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ABSTRACT

Text mining using the vector space representation has proven to be an valu-

able tool for classification, prediction, information retrieval and extraction. The

nature of text data presents several issues to these tasks, including large dimension

and the existence of special polysemous and synonymous words. A variety of tech-

niques have been devised to overcome these shortcomings, including feature selection

and word sense disambiguation. Privacy preserving data mining is also an area of

emerging interest. Existing techniques for privacy preserving data mining require the

use of secure computation protocols, which often incur a greatly increased computa-

tional cost. In this paper, a generalization-based method is presented for creating a

semantic-preserving vector space which reduces dimension as well as addresses prob-

lems with special word types. The SPVSM also allows private text data to be safely

represented without degrading cluster accuracy or performance. Further, the result

produced is also usable in combination with theoretic based techniques such as latent

semantic indexing. The performance of text clustering using the semantic preserv-

ing generalization method is evaluated and compared to existing feature selection

techniques, and shown to have significant merit from a clustering perspective.
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1. INTRODUCTION

Text mining [1] is an area which has experienced rapid growth with the avail-

ability of large stores of data, such as archives of books and newspapers, web sites,

informal communications such as newsgroups and Internet forums, academic journals,

corporate documentation and so on. Many important tasks can be accomplished by

organizing and extracting information from text data. One such task is text document

clustering, which seeks to identify similarities between documents and place them into

groups based on their similarity. A second area of emerging interest is privacy pre-

serving data mining, which adds the requirement that the privacy of information is

not compromised in the process of producing a result or model constructed jointly

by multiple parties.

Difficulties in document clustering arise from the nature of text data, as well

as its applications. When represented in the vector space model[2], text data tends

result in a sparse matrix of enormous dimension. The curse of dimensionality [3]

can force otherwise effective computations to become cumbersome and unworkable,

as even a small number of documents could potentially contain tens of thousands

of distinct terms. Additional difficulties are created by single words which contain

multiple senses (polysemy) and separate words which share meanings (synonymy).

Because similarity in the vector space model is based on term frequency, documents

containing these types terms will be incorrectly calculated as similar or dissimilar to

one another.

Feature selection techniques have been introduced to overcome problems posed

by high dimensionality and by polysemous and synonymous words. The goal of fea-

ture selection is to identify the most prominent terms or sets of terms in a text

collection. By creating a new vector space in which documents are represented by
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their most relevant terms, the size of the vector space can be reduced. Word sense

disambiguation can be incorporated into feature selection to correctly identify poly-

semous words, and sources of background knowledge can be used to make the feature

selection process aware of the shared meanings of synonymous words.

To address unwanted disclosure of sensitive information in a joint computation

environment, secure multi-party computation techniques have been devised which

allow the calculation of the without sharing private information. These techniques

rely on computationally intensive cryptographic primitives and protocols. in [4],

a secure protocol is proposed for determining the cosine similarity between two text

documents. The experimental section showed that to calculate the similarity between

two collections of 1000 documents would require six days.

Furthermore, text data requires that parties agree beforehand on a set of terms

to include in the vector space. One solution is to securely compute the set intersection

of the term space of both parties. Existing feature transformation techniques based

on matrix decomposition cannot be applied here because the resulting features are

solely dependent on each parties text collection and cannot be compared. Even after

creating the joint vector space, computing clusters using secure multiparty computa-

tion has a much higher computational complexity than conventional clustering. The

dimensionality problem of text data is exacerbated in the setting of secure multi-party

computation. The complexity of secure multi-party computation is usually given in

terms of the required number of encryptions, as these are the most costly operations.

If the number of communications between parties is based on the dimension of the

data, then the typically large feature space found in text collections becomes even

more problematic. These issues provide the motivation to represent text collections in

a reduced-dimension vector space which protects sensitive information while allowing

the relationship between similar documents to be detected.
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In this work, a method is presented in which documents words are replaced by

related, but less specific terms. The process of correctly identifying words suitable as

replacements is guided by a word ontology, which is a collection of words organized

in a tree structure by parent-child relationships. Each child word is semantically

similar to its parent, but with a more specific definition. At the root of an ontology

are general notions, topics and categories, while the leaves of the tree are highly

specific concepts. For example, an ontology with the word food at the root might

see the word fruit as a parent of orange; the word orange as a parent of mandarin

orange, and so on. Some well known ontologies include Wordnet [5] and Mesh [6],

which have already been successfully incorporated in a number of publications on

feature selection and word-sense disambiguation. This work aims to use knowledge

from an ontology in a way that directly reduces vector space dimension and resolves

synonymous words.

The process of replacing words from a document in this manner is called se-

mantic preserving text generalization, and the result is a semantic preserving vector

space model The goal of privacy preservation is achieved because sensitive informa-

tion is removed gradually from private text collections. Rather being deleted outright

from the vector space, highly sensitive terms are instead be replaced by more palat-

able words. Furthermore, generalization provides a fast and simple way of performing

feature selection. The method exhibits the same characteristics of other term selec-

tion techniques in that it reduces the feature space without significantly degrading

clustering performance, and it is also shown to resolve the problems of synonymous

and polysemous words. Furthermore, the SPVSM is able to directly capture the

close relationship between sibling words, which enhances the ability of clustering al-

gorithms to organize text collections by topic. The evaluation section shows that the

method often increases cluster performance with very little added computation time.
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Section 2 presents definitions and related work. Section 3 introduces the

SPVSM and its foundational ideas. Sections 3.6, 4 and 3.7 illustrates the feasibility

and applicability of the method in text clustering. Section 5 concludes the thesis

with some future research directions.



5

2. RELATED WORK

This section details some of the related work in text clustering, feature selec-

tion and word sense disambiguation.

2.1. TEXT CLUSTERING

Cluster analysis is a modeling technique which assigns data observations into

groups based on their similarity [7]. Because it requires little to no prior knowl-

edge to perform, it is especially useful for extracting knowledge from unlabeled data.

Clustering has performed on text data including documents, words, and word senses

using a variety of techniques. Particularly popular are iterative approaches to parti-

tional clustering such as k-means and its popular variants, spherical k-means [8] and

bisecting k-means [9]. Using a vector space model, spherical k-means [8] introduces

’concept vectors’ for each cluster, which are the the cluster centroids normalized to

have a unit vector length, while bisecting k-means [9] begins with one large cluster and

repeatedly divides into halves until the desired number of cluster centers are reached.

A review by Steinbach [9] claimed that for text data, partitional clustering algorithms

like spherical and bisecting k-means are generally more effective than other methods.

