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Abstract

A stochastic dynamical system is a system composed of many interacting components which
includes stochastic behavior. Feedback control theory is designed to use information from the
current state of the system in order to temper the final state toward the desired outcome.
In this dissertation, I perform studies on two choices of classic and quantum dynamical
systems to cover vast variety of statistical tools and methods. For classical model, I perform
a study on finite-size effects at the phase transition in the Nagel-Schreckenberg traffic model
as an example of non-equilibrium many body stochastic dynamical system. For quantum
mechanical model, I introduce an optimal measurement-based feedback control protocol for
cooling a single qubit as an example of complex system with one cell and many degrees of
freedom.

I examine the Nagel-Schreckenberg traffic model for a variety of maximum speeds. [ show
that the low density limit can be described as a dilute gas of vehicles with a repulsive core.
At the transition to jamming, I observe finite-size effects in a variety of quantities describing
the flow and the density correlations, but only if the maximum speed V.. is larger than
a certain value. A finite-size scaling analysis of several order parameters shows universal
behavior, with scaling exponents that depend on V., The jamming transition at large V.«
can be viewed as the nucleation of jams in a background of freely flowing vehicles.

Feedback control of quantum systems via continuous measurements involves complex
nonlinear dynamics. As a result, even for a single qubit the optimal measurement for feedback
control is known only in very special cases. I show here that for a broad class of noise
processes, a series of compelling arguments can be applied to greatly simplify the problem
of steady-state preparation of the ground-state, while loosing little in the way of optimality.
Using numerical optimization to solve this simplified control problem, I obtain for the first
time a non-trivial feedback protocol valid for all feedback strengths in the regime of good
control. The protocol can be described relatively simply, and contains a discontinuity as a

function of feedback strength.

xlil



1. Introduction

Nature is a complex dynamical system. Of the 17th century, as a physicist, we know that
there are very few problems that allow exact solutions in the fields like classical mechanics.
Even in ideal classical world, a huge amount of problems cannot be solved by the complexity
of the problem itself or by the enormous number of degrees of freedom. Beyond that, the most
precise physical laws are quantum mechanical with its underlying principle of uncertainty.
We cannot predict the future state of even the simplest imaginable system without giving a
probability distribution. Since nature does not act deterministically, science needed to build
up and develop probabilistic methods to describe the world. Statistical mechanics have been
a successful approach to describe the rules of thermodynamics and to predict the future state
of a system. Counting on the huge number of particles playing role in the system is the fact
that statistical mechanics lays on. Stochastic analysis approach had been built up to explain
what could happen to the system, even a single particle, which undergoes through evolution
by a random variable [1, 2].

Robert Brown in 1827 discovered that the grains of pollen have a random motion in water,
that exists even without any flow in the water. In 1905, Einstein characterized so-called
Brownian motion with physical quantities and it became a critical test for atomic/molecular
nature of matter. Later in 1908, Paul Langevin was the first to apply Newton’s second law to
a Brownian particle, on which the total force included a random component. Since then the
Brownian motion (also called as Wiener process) has been considered as a random motion
with Gaussian distribution with zero mean and variance proportional to time. In 1940’s,
Ito and Chandrasekhar independently built up a strong mathematical basis for stochastic
analysis (named Ito calculus) and solved a number of important dynamical problems in terms
of probabilistically defined random variables [3].

Nowadays stochastic and statistical methods are applied to various fields in physics from

a small quantum resonator to a living world system like traffic flow or up to the huge physical



systems in galaxies. It finds heavy use in biology, chemistry, social evolution studies, coding
theory, economy and financial markets.

The main purpose in studying these dynamical systems is to figure out the macroscopic
behavior of the system from the microscopic properties. Prediction of the future behavior of
the system as well as ability to describe the current state of the system is mostly the reason
of all the complex system analysis. Correlation functions are the most important tools to
analyze the dynamical systems.

Correlation functions are measuring the order in the system. They show if different
parts of the system behave with respect to each other’s state or independently. In other
words, correlation functions show how microscopic variables such as local density at different
positions are related. Using correlations, one can quantify how these variables co-vary with
each other in average across the system.

The correlation length shows the typical size of the correlated regions. Long range cor-
relations indicate that parts far away from each other change respectively while short range
correlations show that only nearby parts can affect each other’s behavior. Correlation func-
tions can be defined in space or time. Spatial correlations show the size of the correlated
regions in space, while time correlations indicate how much the system cares about its history
or how much the current state of the system can affect its future state.

In many cases, one wants to control a system that has been undergoing a stochastic
evolution, rather than just measuring and predicting the final state. Feedback control theory
deals with the behavior of dynamical systems in order to obtain a desired effect on the output
of the system. It uses one or more output variables of the system as a controller. Based on
the controller state, it changes either the input or the evolution process so that the output
state gets closer to the desired one. The feedback control theory is strongly tied to the
correlation functions of the system. If there is a growing correlation length in the system,
that means global information is needed to feed the control protocol. On the other hand if

there only exists short range correlations in the system, local information could be sufficient



for the controlling process. To apply any control process on a given dynamical system,
one should be able to characterize the main underlying features of the system. Analyzing
stochastic dynamical systems is an interesting area of research with applications in a wide
range of different problems from classical to quantum mechanics.

In this dissertation, I have studied two kinds of dynamical systems; classical and quantum
mechanical. First I present an extensive study on main features of the traffic flow problem
as a classic stochastic dynamical system. I characterize the properties of jamming transition
in traffic flow. I have developed certain necessary tools to be used in any traffic control
process. Second I provide an example of finding feedback control protocol for cooling a
nano-mechanical resonator.

A very good example of a classical dynamical system that needs to be studied is the
traffic low problem. The rapid growth of the number of vehicles on the limited capacity
of the city streets and the highways has made the existence of long traffic jams a natural
daily observation. Environmental damages by vehicle emissions as well as the huge cost
of the energy and time wasted in traffic jams are getting out of control. These make the
research of finding ways to control the traffic dynamics a necessity. In addition, the traffic
dynamic problem as a social behavioral phenomenon, could be a good example of complex
social dynamics and the methods used to describe that can be applied to many other social
human behavioral dynamics [4].

The phase transition from the free flow region to the jammed region should be studied
extensively in order to characterize the necessary tools for controlling the traffic. Being able
to describe each phase in detail and explaining the main features of the transition are keys
to understand the traffic flow problem. Analyzing the correlation functions at the transition
with respect to the system parameters such as the speed limit, road length, random behavior
of the drivers, etc. can provide required information in order to understand the underlying

features of the traffic flow.



Not only in classical but also in quantum systems, the experimental technology, partic-
ularly in the fields of cavity QED, ion trapping, and Bose-Einstein condensation, has now
developed to the point where individual quantum systems can be monitored continuously
with very low noise and may be manipulated rapidly on the time-scales of the system evo-
lution. It is therefore natural to consider the possibility of controlling individual quantum
systems in real time using feedback [5], which is called quantum feedback control theory.

Preparing quantum systems in pure states is so important in potential quantum tech-
nologies like quantum computer. This task is strongly linked to cooling to a non-degenerate
ground state because in both cases entropy is needed to be extracted from the system. As
a result cooling nano-mechanical resonators, both theoretically and experimentally, needs
to be studied more. Finding the maximum achievable ground state population for a given
maximum force is important. It is not usually possible to prove the optimality of control
protocols for complex dynamical systems due to complexity of the cooling problem [6].

In this dissertation, I have taken two distinct approaches to study dynamical systems:
classical and quantum; each with illustrating applicable cases. In Chapter 2, I describe
the first approach. I discuss the traffic flow problem as an example of classical complex
dynamical systems by presenting the fundamental features of each traffic phase as well as
substantial study on the correlation functions in the traffic flow problem. The conclusion of
this part is discussed at the end of the chapter. In Chapter 3, I explain the second approach,
by introducing the cooling process for a single qubit as an example of quantum dynamical
systems and representing a near-optimal measurement-based feedback control for a single
qubit. The chapter concludes with a discussion about the obtained results. Conclusions are

presented in Chapter 4.



2. Finite-Size Effects in the Nagel-Schreckenberg Traffic Model

2.1 Introduction

The flow of traffic represents a many-particle non-equilibrium problem with important prac-
tical consequences. Traffic flow shows well defined collective behavior where the free flow of
traffic at low density changes abruptly with growing density to a denser phase with jams.
The jams themselves show organized motions with start-stop waves as the cars creep for-
ward. In addition to free low and jam phases, there are also instances of synchronized flow
at low velocity. Understanding the collective dynamical behavior and controlling the jams
will give insight into effective traffic management.

