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ABSTRACT

In cyber-physical systems, which are the integrations of computational and physical

processes, security properties are difficult to enforce. Fundamentally, physically observable

behavior leads to violations of confidentiality. This work analyzes certain noninterference

based security properties to ensure that interactions between the cyber and physical pro-

cesses preserve confidentiality. A considerable barrier to this analysis is the representation

of physical system interactions at the cyber-level. This thesis presents encoding of these

physical system properties into a discrete event system and represents the cyber-physical

system using Security Process Algebra (SPA). The model checker, Checker of Persistent

Security (CoPS) shows Bisimulation based NonDeducibility on Compositions (BNDC)

properties, which are a variant of noninterference properties, to check the system’s secu-

rity against all potential high-level interactions. This work considers a model problem

of invariant pipeline flow to examine the BNDC properties and their applicability for

cyber-physical systems.
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1. INTRODUCTION

1.1. DEFINITION OF CPS

Cyber-physical systems (CPSs) are integrations of computation with physical pro-

cesses. Embedded computers and networks monitor and control physical processes, usually

with feedback loops; physical processes affect computations, and vice versa [14]. Appli-

cations of CPS include high-confidence medical devices and systems, traffic control and

safety, advanced automotive systems, process control, energy conservation, environmen-

tal control, avionics, instrumentation, and critical infrastructure control systems (such as

electric power, water resources, and communications systems). These systems are inter-

connected both physically and in the cyber world so that an action in one part of the

system is felt in other parts of the system. Timing [23], frequency [21], and security [22]

are some properties of interest. Theoretical basis for this work is also based on security

models outlined by McClean [16] [17] [18] and Zakinthinos et.al [24]. The physical nature

of a CPS tends to expose information flow through actions at the cyber-physical bound-

ary. This report focuses on the confidentiality properties of CPSs, especially in terms

of information flow security. Keeping the actions of a CPS confidential can preserve its

integrity.

1.2. METHODOLOGY FOR APPLYING INFORMATION FLOW

SECURITY IN CPS

The security requirements of a CPS depend on cyber information flow, physically

observable behavior, and the interactions among the cyber and physical components of the

system. Commodity flow in a cyber-physical system refers to the flow of physical entity
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through the physical components. If these semantics are understood, they actually repre-

sent information. Thus, the cyber and physical components may satisfy the requirements

of a security policy individually; however their composition may not. When two systems

are composed, the resulting systems’ behavior depends on the interactions between the

two component systems. This work addresses the cyber-physical interactions resulting

from the compositon of a system.

Figure 1.1. Cyber-physical Interactions

1.2.1. Establishing cyber-information flow security.

Figure 1.1 shows computational components that monitor the respective sections of

a system. Setting aside their interactions with the physical components of the system, this

constitution of computational components is just like a network of computer systems. The
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system comprising the outermost ring in Figure 1.1 is assumed to be protected if it follows

a set of predefined computer security policies such as encryption and authentication.

Goguen and Meseguer[11] and McClean[16] have comprehensively addressed infor-

mation flow properties for a general class of deterministic and nondeterministic systems.

These security properties are used to analyze the system to determine whether an observer

might be able to deduce information about the system or interfere with the actions that

take place in it. Classical models of information flow security like nondeducibility[12],

noninterference[11] and noninference are concerned with preventing unauthorized infor-

mation flows like downgrading of information through covert channels. Cyber-information

flow security is achievable, if such security requirements are imposed on the system.

1.2.2. Establishing commodity flow security.

Cyber-physical systems are typically composed of several physical components that

carry a commodity. Examples of such systems include commodity transport networks like

an electric power grid or a gas pipeline system spanning across a large geographical area.

Such infrastructure is usually monitored at specific geographical sites. In a large compos-

ite network of powerlines or pipes, each monitored site is treated as a system component.

Because each is meant to act as a local distribution point. Semantically, commodity flow

is primarily governed by the laws of physics according to the design of the physical system.

The innermost ring in Figure 1.1 captures these physical interactions, which are governed

by the concept of invariant flow of the physical entity. For example, the pressure in a gas

pipeline changes in accordance with the laws of gas pressure. Similarly, voltage across

every branch of a power grid varies in accordance with Kirchhoff’s law. With knowledge

of the universal behavior of a system commodity, an observer can infer information flow.

Commodity flow changes at any physical component whenever a control setting is mod-

ified by an actuator operating the component. An actuator is a mechanical or electrical

device for controlling a mechanism or a system. Because of this physical interdependence

among components in realtime, a change made to the commodity flow at one site cannot

be restricted locally; it changes the commodity flow at other sites as well.
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Modeling CPS for security with respect to commodity flow is difficult in real time be-

cause events occur dynamically and sometimes nondeterministically. For the same reason,

establishment of the desired commodity flows is difficult using formal tools like nonde-

ducibility and noninference security models. In other words, it is difficult to model the

system without unauthorized or undesirable commodity flows because it is hard to capture

the physical interactions.

