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ABSTRACT 

Current gene identification (GI) techniques typically rely on matching 

biological or chemical properties of specific genes, specific species, specific ecotypes, 

etc. Other techniques might involve homology searches using known gene 

sequences. Since they are either too specific or they depend on known genes, these 

techniques can never claim to be complete i.e. to have identified all possible genes in 

a genome. This is an inherent drawback caused by the immense complexity of gene 

organization. However, it is possible to get closer to a more global generalized GI 

technique by using evolutionary rationales. The advantage of such a general 

technique is that, once automated on a computer, it can be easily extended to 

identify any gene that evolved with that rationale. In this thesis, a new automated GI 

technique is proposed, and compared against another computer-based technique 

proposed earlier. Both methods utilize EST data available from NCBI databases to 

discover previously unknown genes. The newly proposed method identifies one 

gene family at a time and is based on a distinctive negative selection pattern (NSP) 

of differences, which is seen between the coding regions of gene family members. 

The other technique, called ESTminer, attempts genome-wide gene family 

identification for any organism, by detecting single nucleotide polymorphisms 

between potential family members. In this thesis, a complete automated analysis of 

both techniques is presented. 
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1. INTRODUCTION 

Gene Identification (GI) is the process of finding segments within genomic data 

(like DNA sequences) that contribute a specific functionality i.e. a gene. Today, there are 

hundreds of very different GI techniques. These techniques can be specific to plants, 

specific to mammals, specific to certain species or ecotypes, specific to a gene family, or 

sometimes even gene-specific. This is because the techniques usually depend on one or 

more biological properties of genes that make it possible to pin-point them within a sea of 

DNA sequences. Also, these techniques are often conducted experimentally which makes 

them slow and tedious. This is why there is a move toward developing automated GI 

techniques. “Automated”, in this context, refers to using a computer to analyze raw 

genomic data and produce ready and conclusive information for a biologist. A review of 

publications in GI found that very few attempts were made to create a fully automated 

general process for identification of genes throughout a genome, or at least throughout a 

gene family. This might imply that the particular problem of developing such a large 

scale non-specific GI technique is either very difficult or, considering the complexity of 

gene organization, maybe even impossible. However, Bioinformatics - the application of 

computers to solve biology problems - is still a fledgling field and there is plenty of scope 

for new ideas. 

In this thesis, the recent work that has gone into computer-based GI processes is 

first examined in Chapter 1. One of these processes - called ESTminer - claims to identify 

potential gene families within an entire genome. This is tested thoroughly in Chapter 2. 

ESTminer was developed by Nelson et al. in 2005. Chapter 3 discusses another GI 

technique which uses negative selection patterns (NSP) between gene family members to 

identify all members of that gene family. This process was first developed and automated 

by Frank et al. in 2006. The chapter goes on to explain how this automation was further 

developed using perl scripts that could interface with online applications such as BLAST 

(Basic Local Alignment Search Tool) and ORF Finder (Open Reading Frame Finder). 

The only input that this automation needs is a known gene (a protein sequence) that 

belongs to the gene family to be identified. The output is a table that summarizes the 

distribution of negative selection patterns (NSP) between contigs (a contiguous set of 
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overlapping sequences which could potentially represent a gene) from that family. This 

information helps to identify potential members of the same gene family as the protein-

coding gene used as input. The correctness of this automation is validated using sample 

sequences from Arabidopsis thaliana (abbreviated “At”) to identify a previously known 

gene family. 

1.1. GENE IDENTIFICATION 

Automated analysis of genomic data, using techniques developed for 

bioinformatics, came about as a result of necessity. Genomic sequences are enormous and 

manual analysis is impractical. The progress of the Human Genome Project is a good 

example (Human Genome Program, 1994). When it started, the identification of genes 

was a slow and tedious process. It usually involved matching known genes from other 

species with those in the human genome. By 2003, the entire 3 billion nucleotides were 

sequenced, but the processes used in locating the genes became numerous and elaborate. 

Some of these were conducted experimentally (in a laboratory) while most were 

conducted “in-silico” (on a computer) because of the enormity of the genomic data. 

However, most of these techniques were based on biological or chemical properties that 

were too specific. These limitations led us to look for a more general non-specific 

technique that made use of the high resolution DNA sequences from various genomes 

stored at enormous public-access databases, in particular, the databases at NCBI 

(National Center for Biotechnology Information). NCBI BLAST is a publicly accessible 

online application which searches through these databases for DNA sequences which are 

similar to a given query sequence. 

In order to find the general rules by which DNA sequences have evolved, and 

subsequently apply them in a gene identification technique, the best option was to use 

evolutionary rationales. Unfortunately, this only widens the generalization because 

different classes of organisms have evolved very differently and developed their own 

evolutionary mechanisms. So, a technique based on evolutionary rationales is not entirely 

universal. For instance, most plants have evolved using the same common mechanisms 

and several global gene identification techniques based only on these mechanisms, can be 

formulated. But such a technique cannot be directly extended for mammal genomes since 
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they have evolved very differently from plants. In this thesis, the two techniques 

described are designed specifically for plant species and tested on Arabidopsis thaliana. 

1.2. RELATED WORK 

Before getting to the two GI techniques that this thesis focuses on, some related 

techniques of gene identification are reviewed. Bie et al. presented CAFÉ (Computational 

Analysis of Gene Family Evolution) for analyzing and predicting the evolution of the size 

of gene families in a phylogenetic context i.e. pertaining to the evolutionary history of a 

particular group of organisms (Bie, Cristianini, et al., 2006). This method modeled gene 

gain and loss along each lineage of a phylogenetic tree using a random birth and death 

process, and then used that model to calculate the probability of transitions in gene family 

size from parent to child node in the phylogeny. Given a gene family and its evolutionary 

analysis, DETECTER (Determining Clinically relevant Transmutations using 

Evolutionary Rationales) was designed to predict sites in a protein sequence where amino 

acid replacements are likely to have a significant effect on phenotype, including causing 

genetic diseases (Gaucher De, et al., 2006). 

Hekmat-Scafe et al. (2002) presented their methodology for identifying multiple 

potential odorant-binding protein (OBP) family members through a PSI-BLAST 

(Position Specific Iterative BLAST) search of Drosophila genomic sequences at NCBI, in 

particular the olfactory-specific OS-E protein sequences. The resulting sequences are 

used to scan Drosophila genomic sequences at NCBI using TBLASTN (a version of 

BLAST that takes a protein query and returns similar sequences from the NCBI 

nucleotide databases), generating more OBP-like products. Phylogenetic analysis is then 

applied to remove the identified genes, and scan the Drosophila genome using the 

remaining sequences. Tian et al. developed a strategy to identify 57 and 32 GRAS gene 

family members in rice and Arabidopsis respectively (Tian et al., 2004). The method 

starts with a single sequence as a query to search through multiple rice genome databases 

using TBLASTN. GRAS genes in Arabidopsis were identified with BLASTP (version of 

BLAST that takes a protein query and returns similar sequences from the NCBI protein 

databases) and aligned using ClustalX (a multiple sequence alignment tool). Phylogenetic 

trees were constructed using ClustalX, MEGA2 (Manipulation Environment of Genetic 

Analyses), and PHYLIP (Phylogeny Inference Package); motifs (repeatedly occurring 
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sequence patterns) were identified using MEME (Multiple Em for Motif Elicitation); and 

divergence time was estimated using PAML (Phylogenetic Analysis by Maximum 

Likelihood). Nakano et al. identified 122 and 139 ERF family members in Arabidopsis 

and rice respectively, using gene structure analysis, comparative and phylogenetic 

analysis, and motif detection (Nakano, Suzuki, 2006). Liu identified 9 ACT domain 

repeat protein-coding genes based on similarity search and domain detection (Liu, 2006). 

