
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2007

A quantitative study of gene identification techniques based on A quantitative study of gene identification techniques based on

evolutionary rationales evolutionary rationales

Cyriac Kandoth

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Kandoth, Cyriac, "A quantitative study of gene identification techniques based on evolutionary rationales"
(2007). Masters Theses. 4586.
https://scholarsmine.mst.edu/masters_theses/4586

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4586?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A QUANTITATIVE STUDY OF GENE IDENTIFICATION TECHNIQUES

BASED ON EVOLUTIONARY RATIONALES

by

CYRIAC KANDOTH

A THESIS

Presented to the Faculty of the Graduate School of the

Missouri University of Science and Technology

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2007

Approved by

Dr. Fikret Ercal, co-Advisor Dr. Ronald L Frank, co-Advisor

 Dr. Jennifer Leopold

iii

ABSTRACT

Current gene identification (GI) techniques typically rely on matching

biological or chemical properties of specific genes, specific species, specific ecotypes,

etc. Other techniques might involve homology searches using known gene

sequences. Since they are either too specific or they depend on known genes, these

techniques can never claim to be complete i.e. to have identified all possible genes in

a genome. This is an inherent drawback caused by the immense complexity of gene

organization. However, it is possible to get closer to a more global generalized GI

technique by using evolutionary rationales. The advantage of such a general

technique is that, once automated on a computer, it can be easily extended to

identify any gene that evolved with that rationale. In this thesis, a new automated GI

technique is proposed, and compared against another computer-based technique

proposed earlier. Both methods utilize EST data available from NCBI databases to

discover previously unknown genes. The newly proposed method identifies one

gene family at a time and is based on a distinctive negative selection pattern (NSP)

of differences, which is seen between the coding regions of gene family members.

The other technique, called ESTminer, attempts genome-wide gene family

identification for any organism, by detecting single nucleotide polymorphisms

between potential family members. In this thesis, a complete automated analysis of

both techniques is presented.

iv

ACKNOWLEDGEMENTS

I am extremely grateful to the many people who have contributed, even in little

ways, to the development of this thesis. But first, I have to thank both Dr. Fikret Ercal

and Dr. Ronald L Frank - Dr. Ercal, for his invaluable guidance into the academic realm,

and Dr. Frank, for sharing his immense “repository of information”. I am also grateful to

Dr. Jennifer Leopold for the valuable feedback she provided as a member of the

examining committee.

I will not forget the many moments spared by the faculty members and graduate

students at the Department of Computer Science. They have all contributed to this thesis

in many little ways, whether they know it or not.

Finally, I am in debt to my friends and family for their continuous support

throughout the development of this thesis.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

LIST OF ILLUSTRATIONS .. vi

LIST OF TABLES ... vii

1. INTRODUCTION ... 2

1.1. GENE IDENTIFICATION ... 2

1.2. RELATED WORK ... 3

1.3. ESTMINER .. 4

1.4. NEGATIVE SELECTION PATTERNS TO IDENTIFY GENE FAMILIES 5

2. ANALYSIS AND EVALUATION OF ESTMINER .. 7

2.1. OVERVIEW OF THE TECHNIQUE .. 7

2.2. ANALYSIS OF THE TECHNIQUE USING ARABIDOPSIS THALIANA 9

2.2.1. ESTminer results ... 9

2.2.2. Gene mapping results .. 10

2.2.3. pHap-family distribution ... 13

2.2.4. Step-by-step filtering of valid/invalid pHaps .. 13

2.3. CONCLUSION OF ANALYSIS .. 17

3. GI USING NEGATIVE SELECTION PATTERNS ... 18

3.1. AN INTRODUCTION TO NEGATIVE SELECTION ... 18

3.2. A NEGATIVE SELECTION PATTERN .. 19

3.3. INITIAL IMPLEMENTATION OF THE NSP-BASED GI TECHNIQUE 21

3.3.1. Automation .. 22

3.3.2. Validation .. 23

3.3.3. Issues ... 24

3.4. A FULLY AUTOMATED IMPLEMENTATION .. 25

3.4.1. CAP3 (Contig Assembly Program, 3rd Generation) ... 26

3.4.2. NCBI ORF Finder (Open Reading Frame Finder) .. 27

3.4.3. Automation .. 27

3.4.4. Validation .. 30

3.4.5. Discussion ... 31

3.5. RESULTS AND DISCUSSION ... 32

4. CONCLUSION .. 33

4.1. Comparison of GI techniques ... 34

4.2. Future work .. 35

BIBLIOGRAPHY .. 36

VITA .. 37

vi

LIST OF ILLUSTRATIONS

Figure 1.1 - A Single Nucleotide Polymorphism (SNP) between two similar sequences 4

Figure 2.1 - Steps to generate the input used by ESTminer ... 8

Figure 2.2 - The 4 types of mapping seen between pHaps and genes ... 10

Figure 2.3 - Part of a MapViewer file showing two locations for the same entry 11

Figure 2.4 - The 3 most common ways in which a pHap mapped onto 2 genes 14

Figure 3.1 - Steps in automation of the NSP-based gene family identification technique 22

Figure 3.2 - The two methods of sequence alignment ... 25

Figure 3.3 - Fully automated steps in NSP-based gene family identification techn 28

file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944220
file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944221
file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944222
file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944223
file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944224
file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944225
file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944226
file:///C:\Documents%20and%20Settings\ckhw2\Desktop\Kandoth's%20Thesis%20v1.1.docx%23_Toc183944227

vii

LIST OF TABLES

Table 2.1 - Summary of results from ESTminer (generated by 1_ExtractpHaps.pl) 10

Table 2.2 - ESTs with multiple locations in MapViewer ... 11

Table 2.3 - Genes with multiple locations in MapViewer .. 12

Table 2.4 - Number of distinct pHaps that map onto one or more genes 12

Table 2.5 - pHap-family distribution .. 13

Table 2.6 - The 3 most common ways in which a pHap mapped onto 2 genes 14

Table 2.7 - How three pHaps map into the same gene ... 15

Table 2.8 - Analysis of pHaps that map onto one gene each .. 16

Table 3.1 - Amino acids encoded by various triplets of nucleotides (codons) 20

Table 3.2 - First position 2-fold redundancies .. 20

Table 3.3 - Distribution of 1
st
, 2

nd
, and 3

rd
 position differences between contigs 23

Table 3.4 - Percent similarity of potential paralogs (contigs) with known PAL genes 24

Table 3.5 - Distribution of 1
st
, 2

nd
, and 3

rd
 position differences between contigs 30

Table 3.6 - Percent similarity of potential paralogs (contigs) with known PAL genes 31

Table 4.1 - Summarized comparison of GI techniques ... 34

1. INTRODUCTION

Gene Identification (GI) is the process of finding segments within genomic data

(like DNA sequences) that contribute a specific functionality i.e. a gene. Today, there are

hundreds of very different GI techniques. These techniques can be specific to plants,

specific to mammals, specific to certain species or ecotypes, specific to a gene family, or

sometimes even gene-specific. This is because the techniques usually depend on one or

more biological properties of genes that make it possible to pin-point them within a sea of

DNA sequences. Also, these techniques are often conducted experimentally which makes

them slow and tedious. This is why there is a move toward developing automated GI

techniques. “Automated”, in this context, refers to using a computer to analyze raw

genomic data and produce ready and conclusive information for a biologist. A review of

publications in GI found that very few attempts were made to create a fully automated

general process for identification of genes throughout a genome, or at least throughout a

gene family. This might imply that the particular problem of developing such a large

scale non-specific GI technique is either very difficult or, considering the complexity of

gene organization, maybe even impossible. However, Bioinformatics - the application of

computers to solve biology problems - is still a fledgling field and there is plenty of scope

for new ideas.

In this thesis, the recent work that has gone into computer-based GI processes is

first examined in Chapter 1. One of these processes - called ESTminer - claims to identify

potential gene families within an entire genome. This is tested thoroughly in Chapter 2.

ESTminer was developed by Nelson et al. in 2005. Chapter 3 discusses another GI

technique which uses negative selection patterns (NSP) between gene family members to

identify all members of that gene family. This process was first developed and automated

by Frank et al. in 2006. The chapter goes on to explain how this automation was further

developed using perl scripts that could interface with online applications such as BLAST

(Basic Local Alignment Search Tool) and ORF Finder (Open Reading Frame Finder).

The only input that this automation needs is a known gene (a protein sequence) that

belongs to the gene family to be identified. The output is a table that summarizes the

distribution of negative selection patterns (NSP) between contigs (a contiguous set of

2

overlapping sequences which could potentially represent a gene) from that family. This

information helps to identify potential members of the same gene family as the protein-

coding gene used as input. The correctness of this automation is validated using sample

sequences from Arabidopsis thaliana (abbreviated “At”) to identify a previously known

gene family.