The interesting dynamics of vehicular traffic has gained both engineers and physicists
attention for decades. While traffic engineering has been very successful in predicting or
even controlling the traffic in a given situation based on empirical data, physicists approach
is usually quiet different. Physicist are mostly interested in modeling traffic in order to
describe the general features of typical traffic [7]. Developing models not only can provide
an understanding towards the complexity of the traffic phenomena, but also may help to
extract the fundamental aspects of traffic and use them to predict and control the real traffic
state.

Traffic behavior has been modeled using a variety of approaches. As many other phe-
nomena in nature, traffic study approaches can be categorized in two major conceptual
frameworks; macroscopic and microscopic. In macroscopic view the traffic is represented
by compressible fluid where the fluid density is a representation of vehicles density in the
road. Therefore the traffic low should be studied by certain tools such as fluid dynamics
models [8] or Boltzmann equation [9] approaches. As it is clear by the macroscopic name,
in this approach the focus is on the features of the whole system and individual vehicular
behavior is not the subject of interest.

In contrast, the microscopic models focus on the individual vehicles as particles who cause

the macroscopic behavior of the system. The microscopic framework itself contains several



varieties of views. Modified versions of kinetic theory of gases allow probabilistic description
on vehicular traffic based on Kinetic theory. Deterministic description of vehicular traffic
based on principles of classical Newtonian dynamics forms another class of models called
car-flowing models. The major disadvantage of described models is ignoring the humans’
behavior as drivers of the vehicles which can cause stochastic dynamic for each individual
vehicle. So-called particle hopping models describe the dynamics of the traffic flow based on
stochastic behavior of each individual vehicle in the system. In these models each vehicle
is seen as a cell. Each cell follows certain rules for its motion which can include a level
of stochasticity. This approach is also known as cellular automaton (CA) [7, 4, 10]. CA
approaches have become a popular and efficient tool to explore the nature of traffic flow. In
CA models, vehicles occupy discrete sites and have discrete velocities, hopping from site to
site according to simple rules. Despite their simplicity, these models appear to capture much
of the collective behavior observed in real traffic. In this document our focus is on the most
well known CA model for traffic model called Nagel-Schreckenberg

In 1992, Nagel and Schreckenberg (NS) [11] introduced a relatively simple CA model
for traffic flow. The road is represented as a set of L equally spaced sites, each of can
be occupied by at most one of N vehicles. Vehicles have discrete velocities v, from 0 to
a maximum velocity V... The hopping dynamics follow four simple rules, applied in the
following sequence.

Accelerating: First, each car with v,, < V.« increases its velocity by one.

Adjusting Velocity: The gap to the next carg, = r,y1 — r, — 1 is then computed.
If the car has a speed greater than g,, it will brake to reduce its speed to g, to prevent a
collision (gap rule).

Stochastic Decelerating: Variations in driver behavior are modeled by then lowering
the speed v,, — v, — 1 with a fixed probability p.

Position Update: Finally, the position of each car is updated via r, — 7, + v,.

The NS model successfully mimics many of the known features of the traffic flow, so it



has been widely studied during the past twenty years. Nagel and Schreckenberg [11] showed
that at low density d = N/L, a free flow state occurred where the cars all have a speed of
Vinax O Viax — 1, with a mean speed of V.. — p. At a certain density, the steady state
changes to a phase with a nonzero fraction of the cars participate in a jam of slowly moving
or stopped vehicles. The nature of this transition from the free flowing phase to the jam
phase has been the central question in many of the traffic research since this model has been
introduced.

Nagel and Paczuski [12] showed in a variant of the NS model, where cars with V' = V.«
maintain their velocity as a kind of cruise control, that the jam lifetime showed a power
law distribution at the transition to the jam phase. Lubeck et al. [13] studied the density
distribution in the NS model and suggested that the free flow and jam phases coexist after
the transition. Chowdhury et al. [14, 15] examined the gap distribution and time-headway
distribution (the time delay between two consecutive cars passing a site) and also concluded
that there is a two-phase coexistence after the transition. Roters et al. [16] investigated the
dynamical structure factor and concluded that a continuous phase transition occurs, but
later work [17, 18] suggested that the simulations were not long enough and that the critical
behavior was actually a crossover phenomenon. Kerner et al. [19] observed evidence of two
first order phase transitions, with an intermediate phase of synchronized flow between the
free flow phase and the jam phase.

Many quantities have been used to study the transition to the jam phase. A number of
them use the velocity distribution, such as the number of stopped cars (V' = 0) [20], slowly
moving cars (V < Vinax/2) [21] or cars not moving at the speed limit (V' < Viax) [12]. Other
authors have chosen the number of vehicles forced to brake [22] or the difference between
the average velocity and the free flow velocity [23]. All of these resemble order parameters,
being nearly to zero in the free flow phase and nonzero in the jam phase. Other quantities
have been studied that not necessarily zero in the free phase, but show an abrupt change

at the transition, such as the vehicle flux [11] or the change in the vehicle’s kinetic energy



per step [24, 25]. A number of different traffic correlations have also been studied, includ-
ing different characteristic velocities in the spatial dynamical structure factor [13], different
maxima in the velocity-position correlation [16], the gap or time-headway distribution [15],
the number of cars moving cooperatively [26] and velocity correlations among the cars [27].

Despite this effort, a comprehensive picture of this transition is still incomplete, with
different approaches producing differing conclusions about the nature of the transition or
the presence of long range order. In this paper, we will examine how the value of V.
affects the transition. We will show that, while the static structure factor shows long range
behavior appearing at the transition for any V..., we only see finite-size effects in the order
parameter for V.« > 6. This indicates that the nature of the long range behavior is different
at high and low values of V... We use these finite-size effects to extract the scaling behavior
at the transition for several order parameters. Our work indicates that the onset of the jam
phase can be analyzed as a two-phase coexistence of free flow and localized jams, as others
have observed [13, 15, 16]. We show that the dependence on V., can be attributed to a
qualitative change in the way jams nucleate at high and low V.

In section II of this part, we review the details of our simulation and the quantities we
use in our analysis. In Section III the focus is on the properties of the free flow phase. We
show that the low density traffic as free flow phase shows similar behavior as a repulsive-core
gas. We also present a quantitative analytic model of the behavior of the free flow phase
based on the Bayesian probability theory and distribution of the vehicles’ velocity. Section
IV contains our analysis of the phase transition. I will be shown that long range correlations
exist at the transition and if the value of V. exceeds a certain limit, finite-size effects would
appear in system behavior. Section V discusses how the value of V., affects the fluctuations
of jammed regions and how that affects the finite-size effects we see. Our conclusions are

summarized in Section VI.



2.2 Methodology

2.2.1 Simulation

We have performed a set of Monte Carlo simulations in order to examine the main features
of the phase transition in the Nagel-Schreckenberg traffic low model. We have used a wide
range of values for the model parameters such as maximum speed V.., density d and slow
down probability p. We have also varied the length of the track L in order to find out whether
it is a size sensitive transition or not. All the traffic flow simulations in this dissertation are
done for a single lane track with periodic boundary conditions. The track lengths varied
from 5,000 to 100,000 sites. We initially distributed the cars uniformly around the track.
The system was then evolved for at least 10° time steps to form a random steady state, a
time step being one update of all N vehicle positions and velocities. We then sampled the
system every ten time steps for the next 107 to 10® time steps, the exact length depending
on the system size.

Since this is a non-equilibrium problem, we were careful to look for non-ergodic effects
and sensitivity to initial conditions. We used different random seeds to generate 5-10 different
steady states for each choice of density and track length. We also did simulations using two
different random number generators. We have seen no evidence that the choice of initial
condition or random generator affected our results, although we have seen the need for long
simulation times (much longer than typically used) to ensure that we are seeing the steady
state behavior.

It is common in some non-equilibrium problems that if one takes the ending configuration
of a system at a higher density, and uses its ending configuration (minus a few cells) as a
starting configuration at lower density, the results may be different than a fresh simulation at
lower density. This effect is called hysteresis. I have checked such a situation in this problem
(used the ending configuration at higher density minus a few cars as a starting configuration

at lower density) and saw the same results as starting from an initially uniform distribution



of cars for the lower density. This shows that the effects I report in this dissertation could
not be the artifact of hysteresis in the model. The values I show in this dissertation represent

averages over simulation time, initial condition and random number generator.

