concepts mentioned in the previous section. Since 

this algorithm executes search on dynamically changing domains, it has been named the 

Dynamic Ant Colony Optimization (DACO). The algorithm in detail is explained in this 

section. The flow chart in Figure 3.1 summarizes the process, representing each step in it. 
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Figure 3.1 Flowchart of the System 

 

 

1. First, the system inputs the details of the design space which are needed to 

understand the structure of the plot. These inputs are the function to be optimized, 

the step size, the bounds of each axis and the option to maximize or minimize. 

2. Evaluate the number of directions: The number of directions is equal to the 

number of quadrants as per the structure of the design space, n=  𝑏𝑖𝑖  where i=1 

to N, where N is total number of axes, 𝑏𝑖= 2 if bounds spread over positive and 

negative axes and 𝑏𝑖  = 1 if bounds are either both positive or both negative. The 

original CACO algorithm uses the idea of dividing the space into a certain 

number of directions say 8 or 12, but does not give a dynamic way of doing so. If 

the number of directions is made a function of the number of axes, then it is a 
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feasible option as long as the number of axes is not excessively large. Since the 

application of DACO is to optimize consumer preferences, the number of 

attributes can be unlimitedly large, in hundreds or even thousands. Perceiving the 

plot of such a design space is not possible. In such cases if the number of 

directions is a function of the number of axes, then it becomes exceedingly large. 

Moreover the number of points covering each direction becomes limited. This 

causes unnecessary computational complexity in the system. The same effect can 

be achieved by dividing the space into n number of directions where n is the 

number of quadrants. For each axis, the number of directions covering that axis 

will be 2 if the bounds in the axis range from positive to negative. The number of 

directions is 1 if bounds are either both positive or both negative. 

3. Evaluate search radius: Search radius is a portion of the maximum Euclidean 

distance within the search space. In CACO, the initial search radius has been 

taken as 1/10
th

 of the maximum Euclidean distance in the space, but in this 

research it has been modified to various fractions of the maximum Euclidean 

distance to observe its impact on the final optimum. Out of these 1/9
th

 of the 

maximum Euclidean distance was found to give the best results for color 

preference optimization. 

4. Evaluate number of ants required per direction: This is a function of the 

maximum search radius reached throughout the algorithm, since at a time in any 

iteration the number of ants needed to evaluate the function will not exceed the 

number of points within the search radius. Thus it was observed with experiments 

that creating k number of ants per direction, where k is the initial search radius, 
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gave the best results. This is because search radius is the maximum in the 

beginning of the algorithm and reduces as it progresses. 

5. Initialize the nest to origin of the search space for the first generation: In CACO 

this nest remains the same throughout the algorithm. CACO uses nest to simply 

assign a start point for the ants to travel out into a certain direction. However, in 

this paper this step was modified to assign a nest to every direction following the 

first generation of search, so that ants could continue searching from the best 

position of the previous generation, which the nest is updated to. This step will be 

explained in detail in the next section. 

6. Randomly select a direction from the direction vector, to start the evaluation 

process. Initialize the nest to origin and create ants for the direction. Each ant is 

assigned a point within the search radius. The ant substitutes the coordinates of 

the point into the function to evaluate the output. All outputs are compared to find 

the best point, depending on Maximization or Minimization option that has been 

chosen. The nest is updated to this best point for the selected direction.  

7. Pheromone for the direction is updated to the current pheromone summed with 

the best output of the iteration. This way pheromone indicates potential best 

values for each direction. 

8. Step 6 and Step 7 are repeated for all other directions. This completes one 

generation of search.  

9. Before the next generation begins, all directions are ranked and ants are 

redistributed to assign more ants to the best direction i.e., the direction with the 

optimum pheromone. This means that if the algorithm is being run for 
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maximization, more ants are assigned to the direction which has maximum 

pheromone and lesser ants to the direction of lesser ranks. Similarly in case of 

minimization, the directions are ranked in the reverse order with the direction 

yielding minimum output ranked on top. This is done so that more ants are 

assigned to look for optima in the direction where the probability of finding the 

optima is the highest. Thus with one generation of search completed, the top 

ranked direction gets more share of ants from the total pool of ants in all 

directions. In order to select the best output from a direction, all ants’ outputs are 

sorted using bubble sort and the coordinates yielding optimum are converged 

upon by selecting the coordinates giving maximum or minimum depending on the 

optimization option. 