1.1. GENE IDENTIFICATION

Automated analysis of genomic data, using techniques developed for

bioinformatics, came about as a result of necessity. Genomic sequences are enormous and

manual analysis is impractical. The progress of the Human Genome Project is a good

example (Human Genome Program, 1994). When it started, the identification of genes

was a slow and tedious process. It usually involved matching known genes from other

species with those in the human genome. By 2003, the entire 3 billion nucleotides were

sequenced, but the processes used in locating the genes became numerous and elaborate.

Some of these were conducted experimentally (in a laboratory) while most were

conducted “in-silico” (on a computer) because of the enormity of the genomic data.

However, most of these techniques were based on biological or chemical properties that

were too specific. These limitations led us to look for a more general non-specific

technique that made use of the high resolution DNA sequences from various genomes

stored at enormous public-access databases, in particular, the databases at NCBI

(National Center for Biotechnology Information). NCBI BLAST is a publicly accessible

online application which searches through these databases for DNA sequences which are

similar to a given query sequence.

In order to find the general rules by which DNA sequences have evolved, and

subsequently apply them in a gene identification technique, the best option was to use

evolutionary rationales. Unfortunately, this only widens the generalization because

different classes of organisms have evolved very differently and developed their own

evolutionary mechanisms. So, a technique based on evolutionary rationales is not entirely

universal. For instance, most plants have evolved using the same common mechanisms

and several global gene identification techniques based only on these mechanisms, can be

formulated. But such a technique cannot be directly extended for mammal genomes since

3

they have evolved very differently from plants. In this thesis, the two techniques

described are designed specifically for plant species and tested on Arabidopsis thaliana.

1.2. RELATED WORK

Before getting to the two GI techniques that this thesis focuses on, some related

techniques of gene identification are reviewed. Bie et al. presented CAFÉ (Computational

Analysis of Gene Family Evolution) for analyzing and predicting the evolution of the size

of gene families in a phylogenetic context i.e. pertaining to the evolutionary history of a

particular group of organisms (Bie, Cristianini, et al., 2006). This method modeled gene

gain and loss along each lineage of a phylogenetic tree using a random birth and death

process, and then used that model to calculate the probability of transitions in gene family

size from parent to child node in the phylogeny. Given a gene family and its evolutionary

analysis, DETECTER (Determining Clinically relevant Transmutations using

Evolutionary Rationales) was designed to predict sites in a protein sequence where amino

acid replacements are likely to have a significant effect on phenotype, including causing

genetic diseases (Gaucher De, et al., 2006).

Hekmat-Scafe et al. (2002) presented their methodology for identifying multiple

potential odorant-binding protein (OBP) family members through a PSI-BLAST

(Position Specific Iterative BLAST) search of Drosophila genomic sequences at NCBI, in

particular the olfactory-specific OS-E protein sequences. The resulting sequences are

used to scan Drosophila genomic sequences at NCBI using TBLASTN (a version of

BLAST that takes a protein query and returns similar sequences from the NCBI

nucleotide databases), generating more OBP-like products. Phylogenetic analysis is then

applied to remove the identified genes, and scan the Drosophila genome using the

remaining sequences. Tian et al. developed a strategy to identify 57 and 32 GRAS gene

family members in rice and Arabidopsis respectively (Tian et al., 2004). The method

starts with a single sequence as a query to search through multiple rice genome databases

using TBLASTN. GRAS genes in Arabidopsis were identified with BLASTP (version of

BLAST that takes a protein query and returns similar sequences from the NCBI protein

databases) and aligned using ClustalX (a multiple sequence alignment tool). Phylogenetic

trees were constructed using ClustalX, MEGA2 (Manipulation Environment of Genetic

Analyses), and PHYLIP (Phylogeny Inference Package); motifs (repeatedly occurring

4

sequence patterns) were identified using MEME (Multiple Em for Motif Elicitation); and

divergence time was estimated using PAML (Phylogenetic Analysis by Maximum

Likelihood). Nakano et al. identified 122 and 139 ERF family members in Arabidopsis

and rice respectively, using gene structure analysis, comparative and phylogenetic

analysis, and motif detection (Nakano, Suzuki, 2006). Liu identified 9 ACT domain

repeat protein-coding genes based on similarity search and domain detection (Liu, 2006).

Other automated or semi-automated processes have also been developed for

identifying gene families. Brown et al. developed a semi-automated method for mining

ESTs (Expressed Sequence Tags - short nucleotide fragment sequences) for gene

discovery and functional characterization in a major facilitator superfamily (MFS) of

transporter genes (Brown et al., 2003). The strategy starts with a seed protein sequence,

and collects a core family of related sequences by running PSI-BLAST. Then a collection

of ESTs is generated by a TBLASTN search in the NCBI EST database (dbEST). After

removing non-mammalian vector sequences and previously characterized ESTs, the

remaining ESTs are assembled using CAP3 (a popular Contig Assembly Program). The

generated contigs and singletons are candidates for new genes and are evaluated for

membership with specific MFS families.

1.3. ESTMINER

ESTminer compares similar sequences throughout the genome of a specific

ecotype (a subdivision of a species characterized by its ecological surroundings) and tries

to find single nucleotide polymorphisms (SNPs) between them. An SNP, as the name

suggests, is a variation in a single nucleotide base between two DNA sequences (Figure

1). When ESTminer finds certain SNPs between two otherwise very similar sequences

A T G C C G A T A C C T A G C

A T G C C T A T A C C T A G C

Sequence 1

Sequence 2

An SNP

Figure 1.1 - A Single Nucleotide Polymorphism (SNP) between two similar sequences

5

(labeled Locus Defining Polymorphisms), it marks these sequences as possibly

representing genes belonging to the same family. These sequences (which are usually

ESTs) are referred to as potential Haplotypes (pHaps). Some of these pHaps are contigs

assembled from the ESTs. In this study, these two types are differentiated as pHap ESTs

and pHap contigs.

Before running the ESTminer suite of programs, ESTs of the same ecotype need

to be collected and assembled using CAP3 with its parameters configured specifically for

that ecotype. A database is created containing both the ESTs and the resulting contigs.

Each contig is then submitted as a query to a BLAST search over this local database.

Each query collects the ESTs and contigs that are similar to it. According to Nelson et al.,

this is equivalent to collecting all potential genes that belong to the gene family that each

contig query might represent (Nelson et al., 2005). BLAST arranges these ESTs in order

of quality of alignment. This makes it easy for ESTminer to later pick out the ESTs or

contigs with locus defining polymorphisms and to designate them as pHaps.

1.4. NEGATIVE SELECTION PATTERNS TO IDENTIFY GENE FAMILIES

The evolutionary rationale for this technique is based on a specific negative

selection pattern which is a result of gene duplication (when a gene is erroneously copied

over twice in the same genome). Duplication allows the duplicate copies of a gene (also

known as paralogs) to mutate freely without selective pressure and acquire new or altered

functions while another copy retains the functions of the original gene. Susumu Ohno

argues that gene duplication is the most important evolutionary force (Ohno S, 1970). Its

status as the most common evolutionary mechanism in plants makes it a popular rationale

to develop generalized gene family identification techniques. The technique proposed in

this paper tries to find a characteristic pattern of nucleotide substitutions (mutations)

between potential paralogs with respect to their position within a codon (a triplet of

nucleotides that codes an amino acid). Each codon can be coded by the 4 different

nucleotide bases - Adenine, Guanine, Cytosine, and Thymine. This allows 4
3
 different

types of triplets i.e. 64 different triplets out of which only 61 are codons (i.e. only 61

encode amino acids). However, some of these codons encode the same amino acids

because they share a similar sequence of nucleotide bases. So, despite the 61 different

codons, there are only 20 distinct amino acids. This redundancy allows certain single

6

nucleotide substitutions to occur, that change the codon, without changing the resulting

amino acid. This is known as a synonymous substitution. The gene ends up producing the

same protein as before and the mutation is carried over into future generations.

Alternatively, a mutation that changes the codon to encode a different amino-acid is

called a non-synonymous substitution. When two very similar sequences appear to have

more synonymous differences between each other than non-synonymous ones, they could

possibly be paralogs that diverged from each other after a gene duplication event. The

level of divergence from each other can even be used to estimate when the divergence

occurred.

In particular, single nucleotide substitutions in the third position of a codon

almost always produce the same amino acid. Some first position substitutions also

produce the same amino acid, but they are not as redundant as third position substitutions.

Substitutions in the second position of a codon never produce the same amino acid. So, if

differences between two paralogs are evolutionary and subject to negative selection,

significantly more differences will occur in the third position and the least will occur in

the second position. However, if differences between paralogs are artifacts (cDNA

cloning, sequencing errors, etc.) then no pattern in codon positions should be exhibited.