2.2.2 Fundamental Diagrams

The main goal of most of the traffic control protocols is to maximize the average flux of the

vehicles on the road. The flux of the vehicles can easily be computed by:

flux = (v)d, (2.1)

where d represents the density of vehicles on the road and (v) denotes the average velocity of
the cars. At low densities, vehicles form an independent free flow phase with (v) & v,,0, — P
As the density of the vehicles d or the slow down probability p raises, the average velocity
decreases, and system undergoes a transition from the free flow phase to the jammed phase.
Through this transition the system goes from the homogeneous regime to an inhomogeneous
regime, characterized by low local density and high local density (jams), respectively. The
so-called fundamental diagram for velocity shows how the average velocity changes with
respect to density d and slow down probability p (Figure2.1).

For a given value of slow down probability p, the average velocity (v) decreases as the
density d grows. Therefore there exists a density which maximizes the flux of the vehicles.
The fundamental diagram for flux of the vehicles shows how the average flux changes with

respect to density d and slow down probability p (Figure2.2).
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Figure 2.1: The Fundamental diagram for velocity. Plots show how the average velocity
changes with respect to density d and slow down probability p for (a) v = 2 and (b)
Umae = 3. Two distinct phases are clearly observable in terms of how the value of (v)
changes.
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Figure 2.2: The Fundamental diagram for flux. Plots show how the average flux changes
with respect to the density d and slow down probability p for (a) Vipax = 2 and (b) Vipax = 3.
For each given value of slow down probability p, there is a density which maximizes the value
of flux = (v)d.
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2.2.3 Tools

To analyze this model, we chose to study density correlations. To define the local density we
use n(r), where n(r) = 1 if there is a car at site r and zero otherwise. The static structure

factor S(q) is defined as:

S(q) = (lp(q)?), (2:2)

where p(q) is the Fourier transform of the density function n(r):

= Z e (). (2.3)

S(q) shows the frequency (respectively the wave length) of the correlated regions. The value
of S(q) at low frequencies (respectively long wave lengths) indicates how strong the long
range correlations in the system are. Figure2.3 shows the typical behavior of the static
structure factor for choices of low and high density.

Another useful correlation function is the pair correlation G(r):

r) = %zq: G (%q) _ 1) - <% > n(hn(l + r)> : (2.4)

where the angle brackets denote an average over configurations. G(r) is also known as the
density-density correlation. The value of the pair correlation G(r) is simply the probability
of finding two vehicles on the road with distance r. Figure2.4 shows the typical behavior of
the pair correlation function for choices of low and high density.

The other function we examine is the nearest neighbor distribution P(r):

1 N
:<NZO (Fog1 — Ty T )>, (2.5)

where 7, denotes the position of the n-th car and §(,) denotes a Kronecker delta. P(r)
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Figure 2.3: The static structure factor for values of Vj,.x = 9, p = 0.1 and choices of (a) low
density d = 0.08 and (b) high density d = 0.09. There are Vj,.x ordinary peaks in 27 range
of the S(q) plot. There could be an extra peak at a very low frequency in case of long range
correlation existence.

is simply the probability that the distance to the next car ahead is equal to r. That is
equivalent to finding a gap equal to r — 1 between the cars. Figure2.5 shows the nearest

neighbor distribution for the same parameters in Figs 2.3 and 2.4.
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Figure 2.4: The pair correlation factor of Vi,.x = 9, p = 0.1 and choices of (a) low density
d = 0.08 and (b) high density d = 0.09. The first peak is at r = Vijax. Other peaks are the
resonance influence of the first peak.
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Figure 2.5: The nearest neighbor correlation of V.. = 9, p = 0.1 and choices of (a) low
density d = 0.08 and (b) high density d = 0.09. The probability of two consecutive cars at
distance r from each other goes to zero when r >> V...
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2.3 Free Flow Regime

In this model, the only interaction between the vehicles is the gap rule, which comes into
play only when the distance to the next car is less than or equal to V.. At low density
d = N/L, when the vehicle spacing is typically much larger than Vj,., naively applying the
other dynamical rules produces a steady state with each vehicle having a speed of V., or
Vimax — 1 with a mean speed of V.. — p. If the vehicles have this speed distribution, the
vehicle spacing evolves as a random walk with a diffusion constant of p(1 —p). However, this
produces a steady state where all spacings between cars are equally likely, including spacings
of less than V..

Therefore, even in the dilute regime, the gap rule followed by the random slowdown,
forces some cars to spend a small fraction of the time at a speed of V.. — 2 because the
gap to the vehicle ahead of it is V.« — 1. This vehicle will, on the next time step, have a
gap of Vi — 1 or larger. Thus each car has a “repulsive core” that strongly favors at least

Vinax — 2 empty sites ahead of it. In Figure 2.6 we show a typical example.
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Figure 2.6: Semilog plot of simulated P(r) and that calculated from the kinetic model for
Viax = 9 and p = 0.1 at a density d = 0.04, about half the critical density for the jams to
form.
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2.3.1 Kinetic Model for Dilute Traffic

In the dilute limit, the interaction between cars produced by the gap rule only applies to a
pair of vehicles at a time, and simultaneous interactions among a triple of adjacent vehicles
are rare. We define a distribution function f(v, g) as the probability that a car has a velocity
v and the gap to the vehicle ahead is g.

From this distribution we can calculate the velocity distribution P,(v) as

L—

P) =Y f(v.g). (2.6)

=0

—_

Q

We can also calculate the distribution of gaps A(g) via

Vmax

A(g) = Z f(’U,g) ) (27)

from which we can find the nearest neighbor distribution P(r) from the relation P(r) =
A(r—1).

Each of the 4 rules of the NS model alters the form of f(v,g). We find it simplest to
examine f(v,g) right after the velocity updates and before the position update. This is
tantamount to assigning the position update as the first step instead of the last.

The position update rule produces an altered distribution f (v,g) via

m

flo.9) =) Puo(w)f(v.g+v—u), (2.8)

u=0

where for convenience we have denoted V.. as m, since it will appear frequently in this
section. Since we are ignoring triple correlations, the speed distribution of the vehicle ahead

is P,(v) from Eq. (2.6). The velocity update rules then alter the f(v,g) distribution. For
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gaps greater than or equal to V.« the rules yield

f(m.g) = ﬂ—pﬂﬂmy%ﬁﬂm—Lm]

fm=1,9) = [ 9) + f(m— 1m}+
flv.g) = pf(v,g) +(1 —p)f(v ~1,9)

f(0,9) = pf(0,9), (2.9)

while for gaps smaller than V., we have

f(v,9)1 = 0 v =

g+
flg: 9 = (=) | > f(u,g)]

fla=1.9)0m1 = p| Y flug)

f.g)er = pf(v.g)+ (1 -p)flv—1,9)

[(0,9)41 = f(O g)- (2.10)

Our simulations show that the three velocity update steps for dilute traffic rapidly create
a local equilibrium in the velocity distribution where the vehicle is moving at the highest

speed it can with probability 1 — p, or at the next to highest speed with probability p. For

19



g > m, the highest speed is V.« and so the distribution is

f(v,9) = < pA(g) v=m—1 (2.11)

while for gaps less than V., we have

0 v=g+1l...m
(1-pA(g) v=g
f(v,g) = (2.12)
pA(g) v=g-1
0 v=0...g—2

Deviations from this distribution relax exponentially as p" after n steps.

The leading order correction that arises from the gap rule occurs when a faster vehicle
catches up to a slower vehicle so that the gap between them is V.« — 1. The gap rule then
limits the speed of the car behind to V.« — 1, causing it to spend a fraction of its time at a
speed of Viyax — 2. The fraction of vehicles that do that is P,(Vipax — 2) = pPA(Vinax — 1).

The speed distribution from Eq. (2.6) is then

P,(m—=2) = ap
Py(m=1) = (1-a)p+a(l-p)

bBy(m) = (I1-a)1-p), (2.13)

where « = A(m—1) is the fraction of cars with a gap of Vi.x — 1.
Putting this speed distribution into Eq. (2.8) with the assumed distribution for f(v, g)

given by Egs. (2.11) and (2.12), we can produce an evolution equation for the gap distribution
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Figure 2.7: Nearest neighbor correlation from the simulations and Eq. (2.17) for V =9 and
p = 0.1 at a density of 0.02 on (a) a regular scale and (b) a semilog scale.

of the form

A(g)e41 = Z I'(g"— 9)A(g"): -
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Figure 2.8: Comparison of the simulations and the analytic prediction of the nearest neighbor
correlation at a higher density of 0.09 for V.« =9 and p = 0.1.

