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ABSTRACT 

Sensor networks have emerged as a premier research topic because of their great 

long-term economic potential, amazing ability to transform our lives. But as the battery-

powered equipment, the sensor has the great limitation in the lifetime, and it is not 

realistic to replace or recharge the battery for the dead sensor. Usually redundancy 

sensors are deployed in the monitor area in order to improve the probability of target 

coverage and for the purpose of backup. This brings new problems in, coverage problem 

and data aggregations are two of them. In past years, a lot of schemes focused on these 

problems proposed to prolong the sensor networks’ lifetime since lifetime problem is the 

main constraint on sensor networks’ application. First paper introduces solutions to 

schedule sensors into different sets and set them on and off appropriately to achieve the 

maximum lifetime while maintaining the required coverage. An optimal solution is 

provided which could produce the theoretical upper bound on a sensor network’s 

lifetime, and a fast heuristic is implemented with simulation results compared to the 

optimal solution. The second paper is focus on the problem of energy saving by reducing 

unnecessary transmission and confliction. A new concept: Balanced Aggregation Tree 

(BAT) proposed, it could build an efficient aggregation tree whose structure is between 

Shortest Path Tree and Minimum Spanning Tree and by adjusting a control parameter to 

achieve the best energy efficiency of a given sensor network, this solution can be used for 

both aggregate data and non-aggregate data. 
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1. INTRODUCTION 

1.1. SENSOR NETWORKS 

The sensor is a type of transducer, inexpensive low-power electrical device that 

could observe the environment features such as temperature, pressure, moisture, light 

strength, then express these in the man friendly data format. The sensor is usually small 

in the size, this is the advantage from the aspect of carry and deploy, but it also make the 

sensor has limited processing speed and storage capacity. Sensors widely using makes 

people’s work and life more easily as sensors could provide users with the critical data in 

time and most important, they could work in the environment that is hostile to mankind.  

 Thanks to the exponential growth in the underlying semiconductor technology, 

the number of transistors on a cost-effective chip and processing or storage capacity on 

the chip doubles every year. Though it is not good enough to solve sensors’ processing 

and storage ability problem forever, it’s good enough to equip sensors with the radio 

transceiver so that the sensor can communicate with others within its radio range. With 

this ability, the sensors can be deployed throughout a physical space, providing dense 

sensing close to physical phenomena, processing and communication the information, 

and coordination actions with other nodes. Such a set of sensors build a Wireless Sensor 

Network (WSN).  

 The development of WSN was originally motivated by military applications such 

as battlefield surveillance. However WSNs are widely used in many civilian application 

areas along with scientific research fields. No matter which field it works for, the first 

step of the procedure is deployment, in order to collect accurate data, sensor nodes are 

required to sit as close as possible to spots where the information intended to be collected 

-- namely target. But it is not necessary to let sensors sit right on the target spots because 

the ability of sensing is not limited with a point but within a certain area, this ability 

described as Sensing Range, and there is another property named Radio Range, it shows 

how far the sensors could communication with other sensor nodes.  

It is said that a target t  is covered by a sensor node  if their Euclidian distance 

denoted by | ts | is less than the sensing range of ,

s

s Rs , i.e., | | < ts Rs .  

 



 2

It is not a problem to deploy a sensor network by hand if the target area could be 

accessed easily, even the exact location of targets and the sensor nodes could be 

estimated beforehand, so the process of deployment is just put the sensor nodes to the 

right position. But that is another story if the monitored area is very dangerous or totally 

unreachable from ground access, under this situation, the sensors have to be deployed in 

other method, for example: drop from the airplane. Though this deployment method 

avoids people risking, it brings another problem: the sensors location could not as precise 

as strategically hand placed, this may cause some of the targets out of surveillance or the 

whole sensor network disconnected. So redundancy sensors are deployed to compensate 

this, with a densely sensors, it can be guarantee that all of the targets are covered and the 

sensor network has a great probability to be connected. At the same time, high dense also 

brings problems in, for example, if all of the sensors transmit at the same time, 

conflicting is inevitably. The popular solution is to divide sensors into a hierarchical 

structure with a cluster header collecting the data within its group and send the 

aggregated data to its upper layer’s cluster header, reach the base station at last. Figure 

1.1 shows a typical structure of a wireless sensor network. 

 

 

 

        Base Station 

       Cluster header 

        Sensors

Figure 1.1 Typical WSN structure 
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Figure 1.1 shows, the sensors may play different roles in the WSN to avoid 

unnecessary transmission and makes the system high efficient and save the energy. The 

problem of build a high efficient structure is not involved in the thesis, the thesis focus on 

the problem of coverage while coverage problem is a sub-problem for that.  

1.2. LIFETIME 

As introduced before, sensors have the limitation in process speed and storage 

capacity. Actually there is another more critical constraint for sensors: power supply. The 

sensor is powered by the battery, once the battery run out, the sensor can do nothing, 

neither communication nor data collection – this status is called died. If this sensor works 

at a critical position, its death may cause the whole network disconnected or some targets 

uncovered, this makes the whole sensor networks paralyze. At the same time, it’s not 

realistic to replace died sensors’ batteries given that the area sensors deployed may in the 

hostile area. Also, it is not worth the cost to replace the battery because the price of 

sensors is very cheap and the number of sensors deployed could be huge. This is another 

reason to deploy redundancy sensors: for backup, once a sensor died, there always exists 

another sensor to replace it, this makes the network strong and could last longer. As 

analyzed before, the redundancy not only brings the coverage problem in, also set up a 

goal for the set coverage problem: to maximum network lifetime. And the network 

lifetime is defined as the accumulated functional time. 

As a fundamental problem in the field, lifetime problem has been studied for a 

long time. In the past few years, lots of research works has been done on the problem in 

making efficient use of battery energy towards a longer network lifetime, including 

energy aware routing, energy efficient data dissemination and hierarchical aggregation 

mentioned before, transmission power control and node activity scheduling. These 

common approaches tried to reduce the unnecessary communication among sensors as 

much as possible to improve the energy efficiency. 

On another side, in addition to satisfy the coverage requirement, the user would 

wish to organize the sensors in the way that the energy usage could as efficient as 

possible so the total network lifetime could be maximized, too.  
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1.3. OVERVIEW OF MAIN CONTRIBUTION  

 In the coverage problem, an optimal solution is proposed for the maximum 

lifetime sensor scheduling problem, which could find the upper bound of a sensor 

network’s lifetime. This research reveals the relationship between the degree of 

redundancy in sensor deployment and achievable extension on network lifetime, which 

can be a useful guide for practical sensor network design. 

 The proposed Balanced Aggregation Tree algorithm could reduce the redundancy 

communication in a partial data aggregation based on the ratio of aggregated data. Which 

is the result of tradeoff between Shortest Path Tree and Minimum Spanning Tree, and it 

could achieve the minimum energy use for the specific network, the energy is saved in 

this way, so the lifetime of the sensor network prolonged.  

 These two solutions are energy efficient, the schedule could effectively avoid the 

unnecessarily energy drain, so that to achieve a longer lifetime. 
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2. SENSOR NETWORK COVERAGE PROBLEM REVISITED: SOLUTIONS 

TOWARD THE MAXIMUM LIFETIME 

2.1. INTRODUCTION TO COVERAGE PROBLEM  

2.1.1. Coverage Problem.  It is easy to image that in a dense sensor network, 

each target is covered by more than one sensor. The requirement for the WSN is all of 

targets should under the surveillance, so for each target, it is good enough as long as there 

exist a sensor node covers it. At the same time, it is possible that one sensor may cover 

more then one target in the random deployment process. Actually if the sensing range is 

big enough, one single sensor node may cover all of the targets. So it is possible to 

organize sensors into some sets that the sensors in each individual set are enough to cover 

the whole target area. Obviously, since one set of sensors could cover all of the targets, to 

let all of the cover sets working all the time is a great waste of energy because of 

conflicting and redundancy transmission. So the problem is: how to find these cover sets? 

 In previous literatures, this coverage problem can be classified into the three 

types [19]: Point Coverage, Barrier Coverage, and Area Coverage.  

Point Coverage covers a set of specific points (targets). A lot of works [3], [4], 

[5], [20] focus in this type, usually they present the scheme to extend a sensor network’s 

operational time by organizing the sensors into a maximal number of disjointed set 

covers that are activated successively. Obviously, this thesis fells into this category, but 

with a different way in finding set covers. This will be addressed later. 

There is an issue [21] defined the concept of a Barrier Coverage, which derives a 

theoretical foundation to determine the minimum number of sensors to be deployed so 

intruders crossing a barrier of sensors will always be detected by at least k  active 

sensors. 