Another partitional approach is Cutting’s [10] Scatter/Gather method, a seed-based

algorithm which selects cluster centers randomly, and chooses a small sample of obser-

vations to which partitional clustering is applied. [11] clusters text documents using

a self-organizing map method. This approach was successfully adapted to text data

in Larsen’s work [12]. [13] clusters documents using a graph-theory based bipartite

matching.



6

2.2. FEATURE SELECTION

The nature of text data often presents challenges because of high dimension

and ambiguous/overlapping word senses. A variety of feature selection methods have

been created to address these issues. Parsons’ [14] survey about high dimensional

clustering techniques makes a distinction between feature selection, which decides

on which existing attributes to keep in a model, and feature transformation, which

create new attributes using mathematical techniques or aggregation. In the first

category, a number of techniques have been devised which use ontologies as external

knowledge sources. Most similar to the generalization method presented in this paper

are Hotho’s [15] three strategies for including Wordnet background knowledge in the

vector space model. Hotho’s most successful strategy is to replace terms with their

related concepts, thus creating concept vectors to represent documents. A study

[11] comparing the Hotho’s concept-vector method against representation through

n-grams indicated that Hotho’s method resulted in better document classification.

Fodeh et al [16] achieves a dramatic vector space reduction by including only highly

frequent polysemous and synonymous nouns that exceed a information-gain based

threshold after disambiguation, but can also yield a situation where some documents

are not represented in the new space at all. Recupero [17] builds new feature vectors

by examining the relationship between the most frequent words in a text collection

and their distance in an ontology. [18] defined ‘Wordnet-enabled k-means’ to cluster

user preferences for web browsing. The second category consists of matrix decom-

position based techniques can reduce potentially thousands of dimensions into a few

hundred. Latent semantic indexing [19]uses a matrix decomposition to approximate

high dimension data in a new set of axes in a manner which retains the relative

distances of the data in its original dimension. Hofmann’s [20] probabilistic latent
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semantic indexing uses expectation maximization to improve the technique and to

help overcome problems with polysemous and synonymous words.

2.2.1. Word Sense Disambiguation. Word sense disambiguation is the

task of choosing the the appropriate meaning a word based on its usage. WSD can

provide gains in information retrieval performance, either directly or through its in-

clusion in feature selection techniques. Of particular relevance here are the techniques

which leverage a source of external knowledge such as Wordnet to perform disam-

biguation. Fodeh employed an ensemble based approach [21], which also utilizes the

Wordnet dictionary. Rather than using the bag-of-words approach to document rep-

resentation, Hung [22] created extended significance vectors from the gloss definitions

of Wordnet concepts instead of using concepts directly and clustered documents us-

ing self-organizing maps. Agirre defined a conceptual distance measure with which

to disambiguate words. [23] uses the apriori principle to identify frequent Wordnet

concepts in documents in conjunction with a hierarchical clustering algorithm and

obtained cluster performance comparable to the popular bisecting k-means algorithm.

Wang[24] proposed using Wikipedia to disambiguate word senses by measuring the

cosine similarity between sentences containing ambiguous words and Wikipedia arti-

cles describing polysemous concepts.

2.2.2. Privacy Preserving Computation And Data

Anonymization. Specifically relating to text data, Jiang [4] demonstrates how par-

ties can securely compute cosine similarity between individual document vectors, and

how the protocol can be extended to entire collections. Some existing efforts relating

to privacy preserving clustering include [25], [26] and [27]. Though not specific to

text data, each presents partitional clustering achieved by secure multiparty compu-

tation protocols. Vaidya’s [25] protocol assumes a vertically partitioned data model

and describes a k-means clustering method in the distance of observations to the

cluster centroids is calculated through Doganay [26] presents another approach based
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on vertically partitioned data and uses additive secret sharing to perform k means

clustering. The method of [27] operates on horizontally partitioned data, and the

cluster centers are created by using the concepts of random shares and homomorphic

encryption. Another angle to privacy preserving computation is data sanitization,

which attempts remove sensitive information from private datasets, thus allowing the

data to be shared or published. Techniques in this vein related to text data include

[28], [29] and [30]. [28] presents a technique for guaranteeing similarity between doc-

ument vectors by replacing terms with dummy values. [29] identifies and removes

sentences containing potentially sensitive information by using pre-defined contex-

tual definitions. [30] uses an ontology to replace sensitive nouns with their related

hypernyms, thus creating a level of uncertainty about the text of the original, unsan-

itized document. It is this approach provides which the inspiration for the method

presented in this paper.
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3. METHODOLOGY

This section first gives the formal definition of the vector space model and

and similarity measures. An explanation of word ontologies is given, and it is shown

how a word ontology is used to perform text generalization. In the next section,

the definition of text generalization is stated and the merit of text generalization

as a feature selection technique is demonstrated. Details are given about special

cases of words which are problematic in the vector space model. It is shown how

text generalization overcomes these issues, and a method for creating a semantic

preserving vector space model is presented.

3.1. VECTOR SPACE TEXT REPRESENTATION

The vector space model is a common method for representing text data math-

ematically. Each document is conceptualized as a vector, and the components of

each vector are the terms in the document collection. The frequency of words within

the each document is counted and a frequency vector is created. Stated formally,

suppose that D = {d1, d2, . . . , dn} is a set of n documents, and T = t1, t2, . . . , tm

is a set of terms where each document d contains a subset of T . By counting the

number of occurrences of each term in each document, a frequency vector for d is cre-

ated: d =< ft1,d1 , ft2,d1 , . . . , ftm,d1 >. A term-document frequency matrix is created

by considering the frequency of every term in every document:
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t1 t2 . . . tm

d1 ft1,d1 ft2,d1 . . . ftm,d1

d2 ft1,d2 ft2,d2 . . . ftm,d2
...

...
...

. . .
...

dn ft1,dn ft2,dn . . . ftm,dn


It is this matrix which is referred to as the vector space. Documents which

are similar are presumed to share a significant number of the same terms with a high

frequency. Thus, most similarity measures in the vector space model are based either

on term frequency or weighted term frequency. To compare the similarity between

two documents, the angle between their term-frequency vectors can be measured

through cosine similarity:

sim(di,dj) =
di · dj
‖di‖‖dj‖

For two related documents, the cosine similarity evaluates close to 1. When

the cosine measure evaluated to 0, it indicates that the vectors are perpendicular, and

thus unrelated and contain none of the same terms. Using the vector space model

and cosine similarity allows for the use of many popular clustering algorithms. Note

that cosine similarity is based entirely on term frequencies, and cannot account for

semantic relationships between words.