1.2.3. Establishing the security of cyber-physical interactions.

The commodity in a cyber-physical system is controlled by the physical compo-

nents, which are in turn monitored by the cyber elements. Cyber-physical interactions

(illustrated by the middle ring in Figure 1.1) result from coupling information with the

commodity flows of a cyber-physical system. To meet the requirements of a system, cyber

processes interact with the physical components by interfacing with the control systems,

like actuators that operate directly on the physical equipment. An example of such an

industrial control process is the supervisory control and data acquisition (SCADA). Mes-

sages sent from the cyber level or received at the physical level undergo a conversion

from digital information to electrical or actuating signals. These messages could be com-

mands issued by the cyber elements defined to set certain control settings or parameters

on the physical network. Clearly, the cyber and physical frameworks are interdependent.

In section 1.2.2, protection of the commodity flow in a composite physical system were

discussed. When cyber processes are developed for a physical system, vulnerabilities can

be expected due to this mutual interdependence. In other words, a compromise in the

commodity flow could compromise information flow, and vice-versa. This work identifies,

such compromises of information flow security in specific cyber-physical infrastructures

by validating them with properties known to secure information flow.

Individual cyber processes control various sections of a composite physical infras-

tructure that behaves as a unified system with laws of physics inherent in its constitution.

First, given the actuating points on the physical system, the whole physical process cannot
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practically be discretized to act as distinct sites independent of each other. Also, the com-

plexity increases because the composite cyber framework (the ring containing the cyber

components in Figure 1.1) cannot capture exactly the events associated with the compos-

ite physical framework (the ring containing the physical components in Figure 1.1)of the

cyber-physical system. Such precise capture is impossible because the cyber process con-

trolling a specific site does not consider the physical dependence of commodity flow at this

site on neighboring sites. Either the neighboring sites must accommodate a rearrangement

of the commodity flow, or the cyber process cannot be allowed to make a change. With

distributed coordination among the cyber processes to make decisions regarding allow-

able flow readjustments among the sites, the desired flows in a system can be established.

For example, two of many monitoring sites on the critical infrastructure (like different

companies operating on the pipelines running through different geographical zones) could

perform a trade, so that they share the commodity between themselves accounting for flow

stabilization without impacting other other sites. However, the security of the information

flow must also be ensured during interactions occurring in cyber-physical systems.

Information flow is often characterized by system behavior or, more significantly, by

the behavior of the system objects. Information flow, is due to the impact of one object in

the system on another. For example, to establish whether information flows from object A

to object B, it is sufficient to establish that A’s behavior has an impact on B’s behavior and

vice-versa. The presence or absence of information flow can thus be tested. For any pair

of system behaviors that differ only in the behavior of object A, object B on observing the

system, cannot distinguish between these two behaviors and vice-versa, then we can say

that an equivalence exists between the behaviors of A and B. For deterministic systems,

such equivalences can be made precisely because the behaviors are predictable and some-

times obvious. With cyber-physical processes, many of which are nondeterministic, this

is not the case. Capturing this notion of the equivalence of information flow is difficult,

and information flow cannot be precisely analyzed due to the nondeterministic nature of

these processes. Ideally the physical processes could be controlled by restricting the sys-
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tem to allowable information dictated by the cyber framework. This needs an exhaustive

simulation or a history-based validation for every event in the system. Capturing such

events for all possible behaviors of a cyber-physical system is tedious and it is difficult to

build a simulation engine that records every atomic behavior of the system.The problem

therefore, requires a different approach.

1.3. MODEL-CHECKING APPROACH TO ANALYZE SECURITY IN

CPS

Checking confidentiality in a CPS requires exhaustive investigation of all possible sys-

tem behaviors to detect any insecure interactions (i.e., any interactions that do not satisfy

desired security properties). Therefore, a model-checking approach has been adopted.

A big challenge in model-checking properties of a CPSs is to capture the semantics of

both the physical and cyber system precisely. In particular, the semantics of physical

interactions must be captured in a way that is meaningful to a model checker. As an

additional challenge, due to the inter-connectivity of a CPS, information flows through

multiple sources. This report captures the physical semantics of a CPS through phys-

ical laws of invariance, represents the continuous nature of the physical system as an

event-based discretized system, and model check confidentiality properties (in particular,

Bisimulation based nondeducibility on Compositions or BNDC) using process algebra for

the combined CPS. The main objective of this work is to propose a method to perform

a run-time security analysis of the physical system using sophisticated model-checking

tools. The model CPS used here is a natural gas transport system that contains a rich

interaction of physical flows, physical actions, and cyber actions.