Other automated or semi-automated processes have also been developed for 

identifying gene families. Brown et al. developed a semi-automated method for mining 

ESTs (Expressed Sequence Tags - short nucleotide fragment sequences) for gene 

discovery and functional characterization in a major facilitator superfamily (MFS) of 

transporter genes (Brown et al., 2003). The strategy starts with a seed protein sequence, 

and collects a core family of related sequences by running PSI-BLAST. Then a collection 

of ESTs is generated by a TBLASTN search in the NCBI EST database (dbEST). After 

removing non-mammalian vector sequences and previously characterized ESTs, the 

remaining ESTs are assembled using CAP3 (a popular Contig Assembly Program). The 

generated contigs and singletons are candidates for new genes and are evaluated for 

membership with specific MFS families. 

1.3. ESTMINER 

ESTminer compares similar sequences throughout the genome of a specific 

ecotype (a subdivision of a species characterized by its ecological surroundings) and tries 

to find single nucleotide polymorphisms (SNPs) between them. An SNP, as the name 

suggests, is a variation in a single nucleotide base between two DNA sequences (Figure 

1). When ESTminer finds certain SNPs between two otherwise very similar sequences 

A T G C C G A T A C C T A G C 
 

A T G C C T A T A C C T A G C 

 

Sequence 1 

 

Sequence 2 

An SNP 

Figure 1.1 - A Single Nucleotide Polymorphism (SNP) between two similar sequences 
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(labeled Locus Defining Polymorphisms), it marks these sequences as possibly 

representing genes belonging to the same family. These sequences (which are usually 

ESTs) are referred to as potential Haplotypes (pHaps). Some of these pHaps are contigs 

assembled from the ESTs. In this study, these two types are differentiated as pHap ESTs 

and pHap contigs. 

Before running the ESTminer suite of programs, ESTs of the same ecotype need 

to be collected and assembled using CAP3 with its parameters configured specifically for 

that ecotype. A database is created containing both the ESTs and the resulting contigs. 

Each contig is then submitted as a query to a BLAST search over this local database. 

Each query collects the ESTs and contigs that are similar to it. According to Nelson et al., 

this is equivalent to collecting all potential genes that belong to the gene family that each 

contig query might represent (Nelson et al., 2005). BLAST arranges these ESTs in order 

of quality of alignment. This makes it easy for ESTminer to later pick out the ESTs or 

contigs with locus defining polymorphisms and to designate them as pHaps. 

1.4. NEGATIVE SELECTION PATTERNS TO IDENTIFY GENE FAMILIES 

The evolutionary rationale for this technique is based on a specific negative 

selection pattern which is a result of gene duplication (when a gene is erroneously copied 

over twice in the same genome). Duplication allows the duplicate copies of a gene (also 

known as paralogs) to mutate freely without selective pressure and acquire new or altered 

functions while another copy retains the functions of the original gene. Susumu Ohno 

argues that gene duplication is the most important evolutionary force (Ohno S, 1970). Its 

status as the most common evolutionary mechanism in plants makes it a popular rationale 

to develop generalized gene family identification techniques. The technique proposed in 

this paper tries to find a characteristic pattern of nucleotide substitutions (mutations) 

between potential paralogs with respect to their position within a codon (a triplet of 

nucleotides that codes an amino acid). Each codon can be coded by the 4 different 

nucleotide bases - Adenine, Guanine, Cytosine, and Thymine. This allows 4
3
 different 

types of triplets i.e. 64 different triplets out of which only 61 are codons (i.e. only 61 

encode amino acids). However, some of these codons encode the same amino acids 

because they share a similar sequence of nucleotide bases. So, despite the 61 different 

codons, there are only 20 distinct amino acids. This redundancy allows certain single 
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nucleotide substitutions to occur, that change the codon, without changing the resulting 

amino acid. This is known as a synonymous substitution. The gene ends up producing the 

same protein as before and the mutation is carried over into future generations. 

Alternatively, a mutation that changes the codon to encode a different amino-acid is 

called a non-synonymous substitution. When two very similar sequences appear to have 

more synonymous differences between each other than non-synonymous ones, they could 

possibly be paralogs that diverged from each other after a gene duplication event. The 

level of divergence from each other can even be used to estimate when the divergence 

occurred. 

In particular, single nucleotide substitutions in the third position of a codon 

almost always produce the same amino acid. Some first position substitutions also 

produce the same amino acid, but they are not as redundant as third position substitutions. 

Substitutions in the second position of a codon never produce the same amino acid. So, if 

differences between two paralogs are evolutionary and subject to negative selection, 

significantly more differences will occur in the third position and the least will occur in 

the second position. However, if differences between paralogs are artifacts (cDNA 

cloning, sequencing errors, etc.) then no pattern in codon positions should be exhibited. 

Note that all members of a particular gene family need not be detectable by this 

technique. This is because negative selection is not the only evolutionary mechanism. 

Sometimes non-synonymous substitutions can turn out to be beneficial (positive or 

adaptive selection). Also, given time, paralogs could diverge so completely from each 

other that it would be impossible to know that they ever belonged to the same family. 
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2. ANALYSIS AND EVALUATION OF ESTMINER 

In 2004, Nelson et al. released a suite of programs that attempted to perform gene 

and allele identification throughout the genome of an ecotype (Nelson et al., 2004). The 

only input that the programs require is a file containing all (or as many of) the known 

ESTs of that ecotype. In this thesis, their suite of programs is tested by running it on the 

Columbia ecotype of Arabidopsis thaliana. Arabidopsis thaliana was chosen since it is 

the only plant with its entire genome sequenced. The NCBI MapViewer contains the 

entire genome of Arabidopsis thaliana, with the locations of known genes mapped into it. 

The start and stop positions of these previously identified genes are provided in the NCBI 

MapViewer application which is accessible online and updated frequently. 

2.1. OVERVIEW OF THE TECHNIQUE 

According to Nelson et al., the correct operation of ESTminer is hugely dependent 

on the parameters used in the contig assembly step. As Dr. Nelson puts it – 

 

“The optimum settings for CAP3 may need to be adjusted for each dataset. You must look 

at the CAP3 assemblies using your own EST data and see how changes to the -o (overlap 

length cutoff) and -y (clipping region) options affect its output.  The objective is to choose 

values which produce contigs that represent closely related sequences without splitting 

groups inappropriately, but at the same time not including sequences which match the 

others by only a limited amount of sequence similarity.” 

(Personal communication, March 16 2007) 

 

In other words, the number of contigs that CAP3 assembles should reflect the 

number of identifiable gene families within the given EST data set. Before running 

ESTminer, two input files needed to be generated - BlastDB and BlastOut. This was 

performed as described in Figure 2. 

After running the ESTminer suite of programs on BlastDB and BlastOut, 

ESTminer‟s huge set of resulting pHaps needed to be analyzed. Three primary scripts 

were created to perform the analysis. It was necessary to run them one after another. 
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1_ExtractpHaps.pl - This script requires an input file called phapin.txt (aka 

snp_est_seqs.txt_haplotypes by ESTminer) which is generated by ESTminer. This script 

finds the position of ESTs using information from NCBI MapViewer and uses these 

positions to try and locate the pHaps on the genome. The start and stop positions of pHap 

ESTs could be found easily because they are indexed (in MapViewer) by EST accession 

number. However, locating pHap contigs posed an interesting problem. They were 

located by first finding the ESTs assembled on either end of that contig. The start position 

of one of these ESTs and the stop position of the other would thus give us the start and 

stop positions of the pHap contig itself. 

 

Verify that the given EST data set does not contain multiple 

identical GI (GenInfo Identifier) entries. This prevents a failure 

when creating the database later. 

Contig Assembly: Run CAP3 on the dataset by modifying the 

following 2 parameters - overlap length cutoff (o) and clipping 

range (y) with the following 4 combinations of values - 

(o, y) = (21, 10), (21, 22), (36, 10), (36, 22) 

 

In theory, the CAP3 parameters must be configured such that 

each contig produced, is an assembly of ESTs that belong to the 

same gene family. 

 

In other words, the number of contigs found must reflect the 

number of different gene families among the given EST data set. 

Combine the resulting Contigs (Contigs.txt) and the ESTs 

(Fasta.txt) into a single file - BlastDB 

All these steps 

were automated in 

a perl script 

named 

AutoESTminer.pl. 