Note that all members of a particular gene family need not be detectable by this

technique. This is because negative selection is not the only evolutionary mechanism.

Sometimes non-synonymous substitutions can turn out to be beneficial (positive or

adaptive selection). Also, given time, paralogs could diverge so completely from each

other that it would be impossible to know that they ever belonged to the same family.

7

2. ANALYSIS AND EVALUATION OF ESTMINER

In 2004, Nelson et al. released a suite of programs that attempted to perform gene

and allele identification throughout the genome of an ecotype (Nelson et al., 2004). The

only input that the programs require is a file containing all (or as many of) the known

ESTs of that ecotype. In this thesis, their suite of programs is tested by running it on the

Columbia ecotype of Arabidopsis thaliana. Arabidopsis thaliana was chosen since it is

the only plant with its entire genome sequenced. The NCBI MapViewer contains the

entire genome of Arabidopsis thaliana, with the locations of known genes mapped into it.

The start and stop positions of these previously identified genes are provided in the NCBI

MapViewer application which is accessible online and updated frequently.

2.1. OVERVIEW OF THE TECHNIQUE

According to Nelson et al., the correct operation of ESTminer is hugely dependent

on the parameters used in the contig assembly step. As Dr. Nelson puts it –

“The optimum settings for CAP3 may need to be adjusted for each dataset. You must look

at the CAP3 assemblies using your own EST data and see how changes to the -o (overlap

length cutoff) and -y (clipping region) options affect its output. The objective is to choose

values which produce contigs that represent closely related sequences without splitting

groups inappropriately, but at the same time not including sequences which match the

others by only a limited amount of sequence similarity.”

(Personal communication, March 16 2007)

In other words, the number of contigs that CAP3 assembles should reflect the

number of identifiable gene families within the given EST data set. Before running

ESTminer, two input files needed to be generated - BlastDB and BlastOut. This was

performed as described in Figure 2.

After running the ESTminer suite of programs on BlastDB and BlastOut,

ESTminer‟s huge set of resulting pHaps needed to be analyzed. Three primary scripts

were created to perform the analysis. It was necessary to run them one after another.

8

1_ExtractpHaps.pl - This script requires an input file called phapin.txt (aka

snp_est_seqs.txt_haplotypes by ESTminer) which is generated by ESTminer. This script

finds the position of ESTs using information from NCBI MapViewer and uses these

positions to try and locate the pHaps on the genome. The start and stop positions of pHap

ESTs could be found easily because they are indexed (in MapViewer) by EST accession

number. However, locating pHap contigs posed an interesting problem. They were

located by first finding the ESTs assembled on either end of that contig. The start position

of one of these ESTs and the stop position of the other would thus give us the start and

stop positions of the pHap contig itself.

Verify that the given EST data set does not contain multiple

identical GI (GenInfo Identifier) entries. This prevents a failure

when creating the database later.

Contig Assembly: Run CAP3 on the dataset by modifying the

following 2 parameters - overlap length cutoff (o) and clipping

range (y) with the following 4 combinations of values -

(o, y) = (21, 10), (21, 22), (36, 10), (36, 22)

In theory, the CAP3 parameters must be configured such that

each contig produced, is an assembly of ESTs that belong to the

same gene family.

In other words, the number of contigs found must reflect the

number of different gene families among the given EST data set.

Combine the resulting Contigs (Contigs.txt) and the ESTs

(Fasta.txt) into a single file - BlastDB

All these steps

were automated in

a perl script

named

AutoESTminer.pl.

The only input file

needed by this

script is a file that

contains all the

ESTs in FASTA

format - Fasta.txt

Create database: Run „formatdb‟ on the file BlastDB to create a

Blast compatible database (Indexed using GI values)

Run Blast in Database: Run „blastall‟ on the database using each

contig from CAP3 as a query. Write output into BlastOut.

Figure 2.1 - Steps to generate the input used by ESTminer

9

2_MappHaps.pl - This script took the start and stop positions of the pHaps (found by

1_ExtractpHaps.pl), and tried to map them onto the known genes in the At chromosomes

(the At genome has 5 chromosomes). For each pHap, the way in which they overlap (or

not) with known genes was recorded and tabulated.

3_CountGeneFreq.pl - This script was used to find out the characteristics of the known

genes that have been uniquely mapped into (by only one pHap per gene). This is a useful

statistic since ESTminer is expected to find only one pHap for every gene.

A fourth script (0_BatchRun.pl) was created to run these 3 analysis scripts one

after another for 4 times, each using a distinct set of CAP3 parameters.

2.2. ANALYSIS OF THE TECHNIQUE USING ARABIDOPSIS THALIANA

In their 2004 paper, Nelson et al. used 196K Glycine max (Soybean) ESTs to

generate pHaps. In this analysis, ESTminer was run on a set of 110K Arabidopsis

thaliana ESTs (of the Columbia ecotype). The set of 110K Columbia At ESTs were

chosen by the following procedure -

1. Retrieved 490,931 Columbia ESTs from GenBank.

2. Discarded ESTs which were not yet mapped into the genome by MapViewer.

3. Of the remaining 346,849 ESTs, selected 110,000 ESTs at random.

4. Note: Only 110,000 were chosen due to the system memory limitations of CAP3.

Since Dr. Nelson stated that the output of CAP3 is critical to results, four different

analyses were performed - with two different values for each of the critical parameters -

“overlap length cutoff” (-o), and “clipping range” (-y). The four different sets of

parameters used, in the form (o, y), were (21, 10), (21, 22), (36, 10), and (36, 22). (o, y) =

(21, 10) were the default parameters suggested by Nelson et al. for the Soybean ESTs.

2.2.1. ESTminer results

Table 1 shows a summary that was automatically created by the

1_ExtractpHaps.pl script. Notice how the different values for the “overlap length cutoff”

10

parameter (-o) did not significantly differ in their results. On the other hand, a small

change in the “clipping range” parameter (-y) changed the results quite considerably.

Table 2.1 - Summary of results from ESTminer (generated by 1_ExtractpHaps.pl)

 o21y10 o21y22 o36y10 o36y22

Number of contigs generated by CAP3 12444 12784 12446 12786

Number of CAP3 contigs from which ESTminer

produced no pHaps
4012 4275 4012 4275

Total number of pHaps found by ESTminer 16320 16438 16321 16439

Number of pHap contigs constructed 5603 5627 5604 5628

Number of pHap ESTs found 10717 10811 10717 10811

Number of distinct families that contain valid

pHaps
8423 8497 8425 8499

2.2.2. Gene mapping results

To analyze the accuracy with which ESTminer‟s pHaps compare with the known

genes in NCBI MapViewer, the script considered the 4 different ways in which a pHap

could overlap with a known gene with respect to their start and stop positions. These 4

types are shown in Figure 3.

A fifth type of mapping would be when a pHap does not overlap with any of the

known genes. In this analysis, they are called “unmapped pHaps”. They could potentially

be At genes that are not identified yet.

Before comparing pHaps with the known genes in NCBI MapViewer, the

1_ExtractpHaps.pl script needed to find which of the 5 chromosomes each pHap

belonged to, and their start and stop positions within that chromosome. Some of the ESTs

Legend

Gene

pHap

Type 1 map

Type 2 map

Type 3 map

Type 4 map

Figure 2.2 - The 4 types of mapping seen between pHaps and genes

11

and genes were listed in two or more different locations on the genome by MapViewer.

Because of this, duplicate entries for these pHaps were created - one for each different

location in the genome. This is why the number of pHaps used for genome mapping is

usually slightly greater than the number of pHaps that ESTminer produced. Figure 4

shows a part of a MapViewer file showing an EST with two different locations.

Using perl scripts, it was possible to find how often this occurs - 0.004% of ESTs

were found to map (in MapViewer) into two or more different locations on the same

chromosome. Some of these ESTs are shown in Table 2.

Table 2.2 - ESTs with multiple locations in MapViewer

EST Accession number Number of locations Chromosome

AK175799 14 ch4

BP815464 14 ch4

AV824197 5 ch1

Similarly for genes, 0.005% of the genes were found to map (in MapViewer) into

two or more different locations on the same chromosome. Some of these genes are shown

in Table 3.

Start Stop Accession number of EST/gene

…

799138 802583 BX815050 (First mapping of this EST in this chromosome)

803035 804300 BP808311

…

803040 804290 BX815050 (Same EST mapped in another location in the same chromosome)

…

Figure 2.3 - Part of a MapViewer file showing two locations for the same entry

12

Table 2.3 - Genes with multiple locations in MapViewer

Gene ID or name Number of locations Chromosome

ATPP2 10 ch1

ATPP2 10 ch2

AT 7 ch3

AT 6 ch4

AT 6 ch5

AT 5 ch1

Since these percentages are very small compared to the total number of pHaps, it

can be safely assumed that creating duplicate pHaps does not significantly skew the

analysis. Besides, by including these additional start and stop positions for a pHap, the

mapping is more complete than if they were ignored.