1.4. MODEL PROBLEM: PIPELINE FLOW

The natural gas transport system which is a critical infrastructure is a commodity

transport system consisting of a network of pipes. On a subset of these pipes are remote
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Figure 1.2. Segment of the pipeline system under invariance of physical flow

terminal units (RTUs), used to monitor and effect changes to the state of the gas(such

as pressure) within the pipe to which they are attached. The RTUs are controlled by

a distributed entity (consisting of multiple computational processes that communicate

via cyber message passing) called the long-term control(LTC). The LTC is responsible

for interfacing between the cyber and physical frameworks. Each process of the LTC

has the ability to observe the state of the gas only within the subset of pipes under its

control. Figure 1.2 shows a sample topology. Three operators control subnetworks A, B,

and C respectively, with C receiving supply from the gas distribution point. Assume that

each LTC can execute certain commands like raise and lower flow, which respectively,

raise and lower the flow of the commodity (gas) within its operating pipe. Any of the

two commands that LTC at A executes on its pipe will necessarily have an affect on its

neighboring subnetworks and as such will constitute an observable event(in the form of a

flow change) at both B and C. An invariant on this relationship due to the physics of the
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system is that

fc = fa + fb (1)

where fa, fb, and fc represent the flow of the commodity(gas) in the pipes controlled by

operators at A, B, and C respectively 1.

1For the sake of simplicity in constructing the invariant, this analysis is limited to incompressible flow
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2. BACKGROUND

2.1. SPA

Security process algebra (SPA, for short) [7] [10] is an extension of the calculus of

communicating systems (CCS) [19], a language proposed to define concurrent systems. It

defines algebra consisting of operators for building systems using a bottom-up approach

from smaller subsystems. The basic building blocks are atomic activities, called actions.

Unlike CCS, SPA includes actions belonging to two different levels of confidentiality, thus

allowing the specification of multilevel systems. The BNF syntax used by SPA to describe

a system is [10]:

E ::= 0|µ.E|E1 + E2|E1|E2|E\L|E\IL|E/L|E[f ]|Z

where 0 is the empty process, which can perform no action. The SPA operations used

in this work are summarized in Table 2.1. The process µ.E can perform action µ and

behaves like E. The process E1 +E2 can alternatively choose to behave like E1 or E2 and

E1|E2 is the parallel composition of E1 and E2, where the executions of the two systems

are interleaved. The process E\L can execute all the actions E is able to do, provided

that they do not belong to L ∪ L̄ (where L̄ refers to the output); The process E\IL

requires that the actions of E do not belong to L∩ I; E/L turns all the actions in L into

internal τ ’s. If E can execute action µ, then E[f ] performs f(µ); Z does what E does, if

Z ≡def E. Following typical notation, τ ∈ Tr are system traces, τ\x is a trace purged of

all events in the domain of x, τ |x is a trace restricted to all events in the domain of x, and

E1|E2 is the parallel composition of event E1 and E2. Additionally, High ,Low are used

to represent high-level and low-level security domains with high-level and low-level user

in each domain. Also, the symbols I and O are used for inputs and outputs respectively.
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SPA operation Description

E1|E2 Parallel Composition of E1 and E2 where
executions of the two systems are interleaved

E\L Restrict the system E of all actions belonging to set L
E1 + E2 Non-deterministic choice to behave like E1 or E2
µ.E Performs action µ and behaves like E

Table 2.1. Operations in SPA

2.2. COPS

CoPS is an automatic checker of a multilevel system’s security properties [3]. The

keywords used in CoPS are explained in Table 2.2.In particular, CoPS checks three non-

interference [18] based security properties: bisimulation-based nondeducibility on compo-

sition (BNDC), strong bisimulation-based nondeducibility on composition (SBNDC) and,

persistent BNDC (P BNDC) [7] [9] [8].

Keyword Description

bi to declare an agent (BInd agent)
basi to Bind Action Set Identifier
acth to declare the high actions set (ActH)

Table 2.2. Keywords used in Cops Syntax

2.3. BISIMULATION-BASED NONDEDUCIBILITY ON COMPOSITION

A system is considered to have the Bisimulation-based NonDeducibility on Compo-

sition (BNDC) property if it can preserve its security after composition [7]. A system ES

is BNDC if for every high-level process P , a low-level user cannot distinguish ES from
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(ES|P )\H. The term (ES|P )\H stands for the process ES composed with any other

process P and purged of all high-level events. In other words, a system ES is BNDC

if what a low-level user sees in the system is not modified by composing any high-level

process P with ES. Formally,

BNDC(ES) ≡ ∀π ∈ EH , ES\H ≈B (ES|π)\H (2)

where ES\H changes all the H events in ES into internal events. A system is BNDC-

preserving if the above property holds for all possible behaviors of the system.

2.4. PREVIOUS WORK

Philips et al. [20] performed a broad investigation of the operational and security

challenges that SCADA systems typically encounter. Their report includes vulnerability

and some available best practices for deploying and maintenance of SCADA systems. It

also briefly analyzes multiple levels of flexible AC transmission systems (FACTS) device

security issues and the confidentiality, integrity, and availability of a hypothetical electric

power grid. However, it proposes no approach nor offers any concrete example for the

confidentiality of CFPS.

The North American Electric Regulatory Commission (NERC) provides a basis to

define permanent cyber security standards [1]. These standards provide a cyber security

framework that identifies and assists with the protection of critical cyber assets to ensure

reliable operation of the electric system. They are published in standards CIP-002-1

through CIP-009-1, and they address various security issues in the power system.

Holstein et al.[6] discuss cryptographic issues relating to interfacing SCADA opera-

tions with energy management and distribution in terms of protecting the communication

packets, authorization, and access controls.