The only input file 

needed by this 

script is a file that 

contains all the 

ESTs in FASTA 

format - Fasta.txt 

Create database: Run „formatdb‟ on the file BlastDB to create a 

Blast compatible database (Indexed using GI values) 

Run Blast in Database: Run „blastall‟ on the database using each 

contig from CAP3 as a query. Write output into BlastOut. 

Figure 2.1 - Steps to generate the input used by ESTminer 
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2_MappHaps.pl - This script took the start and stop positions of the pHaps (found by 

1_ExtractpHaps.pl), and tried to map them onto the known genes in the At chromosomes 

(the At genome has 5 chromosomes). For each pHap, the way in which they overlap (or 

not) with known genes was recorded and tabulated.  

 

3_CountGeneFreq.pl - This script was used to find out the characteristics of the known 

genes that have been uniquely mapped into (by only one pHap per gene). This is a useful 

statistic since ESTminer is expected to find only one pHap for every gene. 

 

A fourth script (0_BatchRun.pl) was created to run these 3 analysis scripts one 

after another for 4 times, each using a distinct set of CAP3 parameters. 

2.2. ANALYSIS OF THE TECHNIQUE USING ARABIDOPSIS THALIANA 

In their 2004 paper, Nelson et al. used 196K Glycine max (Soybean) ESTs to 

generate pHaps. In this analysis, ESTminer was run on a set of 110K Arabidopsis 

thaliana ESTs (of the Columbia ecotype). The set of 110K Columbia At ESTs were 

chosen by the following procedure - 

 

1. Retrieved 490,931 Columbia ESTs from GenBank. 

2. Discarded ESTs which were not yet mapped into the genome by MapViewer. 

3. Of the remaining 346,849 ESTs, selected 110,000 ESTs at random. 

4. Note: Only 110,000 were chosen due to the system memory limitations of CAP3. 

 

Since Dr. Nelson stated that the output of CAP3 is critical to results, four different 

analyses were performed - with two different values for each of the critical parameters - 

“overlap length cutoff” (-o), and “clipping range” (-y). The four different sets of 

parameters used, in the form (o, y), were (21, 10), (21, 22), (36, 10), and (36, 22). (o, y) = 

(21, 10) were the default parameters suggested by Nelson et al. for the Soybean ESTs. 

2.2.1. ESTminer results 

Table 1 shows a summary that was automatically created by the 

1_ExtractpHaps.pl script. Notice how the different values for the “overlap length cutoff” 



10 

 

 

parameter (-o) did not significantly differ in their results. On the other hand, a small 

change in the “clipping range” parameter (-y) changed the results quite considerably. 

 

Table 2.1 - Summary of results from ESTminer (generated by 1_ExtractpHaps.pl) 

 o21y10 o21y22 o36y10 o36y22 

Number of contigs generated by CAP3 12444 12784 12446 12786 

Number of CAP3 contigs from which ESTminer 

produced no pHaps 
4012 4275 4012 4275 

Total number of pHaps found by ESTminer 16320 16438 16321 16439 

Number of pHap contigs constructed 5603 5627 5604 5628 

Number of pHap ESTs found 10717 10811 10717 10811 

Number of distinct families that contain valid 

pHaps 
8423 8497 8425 8499 

 

2.2.2. Gene mapping results 

To analyze the accuracy with which ESTminer‟s pHaps compare with the known 

genes in NCBI MapViewer, the script considered the 4 different ways in which a pHap 

could overlap with a known gene with respect to their start and stop positions. These 4 

types are shown in Figure 3. 

A fifth type of mapping would be when a pHap does not overlap with any of the 

known genes. In this analysis, they are called “unmapped pHaps”. They could potentially 

be At genes that are not identified yet. 

Before comparing pHaps with the known genes in NCBI MapViewer, the 

1_ExtractpHaps.pl script needed to find which of the 5 chromosomes each pHap 

belonged to, and their start and stop positions within that chromosome. Some of the ESTs 

Legend 

 

Gene 

pHap 

Type 1 map 

Type 2 map 

Type 3 map 

Type 4 map 

Figure 2.2 - The 4 types of mapping seen between pHaps and genes 
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and genes were listed in two or more different locations on the genome by MapViewer. 

Because of this, duplicate entries for these pHaps were created - one for each different 

location in the genome. This is why the number of pHaps used for genome mapping is 

usually slightly greater than the number of pHaps that ESTminer produced. Figure 4 

shows a part of a MapViewer file showing an EST with two different locations. 

Using perl scripts, it was possible to find how often this occurs - 0.004% of ESTs 

were found to map (in MapViewer) into two or more different locations on the same 

chromosome. Some of these ESTs are shown in Table 2. 

 

Table 2.2 - ESTs with multiple locations in MapViewer 

EST Accession number Number of locations Chromosome 

AK175799 14 ch4 

BP815464 14 ch4 

AV824197 5 ch1 

 

Similarly for genes, 0.005% of the genes were found to map (in MapViewer) into 

two or more different locations on the same chromosome. Some of these genes are shown 

in Table 3. 

 

Start Stop Accession number of EST/gene 

… 

799138 802583 BX815050 (First mapping of this EST in this chromosome) 

803035 804300 BP808311 

… 

803040 804290 BX815050 (Same EST mapped in another location in the same chromosome) 

… 

Figure 2.3 - Part of a MapViewer file showing two locations for the same entry 
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Table 2.3 - Genes with multiple locations in MapViewer 

Gene ID or name Number of locations Chromosome 

ATPP2 10 ch1 

ATPP2 10 ch2 

AT 7 ch3 

AT 6 ch4 

AT 6 ch5 

AT 5 ch1 

 

Since these percentages are very small compared to the total number of pHaps, it 

can be safely assumed that creating duplicate pHaps does not significantly skew the 

analysis. Besides, by including these additional start and stop positions for a pHap, the 

mapping is more complete than if they were ignored. 

In the case of pHap contigs, the 1_ExtractpHaps.pl script deduced the start and 

stop positions from the ESTs that were used to create that contig. However, this caused a 

rare problem when ESTminer combined ESTs, from distant positions in a chromosome, 

into the same pHap contig. This resulted in pHap contigs with start and stop positions that 

were much farther apart than the actual length of the contig sequence. They were easy to 

spot since they usually overlapped more than 1000 genes (mostly Type 4 maps). With 

this much in mind, a brief count of pHap mapping was performed by the 2_MappHaps.pl 

script (Table 4). 

 

Table 2.4 - Number of distinct pHaps that map onto one or more genes 

CAP3 Parameters Type 1 Type 2 Type 3 Type 4 Mapped pHaps UnMapped pHaps Total pHaps used 

o21y10 14844 598 519 109 16234 116 16350 

o21y22 14939 607 521 112 16351 116 16467 

o36y10 14845 598 519 109 16235 116 16351 

o36y22 14940 607 521 112 16352 116 16468 

 

Note that the above counts are only of distinct pHaps. Some pHaps overlapped 

with more than one gene (with same/different map types). Similarly, a gene could have 

multiple pHaps map onto it (with same/different map types). If a pHap mapped onto 3 

genes with types 1, 1, and 3 respectively, then it is counted once in the „Type 1‟ column 

above and once more in the „Type 3‟ column above. This is why the 4 types in the table 

above do not add up to the total number of mapped pHaps. Later, all the different 

mappings are analyzed in detail to classify them as acceptable or unacceptable. 
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2.2.3. pHap-family distribution 

The distribution of pHaps found in the same family was an important result. In all 

4 sets of CAP3 parameters, slightly more than 85% of pHaps appeared to be singletons 

without additional family members. Table 5 shows the number of pHaps obtained per 

family and the distribution of such families among all the families that produced pHaps. 

Just as in the experiment by Nelson et al, the distribution shows a large concentration of 

families with only one pHap each. It was also noted that the distribution is quite similar 

for all 4 CAP3 parameters used - indicating that changing CAP3 parameters did not make 

much of a difference. With later results this will become more apparent. 