We find for g > m + 2 that

A(g)ir — Alg)e = A(A(g—1): — Alg)e) +

I
i
=
S

(2.14)
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where A = p'(1 —«a), B=p' + a(l —3p') and C = ap/, with p’ = p(1 — p). The evolution

equations for smaller gaps are then

A(m+1)p1—A(m+1); = P[A(m+1)]+ AA(m—1),
A(m)ep—A(m)e = P[A(m)]
+ (1-3p'+a(1-2p")A(m—1),

Am—1)1 = «. (2.15)

In the continuum limit and for g > m + 1, Eq. (2.14) becomes a drift-diffusion Fokker-

Plank equation of the form

(2.16)

for which the steady-state solution is of the form

A(g) o exp (— c ) . (2.17)

p(l—p)+aj2?

If we solve Eqs. (2.14) and (2.15) and compare them to our simulations, we see from
Figure 2.7 that the agreement is excellent except near the peak of the distribution. Since
both distributions are normalized, the error at the peak results in slightly different slopes
for large g. At higher densities, the agreement is not as good. Figure 2.8 shows the analytic
description predicts the position of the peak at g = V.., but the presence of the second jam
phase in the simulations alters the distribution.

If we assume that no cars have a gap of less than V., — 1, we showed that we can find
P(r) from a simple kinetic equation. For r > V.. + 2, rewriting Eq. 2.16 in terms of
the nearest neighbor correlation, P(r) obeys a drift-diffusion Fokker-Planck equation in the
continuum limit

OP(r) OP(r)

% — % 5, + (1 —p) +a/2)

O*P(r)
or? 7

(2.18)
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where & = P(Vjpax). The term «/2 is the leading repulsive core correction to the diffusion

constant. The steady state solution to the Eq. (2.18) for r > V. + 2 is

P(r) = Pyexp <_p(1 a2 r) , (2.19)

where P, is a constant determined from solving the equations for P(Viyax+1) and P(Vijax+2)
(Eq. 2.15), together with the normalization condition ) P(r) = 1.

There is a simple interpretation of the form of Eq. (2.19). Each vehicle has an excluded
region of size & V.« ahead of it. If the typical vehicle spacing is L/N = 1/d, the effective
free space between vehicles is 1/d — Viyax = p(1—p)/a + 1/2. We can find an analytic value

for P(Vipax — 1) by:
__ p(l-p)
1/d — Vipax — 1/2°

P(Vipax — 1) = a (2.20)

In Figure2.9 it the calculated value of the & = P(Vjax — 1) has been compared to the
values obtained for P(Vj,.x—1) by direct simulation. It shows that although « is not perfectly
representing the exact value for P(Vi,ax — 1) (we did not expected that either), the rough

estimate for the free effective space between the vehicles is a perfectly reasonable estimate.

2.3.2  Ornestein-Zerneke Equation

The model above assumes that no vehicles have a gap of less than V., — 1. The event that
first results in a gap of V.« — 2 requires a configuration of three cars, each separated by a
gap of Vijax — 1, with the middle car then slowing down by the randomization rule while the
last car does not. Thus we need three body interactions to see violations of this analytic
model.

Since three-body interactions are neglected, we expect that the pair correlation function

G(r) in the dilute limit can be found from the nearest neighbor distribution P(r) via an
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Figure 2.9: Comparison of the simulations and the analytic prediction for value of P(Vi,ax—1)
for Vipax = 9 and p = 0.1 in (a) regular and (b) semilog plot.

Ornstein-Zernicke relation
G(r)=P(r)+ > P(i)G(r—1i). (2.21)

Figure 2.10(a) shows an example in the free flow regime for that the G(r) that we find
from the Eq. (2.21) is indistinguishable from the G(r) that we found directly from the

simulations. That mean just the nearest neighbor distribution P(r) in low density limit is
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sufficient to build all the other correlation functions that we need to study the problem in

this phase.

i . Simulation
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Figure 2.10: Simulated vs. Calculated pair correlation G(r) for Vo = 11, p = 0.1, L = 10k
for low density of d = 0.06. Plot shows that the calculated G(r) using the just nearest neigh-
bor correlation P(r) from the Ornstein-Zernicke relation (Eq. 2.21) and the pair correlation
G(r) obtained from direct simulation are indistinguishable in the free flow phase.

Figure 2.11(a) shows the nearest neighbor correlation P(r) and the G(r) we get from the
simulations in this regime. Since P(r) is vanishingly small for 7 < V.., Eq. (2.21) predicts
that P(r) and G(r) are identical up to r = 2V, which Figure 2.11(a) shows. Figure 2.11(b)
shows the corresponding structure factor S(q). The peaks in S(q) at multiples of ¢ = 27/ Vijax
are simply the result of the repulsive core seen in G(r). We note for future reference that

S(q) shows no upturn at ¢ — 0, indicating there is no long range order in the dilute regime.
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Figure 2.11: (a) Simulated nearest neighbor distribution P(r) and pair correlation G(r) for
Vinax = 9 and p = 0.1 at a density d = 0.08. (b) Structure factor S(¢q) obtained from G(r)

through Eq. (2.21) and from simulations.
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2.3.3 Nearest Neighbor Correlation; Evolution of P(r)

Nearest neighbor correlation P(r) is identical to the distribution of gaps g(r/) where r/ = r—1.
It is shown that in the dilute limit, the NS model acts like a repulsive core gas with nearest
neighbor correlation. Therefore P(r) plays a key role in identifying the correlation functions
in the model. Figures 2.12 and 2.13 show the evolution of the nearest neighbor distribution
of the cars P(r) for two cases of low value of Vj,,x = 5 and high value of Vi,.x = 9. In both
cases we have covered a range of densities from well before the transition to well after that.
The topic of transition will be discussed in details in next chapter. For future references
note that all the values of P(r < Viax — 2) ~ 0 for the densities before the transition and
there is an abrupt raise in the value of P(0) at the transition (Figure 2.12(d) and 2.13(f)) .

A more complete perspective of the nearest neighbor correlation could be found by looking
at the evolution of the P(r) and specific values of r for different values of Vj,.x. Comparing
the plots for different densities in Figures 2.12 and 2.13, one can find that the peaks happen
at 1 = Viax and r = 0. So the evolution of P(Vyay) and P(0) would be our subject of
inerest. In addition to that we already mentioned the key role of value of P(Vj.x — 1) in the
drift-diffusion equation of the gap distribution in the dilute phase.

Figures 2.14, 2.15 and 2.16 show the evolution of the nearest neighbor correlation P(Viax),
P(Viax — 1) and P(0) respectively. Note how behavior of the P(r) changes by increasing
the value of V... We will refer to this phenomena later at the length dependent transition

section.
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Figure 2.12: Nearest neighbor correlation P(r) vs. r for a range of densities fronm below the
transition to above that for Vi, = 5 and p = 0.1. All the values of P(r < Vi, —2) ~ 0 for
the densities before the transition and there is an abrupt raise in the value of P(0) at the
transition (d).
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Figure 2.13: Nearest neighbor correlation P(r) vs. r for a range of densities from below the
transition to above that for V., = 9 and p = 0.1. All the values of P(r < Vi —2) ~ 0 for
the densities before the transition and there is an abrupt raise in the value of P(0) at the
transition (f).
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Figure 2.14: Evolution of nearest neighbor correlation function p(Viyax) vs. density for
different values of Vi ax.

0.1:

0.01;

P(Vmax-1)

0.001;

0.0 0.1 02 03 04 05
Density

Figure 2.15: Evolution of nearest neighbor correlation function p(Vi,.x — 1) vs. density for
different values of Vi ax.

—1
—2
0.01+ —
—4
—5
— B —6
o 10 -
—8
—9
—6| —10
1075 -
—12

1078k ‘ ‘ ‘

0.3 0.4 05

Density

Figure 2.16: Evolution of nearest neighbor correlation function p(0) vs. density for different
values of Vyax.
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2.4 Finite-Size Effects: Long-Range Correlation

2.4.1 Observing Long-Range Correlation at the Transition

As the vehicles density is raised, the repulsive core gas description we developed above
remains qualitatively correct, with a gradual growth in the number of vehicles spaced at
shorter distances Vipax — 2, Vinax — 3, . ... When the jams appear, we see an abrupt change in
the shape of the nearest neighbor distribution P(r) with the sudden appearance of a nonzero
fraction of vehicles with » = 1,2 or respectively the probability of finding gap = 0 or 1 as
shown in Figures 2.12 and 2.13. Figure 2.17 shows that as the transition density is passed,
the calculated G(r) using the just nearest neighbor correlation P(r) from the Ornstein-
Zernicke relation (Eq. 2.21) does not match the pair correlation G(r) directly found from

the simulation any more.
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Figure 2.17: Simulated vs. Calculated pair correlation G(r) for Vi, = 11, p = 0.1, L = 10k
for high density of d = 0.088, Plots show that the calculated G(r) using the just nearest
neighbor correlation P(r) and the Ornstein-Zernicke relation (Eq. 2.21) do not agree in the
jammed phase.
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As Figure 2.18(a) shows, the pair correlation G(r) no longer agrees with P(r) for r <
2Vinax, and the Ornstein-Zernicke relation (2.21) between the two no longer holds. At the
same time, Figure 2.18(b) exhibits an upturn in S(q) for ¢ — 0, indicating the appearance
of long range correlations in the density.