3.2. SEMANTIC PRESERVING TEXT GENERALIZATION

An word ontology can be conceived as a tree structure of terms organized

by a lexical relationship called hyponym. The essence of this relationship is that if

a word w1 describes a concept, then its hyponym w2 is a elaboration of the same

concept. At the root of each ontology is a broad category, and at level of the tree the
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nodes become semantically more narrow, with the leaves containing highly specialized

terms. Though a word may have multiple senses, each sense is regarded as a distinct

entry in the ontology. An example of a word ontology is shown in Figure 3.1.

A useful operation is to identify the nouns within a text document and replace

them with parent words from an ontology. Because semantic meaning of each word

becomes more general the closer it is to the root of the tree, this process is called

generalization, and is the basis of the method presented here. The level or height of

generalization refers to the distance between the original word and its replacement

in the tree. That is, if a word is replaced by its immediate parent, then it has been

generalized one level. If it is replaced by a word two nodes away in the ontology, it has

been generalized two levels, and so on. Text generalization requires a large source

of external knowledge, one source of which is available through a large computer

dictionary called Wordnet [5].

Wordnet [5] is a database of several hundred thousand words created by a team

of computer scientists and linguists at Princeton University (Miller95). Wordnet has

the capabilities of both a dictionary and a thesaurus; word definitions are augmented

by conceptual and lexical relationships between words. Each word is a member of

a synyonym set which contains similar words. These synonym sets are sometimes

referred to as concepts. Conceptual relationships between words are realized through

a hierarchical tree structure. The most general words appear at the top of the tree,

while specific terms appear at the bottom. Wordnet 3.0 contains 44 hierarchies, which

are called lexical categories. Each lexical category represents a board class of words,

such as . Wordnet contains other important information about words, such as the

part of speech, a definition sentence called a gloss, as well as several other types of

relationships between words. Thus Wordnet provides a mechanism to easily identify

nouns, perform term stemming and stopword removal, and can to text generalization

operations.
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Color

Red

Crimson

Burgundy

Orange

Gatorade Orange

Halloween Orange

Figure 3.1: A sample ontology for colors

The next section shows how generalization can be used to remove private

information from text collections.

3.3. TEXT GENERALIZATION AND PRIVACY PRESERVATION

The following sentence contains sensitive information about a patient’s place

of residence, symptoms, condition and treatment. If it is to be published, the infor-

mation must be removed. Generalization allows sensitive information to be removed

from a document, while preserving semantic information. The meaning and topic of

the sentences are retained, while the private information is removed:

A Sacramento resident purchased marijuana to relieve lumbar pain

caused by liver cancer.

A State Capital resident purchased drug to relieve pain caused by

carcinoma.
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In the method presented by this thesis, entire documents containing private or

sensitive information are generalized uniformly, meaning that all nouns are identified

and replaced by This allows text clustering and calculation of document similarity

without the use of secure computation protocols, which can potentially save a great

deal of computation time when the vector space is used for common text mining tasks.

The generalized texts serve as a middle ground between fully disclosing private data,

which is highly undesirable; and the use of secure, but computationally expensive

protocols for joint computation of text mining results.

The next section shows the merit of text generalization as a feature selection

technique by examining existing flaws of the vector space model, and demonstrating

how they can be overcome they can be overcome by using the generalization method.

3.4. CHALLENGES OF THE VECTOR SPACE MODEL

The most obvious challenge presented by a vector space representation is the

high dimensional nature of text data. A single, relatively short document may still

contain hundreds of distinct terms. In a large text collection, the number of unique

terms reaches into tens of thousands. Large dimensions become a hindrance to the

efficiency of clustering and similarity computations. Consider that the cosine similar-

ity is based on the dot product of vectors, and that the calculation of cluster centers

is based on the average values of each vector assigned to a cluster. These operations

can become near-unworkable if the matrix contains tens of thousands of terms. Hence

the reduction of dimension is a high priority for any feature selection technique.

In addition to issues with dimensionality, certain types of words are problem-

atic to the vector space model. These problems are known as polysemy – When a

word has more than one meaning, and synonymy – when more than one word exists
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with the same meaning. To illustrate how these words can affect the accuracy of the

vector space model, consider the following sentences:

S1: Orange is my favorite color.

S2: He wore an orange colored coat.

S3: An orange is a healthy fruit.

S4: Yesterday, I purchased a bottle of citrus sinensis extract.

S5: Apple farming is popular in Washington state.

It is clear to a human reader that there are two basic topics in these sentences,

and that S1 and S2 are (somewhat) related, as they are both referring to the word

orange in the sense of the color, while S3 and S4 are referring to the fruit. When

these sentences are placed in a vector space model, some degree of similarity will

be incorrectly be detected between S1, S2, and S3 because each contain the word

‘orange.’ The sense of the word ‘orange’ is not related to the first two sentences, but

the use of this word still results in the sentence being considered similar. Meanwhile,

S4 is not counted as similar to S3 at all, even though they both refer to the same

fruit. These issues are illustrated in the simple term-document frequency matrix:



Orange Fruit Color Citrus Apple

S1 1 0 1 0 0

S2 1 0 1 0 0

S3 1 1 0 0 0

S4 0 0 0 1 0

S5 0 0 0 0 1



The word ‘orange’ is an example of a polysemous word, as it can refer to either a

fruit or a color. The presence of polysemous words in a text collection can result

in documents being measured as similar when they are actually unrelated. The two
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synonymous words ‘citrus sinensis’ and ‘orange’ share the same meaning, but are

counted as separate terms. The word ‘apple’ is related to the topic of food and fruit,

but S5 is not counted as similar to S3, S2 or S3 because similarity is based only on

frequency.

From these examples, some additional shortcomings of the vector space model

become apparent. While preprocessing steps like stop-word removal and frequency

pruning can remove words with low information content, and can reduce the vector

space dimension and remove noise, these methods are unable to detect the pres-

ence of synonymous and polysemous words which can result in documents being

falsely counted as similar or dissimilar. Consider also that polysemous words raise a

privacy-related issue for the generalization method. If the sense of a noun is identified

incorrectly, then the replacement word will be unrelated to the topic of the document

or sentence. An incorrect substition can affect the accuracy of a similarity measure,

or even provide a way to more easily guess the meaning of the original word. For

example, in sentence [whatever], if the word ’fruit’ had been substituted in place of

’color,’ a clever reader could easily guess the original meaning of the word. This

provides further incentive to use word-sense disambiguation before performing text

generalization.