Area Coverage is the most discussed coverage problem, where the main objective 

of the sensor network is to cover an area instead of a point. In the category of area 

coverage, sensors are used in greater numbers for field operation, and efficient sensors 

deployment becomes obvious strategies to maintain coverage. Hence, some specific 

deployment algorithms existing in the literatures try to find out the optimal sensor 

placement locations in order to maintain sufficient coverage [22], [23]. 
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 [9] points out, the coverage concept is a measure of the quality of service (QoS) 

of the sensing function and is subject to a wide range of interpretations due to a large 

variety of sensors and applications. The goal is to have each location in the physical 

space of interest within the sensing range of at least one sensor. 

While this thesis is not only cares about the problem of coverage but also energy 

saving to prolong the network lifetime. And sensor nodes are designed with a switch that 

could alternate between an active working mode and inactive sleep mode. The motivation 

for this scheme is not just to turn off redundant sensors to save energy. Research shows 

that if batteries are given sufficient recovering period between two intensive consumption 

periods, the actual battery lifetime is extended ([1]). Therefore appropriate scheduling 

will not only improve sensor network lifetime, but also individual battery’s performance. 

At the same time, constraints about routing connectivity and network coverage 

must be considered when design a sensor node activity scheme as long as a connected 

network desired. However, these two constraints are inherently related. Former research 

[2] shows, if radio range is twice larger of sensing range, then sensors that fully cover the 

monitored area will be all connected. This thesis assumes that the radio range of sensors 

is sufficiently large to maintain routing connectivity. So for each full coverage set, the 

sensors inside could construct a connected network.  

Figure 2.1 shows an example of coverage problem. 

Figure 2.1 shows that sensors colored with red could fully coverage the whole 

field while sensors colored in green could achieve this independently, too. 

In the past, majority research works on this topic has focused on organizing 

sensor nodes into mutually exclusive subsets so that at anytime only one set is active, and 

the optimization objective becomes to maximize the number of disjoint subsets. The two 

full covers shown in Figure 2.1 are disjoint set covers. This approach has assumed an 

unnecessary and overly restrictive requirement that subsets must be disjoint. This 

restriction significantly limits how much we can extend a sensor network’s lifetime 

because sensor nodes with energy left from indistinct disjoint subsets may construct a 

new set cover that could cover all of the targets. Previous works [3], [4] and [5] etc. all 

belongs to this category. 
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         ActiveSensor 

         Targets 

         InactiveSensor 

Figure 2.1 Example of Coverage 
 

 

 

So the maximum disjoint set covers and maximum lifetime problems are two 

different problems. Using the approach mentioned before, the number of disjoint set 

covers does not have direct correspondence with lifetime.Therefore in this project, the 

solution addresses the problem directly – find the schedule that produces the maximum 

lifetime, instead of trying to find the maximum number of disjoint set covers. As a result 

of this scheduling, sensors may join different sets as long as the accumulated energy 

consumption does not exceed its energy reserve. Each set is called a set cover, and the 

entire sets are non-redundant set covers, i.e., no one is a subset of another. The maximum 

lifetime coverage problem in NP-hard, but it is not necessarily computationally expensive 

for some sensor networks in practice, where the number of non-redundant set covers is 

within a hundred. It turns out to be practically applicable to use this optimal solution in 

such small sensor networks. For large sensor networks, a fast heuristic is proposed that 

selects the most effective set covers as a good representative of the whole set. Less 
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effective set covers are trimmed away to reduce the computation time. The simulation 

results show that such simplification only slightly reduces network lifetime, and it is still 

the best of its kind. 

2.1.2. Linear Programming. A Linear Programming (LP) problem is a special 

case of a Mathematical Programming problem. From an analytical perspective, a 

mathematical program tries to identify an extreme (i.e., minimum or maximum) point of 

a function -- objective function, which furthermore satisfies a set of linear equality and 

inequality constraints. In other words, given a polytope and a real-valued function: 

1 2 1 1 2 2( , ,..., ) ...n n nf x x x a x a x a x b= + + + +  

defined on this polytope, the goal is to find a point in the polytope where this function has 

the smallest (or largest) value. Such points may not exist, but if they do, searching 

through the polytope vertices is guaranteed to find at least one of them. 

Linear programs are problems that can be expressed in standard form: 

Maximize 

    Tc X

Subject to   

Ax b≤  

Where  

0x ≥    

x represents the vector of variables, while c and are vectors of coefficients and is a 

matrix of coefficients. The expression to be maximized or minimized is called the 

objective function (  is this case). The equations 

b A

Tc X Ax b≤  are the constraints which 

specify a convex polyhedron over which the objective function is to be optimized. Linear 

programming can be applied to various fields of study. Most extensively it is used in 

business and economic situations, but can also be utilized for some engineering problems. 

Some industries that use linear programming models include transportation, energy, 

telecommunications, and manufacturing. It has proved useful in modeling diverse types 

of problems in planning, routing, scheduling, assignment, and design.  

 Linear programming is an important field of optimization for several reasons. 

Many practical problems in operations research can be expressed as linear programming 

problems. Certain special cases of linear programming, such as network flow problems 
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and multicommodity flow problems are considered important enough to have generated 

much research on specialized algorithms for their solution. A number of algorithms for 

other types of optimization problems work by solving LP problems as sub-problems.  

Under the advent of modern computing technology, for Linear Programming 

problems, there are few algorithms such as Simplex could solve the function very 

efficiently. In this thesis, MATLAB is used to solve to LP.  

 

2.2. COVERAGE PROBLEM DEFINITION 

Given a set S of sensor nodes with location information, sensing range and 

initial energy reserve, and a set T  of 

N

M  targets with location information, assuming 

each sensor node can switch to an active mode when working, and sleep mode if 

necessary, find a schedule of sensors can guarantee that at any time, all targets can be 

covered by active sensor nodes at that time and the accumulated functional time of the 

network is the maximum. 

 Based on the location information and sensing range, we can construct a bipartite 

graph between sensor nodes and targets, where a link ( ,i j ) exist if and only if the 

distance between sensor and targeti j is within the sensing range of sensor i . Moreover, 

from this bipartite graph, we can build a coverage matrix [ ]ij N MA a ×= , where = 1 

means sensor i  covers target

ija

j , otherwise = 0. Both of the solutions that will show up 

in the following sections take this matrix as the input. 

ija

 Actually, the topic of computing the optimal schedule to achieve the maximum 

lifetime is NP-hard, because its subclass – where sensors must be put in disjoint sets – is 

NP-hard. The following section addresses given coverage matrix , how to find the 

optimal schedule to achieve the maximum network lifetime. 

A

2.3. SOLUTIONS FOR COVERAGE PROBLEM 

2.3.1. An Optimal Solution. The optimal solution can be found by using a two-

phase algorithm: In phase I, compute the complete set of non-redundant covers. Each 

cover is a subset of sensors belongs to set  that completely cover all targets in set T  

without redundant sensors in it, in other words, removing any sensor from it will leave 

S
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some target uncovered; In phase II, compute the optimal solution by solving the linear 

program – assigning the time slice for selected set covers, a schedule for sensors to turn 

on and off in order to achieve the maximum lifetime 

2.3.1.1. Non-Redundant Set Covers. Table 2.1 is the code of the algorithm that 

compute the complete set of non-redundant covers from the given coverage map 

 for sensors and [ ]ij N MA a ×= N M  targets. 

 

 

 

Table 2.1 NRSETCOVERS 

NRSETCOVERS( , ,A N M ) 

1. Initialize k  = 0, S  = {1,… N }, 0T = {1,… M } 

2. for i  = 1 to N  

3.      do set c [ i ] = 1 and c [ p ] = 0 for p ≠ i  

4.           T  = 0T \ { j  | ija = 1} 

5.           l  =  i

6.           while T ≠ ∅  

7.                do l ++ 

8.                     if l  > N 

9.                          then break; 

10.                     if lja = 1 and j T∈  

11.                          then c [ l ] = 1 

12.                                T  = T \ { j | lja = 1} 

13.         if l  > N  

14.                then c [ i ]= 0 

15.                        continue 

16.               k + +  

17.               kC  = c  
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Table 2.1(Continued) NRSETCOVERS 

18.           while true 

19.                do find the largest l S∈  with c[ l ] = 1 

20.                     if l  = i  

21.                            then break 

22.                          c [ l ] = 0 

23.                          if l  = N  

24.                               then continue 

25.                          T  = 0T \ { j | 'i ja . [ ]'c i  = 1, 'i l∀ < } 

26.                          while T ≠ ∅  

27.                               do l ++ 

28.                                    if l  > N 

29.                                         then break 

30.                                    if lja = 1 and j T∈  

31.                                         then c [ l ] = 1 

32.                                                    T  = T \ { j | lja = 1} 

33.                             if T = ∅  

34.                                  then k + +  

35.                                       kC  = c  

REMOVEREDUNDANCY (C ) 

 

 

 Table 2.1 shows the greedy algorithm perform the exhaust search over the sensor 

nodes in sequence, trying to dig out all of the possible non-redundancy full coverage sets. 