A 2005 Department of Energy publication[2] discusses existing cyber-security stan-

dards focusing specifically on control systems for critical infrastructure. The standards it
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proposes helps to identify the requirements of a system and develop secure communication

protocols and systems.

McDonald et al. [15] investigates SCADA vulnerabilities associated with the energy

sector and propose a new approach to overcome such vulnerabilities. Their approach

offers an environment called virtual control system environment (VCSE) that supports

simulated, emulated, and physical components for investigative analysis of SCADA secu-

rity. This environment requires an exhaustive modeling of the infrastructure on which it

is meant to be implemented. Its vulnerability assessment is limited to then known secu-

rity threats like man-in-the middle attacks; thus, to secure a system from a new mode of

attack, new simulations must be performed to capture new scenarios. A focus on informa-

tion flow in such CPSs mitigates attack-specific computations by generalizing the secure

information flow properties applicable to a generic class of CPS.

Tang et.al[22][23] explored properties like BNDC in FACTS power System using pro-

cess algebra. This work however, does not generalize those properties to be applicable to

any CPS. This thesis is an attempt to generalize the approach to analyze CPS with respect

to certain security properties. This thesis also identifies the vulnerability of information

flow in a CPS by analyzing the invariant flows in commodity transport system.

Akella et.al [5] [4] discusses the formal methodology of applying security properties:

noninterference, inference and nondeducibility to different cyber-physical systems like gas

networks, smart house, steel foundry etc. The applied properties and the methodology

involved formed a basis for elaborating this thesis.

This work proposes two approaches to analyze the information flow properties of a

cyber-physical system. With one approach, we use formal methods in which the events

or associated actions of the system are identified, their interactions are manually verified

with a known security property as explained in section 3.2. Another approach makes use

of sophisticated tools like a model-checker to automatically verify various behaviors of the

system for potential violation of a chosen security property. The approach to use these

automatic tools is presented in section 4. The use of former approach could often be
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cumbersome, due to a CPS‘s complex interactions between several several components.

The latter approach is thus suggested; however, the goal of the two approaches is the

same. Application of these tools to a general class of cyber-physical systems is explained

through a model problem involving natural gas transport system. We use Security Process

Algebra (SPA) to model the system and a model-checker called CoPS [3] to validate the

system for a chosen security property, BNDC.
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3. SYSTEM DESCRIPTION AND ANALYSIS

3.1. SPA ANALYSIS OF GAS PIPELINE SYSTEM

A simple example is used here to demonstrate how this information flow is captured

and how we it can be modeled using SPA. A gas pipeline system is shown in Figure 1.2.

Actuators are used to automate process control across the sub-sections of the pipeline.

An actuator can sense the true reading in the pipe and can also reset it to a desired value.

Three possibilities of modeling the system are presented.

3.1.1. Single RTU in a physical system.

A single RTU sitting on a pipeline has control over the commodity (gas or liquid)

flowing through the pipe. Also, whenever a eventual change takes place on the physical

commodity, information is written to the system‘s cyber elements through the actuators.

Such a system can be represented using CSP [13] as follows: Let e1 be an event of change

in flow in a pipe segment with a single actuator. Let r1 be change in the reading of the

pipeline due to the triggered event e1 (this operation can be represented as e1 ⇔ r1).

An eventual change of reading takes place at the cyber-level once this event is triggered.

Because this is an independent process, it does not interfere with the remaining sections of

the pipeline. Such a system can be simply represented as “e1 → stop \ r1”. The following

model encodes this system in SPA.

PipeLine Single = (Behavior1|Object(0, f low)|Object(1, reading))\L
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Behavior1 = M Change(l, x).(if(l == x).then.

change(x, y).val(l, y).Behavior1)

Else.Behavior1

Object(x, y) = change(x, y).Object(x, init) (3)

In the above SPA syntax, cyber changes and physical changes are represented by two ob-

jects called reading and flow respectively. High-level and low-level objects are represented

by 1 and 0 respectively. The term init stands for the initial reading of the object. Here,

M Change(l, x) represents events that change the subject of security level l to an object

of security level x. The term y is the value (or state) of the object. This SPA describes the

behavior of the pipeline system with a single actuator and its possible executions. Similar

notation has been used for SPA syntax throughout the thesis.

3.1.2. SPA analysis with no communication among actuators. Figure 1.2

shows a segment of the pipeline system with multiple RTUs. This can be represented as

an event based system in which e1 represents change of flow at A, e2 represents change of

flow at B, and e3 represents change of flow at C. The behavior of the system can then be

captured in SPA as follows:

e1 → (e2 → stop) ⊓ (e3 → stop) ⊓ (e2||e3 → stop)\(r2 ⊓ r3 ⊓ (r2||r3)) (4)

where ‘⊓’ indicates the nondeterministic choice between the processes. Similarly, e2 and

e3 occur initially. The readings at the cyber level then change nondeterministically as

r1 → (r2 ⊓ r3 ⊓ (r2||r3)) (5)

