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Abstract
In this research work, I have derived analytical models for decoherence of quantum

states of light and developed techniques based on Dynamical Decoupling (DD) to preserve

the quantum state of polarization qubit and Orbital Angular Momentum (OAM) qudit in

single-mode, multi-mode and specialized optical fibers. In subsequent work, I have derived

the analytical model for decoherence of an entangled state in an optical fiber to show that

such a decoherence causes loss of entanglement. I also showed that such states can be

preserved with DD.

In Chapter 1, I have introduced the subject of a quantum computer and its relation

to quantum communication. I give a brief overview of fundamental concepts and tools

required to understand the subject matter.

In Chapter 2, I discuss optical fibers from the perspective of the electromagnetic wave in

a waveguide and explain the modes in an optical fiber. Later, I explain about the sources

of noise or refractive index fluctuation in an optical fiber and show how to numerically

reproduce a model of an optical fiber.

In Chapter 3, I introduce the topic of quantum decoherence and discuss in detail an

open-loop control technique called Dynamical Decoupling, that is applied to the system to

minimize decoherence. I discuss ideal and nonideal pulse sequences used for suppressing

decoherence.

In Chapter 4, I derive the analytical model for decoherence of a polarization qubit in

a single-mode, multi-mode fiber, and decoherence OAM qudit in specialized multi-mode

fiber.

In Chapter 5, I introduce the topic of entanglement for the bipartite system and

multi-partite system, and a measure called concurrence to quantify the entanglement. I

then derive the analytic model for decoherence of a pure entangled state and show that

decoherence causes loss of entanglement for the case of a pure and mixed Werner-like state.

xiii



In Chapter 6, I discuss the method of numerical simulation and show by numerical

simulation that polarization qubit, OAM qudit and entanglement of polarization qudit can

be preserved with dynamical decoupling in an optical fiber.

In Chapter 7, I have summarized the results and discuss the scope of future work.

In the appendix, I have included additional research work not directly related to the

current topic of decoherence in an optical fiber.

To summarize my research, I have derived a model for decoherence and then numerically

showed that a polarization qubit can be preserved in a single mode and multi-mode optical

fiber. I also show that an OAM qudit can be preserved for a certain maximum value of

quantum number l. Finally, I show that entanglement of pure and Werner mixed states

can be preserved.
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Chapter 1
Introduction and Outline

1.1 Introduction

Tremendous progress has been made theoretically and experimentally in the develop

-ment of a quantum computer since the time it was proposed by Feynman in 1980 such a

machine could use interference of many-particle quantum wave function to solve computationa

-lly hard problems. It is a machine that could use quantum mechanical effects to solve

problems for which there exist no classically efficient known algorithms to solve on a

classical computer. To clarify it a little further, a good analogy would be the comparison

of a light bulb to the laser. Light bulb emits an incoherent light that is electromagnetic

waves emitted by a source at random times with respect to each other, whereas a laser is

a quantum mechanical device engineered to produce coherent light where the sources emit

the electromagnetic waves in phase. The purpose of the two sources of light is different, a

laser is not a replacement of light bulb but its use is rather for a different application.

The initial set of algorithms that motivated the development of a quantum computer

are factoring, comparing functions, unstructured search and quantum simulation and they

were shown to be advantageous over classical known algorithms. These algorithms can be

categorized into three main classes. First, this class of algorithms are based on the quantum

version of Fourier transform, and examples of this type of algorithm are Deutsch-Jozsa

algorithm to determine if a function is constant or balanced and Shor’s algorithm for

factoring. The second class of algorithm is search algorithm and example is Grover quantum

search algorithm. The third class of algorithm is the quantum simulation, where the

quantum computer is used to simulate a quantum system; an example for this would

be simulating the behavior of a moderately sized molecule under certain constraints in

quantum chemistry.
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Several approaches have been pursued by researchers over a period of two decades

to physically realize a quantum computer: Superconductor-based quantum computer,

Trapped ion quantum computer, Quantum dot based quantum computer, Nuclear magnetic

resonance based quantum computer, cavity quantum electrodynamics based quantum com

-puter, Diamond-based quantum computer, Linear optical quantum computer, etc. Each

of the approaches have some advantages and drawbacks; it may happen that the final

realization would be a combination of different technologies.

For any quantum information processing task the basic unit of quantum information,

i.e. a qubit, would have to be transported between nodes of the quantum computer for

processing. The nodes could be located locally or at a distant location as in the case

of quantum networks. An important physical system for encoding information for long

distance quantum communication is an optical photon, where the quantum information

can be encoded in the spin or angular momentum degree of freedom. The properties that

make photons such an important candidate for communication are that they do not interact

strongly with each other or with the surrounding matter. They can travel long distances in

optical fibers with very low transmission loss; with current technological advancement the

losses are as low as ≈ 0.16db/km(≈ 3.6%). They can be easily delayed with phase shifters

and can be switched with mirrors and beam splitters.

Quantum communication research promises much more than a quantum computer.

It allows for the distribution of secret information between two parties with security

guaranteed by the laws of physics. It allows for an enhanced communication capacity

as in the case of super-dense coding, in which two parties who initially share an entangled

bit can send two bit of classical information by sending a single qubit [4, 5]. Optical fibers

that preserve a quantum state with high fidelity can be used to make quantum memories

and quantum delay lines.
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1.1.1 Communication System

A communication system is used for transmitting information or data from one point

to another. A general block diagram for visulalizing such a system is shown in Figure. 1.1.

It consists of a source that generates data in the form of messages represented by MA,

that could be a voice wave form, a sequence of binary digits or output from probe sensors.

The channel could be high-frequency radio link, a storage medium or an optical fiber. The

channel is generally subjected to various types of noise caused by time-varying frequency

response, thermal noise, cross talk or switching noise. The encoder does any pre-processing

required on the message messageMA before transmission that might include any combination

of modulation, data compression and redundancy insertion for combating noise in the

channel. The decoder does an inverse processing on the output of the channel to reproduce

an approximation of the source data represented by MB.

Figure 1.1: A classical communication system. MA and MB represent the message sent by
Alice and decoded by Bob respectively [1].

In a noisy channel, the output probability depends upon the input, channel characteristic,

and channel structure [6]. The characteristic of the channel is the underlying conditional

probability distribution for the output given the input and the structure of the channel,

that represents the presence of feedback. For a given channel the capacity is defined

as the maximum rate at which a sender can transmit information over a given channel

such that the receiver can recover the information at the output of the channel with an

arbitrarily small error in the limit of many channel uses. The capacity represents the

thin line between the communication rates which are achievable and those which are not.
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Classically, the basic unit of information is a ’bit’, which are represented by a physical

system that has macroscopic states denoted by 0 and 1. These bits are used to encode

classical information generated by the source and transmitted through a noisy channel to

the receiver.

1.2 Fundamental Concepts

We first review some of the fundamental concepts and tools required for understanding

the subject of quantum communication.

1.2.1 Quantum Bit

The basic unit of quantum information is called the qubit. It is a quantum mechanical

analogue of a classical bit, but unlike a classical bit, it can be in state 0, 1 or a superposition.

The qubit can be represented as a two-dimensional quantum system, which means that the

state of the system lives in a complex two-dimensional Hilbert space H. We define a

standard basis {|0〉, |1〉}, called the computational basis, which is used for preparation and

measurement of quantum information [7, 8, 9]. The choice of physical system to represent

a qubit can be a spin of a particle, polarization of light or any other quantum mechanical

degree of freedom of a system. The matrix representation in computational basis is written

as

|1〉 =

0

1

 and |0〉 =

1

0

 (1.1)

1.2.2 Bloch Sphere

A general qubit state in the computational basis can be represented as

|ψ〉 = α|0〉+ β|1〉, where |α|2 + |β|2 = 1. (1.2)

We can rewrite the equation (1.2) as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
, (1.3)
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where θ, φ and γ are real numbers. We can ignore the factor eiγ because it has no observable

effect and it can be further rewritten as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (1.4)

The number θ and φ define a point on a unit three-dimensional sphere as shown in the

Figure 1.2 and this sphere is called the Bloch sphere. It provides a visual picture of single

qubit state. Many of the operations on single qubit state can be approximated as a sequence

of rotations about a given axis. This visualization of Bloch sphere is limited to a single

qubit and cannot be extended for a multi-qubit system or multi-level system.

Figure 1.2: Bloch sphere for visualizing the state of a single qubit. The parameter θ varies
in the range [0, π] and the relative phase φ varies in the range [0, 2π].

1.2.3 Rotation Operator

Rotations affect physical systems and the state ket corresponding to the rotated system

is different from the original state ket of unrotated system [10]. Given a rotation operation

R, characterized by a 3 × 3 orthogonal matrix, we associate an operator D(R) for an
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appropriate ket such that

|α〉R = D(R)|α〉 (1.5)

where the ket |α〉R and |α〉 corresponds to the state of the rotated and unrotated system

respectively. Classically, for the case of a three-dimensional system, a 3 × 3 matrix acts

on column matrix corresponding to the three components of a classical vector, while the

operator D acts on a state vector in ket space. The matrix for D(R) depends on the

dimensionality N of the particular ket space. For N = 2, a 2× 2 matrix is appropriate for

describing a spin 1
2

system with no other degree of freedom; for N = 3, a 3 × 3 matrix is

appropriate for describing a spin 1 system and similarly for other dimensions.

We know from classical mechanics that angular momentum is the generator of rotations

in the same way that momentum and Hamiltonian are the generators of translation and

time evolution. We can write any approximate infinitesimal operator as

Uε = 1− iGε, (1.6)

where G is a Hermitian operator. Using this fact, we define the angular momentum operator

Jk, such that the operator for an infinitesimal rotation around kth axis by an angle dφ can

be obtained by letting

G→ Jk
~
, ε→ dφ, (1.7)

where Jk is assumed to be Hermitian. The infinitesimal rotation operator is unitary and it

reduces to the identity operator in the limit dφ→ 0. More generally, we have

D(n̂, dφ) = 1− i
(

J · n̂
~

)
dφ (1.8)

for rotation by an angle dφ about the direction given by unit vector n̂.

6



A finite rotation can be generated by compounding infinitesimal rotations successively

about the same axis. A finite rotation by an angle φ about z-axis is given by

D(φ) = lim
N→∞

[
1− i

(
Jz
~

)(
φ

N

)]N
= exp

(
−iJzφ

~

)
= 1− iJzφ

~
− J2

zφ
2

2~2
+ · · · (1.9)

and similarly rotation about x-axis and y-axis can be defined. The operator D(R) has the

following properties:

Identity : D(R) · 1 = D(R) (1.10)

Closure : D(R1)D(R2) = D(R3) (1.11)

Inverse : D(R)D−1(R) = 1 (1.12)

D−1(R)D(R) = 1

Associativity : D(R1)[D(R2)D(R3)] = [D(R1)D(R2)]D(R3)

= D(R1)D(R2)D(R3). (1.13)

We know from the classical commutation relation thatRx(ε)Ry(ε) − Ry(ε)Rx(ε) =

Rz(ε
2) − 1 and analogous to it, we derive the operator commutation relation using the

equation (1.9)

(
1− iJxε

~
− J2

xε
2

2~2

)(
1− iJyε

~
−
J2
y ε

2

2~2

)
−
(

1− iJyε

~
−
J2
y ε

2

2~2

)(
1− iJxε

~
− J2

xε
2

2~2

)
= 1−

(
1− iJzε

~
− J2

z ε
2

2~2

)
. (1.14)

First order ε terms cancel out and equating ε2 terms on both sides of equation, we obtain

[Jx, Jy] = i~Jz. (1.15)
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Similarly, we obtain the rotation operator about other axis and we also obtain the following

fundamental commutation relationship of angular momentum.

[Ji, Jj] = i~εijkJk. (1.16)

1.2.4 Spin 1
2

Systems

For spin 1
2

systems, we know that the ket space is spanned by |+〉, |−〉 and the

angular momentum operator are Sx, Sy, Sz. The matrix representation of kets and angular

momentum operator are

|+〉 =

1

0

, |−〉 =

0

1

 (1.17)

Sx =
~
2

0 1

1 0

, Sy =
~
2

0 −i

i 0

, Sz =
~
2

1 0

0 −1

. (1.18)

The operators Sx, Sy and Sz given earlier satisfy the angular momentum commutation

relations

[Si, Sj] = i~εijkSk. (1.19)

In 1926, W. Pauli introduced the spinor formalism to make the manipulation with

state ket easy for 1
2

systems. He defined Pauli matrices σk, such that matrix elements of

〈±|Sk|+〉 and 〈±|Sk|−〉 are equal to ~/2 times the matrix elements of σk. Explicitly the

Pauli matrices are give as

σx =

0 1

1 0

, σy =

0 −i

i 0

, σz =

1 0

0 −1

. (1.20)
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The anticommutation and commutation relations of Pauli matrices are

{σi, σj} = 2 δij, (1.21a)

[σi, σj] = 2 iεijkσk. (1.21b)

These relations are similar to angular momentum commutation relations (1.18). The other

useful properties of Pauli matrices are

σ†i = σi, (1.22a)

det (σi) = −1, (1.22b)

Tr (σi) = 0. (1.22c)

There is another important property that we will need to reduce the expression for rotation

operator

(σ · a)(σ · b) = a · b + i σ · (a× b) (1.23)

Using the formalism discussed above we now write a rotation operator for a spin 1
2

system. The 2 × 2 matrix represents a rotation by an angle φ about an axis n̂ and it is

given by

D(n̂, φ) = exp

(
−iS · n̂φ

~

)
= exp

(
−iσ · n̂φ

2

)
. (1.24)

Using the relation

(σ · n̂)2 =

 1 for n even,

σ · n̂ for n odd ,
(1.25)

that follows from (1.23), we can rewrite the rotation operator as
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D(n̂, φ) = exp

(
−iσ · n̂φ

2

)
=

[
1− (σ · n̂)2

2!

(
φ

2

)2

+
(σ · n̂)4

4!

(
φ

2

)4

− · · ·

]

− i

[
(σ · n̂)

1!

(
φ

2

)
− (σ · n̂)3

3!

(
φ

2

)3

+ · · ·

]

= 1 cos

(
φ

2

)
− i σ · n̂ sin

(
φ

2

)
. (1.26)

The rotation operator obtained in equation (1.26) is used to rotate a ket on Bloch sphere.

1.2.5 Distance Measures

A distance measure in information theory gives a quantitative answer to the question

of how one state is different from the other or how well the information is preserved by a

physical process. The distance measures can be broadly classified in two categories: static

measures and dynamic measures [5].

In classical information theory the information source is usually modeled as random

variable with a probability distribution over some source alphabet. Hence the question of

distance measure becomes, how the two probability distributions px and qx representing

the two sources are similar? The two static measures used to answer this questions are

trace distance, also called Kolmogorov distance, and fidelity. If the random variable X

with probability px is sent through a noisy channel whose output is random variable Y

with probability distribution qx then we use dynamic measure of distance to quantify the

closeness of two distributions. Dynamic measure is a special case of static trace distance.

The quantum generalization for closeness of two quantum states is an extension of

classical notions of trace distance and fidelity. The trace distance between the two quantum

states ρ and σ is defined as

D(ρ, σ) =
1

2
Tr |ρ− σ|, (1.27)

where |A| =
√
A†A is defined to be a positive square root of A†A. Trace distance can be
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understood more clearly by generalizing the classical notion of trace distance:

D(ρ, σ) = max
P

Tr(P (ρ− σ)), (1.28)

where the maximization is taken over all projectors P , such that P is positive operator and

P ≤ I. It is the difference in probabilities of a measurement outcome of a POVM P on

the states ρ and σ, maximized over all such possible positive operator valued measurement

(POVM) P .

Since trace distance is a metric on the space of density operators, it satisfies certain

properties:

Invariance : D
(
UρU †, UσU †

)
= D(ρ, σ) (1.29a)

Symmetric : D(ρ, σ) = D(σ, ρ), (1.29b)

Contractive : D(ε(ρ), ε(σ)) ≤ D(ρ, σ), (1.29c)

Triangle inequality : D(ρ, τ) ≤ D(ρ, σ) +D(σ, τ), (1.29d)

Strong convexity : D

(∑
i

piρi,
∑
i

qiσi

)
≤ D(pi, qi) +

∑
i

piD(ρi, σi). (1.29e)

Trace distance D(ρ, σ) = 0 if and only if ρ = σ. It is symmetric function of its input and

invariant under unitary transform. Trace preserving quantum operation ε representing a

physical process never increases the distance between two quantum states. Trace distance

is strongly convex in its inputs.