In the case of pHap contigs, the 1_ExtractpHaps.pl script deduced the start and

stop positions from the ESTs that were used to create that contig. However, this caused a

rare problem when ESTminer combined ESTs, from distant positions in a chromosome,

into the same pHap contig. This resulted in pHap contigs with start and stop positions that

were much farther apart than the actual length of the contig sequence. They were easy to

spot since they usually overlapped more than 1000 genes (mostly Type 4 maps). With

this much in mind, a brief count of pHap mapping was performed by the 2_MappHaps.pl

script (Table 4).

Table 2.4 - Number of distinct pHaps that map onto one or more genes

CAP3 Parameters Type 1 Type 2 Type 3 Type 4 Mapped pHaps UnMapped pHaps Total pHaps used

o21y10 14844 598 519 109 16234 116 16350

o21y22 14939 607 521 112 16351 116 16467

o36y10 14845 598 519 109 16235 116 16351

o36y22 14940 607 521 112 16352 116 16468

Note that the above counts are only of distinct pHaps. Some pHaps overlapped

with more than one gene (with same/different map types). Similarly, a gene could have

multiple pHaps map onto it (with same/different map types). If a pHap mapped onto 3

genes with types 1, 1, and 3 respectively, then it is counted once in the „Type 1‟ column

above and once more in the „Type 3‟ column above. This is why the 4 types in the table

above do not add up to the total number of mapped pHaps. Later, all the different

mappings are analyzed in detail to classify them as acceptable or unacceptable.

13

2.2.3. pHap-family distribution

The distribution of pHaps found in the same family was an important result. In all

4 sets of CAP3 parameters, slightly more than 85% of pHaps appeared to be singletons

without additional family members. Table 5 shows the number of pHaps obtained per

family and the distribution of such families among all the families that produced pHaps.

Just as in the experiment by Nelson et al, the distribution shows a large concentration of

families with only one pHap each. It was also noted that the distribution is quite similar

for all 4 CAP3 parameters used - indicating that changing CAP3 parameters did not make

much of a difference. With later results this will become more apparent.

Table 2.5 - pHap-family distribution

Number of

pHaps found in

the same family

Percentage of such

families out of

8423 (o21y10)

Percentage of such

families out of

8497 (o21y22)

Percentage of such

families out of

8425 (o36y10)

Percentage of such

families out of

8499 (o36y22)

1 85.21% 85.23% 85.20% 85.22%

2 4.44% 4.40% 4.44% 4.40%

3 2.81% 2.80% 2.81% 2.80%

4 1.60% 1.65% 1.60% 1.65%

5 1.09% 1.09% 1.09% 1.09%

6 0.81% 0.84% 0.81% 0.84%

7 0.69% 0.66% 0.69% 0.66%

8 0.56% 0.56% 0.56% 0.56%

9 0.40% 0.38% 0.40% 0.38%

10 0.28% 0.28% 0.28% 0.28%

>10 2.10% 2.11% 2.11% 2.12%

2.2.4. Step-by-step filtering of valid/invalid pHaps

The pHaps generated by ESTminer using the CAP3 parameters o = 21 and y = 10,

were carefully classified into different categories and analyzed as described below.

1. 16350 distinct pHaps were obtained from ESTminer using the o21y10 parameters.

2. All the pHaps that mapped onto only one gene each or no gene at all (15189 pHaps)

were kept aside and analyzed later in Step 4 where pHaps were validated according to

how many of them map into the same gene.

14

3. The remaining 1161 pHaps include only those that map into two or more genes. They

were classified according to how many genes they each map into.

a. All the pHaps that mapped onto more than 10 genes were considered invalid.

Only 7 such pHaps were found. For example, Contig7194:1 (mapped 6067

genes), Contig6105:1 (mapped 5278 genes), etc. This happened when ESTminer

combined ESTs, from distant positions in a chromosome, into the same pHap

contig such that its start and stop positions had thousands of genes in-between.

b. The pHaps that map onto 2 genes each (1081 such pHaps) were analyzed. These

pHaps were classified according to the sequence with which they map into genes.

With this classification, the three most common ways in which pHaps mapped

into two genes were found. These are shown in Table 6.

Table 2.6 - The 3 most common ways in which a pHap mapped onto 2 genes

Map sequence Freq Sample pHaps

Type 1 Type 1 448 AA395556, Contig31:1

Type 3 Type 1 263 AU238629, Contig1:1

Type 1 Type 2 255 AV797203, Contig5:1

Figure 5 shows some sample map sequences for the types mentioned.

It was concluded that these unusual maps were mostly because of gene overlaps

in MapViewer. Gene overlaps occur when potential (but unconfirmed) genes are

positioned over each other. Since this was a downside of MapViewer, it was

decided to leave these 1081 pHaps as inconclusive towards the performance of

ESTminer.

Legend

Gene

pHap

Type 1 Type 1

Type 3 Type 1

Type 1 Type 2

Figure 2.4 - The 3 most common ways in which a pHap mapped onto 2 genes

15

c. The pHaps that map onto 3 genes each (28 such pHaps) were analyzed.

Table 2.7 - How three pHaps map into the same gene

Map sequence Freq Sample pHaps

Type 3 Type 4 Type 2 12 AV518488, Contig1945:1

Type 4 Type 4 Type 2 6 AV793704, Contig11560:1

Type 3 Type 4 Type 4 4 AV531450, Contig6811:1

As can be seen from Table 7, most of these pHaps mapped with a Type 4 map in-

between. This implied that the maps were mostly because of the rare ESTminer

problem explained in Step 3a and hence these pHaps were invalid.

d. The pHaps that mapped onto more than 3 genes each (48 such pHaps) and less

than 10 were analyzed. Here too, most of the pHaps mapped onto multiple genes

with Type 4 maps. So they were considered invalid. However, a small minority of

these pHaps were found to map into multiple genes in very unique ways. These

were all because of unusual positioning of genes within MapViewer. Though

quite interesting, these odd mappings were ignored because they occurred too

rarely to affect the overall analysis.

4. The 15189 pHaps that mapped onto only one gene each or no gene at all were

analyzed.

a. 116 of these pHaps mapped into areas with no known genes (unmapped pHaps)

were ignored. Whether valid or invalid, „116‟ was too few to be significant to

either cause. These pHaps point to previously unmapped locations and could

potentially point to previously unidentified genes.

b. The remaining 15073 pHaps were analyzed. This analysis is shown in Table 8.

16

Table 2.8 - Analysis of pHaps that map onto one gene each

Valid number of pHaps that

map into the same gene

Number of

such genes

Total number of

such pHaps

Percentage of pHaps (out of

total 15073 pHaps analyzed)

1 4951 4951 32.85%

2 909 1818 12.06%

3 250 750 4.98%

4 151 604 4.01%

5 92 460 3.05%

6 84 504 3.34%

7 56 392 2.60%

8 42 336 2.23%

9 30 270 1.79%

10 29 290 1.92%

11 17 187 1.24%

12 12 144 0.96%

13 16 208 1.38%

14 14 196 1.30%

15 10 150 1.00%

16 11 176 1.17%

17 5 85 0.56%

18 8 144 0.96%

19 5 95 0.63%

20 3 60 0.40%

57 1 57 0.38%

61 1 61 0.40%

62 1 62 0.41%

63 2 126 0.84%

71 1 71 0.47%

74 1 74 0.49%

97 1 97 0.64%

106 1 106 0.70%

119 1 119 0.79%

120 2 240 1.59%

126 1 126 0.84%

130 1 130 0.86%

144 1 144 0.96%

150 1 150 1.00%

394 1 394 2.61%

Table 8 shows that only 4951 pHaps out of 15073 pHaps (32.85%) mapped into a

gene which has only one pHap map into it i.e. which have a one-to-one

correspondence between pHap and gene.

17

2.3. CONCLUSION OF ANALYSIS

The analysis of the final 15073 pHaps was performed by the 3_CountGeneFreq.pl

script that counted the number of pHaps that map into the same gene, and then distributed

the genes according to that number. This analysis (Table 8) showed us that – out of the

16350 pHaps produced by ESTminer, only 30.28% uniquely identified a gene in

Arabidopsis thaliana. This suggested that ESTminer was not working as the authors

intended.

18

3. GI USING NEGATIVE SELECTION PATTERNS

This chapter introduces a method of gene identification proposed by Dr. Ronald

Frank in 2006 (Frank et al., 2006). The technique made use of the massive NCBI

databases and their online local alignment search tool - BLAST. Since all the steps of this

technique could be performed on a computer (with access to NCBI online services), it

only seemed practical to try to automate as much of the technique as possible. This

chapter describes the originally published automation of the technique and the subsequent

improvements made since. But first, the rationale behind using negative selection patterns

for gene family identification needs to be explored.

