
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2007

Sensor network coverage and data aggregation problem: Sensor network coverage and data aggregation problem:

solutions toward the maximum lifetime solutions toward the maximum lifetime

Li Yin

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Yin, Li, "Sensor network coverage and data aggregation problem: solutions toward the maximum lifetime"
(2007). Masters Theses. 6881.
https://scholarsmine.mst.edu/masters_theses/6881

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6881?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SENSOR NETWORK COVERAGE AND DATA AGGREGATION PROBLEM:

SOLUTIONS TOWARD THE MAXIMUM LIFETIME

by

LI YIN

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2007

Approved by

_______________________________ _______________________________
Maggie Cheng, Advisor Frank Liu

Yinfa Ma

© 2007

Li Yin

All Rights Reserved

 iii

ABSTRACT

Sensor networks have emerged as a premier research topic because of their great

long-term economic potential, amazing ability to transform our lives. But as the battery-

powered equipment, the sensor has the great limitation in the lifetime, and it is not

realistic to replace or recharge the battery for the dead sensor. Usually redundancy

sensors are deployed in the monitor area in order to improve the probability of target

coverage and for the purpose of backup. This brings new problems in, coverage problem

and data aggregations are two of them. In past years, a lot of schemes focused on these

problems proposed to prolong the sensor networks’ lifetime since lifetime problem is the

main constraint on sensor networks’ application. First paper introduces solutions to

schedule sensors into different sets and set them on and off appropriately to achieve the

maximum lifetime while maintaining the required coverage. An optimal solution is

provided which could produce the theoretical upper bound on a sensor network’s

lifetime, and a fast heuristic is implemented with simulation results compared to the

optimal solution. The second paper is focus on the problem of energy saving by reducing

unnecessary transmission and confliction. A new concept: Balanced Aggregation Tree

(BAT) proposed, it could build an efficient aggregation tree whose structure is between

Shortest Path Tree and Minimum Spanning Tree and by adjusting a control parameter to

achieve the best energy efficiency of a given sensor network, this solution can be used for

both aggregate data and non-aggregate data.

 iv

ACKNOWLEDGMENTS

The author would like to express his gratitude to his advisor Dr. Maggie Cheng

for her guidance, valuable advice and encouragement. Without her kind help and

understanding, the author could not have reached this goal. Also thanks to thesis

committee members Dr. Liu and Dr. Ma for their advice and participation in the defense;

thanks to all the students in the Network Research Lab at University of Missouri Rolla,

led by Dr. Cheng, for those numerous instructive discussions and kind support on the

research work. The author would also like to take this chance to thank Dr. Cheng for her

illuminating explanations in the wireless network area during her classes.

Finally, the author would like to thank his family for their help and

encouragement. With their help, the author can study hard and live happily in the

peaceful town – Rolla.

 v

TABLE OF CONTENTS

Page

ABSTRACT... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS.. vii

LIST OF TABLES... viii

SECTION

1. INTRODUCTION.. 1

1.1. SENSOR NETWORKS.. 1

1.2. LIFETIME .. 3

1.3. OVERVIEW OF MAIN CONTRIBUTION .. 4

2. SENSOR NETWORK COVERAGE PROBLEM REVISITED: SOLUTIONS
TOWARD THE MAXIMUM LIFETIME... 5

2.1. INTRODUCTION TO COVERAGE PROBLEM ... 5

2.1.1. Coverage Problem. ... 5

2.1.2. Linear Programming... 8

2.2. COVERAGE PROBLEM DEFINITION ... 9

2.3. SOLUTIONS FOR COVERAGE PROBLEM... 9

2.3.1. An Optimal Solution. ... 9

2.3.1.1. Non-Redundant Set Covers..10

2.3.1.2. Linear Program Formulation..16

2.3.2. A Fast Heuristic.. 17

2.3.2.1. First K Covers. ...17

2.3.2.2. An Iterative Heuristic...21

2.4. SIMULATION FOR COVERAGE PROBLEM .. 21

2.4.1. Redundancy And Network Lifetime. ... 21

2.4.2. Performance Comparison. .. 25

2.4.2.1. Comparison between Heuristic solution and Optimal solution. 25

2.4.2.2. Comparison between Heuristic and Greedy-MSC.....................28

2.5. RELATED WORK ... 30

 vi

2.6. CONCLUSION ON COVERAGE PROBLEM ... 32

3. ENERGY EFFICIENT DATA GATHERING ALGORITHM IN SENSOR
NETWORKS WITH PARTIAL AGGREGATION .. 33

3.1. INTRODUCTION TO DATA AGGREGATION.. 33

3.2. ENERGY COST FOR DATA GATHERING.. 35

3.3. BAT ALGORITHM.. 37

3.4. MINIMUM ENERGY TREE STRUCTURE... 40

3.5. SIMULATION OF DATA AGGREGATION ... 44

3.5.1. Simulation Setup. ... 44

3.5.2. Performance Comparison. .. 44

3.5.2.1. Compare BAT with other trees. ...44

3.5.2.2. Improve Energy Cost by Tuning Control Parameter.47

3.6. RELATED WORK ... 48

3.7. CONCLUSION AND FUTURE WORK ... 49

BIBLIOGRAPHY .. 51

VITA …………….………………………………………………………………………56

 vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Typical WSN structure ... 2

2.1 Example of Coverage.. 7

2.2 Sets Statistic .. 18

2.3 Lifetime Statistic... 19

2.4 OPT with Fixed NM and Increasing Range.. 22

2.5 OPT with Fixed MR and Increasing N ... 23

2.6 HEU with Fixed NM and Increasing Range ... 24

2.7 HEU with Fixed MR and Increasing N... 25

2.8 Comparison of Lifetime between OPT and HEU with Increasing N 27

2.9 Comparison of K between OPT and HEU with Increasing N 27

2.10 Comparison of Runtime between OPT and HEU with Increasing N 28

2.11 Comparison between HEU and GreedyMSC with Increasing Range 29

2.12 Comparison between HEU and GreedyMSC with Increasing N.............................. 29

3.1 Data aggregation model .. 33

3.2 Data non-aggregation model... 34

3.3 Hybrid model .. 35

3.4 Case (a) Decreasing .. 42

3.5 Case (b) Increasing ... 43

3.6 Case (c) Oscillating... 43

3.7 Sum of distance... 45

3.8 Total weight .. 46

3.9 With 200 nodes, transmission range = 0.1 – 0.35. Compared BAT with LAST
 on the total weight. Results normalized by the total weight of MST. 46

3.10 Normalized energy costs of SPT, MST and BAT trees (with α =2,α = 0α , and
α = nα) for 200-node networks, with radio transmission range 0.15...................... 47

viii

LIST OF TABLES

Table Page

2.1 NRSETCOVERS .. 10

2.2 REMOVEREDUNDANCY.. 12

2.3 REMOVEREDUNDANCY-ALTERNATIVE... 13

2.4 Linear Program Formulation... 16

2.5 FIRSTKCOVER ... 20

2.6 Performance Comparison between Heuristic and Optimal Solution 26

1. INTRODUCTION

1.1. SENSOR NETWORKS

The sensor is a type of transducer, inexpensive low-power electrical device that

could observe the environment features such as temperature, pressure, moisture, light

strength, then express these in the man friendly data format. The sensor is usually small

in the size, this is the advantage from the aspect of carry and deploy, but it also make the

sensor has limited processing speed and storage capacity. Sensors widely using makes

people’s work and life more easily as sensors could provide users with the critical data in

time and most important, they could work in the environment that is hostile to mankind.

 Thanks to the exponential growth in the underlying semiconductor technology,

the number of transistors on a cost-effective chip and processing or storage capacity on

the chip doubles every year. Though it is not good enough to solve sensors’ processing

and storage ability problem forever, it’s good enough to equip sensors with the radio

transceiver so that the sensor can communicate with others within its radio range. With

this ability, the sensors can be deployed throughout a physical space, providing dense

sensing close to physical phenomena, processing and communication the information,

and coordination actions with other nodes. Such a set of sensors build a Wireless Sensor

Network (WSN).

 The development of WSN was originally motivated by military applications such

as battlefield surveillance. However WSNs are widely used in many civilian application

areas along with scientific research fields. No matter which field it works for, the first

step of the procedure is deployment, in order to collect accurate data, sensor nodes are

required to sit as close as possible to spots where the information intended to be collected

-- namely target. But it is not necessary to let sensors sit right on the target spots because

the ability of sensing is not limited with a point but within a certain area, this ability

described as Sensing Range, and there is another property named Radio Range, it shows

how far the sensors could communication with other sensor nodes.

It is said that a target t is covered by a sensor node if their Euclidian distance

denoted by | ts | is less than the sensing range of ,

s

s Rs , i.e., | | < ts Rs .

 2

It is not a problem to deploy a sensor network by hand if the target area could be

accessed easily, even the exact location of targets and the sensor nodes could be

estimated beforehand, so the process of deployment is just put the sensor nodes to the

right position. But that is another story if the monitored area is very dangerous or totally

unreachable from ground access, under this situation, the sensors have to be deployed in

other method, for example: drop from the airplane. Though this deployment method

avoids people risking, it brings another problem: the sensors location could not as precise

as strategically hand placed, this may cause some of the targets out of surveillance or the

whole sensor network disconnected. So redundancy sensors are deployed to compensate

this, with a densely sensors, it can be guarantee that all of the targets are covered and the

sensor network has a great probability to be connected. At the same time, high dense also

brings problems in, for example, if all of the sensors transmit at the same time,

conflicting is inevitably. The popular solution is to divide sensors into a hierarchical

structure with a cluster header collecting the data within its group and send the

aggregated data to its upper layer’s cluster header, reach the base station at last. Figure

1.1 shows a typical structure of a wireless sensor network.

 Base Station

 Cluster header

 Sensors

Figure 1.1 Typical WSN structure

 3

Figure 1.1 shows, the sensors may play different roles in the WSN to avoid

unnecessary transmission and makes the system high efficient and save the energy. The

problem of build a high efficient structure is not involved in the thesis, the thesis focus on

the problem of coverage while coverage problem is a sub-problem for that.