Information flow cannot be measured precisely in this case because A is interfering

with B. Such a system can be represented using SPA as below and its encoding into the
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CoPS framework is shown in Appendix:

PipeLine Multipleno commn = (Behavior2|Object(0, f low)|Object(1, reading))\L

Behavior2 = M Change(l, x, c).(if(x! = l, c == 1).then.

change(x, y).val(l, y).Behavior2).Else

if.(x < l, c == 0).then.

change(x, z).val(l, y).invariant(y, z).Behavior2

Else.Behavior2

Object(x, y) = change(x, y).Object(x, init) (6)

3.1.3. SPA analysis with communication among actuators. The implicit

flow of information can be minimized by regulating the physical flow through messages

passed among the actuators or cyber components. For example, Pipe C can be stopped

from interfering with actions from pipes A and B using the following CSP model.

e1 → (e1 → stop||e2 → stop)\(r1||r2) (7)

This equation express the desired functionality of the system; practically, however, such

a model is too restrictive. At the cyber level, the readings could vary as r1||r2 according

to flow adjustments at A and B. The case of message-passing between pipes A and C

or pipes B and C is similar. Such a representation, could provide a theoretical basis for

capturing the function of the system. First, the information flow could be analyzed in

relation to the commodity flow. The SPA model presented below captures the notion of

a message-passing between A and C.
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PipeLine system = (Behavior|Object(0, f low)|Object(1, reading))\L

Behavior = M Change(l, x).(if(x|l).then.

change(x, p).val(l, q).invariant(p, q).Behavior)+

change(l, q).val(x, p).invariant(p, q).Behavior

Else.Behavior

Object(x, y) = change(x, y).Object(x, init) (8)

In the above models, M Change(l, x) stands for events that the subject of security

level l changes to an object of security level x. The term y is the value (or state) of

the object. x|l represents object x being able to communicate with object l to perform

a coordinated activity. The above model is generic in that it captures the behavior of

the system for all possible pairs of coordinating users. The term invariant() captures

the atomic actions of recomputing the physical flows as governed by invariant laws (of

physics). For example, invariant(p,q) would compute the new values of p,q by considering

their physical dependencies on the system. Also, the variable c stands for ‘controlled;’ it

is assumed to be 1 if object l controls or is controlled by object x directly.

3.2. MANUAL VERIFICATION OF BNDC PROPERTIES

This section presents the formal approach to determine whether a given system

satisfies the BNDC property for the case of pipeline model. First, the system E, followed

by the high-level process, Π and the set of high level actions, ActH must be defined. The

condition for BNDC can then be checked as E \ ActH ∼= (E | Π)\ ActH . Assuming that

A and C coordinate in an attempt to secure information flow between them against B,

two group of users can be defined; A and C belonging to High and B belonging to Low as
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Figure 3.1. Segment of pipeline system showing security partitions

shown in Figure 3.1. The events in the system can be defined as hA, hC , and lB and their

respective outputs as hA, hC , and lB. Here, hA represents a high level change made at A

and leading to change at hC (due to coordination) and eventually, B might experience the

change in physical flow at A and C in the form of a low-level output, lB.

The system considered can be defined as a process E = hA.hC .lB.E + lB.(hA +

hC).E. This system definition captures the notion that a high-level change made at A or

C will result in a causal low-level change at B due to the invariance property of phys-

ical flow. Alternatively, a substantial change made at B alone would result at A or C

or both in the form of high level outputs hA and hC . Considering the high-level process

Π = hA. hC . E and the high-level action set ActH{hA, hC}, the operation E\ ActH ∼=

lB.(hA + hC).E. lB is executed only when a coordinated change is initiated between A

and C. Composing the high-level process with the system results in all possible interleav-

ings of this high level process with the system. Thus, (E|Π)\ActH ∼= lB.E + lB.(hA +

hC).E. Although the high-level events hA and hC are rejected, the high-level process hA.

hC simulates the change at A and C that leads to a low-level change at B. In this case,

E\ActH 6∼= (E|Π)\ActH . This scenario fails to satisfy the BNDC property, indicating that
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the system permits for changes at one group of users to be deduced by others as a result

of the flow dependence in the composite system, expressed as in equation 1.

3.3. DISCRETE EVENT SYSTEM

Each event in the physical system must maintain the flow invariant (Equation 1) in

the physical network. For example, to satisfy the invariant fa + fb = fc, innumerable

combinations of values for fa, fc and fb are possible. By discretizing the values, the

invariant physical flow in the network can be captured following the event that caused it.