3.1. AN INTRODUCTION TO NEGATIVE SELECTION

The most popular and well understood mechanism of evolutionary adaptation is

natural selection. It is the process by which genes favorable to an organism in its

environment are carried over to future generations whereas deleterious genes are not.

This means that over time, future generations of the organism will be better adapted to

their environment. A common mechanism for such adaptation is negative selection. If an

organism has genes that are deleterious to its survival, it subsequently loses its chance to

reproduce, and its deleterious genetic information is lost. Over time, future generations of

the organism are more likely to contain the genes of more successful survivors and

reproducers.

In today‟s understanding of evolutionary mechanisms, gene duplication is widely

considered to play a major role (Taylor et al., 2004). A duplication event can cause any

region of DNA to be duplicated - a region that contains one or more genes, a whole

chromosome, or sometimes even the entire genome. Copies of the same gene that exist

due to a gene duplication event are called paralogs. At least one of the paralogs will

retain the original function as long as it is beneficial to the organism. Because of this

“backup copy” the other paralogs are free from selective pressure and thus accumulate

more mutations into future generations. This may lead to altered function

(subfunctionalization), a new function (neofunctionalization), or loss of function. As an

example for subfunctionalization, consider the duplication of a protein-coding gene that

19

encodes a protein for the root of a plant. After several tens of thousands of years, a

paralog of the gene might still encode the original protein. But instead of being expressed

in the plant‟s roots, mutations in the regulatory sequence (that controls the expression of

the gene) may cause it to be expressed in the plant‟s stem. More often than not, mutations

create new proteins which are deleterious to the plant, causing death (or failure to

reproduce), and therefore not passed on to the next generation (negative selection).

However, on the rare chance that the new protein turns out to be beneficial for the plant,

then it is called a neofunctionalization.

If mutations occur evenly across a gene, and negative selection allows only

certain mutations to be carried over into future generations, then a deterministic pattern of

differences between paralogs can be seen. In particular, for protein-coding genes,

synonymous substitutions result in the same protein and are thus carried over into future

generations. Non-synonymous substitutions result in a new protein which is either

deleterious to the organism (common) or beneficial to the organism (rare). Hence, coding

regions (the region that encodes the protein) of paralogs that have subfunctionalized via

changes in regulatory elements should exhibit more synonymous substitutions than non-

synonymous ones. This mechanism appears to be very common in plants, causing a large

proportion of plant genes to belong to gene families (Lockton et al., 2005). If this is the

case, then most plant gene families can be identified by a pattern of bias toward

synonymous substitutions between contigs assembled from related ESTs.

3.2. A NEGATIVE SELECTION PATTERN

In Dr. Frank‟s GI technique, the number of base differences between potential

paralog pairs is counted with respect to their positions in a codon. The rationale behind

the NSP (negative selection pattern) based technique is explained as follows. Table 9

shows all the 20 amino acids and the corresponding codons that encode them. Of the 64

codons, 3 of these do not encode amino acids (UAA, UAG, and UGA). They are instead

used in DNA as stop codons - tags which mark the end of a coding region.

20

Table 3.1 - Amino acids encoded by various triplets of nucleotides (codons)

 Second Position Differences

F
ir

st
 P

o
si

ti
o

n
 D

if
fe

re
n

ce
s

UUU
Phe

UCU

Ser

UAU
Tyr

UGU
Cys

T
h

ird
 P

o
sitio

n
 D

ifferen
ces

UUC UCC UAC UGC

UUA

Leu

UCA UAA Stop UGA Stop

UUG UCG UAG Stop UGG Trp

CUU CCU

Pro

CAU
His

CGU

Arg
CUC CCC CAC CGC

CUA CCA CAA
Gln

CGA

CUG CCG CAG CGG

AUU

Ile

ACU

Thr

AAU
Asn

AGU
Ser

AUC ACC AAC AGC

AUA ACA AAA
Lys

AGA
Arg

AUG Met ACG AAG AGG

GUU

Val

GCU

Ala

GAU
Asp

GGU

Gly
GUC GCC GAC GGC

GUA GCA GAA
Glu

GGA

GUG GCG GAG GGG

From Table 9 it is easy to see that a change in the third position of a codon is most

likely to be synonymous. For example - CCU, CCC, CCA, and CCG all encode the same

amino acid. This is known as a 4-fold redundancy. A change in the first position of UUA

to CUA does not cause a change in the encoded amino acid. This is called a 2-fold

redundancy. Table 10 shows all such first position redundancies. Similarly, a 3-fold

redundancy exists between the codons - AUU, AUC, and AUA. Note how any change in

the second position of a codon causes the encoded amino acid to change. Hence, any

second position substitution is always non-synonymous.

Table 3.2 - First position 2-fold redundancies

UUA
Leu

UUG
Leu

CGA
Arg

CGG
Arg

CUA CUG AGA AGG

Of the 61 different codons that produce 20 different amino acids, 8 codons are 2-

fold redundant (Table 10) in the first position, there are no redundancies in the second

position, while in the third position, 24 codons are 2-fold redundant, 3 are 3-fold

redundant, and 32 are 4-fold redundant. The distribution of differences between two

subfunctionalized paralogs at the first, second, and third positions of each codon, show

that the third position differences occur much more frequently than first or second

position differences. Dr. Frank defined a discernible threshold for this NSP as follows -

21

“If differences appear non-random with respect to their position in a codon, and

third position differences are more than 3 times the first position differences, and all

differences are distributed as to satisfy the relationship 3
rd

 > 1
st
 > 2

nd
, then we can

conclude that the contigs represent different genes. However, if these criteria are not met,

we do not conclude that the contigs necessarily represent the same gene.”

(Frank et al., 2006).

It must be emphasized that such a technique can only identify gene families with

protein-coding members that have diverged after a gene duplication event, and thus show

a typical negative selection pattern. Since this specific evolutionary mechanism is

common in plants (Lockton et al., 2005), Dr. Frank‟s NSP technique is better suited to

identify gene families in plant genomes.

3.3. INITIAL IMPLEMENTATION OF THE NSP-BASED GI TECHNIQUE

The first attempt at automating this GI technique was published by Frank et al. in

2006 (Frank et al., 2006). The automation used PERL scripts which were designed to run

on UNIX, Linux, or Windows platforms. It either took a set of related ESTs as input, or a

query sequence which could then be used to find the related ESTs. The query must be a

protein-coding sequence which is believed to be one of many paralogs (belonging to a

gene family). The query could also be an orthologous sequence (sequences with similar

function but from different genomes) from a related species. The query sequence is

submitted to the online NCBI BLAST service to search for ESTs that are similar to it and

which belong to the organism in question. The ESTs returned by the BLAST search were

assembled into contigs using an application called AssemblyLIGN. The open reading

frames (the part of the sequence than encodes the protein) of the resulting contigs are

identified and recorded using another application called MacVector. PERL scripts are

then used to submit each pair of contigs to a pair-wise sequence alignment algorithm

called bl2seq (BLAST for 2 Sequences) which is also an online NCBI service. The script

then counts the number of 1
st
, 2

nd
 and 3

rd
 position differences between each contig pair

and tabulates the results as a matrix stored in a file. Figure 6 shows the steps involved in

this automation.

22

3.3.1. Automation

The steps that are automated in the above implementation are called SimEST and

SCAT. Other steps like the BLAST search, contig assembly, and ORF identification have

to be performed manually using external applications. The BLAST search, in particular,

is an online NCBI service which can be accessed in a browser. The search results have to

be manually saved in a text file. The automated SimEST script reads the EST accession

Identify ORFs of contigs (using

MacVector)

Select input

Assemble ESTs to generate contigs

(using AssemblyLIGN)

End

Query sequence and dbEST are

from the same species

Query sequence and dbEST are

from a different species

Collection of ESTs from Unigene

or other clustering algorithms

Select input

Find similar ESTs from

BLAST (using SimESTs)

Perform pairwise contig

comparisons (using SCAT/PCAT)

Identify gene family members

(using Summary matrix)

Figure 3.1 - Steps in automation of the NSP-based gene family identification technique

23

numbers from this file and retrieves the actual sequences using another NCBI web

service known as e-Utils (Entrez Programming Utilities). Once the sequences are

obtained and saved in a file, they have to be assembled into contigs by manually

submitting them into the AssemblyLIGN application. The ORFs of the resulting contigs

are then identified by analyzing them in the MacVector application. The contigs and their

ORFs have to be stored in files in a predetermined format so that the SCAT script can

submit each pair of contigs to the PCAT script. PCAT aligns two given contigs using

bl2seq and then counts the 1
st
, 2

nd
 and 3

rd
 position differences between them with respect

to the ORFs of the contigs. After PCAT is run on every contig pair, SCAT creates a

matrix containing 1
st
, 2

nd
 and 3

rd
 position differences between every contig pair.