1.2. LIFETIME

As introduced before, sensors have the limitation in process speed and storage

capacity. Actually there is another more critical constraint for sensors: power supply. The

sensor is powered by the battery, once the battery run out, the sensor can do nothing,

neither communication nor data collection – this status is called died. If this sensor works

at a critical position, its death may cause the whole network disconnected or some targets

uncovered, this makes the whole sensor networks paralyze. At the same time, it’s not

realistic to replace died sensors’ batteries given that the area sensors deployed may in the

hostile area. Also, it is not worth the cost to replace the battery because the price of

sensors is very cheap and the number of sensors deployed could be huge. This is another

reason to deploy redundancy sensors: for backup, once a sensor died, there always exists

another sensor to replace it, this makes the network strong and could last longer. As

analyzed before, the redundancy not only brings the coverage problem in, also set up a

goal for the set coverage problem: to maximum network lifetime. And the network

lifetime is defined as the accumulated functional time.

As a fundamental problem in the field, lifetime problem has been studied for a

long time. In the past few years, lots of research works has been done on the problem in

making efficient use of battery energy towards a longer network lifetime, including

energy aware routing, energy efficient data dissemination and hierarchical aggregation

mentioned before, transmission power control and node activity scheduling. These

common approaches tried to reduce the unnecessary communication among sensors as

much as possible to improve the energy efficiency.

On another side, in addition to satisfy the coverage requirement, the user would

wish to organize the sensors in the way that the energy usage could as efficient as

possible so the total network lifetime could be maximized, too.

 4

1.3. OVERVIEW OF MAIN CONTRIBUTION

 In the coverage problem, an optimal solution is proposed for the maximum

lifetime sensor scheduling problem, which could find the upper bound of a sensor

network’s lifetime. This research reveals the relationship between the degree of

redundancy in sensor deployment and achievable extension on network lifetime, which

can be a useful guide for practical sensor network design.

 The proposed Balanced Aggregation Tree algorithm could reduce the redundancy

communication in a partial data aggregation based on the ratio of aggregated data. Which

is the result of tradeoff between Shortest Path Tree and Minimum Spanning Tree, and it

could achieve the minimum energy use for the specific network, the energy is saved in

this way, so the lifetime of the sensor network prolonged.

 These two solutions are energy efficient, the schedule could effectively avoid the

unnecessarily energy drain, so that to achieve a longer lifetime.

 5

2. SENSOR NETWORK COVERAGE PROBLEM REVISITED: SOLUTIONS

TOWARD THE MAXIMUM LIFETIME

2.1. INTRODUCTION TO COVERAGE PROBLEM

2.1.1. Coverage Problem. It is easy to image that in a dense sensor network,

each target is covered by more than one sensor. The requirement for the WSN is all of

targets should under the surveillance, so for each target, it is good enough as long as there

exist a sensor node covers it. At the same time, it is possible that one sensor may cover

more then one target in the random deployment process. Actually if the sensing range is

big enough, one single sensor node may cover all of the targets. So it is possible to

organize sensors into some sets that the sensors in each individual set are enough to cover

the whole target area. Obviously, since one set of sensors could cover all of the targets, to

let all of the cover sets working all the time is a great waste of energy because of

conflicting and redundancy transmission. So the problem is: how to find these cover sets?

 In previous literatures, this coverage problem can be classified into the three

types [19]: Point Coverage, Barrier Coverage, and Area Coverage.

Point Coverage covers a set of specific points (targets). A lot of works [3], [4],

[5], [20] focus in this type, usually they present the scheme to extend a sensor network’s

operational time by organizing the sensors into a maximal number of disjointed set

covers that are activated successively. Obviously, this thesis fells into this category, but

with a different way in finding set covers. This will be addressed later.

There is an issue [21] defined the concept of a Barrier Coverage, which derives a

theoretical foundation to determine the minimum number of sensors to be deployed so

intruders crossing a barrier of sensors will always be detected by at least k active

sensors.

Area Coverage is the most discussed coverage problem, where the main objective

of the sensor network is to cover an area instead of a point. In the category of area

coverage, sensors are used in greater numbers for field operation, and efficient sensors

deployment becomes obvious strategies to maintain coverage. Hence, some specific

deployment algorithms existing in the literatures try to find out the optimal sensor

placement locations in order to maintain sufficient coverage [22], [23].

 6

 [9] points out, the coverage concept is a measure of the quality of service (QoS)

of the sensing function and is subject to a wide range of interpretations due to a large

variety of sensors and applications. The goal is to have each location in the physical

space of interest within the sensing range of at least one sensor.

While this thesis is not only cares about the problem of coverage but also energy

saving to prolong the network lifetime. And sensor nodes are designed with a switch that

could alternate between an active working mode and inactive sleep mode. The motivation

for this scheme is not just to turn off redundant sensors to save energy. Research shows

that if batteries are given sufficient recovering period between two intensive consumption

periods, the actual battery lifetime is extended ([1]). Therefore appropriate scheduling

will not only improve sensor network lifetime, but also individual battery’s performance.

At the same time, constraints about routing connectivity and network coverage

must be considered when design a sensor node activity scheme as long as a connected

network desired. However, these two constraints are inherently related. Former research

[2] shows, if radio range is twice larger of sensing range, then sensors that fully cover the

monitored area will be all connected. This thesis assumes that the radio range of sensors

is sufficiently large to maintain routing connectivity. So for each full coverage set, the

sensors inside could construct a connected network.

Figure 2.1 shows an example of coverage problem.

Figure 2.1 shows that sensors colored with red could fully coverage the whole

field while sensors colored in green could achieve this independently, too.

In the past, majority research works on this topic has focused on organizing

sensor nodes into mutually exclusive subsets so that at anytime only one set is active, and

the optimization objective becomes to maximize the number of disjoint subsets. The two

full covers shown in Figure 2.1 are disjoint set covers. This approach has assumed an

unnecessary and overly restrictive requirement that subsets must be disjoint. This

restriction significantly limits how much we can extend a sensor network’s lifetime

because sensor nodes with energy left from indistinct disjoint subsets may construct a

new set cover that could cover all of the targets. Previous works [3], [4] and [5] etc. all

belongs to this category.

 7

 ActiveSensor

 Targets

 InactiveSensor

Figure 2.1 Example of Coverage

So the maximum disjoint set covers and maximum lifetime problems are two

different problems. Using the approach mentioned before, the number of disjoint set

covers does not have direct correspondence with lifetime.Therefore in this project, the

solution addresses the problem directly – find the schedule that produces the maximum

lifetime, instead of trying to find the maximum number of disjoint set covers. As a result

of this scheduling, sensors may join different sets as long as the accumulated energy

consumption does not exceed its energy reserve. Each set is called a set cover, and the

entire sets are non-redundant set covers, i.e., no one is a subset of another. The maximum

lifetime coverage problem in NP-hard, but it is not necessarily computationally expensive

for some sensor networks in practice, where the number of non-redundant set covers is

within a hundred. It turns out to be practically applicable to use this optimal solution in

such small sensor networks. For large sensor networks, a fast heuristic is proposed that

selects the most effective set covers as a good representative of the whole set. Less

 8

effective set covers are trimmed away to reduce the computation time. The simulation

results show that such simplification only slightly reduces network lifetime, and it is still

the best of its kind.

2.1.2. Linear Programming. A Linear Programming (LP) problem is a special

case of a Mathematical Programming problem. From an analytical perspective, a

mathematical program tries to identify an extreme (i.e., minimum or maximum) point of

a function -- objective function, which furthermore satisfies a set of linear equality and

inequality constraints. In other words, given a polytope and a real-valued function:

1 2 1 1 2 2(, ,...,) ...n n nf x x x a x a x a x b= + + + +

defined on this polytope, the goal is to find a point in the polytope where this function has

the smallest (or largest) value. Such points may not exist, but if they do, searching

through the polytope vertices is guaranteed to find at least one of them.

Linear programs are problems that can be expressed in standard form:

Maximize

 Tc X

Subject to

Ax b≤

Where

0x ≥

x represents the vector of variables, while c and are vectors of coefficients and is a

matrix of coefficients. The expression to be maximized or minimized is called the

objective function (is this case). The equations

b A

Tc X Ax b≤ are the constraints which

specify a convex polyhedron over which the objective function is to be optimized. Linear

programming can be applied to various fields of study. Most extensively it is used in

business and economic situations, but can also be utilized for some engineering problems.

Some industries that use linear programming models include transportation, energy,

telecommunications, and manufacturing. It has proved useful in modeling diverse types

of problems in planning, routing, scheduling, assignment, and design.

 Linear programming is an important field of optimization for several reasons.

Many practical problems in operations research can be expressed as linear programming

problems. Certain special cases of linear programming, such as network flow problems

 9

and multicommodity flow problems are considered important enough to have generated

much research on specialized algorithms for their solution. A number of algorithms for

other types of optimization problems work by solving LP problems as sub-problems.

Under the advent of modern computing technology, for Linear Programming

problems, there are few algorithms such as Simplex could solve the function very

efficiently. In this thesis, MATLAB is used to solve to LP.

2.2. COVERAGE PROBLEM DEFINITION

Given a set S of sensor nodes with location information, sensing range and

initial energy reserve, and a set T of

N

M targets with location information, assuming

each sensor node can switch to an active mode when working, and sleep mode if

necessary, find a schedule of sensors can guarantee that at any time, all targets can be

covered by active sensor nodes at that time and the accumulated functional time of the

network is the maximum.

 Based on the location information and sensing range, we can construct a bipartite

graph between sensor nodes and targets, where a link (,i j) exist if and only if the

distance between sensor and targeti j is within the sensing range of sensor i . Moreover,

from this bipartite graph, we can build a coverage matrix []ij N MA a ×= , where = 1

means sensor i covers target

ija

j , otherwise = 0. Both of the solutions that will show up

in the following sections take this matrix as the input.

ija

 Actually, the topic of computing the optimal schedule to achieve the maximum

lifetime is NP-hard, because its subclass – where sensors must be put in disjoint sets – is

NP-hard. The following section addresses given coverage matrix , how to find the

optimal schedule to achieve the maximum network lifetime.

A

2.3. SOLUTIONS FOR COVERAGE PROBLEM

2.3.1. An Optimal Solution. The optimal solution can be found by using a two-

phase algorithm: In phase I, compute the complete set of non-redundant covers. Each

cover is a subset of sensors belongs to set that completely cover all targets in set T

without redundant sensors in it, in other words, removing any sensor from it will leave

S

 10

some target uncovered; In phase II, compute the optimal solution by solving the linear

program – assigning the time slice for selected set covers, a schedule for sensors to turn

on and off in order to achieve the maximum lifetime

2.3.1.1. Non-Redundant Set Covers. Table 2.1 is the code of the algorithm that

compute the complete set of non-redundant covers from the given coverage map

 for sensors and []ij N MA a ×= N M targets.