10. After every generation of search following initial threshold number of searches, 

the search radius of each direction is updated to a fraction of the original search 

radius which is given by search radius = search radius*m, where 0<m<1 and 

preferably as small as possible, say 0.1. This constantly reduces the search radius 

without reaching 0 and thus exhaustively searches all possible regions of the 

search space. The search radius begins reducing after the number of generations 

has exceeded t, where t is a threshold value taken as an input parameter. 

11. If an ant evaluates the same coordinate for multiple successive iterations, it is 

marked as starved and made to update its coordinates to the point outside the 

search radius. The number of iterations evaluating same coordinate can be set as a 

parameter in the beginning of the algorithm. 
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12. The feature which markedly makes DACO different from CACO is the method of 

storing peaks. The algorithm records the coordinates which are peak positions in 

the plot of the function. The peak positions are positive peaks in case of 

maximization and negative peaks in case of minimization. All the saved peak 

positions are sorted to give the coordinates of the most maximum or most 

minimum peak. This is needed because the application of this algorithm is in 

mainly in consumer preference. In such areas or other similar areas that require 

the choices to be Pareto optimal [10]. There could be plots that come from 

constant functions and absolutely flat. In such cases all the values yielding the 

constant output should be returned as optimal choices. Thus the output from the 

algorithm is any coordinate which gives the optimum utility from the utility 

function. 

13. The algorithm exits when the constraints are violated or coordinate points outside 

the bounds of the plot are assigned to ants to evaluate.  In this case the peaks 

which have been stored so far are sorted. The sorting is done according to 

optimizing option, which could be maximization or minimization. These peaks 

represent the various function outputs in the graph and the most optimal output is 

chosen to be returned. All coordinate points which resulted in this optimal output 

will be returned by the algorithm. These will represent the most desirable choice 

of attributes to be chosen for the product. 

 

3.4 DYNAMIC ACO FOR COLOR PREFERENCE OPTIMIZATION 

 In case of color preference, the product at hand is color and its attributes are the 

red, green and blue (RGB) components of color. The utility functions for the attributes of 
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color were obtained from the surveys presented in [9]. Every utility function represents 

the preference of a color component to a single user. With the dynamic ant colony 

optimization, all such utility functions of all users for every color component are 

optimized. The resultant outputs indicate the optimal color component preference for a 

particular user whose utility function was optimized. If the optimal color components are 

combined using the RGB color model, then it would present the most preferred color for 

the user. This entire process of optimization can be carried out using Dynamic Ant 

Colony Optimization to test the complexity, processing time and accuracy of outputs for 

the algorithm. Here, the main utility function is U(R,G,B) which combines the red, green 

and blue components to generate a color that is probably the user’s most preferred color. 
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4.   IMPLEMENTATION DETAILS 

 The Dynamic Ant Colony Optimization was implemented in Java 5.0 using the 

Eclipse IDE. The open source Java library JEP (Java Expression Parser) was used to 

evaluate the test functions for different ranges of values within the bounds. This section 

explains the design decisions and details of coding the algorithm. Unified Modeling 

Language (UML) was used to design the system. 

 The system was divided into various functional components required for the 

algorithm. The different classes, their class diagrams and functionalities are explained in 

detail below. Figure 4.1 gives the overall class diagram for the entire system. It shows the 

relationship between the classes defined in this section.  The main class is the 

AntColonyOptimizer that refers to an instance of the DesignSpace class and a collection 

of Direction class objects. Each object of the Direction class in turn refers to an object of 

the AntDelegate class which refers to a collection of Ant objects. Each Ant object can 

access the JEP library that is used for function evaluation. 