 

Table 2.5 - pHap-family distribution 

Number of 

pHaps found in 

the same family 

Percentage of such 

families out of 

8423 (o21y10) 

Percentage of such 

families out of 

8497 (o21y22) 

Percentage of such 

families out of 

8425 (o36y10) 

Percentage of such 

families out of 

8499 (o36y22) 

1 85.21% 85.23% 85.20% 85.22% 

2 4.44% 4.40% 4.44% 4.40% 

3 2.81% 2.80% 2.81% 2.80% 

4 1.60% 1.65% 1.60% 1.65% 

5 1.09% 1.09% 1.09% 1.09% 

6 0.81% 0.84% 0.81% 0.84% 

7 0.69% 0.66% 0.69% 0.66% 

8 0.56% 0.56% 0.56% 0.56% 

9 0.40% 0.38% 0.40% 0.38% 

10 0.28% 0.28% 0.28% 0.28% 

>10 2.10% 2.11% 2.11% 2.12% 

 

2.2.4. Step-by-step filtering of valid/invalid pHaps 

The pHaps generated by ESTminer using the CAP3 parameters o = 21 and y = 10, 

were carefully classified into different categories and analyzed as described below. 

 

1. 16350 distinct pHaps were obtained from ESTminer using the o21y10 parameters. 

 

2. All the pHaps that mapped onto only one gene each or no gene at all (15189 pHaps) 

were kept aside and analyzed later in Step 4 where pHaps were validated according to 

how many of them map into the same gene. 
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3. The remaining 1161 pHaps include only those that map into two or more genes. They 

were classified according to how many genes they each map into. 

a. All the pHaps that mapped onto more than 10 genes were considered invalid. 

Only 7 such pHaps were found. For example, Contig7194:1 (mapped 6067 

genes), Contig6105:1 (mapped 5278 genes), etc. This happened when ESTminer 

combined ESTs, from distant positions in a chromosome, into the same pHap 

contig such that its start and stop positions had thousands of genes in-between. 

b. The pHaps that map onto 2 genes each (1081 such pHaps) were analyzed. These 

pHaps were classified according to the sequence with which they map into genes. 

With this classification, the three most common ways in which pHaps mapped 

into two genes were found. These are shown in Table 6. 

 

Table 2.6 - The 3 most common ways in which a pHap mapped onto 2 genes 

Map sequence Freq Sample pHaps 

Type 1 Type 1 448 AA395556, Contig31:1 

Type 3 Type 1 263 AU238629, Contig1:1 

Type 1 Type 2 255 AV797203, Contig5:1 

 

Figure 5 shows some sample map sequences for the types mentioned. 

It was concluded that these unusual maps were mostly because of gene overlaps 

in MapViewer. Gene overlaps occur when potential (but unconfirmed) genes are 

positioned over each other. Since this was a downside of MapViewer, it was 

decided to leave these 1081 pHaps as inconclusive towards the performance of 

ESTminer. 

Legend 

 

Gene 

pHap 

Type 1 Type 1 

Type 3 Type 1 

Type 1 Type 2 

Figure 2.4 - The 3 most common ways in which a pHap mapped onto 2 genes 
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c. The pHaps that map onto 3 genes each (28 such pHaps) were analyzed. 

 

Table 2.7 - How three pHaps map into the same gene 

Map sequence Freq Sample pHaps 

Type 3 Type 4 Type 2 12 AV518488, Contig1945:1 

Type 4 Type 4 Type 2  6 AV793704, Contig11560:1 

Type 3 Type 4 Type 4 4 AV531450, Contig6811:1 

 

As can be seen from Table 7, most of these pHaps mapped with a Type 4 map in-

between. This implied that the maps were mostly because of the rare ESTminer 

problem explained in Step 3a and hence these pHaps were invalid. 

d. The pHaps that mapped onto more than 3 genes each (48 such pHaps) and less 

than 10 were analyzed. Here too, most of the pHaps mapped onto multiple genes 

with Type 4 maps. So they were considered invalid. However, a small minority of 

these pHaps were found to map into multiple genes in very unique ways. These 

were all because of unusual positioning of genes within MapViewer. Though 

quite interesting, these odd mappings were ignored because they occurred too 

rarely to affect the overall analysis. 

 

4. The 15189 pHaps that mapped onto only one gene each or no gene at all were 

analyzed. 

a. 116 of these pHaps mapped into areas with no known genes (unmapped pHaps) 

were ignored. Whether valid or invalid, „116‟ was too few to be significant to 

either cause. These pHaps point to previously unmapped locations and could 

potentially point to previously unidentified genes. 

b. The remaining 15073 pHaps were analyzed. This analysis is shown in Table 8. 
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Table 2.8 - Analysis of pHaps that map onto one gene each 

Valid number of pHaps that 

map into the same gene 

Number of 

such genes 

Total number of 

such pHaps 

Percentage of pHaps (out of 

total 15073 pHaps analyzed) 

1 4951 4951 32.85% 

2 909 1818 12.06% 

3 250 750 4.98% 

4 151 604 4.01% 

5 92 460 3.05% 

6 84 504 3.34% 

7 56 392 2.60% 

8 42 336 2.23% 

9 30 270 1.79% 

10 29 290 1.92% 

11 17 187 1.24% 

12 12 144 0.96% 

13 16 208 1.38% 

14 14 196 1.30% 

15 10 150 1.00% 

16 11 176 1.17% 

17 5 85 0.56% 

18 8 144 0.96% 

19 5 95 0.63% 

20 3 60 0.40% 

57 1 57 0.38% 

61 1 61 0.40% 

62 1 62 0.41% 

63 2 126 0.84% 

71 1 71 0.47% 

74 1 74 0.49% 

97 1 97 0.64% 

106 1 106 0.70% 

119 1 119 0.79% 

120 2 240 1.59% 

126 1 126 0.84% 

130 1 130 0.86% 

144 1 144 0.96% 

150 1 150 1.00% 

394 1 394 2.61% 

 

Table 8 shows that only 4951 pHaps out of 15073 pHaps (32.85%) mapped into a 

gene which has only one pHap map into it i.e. which have a one-to-one 

correspondence between pHap and gene. 
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2.3. CONCLUSION OF ANALYSIS 

The analysis of the final 15073 pHaps was performed by the 3_CountGeneFreq.pl 

script that counted the number of pHaps that map into the same gene, and then distributed 

the genes according to that number. This analysis (Table 8) showed us that – out of the 

16350 pHaps produced by ESTminer, only 30.28% uniquely identified a gene in 

Arabidopsis thaliana. This suggested that ESTminer was not working as the authors 

intended. 
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3. GI USING NEGATIVE SELECTION PATTERNS 

This chapter introduces a method of gene identification proposed by Dr. Ronald 

Frank in 2006 (Frank et al., 2006). The technique made use of the massive NCBI 

databases and their online local alignment search tool - BLAST. Since all the steps of this 

technique could be performed on a computer (with access to NCBI online services), it 

only seemed practical to try to automate as much of the technique as possible. This 

chapter describes the originally published automation of the technique and the subsequent 

improvements made since. But first, the rationale behind using negative selection patterns 

for gene family identification needs to be explored. 

3.1. AN INTRODUCTION TO NEGATIVE SELECTION 

The most popular and well understood mechanism of evolutionary adaptation is 

natural selection. It is the process by which genes favorable to an organism in its 

environment are carried over to future generations whereas deleterious genes are not. 

This means that over time, future generations of the organism will be better adapted to 

their environment. A common mechanism for such adaptation is negative selection. If an 

organism has genes that are deleterious to its survival, it subsequently loses its chance to 

reproduce, and its deleterious genetic information is lost. Over time, future generations of 

the organism are more likely to contain the genes of more successful survivors and 

reproducers. 