Table 2.1 NRSETCOVERS

NRSETCOVERS(, ,A N M)

1. Initialize k = 0, S = {1,… N }, 0T = {1,… M }

2. for i = 1 to N

3. do set c [i] = 1 and c [p] = 0 for p ≠ i

4. T = 0T \ { j | ija = 1}

5. l = i

6. while T ≠ ∅

7. do l ++

8. if l > N

9. then break;

10. if lja = 1 and j T∈

11. then c [l] = 1

12. T = T \ { j | lja = 1}

13. if l > N

14. then c [i]= 0

15. continue

16. k + +

17. kC = c

 11

Table 2.1(Continued) NRSETCOVERS

18. while true

19. do find the largest l S∈ with c[l] = 1

20. if l = i

21. then break

22. c [l] = 0

23. if l = N

24. then continue

25. T = 0T \ { j | 'i ja . []'c i = 1, 'i l∀ < }

26. while T ≠ ∅

27. do l ++

28. if l > N

29. then break

30. if lja = 1 and j T∈

31. then c [l] = 1

32. T = T \ { j | lja = 1}

33. if T = ∅

34. then k + +

35. kC = c

REMOVEREDUNDANCY (C)

 Table 2.1 shows the greedy algorithm perform the exhaust search over the sensor

nodes in sequence, trying to dig out all of the possible non-redundancy full coverage sets.

The line 1 --35 start with the first sensor node, check possible full coverage sets

combinations, once it find a full coverage set, it will not try other combinations that

including this set, in this way, it can avoid part of the redundancy sets, for example, if the

algorithm find the set {1, 3, 5} first, it will not take set {1, 3, 5, 7} as another full

coverage set because the sensor 7 is unnecessary here. But the result sets generated by it

 12

still could contain redundancy in other order, for example, the set of sensor nodes {1, 3,

5} is a full coverage set already, but the algorithm may find another set {1, 2, 3, 5} before

set {1, 3, 5} though the sensor 2 is unnecessary here because the algorithm probing sets’

element in lexical order. This redundant problem can not be solved between line 1 – 35

without reduce the efficiency. But the redundancy sets need to be removed before

running the linear program on it because these sets cause energy waste and will increase

programming running time greatly. So another algorithm designed to deal with check and

remove the redundancy sets as in Table 2.2:

Table 2.2 REMOVEREDUNDANCY

REMOVEREDUNDANCY(C []) 'K

1. for p = 1 to 'K

2. do if pC = Nil

3. then continue

4. for 1q p= + to 'K

5. do if qC = Nil

6. then continue

7. &p qC C C=

8. pC� bitwise AND qC

9. if pC C= (or qC)

10. then qC = Nil (or pC = Nil)

Let denote the number of sets generate by line 1 --35 in NRSETCOVERS.

Running time for it is and for line 36. This algorithm take sets as

input, checking if the current set has the including or included relationship with any set

after it, if so, remove the one has redundancy nodes. The performance is good if is

small. But it is possible that is a very big number, may several even hundred times

'K
'()O K NM

'K

'2(O K N) 'K

'K
'K

 13

greater than or N M , in this scenario, the running time for line 36 could be very high.

This is the motivation to design an alternative algorithm for REMOVEREDUNDANCY for

big and small , which described in Table 2.3. It takes to check if a subset of

sensors could form a complete cover or not, the alternative algorithm runs at .

So the tradeoff between these two redundancy remove algorithm is, when >

'K N ()O NM
' 2()O K N M

' N MK × ,

the alternative algorithm trigged, otherwise, because the former algorithm is more

efficient, so call REMOVEREDUNDANCY.

Table 2.3 REMOVEREDUNDANCY-ALTERNATIVE

REMOVEREDUNDANCY-ALTERNATIVE() '[]C K

1. for p = 1 to 'K

2. do for each sensor s in cover p C

3. do if pC \{ s } is still a complete cover

4. then remove pC

5. break

 The difference between REMOVEREDUNDANCY-ALTERNATIVE and

REMOVEREDUNDANCY is the alternative algorithm does not check the relationship

between sets, it only check inside the sets -- by removing elements in the set one by one

to see if there is redundancy exist, the set got removed once a redundancy find. The

NRSETCOVERS can guarantee that the removed set’s corresponding minimum full

coverage is in the set and can not be removed.

This is phase I, running time is exponential to in theory, but could be much less

if the link probability is high in the bipartite graph, so the search for covers does not go

through every possible combination of sensors -- specially, the while loop in line 6 and

line 26 “while T ” break out before every sensor is tested. The actual running time is

dependent on , the number of set covers before the call to REMOVEREDUNDANCY. The

N

≠ ∅
'K

 14

simulation section will show how the size of influences the runtime of the two-phase

algorithm.

K

4

 The following example illustrates the algorithm in details: given coverage

matrix for sensors and []ij N MA a ×= 5N = M targets: =

0 1 0 1
1 0 1
1 1 0 1
0 1 1 0
1 0 1 0

A
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 Here is a detail description about the process from line 1 to line 35 take node 1 as

example: Node 1 try combination with node 2 first, and find out set {1, 2} is a full

coverage, so put {1, 2} in the results set and break from node 2; then node 1 continue

with node 3, and find out {1, 3} is not a full coverage, so continue probing with {1, 3}

and find out {1, 3, 4} is a full coverage, then break {1, 3, 4}, continue with {1, 3} and

find out {1, 3, 5} is another full coverage, the probing with 3 is done; next continue with

node 4, in the same way, set {1, 4} is not full coverage while {1, 4, 5} is; and {1, 5} is

the last feasible full coverage set with node 1. Then start with node 2, probing

combination with nodes after it…

At last, before running the REMOVEREDUNDANCY, the NRSETCOVERS could get

nine full covers sets from A , they are:

1 11000C = , sensors {1, 2}

2 10110C = , sensors {1, 3, 4}

3 10101C = , sensors {1, 3, 5}

4 10011C = , sensors {1, 4, 5}

5 10001C = , sensors {1, 5}

6 01100C = , sensors {2, 3}

7 01010C = , sensors {2, 4}

8 00110C = , sensors {3, 4}

9 00101C = , sensors {3, 5}

 15

 By running REMOVEREDUNDANCY, get removed because but is

already a complete cover, since the goal is to find the maximum lifetime of the whole

network, less sensors involves, more energy left and potentially much network lifetime

possible. In this way, covers , , are redundant and get removed. Assuming the

initial energy reserve is 1 unit for each sensor node. The optimal solution for the linear

program has a lifetime of 2.5 units, which can be achieved by setting as following:

2C 8C C∈ 2 8C

2C 3C 4C

1 11000C = , sensors {1, 2} unit 0.5→

5 10001C = , sensors {1, 5} unit 0.5→

6 01100C = , sensors {2, 3} unit 0→

7 01010C = , sensors {2, 4} unit 0.5→

8 00110C = , sensors {3, 4} unit 0.5→

9 00101C = , sensors {3, 5} unit 0.5→

 While the method of disjoint covers could find out only two disjoint covers; for

example {1, 2} and {3, 4}, with each cover active for one unit, so the total lifetime is 2

units. Compared with this, the optimal solution achieved 25% longer lifetime.

 Here is another example, which has only 1 disjoint set covers: {1, 2} or {1, 3} or

{2, 3}, while the optimal solution could easily find 3 non-redundant covers with each

working for 0.5 unit time. The lifetime will be improved from 1 unit to 1.5 units, showing

50% increase.

1 0 1
0 1 1
1 1 0

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 {1,2}C = 0.5→

2 {1,3}C = 0.5→

3 {2,3}C = 0.5→

 These two examples show that, with a reasonable organization on the set covers

could last network lifetime.

 16

2.3.1.2. Linear Program Formulation. There are covers after the redundancy

sets removed in Phase I, these sets could be expressed as a matrix[: let = 1 if

sensor is in cover , = 0 otherwise. Along with following variables:

K

]ik N KC × ikC

i k ikC

kt : time for cover k to be active;

ikt : time for sensor i to be active in cover k .

Obviously, if sensor i is in cover , = ; Otherwise, = 0. The maximum

lifetime sensor coverage problem can be cast as a linear program as Table 2.4:

k ikt kt ikt

Table 2.4 Linear Program Formulation

Maximize

1

K

k
k

t
=
∑ (1)

Subject to

(1)ik ikC t− × = 0 , i∀ , k∀ (2a)

()ik ik kC t t× − = 0 , i∀ , k∀ (2b)

1
1

K

ik
k

t
=

≤∑ , i∀ (2c)

0 ,ik kt t≤ ≤1, i∀ , k∀ (2d)

Equalities (2a) and (2b) guarantee that if = 1, = ; if = 0, =0.

Inequality (2c) is for homogeneous sensor networks, where every sensor has the same

amount of energy, 1 unit for here. It is easy to extend this to heterogeneous networks if

sensors have different initial energy: let

ikC

iE

ikt kt ikC ikt

1

K

ik
k

t
=

≤∑ , where is the normalized lifetime iE

 17

of sensor based on its initial energy reserve. The lifetime achieved in this way is

different from the first-node-die lifetime as assumed in most other work -- it is the total

time for the network being functional.

i

(1

Phase II involves the process of solving linear program. The linear program with

variables can be solved in polynomial time . The linear

programming solver package in MATLAB is used here.

)n N K= + × 3()O n

2.3.2. A Fast Heuristic.

2.3.2.1. First K Covers. As mentioned before, the algorithm NRSETCOVERS

uses exhaustive search to find all non-redundant set covers. It is critical that , the

number of covers set, is small, because the running time of the linear program solvers is

proportional to , this could be a huge consumption on computer resources, for both the

memory and CPU usage. Motivated by this, statistics research performed on the result

generated by the optimal solution, and it is observed that not all of set covers have equal

contribution to network lifetime. The following charts are a statistics on the member

numbers inside the sets, the Figure 2.2 shows the distribution of set covers according to

sensor number, obviously, most of the sets concentrate with 7 or 8 members

K

3K

But Figure 2.3 shows another story, it shows though sets with 4, 5, 6 sensor nodes

not a majority in the number, but they contribute a lot to the lifetime while the lifetime

contribute make by 7 and 8 not as dominate as they in the number. The output shows that

each set cover with 7 members only assigned with a very short time slice, this is not

feasible in reality because frequently mode changing affect the network’s work

efficiency.