We interpret this as indicating that the free flow phase is still stable, but that we have
nucleated a new phase of localized jams that appear and disappear. Indeed, by examining
the permanent stability of a localized jam, Gerwinski and Krug [28] have shown that the
jams should should be permanently at a density > (1 —p)/(1+ Vinax — 2p), which is a higher
density than where we see the onset of jams. The upturn in S(q) for small ¢ indicates some
long-range order, which implies that we might observe finite-size effects in various quantities
that are sensitive to the presence of that long range order. In the coming chapters we will

examine the existence of such finite-size effects in the NS model.
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Figure 2.18: (a) Nearest neighbor distribution P(r) and pair correlation G(r) for V. =
9 and p = 0.1 for a density d = 0.088, just above the density where jams appear. (b)
Corresponding structure factor S(g) with an upturn near ¢ — 0.
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2.4.2 Finite-Size Effects in Fundamental Diagrams for V., > 7

The fundamental diagrams introduced in Section I, are the first candidates to be checked
for the possibility of existence of finite-size effects in the system. Figure 2.19 shows how the
average velocity changes with density for different values of V., and different track lengths.

For V. <

~

6 we observe no length dependence. The figure also shows that once the density
is well above the transition density, the system is insensitive to both the value of V.. and

the system size.
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Figure 2.19: The dependence of the mean velocity on density for various values of V. and
p = 0.1, and a variety of track lengths (shown as different colors). The average velocity of
the cars for different lengths varies at the transition for values of V. > 7.

Figure 2.20(a) shows a zoomed version of Figure 2.19 for value of Vj,.x = 5. The plot
shows that there is no size sensitivity observable for different track lengths. Figure 2.20(b)

shows that the finite-size effect if perfectly observable for V., = 9. The system with shorter
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tracks show a delay in dropping the average velocity. In other words the tradition happens
at a higher density for the shorter track lengths.

This size sensitivity is even more apparent in the mean flux of vehicles, presented in
Figure 2.21. As in the Figure 2.19 shown, it is only for V.« = 7 that we see this size
sensitivity. This figure shows that for a given track length, there could be a value of V.
for which the system has the maximum current. For example, at d = 0.08, the vehicle flux
with Viuax = 10 is greater than any other value of V..

Figures 2.22 (a) and (b) show the average flux vs. density for different teack length for
values of V. = 5 and V. = 9 respectively. The size sensitivity of the average flux diagram
shows that in a system of smaller size, the vehicle flux is actually higher than it is in larger
systems, and that the size of the effect depends on V... This behavior is the reverse of
what one would expect from hysteresis, where a large system would get trapped in a high
flux free flow regime while a smaller system would not.

Since the value of V., represents the number of degrees of freedom for each car, it is not
surprising that the finite-size behavior can depend on the number of degrees of freedom, as
it does in equilibrium systems. However, we do not have any clear evidence that there is a
critical value of V.« for which the finite-size effects appear, but they are clearly suppressed

for Viyux < 6.
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Figure 2.20: Average velocity vs. density for different track lengths and p = 0.1 for (a)
Vinax = b and (b) Vipax = 9.
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Figure 2.21: The average flux vs. density for various V. with p = 0.1 and track lengths
(different colors) of L = 5k, 10k, 20k, 30k, 40k, 50k.
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Figure 2.22: Average flux vs. density for different track lengths and p = 0.1 for (a) Vijax =5
and (b) Vipax = 9.
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2.4.3 Well-Defined Order Parameter

To characterize the transition, we need a quantity sensitive to the presence of jams. We
discussed in the introduction a variety of choices that others have used that are based on the
velocity distribution. In this study, where we focus on the spatial distribution of the cars,
we have used the gaps rather than the vehicle speeds to characterize the jams. The gap rule,
however, produces a strong correlation between the speed of a vehicle and the distance to
the next car, so our order parameter is closely related to these other choices.

Figure 2.23 shows how the probability of finding gaps of different sizes varies with density
near the transition. We see that the probability of having a gap < Vijax/2 changes dramat-
ically here. Therefore, we will define the order parameter xy to be the fraction of vehicles
with a gap < Vijax/2. We could have used just the vehicles with a gap of zero [20], but using
all of these gaps gives us more reliable statistics.

Figure 2.24 shows that this order parameter zy exhibits the same finite-size effects, in-
cluding its dependence on V.., that we observed for the mean flux and velocity. Figures
2.25 (a) and (b) are zoomed versions of Figure 2.24 for values of V. = 5 and Ve = 9
respectively. These finite-size effects suggest that the phase transition from the free flow
phase to the jammed phase does not occur as first order phase transition, at least for values

of Vipax = 7.
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Figure 2.23: Probability of finding a gap of a particular size for various densities for p = 0.1
and values of (a) Vipax = 5 and (b) Vipax = 9. The change in values of gap < Vinax/2 (thick
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lines) is more abrupt at the transition than other values of gap.
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Figure 2.24: Probability of having gap < Vjax/2 for different track lengths and p = 0.1 for
various value of V... The finite-size effects is observable for the order parameter x, for

values of V. > 7.
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Figure 2.25: Probability of having gap < Vjay/2 for different track lengths and p = 0.1 for
(a) Vinax = 5 and (b) Vipax = 9.
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2.4.4 Examining More Order Parameters

As discussed in the Introduction, many other quantities have been used to characterize the
distinct phases in the NS traffic low model. We intend to show that the finite-size effects
are observable for all these different order parameters. We briefly introduce a list of possible
order parameters and show their behavior with at the transition area for various values of
track length for the case of V., = 9.

The gap rule in the NS model causes a strong correlation between the gap distribution
and the velocity distribution for the values of gap and velocity smaller than V;,,«. Therefore
we define the order parameter vy to be the fraction of cars with velocity less than or equal
t0 Vinax/2. Figure 2.26 (a) and (b) show that the plots for zy and vy are very similar and
the same finite-size effects could be observed for the quantity vy. We could have just used
the standing cars or the fraction of cars with v = 0 instead as many others have suggested
[20]. The reason we prefer v, is to get the better statistics.

We have already shown that the finite-size effects are clearly observable in the fundamen-
tal diagram for velocity. The other quantity that may worth to be analyzed is the average
variance in the velocity of cars. Figure 2.27 shows the average variance also shows the similar
size sensitive behavior for the system with V. = 9. All these four order parameters (zo,
v, (V') and Var(V')) show an abrupt change at the transition.

A well-defined order parameter should have a zero value at one side of the transition and
a nonzero value at the other side. xy and vy are almost zero at the dilute phase and suddenly
raise at the transition to the jammed phase. To produce a well-define order parameter from
(V) and Var(v), we need to get help from our analytical model. We first use the P,(r)
(velocity distribution) obtained from our analytical model described in Free Flow Phase
Section, to find the supposed plots for (V)ge and Var(V)ge. That means if there was no
transition in the system, how these two parameters would evolve. Note that the analytical
model we discussed is based on the vehicles just interact with their nearest neighbors. We

know that this assumption would fail the transition because of the growth of the long range
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Figure 2.26: Plots of order parameters (a) zo: probability of having gap < Vi,.x/2 and (b)
vo: probability of having velocity v < Vj.c/2 for different track lengths and p = 0.1 for
Vinax = 9.
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Figure 2.27: Plots of order parameters (a) (V'): Average velocity and (b) Var(V): Average
variance in the velocity, for different track lengths and p = 0.1 for V.« = 9.
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correlation. But we still can obtain what the values of (V)ge and Var(V)ge would have
been, if there was no such long range correlation in the system. Figure 2.28 (a) and (b) show
the behavior of (V)gee and Var(V)ge. respectively. Note that there is no size dependence in
the free flow phase. Now we can our new well-defined order parameters to be the variation of
(V) and Var(V) from their supposed values to be if there was no transition. In Figure 2.29
we show how the order parameters (V) — (V)ge and Var(V) — Var(V)gee are well-defined
order parameter and show the same finite-size effects at the transition as zy and vg did.
Sudden raise from zero values to a nonzero value is not the only type of behavior char-
acteristic of the order parameters at the transition. To find the critical density, the typical
approach [29] is to study a quantity like a susceptibility that has a peak at the transition.
The already introduce order parameters have no maximum at the transition. While at first
thought, a quantity like (z2) might act like a susceptibility, we have found that this jamming
transition is not like an equilibrium transition with large fluctuations in the order parameter
correlations before the transition. Instead, we are seeing the nucleation of a different phase
(the jams) in a background of the free phase, and the fluctuations in zy basically track .
Instead, we can examine the dynamic susceptibility, x4, which was used to study glassy

behavior in the NS model in the p — 1 limit [26]
1 LN
= (S ) ) ) 2,22
M =P <N g TP > .