 

 

Figure 4.1 Overall Class Diagram of the System 
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AntColonyOptimizer AntDelegate

Direction

Point

Ant FunctionEvaluator

+1

1..*

holds

1..*

1
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 DesignSpace class: An instance of this class is initialized in the beginning of the 

program to define all the details regarding the function space. These details can be 

the utility function that represents the design space, the list of attributes 

representing the design properties, the bounds of the function and the least value 

that the attribute can take, i.e. the step size. Figure 4.2 presents the class diagram 

for this class. 

 

 

Figure 4.2 Class Diagram of DesignSpace Class 

 

 

 Direction Class: An object of the direction class represents a unique direction in 

space. All ants are divided into n sets, where n is the number of directions. All 

ants that belong to a certain direction can move only in that direction. Each 

direction object has details regarding that direction such as a unique number to 

identify that direction, a metric given by the variable pheromone, that indicates 

how good the direction is proving to be in terms of optimal attribute search, the 

number of ants moving in that direction, the nest for that direction around which 

the ants are searching the optimum in a certain iteration, the search radius for 

DesignSpace

-double stepSize[n]
-double maxInAxis[n]
-String functionToBeOptimized;
+String attributeNames[n]
-int noOfAttributes;

+DesignSpace(String[] attNames, double[] stepSize, double[] maxInAxis, String functionToBeOptimized, int noOfAttributes)
+getStepSize(int attNo): double;
+getmaxInAxis(int): double;
+getFunctionToBeOptimized(): String;
+getNumberOfAttributes(): int;
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every iteration and the best coordinate obtained after every iteration of search. 

The metric pheromone is constantly updated to the best optimum of an iteration 

summed up with the previous pheromone. This is done after every iteration of 

search ends. This way it indicates the probability of finding the optimum in that 

direction. The direction class is extremely important since it holds the best 

coordinates obtained from every iteration. The nest in a direction is updated at the 

end of each iteration to the coordinates giving the current optimum output. Figure 

4.3 presents the class diagram for this class. 

 

 

Figure 4.3 Class Diagram of Direction Class 

 

 

 AntDelegate:  The AntDelegate class acts as an interface between the ants and the 

direction that the ants are moving in. The delegate has a reference to the set of 

ants moving in a particular direction. It also handles the starvation of ants. It 

marks the ants starved if they are evaluating the same set of coordinates 

iteratively. The number of iterations in which the same ant repeatedly evaluates 

Direction

+int index;
+Point nest[n]
+int rank;
+Point bestCoordinates[n]
+int noOfAnts;
+AntDelegate delegate;
+int noOfAttributes;
+String function;
+double pheromone[n]
+double searchRadius;

+Direction(int index, Point[] nest, int noOfAnts, double initialSearchRadius)
-getPheromone(): double[n]
-updateNests(Point bestCoordinates[n]): void
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the same coordinate before being marked as starved can be taken as an input 

parameter. Typically it is preferred to be in the range to 5 to 10, in order to 

quickly mark such ants as starved and make them move outside the search radius. 

Quickly moving them out of the search radius reduces execution time. Each 

direction object has a reference to an AntDelegate object which in turn maintains 

a set of ants which it delegates the task of searching for optimum coordinates 

around the nest of the concerned direction. Figure 4.4 presents the class diagram 

for this class. 

 

 

Figure 4.4 Class Diagram of AntDelegate Class 

 

 

 Point: Each object of the Point Class is indicative of a coordinate in space. Since, 

the point in space is a function of the number of attributes that make up the utility 

function, so it needs to be able to dynamically change to a set of any number of 

coordinates to make up one point. This number changes from one utility function 

to the other. If the utility function is f(x,y) then the object of Point class is 

represented by the <x,y> coordinates in space. However if the function is f(x,y,z) 

AntDelegate

+Ant ants[n]
+int noOfAttributes;
-sameCoordCountForAnt[n]
+String function

+getBestAnts(void): Ant[n];
+AntDelegate(int noOfAttributes, String function)
+assignAntsToNest(Point nest[n]): void;
+evaluate(): void;
+isStarved(Ant a): boolean
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then every point in space is represented by <x,y,z>. Also, every point needs to be 

represented using the exact name of the attribute as it is used in the utility 

function. So if the utility function is f(r,g,b) then the point in space would be 

<r,g,b>. The Point class takes this information of the attribute names from the 

design space. The object of Point class is used extensively in the system since 

every point that an ant evaluates is represented by the object of Point class and is 

understood by the ant through that representation. Similarly, the nest around 

which the ants need to search in an iteration and the coordinates yielding the best 

output are both represented by objects of the Point class. Figure 4.5 presents the 

class diagram for this class. 