3.3.2. Validation

Frank et al. validated this implementation using the well known PAL gene family

from Arabidopsis thaliana. The PAL family has 4 known members - PAL1, PAL2,

PAL3, and PAL4. By submitting PAL1 as the query, the remaining paralogs were

expected to be found. After going through all the steps, SCAT created Table 11.

Each cell in the table indicates the number of 1
st
, 2

nd
 and 3

rd
 position differences

separated by commas. An „NS‟ indicates that no significant similarity was found between

the contigs. A „NO‟ indicates that bl2seq returned an alignment of the contigs, but the

ORFs identified on those contigs did not overlap.

Table 3.3 - Distribution of 1
st
, 2

nd
, and 3

rd
 position differences between contigs

 Contig3 Contig4 Contig5 Contig6 Contig7 Contig8 Contig9

Contig1 20, 6, 33 14, 4, 43 NS NS NS NS 18, 5, 32

Contig3 *** 45, 19, 146 NS 19, 7, 70 NS 15, 7, 55 5, 5, 6

Contig4 *** *** NS 3, 4, 4 NS 1, 2, 1 10, 4, 27

Contig5 *** *** *** NO NS NS NS

Contig6 *** *** *** *** 6, 5, 39 4, 3, 7 NS

Contig7 *** *** *** *** *** NS NS

Contig8 *** *** *** *** *** *** NS

(Frank et al., 2006)

By applying the threshold for the NSP as defined by Frank et al. (see section 3.2),

Table 11 shows that Contig1 represents a different gene from Contig4. The distribution of

differences (1
st
 position: 14, 2

nd
 position: 4, 3

rd
 position: 43) definitely shows a non-

24

random distribution of differences, the third position differences are 3.1 times that of first

position, and overall 3
rd

 > 1
st
 > 2

nd
. Similarly, Contig3 and Contig4 also represent

potential paralogs. Also note how Contig6 and Contig8 have very few differences with

Contig4. They are most likely the same gene, but with a few sequencing errors. With this

much information, 3 distinct PAL paralogs have been clearly identified, each represented

by Contig1, Contig3, and Contig4.

Table 3.4 - Percent similarity of potential paralogs (contigs) with known PAL genes

 GeneA GeneB Gene C

 Contig1 Contig3 Contig4 Contig6 Contig8

PAL1 96% 76% 86% 83% 86%

PAL2 79% 76% 100% 97% 98%

PAL3 81% 83% 76% 77% 77%

PAL4 73% 99% 76% 85% 86%

(Frank et al., 2006)

In Table 12, the percent similarity of the potential paralogs with the 4 known PAL

genes is calculated using bl2seq alignments. Contig1 is most similar to the PAL1 gene

(which was the protein-coding query gene). Contig3 represents the PAL4 gene and

Contig4, Contig6, and Contig8 all appear to represent the PAL2 gene. Clearly, this

experiment provided limited validation for Frank et al. to conclude that the NSP-based GI

technique worked as expected. It was able to correctly identify some contigs as potential

paralogs to the query sequence. Furthermore, by increasing the size of the set of ESTs

assembled into contigs, the chance of identifying new potential paralogs can be increased.

3.3.3. Issues

One problem with this implementation is that it is not fully automated. It requires

several instances of manual intervention to run the three external applications - BLAST,

AssemblyLIGN, and MacVector. AssemblyLIGN and MacVector, being GUI (Graphical

User Interface) applications, could not be automatically controlled by a PERL script.

Also, they are Macintosh-based applications whereas SimEST and SCAT are only

supported on UNIX, Linux, and Windows platforms. This required the user to switch

from one platform to another in-between steps during the process.

25

The alignment between contigs was performed by bl2seq which is a local

alignment program. This means that the most similar subsets of each sequence are

aligned against each other. What is ideally desired is that two contigs must be aligned for

the entire length of their ORFs. This is known as global alignment. Figure 7 shows how

these two types of alignment might align the same two sequences.

Incorrectly inserted gaps can shift the sequence such that the position of

nucleotides within their codons is incorrect. This problem is more likely to occur in local

alignments rather than global alignments. However, it is possible to more closely analyze

each inserted gap with respect to their surrounding nucleotides or a nearby stop codon, to

determine whether the gap has been inserted correctly or not. The user can perform this

manually using MacVector. However, gaps are generally uncommon in this

implementation since the aligned contigs are very similar to each other and their ORFs

are usually of equal length. This is why the validations ran successfully despite using the

local alignment algorithm bl2seq.

3.4. A FULLY AUTOMATED IMPLEMENTATION

To fully automate the NSP-based GI technique, it was first necessary to find non-

GUI alternatives to AssemblyLIGN and MacVector. PERL scripts are capable of

automating only local command-line applications and online browser-based services.

CAP3, a command-line contig assembly program, was chosen as an alternative to

AssemblyLIGN. The NCBI ORF Finder, a browser-based online application was chosen

as an alternative to MacVector. NCBI BLAST search was available as an online web-

Global Alignment
Sequence 1: AGACTGAGAG-GTGACCTGACCGT

Sequence 2: A-CTG-AG-GAG-G---TGACC-T

It forces an alignment over the full length of both sequences.

Local Alignment
Sequence 1: AGACTGAG-AGGTGACCTGACCGT

Sequence 2: --ACTGAGGAGGTGACCT------

It determines similar regions between sequences by comparing sub-sequences of all possible lengths to

find the optimum alignment.

Figure 3.2 - The two methods of sequence alignment

26

service and could be automated in PERL too. Since all portions of the original

implementation now had alternatives that could be controlled by PERL scripts, it was

possible to create a continuous streamlined automation that ran from start (input of query

protein) to stop (tabulated comparison of potential paralogs). The following section

describes the implementation of this automation and validates its operation using PAL

genes from Arabidopsis thaliana.

3.4.1. CAP3 (Contig Assembly Program, 3rd Generation)

Huang et al. designed CAP3 to assemble short reads (ESTs) into long sequences

(contigs). Algorithms in CAP3 identify and compute overlaps between reads, construct

multiple sequence alignments of these reads, and generate consensus sequences (Huang

et al., 1999). In other words, given a set of ESTs and specific parameters of operation,

CAP3 attempts to combine as many of these ESTs together to form the smallest possible

set of long contigs. ESTs that could not be combined with other ESTs to produce a contig

are known as singletons. Below, the two parameters of CAP3 that are relevant to the GI

technique are described:

Overlap length cutoff (o) - This is the minimum number of bases on two ESTs that need

to overlap before being considered for inclusion into the same contig. In the earlier

implementation, AssemblyLIGN set its equivalent parameter to 20 bases. In CAP3, this

parameter cannot be lower than 21. Hence, a default value of 21 bases was used for

overlap length cutoff (o).

Clipping range (y) - This is the number of bases that will be clipped (discarded) on both

ends of an EST. The process of generating ESTs by reading DNA sequences (shotgun

sequencing) causes it to be less accurate near the ends of the EST and more accurate near

the middle. Clipping bases from the ends improves the overall accuracy, at the cost of

losing information. In the 2006 implementation, AssemblyLIGN did not clip its ESTs (y

= 0). However, CAP3 requires a minimum of 6 bases to be clipped (y > 5). It is noted that

the results of CAP3 is heavily influenced by changes in y. Through multiple trials, it was

decided that 50 bases was a reasonable value for y and it produced the best results.

27

Overlap percentage identity cutoff (p) - This is the percentage of bases that need to

perfectly match each other in the overlap region between two ESTs. AssemblyLIGN used

100% in its equivalent parameter. CAP3, being more rigid in its alignments, could not

create contigs for p > 95%. Between 90% and 95%, CAP3 generated too many contigs

because of the fewer overlaps found. Through multiple trials, p = 90% is selected as a

reasonable value for this parameter.

Despite hard-coding default values for each parameter into the script, it did allow

the user to specify custom values for these 3 CAP3 parameters. In particular, it was noted

that changes in clipping range (y) significantly affected the resulting contigs. This is most

likely due to the variable accuracy levels among different sets of ESTs.

3.4.2. NCBI ORF Finder (Open Reading Frame Finder)

The ORF Finder is a browser-based online analysis tool which finds all open

reading frames of a selectable minimum size in a given sequence. An Open Reading

Frame (ORF) is the part of a nucleotide sequence that encodes a protein. This tool

identifies all of the possible ORFs of a given sequence using the standard genetic code

for the start and stop codons. This code states that the start codon is usually AUG. This is

the most common codon that marks the start of an ORF. In rare cases, an ORF may start

with a codon other than AUG, like GUG, CUG, or UUG. The stop codons always mark

the end of an ORF. These are always - UAA, UAG, or UGA.