where v; is the velocity of the i-th car at a particular time and v denotes the mean speed of
all the cars at that time. y4 measures the number of vehicles that move cooperatively. Note

that the expression for y, here is the equal time correlation x4(0) used in Ref. [26].
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Figure 2.28: Plots of supposed free flow phase values for parameters (a) (V)ge: Average
velocity and (b) Var(V)ge.: Average variance in the velocity, obtained from the analytical

model for p = 0.1 for V. = 9.
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Figure 2.29: Well-defined order parameters (a) (V)ge: Variation of the average velocity
and (b) Var(V)ge: Variation of the average variance in the velocity from the supposed free
flow phase for different track lengths and p = 0.1 for Vj,.x = 9. The values of the order
parameters are zero at the free low phase and show and abrupt change at the transition.
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2.5 Finite-Size Scaling

2.5.1 Optimized Method for Finite-Size Scaling

In order to examine the long range correlations in this transition, we use a finite-size scaling
approach [30, 31, 29]. Accordingly, we assume that the order parameter o near the transition

point depends on the size of the system as:

xg =L "f(L/E), (2.23)

where aq is the scaling exponent, and £ is the correlation length, which itself depends on L
via

g X (d - dc(L»iV ) (224>

where d.(L) is the critical density.

In most finite-size scaling studies, the transition point itself is dependent on the system
size. That effect is usually considered as a correction to scaling [29], and d.(L) then con-
sidered independent of L. We found that we got much better scaling fits by considering a

length dependent critical density via

d(L) =dy+cL™", (2.25)

where dj is the critical density for the infinite system.

To find the shift in the critical density, the typical approach [29] is to study a quantity
like a susceptibility that has a peak at the transition. Figure 2.30 shows that x4 has such
property. The order parameters we introduced have no maximum at the transition. While
at first thought, a quantity like (z3) might act like a susceptibility, we have found that this
jamming transition is not like an equilibrium transition with large fluctuations in the order
parameter correlations before the transition. Instead, we see the nucleation of a different

phase (the jams) in a background of the free phase, and the fluctuations in z basically track
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xg. Therefore we study their derivatives [29] instead. Figure 2.31 shows how the derivatives
of the regular order parameters we introduced in Section Finite — Size Ef fects behave at
the transition area. They have a maximum point which could be used as reference point for

scaling purposes.
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Figure 2.31: Derivatives of the order parameters (a) xg, (b) vo, (¢) (V) — (V)fee and (d)
Var(V ) e With respect to density around the transition area vs. the density, for the system
with Vipax = 9, p = 0.1, and various track lengths. Plots show that they have a maximum
which could be used as a reference point for scaling purposes.

The first step in our scaling process is to scale the density such that the transition
happens at the origin (Equation 2.25). If we use the positions of the peaks to calculate
the shift of the transition point, we find dy = 0.08267 £ 0.00001, ¢ = 9.415 4+ 5.278, and

b =0.956 + 0.065. Figure 2.32 shows how this scaling in density affects the position of the
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peak in the corresponding order parameters. Figure 2.33 shows the original values of the

order parameters vs. the scaled density d.(L).
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Figure 2.32: Derivatives of the order parameters (a) xg, (b) v, (¢) (V) — (V)fee, and (d)
Var(V') — Var(V)gee with respect to density around the transition area vs. the scaled density,
for the system with V. = 9, p = 0.1, and various track lengths. Plots show that the
maximum points are shifted to the origin of the scaled density d.(L) axis.

Second step is to scale the values of the order parameter at the reference points in order to
put all the maximums on top of each others. This would be done by finding the amplitude
exponent a in Equation 2.23. Table 2.1 and 2.2 show the fitted values for the amplitude
exponent for different order parameters discussed. Figure 2.34 shows scaled amplitude of
the order parameters (e.g. z¢L®) vs. the scaled density.

The last step in the scaling process is to find the correlation length exponent v. After

finding the shift in the transition and adjusting the height of reference points by determining
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Figure 2.33: Order parameters (a) xq, (b) vo, (¢) (V) — (V) free, and (d) Var(V') — Var(V)gee
vs. the scaled density, for the system with V.. = 9, p = 0.1, and various track lengths.
Plots show that transition points are shifted to the origin of the scaled density d.(L) axis.

the amplitude exponent, we collapse the data onto a single curve by plotting the quantity
versus (d — d.(L))L" and adjust the exponents to minimize the area bounded by the scaled

data. The scaled plots of the order parameter discussed above are shown in Figure 2.35.
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Figure 2.34: Scaled order parameters (a) xg, (b) vo, (¢) (V) — (V)fee, and (d) Var(V) —
Var(V)gee vs. the scaled density, for the system with V. = 9, p = 0.1, and various track
lengths. Plots show that transition points are shifted both on the scaled amplitude (i.e.
amplitude x L) axis and the scaled density d.(L) axis in order to fit on top of each others.
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collapsed when using the scaling exponents from Table2.1 and 2.2.
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2.5.2  Critical Exponents of the Nagel-Schreckenberg Model

We assume Y, also obeys a finite-size scaling form:

Xa =L~ f(L/€). (2.26)

Using the peaks in y, in Figure 2.38(a) as the reference points, we find the scaling relation
for the critical density as well as the amplitude exponent. Figure 2.36 shows the fitted
function for the position of the reference points. This fit allows us to accurately find the
critical density. We find for V.. = 9 and p = 0.1 that the bulk transition occurs at
dyp = 0.08122 £ 0.00004. The shift in the transition due to the finite system size has an
amplitude of ¢ = 0.375 4+ 0.006 and a scaling exponent of b = 0.54 + 0.02. Figure 2.37 shows
the fitted scaling function for the amplitude of the order parameter y at its maximum for
each size. We obtain the amplitude exponent a by finding the corresponding exponent in
the power function. Figure 2.38 shows the steps of the scaling process for the susceptibility
X4. There is no reason to expect that the peak in the derivative of xy should be at the same
place as the x4 peak, so it is not surprising the two results for the shift in the transition point
are different. No matter which method we use to determine the shift in the transition point,
we find that xg and y4 produce values for the correlation length exponent v of 0.13 £ 0.02
and 0.14 £ 0.02, respectively.

The scaling exponent for the amplitude of xy is ag = 0.24 + 0.04 and that of y, is
as = 0.524+0.02. We also examined the scaling behavior of several alternative order parame-
ters: the probability of a car having a speed < Vi,ax/2 [21], the difference between the mean
speed and that of the free flow speed [23], and the difference between the variance in the
velocity and its value in the free flow regime. All of them gave results for v and the scaling
amplitude exponent ay that were consistent with those found for xy. The determined val-

ues for the scaling exponents for different order parameters are presented in Table 2.1 and 2.2.
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for systems with V.« = 9 and p = 0.1. Parameters of this fit show the critical density d,
for an infinitely large system as well as the length dependent correction in Equation 2.25.
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Figure 2.37: Fitted function for the values of the reference points in x4 vs. track length
for systems with V.. = 9 and p = 0.1. The obtained exponent in this fit is the amplitude
exponent a for the corresponding order parameter (Equation 2.23).
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Figure 2.38: Finite-size scaling process for x4 in systems with V.. = 9, p = 0.1, and various
track lengths: (a) x4 vs. d, the original values of order parameter. (b) x4 vs. d — d.(L),
step one, shifting the density to find the critical density dy. (c) x4L® vs. d — d.(L), step
two, scaling the amplitude of the maximum to find the amplitude exponent a. (d) x4L® vs.
(d — d.(L))L", final step, minimizing the area surrounded by the curves around the origin
to collapse the curves and find the length correlation exponent . The value used for the
critical exponents are the values represented in Table 2.1 and 2.2.