 

 

Figure 4.5 Class Diagram of Point Class 

 

 

 Ant: The Ant class is used to represent one ant. All the details an ant needs and 

returns are stored in this class. Ant class thus has instances of the output 

generated, the coordinate evaluated which is an object of the Point class, the nest 

around which the evaluation was done which is again an object of the Point class 

Point

+int noOfPlanes;
-double arrayOfPoints[n]
+String attributeNames[n]
+DesignSpace space;

+Point(DesignSpace s)
+getPoint(): double[];
+setPoint(double[] point): void;
+getDesignSpace(): DesignSpace
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etc. The ant is the least correlated and most independent entity of the system. 

Each ant object is what eventually performs the evaluation of the function for a 

certain coordinate value. This evaluation is done by the JEP library. Thus the 

instance of the JEP library is used within the Ant class. The evaluate() method in 

the class takes in a string which is the objective function and passes it to the JEP 

library to evaluate the function and return the output. Figure 4.6 presents the class 

diagram for this class. 

 

 

Figure 4.6 Class Diagram of Ant Class 

 

 

 AntColonyOptimizer: This class is the main class where the program starts 

running. The instances of the DesignSpace and the direction vectors are created in 

this class. Thus this class is used for parameter setting within the DesignSpace 

object which can later be referred to by the other classes. This class also holds the 

utility function to be optimized. This can be explicitly mentioned in the main class 

or read from text files. All methods which pertain to updating data or continuing 

or stopping the algorithm, are implemented in this class. The method 

evaluateNoOfAnts() evaluates the number of ants needed for the algorithm. This 

Ant

+double output;
+Point coordinate[n]
+int direction;
+boolean isStarved;
+Point nest;
+String function;

+evaluate(String function): void;
+Ant(int noOfPlanes, int direction, Point nest, Point coordinate)
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is a function of the size of the domain. The method evaluateNoOfDirections() 

evaluates the number of directions that is obtained by computing the number of 

quadrants in the domain. It also has the methods startACO() and stopACO() 

which start and stop the algorithm. The variable finalOptimum indicates the 

optimum obtained at the end of the algorithm. This variable can be directly output 

from the system and saved on to output text files or a database for further 

reference. All such outputs are referred to by the main utility function evaluator 

that would sum up or multiply the individual optimal attributes. Figure 4.7 

presents the class diagram for this class. 

 

 

Figure 4.7 Class Diagram of AntColonyOptimizer Class 

 

 

 

 The software agents developed to act as the main agent to combine the individual 

utility functions were developed using the framework JADE which is an open source 

framework for software agent development.  

AntColonyOptimizer

+int noOfDirections;
+Direction directions[n]
+double searchRadius;
+int currentGeneration;
+DesignSpace space;
+int noOfAnts;
+double finalOptimum;
+double currentOptimum;

+evaluateNoOfAnts(): int;
+evaluateNoOfDirections(): int;
+startACO(): void;
+redistributeAnts(): void;
+sortPheromones(): void;
+stopACO(): void;
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 Some design patterns were applied in designing this system. The expert pattern 

was used in the Ant Class. Every Ant object is an expert since it alone accesses the JEP 

Library, so it alone knows how to evaluate a function. Similarly, creator pattern was used 

in the AntDelegate Class. This class is responsible for creating sets of ants meant to 

search in a certain direction. Also design patterns such as high cohesion and low coupling 

were used. All classes are independent in their functionalities and hence have low 

coupling with each other. Also each class is responsible for providing a unique 

functionality not handled by another class, making all the classes highly cohesive. 
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5. EXPERIMENTS AND RESULTS 

5.1 EXPERIMENT 1 

 DACO has been developed to optimize a utility function of any degree containing 

any number of variables. However to run the algorithm, a set of utility functions to be 

optimized is needed. Utility functions are typically obtained from consumer surveys 

comprising of choice-based questions. The utility functions for the experiments on 

DACO were collected from the results of choice-based surveys conducted in the research 

conducted by Turner, et al. [10]. These utility functions are cubic in nature and contain a 

single variable defining a level of color-component that makes the color. In these 

surveys, the color of product was based on the RGB color model and hence was broken 

into red, green and blue components, creating 3 utility functions per consumer. 