Also, discretization confines the security analysis to a limited number of states, thereby

simplifying the encoding process for model-checking. In a way, the events are encoded

along with these discrete values to define specific allowable system. Now, when a change

event at a component results in a flow change there, e.g., at fa, the system could have

a finite set of values of fb and fc that satisfy the invariant. If three discrete values each

fa fb fc
0 0 0
k 0 k
k/2 0 k/2
0 k/2 k/2
k k/2 3k/2
k/2 k/2 k
0 k k
k k 2k
k/2 k 3k/2

Table 3.1. Maintaining the flow invariant

are allowed for fa, fb and fc (e.g., 0, k/2, k), then the system could fall in to any of

nine possible states. This is reasonable because the task is to analyze the security with

respect to change following an event, not to determine exactly the magnitude of change.
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However, to provide a broader analysis, the state space could be relaxed by including more

quantized values. For example, five values could be assigned in the previous case with in

{0, k/4, k/2, 3k/4, k}. Three discrete levels capture the significant changes in the system

and limit an explosion in the number of states. The possible system states resulting from

three discrete values are shown in Table 3.1 for physical flow.
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4. MODEL CHECKING CPS SECURITY: RESULTS

4.1. ASYNCHRONOUS PHYSICAL DOMAIN PROTECTION

One approach is to treat the physical changes as being protected and to asynchro-

nize the actions of the cyber processes. Asynchronous physical domain protection model

incorporates this approach. This is a system analogous to shared memory access in which

only one user is allowed to access the system at a time to achieve concurrency control and

enforce strict integrity. The idea is to allow the change brought about by the coordinated

activity of A and C or activity initiated by B alone. Both these events cannot occur

simultaneously. That way, high-level physical flow change can be treated as a result of a

pre-operation from one of the partitions.

4.1.1. Protecting flow within High partition against Low. If two

parties wish to perform a coordinated activity on a channel, their actions should be pro-

tected from being deduced by a third party. In our case, the pipe is strictly shared and

constrained by invariance of physical flow. The discretization approach proves that such

a phenomenon can be achieved where in BNDC property is satisfied. The idea here is to

allow the system to transit to a new state in which B retains its discrete level and A and C

rearrange their discrete levels such that the invariance of physical flow is preserved. This

ensures that (low level) activity at B is never impacted by the (high level) activity between

A and C. The terms high level and low level need not necessarily indicate a hierarchical

distinction; they may simply represent two different groups or partitions. Securing the

commodity flow between A and C (belonging to partition High) against B (belonging to

partition Low) results in the configuration graphed in Figure 4.1. The CoPS modeling

of this model is presented below. In CoPS, the system is defined in terms of agents or
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processes interacting with one another. The keyword bi is used to bind the agent by

declaring and defining it. The keyword basi is used to define a list of actions and bind

it to a set identifier. It gives the ability to identify and label the actions as belonging to

security partitions (High or Low). The keyword acth is used to declare the high actions

set (ActH) of the system. Any set not defined will be treated as an empty set in CoPS.

//this simulation is for the commodity pipeline

//system assuming communication between A and C

//to protect their interactions against B

//Discrete values {’val1 = 0 ; ’val2 = k/2 ;’val3 = k}

//Invariant: A+B=C

//This code satisfies SBNDC Property in both the cases and also

//with compositionality

bi Action

(Action1 | Action2)\N

bi Action1

(A_Writes | C_Writes)

// Restricting B from all the high-level physical activity

bi Action2

(B_Writes)\H

//Discretization of events in the physical system

bi State

(State_1 + State_2 + State_3 + State_4 + State_5 + State_6 + State_7 +

State_8 + State_9)\H

//Exploration of all possible sub-states the system can

//enter in to depending on the values of flows at A,C

//and B satisfying the physical property on invariance.

bi State_1
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’w_a.valA_1. ’w_b.valB_1.’w_c.valC_1.State_1

bi State_2

’w_a.valA_2.’w_b.valB_1. ’w_c.valC_2.State_2

bi State_3

’w_a.valA_3. ’w_b.valB_1.’w_c.valC_3.State_3

bi State_4

’w_a.valA_1.’w_b.valB_2. ’w_c.valC_2.State_4

bi State_5

’w_a.valA_2. ’w_b.valB_2.’w_c.valC_3.State_5

bi State_6

’w_a.valA_1. ’w_b.valB_3.’w_c.valC_3.State_6

bi State_7

’w_a.valA_3.’w_b.valB_2. ’w_c.valC_4.State_7

bi State_8

’w_a.valA_3. ’w_b.valB_3. ’w_c.valC_5.State_8

bi State_9

’w_a.valA_2.’w_b.valB_3.’w_c.valC_4.State_9

//Define the cyber and physical events performed by the

//operators at A,B and C

bi A_Writes

(change_a.’w_a.State)

bi B_Writes

(change_b.’w_b.State)

bi C_Writes

(change_c.’w_c.State)

// all physical changes are classified as high level actions

basi H

’w_a ’w_c ’w_b
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Action Action1|(’w_b.State)\L
change_b