Fidelity is another measure of distance distance between two quantum states. It is not

an actual metric on density operators but has useful properties for being a measure. It is

defined for states ρ and σ as

F (ρ, σ) = Tr
√
ρ1/2σρ1/2. (1.30)
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When the two quantum state commute, that is, they are diagonal in same basis,

ρ =
∑
i

ri|i〉〈i| and σ =
∑
i

si|i〉〈i|, (1.31)

then it can be simplified further as

F (ρ, σ) = Tr

(∑
i

√
risi|i〉〈i|

)

=
∑
i

√
risi. (1.32)

The fidelity satisfies many of the same properties as trace distance

Invariance : F
(
UρU †, UσU †

)
= F (ρ, σ) (1.33a)

Symmetric : F (ρ, σ) = F (σ, ρ), (1.33b)

Monotonicity : F (ε(ρ), ε(σ)) ≥ F (ρ, σ), (1.33c)

Strong concavity : F

(∑
i

piρi,
∑
i

qiσi

)
≥
∑
i

√
piqiF (ρi, σi). (1.33d)

Fidelity of two pure states ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| can be written as

F (ρ, σ) = Tr
√
|ψ〉〈ψ||φ〉〈φ|

= |〈ψ|φ〉|. (1.34)

1.3 Thesis Outline

We have discussed the fundamentals required to understand the representation of

photonic qubit. In the rest of the chapters we will use these fundamental concepts to

understand the decoherence process of photonic qubits in an optical fiber.

Chapter 2 explains the noise in different kinds of optical fiber and shows how to model

the noise, caused by index fluctuation, in different kinds of optical fibers. Chapter 3 details
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theoretically one of the methods for minimizing dephasing error in an open quantum system.

In Chapter 4 a model for decoherence has been derived for a polarization qubit and a OAM

qudit in optical fiber. In Chapter 5, we derive a decoherence model for the case when the

qubits are entangled and show how decoherence causes loss of entanglement. Chapter 6

details the method and results of numerical simulation. Finally we conclude in Chapter

7 detailing the implications of our result and future research work. Appendix A contains

additional research work not directly related to the thesis topic.
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Chapter 2
Modeling Noise in Optical Fiber

2.1 Introduction

Optical fibers have been proven to be a superior medium for high bandwidth communica

-tion over long distances. The key characteristics that enable their performance are its low

power loss as the signal propagates along the length of the optical fiber. Optical fibers

are waveguides that are made up of low loss materials such as pure silica glass. They are

cylindrical in structure with a central core through which the light is guided, embedded in

an outer cladding of a slightly smaller refractive index. The Figure 2.1 depicts the structure

of an optical fiber. The light incident on the core-cladding boundary at an angle greater

than critical angle goes through a total internal reflection and are guided through the core.

Light propagates in waveguides in the form of modes. Each mode travels along the

axis of the waveguide with a distinct propagation constant and group velocity in order to

preserve the spatial and polarization profile. A fiber is called single-mode when the core

diameter is small and only one mode is permitted in the fiber. If the core diameter is large

and many modes are allowed then it is called a multimode fiber.

Figure 2.1: Optical fiber: A cylindrical dielectric waveguide.
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One problem associated with classical light propagation in multimode waveguide is

modal dispersion where different modes travel with different group velocities. This results

in broadening light pulses, which limits the speed at which adjacent pulses can be sent

without overlapping and therefore limits the bandwidth of fiber-optic communication.

Modal dispersion can be minimized by varying the refractive index of the fiber from a

maximum value at the center to a minimum value at the core-cladding boundary. Such

a fiber is called graded-index fiber; otherwise, it is called step-index fiber in which the

core and cladding refractive index are constant. Varying the refractive index causes the

light at the center to travel slowly in comparison to the light traveling at the core-cladding

boundary. This averages the time of travel and reduces the broadening of light pulse.

Another problem in multimode waveguide is modal noise or speckle, where each mode

undergoes a random phase, so that the sum of the complex amplitudes of the modes has a

random intensity. This modal noise is caused by uncontrollable imperfections, strains, and

temperature fluctuations.

In this chapter we will be studying a similar effect that causes the dephasing of photons

that are in a superposition of two states.

2.2 Light Propagation in Wave Guide

We now review the propagation of monochromatic light in step-index fibers using

electromagnetic theory. We apply the boundary condition, imposed by cylindrical dielectric

inside the core and cladding, on Maxwell’s equations to determine the electric and magnetic

field of guided wave. The special solutions that obey the boundary conditions are called

modes, and each mode has a distinct propagation constant, a characteristic distribution of

field in transverse plane and two independent polarization states.

Electric and magnetic fields components must satisfy the Helmholtz equation, ∇2U +

n2k2
0U = 0, in the core r < a where n = n1 and in the cladding r > a where n = n2

with condition k0 = 2π/λ. To study the field propagation inside the core and at the

core-cladding boundary we assume that the radius of cladding b is sufficiently large and
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can be assumed to be infinite. The Helmholtz equation in cylindrical coordinates in given

as

∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂φ2
+
∂2U

∂z2
+ n2k2

0U = 0, (2.1)

where complex amplitude U = U(r, φ, z) represents the Electric and magnetic field compo

-nents in cylindrical coordinates. Now we seek solutions of wave traveling in z direction

such that z dependence of U has the form e−iβz, where β is the propagation constant. U

should be periodic in φ with a period of 2π; hence we assume φ is harmonic with form

e−ilφ, where l is an integer. U has the following form

U(r, φ, z) = u(r)e−ilφe−iβz, l = 0,±1,±2, · · · . (2.2)

We substitute U in the equation 2.1 to obtain differential equation u(r):

d2u

dr2
+

1

r

du

dr
+

(
n2k2

0 − β2 − l2

r2

)
u = 0. (2.3)

For guided wave the propagation constant should be smaller than wave number in the core

β < n1k0 and greater than the wave number in the cladding β > n2k0. For notational

convenience we define

k2
T = n2

1k
2
0 − β2 and γ2 = β2 − n2

2k
2
0, (2.4)

where k2
T and γ2 are positive and kT and γ are real. The ordinary differential equation in

(2.3) can be written for core and cladding separately using the conditions for guided wave

as

d2u

dr2
+

1

r

du

dr
+

(
k2
T −

l2

r2

)
u = 0, r < a (core), (2.5)

d2u

dr2
+

1

r

du

dr
−
(
γ2 +

l2

r2

)
u = 0, r > a (cladding). (2.6)
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These differential equations have known solutions, a family of Bessel functions, and the

bounded solutions are:

u(r) ∝

 Jl(kT r), r < a (core),

Kl(γr), r > a (cladding),
(2.7)

where Jl(x) is the Bessel function of the first kind and order l, and Kl(x) is the modified

Bessel function of the second kind and order l.

The only unknown is the constant of proportionality in equation (2.7); hence we apply

boundary conditions to determine it. We first start by writing the electric and magnetic

field complex amplitudes Ez and Hz in the form of equation (2.2). We use the condition that

electric and magnetic field components should be continuous at the core-cladding boundary

r = a, to determine the coefficients of proportionality. The remaining four components Eφ,

Hφ, Er and Hr are determined with the help of Maxwell’s equations. Continuity of Eφ, Hφ

at r = a gives two more equations. One equation relates the coefficients of proportionality

in Ez and Hz and the other equation gives the condition that the propagation constant β

must satisfy. This condition is called dispersion relation and it is an equation for β with

ratio a/λ0 and the fiber indices n1 and n2.

For each azimuthal index l, the dispersion relation has multiple solutions yielding

discrete propagation constants βlm, m = 1, 2, · · · , each solution represents a distinct mode.

The corresponding kT lm and γlm governs the spatial distribution in the field and cladding.

Therefore a mode characterizes the azimuthal and radial distribution in the fiber. For each

mode there are two independent configurations of E and H vector corresponding to two

states of polarization [11].

2.2.1 Single Mode Fiber

A single mode fiber supports a single mode of propagation by using a small core

diameter and small numerical aperture. The fundamental mode has a bell-shaped distribution
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similar to a Gaussian distribution. This mode provides the highest confinement of the

light power within the core and hence used is for long distance communication.

2.2.2 Polarization Maintaining Fiber

A fiber with circular cross section has many allowed modes and each mode can exist

in two independent states of polarization with the same propagation constant. In a

single-mode fiber the mode can be in one of the two polarization state H or V for which

the propagation constants and group velocities are the same. Ideally the power delivered

in input polarization state should remain in that polarization state at the receiver and

there should be no power exchange between the polarization states. Such ideal fibers

have constant circular cross section; these are difficult to manufacture. They are called

low-birefringence polarization maintaining fiber. In reality the stress and strain in the fiber

causes a random transfer of power between the two polarization modes thus the linear

polarized input state is transforms into elliptically polarized state at the output. This

problem is fixed by polarization maintaining fiber, which is a specialty fiber with a strong

built-in high-birefringence.

In a polarization maintaining fiber, if the polarization of the light launched in to

the fiber and it is aligned with one of the birefringent axes then the light polarization

is preserved even if the there is a strain in the fiber. The propagation constant for the two

modes are so different that the slowly varying disturbance in the fiber do not couple the

polarization modes.

2.3 Asymmetry in Optical Fiber

The electromagnetic polarization represents, how the electric field component orientation

varies in a plane perpendicular to the direction of propagation. For an electromagnetic wave

propagating along z axis, it may be represented as superposition of two partial waves with

mutually orthogonal linear polarization with same frequency. The field E = Ex+Ey, where

Ex and Ey are components of electric field oscillating along x and y axis respectively. These

two vectors may be assigned to two polarization modes of circular dielectric waveguide.
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Assuming a lossless medium the field components can be represented as

Ex(z, t) = E0,x cos(kz − ωt+ φx),

Ey(z, t) = E0,y cos(kz − ωt+ φy), (2.8)

where E0,x, E0,y are field amplitudes, ω is the field angular frequency, t is the time, φx, φy

are the phases of wave and k is the wave vector. The ratio of amplitudes E0,x and E0,y

and the phase difference ∆φ = φx−φy determines the state of polarization of the resulting

wave.

When the amplitudes are equal E0,x = E0,y and ∆φ = 0, the orthogonal waves are

in phase and we obtain a linearly polarized light by their superposition. Its direction

of polarization is 45◦ to y axis or −45◦ to x axis. If E0,x = E0,y and ∆φ = ±π/2 the

resultant field has circular polarization, since the end point of the vector E traces a circle. If

E0,x 6= E0,y and ∆φ 6= 0,±π/2 then we obtain an elliptically polarized wave. The end point

of vector E traces an ellipse.

In an isotropic medium the refractive index is constant and it is independent of direction;

hence the wave propagation velocity remains constant independent of direction of propagation.

The wave phase velocity vp = n/c, where n is the refractive index of the medium and c

is the wave velocity in vacuum. However if the medium is anisotropic then the phase

velocity depends on the direction of propagation of a particular polarization. This effect is

observed in birefringent materials. If the wave is polarized between the x and y axes then

the velocity of the wave is determined by the refractive indices nx and ny and a phase shift

occurs between the orthogonal components of the field. This occurs due to the difference in

propagation velocities of the components and the resulting state polarization depends on

the total phase difference ∆φ, which is a function of propagation length in the birefriengent

medium.

19



2.3.1 Linear Birefringence

In a single-mode optical fiber with circular core cross-section two orthogonally polarized

state may exist and the superposition of these two modes results in the wave propagating

in the fiber. The amplitude ratio and phase relation of these two modes determines the

polarization state of the wave in the fiber. The propagation constants of the two orthogonal

modes in the fiber are given by βx = ωnx
c

and βy = ωny
c

, where ω is the angular frequency,

n is the refractive index and c is the speed of light in vacuum. An ideal single mode fiber

made from isotropic material with circular symmetry along the length of fiber has the

same refractive index for both the modes and hence βx = βy. A non-ideal fiber has some

asymmetry due to manufacturing imperfections or stress on the fiber due to deployment

in the field. The asymmetry in the fiber breaks the degeneracy of two orthogonal modes

and fiber behaves as a birefringent medium with different refractive indices nx and ny. It

results in difference in phase velocity and propagation constants βx and βy for two modes.

We designate propagation constant βy and βx as fast mode and slow mode respectively

[12]. The birefringence can be circular or linear but circular birefringence is negligible in

common single-mode fibers.

For a short section of fiber, linear birefringence can be considered to be uniform. The

difference between the propagation constant of slow and fast modes can be expressed as

∆β =
ωns
c
− ωnf

c
=
ω∆n

c
(2.9)

where ω is the angular frequency, c is the speed of light, and ∆n = ns−nf is the differential

effective refractive index between slow (s) and fast (f) modes [13].

When a linearly polarized wave (such as 45◦) polarization is launched into the fiber, the

asymmetry in the fiber causes a phase shift between the two orthogonal modes. This occurs

because these two modes travel with different phase velocities and acquire a relative phase

shift that is a function of propagation length in the birefringent fiber. As a consequence, the
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state of polarization (SOP) evolves in a cyclic fashion as the light propagates down the fiber

( i.e., from linear to elliptical to circular and back through elliptical to linear state that is

orthogonal to the initial state). The output mode will not be stable as environmental factors

such as stress and ambient temperature changes will change the birefringent properties of

fiber. This complicates the utilization of single-mode fiber in applications such as quantum

cryptography and quantum communication where polarization modes need to be preserved.

The birefringence in optical fiber is characterized by the beat length lb. It is the length

of fiber over which the total phase shift between the two orthogonal modes is ∆φ = 2π and

mathematically defined as

lb =
2π

βx − βy
=

λ

nx − ny
=

λ

∆n
, (2.10)

where βx and βy are the propagation constants for the slow and fast modes, ∆n is the

difference of refractive indices and λ is the wavelength of light. Standard telecommunica

-tion-type fibers have beat lengths of 10m with ∆n ≈ 10−7 on the other hand, polarization

-maintaining fibers are manufactured to have large ∆n and beat length of 3mm.

2.4 Imperfection in Optical Fiber

Birefringence in an optical fiber can result from both intrinsic and extrinsic perturba

-tions. Intrinsic perturbation can originate during the manufacturing process and is perma

-nent. Form (geometric) birefringence can arise due to non-circular waveguides and stress

birefringence is due to forces set up by asymmetry of the core. Extrinsic perturbation

can be caused by spooling the fiber or embedding the fiber in the ground, lateral stress,

bending, or twisting. These perturbations create linear birefringence and can change as

the fiber’s external environment changes [14, 15].
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• Elliptical fiber core

The linear birefringence may be intrinsic or extrinsic in nature but the main cause of

intrinsic linear birefringence is manufacturing imperfection. The core cross-section of the

fiber is not circular but slightly elliptical as shown in Figure 2.2.

Figure 2.2: Intrinsic and extrinsic noise sources in Optical fiber.

• Stress Induced linear birefringence

The linear birefringence is caused by the stress induced by the cladding on the core.

2.5 Modeling Noise in Optical Fiber

Optical phase difference between the two modes due to refractive index fluctuation in

the short-length regime is deterministic because birefringence is inherently additive, but

today’s optical fiber transmission systems are 100s and 1000s of km long and birefringence

is no longer additive. The birefringence axis changes randomly along the fiber from segment

to segment causing polarization mode coupling, where the polarization from one segment

decomposes into both fast and slow modes of the next segment. This coupling results

from the localized stress formed during manufacturing, spooling, cabling and deployment.

Long fibers are typically modeled as concatenated segments of birefringent segments whose

birefringence changes randomly along the fiber as shown in Figure 2.3 [16]. The refractive
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Figure 2.3: The fiber is modeled as concatenated segments of fiber of length ∆L with
constant birefringence ∆n.

index fluctuation across these segments follows a distribution which can be either a Gaussian

distribution or Rayleigh distribution [17] depending on the type of optical fiber under

consideration. For our work we model three different types of optical fiber: polarization

maintaining fiber, single mode fiber and multimode fiber.

2.5.1 Polarization Maintaining Fiber

An ideal single mode fiber with symmetrical circular core has two orthogonally polarized

modes; these two modes have the same group velocity and hence the state of polarization

is preserved. However, in reality, fibers have some amount of asymmetry caused due

to intrinsic and extrinsic perturbations. This asymmetry breaks the degeneracy of two

orthogonally polarized modes, resulting in birefringence along the length of the fiber.

A small birefringence causes evolution of the polarization state as the light propagates

through the fiber. To control this state evolution, special fibers are made with very high

birefringence and very small beat length such that total acquired phase is 2π such that

mode coupling is minimized and state of polarization is preserved. Such optical fibers are

called polarization maintaining optical fiber or PM fibers.

A polarization maintaining fiber is a special type of single-mode fiber that preserves

the two polarization states. These fibers have large linear birefringence. Since the core

radius is very small for such fibers, the index fluctuation along the radial direction is very

small and hence it is safely assumed to be constant.