 The dynamic ant colony optimization was run on these functions. Every function 

in this set represents color preference of a certain user for a certain color component: red , 

green or blue. Thus all functions were divided into sets of 3, each set corresponding to 

one user and 3 color components. Utility functions were generated from 40 users taking 

the survey. The algorithm was run on these functions to maximize and minimize them. 

All the functions were stored in an input text file. A parser was written to generate 

functions in case only the attribute coefficients were known. A batch-processing program 

was written so as to pick the functions from the input file. The outputs obtained were 

saved in to another set of text files. In order to verify the outputs from DACO, the 

algorithm was compared with another source that can compute maximum and minimum 

of functions. The numerical computing language Matlab was chosen. All the utility 

functions optimized by DACO were plotted in Matlab; Matlab commands were used to 
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maximize and minimize the functions. Their outputs were written into separate text files. 

These were later merged with the files obtained from the algorithm so that they could be 

compared. The deviations of the outputs from DACO were recorded in terms of various 

degrees such as 0, +1, +2 and +3. The experiments done with maximization are shown in 

Tables 5.1, 5.2 and 5.3. 

 Table 5.1 shows the deviation of maximization outputs returned by the algorithm 

from the outputs returned from Matlab batch files. This experiment was conducted with 

search radius fixed to the maximum Euclidean distance in the search space multiplied by 

a multiplication factor of 1/8.The algorithm was run once in this case. The execution time 

for all of the 120 functions was 4.1 seconds, on the PC described in Section 1.4. This 

execution time indicates that DACO can compute the optimum of a single function in 

approximately 30ms with a standard processor. Since DACO has been implemented to be 

applied on continuous quick design generation processes, the execution time for every 

utility function being less than a second is a desirable feature. 

 It can be observed that there was no deviation observed between the output from 

algorithm and the output from Matlab in most functions. There was a deviation of +1 

encountered in most other functions. Very few functions resulted in a difference of more 

than 2. These variations of +2 and +3 were caused due to two major factors. It can be 

concluded from the observed results that Matlab’s internal setting of using index 1 for 

storing the start index of any matrix could be one factor causing deviations of +1. Since 

all values are internally stored as matrices in Matlab, this may lead to an inconsistency 

for cases where the correct output is one of the boundary values. This comes from the 

observation that almost all deviations of +1 have been caused in cases of optimal outputs 
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being boundary values. The other factor that could have affected the accuracy of output is 

the use of random numbers in positioning ants within the search radius. The number of 

ants used within a search radius decreases with every passing iteration. In some cases, the 

number of ants becomes lesser than the number of coordinates within the search radius. 

Since, random numbers are used to generate a unique location for every ant within search 

radius, so in such cases, due to lack of ants, there are some locations which do not get 

generated. There is a probability that this missed location leads to the most accurate 

output. In such cases the value that gets returned by the algorithm is in the range of + 1 or 

+2.  

 The solution to the problem caused by this factor is to be able to dynamically 

manage the number of ants so that every location in the search radius is covered by an 

ant. If the number of ants is always maintained to be a number larger than the number of 

coordinates in the search radius from previous iteration, then there could be more than 

one ant in the search radius being assigned the same coordinate for evaluation. This may 

lead to multiple ants referring to the same coordinate, leading to some logical issues. 

Thus, ants have to be constantly managed and increased and decreased in number. This 

could affect the performance of the system due to the continuous increase or decrease in 

the number of ants in every iteration. 

 

Table 5.1 : Accuracy for Maximization with One Run 

Deviation from Matlab Occurrences Percentage 

Deviation of 0 72 60.0% 

Deviation of + 1 33 27.5% 

Deviation of + 2 9 7.5% 

Deviation of + 3 6 5.0% 
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 It was observed that these deviations can be further reduced by the repeated 

running of the algorithm and returning the average of all the outputs, as the final output. 