The line 1 --35 start with the first sensor node, check possible full coverage sets 

combinations, once it find a full coverage set, it will not try other combinations that 

including this set, in this way, it can avoid part of the redundancy sets, for example, if the 

algorithm find the set {1, 3, 5} first, it will not take set {1, 3, 5, 7} as another full 

coverage set because the sensor 7 is unnecessary here. But the result sets generated by it 
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still could contain redundancy in other order, for example, the set of sensor nodes {1, 3, 

5} is a full coverage set already, but the algorithm may find another set {1, 2, 3, 5} before 

set {1, 3, 5} though the sensor 2 is unnecessary here because the algorithm probing sets’ 

element in lexical order. This redundant problem can not be solved between line 1 – 35 

without reduce the efficiency. But the redundancy sets need to be removed before 

running the linear program on it because these sets cause energy waste and will increase 

programming running time greatly. So another algorithm designed to deal with check and 

remove the redundancy sets as in Table 2.2: 

 

 

Table 2.2 REMOVEREDUNDANCY 

REMOVEREDUNDANCY(C [ ]) 'K

1. for p = 1 to  'K

2.      do if pC  = Nil  

3.                then continue 

4.           for 1q p= +  to  'K

5.                 do if qC = Nil  

6.                             then continue 

7.                       &p qC C C=

8.                              pC� bitwise AND  qC

9.                       if  pC C=  (or qC ) 

10.                             then qC  = Nil (or pC  = Nil  ) 

  

 

Let  denote the number of sets generate by line 1 --35 in NRSETCOVERS. 

Running time for it is  and  for line 36. This algorithm take  sets as 

input, checking if the current set has the including or included relationship with any set 

after it, if so, remove the one has redundancy nodes. The performance is good if  is 

small. But it is possible that  is a very big number,  may several even hundred times 

'K
'( )O K NM

'K

'2(O K N ) 'K

'K
'K
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greater than or N M , in this scenario, the running time for line 36 could be very high. 

This is the motivation to design an alternative algorithm for REMOVEREDUNDANCY for 

big  and small , which described in Table 2.3. It takes to check if a subset of 

sensors could form a complete cover or not, the alternative algorithm runs at . 

So the tradeoff between these two redundancy remove algorithm is, when >

'K N ( )O NM
' 2( )O K N M

' N MK × , 

the alternative algorithm trigged, otherwise, because the former algorithm is more 

efficient, so call REMOVEREDUNDANCY. 

 

 

Table 2.3 REMOVEREDUNDANCY-ALTERNATIVE 

REMOVEREDUNDANCY-ALTERNATIVE( ) '[ ]C K

1. for p = 1 to  'K

2.      do for each sensor s  in cover p  C

3.           do if pC \{ s } is still a complete cover 

4.                then remove  pC

5.                      break 

 

 

 The difference between REMOVEREDUNDANCY-ALTERNATIVE and 

REMOVEREDUNDANCY is the alternative algorithm does not check the relationship 

between sets, it only check inside the sets -- by removing elements in the set one by one 

to see if there is redundancy exist, the set got removed once a redundancy find. The 

NRSETCOVERS can guarantee that the removed set’s corresponding minimum full 

coverage is in the set and can not be removed.  

This is phase I, running time is exponential to in theory, but could be much less 

if the link probability  is high in the bipartite graph, so the search for covers does not go 

through every possible combination of sensors -- specially, the while loop in line 6 and 

line 26 “while T ” break out before every sensor is tested. The actual running time is 

dependent on , the number of set covers before the call to REMOVEREDUNDANCY. The 

N

≠ ∅
'K
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simulation section will show how the size of  influences the runtime of the two-phase 

algorithm.  

K

4

 The following example illustrates the algorithm in details: given coverage 

matrix  for  sensors and [ ]ij N MA a ×= 5N = M targets: =

                                                     

0 1 0 1
1 0 1
1 1 0 1
0 1 1 0
1 0 1 0

A
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 Here is a detail description about the process from line 1 to line 35 take node 1 as 

example: Node 1 try combination with node 2 first, and find out set {1, 2} is a full 

coverage, so put {1, 2} in the results set and break from node 2; then node 1 continue 

with node 3, and find out {1, 3} is not a full coverage, so continue probing with {1, 3} 

and find out {1, 3, 4} is a full coverage, then break {1, 3, 4}, continue with {1, 3} and 

find out {1, 3, 5} is another full coverage, the probing with 3 is done; next continue with 

node 4, in the same way, set {1, 4} is not full coverage while {1, 4, 5} is; and {1, 5} is 

the last feasible full coverage set with node 1. Then start with node 2, probing 

combination with nodes after it…  

At last, before running the REMOVEREDUNDANCY, the NRSETCOVERS could get 

nine full covers sets from A , they are: 

1 11000C = , sensors {1, 2} 

2 10110C = , sensors {1, 3, 4} 

3 10101C = , sensors {1, 3, 5}    

4 10011C = , sensors {1, 4, 5} 

5 10001C = , sensors {1, 5} 

6 01100C = , sensors {2, 3} 

7 01010C = , sensors {2, 4} 

8 00110C = , sensors {3, 4} 

9 00101C = , sensors {3, 5} 

 



 15

  By running REMOVEREDUNDANCY,  get removed because  but   is 

already a complete cover, since the goal is to find the maximum lifetime of the whole 

network,  less sensors involves, more energy left and potentially much network lifetime 

possible. In this way, covers , , are redundant and get removed. Assuming the 

initial energy reserve is 1 unit for each sensor node. The optimal solution for the linear 

program has a lifetime of 2.5 units, which can be achieved by setting as following: 

2C 8C C∈ 2 8C

2C 3C 4C

1 11000C = , sensors {1, 2} unit 0.5→

5 10001C = , sensors {1, 5} unit 0.5→

6 01100C = , sensors {2, 3} unit 0→

7 01010C = , sensors {2, 4} unit 0.5→

8 00110C = , sensors {3, 4} unit 0.5→

9 00101C = , sensors {3, 5} unit 0.5→

 While the method of disjoint covers could find out only two disjoint covers; for 

example {1, 2} and {3, 4}, with each cover active for one unit, so the total lifetime is 2 

units. Compared with this, the optimal solution achieved 25% longer lifetime. 

 Here is another example, which has only 1 disjoint set covers: {1, 2} or {1, 3} or 

{2, 3}, while the optimal solution could easily find 3 non-redundant covers with each 

working for 0.5 unit time. The lifetime will be improved from 1 unit to 1.5 units, showing 

50% increase. 

                                                                
1 0 1
0 1 1
1 1 0

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

1 {1,2}C =             0.5→

2 {1,3}C =             0.5→

3 {2,3}C =             0.5→

 These two examples show that, with a reasonable organization on the set covers 

could last network lifetime. 
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2.3.1.2. Linear Program Formulation. There are  covers after the redundancy 

sets removed in Phase I, these sets could be expressed as a matrix[ : let = 1 if 

sensor is in cover , = 0 otherwise. Along with following variables: 

K

]ik N KC × ikC

i k ikC

kt : time for cover k to be active; 

ikt : time for sensor i to be active in cover k . 

Obviously, if sensor i  is in cover , = ; Otherwise, = 0. The maximum 

lifetime sensor coverage problem can be cast as a linear program as Table 2.4: 

k ikt kt ikt

 

 

Table 2.4 Linear Program Formulation 

 

 

Maximize 

 

 

           
1

K

k
k

t
=
∑                              (1) 

 

 

 

 

Subject to 

 

 

( 1)ik ikC t− × = 0 , i∀ , k∀     (2a) 

( )ik ik kC t t× − = 0 , i∀ , k∀     (2b) 

1
1

K

ik
k

t
=

≤∑ ,         i∀     (2c) 

0 ,ik kt t≤ ≤1,  i∀ , k∀     (2d) 

 

 

 

Equalities (2a) and (2b) guarantee that if = 1, = ; if = 0, =0. 

Inequality (2c) is for homogeneous sensor networks, where every sensor has the same 

amount of energy, 1 unit for here. It is easy to extend this to heterogeneous networks if 

sensors have different initial energy: let

ikC

iE

ikt kt ikC ikt

1

K

ik
k

t
=

≤∑ , where is the normalized lifetime iE
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of sensor based on its initial energy reserve. The lifetime achieved in this way is 

different from the first-node-die lifetime as assumed in most other work -- it is the total 

time for the network being functional. 

i

( 1

Phase II involves the process of solving linear program. The linear program with 

variables can be solved in polynomial time . The linear 

programming solver package in MATLAB is used here. 