In today‟s understanding of evolutionary mechanisms, gene duplication is widely 

considered to play a major role (Taylor et al., 2004). A duplication event can cause any 

region of DNA to be duplicated - a region that contains one or more genes, a whole 

chromosome, or sometimes even the entire genome. Copies of the same gene that exist 

due to a gene duplication event are called paralogs. At least one of the paralogs will 

retain the original function as long as it is beneficial to the organism. Because of this 

“backup copy” the other paralogs are free from selective pressure and thus accumulate 

more mutations into future generations. This may lead to altered function 

(subfunctionalization), a new function (neofunctionalization), or loss of function. As an 

example for subfunctionalization, consider the duplication of a protein-coding gene that 
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encodes a protein for the root of a plant. After several tens of thousands of years, a 

paralog of the gene might still encode the original protein. But instead of being expressed 

in the plant‟s roots, mutations in the regulatory sequence (that controls the expression of 

the gene) may cause it to be expressed in the plant‟s stem. More often than not, mutations 

create new proteins which are deleterious to the plant, causing death (or failure to 

reproduce), and therefore not passed on to the next generation (negative selection). 

However, on the rare chance that the new protein turns out to be beneficial for the plant, 

then it is called a neofunctionalization. 

If mutations occur evenly across a gene, and negative selection allows only 

certain mutations to be carried over into future generations, then a deterministic pattern of 

differences between paralogs can be seen. In particular, for protein-coding genes, 

synonymous substitutions result in the same protein and are thus carried over into future 

generations. Non-synonymous substitutions result in a new protein which is either 

deleterious to the organism (common) or beneficial to the organism (rare). Hence, coding 

regions (the region that encodes the protein) of paralogs that have subfunctionalized via 

changes in regulatory elements should exhibit more synonymous substitutions than non-

synonymous ones. This mechanism appears to be very common in plants, causing a large 

proportion of plant genes to belong to gene families (Lockton et al., 2005). If this is the 

case, then most plant gene families can be identified by a pattern of bias toward 

synonymous substitutions between contigs assembled from related ESTs. 

3.2. A NEGATIVE SELECTION PATTERN 

In Dr. Frank‟s GI technique, the number of base differences between potential 

paralog pairs is counted with respect to their positions in a codon. The rationale behind 

the NSP (negative selection pattern) based technique is explained as follows. Table 9 

shows all the 20 amino acids and the corresponding codons that encode them. Of the 64 

codons, 3 of these do not encode amino acids (UAA, UAG, and UGA). They are instead 

used in DNA as stop codons - tags which mark the end of a coding region. 
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Table 3.1 - Amino acids encoded by various triplets of nucleotides (codons) 

 Second Position Differences  

F
ir

st
 P

o
si

ti
o

n
 D

if
fe

re
n

ce
s 

UUU 
Phe 

UCU 

Ser 

UAU 
Tyr 

UGU 
Cys 

T
h

ird
 P

o
sitio

n
 D

ifferen
ces 

UUC UCC UAC UGC 

UUA 

Leu 

UCA UAA Stop UGA Stop 

UUG UCG UAG Stop UGG Trp 

CUU CCU 

Pro 

CAU 
His 

CGU 

Arg 
CUC CCC CAC CGC 

CUA CCA CAA 
Gln 

CGA 

CUG CCG CAG CGG 

AUU 

Ile 

ACU 

Thr 

AAU 
Asn 

AGU 
Ser 

AUC ACC AAC AGC 

AUA ACA AAA 
Lys 

AGA 
Arg 

AUG Met ACG AAG AGG 

GUU 

Val 

GCU 

Ala 

GAU 
Asp 

GGU 

Gly 
GUC GCC GAC GGC 

GUA GCA GAA 
Glu 

GGA 

GUG GCG GAG GGG 

 

From Table 9 it is easy to see that a change in the third position of a codon is most 

likely to be synonymous. For example - CCU, CCC, CCA, and CCG all encode the same 

amino acid. This is known as a 4-fold redundancy. A change in the first position of UUA 

to CUA does not cause a change in the encoded amino acid. This is called a 2-fold 

redundancy. Table 10 shows all such first position redundancies. Similarly, a 3-fold 

redundancy exists between the codons - AUU, AUC, and AUA. Note how any change in 

the second position of a codon causes the encoded amino acid to change. Hence, any 

second position substitution is always non-synonymous. 

 

Table 3.2 - First position 2-fold redundancies 

UUA 
Leu 

UUG 
Leu 

CGA 
Arg 

CGG 
Arg 

CUA CUG AGA AGG 

 

Of the 61 different codons that produce 20 different amino acids, 8 codons are 2-

fold redundant (Table 10) in the first position, there are no redundancies in the second 

position, while in the third position, 24 codons are 2-fold redundant, 3 are 3-fold 

redundant, and 32 are 4-fold redundant. The distribution of differences between two 

subfunctionalized paralogs at the first, second, and third positions of each codon, show 

that the third position differences occur much more frequently than first or second 

position differences. Dr. Frank defined a discernible threshold for this NSP as follows - 

 



21 

 

 

“If differences appear non-random with respect to their position in a codon, and 

third position differences are more than 3 times the first position differences, and all 

differences are distributed as to satisfy the relationship 3
rd

 > 1
st
 > 2

nd
, then we can 

conclude that the contigs represent different genes. However, if these criteria are not met, 

we do not conclude that the contigs necessarily represent the same gene.” 

(Frank et al., 2006). 

 

It must be emphasized that such a technique can only identify gene families with 

protein-coding members that have diverged after a gene duplication event, and thus show 

a typical negative selection pattern. Since this specific evolutionary mechanism is 

common in plants (Lockton et al., 2005), Dr. Frank‟s NSP technique is better suited to 

identify gene families in plant genomes. 

3.3. INITIAL IMPLEMENTATION OF THE NSP-BASED GI TECHNIQUE 

The first attempt at automating this GI technique was published by Frank et al. in 

2006 (Frank et al., 2006). The automation used PERL scripts which were designed to run 

on UNIX, Linux, or Windows platforms. It either took a set of related ESTs as input, or a 

query sequence which could then be used to find the related ESTs. The query must be a 

protein-coding sequence which is believed to be one of many paralogs (belonging to a 

gene family). The query could also be an orthologous sequence (sequences with similar 

function but from different genomes) from a related species. The query sequence is 

submitted to the online NCBI BLAST service to search for ESTs that are similar to it and 

which belong to the organism in question. The ESTs returned by the BLAST search were 

assembled into contigs using an application called AssemblyLIGN. The open reading 

frames (the part of the sequence than encodes the protein) of the resulting contigs are 

identified and recorded using another application called MacVector. PERL scripts are 

then used to submit each pair of contigs to a pair-wise sequence alignment algorithm 

called bl2seq (BLAST for 2 Sequences) which is also an online NCBI service. The script 

then counts the number of 1
st
, 2

nd
 and 3

rd
 position differences between each contig pair 

and tabulates the results as a matrix stored in a file. Figure 6 shows the steps involved in 

this automation. 
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3.3.1. Automation 

The steps that are automated in the above implementation are called SimEST and 

SCAT. Other steps like the BLAST search, contig assembly, and ORF identification have 

to be performed manually using external applications. The BLAST search, in particular, 

is an online NCBI service which can be accessed in a browser. The search results have to 

be manually saved in a text file. The automated SimEST script reads the EST accession 

Identify ORFs of contigs (using 

MacVector) 

Select input 

Assemble ESTs to generate contigs 

(using AssemblyLIGN) 

End 

Query sequence and dbEST are 

from the same species 

Query sequence and dbEST are 

from a different species 

Collection of ESTs from Unigene 

or other clustering algorithms 

Select input 

Find similar ESTs from 

BLAST (using SimESTs) 

Perform pairwise contig 

comparisons (using SCAT/PCAT) 

Identify gene family members 

(using Summary matrix) 

Figure 3.1 - Steps in automation of the NSP-based gene family identification technique 
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numbers from this file and retrieves the actual sequences using another NCBI web 

service known as e-Utils (Entrez Programming Utilities). Once the sequences are 

obtained and saved in a file, they have to be assembled into contigs by manually 

submitting them into the AssemblyLIGN application. The ORFs of the resulting contigs 

are then identified by analyzing them in the MacVector application. The contigs and their 

ORFs have to be stored in files in a predetermined format so that the SCAT script can 

submit each pair of contigs to the PCAT script. PCAT aligns two given contigs using 

bl2seq and then counts the 1
st
, 2

nd
 and 3

rd
 position differences between them with respect 

to the ORFs of the contigs. After PCAT is run on every contig pair, SCAT creates a 

matrix containing 1
st
, 2

nd
 and 3

rd
 position differences between every contig pair. 