This means it is important to eliminate some set covers in order to reduce the

input size to the phase of solving linear program. The following algorithm is designed to

select the first set covers that have most contribution to network lifetime. To select the

first set covers, a new metric is defined, called Effective Coverage, defined as follows.

K

K

If sensor covers i p targets and of them have already been covered by other

sensor nodes in the set , then the Effective Coverage of sensor i in a set is defined

as:

kq

kS kS

(,)EC i k = p - kq

 18

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12

Number of Sensors in the set

N
um

be
r o

f S
et

s

Figure 2.2 Sets Statistic

 In other words, Effective Coverage of sensor i in set is the number of

uncovered targets that it could covers. While

kS

p does not change as the algorithm

progresses, does change and depend on the order we select sensors. The following

algorithm computes the first covers that put each sensor in the most coverage-effective

way.

kq

K

In this algorithm, initially, is a S N N× matrix with the elements on diagonal set

to 1, and there are two auxiliary matrixes with the same size as to save value of EC

and for the corresponding elements inside S . During the process, the size of may

increase first then decrease, but will around the same magnitude with .

S

kq S

N

At each step, the sensor nodes with the greatest effective coverage are selected.

Effective coverage is the primary metric in selecting sensors. If several sensors are in a

tie, the one that shows more promise toward a complete cover is preferred. This could be

 19

determined by comparing the number of targets that would have been covered in this set

if sensor i is included, the closer to M the better. This is the secondary metric. If using

the primary and secondary metrics still cannot solve a tie case, we use the third metric,

p -- the number of targets that a sensor covers, and select the one with smaller p . If all

three metrics are tie, include all of them. The algorithm terminates when the best covers

all have been selected therefore S =∅ or the specified number of covers have been

found, whichever comes first. CheckRedundancy() simply does line 2-4 of

RemoveRdendancy-Alternative.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

Number of Sensors in the Set

Su
m

m
at

io
n

of
 L

ife
tim

e

Figure 2.3 Lifetime Statistic

Using this algorithm, selecting the first five set covers in example one will give us

the following:

1 10001C = , sensors {1,5} unit 0.5→

2 11000C = , sensors {2,1} unit 0.5→

 20

3 01010C = , sensors {2,4} .5unit 0→

4 00110C = , sensors {3,4} unit 0.5→

5 00101C = , sensors {3,5} unit 0.5→

Table 2.5 FIRSTKCOVER

FIRSTKCOVER(, , ,A N M count)

1. initialize for 0, , { }knum K N S k= = = 1..k K=

2. 1
K
k k S S== ∪

3. while S ≠ ∅ and num count<

4. do compute (,)EC i k for each i in each set kS

5. select the * *(,)i k such as:

6. * *(,)EC i k =
,

max
i k

((,)EC i k)

7. i * *
*

k k
S S= ∪

8. if *k
S is a complete cover

9. then S = S \{ *k
S }

10. CheckRedundancy(*k
S)

11. if *k
S ≠ ∅

12. then C C= ∪ *k
S

13. num+ +

14. return C

 The linear program solver will assign 0.5 unit time for each cover and that gives a

total of 2.5 units’ lifetime, the same result as the optimal solution.

 21

 For the second example, we get {1, 2}, {1, 3}, {2, 3}, with each active for 0.5

unit time, we get a total lifetime of 1.5 units, still same as the optimal solution.

 2.3.2.2. An Iterative Heuristic. The result from firstKcover includes the most

important group of set covers that dominate the network lifetime. This information is

used to solve the linear program in section 2.3.1.2. Then for each sensor, the energy

consumption should be deduct from the initial total energy (assumed to be 1.0

initially), so the remaining energy of each sensor becomes = - . After removing

the sensors with = 0, the algorithm firstKcovers could run on the new input repeatedly

until no more complete set cover exist.

iP iE

iEi iE iP

iE

 After the first iteration, the remaining energy should be considered during the

process of selecting sensors. In case that two sensors tie in their effective coverage, the

one with more remaining energy is preferred to be select, then the other two metrics

introduced in section 2.3.2.1 follow. That is, the order of preference becomes: more

effective coverage, more remaining energy, closer to a complete cover, smaller degree in

the bipartite graph. This tends to reduce the disparity in energy distribution, make energy

consumption health, and therefore potentially increases network lifetime.

2.4. SIMULATION FOR COVERAGE PROBLEM

In order to reveal the performance character of the algorithm, there are two

aspects need to be explored:

First, how good the algorithm could be. To show this, experiments conducted

with different parameters on sensor density, target density and sensor range. These results

reflect the solution’s performance property with different network redundancy.

Second, how better the algorithm could be. A solution is valueless if it could not

perform better than the current popular one in the field. Based on this, comparison

experiments not only designed between optima algorithm and iteration heuristic

algorithm – this is to show how close they are, but also with a well performance

algorithm – GREEDY-MSC [6]. These results illustrate the advantage over other

algorithms with concrete data.

The simulation is conducted using MATLAB combined with c++ under Unix.

2.4.1. Redundancy And Network Lifetime. Since the objective value of the

linear program provides an optimal solution for the maximum network lifetime, it is

 22

possible to study how redundancy can affect network lifetime by using this. For all of the

simulation experiments, we randomly deploy sensors and targets on a 500 500 plane.

The network lifetime is normalized to the battery lifetime. For example, if a battery can

last for one unit of time, network lifetime is 13.45 means the network can be operational

for 13.45 units of time.

×

 So first focus on how much longer lifetime the algorithm could achieve by

increasing redundancy. Redundancy could be realized by either increasing sensor’s

sensing range, or by deploying more sensors while keeping the same sensing range. Both

will increase , the average number of sensors covering a target. tΔ

 Figure 2.4 shows the scenario with fixed number of sensors, 15 here and fixed

number of targets, 15 and 30 individually, how the network lifetime be affected with the

sensing range increasing.

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700

Sensing Range

N
or

m
al

iz
ed

 L
ife

tim
e

N=15 M=15 N=15 M=30

Figure 2.4 OPT with Fixed NM and Increasing Range

 23

 Obviously, lifetime increasing with sensor range increasing when sensor number

and target number are fixed, also, Figure 2.4 shows the lifetime is not sensitive to the

number of targets for the proposed algorithm in the experiment, because targets follow a

random uniform distribution. Doubling the number of targets does not always decrease

the lifetime.

 Figure 2.5 shows the situation of fixed number of targets, 20 and 50 individually

and fixed sensing range, 300 and 250 individually, how the network lifetime changing

with the increasing number of sensors.

Figure 2.5 shows the network lifetime increasing with sensor number increasing

when both the targets number and sensing range fixed. Also, the lifetime noticeably drops

when the sensing range decrease to 250. On the curve for M=50 and R=250, the average

number of sensors covering each target increases approximately from 3 to 10, and the

lifetime appears in the same trend. It can be concluded based on this observation that

lifetime is roughly linear to the average number of sensors covering each target.

0

1

2

3

4

5

6

4 6 8 10 12 14 16 1

Numver of Sensors

N
or

m
al

iz
ed

 L
ife

tim
e

8

M=20 Range=300 M=50 Range=250

Figure 2.5 OPT with Fixed MR and Increasing N

 24

 With optimal solution, increases dramatically with increasing, because of it

is difficult to get the optimal solution for the network with a large for the reason of

linear program solver runs at the cost of , so the heuristic algorithm used here

instead of the optimal solution to show the relationship between redundancy and network

lifetime (Figure 2.6, 2.7, 2.8). How close the heuristic is to the optimal solution will be

exposed in section 2.4.2. Apparently large networks show the same trend as in small

networks, and lifetime increases as the number of sensors cover per target increases. It’s

consistent between Figure 2.4, 2.5 and Figure 2.6, 2.7 even the slopes of the curves.

K N

N
3()O K

 Similar as Figure 2.4, Figure 2.6 shows the trend of lifetime when sensing range

increasing while sensor number and target number are fixed.

In the same way, Figure 2.7 reveals the relationship between lifetime and sensor

numbers when target number and sensing range are fixed.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700

Sensing Range

N
or

m
al

iz
ed

 L
ife

tim
e

Heuristic N=40 M=50

Figure 2.6 HEU with Fixed NM and Increasing Range

 25

5

10

15

20

25

30

35

20 30 40 50 60 70 80 90 100 110

Number off Sensors

N
or

m
al

iz
ed

 L
ife

tim
e

Heuristic M=50 Range=300

Figure 2.7 HEU with Fixed MR and Increasing N

2.4.2. Performance Comparison.

 2.4.2.1. Comparison between Heuristic solution and Optimal solution. In

order to know how close the heuristic to optimal solution, so the first merit need to

compare is lifetime, computed by them on the same input matrix.

The following table shows the test results for the scenario of 15 sensors and 50 targets,

with sensing range increases from 150 to 600. As expected, the heuristic solution finds

the optimal solution most of the time, and only for very few cases it misses the optimal

solution, but it is still within 3.1% margin of the optimal solution.

 Table 2.6 shows the optimal solution results in the lime colored column while the

heuristic's in the blue-gray colored column. The rows hold the value to compare: lifetime,

the number of set covers input to the linear program solver, for the heuristic, it is the

maximum number of set covers among all iterations, and the number of iterations. For the

optimal solution, the number of iterations is always 1 since it only uses one pass and does

not iterate.

 26

Table 2.6 Performance Comparison between Heuristic and Optimal Solution

OPT HEU

Range Lifetime Max{K} Iterations Lifetime Max{K} Iterations

150 1 34.95 1 1 7.55 1

200 1.5 60.7 1 1.49 10.9 1.05

250 2.75 106.45 1 2.66 12.55 1.65

300 4.2 71.15 1 4.13 11.2 1.75

350 5.95 52.35 1 5.91 10.45 1.9

400 7.23 32.55 1 7.12 12.55 1.9

450 9.88 29.8 1 9.61 14.25 2.25

500 11.7 22.05 1 11.49 15.4 1.95

550 13.43 14.5 1 13.43 14.15 1.05

600 14.25 14.4 1 14.25 14.3 1.1

 Table 2.6 shows a comparison with all fixed arguments, to further illustrate the

difference between these two algorithm under various scenarios, experiments for

comparing lifetime, set cover size and running time with various number of sensor

nodes also performed (Figure 2.8-2.10). For sensing range R=300 and M=50, the network

size varying from 5 to 25.