The ORF Finder takes the input contig and finds the start and stop codons on it. If

several such codons are found, then there will be more than one possible ORF on the

contig. In this implementation, the longest ORF found on each contig was selected.

3.4.3. Automation

The operation of the script is summarized as a flowchart in Figure 8. The PERL

script that fully automates this implementation is named Auto.pl. It is designed to work

on all platforms supporting a PERL environment including Macintosh-based OS X. The

input to this script is the protein sequence whose potential paralogs need to be found.

Optionally, the user can input customized values for CAP3 parameters overlap cutoff (o),

clipping region (y), and overlap percentage identity cutoff (p).

28

Initializations

 Get the accession number of the query protein sequence as input from the user

 Get the following CAP3 parameters as input from the user. If the user skips this step,

then use the following default parameter values

Submit the query protein sequence to NCBI BLAST

Retrieve BLAST output and store it into a file - BlastOP.txt

Read each accession number in ACCs.txt and fetch the full EST

sequence using NCBI eUtils. Store the sequences into Fasta.txt

Run CAP3 on Fasta.txt using the user specified parameters. If no

parameters were specified, then use the defaults (o=21, y=50,

p=90). The resulting contigs are stored into Fasta.txt.cap.contigs

Read the EST accession numbers from BlastOP.txt and store

them into ACCs.txt

All these

steps were

automated

by a PERL

script

named

Auto.pl

Have the user input the accession number of the query protein

sequence and the CAP3 parameters - o, y, and p

Store each contig from Fasta.txt.cap.contigs in separate files.

Submit each contig to NCBI ORF Finder. Store each contig

filename and its largest ORF into Contigfile.txt

Perform pairwise contig comparisons (using SCAT/PCAT)

Identify gene family members (using Summary matrix)

End

Figure 3.3 - Fully automated steps in NSP-based gene family identification techn

29

 o, overlap length cutoff (default value = 21)

 y, clipping range (default value = 50)

 p, overlap percent identity cutoff (default value = 90)

BLAST Search

 Submit the input query sequence to the BLAST program and wait until the query is

completed. Do the following during the wait period:

 Extract the BLAST Request ID (RID) from the returned webpage

 Repeat the following every 2 seconds (Poll for results)

 Read the website that contains the status of the Request ID

 Extract status information (waiting/failed/unknown/ready/nohitsfound)

 Indicate the current status to the user - Print a dot (.) if current status is „waiting‟

 If the results are ready to be fetched (status = „ready‟), then exit this loop

 Fetch the BLAST results and store them into a file called BlastOP.txt

Extracting Accession Numbers and fetching their EST sequences

 For each line of BlastOP.txt that contains an accession number, repeat the following

 Extract the acc no. in the line and store it into ACCs.txt

 Submit this acc no. as a request to Entrez Utilities‟ efetch.fcgi service

 Retrieve the sequence returned and append it into a file - Fasta.txt

CAP3 Automation

 Run the CAP3 application on the command-line. Pass the path to Fasta.txt and the

three parameters o, y, and p to CAP3 as command-line arguments. If the user did not

specify these parameters, then run with the default values as shown below -

OS X/UNIX/Linux >./cap3 Fasta.txt -o 21 -y 50 -p 90

Win32 >cap3.exe Fasta.txt -o 21 -y 50 -p 90

NCBI ORF Finder Automation

Of the 8 output files generated by the CAP3 program, load the file Fasta.txt.cap.contigs,

and repeat the following steps for each contig sequence in this file:

 Submit the sequence to the NCBI ORF Finder, and read the resulting webpage

 Remove the HTML tags to reveal information on all of the ORFs found

 Find the start, stop, and frame of the longest ORF

30

 Store the full contig sequence into a file named - ContigXY.txt - where X is either

„+‟ or „-‟ (a „-‟ indicates that the ORF is in the reverse complement of the

sequence), and Y is the contig number

 Append the contig filename and the corresponding ORF start and stop positions

into Contigfile.txt

SCAT/PCAT Automation

 Submit Contigfile.txt to the SCAT script so that it generates a tabulated summary of

the pairwise contig comparisons

3.4.4. Validation

This automation is validated using the known PAL genes in Arabidopsis thaliana.

This would allow us to compare its performance against the results obtained through the

semi-automated technique used previously by Frank et al. and ESTminer. The accession

number for the PAL1 gene (AAK76593) is used as input to Auto.pl and the CAP3

parameters are set to the default values. The script was run on the command line as -

OS X/UNIX/Linux >perl Auto.pl AAK76593

Win32 >Auto.pl AAK76593

When the script finally terminates, a tabulated summary of the pairwise

comparisons between contigs is generated and it is stored into a file. The table which is

generated as a result of the PAL1 query is shown in Table 13.

Table 3.5 - Distribution of 1
st
, 2

nd
, and 3

rd
 position differences between contigs

 Contig1 Contig2 Contig3 Contig4 Contig5 Contig6

Contig1 *** 8, 2, 8 0, 0, 2 NS 0, 0, 0 NS

Contig2 *** *** 1, 0, 0 NO 12, 12, 16 NO

Contig3 *** *** *** NS 6, 7, 10 NS

Contig4 *** *** *** *** 16, 8, 99 10, 6, 35

Contig5 *** *** *** *** *** 4, 12, 28

Contig6 *** *** *** *** *** ***

It can be seen that Contigs 1, 2, and 3 are very similar to each other and do not

appear to show an NSP with any other contig. Contigs 4, 5, and 6 show a clearly non-

random pattern of differences between each other. In each, the number of 3
rd

 position

differences between pairs is more than 3 times the number of 1
st
 position differences. The

31

differences in all three pairwise comparisons (except for Contig5 and Contig6) appear to

satisfy the rule 3
rd

 > 1
st
 > 2

nd
. Since Contig5 and Contig6 do not pass the discernible

threshold defined by Frank et al., they do not qualify as potential paralogs. However,

Table 14 clearly shows that Contig5 and Contig6 are very similar to the PAL1 and PAL4

genes respectively. Also, Contig4 was found to be most similar to the PAL2 gene.

Table 3.6 - Percent similarity of potential paralogs (contigs) with known PAL genes

 No significant patterns found Gene A Gene B Gene C

 Contig 1 Contig 2 Contig 3 Contig 4 Contig 5 Contig 6

PAL1 97% 84% 77% 86% 99% 76%

PAL2 80% 98% 81% 99% 84% 76%

PAL3 NS 76% 76% 75% 75% 82%

PAL4 NS 76% 97% 75% 75% 99%

3.4.5. Discussion

Three of the contigs generated by CAP3 closely resemble 3 paralogs in the PAL

gene family. The distribution of 1
st
, 2

nd
, and 3

rd
 position differences between these

contigs (Contigs 4, 5, and 6) appear to be non-random and the number of third position

differences is at least three times the first position differences. This satisfies two of the

three criteria for NSP, as stated by Frank et al. The third criterion, which requires the

second position differences to be lesser than the first position differences, was satisfied

by two of the three contig pairs. The distribution of differences between the other two

Contigs 5 and 6 was calculated as 4, 12, 28. Even though this was clearly a non-random

distribution of differences, the number of second position differences was quite larger

than the first position differences. One explanation for this is that since ESTs were

allowed to overlap with 90% match (CAP3‟s overlap percent identity cutoff, p = 90),

ESTs carrying errors were allowed to assemble into the contigs. It is possible to reduce

such errors by clipping EST edges, but if too much of the EST is clipped out, the

resulting contigs became shorter in length. This leaves bl2seq with shorter sequences to

align and compare. Longer contigs generate a more distinctive NSP than shorter ones. In

other words, y must be large enough to remove EST errors, and short enough to allow the

creation of longer contigs. This causes the automation to be very sensitive to the clipping

range parameter „y‟. The automation must be repeated with different combinations of

32

CAP3 parameters (particularly y) until distinctive negative selection patterns are seen in

the resulting distribution.

3.5. RESULTS AND DISCUSSION

The results of the new automation in Table 13, show less distinctive patterns of

negative selection than the older implementation in Table 11. However, comparing Table

14 with Table 12, it can be seen that the same 3 paralogs were represented by three

contigs in both implementations. This means that CAP3 correctly generated contigs that

were subfunctionalized paralogs, but there were too many errors between them that the

negative selection patterns were not distinctive enough. The contig assembly application

used in the earlier implementation (AssemblyLIGN) minimizes such errors by restricting

overlaps between ESTs to a 100% match. Since AssemblyLIGN is manually operated by

a user, errors in the assembly can be intuitively identified and immediately fixed. Errors

in ORF identification can be intuitively fixed by the user with MacVector. The trade-off,

of course, is the required manual control of the application. In comparison, the CAP3

based automation of the GI technique is quick and efficient. The user can conveniently

repeat the automation with different CAP3 parameters until a distinctive negative

selection pattern is found.