3.3.2. Validation 

Frank et al. validated this implementation using the well known PAL gene family 

from Arabidopsis thaliana. The PAL family has 4 known members - PAL1, PAL2, 

PAL3, and PAL4. By submitting PAL1 as the query, the remaining paralogs were 

expected to be found. After going through all the steps, SCAT created Table 11. 

Each cell in the table indicates the number of 1
st
, 2

nd
 and 3

rd
 position differences 

separated by commas. An „NS‟ indicates that no significant similarity was found between 

the contigs.  A „NO‟ indicates that bl2seq returned an alignment of the contigs, but the 

ORFs identified on those contigs did not overlap. 

 

Table 3.3 - Distribution of 1
st
, 2

nd
, and 3

rd
 position differences between contigs 

 Contig3 Contig4 Contig5 Contig6 Contig7 Contig8 Contig9 

Contig1 20, 6, 33 14, 4, 43 NS NS NS NS 18, 5, 32 

Contig3 *** 45, 19, 146 NS 19, 7, 70 NS 15, 7, 55 5, 5, 6 

Contig4 *** *** NS 3, 4, 4 NS 1, 2, 1 10, 4, 27 

Contig5 *** *** *** NO NS NS NS 

Contig6 *** *** *** *** 6, 5, 39 4, 3, 7 NS 

Contig7 *** *** *** *** *** NS NS 

Contig8 *** *** *** *** *** *** NS 

(Frank et al., 2006) 

 

By applying the threshold for the NSP as defined by Frank et al. (see section 3.2), 

Table 11 shows that Contig1 represents a different gene from Contig4. The distribution of 

differences (1
st
 position: 14, 2

nd
 position: 4, 3

rd
 position: 43) definitely shows a non-
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random distribution of differences, the third position differences are 3.1 times that of first 

position, and overall 3
rd

 > 1
st
 > 2

nd
. Similarly, Contig3 and Contig4 also represent 

potential paralogs. Also note how Contig6 and Contig8 have very few differences with 

Contig4. They are most likely the same gene, but with a few sequencing errors. With this 

much information, 3 distinct PAL paralogs have been clearly identified, each represented 

by Contig1, Contig3, and Contig4. 

 

Table 3.4 - Percent similarity of potential paralogs (contigs) with known PAL genes 

 GeneA GeneB Gene C 

 Contig1 Contig3 Contig4 Contig6 Contig8 

PAL1 96% 76% 86% 83% 86% 

PAL2 79% 76% 100% 97% 98% 

PAL3 81% 83% 76% 77% 77% 

PAL4 73% 99% 76% 85% 86% 

(Frank et al., 2006) 

 

In Table 12, the percent similarity of the potential paralogs with the 4 known PAL 

genes is calculated using bl2seq alignments. Contig1 is most similar to the PAL1 gene 

(which was the protein-coding query gene). Contig3 represents the PAL4 gene and 

Contig4, Contig6, and Contig8 all appear to represent the PAL2 gene. Clearly, this 

experiment provided limited validation for Frank et al. to conclude that the NSP-based GI 

technique worked as expected. It was able to correctly identify some contigs as potential 

paralogs to the query sequence. Furthermore, by increasing the size of the set of ESTs 

assembled into contigs, the chance of identifying new potential paralogs can be increased. 

3.3.3. Issues  

One problem with this implementation is that it is not fully automated. It requires 

several instances of manual intervention to run the three external applications - BLAST, 

AssemblyLIGN, and MacVector. AssemblyLIGN and MacVector, being GUI (Graphical 

User Interface) applications, could not be automatically controlled by a PERL script. 

Also, they are Macintosh-based applications whereas SimEST and SCAT are only 

supported on UNIX, Linux, and Windows platforms. This required the user to switch 

from one platform to another in-between steps during the process. 
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The alignment between contigs was performed by bl2seq which is a local 

alignment program. This means that the most similar subsets of each sequence are 

aligned against each other. What is ideally desired is that two contigs must be aligned for 

the entire length of their ORFs. This is known as global alignment. Figure 7 shows how 

these two types of alignment might align the same two sequences. 

Incorrectly inserted gaps can shift the sequence such that the position of 

nucleotides within their codons is incorrect. This problem is more likely to occur in local 

alignments rather than global alignments. However, it is possible to more closely analyze 

each inserted gap with respect to their surrounding nucleotides or a nearby stop codon, to 

determine whether the gap has been inserted correctly or not. The user can perform this 

manually using MacVector. However, gaps are generally uncommon in this 

implementation since the aligned contigs are very similar to each other and their ORFs 

are usually of equal length. This is why the validations ran successfully despite using the 

local alignment algorithm bl2seq. 

3.4. A FULLY AUTOMATED IMPLEMENTATION 

To fully automate the NSP-based GI technique, it was first necessary to find non-

GUI alternatives to AssemblyLIGN and MacVector. PERL scripts are capable of 

automating only local command-line applications and online browser-based services. 

CAP3, a command-line contig assembly program, was chosen as an alternative to 

AssemblyLIGN. The NCBI ORF Finder, a browser-based online application was chosen 

as an alternative to MacVector. NCBI BLAST search was available as an online web-

Global Alignment 
Sequence 1: AGACTGAGAG-GTGACCTGACCGT 

Sequence 2: A-CTG-AG-GAG-G---TGACC-T 

It forces an alignment over the full length of both sequences. 
 

Local Alignment 
Sequence 1: AGACTGAG-AGGTGACCTGACCGT 

Sequence 2: --ACTGAGGAGGTGACCT------ 

It determines similar regions between sequences by comparing sub-sequences of all possible lengths to 

find the optimum alignment. 

Figure 3.2 - The two methods of sequence alignment 
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service and could be automated in PERL too. Since all portions of the original 

implementation now had alternatives that could be controlled by PERL scripts, it was 

possible to create a continuous streamlined automation that ran from start (input of query 

protein) to stop (tabulated comparison of potential paralogs). The following section 

describes the implementation of this automation and validates its operation using PAL 

genes from Arabidopsis thaliana. 

3.4.1. CAP3 (Contig Assembly Program, 3rd Generation) 

Huang et al. designed CAP3 to assemble short reads (ESTs) into long sequences 

(contigs). Algorithms in CAP3 identify and compute overlaps between reads, construct 

multiple sequence alignments of these reads, and generate consensus sequences (Huang 

et al., 1999). In other words, given a set of ESTs and specific parameters of operation, 

CAP3 attempts to combine as many of these ESTs together to form the smallest possible 

set of long contigs. ESTs that could not be combined with other ESTs to produce a contig 

are known as singletons. Below, the two parameters of CAP3 that are relevant to the GI 

technique are described: 

 

Overlap length cutoff (o) - This is the minimum number of bases on two ESTs that need 

to overlap before being considered for inclusion into the same contig. In the earlier 

implementation, AssemblyLIGN set its equivalent parameter to 20 bases. In CAP3, this 

parameter cannot be lower than 21. Hence, a default value of 21 bases was used for 

overlap length cutoff (o). 

 

Clipping range (y) - This is the number of bases that will be clipped (discarded) on both 

ends of an EST. The process of generating ESTs by reading DNA sequences (shotgun 

sequencing) causes it to be less accurate near the ends of the EST and more accurate near 

the middle. Clipping bases from the ends improves the overall accuracy, at the cost of 

losing information. In the 2006 implementation, AssemblyLIGN did not clip its ESTs (y 

= 0). However, CAP3 requires a minimum of 6 bases to be clipped (y > 5). It is noted that 

the results of CAP3 is heavily influenced by changes in y. Through multiple trials, it was 

decided that 50 bases was a reasonable value for y and it produced the best results. 
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Overlap percentage identity cutoff (p) - This is the percentage of bases that need to 

perfectly match each other in the overlap region between two ESTs. AssemblyLIGN used 

100% in its equivalent parameter. CAP3, being more rigid in its alignments, could not 

create contigs for p > 95%. Between 90% and 95%, CAP3 generated too many contigs 

because of the fewer overlaps found. Through multiple trials, p = 90% is selected as a 

reasonable value for this parameter. 