We model the refractive index fluctuation in PM optical fiber of length L by representing

it as concatenated, homogeneous segments of length ∆L with constant birefringence ∆β =

ω(ns−nf)
c

[18, 2]. The birefringence fluctuation across these segments is modeled using a
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random number generator that uses a Gaussian distribution with zero mean and standard

deviation. The probability density function is given as

f(x, σ) =
1

σ
√

2π
exp
[
−x2/

(
2σ2
)]
. (2.11)

We numerically simulate the birefringence in a polarization maintaining fiber of length

500 meter. The standard deviation for the zero mean Gaussian distribution is σβ = 100

radians/meter. The result of numerical simulation is shown in Figure 2.4.

Figure 2.4: Numerically simulated birefringence in a polarization maintaining fiber with a
zero mean Gaussian distribution and σβ = 100 radian/m [2].

The numerical simulation is done using Mathematica and the function for generating

the noise profile in polarization maintaining fiber is given in the Figure 2.5.

2.5.2 Single Mode Fiber

Single-mode fibers are waveguides with only one propagation mode for each polarization;

they are also called telecommunication fibers. Single-mode fibers with circular core have

small ∆n ≈ 10−7 and beat length of ≈ 10m.

We model the refractive index fluctuation in single-mode optical fiber of length L

by representing it as concatenated, homogeneous segments of length ∆L with constant
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Figure 2.5: Mathematica function for simulating the birefringence in a polarization
maintaining fiber. L is the length of fiber, ∆L is segment size and ∆φ is the standard
deviation for the Gaussian distribution.

birefringence ∆β =
ω(ns−nf)

c
[18, 2]. The birefringence fluctuation across these segments

is modeled by generating a set of values according to the Rayleigh distribution, whose

probability density function is given as

f(x, σ) =
x

σ2
e−x

2/(2σ2), x ≥ 0 (2.12)

where σ ≥ 0, is the scale parameter of the distribution, and x is the distance along the

fiber [17, 2]. A noise profile of the fiber is extrapolated from these phase error values. Here

we assume that the fiber only exhibits linear index fluctuation as the radial dimension of

the fiber is very small.

Our model of noise closely represents the experimentally measured spatial distribution

of birefringence in a single-mode fiber [2]. It represents the birefringence in different types

of fibers: standard step-index and dispersion shifted fibers. In general, axially varying

birefringent dephasing in an optical fiber of length L can be represented by a series of

concatenated, homogeneous segments of length ∆L with constant ∆n, as illustrated in

Figure 2.6. The birefringence across these segments follows a Rayleigh distribution [17].

Here we assume that the fiber only exhibits linear birefrengence.
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a)

b)

Single-mode Fiber made from segments of length �L with constant �n. 

Figure 2.6: Model of a single-mode optical fiber. a) The fiber is modeled as concatenated
segments of fiber of length ∆L with constant birefringence ∆n. b) Numerically reproduced
birefringence in a single-mode fiber, where the scale parameter for Rayleigh distribution is
σβ = 12.6 degree/m [2].

The numerical simulation is done using Mathematica and the function for generating

the noise profile in a single-mode fiber is given in the Figure 2.7.

2.5.3 Multimode Fiber

We simulate special type of multimode fiber that preserves the orbital angular momen

-tum modes for the photon. The fiber of length L is again modeled as before by representing

it as concatenated, homogeneous segments of length ∆L with constant fluctuation of

refractive index ∆β = ω(nl−n−l)
c

. The result of numerical simulation is shown in Figure

2.8.
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Figure 2.7: Mathematica function for simulating the birefringence in a single-mode fiber. L
is the length of fiber, ∆L is segment size and σβ is the standard deviation for the Gaussian
distribution.

Figure 2.8: Numerically simulated index fluctuation in a multi-mode fiber, where the scale
parameter for Rayleigh distribution is σβ = 12.6 degree/m [2].

2.6 Summary

To summarize, we discussed in short the propagation of plane wave in a circular wave

guide using Maxwell’s equations. From the derivation we uncovered the properties of a

polarization maintaining fiber, single-mode fiber and multi-mode fiber. We later talked

about the different sources of index fluctuation in optical fiber and how they can be
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numerically modeled. Specifically we numerically simulated the model of polarization

maintaining fiber, single-mode fiber, and multi-mode fiber. We will use this noise model

to simulate the decoherence of qubit and qudit photons in optical fiber in the forthcoming

chapters.
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Chapter 3
Decoherence and Dynamical
Decoupling

3.1 Introduction

A realistic quantum system is never isolated, instead it is always immersed in surrounding

environment, where it continuously interacts with the environment. The system can be in

a superposition of internal states but the interaction of the system with the uncontrollable

degree of freedom of the environment results in the formation of quantum correlation

between the internal system states and environment. This causes the system to lose

the phase relationship between preferred states, selected by the environment. The linear

superposition of states is destroyed and the density matrix of the system transits from a

pure to a mixed state.

In the literature several strategies have been developed to minimize decoherence, where

notable ones are quantum error-correction (QECC) and decoherence-free subspace (DFS)

[19, 20, 21, 22]. The two techniques rely on careful encoding of the quantum state with

the redundant ancilla into a bigger Hilbert space. The drawback of this strategy is

that it requires large amount of resources for encoding, decoding, measurement and error

correction. Alternative approaches have been developed which avoid using ancilla space and

encoding and decoding and can be divided in two main categories: closed-loop techniques

and open-loop control as shown in Figure 3.1. In closed-loop control technique, appropriate

measurements are made on the system and based on the results of the measurement system

dynamics are corrected in real time. In open-loop system no such measurements are done

on the system; instead an external suitably tailored, time-dependent pulse is applied to

the system. The control pulses are designed such that any undesired effect of environment

such as decoherence can be eliminated if the pulses are applied faster than the correlation

time of the environment.
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Figure 3.1: Three strategies to minimize decoherence. a) System encoded with ancilla
immersed in environment. b) Closed-loop technique where measurement is done on the
system and in real time a corrective action is applied to the system. c) Open-loop control,
where a tailored time dependent pulse is applied to system.

The input state with encoded information can usually be prepared with high accuracy in

a laboratory. Maintaining that state along the optical communication channel, however, is

much more demanding due to the presence of refractive index fluctuation. One technique

to preserve the coherence of polarization qubit against the detrimental effects of noise

encountered in the communication channel is open-loop control, where the system is subjected

to external, suitably tailored, space-dependent pulses which do not require measurement.

This control technique minimizes the undesired interaction of system with the environment

if the control pulses are applied faster than the correlation length of environment and is

called dynamical decoupling (DD) [23, 24, 25]. The advantage of DD is that it requires

modest resources and no additional resource for information encoding, error correction,

measurement, or feedback. The physical idea behind this scheme comes from the refocusing

technique of nuclear magnetic resonance (NMR), where time dependent, rapid, and strong

pulses known as bang-bang controls are applied to the system to suppress decoherence [26].
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3.2 Dynamical Decoupling

Dynamical Decoupling (DD) is an open-loop control technique to decouple the system

from environmental interaction. One important aspect of this technique is that one can

effectively control the dynamical evolution of the system while still eliminating the effects

of environment. Even though the environment makes it impossible to achieve an arbitrary

unitary evolution of the system, an effective dynamical evolution of the system can still be

constructed with this technique.

This technique is inspired by the nuclear magnetic resonance technique where tailored

time dependent perturbations are used to control the system evolution. In DD, we apply a

sequence of pulses to the system, which is faster than the shortest time scale accessible to

the reservoir degree of freedom, such that system-bath coupling is averaged to zero during

the evolution. This procedure is conceptually different from NMR, because any decoupling

action is only applied to system variable.

To apply the formalism of DD, we consider a system S coupled to a bath B, which

together form a closed system defined by Hilbert space H = HS ⊗ HB, where HS and

HB denotes the system and bath Hilbert spaces respectively. The overall Hamiltonian is

rewritten in an explicit form as

H0 = HS ⊗ IB + IS ⊗HB +HI (3.1)

where I is the identity operator and HI is the interaction Hamiltonian. The bath operator

couples the polarization qubit to the noise bath and causes decoherence. To decouple the

system from the environment, we introduce time-dependent perturbing Hamiltonian which

rotates the qubit around a given axis on the Bloch sphere [24, 27]. The Hamiltonian with

added decoupling perturbation is given as

H(t) = H0 +H1(t)⊗ IB. (3.2)
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The initial state over H is represented by the density matrix ρtot(0) = ρS(0) ⊗ ρB(0),

and the state after the coarse-grained dynamics results in open-system evolution defined

by ρS(0)→ ρS(t) = TrB{ρtot(t)}, where TrB denotes the partial trace over HB. In the case

of the polarization qubit in an optical fiber we assume that the relaxation dynamics for

ρS(t) involves only the decoherence mechanisms represented by coupling operators. The

irreversible loss of quantum coherence is caused by presence of exponential decay in the off

diagonal term of the output density matrix.

The decoupling field is made to be cyclic and the decoupling operator U1(t) that is

periodic over some cycle time Tc > 0 is given as

U1(t) ≡ T exp

{
−i
∫ t

0

dt
′
H1(t

′
)

}
= U1(t+ Tc) (3.3)

In the interaction picture, the state after the perturbation due to HI(t) is defined by

ρtot(t) = U1(t)ρ̃tot(t)U
†
1(t) and the evolution is defined by a time-varying Hamiltonian,

H̃(t) = U †1(t)H0U1(t). (3.4)

The decoupling pulse sequence representing the control field is chosen in such a way

that U1(Tc) = IS and the integral term
∫ t

0
dtHI(t) averages to zero, as a consequence

decoherence is minimized.

3.3 DD Pulse Sequence

3.3.1 Carr-Purcell-Meiboom-Gill

To preserve the polarization qubit from decoherence, a series of stroboscopic control

pulses are applied to the system repeatedly with cycles of period Tc. Over that period,

the time average interaction is described by an effective Hamiltoninan and the goal of DD

is to effectively reverse this interaction. This method of applying pulse sequence was first

pioneered by Hahn in his spin-echo experiment, where he applied π-pulse to the spin system
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after it was allowed to evolve for a period of τ in the magnetic field. This pulse effectively

changes the sign of system-environment interaction and echo is seen after the refocusing

or reverse evolution period of same duration τ . If the magnetic field is static then the

interaction is completely reversed and initial state is recovered. However, if magnetic field

is fluctuating then its effect can not be completely reversed and echo amplitude decays as a

function of the refocusing time. The decay contains information about the time-dependence

of the environment.

To reduce the decay rate of the echo caused by the time dependent environment,

Carr and Purcell (CP) introduced a variant of Hahn-echo pulse sequence, where the single

π-pulse is replaced by a series of π-pulse separated by intervals of duration τ . This CP

sequence reduces the effect of time varying environment if the pulse intervals are shorter

than correlation time of the environment. However, the pulse error tend to accumulate as

number of pulses applied to the system increases. This destroys the state of the system

instead of preserving it against the effect of the environment.

Meiboom and Gill (MG) noticed this and proposed a modification to CP sequence for

compensating pulse errors and it is called CPMG sequence. This pulse sequence is composed

of two π-pulse, in which the system is allowed to free evolve for a period of τ , then first

π-pulse is applied, again system is allowed to free evolve for a period of 2τ , second π-pulse

is applied and system is allowed to free evolve for a period of τ .

For minimizing decoherence of polarization qubit in optical fiber, we select the simplest

CPMG pulse sequence which is made up of two π-pulse separated as shown in Figure 3.2.

This sequence is implemented in optical fiber using half wave-plate and it achieves a fidelity

of 99% in preserving the state of the qubit.

3.3.2 Knill Dynamical Decoupling

The goal of DD is to time reverse the system-bath interaction by applying series of

stroboscopic pulses in cycles of period Tc. If the pulse is instantaneous and perfect, then

the dynamics of the system is completely time reversed, and the initial state of the system
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Figure 3.2: Top: CPMG sequence implemented with half-wave plates in the diagonal
basis along the fiber; Ufree’s are the propagators corresponding to the free propagations
through the dephasing segments. Bottom : Free propagations and π rotations caused by
the waveplates for the input qubit in the +45◦ state are shown on the Bloch sphere.

is recovered. However, if the pulses are finite and have errors, then the system dynamics

cannot be completely reversed, and these errors accumulate, and the initial state is lost.

In reality, the pulses have finite length and errors and if the number of applied pulses are

large and the design of the pulse sequence does not incorporate error compensation, then

these errors accumulate and lead to decoherence of the system more severe than due to

system environment interaction.

One type of non-ideal pulse has finite length, which imposes limits on the achievable

cycle time for the sequence. The constraint on cycle time imposes an upper bound on

the maximum achievable DD performance. Another type of non-ideal pulse, which can

be more detrimental, is due to rotation error, which is caused by deviation in the control

pulse strength. The rotation error can be attributed to rotations about a non ideal axis or

deviation in rotation angle.
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Several approaches have been proposed [28, 29] to make DD insensitive to pulse imperfec

-tions and one of the approaches focuses on the design of pulses which are inherently robust

or insensitive to imperfect rotation. Rotation about an axis can be achieved either by one

single pulse about a given axis or by using a sequence of pulses which are inherently robust

against classes of imperfections and generate a rotation close to ideal rotation even in the

presence of these errors. In NMR literature, such pulse sequences are called composite

pulses [30].

If DD sequence are made up of only π-rotations, then replacing the π-rotation with a

composite sequence which can achieve a near-ideal rotation in case of imperfection should

improve DD performance. KDD sequence uses this design principle and is given as

KDDφ =fτ/2 − (π)π/6+φ − fτ − (π)φ − fτ − (π)π/2+φ

− fτ − (π)φ − fτ − (π)π/6+φ − fτ/2, (3.5)

where the notation fτ/2 represents free evolution for a period of τ/2 and (π)π/6+φ is π

rotation about an axis π/6 + φ. It is a 20-pulse, self correcting sequence that is created by

combining 5-pulse blocks shifted in phase by π/2 to form [KDDφ−KDDφ+π/2−KDDφ+π−

KDDφ+3π/2] [3].

We preserve the polarization qubit in a single-mode fiber from birefringent dephasing by

implementing the KDD pulse sequence in space by introducing half-wave plate at specified

distances in the fiber as shown in Fig. 3.3.

The impact of pulse imperfections on fidelity in the absence of environment have been

analyzed previously and it was found that the KDD sequence is least susceptible to pulse

imperfections when compared with other sequences [3].
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Figure 3.3: A 20 pulse sequence created by combining 5-pulse block shifted in phase by π/2.
The cyclic repetition of these 20 pulse sequence is referred to as KDD [3]. a) Single-mode
fiber of length L divided in to blocks of length 20 τ . b) each block is then divided in four
parts of length 5 τ . c) In each part a KDD block is implemented by introducing 5 half-wave
plate at specified distances. d) CPMG pulse implemented using half-wave plate.

3.4 Summary

To summarize, we discussed different strategy available to minimize decoherence. In

particular, we reviewed dynamical decoupling and talked about ideal and non-ideal pulse

sequence.
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Chapter 4
Decoherence of qubit and qudit
states in Fiber

4.1 Introduction

The storage of quantum states and its distribution over long distances is essential

for emerging quantum technologies such as quantum networks and long distance quantum

cryptography. Quantum networks and quantum cryptographic systems [31, 32] use photonic

qubits as information carriers because of their quantum nature and low-loss coefficient

pertaining to transmission, both in optical fiber [33] and in free space [34]. Nevertheless,

the losses become significant when we envision transmission over hundreds of kilometers

or more and is accompanied by decoherence. In classical telecommunication the issue of

signal loss is overcome by use of amplifiers (also called repeaters) that amplify the signals.

Unfortunately this option of signal amplification is forbidden in quantum communication

because of the no-cloning theorem [35, 36] unless one restricts oneself to an orthogonal set

of states; in fact a quantum protocol such as quantum key distribution arises precisely due

to existence of non-orthogonal states.

The problem of signal amplification in quantum communication can be overcome with

the use of sophisticated entanglement-based scheme known as a quantum repeater [37].

Entanglement has a special property that it can be swapped. Given a entangled state

between A and B and another between C and D, it is possible to create entanglement

between A and D by performing a joint measurement in the basis of entangled states,

followed by classical communication of the result to the location A and/or D. The states

at A and D need to be preserved in a quantum memory for the period of time in which

the classical result are communicated for the teleportation protocol to be successful [38].

Current schemes [39, 40, 37] suggest use of atomic states to preserve the state of qubit, but
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it would be beneficial if the qubit state can be preserved in an all optical quantum

memory so that all optical implementation of quantum repeater device is feasible [41].