In conclusion, the newer implementation appears to get the job done quickly and

correctly while slightly compromising accuracy. However, this particular negative

selection pattern is easy to spot even when there is a high rate of errors in the ESTs. The

2006 implementation by Frank et al. requires occasional manual intervention and hence

allows the user more control over each step of the process at the expense of efficiency.

33

4. CONCLUSION

A fully automated gene family identification program was created which tapped

into the information stored on huge online databases that are constantly updated with

newly sequenced genomic data. A user simply needed to input the accession number to a

protein-coding gene and the script would generate a table of its potential paralogs. The

user can then easily identify these paralogs in the organism‟s genome.

The current implementation of NSP-based GI runs quickly and efficiently except

for the BLAST search, where the wait-times on the NCBI server are non-deterministic.

Nevertheless, it is only necessary to run BLAST once for a given protein-coding query

gene. After BLAST fetches the ESTs that are homologous with the query sequence, the

user can run the remaining steps any number of times without repeating BLAST every

time. This makes it much faster for the user to try out different CAP3 parameters and find

an optimum configuration that produces the negative selection pattern.

In the analysis performed on this implementation, it was found to correctly

identify 3 members of the Arabidopsis thaliana PAL gene family with moderate

accuracy. The biggest drawback of the automation is in its dependence of CAP3. Even

though the contigs that it assembled were prone to errors (because of erroneous ESTs),

the GI technique was still able to identify distinctive NSP patterns. However, it would go

a long way to implement error correction techniques or to generate files containing

quality information about ESTs – which can be used by CAP3 to generate more accurate

contigs.

The analysis of ESTminer revealed that it did not work as expected. Most of the

pHaps identified did not uniquely map into genes. This meant that ESTminer was not

correctly identifying potential haplotype sequences i.e. a set of sequences closely linked

by DNA polymorphisms. The application depended too heavily on accurate contig

assembly and relied on the assumption that each contig generated by CAP3 would be

representative of a gene family.

34

4.1. COMPARISON OF GI TECHNIQUES

A summarized comparison of the two GI techniques is shown in Table 15. It also

compares the two implementations of the NSP-based GI technique - the earlier

implementation (which used AssemblyLIGN and MacVector), and the newer

implementation (using CAP3 and NCBI ORF Finder).

Table 4.1 - Summarized comparison of GI techniques

ESTminer NSP using AssemblyLIGN

and MacVector

NSP using CAP3 and

NCBI ORF Finder

Attempts to find paralogs

Genome-wide

Finds paralogs only within

one Gene-family at a time

Finds paralogs only within

one Gene-family at a time

Based on single nucleotide

polymorphisms found

between potential paralogs

Based on a negative

selection pattern found

between potential paralogs

Based on a negative

selection patterns found

between potential paralog

Uses CAP3 to cluster gene

families together

throughout the genome

Uses NCBI BLAST to find

ESTs which are likely to

contain paralogs of the

query (in the same gene

family)

Uses NCBI BLAST to find

ESTs which are likely to

contain paralogs of the

query (in the same gene

family)

Platform independent

(Needs a PERL interpreter

installed)

Certain parts run on Mac

OS X; Other parts run on

Win32/Linux (Needs a

PERL interpreter installed)

Platform independent

(Needs a PERL interpreter

installed)

After manually running

CAP3 and creating a local

BLAST database, it is

automated in three scripts:

AssemblyLIGN and

MacVector need to be

manually operated between

using two scripts:

Fully Automated in a single

script:

AlleleFinderV4.1.3

HaplotypeSorterV1.1

SNPfindV14.0.8

SimEST

SCAT

AutoNSP

Moderately affected by

EST sequencing errors

EST sequencing errors can

be manually fixed using

AssemblyLIGN or

MacVector

Moderately affected by

EST sequencing errors

35

4.2. FUTURE WORK

As future work, the NSP-based GI technique can be extended by querying the

automation with orthologs from related organisms rather than with paralogs in the same

organism. Even with the current implementation, a protein sequence from some organism

can be submitted, while using BLAST to search for ESTs from another organism. This

kind of operation needs to be further tested. Another possible modification is to submit

the paralogs found by the script back to the script. This way a tree can be automatically

generated that shows the entire phylogeny of genes in a species that evolved after gene

duplication events.

Furthermore, it would be useful to find an alternative to AssemblyLIGN that can

be automated into a perl script. For the same reason, it would also be useful to find an

alternative of CAP3 which gives the user more freedom in manipulating the contigs.

CAP3 was originally designed to assemble contigs for entire genomes. If the source code

for CAP3 can be obtained from its authors, then it might be possible to create a modified

version of it that is well suited for NSP-based gene family identification.

Currently, work is in progress to create a customized version of the NCBI ORF

Finder using perl scripts. This script reads a global alignment between two contigs and

finds the longest common ORF between them. Earlier, a biologist could simply look at

gaps inserted in an alignment and intuitively figure out whether a gap has caused a shift

in codon positions. Information on such shifts is very important for accurately counting

the first, second, and third position differences. It is possible to encode such intuitive

rules into the customized ORF finding perl script.

The eventual goal is to create a computer based program that will read complete

genomic data from various related organisms and will then identify and map all the genes

and gene families. This is a lofty goal, but this thesis has proved that automating GI using

evolutionary rationales takes us a significant step closer.

36

BIBLIOGRAPHY

Bie T, Cristianini N, Demuth J, Hahn M: CAFE: A computational tool for the study of

gene family evolution. Bioinformatics Applications Note. 22(10), 1269–1271, 2006

Brown S, Chang J, Sadee W, Babbitt P: A semiautomated approach to gene discovery

through Expressed Sequence Tag data mining: discovery of new Human Transporter

Genes. AAPS PharmSci, 5 (1), 2003

Frank RL, Mane A, Ercal F: An Automated Method for Rapid Identification of Putative

Gene Family Members in Plants. BMC Bioinformatics, 7 (Suppl 2):S19, 2006

Gaucher EA, De Kee DW, Benner SA: Application of DETECTER, an evolutionary

genomic tool to analyze genetic variation, to the cystic fibrosis gene family. BMC

Genomics, 7(44), 2006

Hekmat-Scafe D, Scafe C, McKinney A, Tanouye M: Genome-wide analysis of the

odorant-binding protein gene family in drosophila melanogaster. Genome Res., 12,

1357-1369, 2002

Huang X, Madan A: CAP3: A DNA Sequence Assembly Program. Genome Research,

9(9), 868-877, 1999

Human Genome Program, U.S. Department of Energy: DOE Human Genome Program

Contractor-Grantee Workshop IV, 1994

Liu Q: Computational identification and systematic analysis of the ACR gene family in

Oryza sativa. Journal of Plant Physiology, 163(4), 445-451, 2006

Lockton S, Gaut BS: Plant conserved non-coding sequences and paralogue evolution.

TRENDS in Genetics, 21:60-65, 2005

Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene

family in Arabidopsis and rice. Plant Physiology (Rockville), 140(2), 411-432, 2006

Ohno S: Evolution by gene duplication. Springer-Verlag. ISBN 0-04-575015-7., 1970

Taylor JS, Raes J: Duplication and Divergence: The Evolution of New Genes and Old

Ideas. Annual Review of Genetics 9: 615-643, 2004

Tian C, Wan P, Sun S, Li J, Chen M: Genome-wide analysis of the GRAS gene family in

rice and Arabidopsis. Plant Molecular Biology, 54(4), 519-532, 2004

Yang Z, Nielson R: Estimating synonymous and non-synonymous substitution rates

under realistic evolutionary models. Mol Biol Evol, 17:32-43, 2000

37

VITA

Cyriac Kandoth was born in Kerala, India on 23
rd

 March, 1984. His primary

education was spread out at various schools in Glasgow (Scotland, UK), New Delhi

(India), and Trivandrum (Kerala, India). His secondary education in the city of Cochin,

India, placed a focus on Physics and Computer Science. In 2005, he completed a

Bachelor‟s degree in Computer Science and Engineering from Model Engineering

College, Cochin (under the Cochin University of Science and Technology). After 6

months in the Software industry, Cyriac joined the University of Missouri - Rolla, USA

(now known as Missouri S&T) and graduated with a Master of Science in Computer

Science, with emphasis on Bioinformatics.

Cyriac Kandoth is currently a graduate student at UMR‟s Department of

Computer Science. He is pursuing a PhD with a focus on Automated Gene Identification.

His other research interests include Automated Surveillance Systems, Quantum

Computing, Artificial Intelligence, Graphics Processing technologies, Parallel

Processing, and pretty much anything that ends with –logy, -ysics, or –ience.

	A quantitative study of gene identification techniques based on evolutionary rationales
	Recommended Citation

	A quantitative study of gene identification techniques based on evolutionary rationales