The algorithm by itself exits upon reaching coordinates at the boundary for evaluation. 

This cannot be changed but the entire algorithm can be repeated from start for the same 

function to obtain an average final optimum from multiple runs. This experiment 

eliminated the deviations to a large extent as can be seen from Table 5.2. The number of 

runs on the algorithm was varied from 5 to 13 and the accuracy of the returned output 

was tabulated. The execution time was also recorded for these, since an increase in the 

number of runs caused a direct impact on the execution time. 

 The repeated runs totally eliminated deviations of +3. Only certain occurrences of 

deviations of + 2 were observed with most runs. There was a maximum of up to 6 

deviations caused with 7 runs and a minimum of 0 deviations with 10 runs. Thus with 10 

runs the outputs were perfectly matching the outputs from Matlab. The execution time 

ranged from 19 seconds for 5 runs to up to a minute with 15 runs.  

 

Table 5.2 : Accuracy for Maximization with Multiple Runs 

Number of runs Deviation of + 2 
Execution 

time(seconds) 

5 5 19 

7 6 27 

9 2 36 

10 0 41 

13 2 54 

15 2 58 
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 The parameters which are set for every optimization problem are the search 

radius, function to be optimized, and the bounds. Out of these the parameters, search 

radius was varied by changing the multiplication factor for the maximum Euclidean 

distance in the search space. A change in search radius has significant effects on the final 

output. It was observed that with too large a radius, potential optimum values lying in a 

range of values less than the search radius could get missed. With too small a radius, the 

ants could get repeatedly starved, making the algorithm run in an incremental fashion, 

evaluating almost every coordinate in the search space. 

 It can be seen from Table 5.3 that multiplying the search radius with a factor of 

1/8 yielded the least number of deviations, whereas a factor of 1/9 was the least accurate. 

The deviations here are in the range of + 2 which also includes + 1. 

 

 Table 5.3 : Effect of Change in Search Radius 

Multiplication Factor for 

Search Radius 
Deviation of + 2 

1/6 10 

1/7 10 

1/8 7 

1/9 19 

1/10 9 

 

 

 The number of generations was also studied. A generation is one round of 

evaluations in all directions in the search space. The number of generations is a metric 

which can indicate what percentage of search space was evaluated to converge on the 

final optimum. The performance of the system in terms of its speed is inversely 

proportional to the number of generations. If all the coordinates in the search space are 
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evaluated then the approach gets close to brute force approach and the selectivity of ants 

cannot be considered be well utilized in such a case.  

 In the experiments run on maximization of the functions, the range of number of 

generations was from a minimum of 68 to a maximum of 110. This range was for 

experiments run with the search radius r= 1/9 * (Maximum Euclidean Distance).  

 Table 5.4 shows the range of the number of generations that the algorithm 

completed before the final maximization output was obtained.  

 

 

Table 5.4: Number of Generations 

Number of generations (n) 
Number of functions 

completing n generations 

60-70 6 

70-80 24 

80-90 47 

90-100 35 

100-110 8 

Range: 60-110 Total: 120 functions 

 

 

 This indicates that even though there were 255 coordinates in all, searches were 

centered around 60 to 110 coordinates which were marked as best coordinates on the 

way. This was possible by choosing the best coordinates as nests on the way. 

 All the experiments were also performed for minimization. Table 5.5 shows the 

accuracy of the algorithm with minimization of the functions using one run. It can be 

observed from Table 5.5 that the number of results matching perfectly with Matlab is 

almost same as that with maximization.  
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Table 5.5: Accuracy for Minimization with Single Run 

Deviation from Matlab d 
Number of functions 

with deviation d 
Percentage 

Deviation of 0 69 57.5% 

Deviation of + 1 40 33.3% 

Deviation of + 2 7 5.83% 

Deviation of + 3 4 3.33% 

 

 

 Table 5.6 shows the effect of number of runs of the algorithm on the accuracy of 

the results. As compared to maximization, minimization gives a very accurate result with 

a much lesser number of iterations. This requires less execution time as well. However 10 

runs show the same effect of perfect accuracy with both maximization and minimization 

and have an execution time that is not very expensive in terms of performance. 