K

Figure 2.8 shows the lifetime computed by the heuristic is exactly the same as the

optimal solution, this is the reason why it is feasible to replace optimal solution with

heuristic solution does not affect the final results in section 2.4.1.

 While Figure 2.9 shows the comparison on the number of set covers they

produced for the linear program solver and Figure 2.10 focus at running time of these two

algorithms.

Obviously, the number of set covers increases dramatically with optimal

solution while heuristic solution’s keeps a nearly constant, this is a good news for

Phase II since solving the linear program is too computationally expensive.

K

K

 27

0

1

2

3

4

5

6

7

8

3 8 13 18 23

Number of Sensors

N
or

m
al

iz
ed

 L
ife

tim
e

Optimal Solution FirstKcover Heuristic

Figure 2.8 Comparison of Lifetime between OPT and HEU with Increasing N

0

50

100

150

200

250

300

350

400

5 10 15 20 25

Number of Sensors

K

Optimal Solution FirstKcover Heuristic

Figure 2.9 Comparison of K between OPT and HEU with Increasing N

 28

0

20

40

60

80

100

120

140

4 9 14 19 24

Number of Sensors

R
un

tim
e

(S
)

Optimal Solution FirstKcover Heuristic

Figure 2.10 Comparison of Runtime between OPT and HEU with Increasing N

 This Figure shows the benefit of using the heuristic, it starts to show when the

network size increases to 20 sensors – the running time of the optimal solution increases

dramatically while heuristic solution keeps at a low time.

 2.4.2.2. Comparison between Heuristic and Greedy-MSC. [6] focus on the

same topic as this thesis, and there are two algorithms proposed in [6], the winner is a

greedy approach: Greedy-MSC.

 The comparison between firstKcover heuristic and Greedy-MSC focus on two

sides, one is how the sensing range affect network lifetime for both algorithm (Figure

2.11), another is how the number of sensors affect network lifetime (Figure 2.12).

 It’s obvious from the plot that firstKcover heuristic always gets more lifetime,

especially when the initial energy reserve is non-uniform. The difference between the two

curves increases as the number of sensors covering each target increases. In GREEDY-

MSC, both the accuracy of results and running time are dependent on the input parameter

 -- the time slice size; however in firstKcover, it only depends on the sensor-target w

 29

coverage map. No matter what initial energy distribution looks like, it can infinitely

approach the optimal solution.

0

5

10

15

20

25

30

100 200 300 400 500 600

Sensing Range

N
or

m
al

iz
ed

 L
ife

tim
e

FirstKcover Heuristic Greedy Heuristic

Figure 2.11 Comparison between HEU and GreedyMSC with Increasing Range

0

5

10

15

20

25

30

35

40

15 25 35 45 55 65 75 85

Number of Sensors

N
or

m
al

iz
ed

 L
ife

tim
e

FirstKcover Heuristic Greedy Heuristic

Figure 2.12 Comparison between HEU and GreedyMSC with Increasing N

 30

 There is another difference between them: the number of targets could affect

Greedy-MSC’s performance a lot but as shown in section 2.4.1, targets number is not a

big deal for the algorithms proposed in this thesis.

2.5. RELATED WORK

Coverage problem has been addressed using different approaches with various

coverage metrics. The most commonly used metric, which is also used in this paper, is

the discrete version 0-1 coverage metric, that is, if the target is within the sensing range

of the sensor, it is considered covered. With this coverage metric, there is no difference

between the target being within 3 feet and 30 feet of the sensor as long as the sensing

range 30 feet. Previous work using 0-1 coverage metric includes [3], [4], [6] etc., there

is no limit on the size of each subset. This becomes a real problem when the wireless link

capacity is limited and all sensors need to ship their sensory data out periodically. [5]

addressed how to schedule sensor nodes with bandwidth constraint to achieve minimum

breach rate, and based on application needs, three performance metrics for breach rage

are introduced.

≥

The continuous version coverage problem is addressed by using a coverage metric

based on the signal intensity that the sensor gets from the target, which is a function of

the distance between them ([8]). The sum of intensities from multiple sensors measures

the likelihood of the target being observer by all sensors. They further defined exposure

of a target along a path as the integral of the sum of intensities along the path. While

intensity function indicates the sensitivity of a target at a particular point, exposure

measures the likelihood of a moving target being detected along a path. Based on this

sensing model, they proposed algorithms for calculating the worst-case coverage ([8])

and finding the least-covered path and maximal-support path ([9]). [10] also addresses

continuous domain coverage but it uses a different sensing model. [11] further addresses

how to find optimal solutions to the best-coverage-least-energy consumption path

problem and the best-coverage shortest-path problem. These works do not have

maximum lifetime as their optimization objectives, but indirectly can extend lifetime by

being energy efficient in all operations.

 31

Distributed approaches that schedules sensors on and off based on local

information have also been focus of study in the recent literature. Different from the

centralized approach presented in this article, in these works a sensor node switches

between an active mode and sleep mode based on the information received from its

neighbors and makes its own decision independent from others. These approaches trade

optimality for faster and easier implementation. [12] proposed a protocol to minimize the

number of active nodes while preserving the original network coverage. In this protocol,

a node is scheduled to sleep when its contribution to network coverage is the minimum

and removing itself from the network still leaves a fully covered network. Essentially

[12] does a density control by using a Cooperative Sensing Model that explores the

cooperative exploration of multi-sensors. Other density control approaches are mainly

based on Boolean Sensing Model where sensing intensity is based on a continuous model

but a threshold value is used to decide if a point is covered or not. [13], [14], and [2] etc.

all used this model.

For dense and massive sensor networks, [13] uses probing environment and

adaptive sleeping strategies to reduce the number of redundant on-duty nodes. [13] also

assumes that faulty nodes exist and node transmission power is adjustable. [13] and many

other works use a random uniform distribution method for node deployment that does not

guarantee full coverage and connection. [15] uses a different deployment method that not

only guarantees coverage but also preserves connectivity, which is similar as used in this

thesis. The centralized version of the problems is addressed in [16], where the notion of

Connected Sensor Cover is introduced. A connected sensor cover is a subset of sensors

that can fully cover the query region and any sensor in the subset can communicate with

any other sensor in the subset directly or indirectly through multi-hop communication,

and this subset need to be minimized. The connected sensor coverage problem is NP-hard

as the less general problem of covering points using line segments is known to be NP-

hard [24]. Constructing a minimum connected sensor cover for a query in a sensor

network enables the query to be computed by involving a minimum number of sensors

without compromising on the accuracy of the query result.

If fault nodes exist in a sensor network, single coverage is not sufficient to satisfy

the QoS requirement. [17] addresses the -coverage problem, i.e., to select a minimal k

 32

active set of sensor nodes to maintain a complete area -coverage, which is defined as a

minimum set cover problem. It further extends it to address the probabilistic -coverage

problem that requires a point is covered by sensors at a required probability.

k

k

≥ k ≥

Moving target detection is a different category of coverage problem. [18] defined

the worse and best-case coverage problems and proposed polynomial time algorithms to

compute them. The coverage calculation here is independent of paths traveled by the

target, which is different from [8].

2.6. CONCLUSION ON COVERAGE PROBLEM

To maximize network lifetime under given energy constraints is a fundamental

problem in wireless sensor networks, because wireless sensor networks are powered by

battery, so the organization with power aware is highly desirable to prolong the network

lifetime. Arranging sensors turn on and off at their scheduled time is an efficient method

to save the energy, but at the same time, need to guarantee that the active sensors could

completely cover all monitored targets. The lifetime metric is the total time during which

the sensor network is functional. This thesis provides an optimal solution for the

maximum lifetime sensor scheduling problem. The study reveals the relationship between

the degree of redundancy in sensor deployment and achievable extension on network

lifetime, which can be a useful guide for practical sensor network design.

 The proposed algorithm is suitable for small sensor networks. In the future work

of this topic, the suboptimal solution for massive sensor networks without increasing

computation time dramatically will be addressed, also, distributed and localized

algorithms for very large scale networks, and study the tradeoff between computation

time and communication overhead in achieving the maximum lifetime need to be further

explored. The linear program model can be easily extended to address sensor networks

with heterogeneous sensor networks where nodes may have different battery supply. For

fault tolerance consideration, the algorithm to find the non-redundant set covers can be

modified to make sure each target i is covered by sensors and the linear program can

still apply to find the optimal solution.

ik

 33

3. ENERGY EFFICIENT DATA GATHERING ALGORITHM IN SENSOR

NETWORKS WITH PARTIAL AGGREGATION

3.1. INTRODUCTION TO DATA AGGREGATION

Wireless sensor networks can potentially be used in habitat monitoring, target

tracking, surveillance as well as many other future civil and military applications [26].

Sensors in a network collaboratively accomplish a sensing task, and then relay the

information to a specified viewer, often referred to as a sink node or a base station.

Sensors are equipped with a sensing unit to gather information, a computing unit for data

processing, and a communication unit to communicate with other sensors and the base

stations. Due to the bandwidth limitation and the energy limitation, data transmitted

through the network should be reduced as much as possible. To this end, in-network data

aggregation is desired in many systems [28, 31, 34]. On the other hand, due too the

limitations on power supply and computing capability, the large computing task should

be avoided at sensor nodes. As a result, some computationally expensive tasks are moved

to the base station and raw data is forwarded without in-network processing. A pure

aggregation model and a pure non-aggregation model are shown in Figure 3.1 and Figure

3.2.

Figure 3.1 Data aggregation model

 34

Figure 3.2 Data non-aggregation model

 In future sensor networks, data gathering with or without aggregation will co-

exist. In particular, some queries and answered with full data aggregation, some with

partial aggregation, and some without aggregation at all. Some queries require all sensor

nodes to respond, while others only involve a subset of sensors. With flexible in-network

data processing, it is possible that for one particular query, some nodes will be

aggregators and others are just relay nodes; and the roles of sensors change from query to

query. A dynamic topological structure that changes with every query is too expensive to

maintain in terms of setup delay and energy consumption. In fact, it is rather infeasible to

update the aggregation tree structure if queries are issued frequently. A reasonable

assumption is that even though sensors may play different roles for different queries, for

a long term each sensor roughly has equal chance to generate raw sensory data. Therefore

in this paper we assume a uniform model, in which a fraction of sensory data are fully

aggregated and the rest are not aggregated at all. This model does not require specific

query information or the source distribution. This fraction is called aggregation ratio, and

we assume a uniform ration for every sensor node. Figure 3.3 shows that some data are

aggregated while others are not.