 

Despite hard-coding default values for each parameter into the script, it did allow 

the user to specify custom values for these 3 CAP3 parameters. In particular, it was noted 

that changes in clipping range (y) significantly affected the resulting contigs. This is most 

likely due to the variable accuracy levels among different sets of ESTs. 

3.4.2. NCBI ORF Finder (Open Reading Frame Finder) 

The ORF Finder is a browser-based online analysis tool which finds all open 

reading frames of a selectable minimum size in a given sequence. An Open Reading 

Frame (ORF) is the part of a nucleotide sequence that encodes a protein. This tool 

identifies all of the possible ORFs of a given sequence using the standard genetic code 

for the start and stop codons. This code states that the start codon is usually AUG. This is 

the most common codon that marks the start of an ORF. In rare cases, an ORF may start 

with a codon other than AUG, like GUG, CUG, or UUG. The stop codons always mark 

the end of an ORF. These are always - UAA, UAG, or UGA. 

The ORF Finder takes the input contig and finds the start and stop codons on it. If 

several such codons are found, then there will be more than one possible ORF on the 

contig. In this implementation, the longest ORF found on each contig was selected. 

3.4.3. Automation 

The operation of the script is summarized as a flowchart in Figure 8. The PERL 

script that fully automates this implementation is named Auto.pl. It is designed to work 

on all platforms supporting a PERL environment including Macintosh-based OS X. The 

input to this script is the protein sequence whose potential paralogs need to be found. 

Optionally, the user can input customized values for CAP3 parameters overlap cutoff (o), 

clipping region (y), and overlap percentage identity cutoff (p). 
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Initializations 

 Get the accession number of the query protein sequence as input from the user 

 Get the following CAP3 parameters as input from the user. If the user skips this step, 

then use the following default parameter values 

Submit the query protein sequence to NCBI BLAST 

Retrieve BLAST output and store it into a file - BlastOP.txt 

Read each accession number in ACCs.txt and fetch the full EST 

sequence using NCBI eUtils. Store the sequences into Fasta.txt 

Run CAP3 on Fasta.txt using the user specified parameters. If no 

parameters were specified, then use the defaults (o=21, y=50, 

p=90). The resulting contigs are stored into Fasta.txt.cap.contigs 

 

Read the EST accession numbers from BlastOP.txt and store 

them into ACCs.txt 

All these 

steps were 

automated 

by a PERL 

script 

named 

Auto.pl 

Have the user input the accession number of the query protein 

sequence and the CAP3 parameters - o, y, and p 

Store each contig from Fasta.txt.cap.contigs in separate files. 

Submit each contig to NCBI ORF Finder. Store each contig 

filename and its largest ORF into Contigfile.txt 

Perform pairwise contig comparisons (using SCAT/PCAT) 

Identify gene family members (using Summary matrix) 

End 

Figure 3.3 - Fully automated steps in NSP-based gene family identification techn 
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 o, overlap length cutoff (default value = 21) 

 y, clipping range (default value = 50) 

 p, overlap percent identity cutoff (default value = 90) 

BLAST Search 

 Submit the input query sequence to the BLAST program and wait until the query is 

completed. Do the following during the wait period: 

 Extract the BLAST Request ID (RID) from the returned webpage 

 Repeat the following every 2 seconds (Poll for results) 

 Read the website that contains the status of the Request ID 

 Extract status information (waiting/failed/unknown/ready/nohitsfound) 

 Indicate the current status to the user - Print a dot (.) if current status is „waiting‟ 

 If the results are ready  to be fetched (status = „ready‟), then exit this loop 

 Fetch the BLAST results and store them into a file called BlastOP.txt 

Extracting Accession Numbers and fetching their EST sequences 

 For each line of BlastOP.txt that contains an accession number, repeat the following 

 Extract the acc no. in the line and store it into ACCs.txt 

 Submit this acc no. as a request to Entrez Utilities‟ efetch.fcgi service 

 Retrieve the sequence returned and append it into a file - Fasta.txt 

CAP3 Automation 

 Run the CAP3 application on the command-line. Pass the path to Fasta.txt and the 

three parameters o, y, and p to CAP3 as command-line arguments. If the user did not 

specify these parameters, then run with the default values as shown below - 

OS X/UNIX/Linux >./cap3 Fasta.txt -o 21 -y 50 -p 90 

Win32   >cap3.exe Fasta.txt -o 21 -y 50 -p 90 

NCBI ORF Finder Automation 

Of the 8 output files generated by the CAP3 program, load the file Fasta.txt.cap.contigs, 

and repeat the following steps for each contig sequence in this file: 

 Submit the sequence to the NCBI ORF Finder, and read the resulting webpage 

 Remove the HTML tags to reveal information on all of the ORFs found 

 Find the start, stop, and frame of the longest ORF 
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 Store the full contig sequence into a file named - ContigXY.txt - where X is either 

„+‟ or „-‟ (a „-‟ indicates that the ORF is in the reverse complement of the 

sequence), and Y is the contig number 

 Append the contig filename and the corresponding ORF start and stop positions 

into Contigfile.txt 

SCAT/PCAT Automation 

 Submit Contigfile.txt to the SCAT script so that it generates a tabulated summary of 

the pairwise contig comparisons 

3.4.4. Validation 

This automation is validated using the known PAL genes in Arabidopsis thaliana. 

This would allow us to compare its performance against the results obtained through the 

semi-automated technique used previously by Frank et al. and ESTminer. The accession 

number for the PAL1 gene (AAK76593) is used as input to Auto.pl and the CAP3 

parameters are set to the default values. The script was run on the command line as - 

OS X/UNIX/Linux  >perl Auto.pl AAK76593 

Win32    >Auto.pl AAK76593 

When the script finally terminates, a tabulated summary of the pairwise 

comparisons between contigs is generated and it is stored into a file. The table which is 

generated as a result of the PAL1 query is shown in Table 13. 

 

Table 3.5 - Distribution of 1
st
, 2

nd
, and 3

rd
 position differences between contigs 

 Contig1 Contig2 Contig3 Contig4 Contig5 Contig6 

Contig1 *** 8, 2, 8 0, 0, 2 NS 0, 0, 0 NS 

Contig2 *** *** 1, 0, 0 NO 12, 12, 16 NO 

Contig3 *** *** *** NS 6, 7, 10 NS 

Contig4 *** *** *** *** 16, 8, 99 10, 6, 35 

Contig5 *** *** *** *** *** 4, 12, 28 

Contig6 *** *** *** *** *** *** 

 

It can be seen that Contigs 1, 2, and 3 are very similar to each other and do not 

appear to show an NSP with any other contig. Contigs 4, 5, and 6 show a clearly non-

random pattern of differences between each other. In each, the number of 3
rd

 position 

differences between pairs is more than 3 times the number of 1
st
 position differences. The 
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differences in all three pairwise comparisons (except for Contig5 and Contig6) appear to 

satisfy the rule 3
rd

 > 1
st
 > 2

nd
. Since Contig5 and Contig6 do not pass the discernible 

threshold defined by Frank et al., they do not qualify as potential paralogs. However, 

Table 14 clearly shows that Contig5 and Contig6 are very similar to the PAL1 and PAL4 

genes respectively. Also, Contig4 was found to be most similar to the PAL2 gene. 