Another issue faced by any quantum repeater scheme[37, 39, 42] is decoherence of the

qubit (or qdit) caused by the interaction of a photon qubit with the environment, such as

in the case of single-mode and multi-mode fiber. Typically, the information is encode in

one or multiple degrees of freedom of photon. The interaction of the photons with the noisy

environment of an optical fiber makes secure, long-distance communication difficult because

the refractive index fluctuation in fiber randomizes the phase of the photon, leading to a

loss of coherence and subsequently loss of information. This effect is called decoherence

and it limits the distance over which quantum information can be stored and transmitted

and it is one of the obstacle in physical realization of any quantum repeater scheme that

uses optical communication of qubit state. The input state with encoded information can

usually be prepared with high accuracy in a laboratory. Maintaining that state along the

communication channel, however, is much more demanding due to the presence of refractive

index fluctuation.

In this chapter we derive the analytic model for decoherence of polarization qubit and

OAM qudit in optical fiber.

4.2 Polarization Qubit in Single Mode Fiber

Decoherence of the polarization qubit has its origin in optical birefringence of the

fiber. A telecommunication fiber is often called a single-mode fiber, although it supports

two orthogonal polarization modes due to its circular symmetry. In a perfect fiber, these

two modes have the same phase velocity, but real fibers have some asymmetry due to

manufacturing imperfections or stress on the fiber due to deployment in the field. The

asymmetry in the fiber breaks the degeneracy of two orthogonal modes, which results in

birefringence: a difference in phase velocity of the two modes.

Birefringence in an optical fiber can result from both intrinsic and extrinsic perturbations.

Intrinsic perturbation can originate during the manufacturing process and is permanent.
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Form (geometric) birefringence can arise due to non-circular waveguides and stress birefringence

is due to forces set up by asymmetry of the core. Extrinsic perturbation can be caused

by spooling the fiber or embedding the fiber in the ground, lateral stress, bending, or

twisting. These perturbations create linear birefringence and can change as the fiber’s

external environment changes [14, 15].

For a short section of fiber, birefringence can be considered to be uniform. The difference

between the propagation constant of slow and fast modes can be expressed as

∆β =
ωns
c
− ωnf

c
=
ω∆n

c
(4.1)

where ω is the angular frequency, c is the speed of light, and ∆n = ns−nf is the differential

effective refractive index between slow (s) and fast (f) modes [13].

When a linearly polarized wave (such as 450) polarization is launched into the fiber, the

asymmetry in the fiber causes a phase shift between the two orthogonal modes. This occurs

because these two modes travel with different phase velocities and acquire a relative phase

shift that is a function of propagation length in the birefringent fiber. As a consequence, the

state of polarization (SOP) evolves in a cyclic fashion as the light propagates down the fiber

( i.e., from linear to elliptical to circular and back through elliptical to linear state that is

orthogonal to the initial state). The output mode will not be stable as environmental factors

such as stress and ambient temperature changes will change the birefringent properties of

fiber. This complicates the utilization of single-mode fiber in applications such as quantum

cryptography and quantum communication where polarization modes need to be preserved.

4.2.1 Analytic Model of Decoherence

Let us consider the following pure input state that is in superposition of horizontal and

vertical polarization:

|ψ〉 = α|H〉+ β|V 〉, (4.2)
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where α and β are complex numbers such that α2 + β2 = 1. For the above input state the

density matrix is given by

ρ̂in = |ψ〉〈ψ| =

|α|2 αβ∗

α∗β |β|2

. (4.3)

When the photon travels through the jth segment, the rotation operator Mz(δφj) given

by

Mz(δφj) =

ei
δφj
2 0

0 e−i
δφj
2


= cos

(
δφj
2

)
I + i sin

(
δφj
2

)
σz

= ei
δφj
2
σz

= Rz(δφj) (4.4)

where δφj = ∆βj∆L is the phase angle acquired due to propagation through the jth segment

of fiber. The rotation operator acts on the photon and rotates the polarization degrees of

freedom. The output density matrix is given by

ρ̂jout = Mz(δφj)ρinMz(δφj)
†

=

 |α|2 αβ∗eiδφj

α∗βe−iδφj |β|2

. (4.5)
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After passing through the fiber with n homogeneous concatenated segments the output

density matrix is

ρ̂out =

 |α|2 αβ∗
n∏
j=1

eiδφj

α∗β
n∏
j=1

e−iδφj |β|2

. (4.6)

We model the set of acquired phases {δφ1, δφ2, ......, δφn} as random variable φ̂ with a

mean
〈
φ̂
〉

= φ and a nonzero variance
〈

∆φ̂2
〉

= ∆φ2. Here φ is proportional to n but ∆φ2

is independent of n.

n∏
j=1

e±iδφi = exp

[
n∑
j=1

(±iδφi)

]

= exp
[
±i
〈
φ̂
〉
± i∆φ̂

]
= exp

[
±i
〈
φ̂
〉]

exp
[
±i∆φ̂

]
. (4.7)

We Taylor expand the factor exp
[
±i∆φ̂

]
of Eq.4.7 and take the average to obtain

〈
exp
[
±i∆φ̂

]〉
=

〈
1± i∆φ̂− 1

2
∆φ̂2 + · · ·

〉
= 1± i

〈
∆φ̂
〉
− 1

2

〈
∆φ̂2

〉
+ · · · (4.8)

Since the mean of variance is zero in Eq.4.8 and average of the variance is
〈

∆φ̂2
〉

= ∆φ2,

hence we obtain the expression

〈
exp
[
±i∆φ̂

]〉
= 1− 1

2
∆φ2 + · · · ≈ e−

1
2

∆φ2 . (4.9)
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Using Eq.4.9, we can write Eq.4.7 as

〈
n∏
j=1

e±iδφi

〉
=
〈

exp
[
±i
〈
φ̂
〉]〉〈

exp
[
±i∆φ̂

]〉
= e±iφe−

1
2

∆φ2 . (4.10)

Using the expression in Eq.4.10, the density matrix in Eq.4.6 can be rewritten as

ρ̂out =

 |α|2 αβ∗eiφe−
1
2

∆φ2

α∗βe−iφe−
1
2

∆φ2 |β|2

. (4.11)

The state represented by ρ̂out is no longer pure due to presence of e−
1
2
n2∆φ2 in the

off-diagonal terms [43].

4.3 Orbital Angular Momentum State in Fiber

For the past few years the quantum information community has been putting a great

deal of effort into boosting the bit rate for photonic quantum state transmission by encoding

more than one bit per photon. This is done by exploiting multiple temporal, spatial,

polarization, and frequency modes of the single photon and then preparing a single photon

in a superposition of those modes as a qudit. The number of bits then is log2 d, where d is

the dimension of the qudit. The focus has been on using orbital angular momentum (OAM)

modes of the photon, particularly in multimode optical fiber, as a road to high bit rate.

Photons that are OAM eigenstates, originate as a consequence of spatial distribution

of optical field intensity and phase [44, 45]. The photon carries an azimuthal phase term

exp(ilθ) and l units orbital angular momentum [46]. Such phase dependence is characteristic

of either Laguerre-Gaussian or Bessel modes and each of these mode families provides a

higher dimensional state space. The most immediate advantage of a large state space is the

large alphabet size for quantum communication and hence considerable increase in data

capacity. Higher dimensional systems have been known to improve security in quantum
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cryptography [47] and are required by some quantum network protocols [48] and quantum

computation schemes [49] to efficiently solve problems like Byzantine agreement problem

[50] and quantum coin tossing [51].

There are several protocols that encode quantum information in the two-dimensional

Hilbert space of the photon’s spin and exploit the polarization or time-bin degrees of

freedom [31, 52]. Physical implementations of one such protocol for quantum key distribution

has shown that such a encoding is not optimal for practical applications due to a low bit

rate [53]. Information encoding based on the two-dimensional Hilbert space of photon

polarization (or SAM) imposes a limitation on the rate of optical communication. To

overcome such limitations the orbital angular momentum (OAM) of light has been proposed

that uses the photon’s spatial mode structure and allows use of higher-dimensional Hilbert

space, or a “qudit” encoding of a photon [54]. This leads to an increased alphabet size and

subsequently, increased rate of communication [55, 56, 57]. Recent experiments have shown

that the classical data-carrying capacity of a terabit per second can be achieved using

OAM states of light in an optical fiber [58]. The potential of higher dimensional encoding

of quantum information to achieve a higher bit rate can only be achieved if the photon

can be protected from the decohering effect of optical index of refraction fluctuation in an

optical fiber.

Here we derive an analytic model for decoherence caused by the refractive index

fluctuation in a multi-mode fiber for an OAM photon state. We show that rate of decoherence

is faster for large values of l and it scales exponentially with l2, where l is azimuthal mode

number.

4.3.1 Analytic Model of Decoherence

The transverse spatial wave function of a paraxial beam is an eigenstate of OAM and

it can be written in cylindrical coordinates as

ϕpl(r, θ) =
1√
2π
Rp,l(r) exp (i l θ). (4.12)
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The functions Rp,l(r) are a basis for the radial dependence, such as the Laguerre-Gauss

functions. They are defined in free space as

Rp,l(r) =
A

w(z)

(√
2r

w(z)

)|l|
L|l|p

(
2r2

w(z)2

)
× eikr2/[2R(z)]ei(2p+|l|+1) tan−1 (z/zR), (4.13)

where w(z) = w0

√
1 + (z/zR)2 is the beam width, R(z) = z[1 + (zR/z)2] is the radius of

wave-front curvature, and zR = 1
2
kw2

0 is the Rayleigh range. The quantity tan−1(z/zR) is

known as the Gouy phase. These Rp,l(r) functions are modified slightly inside fiber.

Optical fibers have other complex spatial modes but for simplicity, we consider here an

OAM photon that is launched in to a multimode optical fiber that is in superposition of l

and −l states and has the following ket representation

|ψpl〉 =
1√
2π
Rp,l(r)[exp (i l θ)|p, l〉

+ exp (−i l θ)|p,−l〉]. (4.14)

For example, such a state could be used as one code letter of a four-letter code for the BB84

protocol [31]. The other letters would be the negative superposition and the individual ±l

states. The density matrix for the above input state can be written as

ρ̂in = |ψpl〉〈ψpl|

= |Rp,l(r)|2

 1 ei 2lθ

e−i 2lθ 1

. (4.15)

In general, the index of refraction fluctuation in an optical fiber can be represented

by a series of concatenated, homogeneous segments of length ∆L with constant index

fluctuation ∆β = ω(nl−n−l)
c

[18, 2]. When a photon that is in superposition of +l and −l
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propagates through the fiber in z direction the E-fields see a slightly different refractive

index profile due to the corkscrew nature of the OAM photon. The photon acquires a phase

proportional to the azimuthal mode number l, since the number of helix surfaces in a fixed

volume of fiber is proportional to the helix step length λ/|l|. The two independent index

of refraction fluctuations interact with the orbital angular momentum degree of freedom of

the photon. The noise operator is given by

Mz(δφj) =

ei l
δφj
2 0

0 e−i l
δφj
2


= cos

(
l
δφj
2

)
I + i sin

(
l
δφj
2

)
L̂z

= ei l
δφj
2
L̂z

= Rz(l δφj) (4.16)

where δφj = ∆βj∆L is the phase angle acquired due to propagation through the jth segment

of fiber and L̂z = −i ∂
∂θ

is orbital angular momentum operator that generates rotation about

z axis. Laguerre-Gaussian beams are eigenfunction of orbital angular momentum operator

L̂z. The output density matrix after the interaction in the jth segment is given by

ρ̂jout = Mz(δφj)ρ̂inMz(δφj)
†

= |Rp,l(r)|2
 1 ei (2 l θ+ l δφj)

e−i (2 l θ+ l δφj) 1

. (4.17)

Now, if we assume that cross-talk between OAM modes is negligible [58], which is a

good approximation for linear interactions, then the above density matrix can be rewritten

as:

ρ̂jout = |Rp,l(r)|2
 1 ei l(2 θ+ δφj)

e−i l(2 θ+ δφj) 1

. (4.18)
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After passing through the fiber with n homogeneous concatenated segments the output

density matrix is

ρ̂jout = |Rp,l(r)|2

 1 ei (2 l θ)
n∏
j=1

ei (l δφj)

e−i (2 l θ)
n∏
j=1

e−i (l δφj) 1

. (4.19)

We model the sum of acquired phases {δφ1, δφ2, ......, δφn} as random variable φ̂ with

a mean
〈
φ̂
〉

= φ0 and a nonzero variance
〈

∆φ̂2
〉

= ∆φ2. Here φ0 is proportional to n but

∆φ2 is independent of n. The factor
n∏
j=1

e±i l δφi in the off-diagonal term of Eq.4.19 can be

expressed in terms of mean and variance of random variable φ̂

n∏
j=1

e±i l δφi = exp

[
n∑
j=1

(±i l δφi)

]

= exp
[(
±i l

〈
φ̂
〉
± i l∆φ̂

)]
= exp

[
±i l

〈
φ̂
〉]

exp
[
±i l∆φ̂

]
. (4.20)

We then Taylor expand the factor exp
[
±i l∆φ̂

]
of Eq.4.20 and take the time average

to obtain

〈
exp
[
±i l∆φ̂

]〉
=

〈
1± i l∆φ̂− 1

2
l2 ∆φ̂2 + · · ·

〉
= 1± i l

〈
∆φ̂
〉
− 1

2
l2
〈

∆φ̂2
〉

+ · · · (4.21)

Since the mean of variance is zero in Eq.4.21, and average of the variance is
〈

∆φ̂2
〉

= ∆φ2,

hence we obtain the expression [18, 43]

〈
exp
[
±i l∆φ̂

]〉
= 1− 1

2
l2 ∆φ2 + · · · ≈ e−

1
2
l2 ∆φ2 . (4.22)

The condition that l∆φ̂ is small can always be met for small l by shortening the lengths
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of the virtual segments. Using Eq.4.22, we can write Eq.4.20 as

〈
n∏
j=1

e±i l δφi

〉
=
〈

exp
[
±i l

〈
φ̂
〉]〉〈

exp
[
±i l∆φ̂

]〉
= e±i l φ0 e−

1
2
l2 ∆φ2 . (4.23)

And finally, with the expression obtained in Eq.4.23, the output density matrix in Eq.4.19

can be rewritten as

ρ̂out = |Rp,l(r)|2

 1 ei l (2 θ+φ0)e−
1
2
l2 ∆φ2

e−i l (2 θ+φ0)e−
1
2
l2 ∆φ2 1

. (4.24)

The state represented by ρ̂out is no longer pure due to presence of the dephasing term

e−
1
2
l2 ∆φ2 in the off-diagonal terms and the rate of decoherence is much faster for larger

values of l.

4.4 Summary

To summarize, we discussed how decoherence of an optical photon in optical fiber

impedes the long distance transmission of qubit and qudit state. It takes away the quantum

properties of photon by randomizing the phase relationship, the density matrix transitions

from pure to mixed state.
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Chapter 5
Entanglement Sudden Death in
Single Mode fiber

5.1 Introduction

Entanglement is a fundamental resource for existence of key quantum communication

technologies such as Quantum Key Distribution (QKD), Quantum dense coding, Quantum

teleportation, and Quantum network. It is essential resource for any capacity achieving

quantum communication. Perfect quantum communication is equivalent to distribution of

perfect entanglement [59]. If we can transport a qubit without decoherence then entanglement

shared by qubit will also be distributed perfectly, however the effect of environmental noise

inevitably impair our ability to send quantum states over long distance. In the case of

photonic qubit, the distribution of entangled pair is done by the use of optical fibers but

they are limited by unavoidable transmission losses and entanglement sudden death (ESD)

caused by decoherence. This distribution approach is limited to 100km for polarization

entangled photon under optimistic assumptions [60, 61, 62, 63, 64]. Classically, a repeater

is used to increase the transmission distance by amplifying the signal and sending it over

again but that approach is forbidden in quantum theory [36].

An alternative technology called Quantum repeater is used for long distance distribution

of entangled state as shown in Figure 5.1. It uses two pairs of entangled state carried

over an optical fiber from a spontaneous parametric down-conversion (SPDC) source and

then it does a entanglement swapping by doing a Bell measurement [37, 65, 38]. The

SPDC and the Bell measurement are probabilistic in nature and optical fibers are prone

to losses, combining the three sources of error the overall rate for error-free distribution of

entanglement will decrease as the number of repeaters between the two distribution point is

increased. Also, as the number of repeaters are increased the network complexity increases
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Figure 5.1: Quantum repeater that uses entangled photons and entanglement swapping
technique to increase the effective communication distance, where photons are carried over
the optical fiber to the Bell measurement site.

and hence associated losses also increase. This brings us back to the original question of

error free and efficient distribution of entangled state.