 35

Figure 3.3 Hybrid model

 In this paper, we try to find the most energy efficient topological structure for data

gathering with a constant aggregation ratio . In two extreme cases when = 0 (i.e., data

are not aggregated at all) and = 1 (i.e., data are fully aggregated), the optimal solutions

become the Shortest Path Tree (SPT) and the Minimum Spanning Tree (MST)

respectively. In a general case when 0

b b

b

1b< < , to find the minimum energy tree for data

gathering is an NP-hard problem. We propose an efficient numerical approach to

compute the input parameterα that controls the transition between MST and SPT so that

the resulting tree can minimize the energy cost (in Chapter 11). A polynomial time

algorithm BAT is proposed to construct such a tree with the given control parameter (in

Chapter 10). Through extensive simulations, we show that the proposed algorithm and

numerical approach effectively reduce the energy cost of data gathering (in Chapter 12).

3.2. ENERGY COST FOR DATA GATHERING

In this chapter, we formulate the total energy cost associated with data gathering

in sensor networks. Since transmission power is the dominant factor among all the

activities (transmitting, receiving and local data processing, etc.), we only consider the

transmission power. When ignoring the constant factor, the required transmission power

 36

P to send data over a distance is = , where c is the path loss exponent between 2

and 4.

d P cd

Let be the graph model of the sensor network, where an edge exists

between two sensor nodes if they are within the transmission range of each other. We

assign each edge a weight function . The sub graph that supports data

gathering from all sensor nodes to the sink node is a tree rooted at the sink node.

(,)G V E

e∈E () | |cw e e=

(1). When the aggregation ration = 0, the total energy is the sum of the weights

of paths from the source nodes to the sink node . The total energy is:

b

r

1
(,)

()
v V e path v r

E w e
∈ ∈

= ∑ ∑

In this case, to compute a tree that minimizes is equivalent to compute the shortest

path from each node to the sink node . Thus the optimal solution is a Shortest Path Tree,

which can be found in polynomial time.

1E

r

(2). When = 1, the total energy is: b

 = 2E ()
e tree

w e
∈
∑

In this case, paths from different sources to the sink node can be shared as much as

possible, and the shared paths are only counted once in the sum, therefore to compute a

tree that minimize is equivalent to compute a Minimum Spanning Tree. Thus the

optimal solution can be computed in polynomial time. However, if only one subset of

nodes is source nodes, it becomes an NP-complete problem.

2E

(3). When , the optimal topological structure is a tree that provides

continuous transition between a Minimum Spanning Tree and a Shortest Path Tree. Such

a tree has the promise to provide best performance over a long time. In [32] the

maximum lifetime data gathering problems are addressed where data are either fully

aggregated or not aggregated at all. However, to our knowledge, there is no previous

work that has ever addressed the hybrid data aggregation (i.e., 0

0 b< <1

1b< <), which is more

likely to have broader applications that the other two.

In the next chapter, we will show that the Balance Aggregation Tree (BAT)

algorithm can be used to construct a tree that is energy efficient for hybrid data

 37

aggregation. In the following, we use and to represent the distance from root r

to node in SPT and the final BAT tree, and

vD ()d v

(v vP)p v to represent the predecessor of in

SPT and the final BAT tree respectively.

v

3.3. BAT ALGORITHM

The Balanced Aggregation Tree (BAT) algorithm finds a trade-off between the

shortest path property of SPT and the minimum weight property of MST, and provides a

smooth transition between the two. A tree is called an α -tree of if for every node v in

the tree, the distance from to in . We will show that BAT algorithm computes an

G

v r G α -

tree of G for given 1α ≥ .

The BAT algorithm is given in the following, where is the graph model

of the sensor network, is the specified root and

(,)G V E

r 1α ≥ is the control parameter. In the

BAT algorithm, is the confirmed vertex set already on the tree, initialized to include

the root ; is the set of edges crossing

BV

r OE BV and . BV

 BAT (, r ,(,)G V E α)

Compute the shortest path form to each noder v V∈ ;

Let be the distance from to v ; vD r

Let be the predecessor of on the path. vP v

for each v do V∈

 () = (d v α +1) vD

 ()p v = NULL

end for

let vertex set = { }, BV r BV = \V BV

let edge set = all edges connected to r OE

While BV φ≠ do

find the minimum-weight edge (,) Ou v E∈ , s.t.

 , vu ∈ BV ∈ BV

 38

UPDATE (u , v)

if ()d v α≤ vD then

 \{ (,) | }O O BE E edge x v x V= ∈

 { },B BV V v= ∪ BV = BV \{ }v

 { (,) |O O BE E edge v w w V= ∈∪ }

else

 \{ (,)}O OE E edge u v=

end if

end while

return (,{(, ()) | \{ }})BATT V v p v v V r= ∈

END of BAT

UPDATE () ,u v

() () (,)
()

d v d u w u v
p v u

= +
=

END of UPDATE

Theorem 10.1 Given a graph G with non-negative edge weights, BAT algorithm

computes an α -tree of G in O(E+VlogV) time.

 Proof: We first show BAT algorithm terminates within O(E+VlogV) time and outputs

a single tree, then show that for each node in the tree, () vd v Dα≤ .

In the while loop, a vertex Bv V∈ is added into by an edge () that straddles

 and

BV ,u v

BV BV . It starts from root and takes | -1 edges to connect | -1 non-root nodes

onto the tree, so the structure is acyclic and is connected, therefore the resulting structure

is indeed a tree.

r |V |V

It can be proved that the algorithm does not have endless loops, because will

not become empty before

OE

BV becomes empty. This can be proved by contradiction:

 39

Assume there exists a node v∈ BV and becomes empty before is included in .

Assume node is the predecessor of v on the shortest path from v to . Therefore

OE v BV

u∈ BV r

() ud u Dα≤ . This leads to ()d u (, (,)uw u v D w u v) α+ ≤ + . Since 1α ≥ ,

so () (d u w u, uD)v ((,w u v))α+ ≤ + . However, (,uD w u)v vD= + , which leads to

(,)ud w u v vDα+ ≤ . Thus node v could be included in when edge () is examined.

If the predecessor of v is also in

BV ,u v

BV , call it x , then the same proof can lead to that x

could be included in before goes empty. Therefore by the end of the while loop,

all nodes are included in the tree and all edges {(form a single tree.

BV OE

Δ ()O V

, ())}v p v

The running time of BAT algorithm is O(E+VlogV), because the size of is

bounded by | | = at any time, where

OE

BV Δ is the maximum node degree, therefore

to extract the minimum weight edge from takes time using a priority queue,

altogether it is time; to add edges into and to remove edges from are

executed 2| | times altogether, so the total time for BAT is O(E+VlogV).

OE (log)O V

OE(O V log)V

()d v

O

V

E

E

()d v

The distance property is direct from the procedure that a node is added into

only if satisfies

v B

vDα≤ .

Theorem 10.2 Given a graph G with non-negative edge weights, to compare a minimum

weight α -tree is NP-hard for α >1.

 Proof: In [33], a theorem has been proved that for given α >1 and 2
1

1 1β
α

+≤ <
−

 ,

it is NP-complete to determine whether a given graph G contains a tree that satisfies 1)

for every vertex the distance from to in the tree is at most r αv u times the shortest

distance from to in G ; and 2) the weight of the tree is at most v r β times the weight

of a minimum spanning tree of G . It follows from this theorem that to compute a

minimum weight α -tree is NP-hard, because otherwise if we can find the minimum

weight α -tree in polynomial time, we can compute its weight in polynomial time,

then we can compare with.

*W
*W β *W ≤MW β MSTW×: if × ST , then we can determine in

polynomial time that G contains a tree that satisfies the two conditions; if W > *

 40

β MSTW× , then we can conclude in polynomial time that does not contain a tree that

satisfies the two conditions, contradicting the theorem in [33].

G

 However, when α = 1, the minimum weightα -tree problem becomes to compute

a minimum weight Shortest Path Tree. This problem is solvable in polynomial time.

While both the Light Approximate Shortest-path Tree (LAST) algorithm in [33] and BAT

compute an α -tree of the original graph, BAT outperforms LAST in total weight,

because the edges of the tree are selected from a larger pool. LAST only uses the edges in

MST until a violation on distance occurs. The smallest total weight property is verified

through simulation in section 3.5.1 Figure 3.7 Figure 3.10. ∼

3.4. MINIMUM ENERGY TREE STRUCTURE

The transition from a Shortest Path Tree to a Minimum Spanning Tree is

controlled by an input parameterα , Increasing α will sacrifice the distance property for

better total weight property, and decreasing α will increase the total weight for better

distance property. However, how to determine the trade-off in real systems can be a

challenging task. In this section we discuss how to choose α to make the resulting tree

structure the most energy efficient for a given sensor network.

The lower bound of the optimal solution is achieved by an imaginary tree that

behaves like a Shortest Path Tree for non-aggregate data, and behaves like a Minimum

Spanning Tree for aggregate data. In a sensor network, if the ratio of non-aggregate data

to aggregate data is , where 0 ,:a b 1a b≤ ≤ , and 1a b+ = , then the lower bound of the

optimal solution is:

 OPT SPT MSTE a E b E= × + ×

Where is the sum of distances in the Shortest Path Tree and SPTE MSTE is the total weight

of the Minimum Spanning Tree. For any BAT tree, the total energy cost consists of a

fraction of sum of distances and a fraction b of total weight. a

(,)

() ()BAT
v V e path v r e BATT

E a w e
∈ ∈

= × + ×∑ ∑ b
∈
∑ w e

By adjusting the control parameterα , we can control the shape of the BAT tree

for different and , so the resulting total energy can approach the lower bound.