The general task of word sense disambiguation aims to overcome issues relating

to polysemous words. If the correct sense of the word can be identified, then by

replacing the terms with a common ancestor the relationship between the sentences

is correctly detected by the vector space model. A large variety of techniques have

been applied for word-sense disambiguation, including considerable number which

rely on information disambiguation method presented in [15] is easily adapted here

since it is based on the word ontology and hypernym/hyponym relations, The basic

idea of the technique in [15] is to identify each possible sense of an ambiguous word,

and count the frequency its immediate parent and child words in the document. The
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sense which maximizes this frequency is chosen as the winner. For example, in S3 it

is seen that the word ‘fruit’ appears in the sentence, and is part of the hypernym tree

of ‘orange’. Thus is it this sense which maximizes the frequency of related hypernyms

in the sentence, and it is the most appropriate choice. It should be noted that most

disambiguation techniques choose a one word sense for an entire document rather

than a sentence-by-sentence basis. This is generally appropriate, according to [31]

where it is claimed that for most documents only one sense of a polysemous word is

likely to appear.

Synonymous words can be addressed by combining terms which share mean-

ings. First, a clarification should be made between two possible treatments of syn-

onymy. In Wordnet, all terms are members of concepts, which are sets of synonymous

words. For example, the words ‘school’ and ‘schoolhouse’ are members of the same

concept C. Concept membership is used by existing techniques such as [15] and [17]

to resolve synonymy, by replacing words by their corresponding concepts. So words

which are very closely related synonyms will be correctly consolidated by replacing

instances of words by their corresponding concepts. It is important to state that gen-

eralization can overcome synonymy simply by replacing both words with a word from

the common parent synonym set. However, it is often more efficient to first replace

terms with their corresponding synonym set before applying generalization, because

ontology based disambiguation techniques such as [15] and [21] work on concepts

instead of individual word entries.

In this work however, synonymy is assumed to have a more broad meaning. a

distinction is made between true synonyms, which are members of the same concept in

the ontology, and immediate sibling words, which are members of distinct concepts

sharing a parent concept. This type of relation has been indirectly considered in

tree based word sense similarity metrics such as [32] and [33], which have in turn

been used in a number of disambiguation techniques [31], but these are aimed at
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choosing correct senses for polysemous words and will not account for the lack of

cosine similarity measured between frequency vectors composed of sibling words.

The following example shows how text generalization can be applied to the

vector space model to resolve problems with polysemous and synonymous words.

Suppose that the four sentences previously examined are replaced with the following:

S1: color is my favorite color.

S2: He wore a color colored coat.

S3: An fruit is a healthy fruit.

S4: Yesterday, I purchased a bottle of fruit extract.

S5: Fruit farming is popular in Washington state.

The term-document frequency matrix representing these sentences is shown

below.



Fruit Color

S1 0 2

S2 0 2

S3 2 0

S4 1 0

S5 1 0



S3 is no longer similar to S1 and S2, and S4 is now similar to S3.

The polysemy and synonymy issues have both been corrected. The relation-

ship between S5 and S1, S2, and S3 is also made clear.

Further, text generalization can reduce the size of the vector space model.

If a text contains a large number of synonymous and polysemous terms, then by

generalization these terms are consolidated together. This is seen in the example

above, as the number of terms included in the vector space has been reduced from
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four to two. The number of terms is reduced while retaining the semantic meaning

of terms, which leads to the notion of a semantic preserving vector space model, in

which the words of each document are replaced by their hypernyms.

A final advantage of text generalization is the nature of the resulting vector

space. Some feature selection techniques such as [34], [19] and [17] extract entirely

new sets of features from the original vector space. While these techniques show

a considerable improvement in clustering accuracy, similarity detection, dimension

reduction and so on, they do so while modifying the original format of the data.

Text generalization still results a matrix of frequencies of terms in documents. This

means that further feature selection techniques or modifications can be applied if

desired. This format can also help in easily interpreting the cluster results by simply

considering the most frequenctly occuring terms assigned in each cluster.

3.5. THE SEMANTIC PRESERVING VECTOR SPACE MODEL

In the SPVSM, document vectors are represented by the frequency of their

generalized terms. When documents contain words which are synonyms in the word

ontology, the size of the vector space is reduced when generalization is applied. Higher

levels of generalization can be expected to yield a greater dimensionality reduction.

Additionally, the relationship between synonymous words is not normally detected

in the vector space model, but this relationship is accounted for when synonymous

terms are generalized to the same parent word. Another strength of the semantic

preserving vector space model is that it accounts for both the true synonym relation

as well as the close relation between immediate siblings words. This means that the

cluster performance will likely be increased by the use of a generalized vector space

model.
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It was shown by experiment in [16] that nouns are responsible for most of

the information content in documents. The experiment demonstrated virtually no

difference in document clustering results between using all parts of speech and using

nouns exclusively. Selecting nouns exclusively to the vector space provides some

immediate relief to the dimensionality issue, hence only nouns are included in the

SPVSM. The technique for creating the generalized space can be summarized as

follows:

For a document collection D, minimum term frequency mf , maximum fre-

quency Mf and generalization level g:

1. Terms are added to the feature space only if it exists as a noun in the Wordnet

dictionary.

2. Identify Wordnet concepts associated with terms.

3. Perform sense disambiguation

4. Replace concepts by hypernyms, to a level of g where possible.

5. Remove all terms with frequency less than mf and greater than Mf .

The result of this process is a term-document frequency matrix representing

the result of generalizing the text documents. Note that step 2 and 3 can be omitted,

and that step 4 can alternatively be placed at the end of the process. The level of

generalization is be taken as a parameter in the technique, and some discussion will

be given to choosing an appropriate level of generalization given the size of the term

space and number of documents in the text.
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3.6. EXPERIMENTAL DESIGN

The experimental section of this work has two parts. First, an assessment

of the clustering performance on several text datasets. Second, to demonstrate the

impact synonymous words, and to survey how the semantic preserving vector space

model and other techniques are able to overcome these problems, new datasets were

created from the original in which words were replaced by terms from synonymous

concepts. After all of the terms of a document are parsed, they are replaced by

randomly by a term from a synonymous concept if one exists.

The 20Newsgroups dataset [35] has been frequently used in text processing

research since it was first made publicly available in 1999. It contains about 20,000

informal postings (documents) made to Internet newsgroups among 20 manually as-

signed categories. The distribution of documents is approximately equal between

categories. The datasets used here are Religion-Graphics and a four label dataset,

Religion-Graphics-Electronics-Motorcycles.

In both experiments, the accuracy of the results are measured by using the

Rand index and cluster purity measures. Rand index [1] is an external measure of

cluster validity, which means that it examines how closely the cluster assignment

produced by the process aligns with ground-truth class labels of the data points [7].

This type of metric is particularly appropriate in this experiment, as the class label

assigned to each document is assigned based on the discussion topic of the newsgroup

to which the document belongs. More specifically, the Rand index places emphasis

on the situation that pairs of points belong to the same group or to different groups.