It is very important to devise techniques that minimizes the loss of entanglement caused

by decoherence of photon in optical fiber so that the length over which the entangled photon

pair can be efficiently distributed is increased without increasing the number of repeaters

between the two points. In this chapter, I analytically show that fluctuation in refractive

index of optical fiber causes decoherence and subsequently loss of entanglement.

5.2 Entanglement

Historically entanglement has played a crucial role in the development of quantum

physics. Initially it was thought to be a qualitative feature distinguishing quantum theory

from classical theory but latter its characterization by Bell’s inequality made this distinction

quantitative and its non-local feature available for experimental verification. It is a kind of

correlation that can not be generated classically.

We can also define quantum correlation operationally in context of quantum information.

If we find a correlation in a quantum system that can not be simulated classically, then we

usually attribute them as quantum effect and label them as quantum correlation.
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We give a brief introduction to the concept of entangled states in the subsequent

sections and later describe a measure called concurrence to quantify entanglement.

5.2.1 Multipartite Entanglement

A quantum system composed of N physically distinct subsystem is called multipartite

quantum system. The Hilbert space HS associated with the multipartite system is given

by the tensor product on N individual Hilbert spaces of subsystems: HS = H1⊗· · ·⊗HN ,

where Hi for 1 ≤ i ≤ N represents the Hilbert space associated with i-th subsystemt

[66, 67, 68]. Due to vector nature of total Hilbert space HS, not all states necessarily may

be written as the product of some other states. In other words, a pure quantum state |ψ〉,

that can be written as

|ψ〉 =
∑
j1···jN

cj1···jN |j1〉 ⊗ · · · ⊗ |jN〉, (5.1)

where {|ji〉} is the basis for the i-th subsystem, and cj1···jN are normalized complex coefficients.

In general a quantum state on HS can not be written as equation (5.1), that is product

of the individual state of subsystem. In other words, it is not possible to attribute a

state vector to individual system to represent the state of the complete system and this is

precisely the phenomenon of entanglement [66, 67, 68].

Definition 1 (Separable pure state) A pure state |ψ〉 ∈ HS is separable if it is a product

state. That is, if it can be written as

|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψN〉, (5.2)

for some |ψ1〉 ∈ HS, · · · and |ψN〉 ∈ HN .

Definition 2 (Entangled pure state) A pure state |ψ〉 ∈ HS is entangled if it is not

separable.

In realistic scenario, mixed states are more abundant in nature because decoherence

and other imperfect quantum operations leads to loss of information about the state of
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the system. The state is represented by a trace-1 normalized density matrix ρ, that is an

element of the space D(HS) of positive semidefinite operators acting on a Hilbert space HS

The definition of entanglement for mixed state is more subtle and it is given by [69]:

Definition 3 (Separable state) A state ρ ∈ D(HS) is separable if it can be expressed as

a convex combination of pure product states

ρ =
∑
i

pi ρ
i
1 ⊗ · · · ⊗ ρiN , (5.3)

such that ρi ∈ Hi, pi ≥ 0 and
∑

i pi = 1.

The states of the form (5.3) can trivially be prepared by Local Operations and Classical

Communication ’LOCC’, where first member samples from the distribution pi, informs all

other members of the outcome i, and then each member X locally creates ρiX and discards

the information about the outcome i. These state are created from scratch by LOCC and

hence their correlations can be described classically.

Definition 4 (Entangled state) A state ρ ∈ D(HS) is entangled if it can not be expressed

as a convex combination of pure product states i.e. it is not separable.

Entangled states can not be created from scratch using LOCC and separable states, hence

all their correlations can not be described classically.

5.2.2 Bipartite Entanglement

A quantum system composed of two physically distinct subsystem is called bipartite

quantum system. The Hilbert space HS associated with the bipartite system is given by

the tensor product H1⊗H2, where H1 and H2 represent the two subsystems respecitevely

[66, 67, 68]. Due to vector nature of total Hilbert space HS, not all states necessarily may

be written as the product of some other states. In other words, a pure quantum state

51



|ψ〉AB, that can be written as

|ψ〉 =
∑
j1j2

cj1j2|j1〉 ⊗ |j2〉, (5.4)

where {|j1〉} and {|j2〉} are the basis of the system 1 and 2 respectively, and cj1j2 are

normalized complex coefficients, are called separable state. A quantum state vector on HS

that can not be written as a product of state vector of the individual subsystem are called

entangled pure state.

• Pure State: Maximally Entangled State

For any pure bipartite pure state |ψ〉 there always exists a product basis
∣∣φ1
jφ

2
j

〉
in

terms of which a state |ψ〉 can be written as

|ψ〉 =
r−1∑
j=0

cj
∣∣φ1
jφ

2
j

〉
, (5.5)

where r ≤ d = min{d1, d2} and cj ≥ 0 for all j. This decomposition is called Schmidt

decomposition and r and cj are called Schmidt rank and Schmidt coefficients of |ψ〉 respectively.

A pure state is entangled if r > 1. For a finite dimensional system, maximally entangled

state pure state are defined in terms of Schmidt decomposition such that

∣∣φ+
〉

=
1√
d

d−1∑
j=0

∣∣φ1
jφ

2
j

〉
. (5.6)

For spin-half two qubit system (d1 = d2 = 2), the maximally entangled states are

defined as four Bell states and expressed in computational basis as

∣∣Ψ±〉 =
1√
2

(|01〉 ± |10〉) (5.7)∣∣Φ±〉 =
1√
2

(|00〉 ± |11〉). (5.8)
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• Mixed State: Werner State

Werner state are mixtures of maximally entangled bell state |Ψ−〉 with white noise and

has the form

ρ1 = r
∣∣Ψ±〉〈Ψ±∣∣+

1− r
4

I (5.9)

ρ2 = r
∣∣Φ±〉〈Φ±∣∣+

1− r
4

I, (5.10)

where 0 ≤ r ≤ 1 [69, 70]. It is a subclass of Bell-diagonal states, where the density matrix

in computational basis is nonvanashing only along the diagonal and antidiagonal and has

”X” form. The purity P = Tr (ρ2) of Werner state only depends on the purity parameter

r and it is given by P = (1 + 3r2)/4. For r = 0, the state is a maximally entangled state

and for r = 1 the state is a completly mixed state [71, 72].

5.3 Entanglement Measure

Entanglement being an essential resource for any kind of quantum information task, it

is very important to be able to compare and quantify entanglement of states. In general,

quantification of entanglement is a formidable task and typically involves optimization,

whose computational resource grows fast with system size. Effort required to quantify of

entanglement for an arbitrary state becomes practically impossible for handful of particles.

Given the complexity and importance of the task, there exists several proposed quantifier

based on efficiency of quantum information protocols or operational approach, axiomatic

approach, geometric aspect etc, each having some advantage over others in some sense. In

this section we just describe one operational measure for quantification of entanglement for

the two qubit system and it is called concurrence.
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5.3.1 Entanglement of Formation and Concurrence

Entanglement of formation EF is one of the important entanglement quantifier and it

is defined as:

EF (ρ) ≡ inf
{pi,ψi}

∑
i

piE(|ψi〉〈ψi|) ≡ inf
{pi,ψi}

∑
i

piS(TrB{|ψi〉〈ψi|}), (5.11)

where ρ =
∑

i pi|ψi〉〈ψi| and S(ρ) = −Tr[ρ log2 ρ] is the von Neumann entropy. In other

words, entanglement of formation is the infimum average entropy of entanglement over all

possible pure state decomposition of the given state [67].

In general, the quantity EF is computationally difficult to calculate except for the case

of two-qubit system. For two-qubit system a closed form analytic expression for EF is

defined in terms of an intermediate quantity called concurrence C. It was first introduced

introduced by Hills and Wootters for the case of rank 2 matrices, and later generalized for

any two-qubit state [73]. It is defined as

C(ρAB) ≡ max{0, λ1 − λ2 − λ3 − λ4}, (5.12)

where the λi are, in decreasing order, the square roots of the eigenvalues of the matrix

ρAB.ρ̃AB where ρ̃AB ≡ σy ⊗ σyρ
∗
ABσy ⊗ σy, σy is the Pauli matrix and ρ∗ is elementwise

complex conjugate of ρ. For general bipartite qubit state, an analytic expression exists for

entanglement of formation in terms of concurrence [74]

EF (ρ) = s

(
1 +

√
1− C2(ρ)

2

)
, (5.13)

where s(x) = −x log2 x− (1− x) log2(1− x) is the Shannon entropy. The two qubit EF (ρ)

and two qubit concurrence are monotonically related by above expression hence concurrence
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is used to quantify entanglement rather than the EF . It should be remembered that

entanglement of formation is an entanglement measure, and the concurrence obtains its

meaning via its relation to entanglement of formation and not vice versa.

5.4 Entanglement Sudden Death in Single-Mode Fiber

Entanglement is an essential resource and it distribution over long distances is inhibited

by decoherence caused due to the refractive index fluctuation in the fiber. This decoherence

ultimately leads to loss of entanglement for pure state and entanglement sudden death

(ESD) for mixed state.

To understand the decoherence, we consider the setup shown in the Figure 5.2, where

an entangled photon pair from a spontaneous parametric down conversion (SPDC) source is

sent over single mode fiber. A general initial state for the two-qubit polarization entangled

photon is given as

∣∣Ψ+
in

〉
= α|HV 〉+ β|V H〉, (5.14)

∣∣Φ+
in

〉
= α|HH〉+ β|V V 〉, (5.15)

where we assume that |α2|+ |β2| = 1 and the computational basis is {HH,HV, V H, V V }.

As the photon passes through a section of fiber it acquires a phase φ proportional to the

length of section. Here we choose a convention, where the phase gained by the horizontally

polarized photon is exp (iφ) and the phase gained by vertically polarized photon exp (−iφ).

Since the two photons travel through two different optical fiber with similar index profile,
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Figure 5.2: Decoherence of entangled photon in an experimental setup, where a Bell pair
is created from spontaneous parametric down conversion (SPDC) and the photon pair is
sent over the single-mode fiber.

the phase gained is given by :

|HH〉 =⇒ exp i(φ1 + φ2)|HH〉

|HV 〉 =⇒ exp i(φ1 − φ2)|HV 〉

|V H〉 =⇒ exp−i(φ1 − φ2)|V H〉

|V V 〉 =⇒ exp−i(φ1 + φ2)|V V 〉. (5.16)

After the photon, with initial state |Ψ+〉, passes through the jth section of the fiber, it

acquires a phase according to the transformation given in equation (5.16). The output

state is given by

∣∣Ψ+
out

〉
= αei(δφ

1
j−δφ2j)|HV 〉+ βe−i(δφ

1
j−δφ2j)|V H〉, (5.17)
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and the corresponding density matrix is given by

ρ̂Ψ+

jout =
∣∣Ψ+

out

〉〈
Ψ+
out

∣∣ (5.18)

=
(
αei(δφ

1
j−δφ2j)|HV 〉+ βe−i(δφ

1
j−δφ2j)|V H〉

)(
α∗e−i(δφ

1
j−δφ2j)〈HV |+ β∗ei(δφ

1
j−δφ2j)〈V H|

)
(5.19)

=
∣∣α2
∣∣|HV 〉〈HV |+ αβ∗ei2(δφ

1
j−δφ2j)|HV 〉〈V H|+ βα∗e−i2(δφ

1
j−φ2j)|V H〉〈HV | (5.20)

+
∣∣β2
∣∣|V H〉〈V H|. (5.21)

ρ̂Ψ+

jout =



0 0 0 0

0
∣∣α2
∣∣ αβ∗ei2(δφ

1
j−δφ

2
j) 0

0 βα∗e−i2(δφ
1
j−δφ

2
j)

∣∣β2
∣∣ 0

0 0 0 0

. (5.22)

Similarly applying the transformation equation (5.16) for the other two-qubit entangled

state, |Φ+〉, that passes through jth section of the fiber, the output state is given by

∣∣Φ+
out

〉
= αei(δφ

1
j+δφ

2
j)|HH〉+ βe−i(δφ

1
j+δφ

2
j)|V V 〉, (5.23)

and the corresponding density matrix is given by

ρ̂Φ+

jout =
∣∣Φ+

out

〉〈
Φ+
out

∣∣ (5.24)

=
(
αei(δφ

1
j+δφ

2
j)|HH〉+ βe−i(δφ

1
j+δφ

2
j)|V V 〉

)(
α∗e−i(δφ

1
j+δφ

2
j)〈HH|+ β∗ei(δφ

1
j+δφ

2
j)〈V V |

)
(5.25)

=
∣∣α2
∣∣|HH〉〈HH|+ αβ∗ei2(δφ

1
j+δφ

2
j)|HH〉〈V V |+ βα∗e−i2(δφ

1
j+δφ

2
j)|V V 〉〈HH| (5.26)

+
∣∣β2
∣∣|V V 〉〈V V |. (5.27)
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ρ̂Φ+

jout =



∣∣α2
∣∣ 0 0 αβ∗ei2(δφ

1
j+δφ2

j)

0 0 0 0

0 0 0 0

βα∗e−i2(δφ
1
j+δφ2

j) 0 0
∣∣β2
∣∣

. (5.28)

5.4.1 Decoherence Model

To further understand the model for decoherence of entangled photon pair in optical

fiber, we first recall the model of a single mode fiber from Chapter 2.

In a realistic birefringent optical fiber which is typically of lengths 10-1000 km, the

polarization qubits are likely to experience random effects due to changes in temperature,

stress, etc. during propagation. The characteristic length scales for such changes, in a

single mode fiber, are generally smaller than the fiber beat-lengths [16]. We approximate the

communication channel as continuously connected fiber segments, as shown in Figure 5.3, of

constant birefringence and constant length. In this derivation, we consider a communication

channel with no dispersion.

Figure 5.3: The fiber is modeled as concatenated segments of fiber of length ∆L with
constant birefringence ∆n.

We model the random dephasing by continuously concatenating pieces of fiber with

randomly generated lengths 4L. The total propagation length thus can be split into

segments of length ∆L with constant ∆n. The absolute phase difference δφ acquired by

the photon after propagating through the jth segment is given by

δφj = ∆βj∆L, (5.29)

where ∆βj is the constant birefringence for the segment of length ∆L of the fiber. The
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birefriengence across these sections are modeled as Gaussian distribution with a zero

mean and a known variance. Here, birefriengence is defined as the difference between

the propagation constant of slow and fast modes. It can be expressed as

∆β =
ωns
c
− ωnf

c
=
ω∆n

c
, (5.30)

where ω is the angular frequency, c is the speed of light, and ∆n = ns−nf is the differential

effective refractive index between slow (s) and fast (f) modes [13]. Here we assume that the

fiber only exhibits linear birefrengence. These segments constitute a single phase profile

associated with a particular instance of birefringent noise and corresponding changes in the

refractive index difference 4n. Ensemble averaging over profiles gives density matrix for

the output state depicting the random dephasing in the fiber.

Now, we consider the two states |Φ+〉 and |Ψ+〉 as defined in equation (5.14) and

equation (5.15). As these states propagate through the i-th section of fiber, they dephase

according to the transformation given in equation (5.16) to a final state given by equation

(5.17) and equation (5.23). After propagating through all the sections of fiber of length L,

the output density matrices for the state |Φ+〉 and |Ψ+〉 are given by

ρ̂Ψ+

jout =



0 0 0 0

0
∣∣α2
∣∣ αβ∗

n∏
j=1

ei2(δφ
1
j−δφ

2
j) 0

0 βα∗
n∏
j=1

e−i2(δφ
1
j−δφ

2
j)

∣∣β2
∣∣ 0

0 0 0 0


. (5.31)

ρ̂Φ+

jout =



∣∣α2
∣∣ 0 0 αβ∗

n∏
j=1

ei2(δφ
1
j+δφ2

j)

0 0 0 0

0 0 0 0

βα∗
n∏
j=1

e−i2(δφ
1
j+δφ2

j) 0 0
∣∣β2
∣∣


. (5.32)

59



We then model the set of acquired phases {δφ1
1, δφ

1
2, ......, δφ

1
n} and {δφ2

1, δφ
2
2, ......, δφ

2
n}

as random variable φ̂1 and φ̂2 with a mean
〈
φ̂1
〉

=
〈
φ̂2
〉

= 0 and a nonzero variance〈
∆φ̂1

2
〉

=
〈

∆φ̂2
2
〉

= ∆φ2; since the two optical fibers carrying the entangled pair are of

the same type.
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The product terms in off-diagonal elements of density matrix equation (5.32) and

equation (5.31) can be written as

n∏
j=1

e±i2δφi = exp

[
2

n∑
j=1

(±iδφi)

]

= exp

[
2

n∑
j=1

(
±i
〈
φ̂
〉
± i∆φ̂

)]

= exp
[
±i2n

〈
φ̂
〉]

exp
[
±i2∆φ̂

]
= exp

[
±i2∆φ̂

]
, (5.33)

where we substitute the mean and variance from the above model for random phase. We

simplify it and obtain the last expression by using the fact that the mean of the random

variables is zero. We then Taylor expand the factor exp
[
±i2∆φ̂

]
of equation (5.33) and

take the average to obtain

〈
exp
[
±i2∆φ̂

]〉
=

〈
1± i2∆φ̂− 1

2
(2)2∆φ̂2 + · · ·

〉
= 1± i2

〈
∆φ̂
〉
− 1

2
(2)2

〈
∆φ̂2

〉
+ · · · (5.34)

Since the mean of variance is zero in equation (5.34) and average of the variance is
〈

∆φ̂2
〉

=

∆φ2, hence we obtain the expression

〈
exp
[
±i2∆φ̂

]〉
= 1− 1

2
(2)2∆φ2 + · · · ≈ e−2∆φ2 . (5.35)

We substitute back the approximation obtained in equation (5.34) and equation (5.35)

in the off-diagonal term of the density matrix equation (5.31) and equation (5.32) to obtain
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the final output density matrix for the two states.