The idea is as follows:

a b BATE

 41

Let y be the ratio of the sum of distances in the Shortest Path Tree to the total

weight of the Minimum Spanning Tree. Let be the energy cost along the path

from v to root . The total energy cost is:

()E v r→∼

r

() ()
BAT

BAT

v r T
v V e T

()E a E v r b weight e→ ∈
∈ ∈

= × → + ×∑ ∑∼ ∼

Since the cost along each path is upper bounded by α times that of a Shortest

Path Tree, and the total weight of the (α β−) BAT tree is upper bounded by β times

that of a Minimum Spanning Tree. Thus

()SPT MST MSTE a E b E a y b Eα β α β≤ + ≤ +

To minimize the upper bound of E , we can find the value of α that

minimizes X a y bα β= + . In the worst case, 21
1

β
α

= +
−

, the minimum value of X is

achieved when 21α = +
b

ay
. Since not every network instance constitutes a worst case

scenario, we only use this value as the initial value ofα ; the best value for α is to be

found by iteration. Therefore we choose 0α as follows:

0
21 b
ay

α = +

This allows that when α = 0, 0α approaches∞ , so there is no limit on the distance

to the root, therefore the BAT tree becomes MST; when α = 1, 0α = 1, so the BAT tree

becomes SPT. When 0<α < 1, increasing α or y will get a smaller 0α , so the tree has

smaller distances thus to reduce the energy cost.

Let 1α = 0.5× (0α +1). Use 1α and 0α as inputs, we construct two BAT trees. If

the energy cost
1TBAE

α
>

0BATE
α

, let 2α = 0.5× (0α + 1α), otherwise let 2α = 0.5× (1+ 1α),

and so on. The resulting curve of the energy cost will fit in one of the three possibilities:

• Case (a), monotonically decreasing

• Case (b), monotonically increasing

 42

• Case (c), oscillating

Initialize 0
21 b
ay

α = + , iteratively compute 1α , 2α , and 3α as shown in Figure

3.4, Figure 3.5, and Figure 3.6. The output from this numerical procedure is nα . In case

(a), the minimum energy is obtained when nα = 0α ; in case (b) the minimum energy is

obtained when nα = 1 ; in case (c) , no clear trend is shown, so we take the minimum

energy among all computed values resulting from { 1, 0α , 1α , 2α , 3α }. The above

procedure takes at most three iterations. Increasing the number of iterations can definitely

get closer to the optimal solution, but since there is no guarantee that it will converge

within a finite number of iterations, we restrict it to three iterations only. The energy cost

of the BAT tree with α = nα is compared with the ones that use an arbitrary fixed value

such as α = 2 and the initial value α = 0α . Apparently, nα gives the lowest total energy

cost as verified in the simulation (Figure 3.11)

Figure 3.4 Case (a) Decreasing

 43

Figure 3.5 Case (b) Increasing

Figure 3.6 Case (c) Oscillating

 44

3.5. SIMULATION OF DATA AGGREGATION

3.5.1. Simulation Setup. For comparison purpose, we use unit-less values, and

we consider only the energy cost involved in data transmission and ignore others that are

the same for all algorithms.

A sensor network consists of up to 200 nodes, uniformly and randomly scattered

around on a 1×1 square. The radio transmission range varies from 0.1 to 0.35. An edge

between two nodes exists if they are within the transmission range of each other. We

assume a uniform transmission range fro every node, thus all edges are symmetrical. The

root node is randomly selected.

3.5.2. Performance Comparison.

3.5.2.1. Compare BAT with other trees. Other trees under consideration are

MST, SPT and LAST in [33]. MST has the minimum total weight and SPT has the

smallest distance from non-root nodes to the root. However, MST blows off on distances

and SPT blows off on total weight. We found by using a smallα , BAT can generate a

tree that is satisfactory on both total weight and distances. LAST is an efficient algorithm

proposed in [33] to compute a trade-off between SPT and MST. In the first simulation

(Figure 3.7, Figure 3.8), we study the weight and distance properties of BAT, and use

LAST, MST and SPT to compare with. We show the ratios of the total weights from

BAT, LAST and SPT to the total weight of the MST, and the ratios of the sum of

distances form BAT, LAST and MST to that of the SPT. In 3, a fixed value LASTα = 1.12

is used for LAST and BATα = 0.9 LASTα is used for BAT. This means BAT needs to

satisfy a more restrictive condition on distance. For an arbitrary network, the upper bound

of the distance from a non-root node to the root on the BAT tree is at most 90% of that on

the LAST tree. The experiments show that with LASTα = 1.12 and BATα = 0.9 LASTα , BAT

always has a smaller total weight and a smaller sum of distance that LAST on the same

network. The total weight of SPT could be as high as 190% of that of MST, and the total

weight of LAST and BAT are both within 115 120% of that of MST. BAT, with a more

restrictive requirement on individual distance, shows 3 4% improvement over LAST on

total weight. On the distance aspect, the sum of distances in MST could be as high as

146% of that of SPT, the sum of distance in LAST is within 101% that of SPT; and BAT,

with such a small , finds the exactly the same distance as SPT.

∼

∼

 45

Following Figures are on a 200-node network, transmission range 0.1-0.35.

Compare BAT with other trees on the sum of distances and the total weight, normalized

by the sum of distances from SPT and the total weight from MST respectively

Figure 3.7 Sum of distance

The key parameter to control the tradeoff between the total weight and distances

to the root isα . Figure 3.7 and Figure 3.8 shows that BAT, with a proper α value, could

do better than LAST on both aspects, but its counterpart LAST couldn’t – if LAST can

win on distances; it has to lose on total weight. The new challenge is now to find the

proper value of α that gives the best performance of BAT, which is provided in Figure

3.9 and Figure 3.10.

 46

Figure 3.8 Total weight

Figure 3.9 With 200 nodes, transmission range = 0.1 – 0.35. Compared BAT with LAST

on the total weight. Results normalized by the total weight of MST.

 47

Figure 3.10 Normalized energy costs of SPT, MST and BAT trees (with α =2,α = 0α ,

andα = nα) for 200-node networks, with radio transmission range 0.15

The second experiment is to compare the weight property of BAT and LAST

using the same control parameterα . The simulation results in Figure 3.9 show BAT

produces trees with 10% less total weight than LAST, with both satisfying the individual

distance requirement.

3.5.2.2. Improve Energy Cost by Tuning Control Parameter. The objective of

this simulation is to show that the control parameter α can be fine-tuned to improve the

energy-efficiency of the data aggregation tree. We compare the energy cost of BAT trees

with different values of α for the same network. Let be the proportion of non-

aggregate data, be the proportion of aggregate data, so +b =1, and . We

compare BAT trees with

a

b a 0 ,a b≤ ≤1

α = 0α , α = nα , and α = 2 as well as MST and SPT.

The performance metric is the normalized energy cost

 48

 OPT
N

OPT

E EE
E
−

=

Where E is the actual energy cost and is the lower bound of the optimal

solution, as defined in section 3.4.

OPTE

Figure 3.10 shows the average energy cost of each algorithm for 100 instances.

The simulation results show that BAT trees with 0α and nα coincident with MST when

=0, =1, and coincident with SPT when =1, =0, which are the optimal solutions.

The performance of BAT is the best at two ends, when =1 or =0. During the transition

from MST to SPT, BAT with

a b a b

a a

α = 0α provides and energy cost in between of MST and

SPT, but BAT withα = nα outperforms all the others. It is also observed that the BAT

trees with α = 0α and α = nα both perform better than the one with a fixed valueα =2.

In Figure 3.10, the curve for BAT with α = nα flattens out in most part and

approaches the lower bound of the optimal solution, and even the worst case performance

is only 4% increase from . This simulation verifies the scheme described in section

3.4 can effectively find the best value of

OPTE

α that gives the near-optimal energy cost.

3.6. RELATED WORK

In sensor networks, the key challenge in data gathering is energy conservation. A

lot of work has been done along this line for energy efficient data gathering [29, 31, 38,

35, 37]. Among many others, data aggregation is the most important approach and has

been used in many systems [28, 30, 31, 34, 36, 39]. Data aggregation can reduce the

amount of redundant transmissions, thus reduces the energy consumption. [31] proposed

Directed Diffused, a localized data-centric scheme, where the data generated by sensor

nodes is named by attribute-value pairs and a node (sink) requests data by sending

interests for named data. Data matching the interest is then collected and forwarded to the

requesting node along the reverse path of the interest propagation. Intermediate nodes can

cache, or transform data, and may direct interests based on previously cached data.

In [31, 34] and [39], it is assumed the underlying topological structure of the

network is a data aggregation tree, and the internal nodes (non-sink, non-leaf nodes) do

the aggregation to reduce the amount of data being transmitted. In [39], to guarantee data

 49

aggregation is done within a specified time, Yu et al. used packet scheduling techniques

to trade latency for energy. In [39] each sensor node in the tree aggregates the

information from its subtree rooted at itself (including all its children and the node itself)

and generates a reduced size packet. If the amount of data each source node generates

is known, then the amount of output of source data ' after aggregation is dependent on

the number of source nodes in the subtree and an aggregation factor , where

s

s

d k [0,1]k∈

is a control parameter assumed to be the same for all sensor nodes.

Complementary to data aggregation, another possible approach in energy efficient

data gathering is to select a subset of sensors fro data transmission instead of using all

sensors, and the selected sensors are sufficient to reconstruct the data for the entire sensor

networks [27].

3.7. CONCLUSION AND FUTURE WORK

In sensor networks, data gathering is often implemented with certain degree of

data aggregation. In this paper, we address the problem of energy-efficient data gathering

with various levels of data aggregation, assuming some data will be aggregated and some

will be simply forwarded without further processing at forwarding nodes. In order to

gather data from source nodes and route data to the sink node, a tree structure is needed

as the basic topology. We observed that the Minimum Spanning Tree is the optimal

solution if all data is fully aggregated, and the Shortest Path Tree is the optimal solution

if no data is aggregated. Between these two extreme cases is the general case, where a

certain percent of data is aggregated, for which neither the MST nor the SPT is the

optimal solution. We show that we can use the aggregation ration as an input parameter

to control the tree structure. Such a tree structure satisfies that the distance from any node

to the root is at mostα times the shortest distance; such a tree provides a smooth

transition from a Shortest Path Tree to a Minimum Spanning Tree. We propose an

efficient algorithm BAT to find such a tree. The simulation results demonstrate that BAT

algorithm achieves better performance than other tree structures in terms of the energy

efficiency of data gathering.

 In addition to the consideration of energy, the total weight of the tree also

indicates the interference level of the network. The one with the minimum total weight is

 50

the best in terms of reducing total interference. Both LAST and BAT provide trees with

distances bounded by α times the shortest distance, however, BAT tends to find the one

with smaller weight most of the time.

 The algorithms proposed in this paper are all centralized. In the future, we will

address the implementation of the algorithm in a distributed environment, and study the

performance trade-offs if it is implemented locally.