The Rand index for a cluster is calculated by the equationR = TP+TN
TP+TN+FP+FN

, where

TP is the number of true positives or pairs of points with the same label assigned to

the same cluster. True negatives are non-similar points assigned to different clusters,

while false positives and false negatives occur when pairs of non-similar points are
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assigned to same cluster, or when pairs of the same label are assigned to different

labeled clusters. False positives and false negatives will result in a lower Rand index

score.

Purity [1] is an external measure of accuracy among clusters. Each cluster

is assigned the to label which it most frequently contains. The number of points

matching the cluster label is compared against the total number of points the cluster

contains. When a high value is obtained for cluster purity, it is an indication that

data points with the same class label have frequently assigned to the same cluster.

Within a cluster C, the purity is defined as P (C) = 1
C

max
`

(|C|`. The overall cluster

purity is given by P =
∑k

j=1
|Cj |
D

Lastly, the F-measure[1] is a well known measure among statisticians which

imposes a stricter penalty on false negatives than false positives. The penalty for

false negatives is controlled through the β parameter, where a higher value for β will

yield a stronger penalty. The F-measure is calculated by Fβ = (β2+1)PR
β2P+R

.

Measures like the Rand index and F-measure can be adjusted for chance by

using the following:

Index− Expected
Max(Index)− Expected

(3.1)

By adjusting the values for chance, the measures are compared against random

cluster assignment. The expected value for is the value obtained through randomly

assigning documents to clusters. Thus, adjusted measures give insight into the true

accuracy of a cluster assignment. Cluster analysis is a modeling technique which

assigns data observations into groups based on their similarity. For text clustering,

the aim is to place documents which are related to the same topics into the same

clusters. Clustering document collections represented by a vector space model is

usually performed with a variant of the k-means algorithm. k-means is a partitional
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clustering algorithm which iteratively assigns a set of observations to k clusters, while

attempting to optimize a criteria or condition. Points are initially assigned randomly

to prototype clusters, and in each iteration the mean of the attributes of the points

assigned to each cluster is calculated. Points are re-assigned to the closest cluster

based on the distance between the point and the cluster means. The distance function

is also based on the data attributes. After an objective criteria function has been

sufficiently optimized, or after a fixed number of iterations, the algorithm terminates.

Spherical k-means [8] is a variant on the k-means algorithm which was de-

veloped specifically for clustering text documents. After creating the document-

frequency matrix, the weights of the document vectors are normalized to unit length.

Spherical k-means introduces ‘concept vectors’ for each cluster, which are the cluster

centroids normalized to have a unit vector length. It is from this normalization that

the algorithm draws its name; the vector space can be considered a unit sphere in

n-space. The purpose of the normalization is to adjust for the fact that the length of

documents may vary greatly across the collection. Documents are assigned to clusters

based on their cosine similarity to the concept vectors.

Three of the feature selection methods described in the related work section

has been implemented. The cluster metrics were calculated for the result of running

the spherical k-means algorithm as a baseline, with Hotho’s [15] method; with la-

tent semantic indexing [19]; with Recupero’s [17]method; Fodeh’s [16] core semantic

features; the SPVSM with generalization up to 3 levels; and a combination of gen-

eralization together with latent semantic indexing. Hotho’s [15] method augments

the vector space with information from Wordnet by replacing terms by their related

concepts. Recupero [17] builds new feature vectors based on the most frequently

appearing Wordnet lexical categories. Latent semantic indexing [19] uses the sin-

gular value matrix decomposition to project document vectors into an smaller, but

approximately equivalent set of dimensions. Fodeh [16] defines core semantic features
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as nouns which are both polysemous and synonymous, while exceeding a specified

information gain after word sense disambiguation.

For all methods, words were included in the vector space only if they exist as

nouns in the Wordnet dictionary. This is comparable to using of a large stop list.

Parameters for minimum and maximum term frequencies are employed, and each

document representation method is used with minimum frequency values between 1

and 30, and maximum frequency values of 100 and 1000. After parsing documents, the

terms are weighted using the TFIDF [2] weighting scheme. For the implementation

of clusters with large dimension the Java Matrix Package [36] from the National

Institute of Standards was used. All algorithms were implemented using Java. Each

method was implemented using Java. The experiments were run in Ubuntu Linux on

a Dell Optiplex 755 with 3.00GHz Intel Core 2 Duo E8400 CPU and 6 MB cache.

In some cases there is a slight departure from the methods used in the exper-

imental evaluations described in those papers; for instance, in Recupero’s [17] work

the bisecting k-means method was used instead of spherical k-means. Also, Recu-

pero’s method does not use minimum and maximum frequency thresholds, and so for

comparison the same results are repeated in each section of the tables.
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3.7. RESULTS

Figures 3.2 and 3.3 show the cosine distance to cluster centroids for the syn-

onymized Religion-Graphics dataset, comparing the baseline against one level of gen-

eralization. Tables 3.1 shows the result of evaluating each technique with the metrics

described in section 3.6. The first pane is a comparison of overall performance. The

second pane shows the result for the second experiment, in which terms in the doc-

ument collection were randomly replaced by their corresponding synonyms. Because

replacement synonyms are randomly chosen in the second experiment, there is some

fluctuation in the values obtained for the metrics. While it is expected that overall

performance will decrease after the vector space is reduced beyond a certain point,

occasionally the random substitution choices will result in higher or lower accuracies.

Other variations in the outcome of the experiment include the size of the term space

obtained by the feature selection techniques. Also, when the appearances of words

across the document collection are split into several synonyms, their individual fre-

quency will be lessened enough so that they may no longer be included in the vector

space either due to the frequency thresholds or because of the nature of the feature

selection.

Figure 3.4 plots Rand index against vector space dimension for each of the

minimum frequency parameters. The lines graphed are levels of generalization, from

the baseline up to level three generalization. Table 3.2 displays cluster metrics for

the Religion-Graphics data set. Table 3.3 shows the top ten most frequently occuring

terms in each cluster. Finally, Table 3.4 shows of the techniques across a variety of

parameter settings. Each method requiring WSD uses Hotho’s [15] disambiguation

by concepts. Generalization and Hotho’s concept-replacement are performed after

disambiguation, but before thresholds are applied. The methods of Fodeh[16] and
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Recupero [17] do not use frequency thresholds, thus the differences in parameters

does not apply.