 

 

Table 5.6 : Accuracy for Minimization with Multiple Runs 

Number of runs r 

Number of results 

giving Deviation of 

+ 2, with r runs 

Execution 

time(seconds) 

5 0 20 

7 3 31 

9 1 36 

10 0 43 

13 0 54 

15 2 58 

 

 

 

 Table 5.7 shows the number of generations covered for the entire algorithm using 

one run, before arriving at the optimal output. The number of generations is in the same 

range as needed for maximization. 
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Table 5.7: Number of Generations 

Number of generations n 
Number of functions 

completing n generations 

60-70 4 

70-80 19 

80-90 44 

90-100 43 

100-110 10 

  

 

 

 The maximization and minimization runs were performed on a function with two 

variables and a function with no variable i.e. a constant function. In case of the constant 

function, all values are expected to be returned as equally optimal. This desired result was 

obtained.  

 

5.2 EXPERIMENT 2 

 One more experiment that was conducted was to match the output from main 

utility function with the results of follow-up survey conducted on the same consumers. 

The follow up surveys offered choice based questions containing the optimal color 

obtained by optimizing the cubic equations representing color components and 

combining them to yield a color choice, using standard derivative-based optimization. 

The survey also presented to the consumers colors that were computed to be of minimal 

preference and average preference to the consumer. The consumers’ choice of optimal 

color from the survey matched the optimal color from the algorithm in most cases, 

indicating that combining the optimal color components indeed yields the optimal color 

choice for the concerned consumer.  
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 For more than half the total number of users, the colors were perfectly matching 

for both maximization and minimization. However, in some cases the colors obtained 

from maximizing the function using the algorithm matched up with the average 

preference of the consumer. Some sample output images from the experiment have been 

presented below. 

 

 

Table 5.8: Comparison of Survey Results with Algorithm Results for Most Preferred 

Color 

Most preferred Color  Choice from 

Survey 

Maximized color Choice from Algorithm 

  

  

  

  

 



 

 

38 

Table 5.9: Comparison of Survey Results with Algorithm Results for Least Preferred 

Color 

Least preferred color choice from survey Minimized color choice from Algorithm 
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5.3 DISCUSSION OF RESULTS 

 It may be noted that the experiments were conducted on a scale much smaller than 

one found in a typical design generation environment, in terms of the number of 

attributes and size of the design space. For example, there could be hundreds, thousands 

or even greater number of attributes in a typical automobile design preference scenario. 

The bounds, design space, degree of utility function would all be varying from one 

attribute to the other. The system is not expected to assume any parameter in any aspect 

of the computation. Each run of the algorithm would have different parameters from the 

next run. The system is expected to consistently output optimum attributes for each utility 

function, irrespective of any of the above mentioned factors. 

 DACO has been developed keeping this scenario in mind. Thus, none of the 

parameters that vary according to design criteria are fixed to a certain value in the 

algorithm. These varying parameters are the number of attributes, the range of design 

space, the bounds, the mathematical signs of the bounds of each attribute, the 

optimization option (maximization or minimization), the minimum value that can be 

assumed by an attribute (step size) and the degree of the utility function. So, if the first 

utility function optimized by DACO is a quadratic function with 3 variables and the next 

utility function is a 5
th

 degree function with 5 variables, then both would be 

independently optimized using different suitable parameters, by two instances of DACO 

running in the system. 

 This algorithm was tested on a set of 120 utility functions, each of degree 3 and 

having 1 variable. Since none of the parameters was assumed by the system and it 

dynamically computed the parameters required for this kind of utility function, it would 

do the same for a utility function of n degree, with k variables where n and k could be as 
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large or as small as possible. In the color preference research discussed, 3 utility 

functions formed a part of the main utility function. All 3 utility functions were of the 

same degree and same number of variables. DACO has been designed to create the main 

utility function with any number of utility functions of little or no similarity in terms of 

degree and variables, as long as the number of utility functions making up the product is 

specified as an input to the system. Thus DACO is dynamic to the extent of evaluating 

the optimum utility of each product attribute and combining all such utilities with the aid 

of input parameters set according to the product being designed. 
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6. CONCLUSIONS AND FUTURE WORK 

 The algorithm DACO was developed to optimize utility functions obtained from 

consumer surveys, in order to understand the most preferred product attributes that can be 

combined into a complete product. This section explains the conclusions that can be 

drawn from the algorithm regarding its application, performance and other observations. 