’w_a.State|C_Writes|Action2

change_a

A_Writes|’w_c.State|Action2

change_c

’w_a.State|C_Writes|(’w_b.State)\L

change_a

A_Writes|’w_c.State|(’w_b.State)\L

change_c

State|C_Writes|(’w_b.State)\L
’w_a

’w_a.State|’w_c.State|(’w_b.State)\L

change_c

State|’w_c.State|(’w_b.State)\L

change_c

State|State|(’w_b.State)\L

’w_c’w_a

’w_a.State|State|(’w_b.State)\L

’w_c

’w_achange_a

A_Writes|State|(’w_b.State)\L

’w_c
change_a

change_b

State|C_Writes|Action2

’w_a

’w_a.State|’w_c.State|Action2

change_c

change_b

State|’w_c.State|Action2

change_c

change_b

State|State|Action2

’w_c

change_b

change_b

’w_a

’w_a.State|State|Action2

’w_c

change_b

’w_a

change_b

change_a

A_Writes|State|Action2

’w_c

change_b

change_a

Figure 4.1. Protecting flow against Low partition {B} from a physical change at High
partition {A,C}

basi N

valA_1 valA_2 valA_3 //discrete values possible

valB_1 valB_2 valB_3

valC_1 valC_2 valC_3 valC_4 valC_5 // valC_4: 3k/2, valC_5: 2k

acth

change_a change_b change_c //readings at cyber level

’w_a ’w_b ’w_c

4.1.2. Bisimilarity Equivalence. Section4.1.1 established a secure flow between

A and C (of one partition) against B (of another parton). To strengthen the notion of

bisimilarity equivalence in their relationship, the system is model-checked to determine

whether events at B are secure with respect to partition High (containing A and C). The

resulting state graph in Figure 4.2 demonstrates that it is possible to get in to a state

where only value at B changes with no impact on the flow at A or C. However, in the
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Action

Action1|’w_b.State

change_b

(’w_a.State|C_Writes)\L|Action2
change_a

(A_Writes|’w_c.State)\L|Action2

change_c

Action1|State

’w_b

(’w_a.State|C_Writes)\L|’w_b.State

change_a

(A_Writes|’w_c.State)\L|’w_b.State

change_c (’w_a.State|C_Writes)\L|State

change_a

(A_Writes|’w_c.State)\L|State

change_c

(’w_a.State|’w_c.State)\L|State

change_c

change_a

’w_b

(’w_a.State|’w_c.State)\L|’w_b.State

change_c

’w_b’w_b

change_a

change_b

(’w_a.State|’w_c.State)\L|Action2

change_c

change_b
change_b

change_a

Figure 4.2. Protecting flow within Low partition {B} against High partition {A,C}

physical system, it is not possible to change the level of B unless A or C is prepared to

rewrite its flow. This limitation indicates that the discretization allows minute changes

to occur in B. The final state shown in Figure 4.2 demonstrates that events producing a

slight change in the value of flow at B will not be enacted by a physical invariance that

changes the flow at A or C. The results of model-checking for both the cases are tabulated

in Table 5.1. The CoPS modeling of this system is presented below.

//this simulation is for the commodity pipeline

//system to check if events changing flow at B

//would allow a causal flow change at other

//partition (includes A and C)

//Discrete values {’val1 = 0 ; ’val2 = k/2 ;’val3 = k}

//Invariant: A+B=C

//This code satisfies SBNDC Property in both the cases and also

//with compositionality
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//val1 = 0 ; val2 = k/2 ; val3 = k

//invariant: A+B=C

bi Action

(Action1 | Action2)\N

bi Action1

(A_Writes | C_Writes)\H // Restrict A and C from performing any physical

// change (High-level)while B is writing the flow

bi Action2

(B_Writes)

bi State

(State_1 + State_2 + State_3 + State_4 + State_5 + State_6 + State_7

+ State_8 + State_9)\H

bi State_1

’w_a.valA_1. ’w_b.valB_1.’w_c.valC_1.State_1

:

:

//Similarly defined other states..

bi A_Writes

(change_a.’w_a.State)

bi B_Writes

(change_b.’w_b.State)

bi C_Writes

(change_c.’w_c.State)

// all physical changes are classified as high-level actions

basi H

’w_a ’w_c ’w_b

basi N

valA_1 valA_2 valA_3 //discrete values possible
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valB_1 valB_2 valB_3

valC_1 valC_2 valC_3 valC_4 valC_5 // valC_4: 3k/2, valC_5: 2k

acth

change_a change_b change_c //readings at cyber level

’w_a ’w_b ’w_c

4.2. SYNCHRONOUS PARTITION PROTECTION MODEL

A refined model of Asynchronous physical domain protection model is the syn-

chronous partition protection model in which the physical changes are classified as be-

longing to High and Low partitions and thereby allowing simultaneous operations of the

two partitions. This essentially means that the system inherently considers allowable phys-

ical changes initiated by operators belonging to different partitions. We could have more

levels of discretization to allow realistic values for flow at different operators. The results

of model-checking for three-level discretized system and a five-level discretized system are

tabulated in table 5.2.

//This code satisfies SBNDC Property in synchronous partition

//protection model with three-level discretization.