ρ̂Ψ+

jout ≈



0 0 0 0

0
∣∣α2
∣∣ αβ∗e−4∆φ2

0

0 βα∗e−4∆φ2 ∣∣β2
∣∣ 0

0 0 0 0

. (5.36)

ρ̂Φ+

jout ≈



∣∣α2
∣∣ 0 0 αβ∗e−4∆φ2

0 0 0 0

0 0 0 0

βα∗e−4∆φ2

0 0
∣∣β2
∣∣

. (5.37)

From the output density matrix equation (5.36) and equation (5.37), we find that

two-qubit entangled state of the of the form

∣∣Ψ+
in

〉
= α|HV 〉 ± β|V H〉. (5.38)

∣∣Φ+
in

〉
= α|HH〉 ± β|V V 〉 (5.39)

decohere at an exponentially rate as they propagate through the optical fiber. Here, ∆φ2

is the standard deviation of random phase in the fiber.

5.4.2 Entanglement Death

To quantify the amount of entanglement of a birartite mixed state we recall the result

due to “Tu and Eberly” [75], where they quantify the entanglement for mixed state also

called “X” state in terms of concurrence.

They examined the evolution of entanglement under noise-induced relaxation of an

important class of bipartite density matrices called “X” state. The density matrix in this

class only contain non-zero element in an “X” formation, along the main diagonal and
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anti-diagonal and given as:

ρAB =



a 0 0 w

0 b z 0

0 z∗ c 0

w∗ 0 0 d

, (5.40)

where a + b + c + d = 1. The X mixed state arises naturally in a variety of situations

[76, 77, 78] and it includes pure Bell states and well-known Werner mixed state [69] as a

special case. For the X state defined in equation (5.40), the concurrence is computed as

C
(
ρAB

)
= 2 max

{
0, |z| −

√
ad, |w| −

√
bc
}
. (5.41)

Using the result in equation (5.41), the concurrence for the two output density matrix

equation (5.36) and equation (5.37) can easily be calculated and it can be shown that the

entanglement decays to zero for a pure Bell state and entanglement sudden death (ESD)

happens for Werner mixed state.

5.5 Summary

To summarize, we discussed the topic of entanglement in bipartite and multipartite

system and a measure for quantification of entanglement. Later we showed that decoherence

caused by refractive index fluctuation in fiber leads to loss of entanglement for Bell state

and ESD for Werner state.
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Chapter 6
Numerical Simulation1

6.1 Introduction

The distribution of quantum states over long distances is essential for emerging quantum

technologies such as quantum networks and long distance quantum cryptography. Quantum

networks and quantum cryptographic systems [31, 32] use photonic qubits as information

carriers because of their quantum nature and low-loss coefficient pertaining to transmission,

both in optical fiber [33] and in free space [34]. Nevertheless, the losses become significant

when we envision transmission over hundreds of kilometers or more and is accompanied by

decoherence.

Quantum information is often encoded in the polarization or orbital angular momentum

degree of freedom of the photon, or some suitable combination of both degrees of freedom.

Unavoidable couplings between photonic qubit and its environment introduce uncontrolled

evolution of the qubit causing the qubit to lose its ability to exhibit coherent behavior.

As a result, the phase of the qubit becomes randomized and the information stored in it

is lost. Such decoherence processes stand as a serious obstacle towards achieving scalable

quantum information processing.

To extend the lifetime of the qubit, we use a simple and effective technique of Dynamical

decoupling (DD) where external pulse sequences applied to the system average out the

qubit-environment interaction by time-reversing the effects of the interaction Hamiltonian.

The idea of refocusing the phase diffusion by the application of repeated external pulses

has been extensively studied and several DD strategies have been proposed. Notable

examples of DD schemes are the periodic DD (PDD) [24], Carr-Purcell DD (CP) [79],

Carr-Purcell-Meiboom -Gill (CPMG) [80], concatenated DD (CDD) [28] and Uhrig DD

1This chapter previously appeared as Manish K. Gupta and et al., Physical Review A 91, 032329
(2015), Bhaskar Roy Bardhan, Petr M. Anisimov, Manish K. Gupta and et al., Physical Review A 85,
022340 (2012). It is reprinted by permission of the American Physical Society.
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(UDD) [81]. In quantum computing, DD has been typically used as an open-loop control

scheme to reduce the errors which occur during the evolution of the quantum state.

To numerically simulate the effect of refractive index fluctuation in optical fiber on

photonic qubi or qdit state, we first model the optical fiber of length L as concatenated

segments of fixed ∆n as shown in the Figure 6.1. The absolute phase difference acquired

by the photon after propagating through the jth segment is given by

δφj = ∆βj∆L (6.1)

where δφ is the acquired phase after traveling though the jth segment of length ∆L in

the fiber. These fiber segments together constitute a single phase profile for a particular

instance of birefringent noise and corresponding changes in the refractive index ∆n. The

output state is obtained by averaging over all phase profiles.

Figure 6.1: The fiber is modeled as concatenated segments of fiber of length ∆L with
constant birefringence ∆n.

6.2 Preserving Polarization Qubit in PM Fiber

We propose here the application of the CPMG sequence of dynamical decoupling for

minimizing the random dephasing in polarization maintaining (PM) optical fibers. This

sequence has been shown to be robust against a variety of dephasing and control pulse

errors [82, 83, 3, 84]. We apply this sequence to flying polarization qubits in order to extend

the useful range of a quantum communication channel. We simulate the CPMG pulses with

spatially separated half-wave plates to suppress the dephasing of the input polarization

qubits. This will be useful for the BB84 protocol [31] of quantum key distribution,
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along with applications in the fields like optical quantum computing [85] and quantum

networks [86], with the advantage of having low control overheads. Our proposed scheme

helps to improve the range of communication channels without requiring any ancilla qubits

and measurement.

6.2.1 Numerical Simulation

To characterize the effectiveness of our scheme, we use the fidelity F between the input

state |ψin〉 and ρout as

F = 〈ψin|ρout|ψin〉, (6.2)

where ρout = 1
n

n∑
i=1

|ψi〉〈ψi|. Here n is the total number of randomly generated phase

profiles, corresponding to the propagation operator ûi so that |ψi〉 = ûi|ψin〉 represents the

simulated birefringent noise. Therefore, the fidelity being close to one implies that the

input state is well-preserved against the dephasing.

For an arbitrary polarization state α|H〉 + β|V 〉, our calculations show that after n

randomly generated phase profiles, the average fidelity between the input and output states

is

FAvg =

〈
cos2(θ) +

(
|α|2 − |β|2

)2
sin2(θ)

〉
. (6.3)

Here θ is the total phase introduced by the birefringent fiber as well the waveplates. States

which minimize the fidelity are given by 1√
2

(
|H〉+ eiφ|V 〉

)
and lie on the equator of the

Poincaré sphere. However, equation (6.3) is valid for any general input state and our

simulations, although targeted to improve the fidelity of the states that are useful for

the BB84 protocol, hold for any general polarization state, and hence useful for practical

implementations of sending a general quantum state through the channel. We observe that

the fidelity drastically improves when we used the waveplates even for a large variation of

the parameters of the random dephasing ∆φ. We illustrate this in Figure 6.2.
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Figure 6.2: Fidelity obtained with CPMG waveplates in the optical fiber is shown with
variation of the number of waveplates for different standard deviations of the randomly
generated dephasing 4φ and fixed L = 10km, 〈4L〉 = 10m and σ4L = 3m.

We developed our dephasing model in a dimensionless manner so we can model any

realistic fiber length. In Figure 6.3, the contour plot of the fidelity is shown with respect

to the standard deviations 4L and 4φ. This plot illustrates that high fidelity can be

obtained for a reasonably large range of random fluctuations. Therefore, we show how to

preserve photonic qubits against dephasing over realistic lengths of optical fiber.

The variation of fidelity for different fiber lengths is plotted in Figure 6.4, which shows

that polarization qubits can be preserved up to an excellent fidelity using the CPMG

sequence for a wide range of the total fiber length. Moreover, for a given length of the

fiber, we can estimate the minimum number of waveplates or the distance between the

waveplates required to achieve high fidelity. For instance, for a total fiber length of L=10

km, the estimated number of waveplates from Figure 6.2 is 610 to obtain a fidelity of

0.98. Using this, the rough estimate of the inter-waveplate distance Lτ is 8.2 m when we

considered birefringence fluctuations ∆n on a length scale of 10 m (which is fairly realistic

for the long-distance communication purposes) along the fiber.
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Figure 6.3: Contour plot of the fidelity with the variations of the standard deviations of
4L and 4φ. Lighter regions show higher values of the fidelity. The simulation is done
with fixed L = 10km, 〈4L〉 = 10m.

Figure 6.4: Fidelity variation for different fiber lengths with 〈4L〉 = 10m, σ4L = 3m and
σ4φ = ±100 radians.

6.3 Preserving Polarization Qubit in SM Fiber

In the past, techniques based on DD control have been proposed by Wu and Lidar [25]

and others [87, 88, 89] for preserving the polarization qubit in an optical fiber, however, no
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specific scheme has been studied in single-mode fiber that are not polarization preserving.

In our previous work, we proposed the Carr-Purcell-Meiboom-Gill (CPMG) DD pulse

sequence for preserving polarization qubit in a polarization-maintaining fiber where the

birefringence of the fiber was simulated as a Gaussian-distributed, zero-mean random

process [90]. We numerically showed that effect of decoherence can be minimized with

the use of ideal pulses implemented using suitability oriented half-wave plates (HWP) and

a fidelity greater than 99% can be achieved [27].

Polarization-maintaining fibers are less widely used in telecommunication in comparison

to single-mode fiber since they are costly. For this reason, we propose a scheme to preserve

the polarization qubit in a single-mode fiber with a more realistic birefringence noise profile,

using the Knill dynamical decoupling (KDD) pulse sequence [3]. We numerically show that

when the self correcting KDD pulse sequence is implemented, using HWPs in a single-mode

fiber, then a polarization qubit can be preserved with fidelity greater than 99%. In reality,

manufacturing a fiber with perfect wave plates is a difficult task. Hence, we also show

that in the presence of 0.5% rotation error in a pulse, a fidelity greater than 96% can be

achieved. Since any state can be preserved with high fidelity it can be used as delay line

or as quantum memory to store photon qubit for short period of time.

6.3.1 Numerical Simulation

We numerically show that state of polarization can be preserved against decoherence

caused by the birefringence present in a single-mode fiber by introducing half-wave plates

(HWPs) at predetermined positions along the fiber. Since the manufacturing of fibers with

waveplates at appropriate positions is limited by manufacturing accuracy, we also show

that such intrinsic error can also be minimized when KDD is used.

To preserve the coherence of the polarization qubit in a single-mode fiber, we use DD

pulse sequences implemented with HWPs. We compare the effectiveness of CPMG and

KDD pulse sequences in the presence of pulse imperfections to allow for intrinsic errors in
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the HWP, and we show that as the fiber length increases, the accumulation of errors due

to pulse imperfection can be better suppressed with the KDD sequence as compared to

the CPMG sequence.

The birefringence of a single-mode fiber is modeled by generating a set of values

according to the Rayleigh distribution, whose probability density function is given as

f(x, σ) =
x

σ2
e−x

2/(2σ2), x ≥ 0 (6.4)

where σ ≥ 0, is the scale parameter of the distribution, and x is the distance along the

fiber. Each value is the phase error acquired by the photon as it travels a distance ∆L

along the fiber. A noise profile of the fiber is extrapolated from these phase error values.

We then calculate the fidelity of a specific DD pulse sequence in a fiber of a particular

length, number of sections, and initial polarization state. For each section of fiber, the

initial state of photon is allowed to freely evolve for a distance according to

Mz(δφj) =

ei
δφj
2 0

0 e−i
δφj
2

, (6.5)

where, δφj includes the phase error from the Rayleigh distribution. The pulse error is then

calculated from the normal distribution with zero mean, and the state is rotated according

to the particular DD pulse sequence being analyzed. This is repeated for each section in

the fiber. We then compare the output state with input state and use fidelity as a measure

of effectiveness in preserving the state of photon. Fidelity is defined as

F = |〈ψi|ψf〉|2 = 〈ψi|ρ̂out|ψi〉, (6.6)

where ψf and ψi represent the final and initial state respectively and ρ̂out = 1
n

∑
|ψout〉〈ψout|

is average output state over n fiber noise profiles.
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To compare the effectiveness of KDD and CPMG pulse sequences in suppressing the

decoherence, we first run the simulation for a single-mode fiber of length 500 meters

in absence of pulse error. The result of the simulation is shown in Figure 6.5., where

we find that in the absence of pulse errors, the two schemes perform equally well and

require 800 wave plates to preserve the polarization qubit in a 500-meter single-mode fiber.

○

○

○

○

○

○

○

○
○ ○ ○

△

△

△
△

△

△

△

△
△ △ △

□

□

□
□ □

□

□

□
□ □ □

▽

▽

▽ ▽ ▽

▽

▽

▽
▽ ▽ ▽

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number of Wave plates

F
id

el
it

y

▽ σβ = 18.76 degree/m

□ σβ = 16.56 degree/m

△ σβ = 14.36 degree/m

○ σβ = 12.16 degree/m

CPMG with No Wave-plate Error KDD with No Wave-plate Errora) b)

○
○

○
○

○

○

○

○ ○ ○

△

△
△

△

△

△

△

△ △ △

□
□

□
□

□

□

□

□ □ □

▽
▽ ▽

▽

▽

▽

▽

▽
▽ ▽

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number of Wave plates

F
id

el
it

y

▽ σβ = 18.76 degree/m

□ σβ = 16.56 degree/m

△ σβ = 14.36 degree/m

○ σβ = 12.16 degree/m

Figure 6.5: Fidelity of DD sequence in a 500 m single-mode fiber with perfect pulses. a)
CPMG pulse sequence b) KDD pulse sequence.

We then introduce 0.5% error in the HWPs, distributed as Gaussian with zero mean

and run the simulation for a 500-meter single-mode fiber. The result of the numerical

simulation is show in Figure 6.6. The KDD sequence performs better when compared to

CPMG sequence and achieves a fidelity of 96%. Furthermore, when errors in the wave

plate is increased from 0.5% to 1%, the fidelity of the CPMG sequence drops to 80% due

to error accumulation, whereas the fidelity of the KDD sequence remains above 90% due

to error cancellation as shown in Figure 6.7.

As the fiber length is increased from 500 meters to one kilometer, the pulse errors

accumulate and the fidelity of CPMG falls, whereas the fidelity of the KDD sequence

remains the same due to cancellation of errors, as shown in Figure 6.8.

71



○
○

○

○

○

○

○

○ ○
○ ○

△
△ △

△

△

△

△

△ △ △
△

□
□

□

□

□

□

□

□
□ □ □

▽

▽

▽

▽
▽

▽

▽

▽
▽ ▽

▽

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number of Wave plates

F
id

e
li

ty

▽
σβ = 18.76 degree/m

□ σβ = 16.56 degree/m

△
σβ = 14.36 degree/m

○
σβ = 12.16 degree/m

○

○

○

○

○

○

○

○ ○ ○

△ △

△
△

△

△

△

△ △ △

□ □

□ □
□

□

□

□ □ □

▽ ▽

▽

▽ ▽

▽

▽

▽
▽ ▽

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number of Wave plates

F
id

el
it

y

▽
σβ = 18.76 degree/m

□ σβ = 16.56 degree/m

△
σβ = 14.36 degree/m

○
σβ = 12.16 degree/m

KDD with 0.5% Wave-plate Error
a) b)

CPMG with 0.5% Wave-plate Error
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a) CPMG pulse sequence b) KDD pulse sequence.
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Figure 6.7: Fidelity of DD sequence in a 500 m single-mode fiber with 1% pulses error.
a) CPMG pulse sequence b) KDD pulse sequence.
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6.4 Preserving OAM Qudit state in MM Fiber

To understand the detrimental effects of noise encountered in the communication

channel we numerically study three scenarios. First we analyze the decoherence of free

evolving OAM photon in a fiber due to index of refraction fluctuations and then we analyze

the effectiveness of open-loop control in preserving the coherence of the qubit, where the

system is subjected to external, suitably tailored, space-dependent pulses which do not

require measurement. Finally we analyze the impact of large values of quantum number l

on decoherence suppression.