We have also determined the values of v and the scaling exponents for the amplitude
of x¢ and x4 for a range of values of V.. and p. The values of the exponents for different
values of V.« and p = 0.1 are shown in Figure 2.39. The scaling behavior of y4 and xg
both yielded values for v that were statistically the same for V., > 7. For V.. = 6 and
Vimax = 7, the finite-size dependence was so weak that we could not get reliable values for

the scaling amplitude of xg, and we were only able to extract a value for v from yy.
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While this data does not imply a sharp change in the scaling behavior for V., = 6,
it does indicate that the finite-size effects for V.« > 7 are completely different than for
Vimax < 6, which is already apparent in Figs. 2.19 and 2.21. Figure 2.39 clearly shows that
the exponent v appears to vanish or take on unphysical negative values for V., = 5 and 6,

indicating that the long range correlations are absent below V., = 7.
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Figure 2.39: Exponents v and a for various values of V., with p = 0.1. The smaller error
bars on Viy.x = 9 result from using more track sizes.

Table 2.3 shows the scaling exponents for V., = 9 and three values of p, and we see
no significant variation of v or ay with p. We do not expect to observe any variation of the
exponents for 0 < p < 1, since the value of p controls the amount of stochastic behavior
and the rate the system evolves through its configurations. Of course, in the special limits

p — 0 [24] and p — 1 [26], glassy irreversible behavior is observed instead.
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Table 2.1: Set of the critical density and coefficients for V.. = 9 and p = 0.1. All the
parameters have been fitted directly from the data with no degrees of freedom reduction.

The critical density dy may differ depending on the type of the order parameter.

Parameter do c b
T 0.08267 £ 0.00001 | 9.415+5.278 | —0.956 + 0.068
Vg 0.08267 £ 0.00001 | 9.415 +5.278 | —0.956 £ 0.068
(V) — (V) free 0.08267 £ 0.00001 | 9.415+5.278 | —0.956 + 0.068
Var(V) — Var(V)gee | 0.08267 4+ 0.00001 | 9.415+5.278 | —0.956 4 0.068
X4 0.08122 £+ 0.00004 | 0.375 + 0.006 —0.54 £ 0.02

Table 2.2: Set of the exponents and coefficients for V., = 9 and p = 0.1. All the parameters
have been fitted directly from the data with no degrees of freedom reduction. The main
exponents v and a remain unchanged no matter what method we use to find the other
variables.

Parameter v a
o 0.13£0.01 | 0.2356 = 0.0375
o 0.13+0.01 | 0.2412 4+ 0.0380
(V) = (Vfreo 0.14 £0.01 | 0.2331 4+ 0.0407
Var(V') — Var(V)gee | 0.15£0.01 | 0.2022 4+ 0.0369
X4 0.14 £ 0.01 0.52 +0.02
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2.5.3 Testing the Scaling Method on the 3d Ising Model

The Ising model is a well-known model commonly used in statistical physics. The transi-
tion in the Ising model has been studied widely. The study performed by Ferrenberg and
Landau [29] on finite-size scaling corrections in 3d Ising model is known as one of the most
accurate analyses on Ising model finite-size scaling. We have tested our approach on the 3d
Ising model to compare the results with the values of finite-size scaling corrections in [29].

The Ising model is a set of up-down spins located at the discrete sites of the 3d lattice

with size of L x L x L. The Hamiltonian of the system is defined as it follows:

where the spins o; can get the values of +1 and (i, j) means all the nearest neighbor pairs.
Dimensionless coupling constant K is defined as K = J/kgT. Therefore the dimensionless
energy would be E' = Y; jy0;0;. The order parameters studied are listed as:

Magnetization:

im| = L7404 (2.28)

Logarithm of magnetization:

In(|m|) = L™in(|oq]) (2.29)

Logarithm of squared magnetization:

In(m?) = L™%,In(o}) (2.30)

Fourth-order magnetization cumulant:

(2.31)
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Table 2.3: Exponents v and ag for V., = 9 and various values of p.

p v )

0.1 1 0.134£0.02 | 0.24 +0.04
0.2 10.1240.02 | 0.26 = 0.04
0.5 0.144+0.02 | 0.30 £0.01

Heat Capacity:
C = K*L™((E? — (E)?) (2.32)

Susceptibility:
X = kL((Jm*) — (jm])?). (2.33)

In Figure 2.40 we show the steps of applying our scaling method on the susceptibility x
which has maximum at the transition. In Figure 2.41 we have applied the scaling process on
the derivative of the heat capacity dC/0k to find the critical exponent for the heat capacity
C'. Figure 2.42 shows how fine this scaling method could collapse the magnetization (|m)|)
curves using the values in Table 2.4 as an example of the order parameter which does not
have a maximum at the transition.

Table 2.4 shows the values we obtained from our analysis. Figure 2.43 indicates a method
to find the critical temperature k for an infinitely large system, using the finite-size scaling
length correction method we introduced above. We have plotted the critical temperature for
each order parameter at various system sizes versus the scaled system size. This plot shows
that the fitted lines for all different order parameters point to the same density at the origin,
which represents the critical temperature ky for an infinitely large system. We have found
the critical temperature for the 3d Ising to be kg = 0.221676 4+ 0.000007. We find excellent
agreement between our results and commonly accepted values for the 3d Ising mode critical

temperature and scaling exponents reported in [29].
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Figure 2.40: Finite-size scaling process for the susceptibility x for 3d Ising model. The values
used for the critical exponents are the values represented in Table 2.4. Subfigures (a), (b),
(c), and (d) represent the original values, step one, step two, and the last step of the scaling
process, respectively.

Table 2.4: Set of the critical exponents for the 3d Ising model using various order parameters.
ko represents the critical dimensionless temperature using k.(L) = ko+cL™, 1/v is the length
correlation exponent using & o< (k — k.(L))~/%, and a represents the amplitude exponent in
x=L7*f(L/€), where z is the corresponding order parameter.

Parameter ko 1/v a
|m| 0.221574 + 0.000011 —1.6051 £ 0.013 1.74+0.05
In(m?) 0.221623 4+ 0.000015 —1.6051 £ 0.011 1.74+0.05
U 0.221666 4+ 0.000063 | —1.6108 £ 0.0231 1.65 +0.05
C 0.221722 + 0.000051 —1.6055 £ 0.015 1.6 £ 0.05
X 0.220795 + 0.001804 | —2.0049 +£ 0.0089 1.6 £ 0.05
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Figure 2.41: Finite-aize scaling process for the derivative of the heat capacity dc/0k for 3d
Ising model. The values used for the critical exponents are the values represented in Table
2.4. Subfigures (a), (b), (c), and (d) represent the original values, step one, step two, and
the last step of the scaling process, respectively.
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2.6 Growth of the Jams

2.6.1 Braking Vehicles

As we noted in Section 2.1, there are several possible order parameters to study the phase
transition in the NS model. We have studied many of these order parameters in Sections 2.4
and 2.5. In order to understand the nature of the finite-size effects at the transition, it is
useful to study the number of cars affected by the gap rule. Being forced to brake to avoid a
collision could be the initial step of forming the jams. The forced slow down applies whenever
two vehicles are too close to each other. Figure 2.44 shows the probability of seeing at least
one forced braking vehicle in the entire system at each time step. Although the probability
that the gap rule being applied at least once does not show any size sensitivity for the system
with Vi, = 5 (Figure 2.44(a)), it is clear that the finite-size effects exist for the system with
Vinax = 9 (Figure 2.44(b)).

The next step is to check the probability that the gap rule is applied on at least two
vehicles in the system at the same time. Figure 2.45(a) shows that it is still impossible to
observe any size sensitive behavior in this parameter for the system with V., = 5. Figure
2.45(b) indicates the existence of finite-size behavior of this parameter for the system with
Vinax = 9.