)n N K= + × 3( )O n

2.3.2. A Fast Heuristic. 

2.3.2.1. First K Covers. As mentioned before, the algorithm NRSETCOVERS 

uses exhaustive search to find all non-redundant set covers. It is critical that , the 

number of covers set, is small, because the running time of the linear program solvers is 

proportional to , this could be a huge consumption on computer resources, for both the 

memory and CPU usage. Motivated by this, statistics research performed on the result 

generated by the optimal solution, and it is observed that not all of set covers have equal 

contribution to network lifetime. The following charts are a statistics on the member 

numbers inside the sets, the Figure 2.2 shows the distribution of set covers according to 

sensor number, obviously, most of the sets concentrate with 7 or 8 members  

K

3K

But Figure 2.3 shows another story, it shows though sets with 4, 5, 6 sensor nodes 

not a majority in the number, but they contribute a lot to the lifetime while the lifetime 

contribute make by 7 and 8 not as dominate as they in the number. The output shows that 

each set cover with 7 members only assigned with a very short time slice, this is not 

feasible in reality because frequently mode changing affect the network’s work 

efficiency. 

This means it is important to eliminate some set covers in order to reduce the 

input size to the phase of solving linear program. The following algorithm is designed to 

select the first set covers that have most contribution to network lifetime. To select the 

first  set covers, a new metric is defined, called Effective Coverage, defined as follows. 

K

K

If sensor  covers i p targets and of them have already been covered by other 

sensor nodes in the set , then the Effective Coverage of sensor i  in a set  is defined 

as: 

kq

kS kS

( , )EC i k  = p -  kq
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Figure 2.2 Sets Statistic  

 

 

      

 In other words, Effective Coverage of sensor i  in set  is the number of 

uncovered targets that it could covers. While 

kS

p does not change as the algorithm 

progresses, does change and depend on the order we select sensors. The following 

algorithm computes the first covers that put each sensor in the most coverage-effective 

way. 

kq

K

In this algorithm, initially,  is a S N N×  matrix with the elements on diagonal set 

to 1, and there are two auxiliary matrixes with the same size as  to save value of EC 

and  for the corresponding elements inside S . During the process, the size of  may 

increase first then decrease, but will around the same magnitude with . 

S

kq S

N

At each step, the sensor nodes with the greatest effective coverage are selected. 

Effective coverage is the primary metric in selecting sensors. If several sensors are in a 

tie, the one that shows more promise toward a complete cover is preferred. This could be 
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determined by comparing the number of targets that would have been covered in this set 

if sensor i  is included, the closer to M  the better. This is the secondary metric. If using 

the primary and secondary metrics still cannot solve a tie case, we use the third metric, 

p -- the number of targets that a sensor covers, and select the one with smaller p . If all 

three metrics are tie, include all of them. The algorithm terminates when the best covers 

all have been selected therefore S =∅  or the specified number of covers have been 

found, whichever comes first. CheckRedundancy() simply does line 2-4 of 

RemoveRdendancy-Alternative. 
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Figure 2.3 Lifetime Statistic 

 

 

 

Using this algorithm, selecting the first five set covers in example one will give us 

the following: 

1 10001C = , sensors {1,5} unit 0.5→

2 11000C = , sensors {2,1} unit 0.5→
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3 01010C = , sensors {2,4} .5unit 0→

4 00110C = , sensors {3,4} unit 0.5→

5 00101C = , sensors {3,5} unit 0.5→

 

 

Table 2.5 FIRSTKCOVER 

FIRSTKCOVER( , , ,A N M count ) 

1. initialize for 0, , { }knum K N S k= = = 1..k K=  

2. 1
K
k k  S S== ∪

3. while S ≠ ∅ and num count<  

4.      do compute ( , )EC i k for each i in each set kS  

5.           select the * *( , )i k  such as: 

6.                     * *( , )EC i k  = 
,

max
i k

( ( , )EC i k ) 

7.           i  * *
*

k k
S S= ∪

8.           if *k
S  is a complete cover 

9.                 then S  = S  \{ *k
S }  

10.                          CheckRedundancy( *k
S ) 

11.                          if *k
S ≠ ∅  

12.                              then C C= ∪ *k
S  

13.                                       num+ +  

14. return C  

 

 

 

 The linear program solver will assign 0.5 unit time for each cover and that gives a 

total of 2.5 units’ lifetime, the same result as the optimal solution. 
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 For the second example, we get {1, 2}, {1, 3}, {2, 3}, with each active for 0.5 

unit time, we get a total lifetime of 1.5 units, still same as the optimal solution. 

 2.3.2.2. An Iterative Heuristic. The result from firstKcover includes the most 

important group of set covers that dominate the network lifetime. This information is 

used to solve the linear program in section 2.3.1.2. Then for each sensor, the energy 

consumption should be deduct from the initial total energy (assumed to be 1.0 

initially), so the remaining energy of each sensor  becomes = - . After removing 

the sensors with = 0, the algorithm firstKcovers could run on the new input repeatedly 

until no more complete set cover exist. 

iP iE

iEi iE iP

iE

 After the first iteration, the remaining energy should be considered during the 

process of selecting sensors. In case that two sensors tie in their effective coverage, the 

one with more remaining energy is preferred to be select, then the other two metrics 

introduced in section 2.3.2.1 follow. That is, the order of preference becomes: more 

effective coverage, more remaining energy, closer to a complete cover, smaller degree in 

the bipartite graph. This tends to reduce the disparity in energy distribution, make energy 

consumption health, and therefore potentially increases network lifetime. 

2.4. SIMULATION FOR COVERAGE PROBLEM 

In order to reveal the performance character of the algorithm, there are two 

aspects need to be explored: 

First, how good the algorithm could be. To show this, experiments conducted 

with different parameters on sensor density, target density and sensor range. These results 

reflect the solution’s performance property with different network redundancy. 

Second, how better the algorithm could be. A solution is valueless if it could not 

perform better than the current popular one in the field. Based on this, comparison 

experiments not only designed between optima algorithm and iteration heuristic 

algorithm – this is to show how close they are, but also with a well performance 

algorithm – GREEDY-MSC [6]. These results illustrate the advantage over other 

algorithms with concrete data. 

The simulation is conducted using MATLAB combined with c++ under Unix. 

2.4.1. Redundancy And Network Lifetime. Since the objective value of the 

linear program provides an optimal solution for the maximum network lifetime, it is 
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possible to study how redundancy can affect network lifetime by using this. For all of the 

simulation experiments, we randomly deploy   sensors and   targets on a 500  500 plane. 

The network lifetime is normalized to the battery lifetime. For example, if a battery can 

last for one unit of time, network lifetime is 13.45 means the network can be operational 

for 13.45 units of time. 

×

 So first focus on how much longer lifetime the algorithm could achieve by 

increasing redundancy. Redundancy could be realized by either increasing sensor’s 

sensing range, or by deploying more sensors while keeping the same sensing range. Both 

will increase , the average number of sensors covering a target. tΔ

 Figure 2.4 shows the scenario with fixed number of sensors, 15 here and fixed 

number of targets, 15 and 30 individually, how the network lifetime be affected with the 

sensing range increasing.  
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Figure 2.4 OPT with Fixed NM and Increasing Range 
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 Obviously, lifetime increasing with sensor range increasing when sensor number 

and target number are fixed, also, Figure 2.4 shows the lifetime is not sensitive to the 

number of targets for the proposed algorithm in the experiment, because targets follow a 

random uniform distribution. Doubling the number of targets does not always decrease 

the lifetime. 

 Figure 2.5 shows the situation of fixed number of  targets, 20 and 50 individually 

and fixed sensing range, 300 and 250 individually, how the network lifetime changing 

with the increasing number of sensors.  

Figure 2.5 shows the network lifetime increasing with sensor number increasing 

when both the targets number and sensing range fixed. Also, the lifetime noticeably drops 

when the sensing range decrease to 250. On the curve for M=50 and R=250, the average 

number of sensors covering each target increases approximately from 3 to 10, and the 

lifetime appears in the same trend. It can be concluded based on this observation that 

lifetime is roughly linear to the average number of sensors covering each target. 
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Figure 2.5 OPT with Fixed MR and Increasing N 
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 With optimal solution,  increases dramatically with  increasing, because of it 

is difficult to get the optimal solution for the network with a large for the reason of 

linear program solver runs at the cost of , so the heuristic algorithm used here 

instead of the optimal solution to show the relationship between redundancy and network 

lifetime (Figure 2.6, 2.7, 2.8). How close the heuristic is to the optimal solution will be 

exposed in section 2.4.2. Apparently large networks show the same trend as in small 

networks, and lifetime increases as the number of sensors cover per target increases. It’s 

consistent between Figure 2.4, 2.5 and Figure 2.6, 2.7 even the slopes of the curves. 