6.4.1 Numerical Simulation

Decoherence of a photonic state has its origin in optical index fluctuation of a fiber

that can result from both intrinsic and extrinsic perturbations. We model axially varying

index dephasing in an optical fiber of length L by a series of concatenated, homogeneous

segments of length ∆L with constant ∆n [18, 2, 27]. The index fluctuations across these

segments is modeled by generating a set of values according to the Rayleigh distribution,

whose probability density function is given as

f(x, σ) =
x

σ2
e−x

2/(2σ2), x ≥ 0 (6.7)

where σ ≥ 0, is the scale parameter of the distribution, and x is the distance along the

fiber [17, 2]. A noise profile of the fiber is extrapolated from these phase error values. Here

we assume that the fiber only exhibits linear index fluctuation as the radial dimension of

the fiber is very small.

For our numerical analysis we consider the following input state

|ψ〉 =
1√
2π

[Rp,l(r) exp (i l θ)|p, l〉

+Rp,−l(r) exp (−i l θ)|p,−l〉]. (6.8)
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Since R(p, l) = R(p,−l), we can normalize the state and rewrite the ket in matrix notation

as:

|ψ〉 =
1√
2

 ei lφ

e−i lφ

. (6.9)

We first calculate the fidelity of the fiber without any error suppression mechanism in

place for a particular length, number of sections, and initial state. The initial state of the

photon is allowed to freely evolve through each section of the fiber according to

Mz(δφj) =

ei l
δφj
2 0

0 e−i l
δφj
2

, (6.10)

where, δφj includes the phase error from the Rayleigh distribution. The freely evolved

state is then compared with the input state. We use fidelity as a measure of effectiveness

in preserving the state of photon and it is defined as

F = |〈ψi|ψf〉|2, (6.11)

where ψf and ψi represent the final and initial state respectively. The fidelity F is averaged

over n fiber noise profiles.

When photon with state of the form equation (6.9) is launched into the fiber of

length 500 m it completely dephases and fidelity remains at 50%. We then calculate

fidelity for second scenario where the passive error suppression mechanism called the

Carr-Purcell-Meiboom-Gill (CPMG) DD pulse sequence is used for a particular length,

number of sections, and initial state [90, 24]. For each section of fiber, the initial state

of photon is allowed to freely evolve for a certain distance according to equation (6.10)

and then the state is rotated according to the CPMG DD pulse sequence, where the pulse

sequence is implemented by inserting a dove prism. This prism is a well-known device in
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optics that acts as image flipper in one transverse dimension, while leaving unchanged the

image in the other transverse dimension [91]. This changes the OAM of a light beam from

l = 1 to l = −1. This is repeated for each section in the fiber. We then compare the output

state with input state and use fidelity as a measure of effectiveness in preserving the state

of photon. We see that for l = 2 the photon state can be preserved with a fidelity greater

than 99% as shown in Figure 6.9.
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Figure 6.9: Fidelity of CPMG sequence in a 500 m optical fiber with perfect pulses. The
result shown in the plot is for an OAM state with arbitrary φ and l = 2.

Finally we analyze the impact of large quantum number l on effectiveness of CPMG DD

pulse sequence in preserving the OAM state of photon. We find that the fidelity decreases

for same number of resource with increasing value of quantum number l such as l = 10

and l = 50 as shown in Figure 6.10 and Figure 6.11. As l is increased from 1 to 100, we see

that the DD pulse sequence fails to preserve the OAM state of photon and it completely

dephases as shown in the Figure 6.12. We note that there is no intuitive relation between

the exponential noise scaling and number of prisms.
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Figure 6.10: Fidelity of CPMG sequence in a 500 m optical fiber with perfect pulses. The
result shown in the plot is for an OAM state with arbitrary φ and l = 10.

○

○ ○

○ ○ ○
○

○
○

○

○

△

△

△
△ △

△

△

△

△

△

△

□

□

□

□

□

□

□ □

□
□ □

▽
▽

▽

▽
▽

▽

▽

▽ ▽
▽

▽

○ σβ=12.16 degree/m, l=50

△ σβ=14.36 degree/m, l=50

□ σβ=16.56 degree/m, l=50

▽ σβ=18.76 degree/m, l=50

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

Number of Dove Prisms

F
id
el
it
y

OAM in Optical Fiber with CPMG

Figure 6.11: Fidelity of CPMG sequence in a 500 m optical fiber with perfect pulses. The
result shown in the plot is for an OAM state with arbitrary φ and l = 50.
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Figure 6.12: Fidelity of CPMG sequence in a 500 m optical fiber with perfect pulses. The
result shown in the plot is for an OAM state with arbitrary φ and l between one and 100.

6.5 Saving Entanglement with DD

Entanglement is a fundamental resource for existence of key quantum communication

technologies such as Quantum Key Distribution (QKD), Quantum dense coding, Quantum

teleportation, and Quantum network. It is essential resource for any capacity achieving

quantum communication. Perfect quantum communication is equivalent to distribution of

perfect entanglement [59]. If we can transport a qubit without decoherence then entanglement

shared by qubit will also be distributed perfectly, however the effect of environmental noise

inevitably impair our ability to send quantum states over long distance.

Here we numerically simulate entanglement sudden death of polarization entangled

photons in a single-mode fiber caused by the refractive index fluctuation. We numerically

show the loss of entanglement for the Bell state and entanglement sudden death for Werner

mixed state or ”X” state [69, 75]. We additionally show that such a loss of entanglement

can be mitigated to a large extent with a open-loop control technique called dynamical

decoupling (DD) where the π-pulse is implemented using half-wave plate and we numerically

show that entanglement can be preserved for longer distances in an optical fiber.
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To quantify the entanglement in bipartite state, we use concurrence as a measure and

it is defined as

C(ρAB) ≡ max{0, λ1 − λ2 − λ3 − λ4}, (6.12)

where the λi are, in decreasing order, the square roots of the eigenvalues of the matrix

ρAB.ρ̃AB where ρ̃AB ≡ σy ⊗ σyρ
∗
ABσy ⊗ σy, σy is the Pauli matrix and ρ∗ is elementwise

complex conjugate of ρ. The value of C = 1 for maximally entangled state and C = 0 for

completely mixed state.

6.5.1 Numerical Simulation

We first simulate the decay of entanglement for the case of polarization entangled

photon in φ+ Bell state in a single-mode fiber. The result of the numerical simulation is

shown in Figure 6.13. As predicted by the decoherence model, discussed in the previous

chapter, the concurrence decays to a very small value as the photon propagates through a

100m optical fiber.

Figure 6.13: Decay of entanglement in a 100m Single Mode optical fiber. The input state
is φ+ state.
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In the actual experiment, the entangled photons are never produced in pure state hence,

we also simulate the propagation of X state, also called Extended Werner state [75, 69],

in a single-mode fiber. The result of the numerical simulation for a particular value of the

mixing parameter r = 0.89 is shown in Figure 6.14. As predicted by decoherence model

we observe that the value of concurrence goes to zero, which is also called entanglement

sudden death (ESD). To further analyze, we numerically simulate propagation of X state

for a range of values of mixing parameter r, 0 ≤ r ≤ 1. We again observe a region of ESD

as shown in the Figure 6.15.

Figure 6.14: Decay of entanglement in a 100m Single Mode optical fiber. The input state
is Werner X state.

To suppress the noise caused by the refractive index fluctuation in the optical fiber we

use the passive error suppression mechanism called the Carr-Purcell-Meiboom-Gill (CPMG)

DD pulse sequence. Where we apply a sequence of π pulse implemented using half-wave

plates in an optical of a particular length. We numerically simulate the two scenarios where

in the first case the initial state is φ+ Bell state and in the second case the initial state

is the X state is propagated through a 100m fiber with error suppression mechanism is in
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Figure 6.15: Decay of entanglement in a 100m Single Mode optical fiber. The input state
is Werner X state. The mixing parameter varies from zero to one.

place. We observe that the entanglement can be preserved for the two states and the result

of the numerical simulation is shown in Figure 6.16 and Figure 6.17.

Figure 6.16: Entanglement decay is minimized by applying CPMG DD pulse implemented
using Half-Wave plates. The input state is φ+ state.
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Figure 6.17: Entanglement decay is minimized by applying CPMG DD pulse implemented
using Half-Wave plates. The input state is Werner X state.

6.6 Summary

To summarize, We numerically simulated the effect of refractive index fluctuation on

polarization qubit in PM fiber and MM fiber and showed that DD can be used to preserve

polarization qubit with a fidelity of 99% for ideal and non-ideal pulses. We numerically

analyzed the impact of large values of quantum number l on decoherence and showed that

DD can be used to minimize the effect of decoherence to a certain maximum value of l. We

numerically simulated the effect of refractive index fluctuation in optical fiber on entangled

Bell state and Werner mixed state and showed that DD can be used to extend the length

over which entangled photons can be distributed over the optical fiber.
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Chapter 7
Conclusions and Outlook

7.1 Summary of Results

In this thesis, we studied the problem of quantum communication from the perspective

of pure dephasing caused by the refractive index fluctuation in the fiber. These fluctuations

in refractive index are caused by asymmetry in the core of the fiber induced either during

manufacturing or deployment. We showed how these fluctuations in the optical fiber can

be numerically modeled.

We later derived the analytic model for decoherence of polarization qubit in single mode

and multi-mode fiber and numerically showed that such a decoherence can be minimized

up to 99% by using the technique of dynamical decoupling with the help of half waveplate

in optical fiber, thus preserving the quantum state of qubit for longer distances. We

numerically studied the effectiveness of CPMG and KDD sequence in preserving the state

of the qubit in optical fiber with perfect pulses and later we showed that composite pulse

such as KDD is superior in performance in case of pulse error.

Experiments show that the data rate for quantum communication using polarization

qubit is low for practical purposes and other degrees of freedom of photon must be explored

for increasing data rates. One such state photo is orbital angular momentum state which

provides infinite dimensional Hilbert space for encoding data in angular momentum degree

of freedom and thus providing a method to increase quantum communication data rates. We

analytically showed that a certain maximum value of quantum number l may be used if data

is encoded in angular momentum degree of freedom because the fluctuation in optical fiber

will again cause decoherence and complete data loss. In addition, we numerically showed

that if dynamical decoupling is used then the problem of decoherence can be minimized

hence increase the rate of error free communication for longer distances.
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Finally, we studied the problem of sending entangled photon over the single-mode

optical fiber and derived the analytic model of decoherence for general entangled state

and showed that decoherence will cause entanglement sudden death. We later numerically

showed that the length over which entangled photon can be distributed can be increased by

using the technique of dynamical decoupling thus increasing the length for distribution of

entangled photon. The Table 7.1 lists all the scenario analyzed analytically and numerically

simulated.

Table 7.1: State and Type of fiber.
State Optical Fiber

Polarization Qubit PM Fiber
Polarization Qubit SM Fiber

Polarization Entangled Qubit SM Fiber
OAM Qudit MM Fiber

In the appendix, I have explored other directions of research not directly connecting to

the theme of this thesis.

7.2 Future Directions

Performance analysis of different DD pulse sequences for OAM photon in optical fiber:

In this thesis, we only analyzed the performance of CPMG pulse sequence in preserving

the OAM photon but there are other pulse sequences such as UDD, CDD, PDD that needs

to be compared because such sequences are known to cancel higher order errors. Further,

an optimization study can be done on number of pulses required for a specific length of

optical fiber.

Effect of pulse shaping error in optical fiber for OAM photon: Another avenue that

needs to be explored for OAM photon is the effect of pulse shaping error in preserving the

state of OAM photon. How does the shape of pulse affect the fidelity of DD pulse sequence

? Does use of composite pulse or error correcting pulse have any impact on preserving the

state of OAM photon ?
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Preserving multidimensional entanglement in optical fiber: A model for decoherence

of multi-dimensional entangled state in optical fiber may be derived. Can such entangled

state be preserved for long distances in optical fiber ? Does DD help in preserving the

multidimensional entanglement or we need some combination of techniques to preserve ?

Such questions would need to be explored.

84



References

[1] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley & Sons,

1991.

[2] M. Wuilpart, P. Megret, M. Blondel, A.J. Rogers, and Y. Defosse. Measurement

of the spatial distribution of birefringence in optical fibers. Photonics Technology

Letters, IEEE, 13(8):836–838, Aug 2001.
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[40] J. Minář, Hugues de Riedmatten, and Nicolas Sangouard. Quantum repeaters based

on heralded qubit amplifiers. Phys. Rev. A, 85:032313, Mar 2012.

[41] Zhen-Sheng Yuan, Yu-Ao Chen, Bo Zhao, Shuai Chen, Jorg Schmiedmayer, and

Jian-Wei Pan. Experimental demonstration of a bdcz quantum repeater node. Nature,

454(7208):1098–1101, 08 2008.

[42] Nicolas Sangouard, Romain Dubessy, and Christoph Simon. Quantum repeaters

based on single trapped ions. Phys. Rev. A, 79:042340, Apr 2009.

[43] Bhaskar Roy Bardhan, Kebei Jiang, and Jonathan P. Dowling. Effects of phase

fluctuations on phase sensitivity and visibility of path-entangled photon fock states.

Phys. Rev. A, 88:023857, Aug 2013.

[44] L. Allen, Stephen M. Barnett, and Miles J. Padgett. Optical Angular Momentum.

CRC Press, 2003.

[45] David L. Andrews. Structured Light and Its Applications: An Introduction to

Phase-Structured Beams and Nanoscale Optical Forces. Academic Press, 2008.

[46] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman. Orbital

angular momentum of light and the transformation of Laguerre-Gaussian laser modes.

Phys. Rev. A, 45:8185–8189, Jun 1992.

[47] Helle Bechmann-Pasquinucci and Asher Peres. Quantum cryptography with 3-state

systems. Phys. Rev. Lett., 85:3313–3316, Oct 2000.

89



[48] Vahid Karimipour, Alireza Bahraminasab, and Saber Bagherinezhad. Entanglement

swapping of generalized cat states and secret sharing. Phys. Rev. A, 65:042320, Apr

2002.

[49] Stephen D. Bartlett, Hubert de Guise, and Barry C. Sanders. Quantum encodings

in spin systems and harmonic oscillators. Phys. Rev. A, 65:052316, May 2002.

[50] Matthias Fitzi, Nicolas Gisin, and Ueli Maurer. Quantum Solution to the Byzantine

Agreement Problem. Phys. Rev. Lett., 87:217901, Nov 2001.

[51] Andris Ambainis. A new protocol and lower bounds for quantum coin flipping.

Journal of Computer and System Sciences, 68(2):398 – 416, 2004. Special Issue

on {STOC} 2001.

[52] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett.,

67:661–663, Aug 1991.

[53] A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields. Continuous

operation of high bit rate quantum key distribution. Applied Physics Letters, 96(16):–,

2010.

[54] S. Etcheverry, G. Canas, E. S. Gomez, W. A. T. Nogueira, C. Saavedra, G. B. Xavier,

and G. Lima. Quantum key distribution session with 16-dimensional photonic states.

Sci. Rep., 3, 07 2013.

[55] Gabriel Molina-Terriza, Juan P. Torres, and Lluis Torner. Management of the angular

momentum of light: Preparation of photons in multidimensional vector states of

angular momentum. Phys. Rev. Lett., 88:013601, Dec 2001.

[56] H. Bechmann-Pasquinucci and W. Tittel. Quantum cryptography using larger

alphabets. Phys. Rev. A, 61:062308, May 2000.

90



[57] Simon Groblacher, Thomas Jennewein, Alipasha Vaziri, Gregor Weihs, and Anton

Zeilinger. Experimental quantum cryptography with qutrits. New Journal of Physics,

8(5):75, 2006.

[58] Nenad Bozinovic, Yang Yue, Yongxiong Ren, Moshe Tur, Poul Kristensen, Hao

Huang, Alan E. Willner, and Siddharth Ramachandran. Terabit-scale orbital angular

momentum mode division multiplexing in fibers. Science, 340(6140):1545–1548, 2013.