//val1 = 0 ; val2 = k/2 ; val3 = k

//invariant: A+B=C

bi Action

(Action1 | Action2)\N

bi Action1

(A_Writes | C_Writes)\L // Restrict A and C from performing

// a low-level physical change

bi Action2

(B_Writes)\H // Restrict B from performing a

// high-level physical change
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bi State

(State_1 + State_2 + State_3 + State_4 + State_5 + State_6

+ State_7 + State_8 + State_9)

bi State_1

’w_a. valA_1. ’w_c. valC_1.’w_b. valB_1.State_1

//Similarly defined other sub-states

bi A_Writes

(change_a.State)

bi B_Writes

(change_b.State)

bi C_Writes

(change_c.State)

basi L // Force physical change at B to

’w_b // Low-level partition

valB_1 valB_2 valB_3

basi H // Physical changes at A and C fall

’w_a ’w_c // under High-level partition

valA_1 valA_2 valA_3

valC_1 valC_2 valC_3 valC_4 valC_5

basi N

valA_1 valA_2 valA_3 //discrete values possible

valB_1 valB_2 valB_3

valC_1 valC_2 valC_3 valC_4 valC_5 // valC_4: 3k/2, valC_5: 2k

acth

change_a change_b change_c //readings at cyber level

’w_a ’w_b ’w_c
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5. RESULTS

The results of this work are summarized in Tables 5.1 and 5.2. Preservation of

confidentiality, under the BNDC model, in commodity transport systems has been possible

with discretization of the states following the invariant on physical flow.

They indicate that BNDC properties hold in the system with finite state transitions. Both

type of systems discussed above satisfy BNDC once the physical property is captured.

With more discretization levels in the synchronous partition protection model, states

explored before reaching a stable state have increased six-fold by shifting from three-level

discretization to a five-level discretized system. This result could mean that number of

BNDC verified states increase with more finite discretization of physical events in the

system. The statistics summarized in Table 5.1 and 5.2 indicate that it is practically

possible to establish a protected flow in the pipeline system.

Asynchronous physical BNDC Generated Compo

domain protection Graph -sable

Protection of Flow against B Yes V:18 Yes
due to a physical change at A,C E:33
Protection of Flow against A,C Yes V:12 Yes
due to a physical change at B E:20

Table 5.1. Results of model-checking for Asynchronous physical domain protection
Synchronous BNDC Generated Composable

partition protection Graph

Three-level Yes V:242 Yes
discretization E:561
Five-level Yes V:1458 Yes
discretization E:3537

Table 5.2. Results of model-checking for Synchronous Partition Protection
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6. CONCLUSIONS

The primary goal of this work is to illustrate a methodology to capture physical

semantics of a commodity flow network in a cyber framework so as to establish a secure

information flow in such systems. However, the greatest challenge was to model a CPS

in which physical information is constrained by the invariant on the commodity flow in

such CPSs. We could include this notion of invariant on the commodity flow with in the

pipeline by discretizing the events causing the change of flow. With such a method, we

could model the system as a deterministic state model with discrete values of flow within

its physical components. Having done so, we were able to encode the infrastructure for a

model checker to validate the BNDC properties in the system.

In order to apply this methodology to a large scale system, compositionality is fun-

damentally necessary. By verifying the properties for individual system components and

composing them until we construct the massive system, we can achieve scalability with

this approach. However, this could be computational intensive due to the enormous over-

head incurred by model-checking. Application of this approach to large-scale systems

will provide direction for further research in this area. Another interesting problem is the

identification of a vulnerable node of a CPS, compromising which BNDC properties in the

composite system fail. Such vulnerable node detection would enable us to select suitable

nodes for coordination, thereby ensuring that the selected security property holds for the

system. BNDC proved to be an important property for CPSs because of the inherent

composition of various cyber and physical elements. The methodology adopted in this

thesis provides a direction for future research in model-checking cyber-physical systems

for information flow security.
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7. APPENDIX

7.1. COPS ANALYSIS OF PIPELINE SYSTEM WITH NO

COMMUNICATION AMONG ACTUATORS

//this simulation is for the commodity pipeline system assuming no

//communication between the actuators; It captures the behaviors of

//the system for every change performed by any of the operators

bi States

( A_writes | B_writes| C_writes )\H

bi A_writes

w_a.’val_A.B_writes + w_a.’val_A.C_writes

bi B_writes

w_b.’val_B.A_writes + w_b.’val_B.C_writes

bi C_writes

w_c.’val_C.A_writes + w_c.’val_C.B_writes

basi N

val_A val_B val_C

acth
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val_A val_B val_C

w_a w_b w_c

7.2. COPS ANALYSIS OF PIPELINE SYSTEM WITH

COMMUNICATION AMONG ACTUATORS

//this simulation is for the commodity pipeline system assuming

//communication between the actuators, meaning the cyber components.

bi States

(A_comm_C | A_comm_B | B_comm_C | A_writes | B_writes | C_writes)\H

bi A_comm_C

w_a.’val_A.A_writes + w_c.’val_C.C_writes

bi A_comm_B

w_a.’val_A.A_writes + w_b.’val_B.B_writes

bi B_comm_C

w_b.’val_B.B_writes + w_c.’val_C.C_writes

bi A_writes

w_a.’val_A.A_writes

bi B_writes

w_b.’val_B.B_writes

bi C_writes
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w_c.’val_C.C_writes

basi N

val_A val_B val_C

acth

val_A val_B val_C

w_a w_b w_c

A_comm_C A_comm_B B_comm_C
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