K N

N
3( )O K

 Similar as Figure 2.4, Figure 2.6 shows the trend of lifetime when sensing range 

increasing while sensor number and target number are fixed. 

In the same way, Figure 2.7 reveals the relationship between lifetime and sensor 

numbers when target number and sensing range are fixed. 
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Figure 2.6 HEU with Fixed NM and Increasing Range 
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Figure 2.7 HEU with Fixed MR and Increasing N 

 

2.4.2. Performance Comparison. 

 2.4.2.1. Comparison between Heuristic solution and Optimal solution. In 

order to know how close the heuristic to optimal solution, so the first merit need to 

compare is lifetime, computed by them on the same input matrix.  

The following table shows the test results for the scenario of 15 sensors and 50 targets, 

with sensing range increases from 150 to 600. As expected, the heuristic solution finds 

the optimal solution most of the time, and only for very few cases it misses the optimal 

solution, but it is still within 3.1% margin of the optimal solution. 

 Table 2.6 shows the optimal solution results in the lime colored column while the 

heuristic's in the blue-gray colored column. The rows hold the value to compare: lifetime, 

the number of set covers input to the linear program solver, for the heuristic, it is the 

maximum number of set covers among all iterations, and the number of iterations. For the 

optimal solution, the number of iterations is always 1 since it only uses one pass and does 

not iterate. 

 

 

 



 26

 

Table 2.6 Performance Comparison between Heuristic and Optimal Solution 

OPT HEU  

Range Lifetime Max{K} Iterations Lifetime Max{K} Iterations 

150 1 34.95 1 1 7.55 1 

200 1.5 60.7 1 1.49 10.9 1.05 

250 2.75 106.45 1 2.66 12.55 1.65 

300 4.2 71.15 1 4.13 11.2 1.75 

350 5.95 52.35 1 5.91 10.45 1.9 

400 7.23 32.55 1 7.12 12.55 1.9 

450 9.88 29.8 1 9.61 14.25 2.25 

500 11.7 22.05 1 11.49 15.4 1.95 

550 13.43 14.5 1 13.43 14.15 1.05 

600 14.25 14.4 1 14.25 14.3 1.1 

 

 

 Table 2.6 shows a comparison with all fixed arguments, to further illustrate the 

difference between these two algorithm under various scenarios, experiments for 

comparing lifetime, set cover size  and running time with various number of sensor 

nodes also performed (Figure 2.8-2.10). For sensing range R=300 and M=50, the network 

size varying from 5 to 25.  

K

Figure 2.8 shows the lifetime computed by the heuristic is exactly the same as the 

optimal solution, this is the reason why it is feasible to replace optimal solution with 

heuristic solution does not affect the final results in section 2.4.1. 

 While Figure 2.9 shows the comparison on the number of set covers they 

produced for the linear program solver and Figure 2.10 focus at running time of these two 

algorithms. 

Obviously, the number of set covers  increases dramatically with optimal 

solution while heuristic solution’s  keeps a nearly constant, this is a good news for 

Phase II since solving the linear program is too computationally expensive. 

K

K
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Figure 2.8 Comparison of Lifetime between OPT and HEU with Increasing N 
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Figure 2.10 Comparison of Runtime between OPT and HEU with Increasing N 

 

 

 This Figure shows the benefit of using the heuristic, it starts to show when the 

network size increases to 20 sensors – the running time of the optimal solution increases 

dramatically while heuristic solution keeps at a low time. 

 2.4.2.2. Comparison between Heuristic and Greedy-MSC. [6] focus on the 

same topic as this thesis, and there are two algorithms proposed in [6], the winner is a 

greedy approach: Greedy-MSC.  

 The comparison between firstKcover heuristic and Greedy-MSC focus on two 

sides, one is how the sensing range affect network lifetime for both algorithm (Figure 

2.11), another is how the number of sensors affect network lifetime (Figure 2.12).  

 It’s obvious from the plot that firstKcover heuristic always gets more lifetime, 

especially when the initial energy reserve is non-uniform. The difference between the two 

curves increases as the number of sensors covering each target increases. In GREEDY-

MSC, both the accuracy of results and running time are dependent on the input parameter 

 -- the time slice size; however in firstKcover, it only depends on the sensor-target w
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coverage map. No matter what initial energy distribution looks like, it can infinitely 

approach the optimal solution.  

 

 

0

5

10

15

20

25

30

100 200 300 400 500 600

Sensing Range

N
or

m
al

iz
ed

 L
ife

tim
e

FirstKcover Heuristic Greedy Heuristic

 
Figure 2.11 Comparison between HEU and GreedyMSC with Increasing Range 
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Figure 2.12 Comparison between HEU and GreedyMSC with Increasing N 
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 There is another difference between them: the number of targets could affect 

Greedy-MSC’s performance a lot but as shown in section 2.4.1, targets number is not a 

big deal for the algorithms proposed in this thesis.  

 

2.5. RELATED WORK 

Coverage problem has been addressed using different approaches with various 

coverage metrics. The most commonly used metric, which is also used in this paper, is 

the discrete version 0-1 coverage metric, that is, if the target is within the sensing range 

of the sensor, it is considered covered. With this coverage metric, there is no difference 

between the target being within 3 feet and 30 feet of the sensor as long as the sensing 

range  30 feet. Previous work using 0-1 coverage metric includes [3], [4], [6] etc., there 

is no limit on the size of each subset. This becomes a real problem when the wireless link 

capacity is limited and all sensors need to ship their sensory data out periodically. [5] 

addressed how to schedule sensor nodes with bandwidth constraint to achieve minimum 

breach rate, and based on application needs, three performance metrics for breach rage 

are introduced. 

≥

The continuous version coverage problem is addressed by using a coverage metric 

based on the signal intensity that the sensor gets from the target, which is a function of 

the distance between them ([8]). The sum of intensities from multiple sensors measures 

the likelihood of the target being observer by all sensors. They further defined exposure 

of a target along a path as the integral of the sum of intensities along the path. While 

intensity function indicates the sensitivity of a target at a particular point, exposure 

measures the likelihood of a moving target being detected along a path. Based on this 

sensing model, they proposed algorithms for calculating the worst-case coverage ([8]) 

and finding the least-covered path and maximal-support path ([9]). [10] also addresses 

continuous domain coverage but it uses a different sensing model. [11] further addresses 

how to find optimal solutions to the best-coverage-least-energy consumption path 

problem and the best-coverage shortest-path problem. These works do not have 

maximum lifetime as their optimization objectives, but indirectly can extend lifetime by 

being energy efficient in all operations. 
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Distributed approaches that schedules sensors on and off based on local 

information have also been focus of study in the recent literature. Different from the 

centralized approach presented in this article, in these works a sensor node switches 

between an active mode and sleep mode based on the information received from its 

neighbors and makes its own decision independent from others. These approaches trade 

optimality for faster and easier implementation. [12] proposed a protocol to minimize the 

number of active nodes while preserving the original network coverage. In this protocol, 

a node is scheduled to sleep when its contribution to network coverage is the minimum 

and removing itself from the network still leaves a fully covered network. Essentially 

[12] does a density control by using a Cooperative Sensing Model that explores the 

cooperative exploration of multi-sensors. Other density control approaches are mainly 

based on Boolean Sensing Model where sensing intensity is based on a continuous model 

but a threshold value is used to decide if a point is covered or not. [13], [14], and [2] etc. 

all used this model. 

For dense and massive sensor networks, [13] uses probing environment and 

adaptive sleeping strategies to reduce the number of redundant on-duty nodes. [13] also 

assumes that faulty nodes exist and node transmission power is adjustable. [13] and many 

other works use a random uniform distribution method for node deployment that does not 

guarantee full coverage and connection. [15] uses a different deployment method that not 

only guarantees coverage but also preserves connectivity, which is similar as used in this 

thesis. The centralized version of the problems is addressed in [16], where the notion of 

Connected Sensor Cover is introduced. A connected sensor cover is a subset of sensors 

that can fully cover the query region and any sensor in the subset can communicate with 

any other sensor in the subset directly or indirectly through multi-hop communication, 

and this subset need to be minimized. The connected sensor coverage problem is NP-hard 

as the less general problem of covering points using line segments is known to be NP-

hard [24]. Constructing a minimum connected sensor cover for a query in a sensor 

network enables the query to be computed by involving a minimum number of sensors 

without compromising on the accuracy of the query result. 