[59] Martin B. Plenio and Shashank Virmani. An Introduction to entanglement measures.

Quant. Inf. Comput., 7:1–51, 2007.

[60] Xiaoying Li, Paul L. Voss, Jun Chen, Jay E. Sharping, and Prem Kumar. Storage

and long-distance distribution of telecommunications-band polarization entanglement

generated in an optical fiber. Opt. Lett., 30(10):1201–1203, May 2005.

[61] Cristian Antonelli, Mark Shtaif, and Misha Brodsky. Distance limitations on the

entanglement distribution over optical fiber due to chromatic and polarization mode

dispersion. In CLEO:2011 - Laser Applications to Photonic Applications, page

CThX3. Optical Society of America, 2011.
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Appendix A
Quantum enhanced spectroscopy
with entangled multi-photon states

A.1 Introduction

The goal of quantum metrology is to obtain the most precise measurements possible

with minimal resources [92]. Many types of high-precision measurement use a form of

interferometry. In interferometers, the unknown parameter is imprinted as the relative

phase between a superposition of states. Measurement of the output state, after quantum

interference, gives information about the unknown parameter.

One particular example is optical interferometry with Mach-Zehnder interferometers.

In this case, using N independent photons gives 1/
√
N scaling for the uncertainty of phase

measurements, which is known as the standard quantum limit. However, using N entangled

photons gives 1/N scaling for the phase uncertainty, which is often called the Heisenberg

limit. This enhancement in sensitivity is of much importance in probing delicate systems

such as atoms [93] and biological samples [94].

A well-known type of entangled states is NOON states [95, 96]. NOON states saturate

the Heisenberg limit. However, in the presence of absorption, NOON states perform poorly

[97, 98] and other states must be considered [99, 100, 101, 102]. Even with such states,

the advantage over the standard quantum limit is reduced by loss. However, we can take

advantage of the sensitivity of nonclassical properties of quantum states to absorption. The

sensitivity of quantum coherence can be used efficiently to estimate absorption [103], and

also estimate physical quantities that the absorption depends on.

In Ref. [104] a sub-shot-noise measurement of absorption is obtained using heralded

single photons. In that work, a non-interferometric setup was used, where all the information

is obtained from absorption, and the quantum enhancement results from sub-Poissonian

statistics of single photons. According to the Kramers-Kronig relation, absorption is
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accompanied by a phase shift [105]. However, the information from the phase is only

accessible if we take advantage of superposition and interference.

One would think, since NOON states have coherence which is highly sensitive to loss,

they could be the best candidates to sense loss or a parameter which causes loss in the

system. However, here we show that for the task of spectroscopy, when there is an advantage

to using entangled states, it is possible to find more general entangled states that perform

better than NOON states.

The system we are considering here is an ensemble of atoms. We are interested in

measuring a transition frequency of the atoms. If this ensemble is probed by a beam of

photons, the absorption of photons, and phase shift imposed on the probe, both depend

on the transition frequency of atoms. We consider a Mach-Zehnder interferometer with

the atomic ensemble placed in one of the arms of the interferometer. We optimize over

the state in the arms of the interferometer and find the state from which we obtain the

maximum information about the atomic transition frequency.

A.2 Interferometric scheme

Consider a Mach-Zehnder interferometer, as shown in Figure A.1, with an ensemble

of atoms placed in the upper arm of the interferometer. Here, we consider an ensemble

of identical two-level atoms in the absence of Doppler broadening and dipole dephasing.

This simple model gives a good qualitative description of the problem. Assuming that

all atoms interact equally with the input quantum state and that there is no interaction

between atoms, using the dipole and rotating-wave approximation the susceptibility of the

ensemble is given by [8, 106]

χ(∆) = χ′(∆) + iχ′′(∆) =
2Nµ2

~ε0

∆ + iγs
∆2 + γ2

s

, (A.1)
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a
D

b
D

Figure A.1: A Mach-Zehnder interferometer with an ensemble of atoms placed in the upper
arm. Da and Db are photon number detectors in the output modes.

where ∆ = ω−ω0 is the detuning between ω0, the transition frequency of atoms, and ω, the

frequency of input photons, γs is the spontaneous decay rate of the excited state, N is the

number density of atoms, µ is the electric dipole moment, ~ is the reduced Planck constant

and ε0 is the vacuum permittivity. Details of the derivation of this susceptibility based on

interaction of an ensemble of atoms with quantized light are given in Refs. [8, 106].

The imaginary and real parts of the susceptibility are plotted in Figure A.2. In this

figure we have used data for the D1 transition line of sodium from Ref. [107]; i.e. µ =

0.704× 10−29 C ·m and γs = 61.354× 106 s−1. For the number density of atoms we have

used N = 2.5× 1016 m−3.

Knowing the susceptibility of the atomic medium, the effect of the atomic ensemble in

the upper arm of the Mach-Zehnder interferometer can be modeled by the beam splitter

model proposed in Refs. [108, 109]. Normally, one beam splitter is used to model loss

Figure A.2: Real (solid line) and imaginary (dashed line) parts of susceptibility, χ′ and χ′′

respectively, for an ensemble of two level atoms.
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Figure A.3: Beam splitter model to model the interaction of photons with the ensemble of
atoms.

in each of the arms of a Mach-Zehnder interferometer [100, 102, 110]. However, here we

consider a line of n beam splitters, shown in Figure A.3 where each beam splitter represents

one of the atoms in the ensemble. The kth beam splitter transforms the creation operator

a†k according to

a†k =
√
t(ω)a†k+1 +

√
r(ω)b†k, (A.2)

where t(ω) and r(ω) are the transmissivity and reflectivity of the beam splitter, ω is the

frequency of input photons, and bk is the loss mode of the k-th beam splitter.

The effect of the atomic ensemble is obtained by applying all the beam splitters, and

taking the limit as the number of beam splitters approaches infinity. The creation operator

of the input mode a†in is therefore transformed to [108, 109]

a†in = a†oute
−iωL

c

√
1+χ

−i
√
ω

c
χ′′
∫ L

0

e−i
ω
c

(L−z)
√

1+χb†(z)dz, (A.3)

where L is the length of the ensemble, ω is the frequency of the input photons, c is the

speed of light and χ′′ is the imaginary part of the susceptibility of the atomic ensemble

χ = χ′ + iχ′′. The real part of susceptibility, χ′, describes dispersion and the imaginary

part, χ′′, describes absorption by the ensemble.

From Eq. (A.3), the transmissivity of the ensemble, T , and the phase shift imposed on

the state from the ensemble, ϕ, can be written in terms of the imaginary and real parts of

the susceptibility

T = e−χ
′′ωL/c, ϕ = −χ

′ωL

2c
. (A.4)
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Here, we have used the approximation
√

1 + χ ≈ 1 + χ/2. The quantities T and ϕ are

plotted in Figure A.4. This figure is plotted for ω0 = 2π(508.33) THz, which is the D1

transition line of sodium [107], and L = 1 cm. As can be seen from Figure A.4, for detunings

close to zero, ϕ has the highest slope. However, in this region, T is very small.

In the following section we find the optimal states to measure the transition frequency

of the atoms i.e., ∆ in this scheme.

A.3 Optimized states

We consider the general form of the state in the arms of the interferometer to be

|ψ〉 =
N∑
k=0

ψk|N − k, k〉, (A.5)

i.e., a pure state with the total photon number of N . We use Fisher information as the

measure to quantify the metrological value of the states. According to the Cramér-Rao

bound [111] the variance in estimating a parameter, ∆ in this case, using an unbiased

estimate, is lower bounded by the inverse of the Fisher information F (∆)

var(∆) ≥ 1/F (∆). (A.6)

Figure A.4: Transmissivity T (dashed line) and phase shift ϕ (solid line) vs. detuning ∆.
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Here, we are considering photon number detection in the output modes, thus we are using

classical rather than quantum Fisher information. The Fisher information represents the

amount of information about ∆ contained in the measurement results. It is given as

F (∆) =
∑
n1,n2

1

Pn1,n2(∆)

(
∂Pn1,n2(∆)

∂∆

)2

, (A.7)

where Pn1,n2(∆) is the probability of detecting n1 and n2 photons in each of the output

ports.

Considering the state given in Eq. (A.5), applying the atom cell transformation given

in Eq. (A.3) on the first mode, and the last 50/50 beam splitter of the interferometer on

both modes, we obtain

Pn1,n2(ω) =

n1+n2∑
k=0

n1+n2∑
k′=0

n2∑
u=n2−k

n2∑
v=n2−k′

ψkψ
∗
k′

n1!n2!(N − n1 − n2)!√
k!k′!(N − k)!(N − k′)!

(
1

2

)n1+n2

(−1)k−n2

×


N − k′

N − n1 − n2




N − k

N − n1 − n2




n1 + n2 − k

u




n1 + n2 − k′

v




k

k + u− n2




k′

k′ + v − n2



×(1− e−ωLχ′′/c)N−n1−n2
eiωχ

′L(k−k′)/(2c)e−ωLχ
′′(2n1+2n2−k−k′)/(2c), (A.8)

where ω = ∆ + ω0 is the frequency of the photons in the input state. Because we are

quantifying the metrological value of the states via the Fisher information, we regard the

optimal states to be those which maximize the Fisher information. We have found the

optimal values of ψk numerically using the particle swarm optimization (PSO) algorithm.

In the PSO algorithm a swarm of particles search the space of ψk coefficients for those

that maximize the Fisher information. Each particle has a velocity #»v and position #»x which

are updated to #»v ′ and #»x ′ according to its best previous position #»x `, and the best position
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Figure A.5: Fisher information F (∆) versus detuning ∆ for N = 2 photons (upper row) and
N = 10 (lower row). Solid-black line: N independent single photons |1, 0〉⊗N . Dashed-red
line: N -photon NOON state (|N, 0〉+ |0, N〉)/

√
2. Dashed green line: N -photon optimal

state. Solid-orange line: N copies of single-photon NOON states (|1, 0〉+ |0, 1〉)/
√

2.

of the entire swarm #»x g as [112]

#»x ′ = #»x + #»v ′,

#»v ′ = χ[ #»v + cgrg(
#»xg − #»x ) + c`r`(

#»x` − #»x )]. (A.9)

Here, rg and r` are uniform random numbers in the interval [0, 1], and χ, cg and c` are

constants. In our simulations, we used χ = 0.729, c` = cg = 2.05 with 10 particles and 100

iterations.

We have found that the optimal state for a specific type of atoms, only depends on the

product of the number density of atoms and cell length, NL. This can be explained in the
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following way. In Eqs. (A.4) and (A.8), we have ωχ′L and ωχ′′L which can be written as

ωχL = ωL(χ′ + χ′′) =
2NLµ2ω0

~ε0γs

(∆/γs + i)(1 + ∆/ω0)

1 + (∆/γs)
2 . (A.10)

For a given type of atom the multiplying factor at the front can only be varied via N or

L. The other parameters, µ, ω0 and γs can be varied by changing the type of atom. These

parameters affect the variation of ωχ in three ways:

1. They change the multiplicative factor at the front. As that factor can also be changed

by varying N or L, that does not give any qualitatively different results than simply

changing N or L.

2. The parameter γs appears in the ratio ∆/γs, and therefore provides a scaling to the

variation of ωχL with ∆. It therefore does not qualitatively change the results.

3. The parameter ω0 appears in the factor (1 + ∆/ω0). This factor affects the variation

very little, because we consider a parameter regime where ∆/ω0 � 1.

In the following we keep L constant at 1 cm and discuss the two cases: N > 1017 m−3

(large N ) and N < 1017 m−3 (small N ).

A.3.1 Large N

ForN > 1017 m−3, we have found that numerically optimized states of the form given in

Eq. (A.5) perform better than NOON states and independent single photons. In Figure A.5

we have compared the Fisher information of the N -photon optimal state, N independent

single photon states |1, 0〉⊗N , N copies of a single-photon NOON state (|1, 0〉+ |0, 1〉)/
√

2,

and an N -photon NOON state (|N, 0〉+ |0, N〉)/
√

2. This figure is plotted for N = 2

(upper row) and N = 10 (lower row). In this figure, we have used ω0 = 2π(508.332) THz,

which is the transition frequency of the D1 line of sodium [107], and an atom density of

N = 2.5× 1017 m−3.
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Figure A.5 shows that, even for N = 2, the enhancement obtained by optimal states

is significant. For larger photon numbers, as is shown in the graphs for N = 10, there is

no further significant improvement in the enhancement of the optimal states. Moreover,

the optimal states with high photon numbers are not experimentally achievable with the

current technology. On the other hand, it may be possible to generate the optimal states

for N = 2 with a scheme similar to the one proposed in Ref. [102].

Note that, close to resonance, for copies of single-photon NOON states the maximum

peak is higher than for independent single photons and N -photon NOON states. This

is as would be expected, since single-photon NOON states are the least sensitive NOON

states to loss. From Figure A.5(c), we see that ten-photon NOON states perform worse

than independent single photons close to resonance. However, far from resonance, their

Fisher information is even higher than the numerically obtained optimal states. The reason

why this is possible is that the optimal states are only optimal in the sense of giving the

largest maximum Fisher information, but it is possible for other states to have larger

Fisher information for detunings where the optimal states do not give their maximum

Fisher information. On the other hand, as can be seen in Figure A.5(a), two-photon

NOON states are less sensitive to loss (compared to ten-photon NOON states), and close

to resonance they perform better than independent single photons.

The other thing to note from Figure A.5 is that to be able to work in the region with

maximum Fisher information we need to have prior knowledge of the detuning. This is

because the peaks of maximum Fisher information are quite narrow. In other words this

scheme could be used to measure hyperfine splitting of atomic levels, or measure external

effects, such as magnetic field, on the transition frequency of atoms.

In Figure A.6 we have plotted the values of the coefficients of the optimal states, ψk

in the superposition (A.5), for a range of photon numbers from N = 2 to N = 10. This

figure shows that the optimal states have higher amplitudes for the terms with higher

photon numbers in the arm that contains the atomic ensemble. That is, when there are
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Figure A.6: Coefficients ψk of the optimal states, for four values of the total photon number
N .

more photons in the arm with the ensemble, they are more likely to be lost, giving more

information about ∆.

A.3.2 Small N

For smaller values of N than considered in the previous subsection, the range of the

phase shift is smaller (see Figure A.7). In this case, the optimal state is N independent

single photons, |1, 0〉⊗N . Having all the photons in the upper arm, only the loss is being

probed, and no information is being obtained from the phase shift. The phase shift must

be significant so that we can take advantage of interferometric schemes in spectroscopy.

Surprisingly for N = 2.5 × 1016 m−3 the maximum of the Fisher information for N

independent single photons is even higher than the maximum of the Fisher information

for the N -photon numerically optimized states with a larger number density of atoms

which were considered in the previous subsection (see Figure A.8).

This could be understood from the variation of the transmissivity T and phase shift ϕ

with N , shown in Figure A.7. For smaller values of N the range of the phase shift is also

smaller, which eliminates the advantage in using entangled states. In this case, the Fisher

information is coming from the variation in the absorption. As N is decreased further,

the dip in the absorption is reduced which results in a smaller Fisher information. For the
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Figure A.7: Transmissivity T and phase shift ϕ versus ∆, for a range of values of number
density of atoms N .

higher densities, there is a larger phase shift, but it is in a region where the absorption is

very high.

A.4 Conclusion

In this work we found optimal multi-photon states for measurement of the transition

frequency of atoms. The scheme proposed here is an interferometric scheme with photon

number detection in the output. In order to find the best states for measurement of the

transition frequency, we numerically optimised for the states that provide the largest Fisher

information.

For the number density of atoms we considered initially, the imposed phase on the

probe is large, and it is advantageous to using information from both the absorption and
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Figure A.8: Fisher information versus ∆ for total number of photons N = 2, for a range
of number densities of atoms N . Solid, red line: N independent single photons with N =
2.5×1015 m−3. Dashed, green line: N independent single photons with N = 2.5×1016 m−3.
Dashed, black line: numerically optimized state with N = 2.5× 1017 m−3.

the phase shift for measuring the transition frequency. In this case, the optimal state is

an entangled multi-photon state. This optimal state has a large weighting on the state

with all photons in the arm with the atomic ensemble. On the other hand, for a smaller

number density of atoms, the phase shift imposed on the probe is small and therefore the

information from the phase shift is not significant enough to give any advantage. In this

case, it is advantageous to pass all the photons through the atom cell and obtain all the

information from absorption.

Surprisingly there is a value of the number density, N = 2.5 × 1016 m−3, for which

N independent single photons have the highest Fisher information; even higher than the

Fisher information for the N -photon numerically optimised states with a larger number

density of atoms.
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