 51

BIBLIOGRAPHY

[1] D. Rakhmatov and S. Vrudhula, "Energy management for battery-powered

embedded systems," Trans. on Embedded Computing Sys., vol. 2, no. 3, pp. 277-

324, 2003

[2] H. Zhang and J. C. Hou, "Maintaining sensing coverage and connectivity in large

sensor networks," Wireless Ad Hoc and Sensor Networks: An International

Journal, vol. 1, no. 1-2, pp. 89-123, January 2005.

[3] S. Slijepcevic and M. Potkonjak, "Power efficient organization of wireless sensor

networks," in IEEE International Conference on Communications, Helsinki,

Finland, vol. 2, June 2001, pp. 472-476.

[4] M. Cardei, D. MacCallum, M. X. Cheng, M. Min, X. Jia, D. Li, and D. -Z, Du,

"Wireless sensor networks with energy efficient organization," Journal of

Interconnection Networks, vol.3, no. 3&4, pp. 213-229, 2002.

[5] M. Cheng, L. Ruan, and W. Wu, "Coverage breach problems in bandwidth

constrained sensor networks," ACM Transactions on Sensor Networks, June 2007

[6] M. Carder, M. Thai, Y. Li and W. Wu, "Energy-efficient target coverage in

wireless sensor networks," in IEEE INFOCOM 2005, 2005, pp.1976-1984

[7] M. Cheng, L. Ruan, and W. Wu, "Achieving minimum coverage breach under

bandwidth constraints in wireless sensor networks," in IEEE INOFCOM 2005,

2005, pp. 2638-2645

[8] S. Megerian, F. Koushanfar, G. Qu, G. Veltri, and M. Potkonjak, "Exposure in

wireless sensor networks: Theory and practical solutions," Journal of Wireless

Nerworks, vol. 8, no. 5, pp. 443-454, September 2002.

 52

[9] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, "Coverage

problems in wireless ad-hoc sensor networks," in INFOCOM, vol. 3, April 2001,

pp.1380-1387.

[10] X. -Y. Li, P. -J. Wan, and O. Frieder, "Coverage in wireless ad-hoc sensor

networks," in IEEE Int'l Conf. on Communications (ICC 2002), New York, April

2002, pp. 3174-3178

[11] X. -Y. Li, P. -J. Wan, and O. Frieder, "Coverage in wireless ad hoc sensor

networks," IEEE Transactions on Computers, no. 6, pp. 753-763, June 2003.

[12] B. Yang, H. Yu, H. Li, and H. Hou, "A coverage-preserving density control

algorithm based-on cooperation in wireless sensor networks," in WiCOM 2006,

2006, pp. 1-4

[13] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, "Peas: A robust energy

conserving protocol for long-lived sensor networks," in Proc. Of the 23rd

International Conference on Distributed Computing Systems (ICDCS03), May

2003, pp. 28-37

[14] D. Tian and N. Georganas, "A coverage-preserving node scheduling scheme for

large wireless sensor networks," in Proc. ACM Workshop on Wireless Sensor

Networks and Applications, Atlanta, Oct. 2002., 2002, pp. 32-41 [online].

Available: http://citeseer.ist.psu.edu/tian01coveragepreserving.html

[15] Y. -S. Yen, S. Hong, R. -S. Chang, and H. -C. Chao, "An energy efficient and

coverage guaranteed wireless sensor network," in IEEE WCNC 2007, 2007, pp.

2923-2928.

[16] H. Gupta, Z. Zhou, S. R. Das, and Q. Gu, "Connected sensor cover: self-

organization of sensor networks for efficient query execution," IEEE/ACM Trans.

Netw., vol. 14, no. 1, pp. 55-67, 2006

 53

[17] J. -P. Sheu and H. -F. Lin, "Probabilistic coverage preserving protocol with energy

efficiency in wireless sensor networks," in IEEE WCNC 2007, 2007, pp. 2631-

2636.

[18] S. Megerian, F. Koushanfa, M. Potkonjak, and M. Srivastava, "Worst and best-

case coverage in sensor networks," Mobile Computing, IEEE Transactions on, vol.

4, no.1, pp. 84-92, no. 1, pp. 84-92, 2005.

[19] M. Cardei and J. Wu, "Energy-efficient coverage problems in wireless ad hoc

sensor networks," Computer Communications, vol. 29, issue 4, pp. 413-420,

Feb.2006

[20] M.Cardei and D. -Z. Du, "Improving wireless sensor network lifetime through

power aware organization," Wireless Networks, 11(3), vol. 11, No. 3, pp. 333-340,

May, 2005

[21] S. Kumar, Ten H. Lai, and A. Arora, "Barrier coverage with wireless sensors,"

MobiCom, pp.284-298, Germany, 2005.

[22] S. S. Dhillon and K. Chakrabarty, "Sensor placement for effective coverage and

surveillance in distributed sensor networks," WCNC, pp. 1609-1614, USA, 2003

[23] Y. Zou and K. Chakrabatry, "Uncertainty-aware and coverage-oriented

deployment for sensor networks," journal of Ad Hoc & Sensor Wireless Networks,

pp. 89-124, Mar.2005

[24] V. S. A. Kumar, S. Arya, and H. Ramesh, "Hardness of set cover with intersection

1," In Automata, Languages and Programming, 2000.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,

"Introduction to algorithms (second edition)", MIT Press

[26] Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (Mar. 2002).

“Wireless sensor networks: A survey.,” Computer Networks (Elsevier) Journal,

38(4): 393-422

 54

[27] Gupta, H., Navda, V., Das, S. R., and Chowdhary, V. (2005). “Efficient gathering

of correlated data in sensor networks,” In proceedings of the 6th ACM international

sysposium on Mobile ad hoc networking and cmputing, pages 402-413

[28] He., T., Blum, B., Stankovic, J. A., and Abdelzaher, T. F. (2004). “Aida: Adaptive

application independent aggregation in sensor networks,” Special issue on

dynamically adaptable embedded systems, ACM Transaction on Embedded

Computing System, 3(2):426-457

[29] Heinzelman, W. R., Kulik, J., and Balakrishnam, H. (1999). “Adaptive protocols

for information dissemination in wireless sensor networks,” In proceedings of the

Fifth Annual ACM/IEEB International Conference on Mobile Computing and

Networking (MobiCom’ 99), Seattle, WA, 1999., pages 174-185.

[30] Intanagonwiwat, C., Estrin, D., Govindan, R., and Heidemann, J. (Vienna, Austria,

IEEE. July, 2002). “Impact of network density on data aggregation in wireless

sensor networks,” In Proceedings of the 22nd International Conference on

Distributed Computing Systems, pages 457-458.

[31] Intanagonwiwat, C., Govindan, R., and Estrin, D. (2000). “Directed diffusion: a

scalable and robust communication paradigm for sensor networks,” In ACM

MobiCom, pages 56-67

[32] Kalpakis, K., Dasgupta, K., and Namjoshi, P.(August 26-29, 2002). “Maximum

lifetime data gathering and aggregation in wireless sensor networks,” In

Proceeding of the 2002 IEEE International Conference on Networking (ICN’02),

Atlanta, Georgia, pages 685-696

[33] Khuller, S., Raghavachari, B., and Young, N. (1995). “Balancing minimum

spanning trees and shortest-path trees” Algorithmica, 14(4):305-322.

[34] Krishnamachari, B., Estrin, D., and Wicher, S. (2002a). “The impact of data

aggregation in wireless sensor networks,” In Proceedings of the 22nd International

Conference on Distributed Computing Systems, pages 575-578

 55

[35] Krishnamachari, B., Estrin, D., and Wicher, S. (2002b). “Modeling data-centric

routing in wireless sensor networks,” In USC, Technical Report CENG 02-14

[36] Madden, S. R., Franklin, M. J., Hellerstein, J. M., and Hong, W. (Dec. 2002).

“Tag: a tiny aggregation service for ad-hoc sensor networks,” In USENIX

Association 5th Symposium on Operating Systems Design and Implementation

(OSDI), pages 131-146

[37] Sadagopan, N. and Krishnamachari, B. (2004). “Maximizing data extraction in

energy-limited sensor networks,” In INFOCOM 2004, volume 3, pages 1717-1727

[38] Ye, F., Luo, H., Cheng, J., Lu, S., and Zhang, L. (September 2002). “A two tier

data dissemination model for large-scale wireless sensor networks,” In proceedings

of the 8th ACM International Conference on Mobile Computing and Networking

(MobiCom 2002), pages 148-159.

[39] Yu, Y., Krishnamachari, B., and Prasanna, V. (2004). “Energy-latency tradeoffs

fro data gathering in wireless sensor networks,” In INFOCOM 2004. Twenty-third

Annul Joint Conference of the IEEE Computer and Communications Societies,

pages 244-255.

 56

VITA

Li Yin was born on July 13, 1981, in Henan, P.R.China. He earned the Bachelor

of Science degree at Beijing University of Aeronautics and Astronautics in 2003. The

degree of Master of Science in Computer Science will be conferred upon him in Dec,

2007, at the University of Missouri at Rolla.

57

	Sensor network coverage and data aggregation problem: solutions toward the maximum lifetime
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	1. INTRODUCTION
	1.1. SENSOR NETWORKS
	1.2. LIFETIME
	1.3. OVERVIEW OF MAIN CONTRIBUTION

	2. SENSOR NETWORK COVERAGE PROBLEM REVISITED: SOLUTIONS TOWARD THE MAXIMUM LIFETIME
	2.1. INTRODUCTION TO COVERAGE PROBLEM
	2.2. COVERAGE PROBLEM DEFINITION
	2.3. SOLUTIONS FOR COVERAGE PROBLEM
	2.3.2. A Fast Heuristic.

	2.4. SIMULATION FOR COVERAGE PROBLEM
	2.4.2. Performance Comparison.

	2.5. RELATED WORK
	2.6. CONCLUSION ON COVERAGE PROBLEM

	3. ENERGY EFFICIENT DATA GATHERING ALGORITHM IN SENSOR NETWORKS WITH PARTIAL AGGREGATION
	3.1. INTRODUCTION TO DATA AGGREGATION
	3.2. ENERGY COST FOR DATA GATHERING
	3.3. BAT ALGORITHM
	3.4. MINIMUM ENERGY TREE STRUCTURE
	3.5. SIMULATION OF DATA AGGREGATION
	3.5.2. Performance Comparison.

	3.6. RELATED WORK
	3.7. CONCLUSION AND FUTURE WORK

	BIBLIOGRAPHY
	VITA