If fault nodes exist in a sensor network, single coverage is not sufficient to satisfy 

the QoS requirement. [17] addresses the -coverage problem, i.e., to select a minimal k
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active set of sensor nodes to maintain a complete area -coverage, which is defined as a 

minimum set cover problem. It further extends it to address the probabilistic -coverage 

problem that requires a point is covered by  sensors at  a required probability. 

k

k

≥ k ≥

Moving target detection is a different category of coverage problem. [18] defined 

the worse and best-case coverage problems and proposed polynomial time algorithms to 

compute them. The coverage calculation here is independent of paths traveled by the 

target, which is different from [8]. 

 

2.6. CONCLUSION ON COVERAGE PROBLEM 

To maximize network lifetime under given energy constraints is a fundamental 

problem in wireless sensor networks, because wireless sensor networks are powered by 

battery, so the organization with power aware is highly desirable to prolong the network 

lifetime. Arranging sensors turn on and off at their scheduled time is an efficient method 

to save the energy, but at the same time, need to guarantee that the active sensors could 

completely cover all monitored targets. The lifetime metric is the total time during which 

the sensor network is functional. This thesis provides an optimal solution for the 

maximum lifetime sensor scheduling problem. The study reveals the relationship between 

the degree of redundancy in sensor deployment and achievable extension on network 

lifetime, which can be a useful guide for practical sensor network design. 

 The proposed algorithm is suitable for small sensor networks. In the future work 

of this topic, the suboptimal solution for massive sensor networks without increasing 

computation time dramatically will be addressed, also, distributed and localized 

algorithms for very large scale networks, and study the tradeoff between computation 

time and communication overhead in achieving the maximum lifetime need to be further 

explored. The linear program model can be easily extended to address sensor networks 

with heterogeneous sensor networks where nodes may have different battery supply. For 

fault tolerance consideration, the algorithm to find the non-redundant set covers can be 

modified to make sure each target i  is covered by  sensors and the linear program can 

still apply to find the optimal solution.  

ik
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3. ENERGY EFFICIENT DATA GATHERING ALGORITHM IN SENSOR 

NETWORKS WITH PARTIAL AGGREGATION 

3.1. INTRODUCTION TO DATA AGGREGATION 

Wireless sensor networks can potentially be used in habitat monitoring, target 

tracking, surveillance as well as many other future civil and military applications [26]. 

Sensors in a network collaboratively accomplish a sensing task, and then relay the 

information to a specified viewer, often referred to as a sink node or a base station. 

Sensors are equipped with a sensing unit to gather information, a computing unit for data 

processing, and a communication unit to communicate with other sensors and the base 

stations. Due to the bandwidth limitation and the energy limitation, data transmitted 

through the network should be reduced as much as possible. To this end, in-network data 

aggregation is desired in many systems [28, 31, 34]. On the other hand, due too the 

limitations on power supply and computing capability, the large computing task should 

be avoided at sensor nodes. As a result, some computationally expensive tasks are moved 

to the base station and raw data is forwarded without in-network processing. A pure 

aggregation model and a pure non-aggregation model are shown in Figure 3.1 and Figure 

3.2. 

 

 
 

Figure 3.1 Data aggregation model 
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Figure 3.2 Data non-aggregation model 

 

 

 In future sensor networks, data gathering with or without aggregation will co-

exist. In particular, some queries and answered with full data aggregation, some with 

partial aggregation, and some without aggregation at all. Some queries require all sensor 

nodes to respond, while others only involve a subset of sensors. With flexible in-network 

data processing, it is possible that for one particular query, some nodes will be 

aggregators and others are just relay nodes; and the roles of sensors change from query to 

query. A dynamic topological structure that changes with every query is too expensive to 

maintain in terms of setup delay and energy consumption.  In fact, it is rather infeasible to 

update the aggregation tree structure if queries are issued frequently. A reasonable 

assumption is that even though sensors may play different roles for different queries, for 

a long term each sensor roughly has equal chance to generate raw sensory data. Therefore 

in this paper we assume a uniform model, in which a fraction of sensory data are fully 

aggregated and the rest are not aggregated at all. This model does not require specific 

query information or the source distribution. This fraction is called aggregation ratio, and 

we assume a uniform ration for every sensor node. Figure 3.3 shows that some data are 

aggregated while others are not. 

 



 35

 
Figure 3.3 Hybrid model 

 

 In this paper, we try to find the most energy efficient topological structure for data 

gathering with a constant aggregation ratio . In two extreme cases when  = 0 (i.e., data 

are not aggregated at all) and  = 1 (i.e., data are fully aggregated), the optimal solutions 

become the Shortest Path Tree (SPT) and the Minimum Spanning Tree (MST) 

respectively. In a general case when 0

b b

b

1b< < , to find the minimum energy tree for data 

gathering is an NP-hard problem. We propose an efficient numerical approach to 

compute the input parameterα  that controls the transition between MST and SPT so that 

the resulting tree can minimize the energy cost (in Chapter 11). A polynomial time 

algorithm BAT is proposed to construct such a tree with the given control parameter (in 

Chapter 10). Through extensive simulations, we show that the proposed algorithm and 

numerical approach effectively reduce the energy cost of data gathering (in Chapter 12). 

 

3.2. ENERGY COST FOR DATA GATHERING  

In this chapter, we formulate the total energy cost associated with data gathering 

in sensor networks. Since transmission power is the dominant factor among all the 

activities (transmitting, receiving and local data processing, etc.), we only consider the 

transmission power. When ignoring the constant factor, the required transmission power 
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P  to send data over a distance is  = , where c is the path loss exponent between 2 

and 4. 

d P cd

Let be the graph model of the sensor network, where an edge exists 

between two sensor nodes if they are within the transmission range of each other. We 

assign each edge a weight function . The sub graph that supports data 

gathering from all sensor nodes to the sink node is a tree rooted at the sink node. 

( , )G V E

e∈E ( ) | |cw e e=

(1). When the aggregation ration  = 0, the total energy is the sum of the weights 

of paths from the source nodes to the sink node . The total energy is: 

b

r

1
( , )

( )
v V e path v r

E w e
∈ ∈

= ∑ ∑  

In this case, to compute a tree that minimizes  is equivalent to compute the shortest 

path from each node to the sink node . Thus the optimal solution is a Shortest Path Tree, 

which can be found in polynomial time. 

1E

r

(2). When = 1, the total energy is: b

             = 2E ( )
e tree

w e
∈
∑  

In this case, paths from different sources to the sink node can be shared as much as 

possible, and the shared paths are only counted once in the sum, therefore to compute a 

tree that minimize  is equivalent to compute a Minimum Spanning Tree. Thus the 

optimal solution can be computed in polynomial time. However, if only one subset of 

nodes is source nodes, it becomes an NP-complete problem. 

2E

(3). When , the optimal topological structure is a tree that provides 

continuous transition between a Minimum Spanning Tree and a Shortest Path Tree. Such 

a tree has the promise to provide best performance over a long time. In [32] the 

maximum lifetime data gathering problems are addressed where data are either fully 

aggregated or not aggregated at all. However, to our knowledge, there is no previous 

work that has ever addressed the hybrid data aggregation (i.e., 0

0 b< <1

1b< < ), which is more 

likely to have broader applications that the other two. 

In the next chapter, we will show that the Balance Aggregation Tree (BAT) 

algorithm can be used to construct a tree that is energy efficient for hybrid data 
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aggregation. In the following, we use  and  to represent the distance from root r      

to node  in SPT and the final BAT tree,  and

vD ( )d v

(v vP )p v  to represent the predecessor of  in 

SPT and the final BAT tree respectively. 

v

 

3.3. BAT ALGORITHM 

The Balanced Aggregation Tree (BAT) algorithm finds a trade-off between the 

shortest path property of SPT and the minimum weight property of MST, and provides a 

smooth transition between the two. A tree is called an α -tree of  if for every node v in 

the tree, the distance from  to in . We will show that BAT algorithm computes an 

G

v r G α -

tree of G  for given 1α ≥ . 

The BAT algorithm is given in the following, where is the graph model 

of the sensor network, is the specified root and 

( , )G V E

r 1α ≥ is the control parameter. In the 

BAT algorithm,  is the confirmed vertex set already on the tree, initialized to include 

the root ;  is the set of edges crossing 

BV

r OE BV  and . BV

 

        BAT ( , r ,( , )G V E α ) 

Compute the shortest path form  to each noder v V∈ ; 

Let  be the distance from to v ; vD r

Let   be the predecessor of on the path. vP v

for each v do V∈

 ( ) = (d v α +1)  vD

 ( )p v = NULL 

end for 

let vertex set  = { }, BV r BV =  \V BV

let edge set = all edges connected to r  OE

While BV φ≠   do 

find the minimum-weight edge ( , ) Ou v E∈ , s.t. 