 

Table 3.6 - Percent similarity of potential paralogs (contigs) with known PAL genes 

 No significant patterns found Gene A Gene B Gene C 

 Contig 1 Contig 2 Contig 3 Contig 4 Contig 5 Contig 6 

PAL1 97% 84% 77% 86% 99% 76% 

PAL2 80% 98% 81% 99% 84% 76% 

PAL3 NS 76% 76% 75% 75% 82% 

PAL4 NS 76% 97% 75% 75% 99% 

 

3.4.5. Discussion 

Three of the contigs generated by CAP3 closely resemble 3 paralogs in the PAL 

gene family. The distribution of 1
st
, 2

nd
, and 3

rd
 position differences between these 

contigs (Contigs 4, 5, and 6) appear to be non-random and the number of third position 

differences is at least three times the first position differences. This satisfies two of the 

three criteria for NSP, as stated by Frank et al. The third criterion, which requires the 

second position differences to be lesser than the first position differences, was satisfied 

by two of the three contig pairs. The distribution of differences between the other two 

Contigs 5 and 6 was calculated as 4, 12, 28. Even though this was clearly a non-random 

distribution of differences, the number of second position differences was quite larger 

than the first position differences. One explanation for this is that since ESTs were 

allowed to overlap with 90% match (CAP3‟s overlap percent identity cutoff, p = 90), 

ESTs carrying errors were allowed to assemble into the contigs. It is possible to reduce 

such errors by clipping EST edges, but if too much of the EST is clipped out, the 

resulting contigs became shorter in length. This leaves bl2seq with shorter sequences to 

align and compare. Longer contigs generate a more distinctive NSP than shorter ones. In 

other words, y must be large enough to remove EST errors, and short enough to allow the 

creation of longer contigs. This causes the automation to be very sensitive to the clipping 

range parameter „y‟. The automation must be repeated with different combinations of 
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CAP3 parameters (particularly y) until distinctive negative selection patterns are seen in 

the resulting distribution. 

3.5. RESULTS AND DISCUSSION 

The results of the new automation in Table 13, show less distinctive patterns of 

negative selection than the older implementation in Table 11. However, comparing Table 

14 with Table 12, it can be seen that the same 3 paralogs were represented by three 

contigs in both implementations. This means that CAP3 correctly generated contigs that 

were subfunctionalized paralogs, but there were too many errors between them that the 

negative selection patterns were not distinctive enough. The contig assembly application 

used in the earlier implementation (AssemblyLIGN) minimizes such errors by restricting 

overlaps between ESTs to a 100% match. Since AssemblyLIGN is manually operated by 

a user, errors in the assembly can be intuitively identified and immediately fixed. Errors 

in ORF identification can be intuitively fixed by the user with MacVector. The trade-off, 

of course, is the required manual control of the application. In comparison, the CAP3 

based automation of the GI technique is quick and efficient. The user can conveniently 

repeat the automation with different CAP3 parameters until a distinctive negative 

selection pattern is found. 

In conclusion, the newer implementation appears to get the job done quickly and 

correctly while slightly compromising accuracy. However, this particular negative 

selection pattern is easy to spot even when there is a high rate of errors in the ESTs. The 

2006 implementation by Frank et al. requires occasional manual intervention and hence 

allows the user more control over each step of the process at the expense of efficiency. 
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4. CONCLUSION 

A fully automated gene family identification program was created which tapped 

into the information stored on huge online databases that are constantly updated with 

newly sequenced genomic data. A user simply needed to input the accession number to a 

protein-coding gene and the script would generate a table of its potential paralogs. The 

user can then easily identify these paralogs in the organism‟s genome. 

The current implementation of NSP-based GI runs quickly and efficiently except 

for the BLAST search, where the wait-times on the NCBI server are non-deterministic. 

Nevertheless, it is only necessary to run BLAST once for a given protein-coding query 

gene. After BLAST fetches the ESTs that are homologous with the query sequence, the 

user can run the remaining steps any number of times without repeating BLAST every 

time. This makes it much faster for the user to try out different CAP3 parameters and find 

an optimum configuration that produces the negative selection pattern. 

In the analysis performed on this implementation, it was found to correctly 

identify 3 members of the Arabidopsis thaliana PAL gene family with moderate 

accuracy. The biggest drawback of the automation is in its dependence of CAP3. Even 

though the contigs that it assembled were prone to errors (because of erroneous ESTs), 

the GI technique was still able to identify distinctive NSP patterns. However, it would go 

a long way to implement error correction techniques or to generate files containing 

quality information about ESTs – which can be used by CAP3 to generate more accurate 

contigs. 

The analysis of ESTminer revealed that it did not work as expected. Most of the 

pHaps identified did not uniquely map into genes. This meant that ESTminer was not 

correctly identifying potential haplotype sequences i.e. a set of sequences closely linked 

by DNA polymorphisms. The application depended too heavily on accurate contig 

assembly and relied on the assumption that each contig generated by CAP3 would be 

representative of a gene family. 
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4.1. COMPARISON OF GI TECHNIQUES 

A summarized comparison of the two GI techniques is shown in Table 15. It also 

compares the two implementations of the NSP-based GI technique - the earlier 

implementation (which used AssemblyLIGN and MacVector), and the newer 

implementation (using CAP3 and NCBI ORF Finder). 

 

Table 4.1 - Summarized comparison of GI techniques 

ESTminer NSP using AssemblyLIGN 

and MacVector 

NSP using CAP3 and 

NCBI ORF Finder 

Attempts to find paralogs 

Genome-wide 

Finds paralogs only within 

one Gene-family at a time 

Finds paralogs only within 

one Gene-family at a time 

Based on single nucleotide 

polymorphisms found 

between potential paralogs 

Based on a negative 

selection pattern found 

between potential paralogs 

Based on a negative 

selection patterns found 

between potential paralog 

Uses CAP3 to cluster gene 

families together 

throughout the genome 

Uses NCBI BLAST to find 

ESTs which are likely to 

contain paralogs of the 

query (in the same gene 

family) 

Uses NCBI BLAST to find 

ESTs which are likely to 

contain paralogs of the 

query (in the same gene 

family) 

Platform independent 

(Needs a PERL interpreter 

installed) 

Certain parts run on Mac 

OS X; Other parts run on 

Win32/Linux (Needs a 

PERL interpreter installed) 

Platform independent 

(Needs a PERL interpreter 

installed) 

After manually running 

CAP3 and creating a local 

BLAST database, it is 

automated in three scripts: 

AssemblyLIGN and 

MacVector need to be 

manually operated between 

using two scripts: 

Fully Automated in a single 

script: 

AlleleFinderV4.1.3 

HaplotypeSorterV1.1 

SNPfindV14.0.8 

SimEST 

SCAT 

AutoNSP 

Moderately affected by 

EST sequencing errors 

EST sequencing errors can 

be manually fixed using 

AssemblyLIGN or 

MacVector 

Moderately affected by 

EST sequencing errors 

 



35 

 

 

4.2. FUTURE WORK 

As future work, the NSP-based GI technique can be extended by querying the 

automation with orthologs from related organisms rather than with paralogs in the same 

organism. Even with the current implementation, a protein sequence from some organism 

can be submitted, while using BLAST to search for ESTs from another organism. This 

kind of operation needs to be further tested. Another possible modification is to submit 

the paralogs found by the script back to the script. This way a tree can be automatically 

generated that shows the entire phylogeny of genes in a species that evolved after gene 

duplication events. 

Furthermore, it would be useful to find an alternative to AssemblyLIGN that can 

be automated into a perl script. For the same reason, it would also be useful to find an 

alternative of CAP3 which gives the user more freedom in manipulating the contigs. 

CAP3 was originally designed to assemble contigs for entire genomes. If the source code 

for CAP3 can be obtained from its authors, then it might be possible to create a modified 

version of it that is well suited for NSP-based gene family identification. 

Currently, work is in progress to create a customized version of the NCBI ORF 

Finder using perl scripts. This script reads a global alignment between two contigs and 

finds the longest common ORF between them. Earlier, a biologist could simply look at 

gaps inserted in an alignment and intuitively figure out whether a gap has caused a shift 

in codon positions. Information on such shifts is very important for accurately counting 

the first, second, and third position differences. It is possible to encode such intuitive 

rules into the customized ORF finding perl script. 

The eventual goal is to create a computer based program that will read complete 

genomic data from various related organisms and will then identify and map all the genes 

and gene families. This is a lofty goal, but this thesis has proved that automating GI using 

evolutionary rationales takes us a significant step closer. 
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