This section further details the areas in which the algorithm could be further worked 

upon, to make it more dynamic, robust and performance friendly. 

 

6.1 CONCLUSIONS 

 The goal of this research was to devise an optimization algorithm to correctly 

recognize the global optimum of utility functions derived from consumer inputs, which 

could comprise of a large number of attributes, making the functions computationally 

complex and dynamically changing. This required a dynamic algorithm which could 

identify the pattern of the function on the run and globally optimize it. The function 

evaluator used in the implementation of the algorithm is an open source expression parser 

library. It handles evaluation of a function of any pattern. But the library needed attribute 

names and values to be substituted in them, as inputs, which was handled dynamically by 

the algorithm. The other goal of this research was to use software agents to 

mathematically combine the outcomes of various utility functions to synchronously yield 

a comprehensive output representing user preference. These goals were achieved by 

adapting the Continuous Ant Colony Optimization (CACO) to create a dynamic 

algorithm which can globally optimize any function based on the inputs fed to the 

system. The algorithm is adaptable to any kind of utility function, with a design space of 



 

 

42 

any size. However, it was mainly tested on a simple test space of a considerably small 

size, with cubic utility functions containing one variable. These were obtained from 

studying consumer preference for color. The algorithm accurately optimized the utility 

functions generated from all users’ survey results. The best results were achieved for both 

maximization and minimization performed on these functions using multiple iterations. 

Results were compared to maximum and minimum values of variables returned by 

Matlab for the same functions. A software agent was created to run any referenced 

program, so that it could generate colors out of the optimal values of R,G and B 

components returned by the algorithm. 

 

6.2 FUTURE WORK 

 The robustness of the algorithm could be enhanced by creating a dynamic way of 

setting its parameters like the most desirable search radius and the most desirable number 

of runs. This could make the system more dynamic, involving no human intervention 

whatsoever, as desired in the system proposed in [2]. There is also a need to make the 

number of ants change dynamically so that in each iteration it changes to the number of 

coordinates available within the search radius in that iteration, so that every point in the 

search radius gets evaluated, increasing the accuracy of the outputs. Currently, the 

number of ants is initialized to a number computed in the beginning of the algorithm. 

This number is based on the size of the design space. However, as the algorithm 

progresses, if the number of ants reduces then there is no provision to increase it again. 

This may lead to a dearth of ants in some regions of search, causing inaccurate results. 

The design of the system could be changed to automate parameter settings for the 

algorithm. These parameters are the portion of maximum Euclidean distance that needs to 



 

 

43 

be taken as search radius initially, the number of iterations leading to starvation of ants, 

the number of attributes and the attribute names needed by the JEP library. Currently 

these details are manually entered into the system as inputs. Automating these inputs 

could also increase the performance of the system in terms of execution time and 

computational complexity. The long term effort would be to automate the entire system 

to handle any kind of function without requiring any change to the parameters such as the 

initial search radius or the number of ants. When these classes get referenced by software 

agents that are continuously active, then it is ideal to keep all such parameters 

dynamically handled. Also, the class which is referred to the main agent, which is a 

software agent, needs to be designed to understand the mathematical combination 

required for the main utility function. Currently the main agent class has been explicitly 

written to handle combination of colors. So the current main utility function can be 

assumed to be a summation function of individual utility functions. But in some cases, 

the main utility function may need to compute the product or some other mathematical 

combination of individual utility functions. The algorithm also needs to dynamically 

know the number of individual utility functions being optimized, so as to enable it to 

combine all those functions. In color preference optimization, the number of individual 

utility functions is 3. But this has been currently fixed in the system and needs to be 

dynamic in a generic utility function optimization system. These could be some areas of 

future research in enhancing this algorithm. 
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