 , vu ∈ BV ∈ BV  
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UPDATE (u , v ) 

if ( )d v α≤ vD then 

  \{ ( , ) | }O O BE E edge x v x V= ∈

 { },B BV V v= ∪ BV = BV \{  }v

 { ( , ) |O O BE E edge v w w V= ∈∪ }  

else 

  \{ ( , )}O OE E edge u v=

end if 

end while 

return   ( ,{( , ( )) | \{ }})BATT V v p v v V r= ∈

END of BAT 

 

UPDATE ( ) ,u v

  
( ) ( ) ( , )
( )

d v d u w u v
p v u

= +
=

END of UPDATE 

 

Theorem 10.1 Given a graph G with non-negative edge weights, BAT algorithm 

computes an α -tree of G in O(E+VlogV) time. 

 

    Proof: We first show BAT algorithm terminates within O(E+VlogV) time and outputs 

a single tree, then show that for each node  in the tree, ( ) vd v Dα≤ . 

In the while loop, a vertex Bv V∈  is added into  by an edge ( ) that straddles 

 and

BV ,u v

BV BV . It starts from root and takes | -1 edges to connect | -1  non-root nodes 

onto the tree, so the structure is acyclic and is connected, therefore the resulting structure 

is indeed a tree. 

r |V |V

It can be proved that the algorithm does not have endless loops, because  will 

not become empty before 

OE

BV  becomes empty. This can be proved by contradiction: 
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Assume there exists a node v∈ BV  and  becomes empty before  is included in . 

Assume node  is the predecessor of v  on the shortest path from v  to . Therefore 

OE v BV

u∈ BV r

( ) ud u Dα≤ . This leads to ( )d u ( , ( , )uw u v D w u v) α+ ≤ + . Since 1α ≥ , 

so ( ) (d u w u, uD)v ( ( ,w u v))α+ ≤ + . However, ( ,uD w u )v vD= + , which leads to 

( , )ud w u v vDα+ ≤ . Thus node v  could be included in  when edge ( ) is examined. 

If the predecessor of v  is also in

BV ,u v

BV , call it x , then the same proof can lead to that x  

could be included in  before  goes empty. Therefore by the end of the while loop, 

all nodes are included in the tree and all edges {(  form a single tree. 

BV OE

Δ ( )O V

, ( ))}v p v

The running time of BAT algorithm is O(E+VlogV), because the size of  is 

bounded by | | =  at any time, where 

OE

BV Δ  is the maximum node degree, therefore 

to extract the minimum weight edge from  takes time using a priority queue, 

altogether it is  time; to add edges into  and to remove edges from  are 

executed 2| | times altogether, so the total time for BAT is O(E+VlogV). 

OE (log )O V

OE(O V log )V

( )d v

O

V

E

E

( )d v

The distance property is direct from the procedure that a node  is added into   

only if satisfies

v B

vDα≤ . 

 

Theorem 10.2 Given a graph G with non-negative edge weights, to compare a minimum 

weight α -tree is NP-hard for α >1. 

    Proof: In [33], a theorem has been proved that for given α >1  and  2
1

1 1β
α

+≤ <
−

   , 

it is NP-complete to determine whether a given graph G contains a tree that satisfies 1) 

for every vertex  the distance from  to  in the tree is at most r αv u  times the shortest 

distance from  to  in G  ; and  2) the weight of the tree is at most v r β   times the weight 

of a minimum spanning tree of G . It follows from this theorem that to compute a 

minimum weight α -tree is NP-hard, because otherwise if we can find the minimum 

weight α -tree in polynomial time, we can compute its weight  in polynomial time, 

then we can compare  with. 

*W
*W β *W ≤MW β MSTW×: if  × ST , then we can determine in 

polynomial time that G  contains a tree that satisfies the two conditions; if W > *
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β MSTW× , then we can conclude in polynomial time that  does not contain a tree that 

satisfies the two conditions, contradicting the theorem in [33].    

G

 

 However, when α  = 1, the minimum weightα -tree problem becomes to compute 

a minimum weight Shortest Path Tree. This problem is solvable in polynomial time. 

While both the Light Approximate Shortest-path Tree (LAST) algorithm in [33] and BAT 

compute an α -tree of the original graph, BAT outperforms LAST in total weight, 

because the edges of the tree are selected from a larger pool. LAST only uses the edges in 

MST until a violation on distance occurs. The smallest total weight property is verified 

through simulation in section 3.5.1 Figure 3.7  Figure 3.10. ∼

3.4. MINIMUM ENERGY TREE STRUCTURE  

The transition from a Shortest Path Tree to a Minimum Spanning Tree is 

controlled by an input parameterα , Increasing α  will sacrifice the distance property for 

better total weight property, and decreasing α  will increase the total weight for better 

distance property. However, how to determine the trade-off in real systems can be a 

challenging task. In this section we discuss how to choose α  to make the resulting tree 

structure the most energy efficient for a given sensor network. 

The lower bound of the optimal solution is achieved by an imaginary tree that 

behaves like a Shortest Path Tree for non-aggregate data, and behaves like a Minimum 

Spanning Tree for aggregate data.  In a sensor network, if the ratio of non-aggregate data 

to aggregate data is , where 0 ,:a b 1a b≤ ≤ , and  1a b+ =  , then the lower bound of the 

optimal solution is: 

  OPT SPT MSTE a E b E= × + ×

Where  is the sum of distances in the Shortest Path Tree and SPTE MSTE is the total weight 

of the Minimum Spanning Tree. For any BAT tree, the total energy cost consists of a 

fraction   of sum of distances and a fraction b  of total weight. a

  
( , )

( ) ( )BAT
v V e path v r e BATT

E a w e
∈ ∈

= × + ×∑ ∑ b
∈
∑ w e  

By adjusting the control parameterα , we can control the shape of the BAT tree 

for different and , so the resulting total energy can approach the lower bound. 

The idea is as follows: 

a b BATE
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Let y  be the ratio of the sum of distances in the Shortest Path Tree to the total 

weight of the Minimum Spanning Tree. Let be the energy cost along the path 

from v  to root  . The total energy cost is: 

( )E v r→∼

r

( ) ( )
BAT

BAT

v r T
v V e T

( )E a E v r b weight e→ ∈
∈ ∈

= × → + ×∑ ∑∼ ∼  

Since the cost along each path is upper bounded by α  times that of a Shortest 

Path Tree, and the total weight of the (α β− ) BAT tree is upper bounded by β  times 

that of a Minimum Spanning Tree. Thus 

( )SPT MST MSTE a E b E a y b Eα β α β≤ + ≤ +  

To minimize the upper bound of E , we can find the value of α  that 

minimizes X a y bα β= + . In the worst case, 21
1

β
α

= +
−

, the minimum value of X  is 

achieved when 21α = +
b

ay
. Since not every network instance constitutes a worst case 

scenario, we only use this value as the initial value ofα ; the best value for α  is to be 

found by iteration. Therefore we choose 0α as follows: 

0
21 b
ay

α = +  

This allows that when α = 0, 0α approaches∞ , so there is no limit on the distance 

to the root, therefore the BAT tree becomes MST; when α = 1, 0α = 1, so the BAT tree 

becomes SPT. When 0<α < 1, increasing α or y will get a smaller 0α , so the tree has 

smaller distances thus to reduce the energy cost. 

Let 1α = 0.5× ( 0α +1). Use 1α  and 0α as inputs, we construct two BAT trees. If 

the energy cost 
1TBAE

α
>

0BATE
α

, let 2α  = 0.5× ( 0α + 1α ), otherwise let 2α = 0.5× (1+ 1α ), 

and so on. The resulting curve of the energy cost will fit in one of the three possibilities: 

 

• Case (a), monotonically decreasing 

• Case (b), monotonically increasing 
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• Case (c), oscillating  

 

Initialize 0
21 b
ay

α = + , iteratively compute 1α , 2α , and 3α as shown in Figure 

3.4, Figure 3.5, and Figure 3.6. The output from this numerical procedure is nα  . In case 

(a), the minimum energy is obtained when nα = 0α ; in case (b) the minimum energy is 

obtained when nα = 1 ;  in case (c) , no clear trend is shown, so we take the minimum 

energy among all computed values resulting from { 1, 0α , 1α , 2α , 3α }. The above 

procedure takes at most three iterations. Increasing the number of iterations can definitely 

get closer to the optimal solution, but since there is no guarantee that it will converge 

within a finite number of iterations, we restrict it to three iterations only. The energy cost 

of the BAT tree with α  = nα  is compared with the ones that use an arbitrary fixed value 

such as α = 2 and the initial value α = 0α . Apparently, nα  gives the lowest total energy 

cost as verified in the simulation (Figure 3.11) 

 

 

 

 
Figure 3.4 Case (a) Decreasing 
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Figure 3.5 Case (b) Increasing 

 

 

 

 
Figure 3.6 Case (c) Oscillating 
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3.5. SIMULATION OF DATA AGGREGATION 

3.5.1. Simulation Setup. For comparison purpose, we use unit-less values, and 

we consider only the energy cost involved in data transmission and ignore others that are 

the same for all algorithms. 