Figure 3.2: Cosine distance to centroids

Figure 3.3: Cosine distance to centroids in SPVS model
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Table 3.1: Cluster metrics for Religion-Baseball-Electronics-Motorcycles data

Basic Dataset Synonymized Dataset
mf = 5,Mf = 1000 Purity Rand Adj. R F Adj. F Size Purity Rand Adj. R F Adj. F Size
Baseline 0.681 0.768 0.387 0.706 0.608 2582 0.65 0.74 0.314 0.57 0.427 3113
Hotho 0.609 0.705 0.221 0.653 0.538 2856 0.293 0.575 -0.121 0.344 0.127 3649
Fodeh 0.531 0.66 0.103 0.459 0.280 96 0.498 0.655 0.089 0.46 0.281 3123
LSI 0.652 0.75 0.340 0.656 0.542 300 0.641 0.723 0.269 0.68 0.574 300
Recupero 0.552 0.677 0.147 0.413 0.219 471 0.404 0.631 0.026 0.315 0.088 718
Generalization1 0.653 0.766 0.382 0.679 0.572 1856 0.667 0.76 0.366 0.698 0.586 1720
Generalization2 0.745 0.773 0.401 0.653 0.538 926 0.537 0.658 0.097 0.552 0.404 846
Generalization3 0.445 0.579 -0.110 0.484 0.313 507 0.523 0.628 0.018 0.572 0.430 279
Generalization1 w/ LSI 0.847 0.856 0.620 0.746 0.680 300 0.671 0.766 0.382 0.682 0.576 300
mf = 10,Mf = 1000 Purity Rand Adj. R F Adj. F Size Purity Rand Adj. R F Adj. F Size
Baseline 0.674 0.762 0.372 0.706 0.608 1496 0.64 0.756 0.356 0.601 0.469 1506
Hotho 0.6 0.705 0.221 0.654 0.539 1560 0.3 0.576 -0.118 0.34 0.122 1560
Fodeh 0.531 0.66 0.103 0.459 0.280 96 0.498 0.655 0.089 0.46 0.281 3123
LSI 0.68 0.765 0.380 0.715 0.620 300 0.6 0.698 0.203 0.69 0.587 300
Recupero 0.552 0.677 0.147 0.413 0.219 471 0.404 0.631 0.026 0.315 0.088 718
Generalization1 0.651 0.762 0.372 0.625 0.501 1211 0.684 0.762 0.372 0.707 0.610 1047
Generalization2 0.578 0.693 0.190 0.614 0.486 613 0.62 0.718 0.256 0.622 0.497 519
Generalization3 0.451 0.59 -0.081 0.451 0.269 318 0.591 0.695 0.195 0.522 0.364 257
Generalization1 w/ LSI 0.687 0.766 0.382 0.705 0.607 300 0.839 0.853 0.575 0.742 0.656 300
mf = 20,Mf = 1000 Purity Rand Adj. R F Adj. F Size Purity Rand Adj. R F Adj. F Size
Baseline 0.665 0.75 0.340 0.731 0.642 751 0.587 0.675 0.142 0.647 0.530 645
Hotho 0.588 0.702 0.213 0.603 0.471 1012 0.287 0.578 -0.113 0.338 0.119 780
Fodeh 0.531 0.66 0.103 0.459 0.280 96 0.498 0.655 0.089 0.46 0.281 3123
LSI 0.662 0.745 0.327 0.728 0.638 300 0.629 0.697 0.200 0.617 0.490 300
Recupero 0.552 0.677 0.147 0.413 0.219 471 0.404 0.631 0.0265 0.315 0.088 718
Generalization1 0.851 0.861 0.633 0.744 0.659 694 0.670 0.738 0.308 0.688 0.584 602
Generalization2 0.53 0.605 -0.042 0.533 0.378 359 0.529 0.632 0.0292 0.614 0.486 329
Generalization3 0.446 0.573 -0.126 0.479 0.306 184 0.482 0.603 -0.047 0.566 0.422 143
Generalization1w/LSI 0.874 0.881 0.686 0.782 0.710 300 0.615 0.717 0.253 0.643 0.525 300

Figure 3.4: Rand Index Versus Vector Space Dimension
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Table 3.2: Cluster metrics for Religion-Graphics data

Basic Dataset Synonymized Dataset
mf = 5,Mf = 1000 Purity Rand Adj. R F Adj. F Size Purity Rand Adj. R F Adj. F Size
Baseline 0.945 0.896 0.792 0.887 0.774 1655 0.635 0.536 0.073 0.566 0.133 3113
Hotho 0.671 0.558 0.117 0.637 0.274 1819 .607 .499 0 .500 0.001 3649
Fodeh 0.893 0.809 0.618 0.825 0.650 249 0.706 0.584 0.169 0.635 0.270 2531
LSI 0.946 0.899 0.798 0.890 0.780 150 0.773 0.648 0.297 0.664 0.328 150
Recupero 0.857 0.755 0.510 0.746 0.492 405 0.874 0.780 0.560 0.770 0.540 717
Generalization1 0.948 0.902 0.804 0.895 0.790 1255 0.951 0.907 0.814 0.899 0.798 1129
Generalization2 0.920 0.853 0.706 0.862 0.724 639 0.926 0.863 0.726 0.871 0.742 545
Generalization3 0.757 0.632 0.265 0.843 0.686 325 0.689 0.570 0.141 0.881 0.762 298
Generalization1 w/ LSI .951 0.907 0.814 0.900 0.800 150 0.953 0.910 0.820 0.906 0.812 150
mf = 10,Mf = 1000 Purity Rand Adj. R F Adj. F Size Purity Rand Adj. R F Adj. F Size
Baseline 0.954 0.913 0.826 0.906 0.812 874 0.64 0.756 0.512 0.601 0.203 1506
Hotho 0.631 0.533 0.0674 0.636 0.272 809 0.608 0.5 0.001 0.5 0.001 875
Fodeh 0.893 0.809 0.6185 0.825 0.650 249 0.706 0.584 0.169 0.635 0.270 2531
LSI 0.953 0.91 0.8202 0.903 0.806 150 0.62 0.528 0.057 0.587 0.175 150
Recupero 0.857 0.755 0.510 0.746 0.492 405 0.874 0.78 0.560 0.77 0.540 717
Generalization1 0.953 0.91 0.820 0.948 0.896 766 0.960 0.924 0.848 0.918 0.836 683
Generalization2 0.909 0.834 0.668 0.857 0.714 380 0.915 0.845 0.690 0.851 0.702 346
Generalization3 0.753 0.627 0.255 0.848 0.696 186 0.67 0.557 0.115 0.897 0.794 177
Generalization1 w/ LSI 0.948 0.902 0.804 0.898 0.796 150 0.945 0.896 0.792 0.89 0.780 150
mf = 20,Mf = 1000 Purity Rand Adj. R F Adj. F Size Purity Rand Adj. R F Adj. F Size
Baseline 0.932 0.874 0.748 0.866 0.732 389 0.587 0.675 0.351 0.647 0.294 645
Hotho 0.882 0.792 0.584 0.804 0.608 295 0.607 0.499 -0.001 0.5 0.001 396
Fodeh 0.893 0.809 0.618 0.825 0.650 249 0.706 0.584 0.169 0.635 0.270 2531
LSI 0.931 0.871 0.742 0.863 0.726 150 0.607 0.5 0.001 0.652 0.304 150
Recupero 0.857 0.755 0.510 0.746 0.492 405 0.874 0.78 0.560 0.77 0.540 717
Generalization1 0.948 0.902 0.804 0.901 0.802 389 0.956 0.916 0.832 0.912 0.824 359
Generalization2 0.917 0.847 0.694 0.873 0.746 217 0.928 0.866 0.732 0.866 0.732 198
Generalization3 0.762 0.637 0.275 0.845 0.690 116 0.698 0.578 0.157 0.87 0.740 97
Generalization1 w/ LSI 0.942 0.902 0.804 0.9 0.800 150 0.925 0.861 0.722 0.855 0.710 150
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Table 3.3: Top Terms For Clusters

No Generalization
C1 C2 C3 C4

God game battery can
will can clutch article

Jesus article can bike
Christian Don article Don

can team will will
Lord year year DoD
Bible time list time
people player Don make
Christ will concrete Apr
article baseball lead use

Generalization 1

God activity container activity
religious person time period activity artillery

faculty container motor vehicle grasping
person nonfiction nonfiction time period
Jesus gentleman person container

sacred text unit Greg. calendar month nonfiction
belief person time period advantage

container case collection faculty
activity contestant kind happening
content Gregorian calendar month faculty database

Generalization 3

entity entity entity entity
psychological feature psy. feature psy. feature psy. feature

abstraction abstraction living thing artifact
living thing artifact abstraction abstraction

God attribute measure attribute
attribute living thing artifact living thing

whole measure attribute measure
measure whole whole whole
artifact indication person social group
Jesus idea idea idea
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Table 3.4: Performance On RBEM Data

Method Steps mf = 1 3 5 10 15 20 25 30

Baseline Cluster 8.69h 28.83m 1.18m 41.16s 26.78s 18.92s 13.76s 10.51s

Hotho∗
WSD 40.14s 39.11s 38.72s 40.68s 39.07s 39.75s 39.39s 39.08s
Cluster 10.54h 42.6m 1.47m 46.46s 27.5s 18.47s 13.57s 10.74s

Recupero†
WSD 40.14s 39.11s 38.72s 40.68s 39.07s 39.75s 39.39s 39.08s
Selection 11.2m 11.2m 11.2m 11.2m 11.2m 11.2m 11.2m 11.2m
Cluster 5.73s 5.73s 5.73s 5.73s 5.73s 5.73s 5.73s 5.73s

Fodeh
WSD 40.14s 39.11s 38.72s 40.68s 39.07s 39.75s 39.39s 39.08s
Selection 18.5h 18.5h 18.5h 18.5h 18.5h 18.5h 18.5h 18.5h
Cluster 10.47s 10.47s 10.47s 10.47s 10.47s 10.47s 10.47s 10.47s

LSI
Approximate 13.32m 6.62m 4.07m 2.26m 1.08m 32.70s 19.32s 11.93s
Cluster 5.49s 5.25s 5.21s 5.42s 5.48s 5.34s 5.40s 5.37s

Gen1
WSD 40.14s 39.11s 38.72s 40.68s 39.07s 39.75s 39.39s 39.08s
Generalize 1.58s 1.59s 1.67s 1.55s 1.58s 1.61s 1.56s 1.59s
Cluster 3.05m 1.15m 51.59s 31.31s 21.91s 16.11s 12.66s 10.13s

Gen2
WSD 40.14s 39.11s 38.72s 40.68s 39.07s 39.75s 39.39s 39.08s
Generalize 3.63s 3.58s 3.54s 3.53s 3.58s 3.45 3.48 3.50
Cluster 55.17s 31.82s 23.38s 14.43s 10.38s 7.84s 5.87s 4.79s

Gen2
WSD 40.14s 39.11s 38.72s 40.68s 39.07s 39.75s 39.39s 39.08s
Generalize 5.27s 5.30s 5.26s 5.21s 5.22s 5.23s 5.37s 5.23s
Cluster 32.17s 15.75s 11.16s 5.66s 3.98s 3.08s 2.51s 2.28s

G1,LSI

WSD 40.14s 39.11s 38.72s 40.68s 39.07s 39.75s 39.39s 39.08s
Generalize 1.60s 1.62s 2.39s 1.69s 1.68s 1.60s 1.65s 1.65s
Approximate 6.7m 4.1m 2.88m 1.56m 48s 28s 17s 12s
Cluster 6.27s 5.29s 5.34 5.35s 5.37s 5.30s 5.39s 5.38s

∗Hotho’s disambiguation is used across each of the methods.
†Since this technique does not use minimum frequency thresholds, the result is the same for each

value.
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4. DISCUSSION

For the RBEM four label dataset shown in Table 3.1, the best values for each of

the cluster metrics was obtained using generalization to one level and latent semantic

indexing. Even without latent semantic indexing, it is possible to achieve an accurate

result with greatly reduced dimensions using the SPVSM representation. A higher

minimum frequency seems appropriate for generalization, since as the term space

is reduced, the average term frequency may increase. This is reflected by the fact

that the best result for generalization occurred with the highest minimum frequency

value. In the synonymized data experiment, some of the feature selection techniques

are thrown off by the change and actually perform worse than SPK alone. Note

however that the combination of generalization and latent semantic indexing is able

to cluster the synonymized data at a very effective level.

In the top panel of Table 3.1 where mf = 5 and Mf = 1000, by combining

the SPVSM with latent semantic indexing the vector space is reduced to 11% of its

original size while achieving an increase of 24.3% in purity, 11.1% in Rand index and

5.6% in the F measure. Referring to Table 3.4, it is seen that by first creating the

SPVSM, the time required to perform latent semantic indexing is reduced by over

a minute for mf = 5. From these results, the SPVSM representation produces a

reduced dimension vector space with improved accuracy in a very reasonable time

frame. Also noteworthy is the case for mf = 20 and Mf = 1000, where generaliza-

tion by one level boosts cluster purity by 27.9% and Rand index by 14.8%. When

using frequency thresholds together with generalization, it also becomes possible to

more finely control the size of the vector space by varying the frequency cutoffs and

generalization level. When two previously distinct terms are replaced by a common

subsumer it is possible that their combined frequency will be above the minimum
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frequency threshold when neither of the original terms would have been included in

the feature space. Observe that the difference vector space dimension between the

first level of generalization and the baseline for these parameters is smaller than in

the other two panels. This indicates that by generalizing synonymous terms, the fre-

quency of some representative words has been pushed above the minimum threshold.