A sensor network consists of up to 200 nodes, uniformly and randomly scattered 

around on a 1×1 square. The radio transmission range varies from 0.1 to 0.35. An edge 

between two nodes exists if they are within the transmission range of each other. We 

assume a uniform transmission range fro every node, thus all edges are symmetrical. The 

root node is randomly selected. 

3.5.2. Performance Comparison. 

3.5.2.1. Compare BAT with other trees. Other trees under consideration are 

MST, SPT and LAST in [33]. MST has the minimum total weight and SPT has the 

smallest distance from non-root nodes to the root. However, MST blows off on distances 

and SPT blows off on total weight. We found by using a smallα , BAT can generate a 

tree that is satisfactory on both total weight and distances. LAST is an efficient algorithm 

proposed in [33] to compute a trade-off between SPT and MST. In the first simulation 

(Figure 3.7, Figure 3.8), we study the weight and distance properties of BAT, and use 

LAST, MST and SPT to compare with. We show the ratios of the total weights from 

BAT, LAST and SPT to the total weight of the MST, and the ratios of the sum of 

distances form BAT, LAST and MST to that of the SPT. In 3, a fixed value LASTα  = 1.12   

is used for LAST and   BATα  = 0.9 LASTα  is used for BAT. This means BAT needs to 

satisfy a more restrictive condition on distance. For an arbitrary network, the upper bound 

of the distance from a non-root node to the root on the BAT tree is at most 90% of that on 

the LAST tree. The experiments show that with LASTα  = 1.12 and BATα  = 0.9 LASTα , BAT 

always has a smaller total weight and a smaller sum of distance that LAST on the same 

network. The total weight of SPT could be as high as 190% of that of MST, and the total 

weight of LAST and BAT are both within 115 120% of that of MST. BAT, with a more 

restrictive requirement on individual distance, shows 3 4% improvement over LAST on 

total weight. On the distance aspect, the sum of distances in MST could be as high as 

146% of that of SPT, the sum of distance in LAST is within 101% that of SPT; and BAT, 

with such a small , finds the exactly the same distance as SPT. 

∼

∼
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Following Figures are on a 200-node network, transmission range 0.1-0.35. 

Compare BAT with other trees on the sum of distances and the total weight, normalized 

by the sum of distances from SPT and the total weight from MST respectively 

 

 

 
Figure 3.7 Sum of distance 

 
 

The key parameter to control the tradeoff between the total weight and distances 

to the root isα . Figure 3.7 and Figure 3.8 shows that BAT, with a proper α  value, could 

do better than LAST on both aspects, but its counterpart LAST couldn’t – if LAST can 

win on distances; it has to lose on total weight. The new challenge is now to find the 

proper value of α  that gives the best performance of BAT, which is provided in Figure 

3.9 and Figure 3.10. 
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Figure 3.8 Total weight 
 

 
Figure 3.9 With 200 nodes, transmission range = 0.1 – 0.35. Compared BAT with LAST 

on the total weight. Results normalized by the total weight of MST. 
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Figure 3.10 Normalized energy costs of SPT, MST and BAT trees (with α =2,α = 0α , 

andα = nα ) for 200-node networks, with radio transmission range 0.15 
 

 

 

The second experiment is to compare the weight property of BAT and LAST 

using the same control parameterα  . The simulation results in Figure 3.9 show BAT 

produces trees with 10% less total weight than LAST, with both satisfying the individual 

distance requirement. 

3.5.2.2. Improve Energy Cost by Tuning Control Parameter.  The objective of 

this simulation is to show that the control parameter α   can be fine-tuned to improve the 

energy-efficiency of the data aggregation tree. We compare the energy cost of BAT trees 

with different values of α  for the same network. Let  be the proportion of non-

aggregate data, be the proportion of aggregate data, so +b =1, and . We 

compare BAT trees with

a

b a 0 ,a b≤ ≤1

α  = 0α , α  = nα , and α  = 2 as well as MST and SPT. 

The performance metric is the normalized energy cost  
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  OPT
N

OPT

E EE
E
−

=  

Where E  is the actual energy cost and is the lower bound of the optimal 

solution, as defined in section 3.4. 

OPTE

Figure 3.10 shows the average energy cost of each algorithm for 100 instances. 

The simulation results show that BAT trees with 0α  and nα  coincident with MST when   

=0, =1, and coincident with SPT when =1, =0, which are the optimal solutions. 

The performance of BAT is the best at two ends, when =1 or =0. During the transition 

from MST to SPT, BAT with 

a b a b

a a

α = 0α provides and energy cost in between of MST and 

SPT, but BAT withα = nα outperforms all the others. It is also observed that the BAT 

trees with α = 0α  and α = nα  both perform better than the one with a fixed valueα =2. 

In Figure 3.10, the curve for BAT with α  = nα  flattens out in most part and 

approaches the lower bound of the optimal solution, and even the worst case performance 

is only 4% increase from . This simulation verifies the scheme described in section 

3.4 can effectively find the best value of 

OPTE

α  that gives the near-optimal energy cost. 

 

3.6. RELATED WORK 

In sensor networks, the key challenge in data gathering is energy conservation. A 

lot of work has been done along this line for energy efficient data gathering [29, 31, 38, 

35, 37]. Among many others, data aggregation is the most important approach and has 

been used in many systems [28, 30, 31, 34, 36, 39]. Data aggregation can reduce the 

amount of redundant transmissions, thus reduces the energy consumption. [31] proposed 

Directed Diffused, a localized data-centric scheme, where the data generated by sensor 

nodes is named by attribute-value pairs and a node (sink) requests data by sending 

interests for named data. Data matching the interest is then collected and forwarded to the 

requesting node along the reverse path of the interest propagation. Intermediate nodes can 

cache, or transform data, and may direct interests based on previously cached data. 

In [31, 34] and [39], it is assumed the underlying topological structure of the 

network is a data aggregation tree, and the internal nodes (non-sink, non-leaf nodes) do 

the aggregation to reduce the amount of data being transmitted. In [39], to guarantee data 
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aggregation is done within a specified time, Yu et al. used packet scheduling techniques 

to trade latency for energy. In [39] each sensor node in the tree aggregates the 

information from its subtree rooted at itself (including all its children and the node itself) 

and generates a reduced size packet. If the amount of data  each source node generates 

is known, then the amount of output of source data '  after aggregation is dependent on 

the number of source nodes  in the subtree and an aggregation factor , where 

s

s

d k [0,1]k∈  

is a control parameter assumed to be the same for all sensor nodes. 

Complementary to data aggregation, another possible approach in energy efficient 

data gathering is to select a subset of sensors fro data transmission instead of using all 

sensors, and the selected sensors are sufficient to reconstruct the data for the entire sensor 

networks [27]. 

 

3.7. CONCLUSION AND FUTURE WORK 

In sensor networks, data gathering is often implemented with certain degree of 

data aggregation. In this paper, we address the problem of energy-efficient data gathering 

with various levels of data aggregation, assuming some data will be aggregated and some 

will be simply forwarded without further processing at forwarding nodes. In order to 

gather data from source nodes and route data to the sink node, a tree structure is needed 

as the basic topology. We observed that the Minimum Spanning Tree is the optimal 

solution if all data is fully aggregated, and the Shortest Path Tree is the optimal solution 

if no data is aggregated. Between these two extreme cases is the general case, where a 

certain percent of data is aggregated, for which neither the MST nor the SPT is the 

optimal solution. We show that we can use the aggregation ration as an input parameter 

to control the tree structure. Such a tree structure satisfies that the distance from any node 

to the root is at mostα  times the shortest distance; such a tree provides a smooth 

transition from a Shortest Path Tree to a Minimum Spanning Tree. We propose an 

efficient algorithm BAT to find such a tree. The simulation results demonstrate that BAT 

algorithm achieves better performance than other tree structures in terms of the energy 

efficiency of data gathering. 

 In addition to the consideration of energy, the total weight of the tree also 

indicates the interference level of the network. The one with the minimum total weight is 

 



 50

the best in terms of reducing total interference. Both LAST and BAT provide trees with 

distances bounded by α  times the shortest distance, however, BAT tends to find the one 

with smaller weight most of the time. 

 The algorithms proposed in this paper are all centralized. In the future, we will 

address the implementation of the algorithm in a distributed environment, and study the 

performance trade-offs if it is implemented locally. 
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