The binary dataset in Table 3.2 is easier to classify. For most values of the

parameters, each of the techniques are able to perform at an effective level. Note

that two levels of generalization yields only 217 features, with only a very slight

reduction in cluster performance. In Table 3.2, most techniques exhibit a significant

drop in performance for the synonymized data. For instance, for mf = 20, the

baseline algorithm cluster purity is reduced by 36% and the Rand index score drops

by 22%. LSI as well as the techniques of Hotho and Fodeh method show a similar

performance loss. The score for Adjusted Rand Index is close to zero for several

techniques, which means that the cluster performance is no better than a random

assignment. As expected, generalization combines words from sibling concepts into

a common ancestor and is able to resolve this type of synonymy reasonably well.

Clustering in the SPVSM is significantly faster than the baseline. Table 3.4

shows the computation time results for an array of parameters on the RBEM dataset.

The time required for feature selection and to create the generalized vector space is

counted separately from the time spent on performing clustering. Using no minimum

frequency, the baseline performance is abysmal and requires several hours to complete.

This is reduced to a few minutes by using the SPVSM approach with the same

parameter values. The time required to perform text generalization is consistently

small across all parameter values, and adds only a few seconds to the computation

time.

By viewing the size of the vector space across a variety of parameters, the

benefits and limitations of the techniques are placed in perspective. Clearly, the
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common parameters of the experiment - Frequency thresholds and Wordnet lookup

- are responsible for a significant portion of space reduction. A considerable number

of terms are discarded by verifying the existence of each word as a noun in the

Wordnet dictionary during the parsing stage. There are about 205,000 distinct strings

in Wordnet 3.0 [5], with 146,000 nouns according to the statistics provided by the

Wordnet manual. From these numbers, a crude estimate is that at least 50% of the

terms in a document will be discarded when only nouns are selected.

Figure 3.4 plots Rand index score against the number of terms in the vector

space for each level of generalization and minimum frequency, as well as the baseline.

It is clear that the chosen parameters can greatly affect the outcome of the results.

The minimum and maximum frequency cutoffs should be chosen appropriately based

on the number of documents in the collection and the expected number of terms. It

is apparent from the results that higher levels of generalization yields an appreciable

improvement, provided that the feature space is large enough to leave a substantial

number of terms remaining.

The same principle is evident in Figure 3.2 and 3.3. By using two clusters,

the distance between observations and cluster centers can easily be visualized. In

Figure 3.2 and 3.3, each axis represents the distance to the center of a cluster using

the synonymized religion-graphics dataset. The x axis represents the proximity to a

cluster containing the majority of documents labelled ‘religion’, while the y axis is

the similarity to the ‘graphics’ centroid. While the similarity between the documents

and their assigned cluster centers is increased, in some cases the similarity between

documents and the opposite cluster is also increased. This means words which are

members of the same broad category that are not actually synonymous are being

substituted with the same value. This helps to explain the degradation in accuracy

at higher generalization levels.



33

Examining the most frequently occuring terms in each cluster is a useful aid

in interpreting the results. Additionally, comparing the top terms across several

levels of generalization illustrates the affect which generalization has on the semantic

information of the documents. Table 3.3 shows the top 10 terms of each cluster for

the 4 label dataset using generalization levels of 0, 1, and 3. For the ungeneralized

and 1-generalized data, it is relatively easy to interpret the main topic of each of

the cluster based on the top terms. At higher generalization levels, this is more

difficult. Recall that in Wordnet, each term is a member of a large ontology called a

lexical category. By looking at the top terms in each, it becomes apparent that the

distribution of words within lexical categories is heavily skewed, because after three

levels of generalization, most of the top terms in each cluster are identical.

Each of these results provide motivation for possible improvements to the

model. Thus far, generalization has been applied uniformly to all terms in the vector

space. Incorporating factors such as term frequency, lexical category, tree-depth and

other information into a non-uniform generalization approach would likely improve

the accuracy of the technique. Each term substition can either increase or decrease

the cluster accuracy. The distribution of terms in lexical categories indicates that

it may be worthwhile to identify the most frequently occuring lexical categories and

perform a more limited generalization on those terms, as they could be responsible

for the decline in performance at higher generalization levels.
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5. CONCLUSIONS

5.1. FUTURE WORK

As seen in Table 3.3, some replacements can actually negatively affect the rep-

resentation, because certain terms become so frequent among all documents that it

is no longer to percieve any difference between the topics contained in the collection.

Suppose that
tf
|D| is the number of documents containing a term t divided by the total

number of documents in the corpus. A very simple rule for non-uniform generaliza-

tion would be to consider the difference in this quantity between the original term

and its subsumer. If this quantity is greater than a certain threshold - One half,

for instance - then the word should not be generalized. Similarly, considering the

pairwise cosine similarity between all documents containing base terms (terms to be

replaced by hypernyms) and considering if the documents become more similar or less

with each generalization. Third, additional Wordnet relationships could be incorpo-

rated in the process. This is desirable because related words can appear in different

lexical categories. For instance, ‘mathematics‘ and ‘mathematician’ are in separate

categories. By using the ‘pertains to’ relationship in Wordnet, the relation between

such words could be detected. Nonetheless, this deserves a more serious exploration

in future work, and this discussion is intended to describe how the issue might be

approached. Taking into account that uniform generalization can already enhance

text mining performance, it is reasonable to expect that a more careful selection of

generalized terms will result in further accuracy improvements.

A second direction for non-uniform generalization is to choose term substitu-

tions based on the privacy preservation requirements. Certain sensitive terms may

require high level of generalization, but it was seen in the experiment results that
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uniformly generalizing more than two levels usually resulted in poor performance.

However, uniform generalization may not be necessary if the most sensitive terms are

identified programmatically, or specified in advanced. Determining these words and

appropriately replacing them while allowing less sensitive words to remain will grant

better control between the trade-off of privacy and performance.

5.2. CONCLUSION

This thesis described a method for overcome challenges presented by the vector

space representation of text data. A feature selection technique was described which

can provide relief to the problems of dimensionality, synonymy and polysemy. It can

also easily be used in combination with other techniques, such as advanced word sense

disambiguation and latent semantic indexing. The application to privacy preserving

data mining can potentially greatly reduce the required computation time to perform

text mining tasks such as document clustering. The experimental results provides

insight to the worthiness of the semantic preserving vector space model in clustering,

and to the effect of performing several levels of generalization. The technique can be

improved by more selectively choosing terms for generalization, rather than applying

hypernym substitutions uniformly.
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