We further study the conditional probabilities to investigate the nature of size dependent
behavior of the NS model in range of high values of V.. We are interested in the situations
that the gap rule applies for the second time given that at least one forced slow down already
exists. In other words, if we just select the time steps with at least one effective forced slow
down (Figure 2.44), what percentage of those also include a second effective forced slow down
(Figure 2.45). Figures 2.46(a) and 2.46(b) show that the same behavior is also observable for
the systems with values of Vi,.x = 5 and 9, respectively. For future references (e.g. Section

2.6.5), note that at the transition area in Figure 2.46(b) (e.g. d=0.085), it is clear that the
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probability of having the second forced slow down is much less for the systems with shorter

lengths than that for the systems with longer lengths.
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Figure 2.44: Probability of having at least one vehicle brake at each time step as a result
of the gap rule vs. density of the vehicles for a system with p = 0.1, and (a) Vi,ax = 5 and
(b) Vinax = 9. Plots show that while there is no finite-size effect observable for the system
with V. = 5, same finite-size effect as the other order parameters exist for the system with
Vinax = 9.
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Figure 2.45: Probability of having at least two vehicles brake at each time step as a result
of the gap rule vs. density of the vehicles for a system with p = 0.1, and (a) Vi,ax = 5 and
(b) Vinax = 9. Plots show that while there is no finite-size effect observable for the system
with V. = 5, same finite-size effect as the other order parameters exist for the system with
Vinax = 9.
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Figure 2.46: Conditional probability of at least two vehicles brake at each time step as a
result of the gap rule, given that at least one forced slow down already happened in the
system vs. density of the vehicles for a system with p = 0.1, and (a) Viax = 5 and (b)
Viax = 9. Plots show that while there is no finite-size effect observable for the system with
Vinax = D, same finite-size effects as the other order parameters exist for the system with
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2.6.2 Spatial Correlations of Jams

As we noted earlier in Figure 2.18, the finite-size effects that appear at the transition are
accompanied by an upturn in the structure factor S(g) for small g. It is therefore tempting
to see whether the upturn in S(q) merely reflects long range spatial correlations in z,. We
therefore define a local density ng(r) which is 1 if a vehicle is at site 7 and the gap to the
next car ahead is less than V. /2. The extensive quantity No = > ngo(r) = xoN provides
a measure of the number of cars participating in a jam.

To study the spatial correlations in ng(r), we examine the static structure factor
So(q) = {|po(@)I*) (2.34)

po(q) = ZHO(T)e_iqT- (2.35)

In Figure 2.47 we show the magnitude of S(¢q) and Sp(q) at small values of ¢ for a several
densities spanning the transition to jamming for V., = 9 and p = 0.1. We see that most
of the upturn in S(g) for small ¢ in the transition to jamming comes from correlations in
no(r) of order less than a hundred lattice spacings or so. The behavior for V., = 5 is
similar, except that the width of the peak in Sy(q) (and S(g)) is much wider, indicating that
the jammed regions are significantly smaller at low V... This behavior is also visible in
Figure 2.48, where we display the variation of S(q) and Sy(¢q) with density for the longest
wavelength ¢ = 27/ L in our simulation. The behavior for Vi,.x = 5, shown in Figure 2.48(b)
is very similar to that seen for V. = 9, so we can conclude that the upturn in S(q) in the
transition region is due to long-range correlations in ng(r). This is surprising, since we did
not see finite-size effects for Vi . = 5. We will see in the next section that it is the dynamics

and statistics of the jams that is different for the two situations.
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2.6.3 Jam Dynamics

To explore the difference between the low V., and high V... behavior, we looked at the
time evolution of system at the transition area. Figure 2.49 shows how Ny(t) behaves for
different densities for V. = 9 and V. = 5. The densities shown are chosen so that the
system is initially in the pure free-flow phase, then early in the transition region near the
peak flux from Fig 2.21, then late in the transition region, and finally in the jam phase. In
the free flow phase, we see isolated fluctuations into the jam phase very rarely for V., =9,
while these fluctuations are more frequent in the V.. = 5 simulations. In the transition
region close to the peak in the flux shown in Figure 2.21, the V., =9 simulations still show
isolated bursts of appearance of the jam phase, while for V., =5 the number of jammed
vehicles is fluctuating but always nonzero.

Since our order parameter xq for small V,,,, might be showing this behavior due to an
inability to cleanly separate freely flowing vehicles from jammed vehicles, we also tried an
order parameter that examines second neighbor correlations. Instead of merely asking that
the car ahead be closer than V.. /2, we ask that the spacing to the second car ahead be less

than Vi«
1 rp=rand |ryo — ra]| < Vinax
o(r) =
0 otherwise ,
and the total number of cars with this condition is ®g =) ¢ ).

We show in Figure 2.50 the fraction of the time the two order parameters are nonzero
for Vipax = 5 and Viyae = 9. For V.. = 5 both order parameters are always nonzero after
d = 0.115, but that is actually a density before the peak flux in Figure 2.21 occurs for
Vinax = 9, so the two order parameters become identical before the transition to jams occurs.
For Viax = 9, the two order parameters coincide and the transition from nearly zero to
unity is the density range where we see finite-size effects. So improving our definition of a
jammed vehicle does not change the conclusion that the nucleation of the jams for V.« < 6

is qualitatively different than those for V.. > 7.
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Figure 2.49: Time evolution of the number of cars in jam N, for a track of length 5,000 for
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The difference in behavior for different V.« is also clearly visible in histograms of the
fraction of the cars in a jam, ®o/N. Figure 2.51 shows the histograms for the same simu-
lations shown in Figure 2.49. The peak at ®q/N = 0 is the vehicles in the free-flow phase.
While the distributions for the free flow regime at low density and the jammed regime are
similar for both values of V., they are clearly different in the transition regime. For V., =9
the jam phase appears as a distinct phase in the transition region, while for V., =5 this
does not happen, with the distribution of jammed cars growing smoothly out of the free-flow
phase.

Figure 2.52 shows how the length of the track affects themselves in the time evolution @
and in the distribution of ®j. The density in all of the plots is the same, but the histogram
and the time evolution for the shortest track is characteristic of the free phase regime. For
the intermediate track length, the behavior is that of two-phase coexistence. The longest
track length data show it to be in the jam phase. Therefore we see that shorter track lengths
inhibit the transition to jamming and thus we expect to see finite-size effects.

The transition region at high V., can thus be thought of as a coexistence of cars con-
densed into jams and cars flowing freely. The appearance of a single localized jam will
reduce the density of freely flowing cars elsewhere, and this effect is more significant for
shorter tracks. Since the probability of creating a jammed region drops as the density of
freely flowing cars goes down, the appearance of one jam inhibits the appearance of an
additional one, stabilizing the dilute gas of jams.

This picture favors a fewer large jams rather many small jams. Figure 2.53 shows a his-
togram of the number of jams for V.. = 9 at a density d = 0.084, and also the distribution
of jam lengths. The distribution is not Poisson, as we would expect for independent events.
Instead, we see a marked tendency for one or two large jams, with the probability of three
or more jams greatly reduced. We find that the jam would be of order 50 sites in length, in

agreement with the width of Sp(gq) for small g seen in Figure 2.47.
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Figure 2.53: Statistics for 200,000 samples in a system of size L = 10,000 for V.. = 9,
p = 0.1 and d = 0.084. (a) Distribution of number of jams (b) Distribution of jam lengths.
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lengths.

For low Vi.x, the system does not break easily into tightly packed jams and a lower
density of freely flowing cars. The nucleation of one jam does not depress the density of
freely flowing cars sufficiently to inhibit the formation of subsequent jams. As a result, the
low Viyax system does not have a clear transition region where isolated jams appear, and it
is the isolated jams that are responsible for the finite-size effects we see at higher V.. This
is clearly seen in the distribution of numbers of jams and jam lengths shown in Figure 2.54.
The simulations were done at a density close to the peak flux for V., = 5. The jams are
smaller and more frequent than in the V., = 9 data of Figure 2.53.

Once the nucleation of one jam does not significantly inhibit the formation of a second
one, we have reached the heavily jammed region and the finite-size effects that appear at
high V.« disappear. The mean velocity and flux then follow the relations shown in Figs. 2.19

and 2.21 that are insensitive to the value of V..

2.6.4 Quantitative Description of the Finite-Size Effects

This picture of a few localized jams condensing out of the free low phase allows us to make a
quantitative description of the finite-size effects in the large V.., simulations. If we assume

the jams consist of cars traveling as fast as the gap rule would allow, then their mean speed
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would be

Vi= > (i—1)P(i), (2.36)

i< Vinax /2

and the fraction of the track occupied by the jams is

Ly=N Y  iP(i). (2.37)

i<Vimax/2

Since Ny is the number of cars in a jam, then the density of free cars is changed to

N — Ny
deft = : 2.38
-1 (2.38)
We then expect that the mean velocity of the mixture would be
N, N,
‘/tot = WOVI + (1 - WO) VF(deff) ) (239)

where Vi (deg) is the flow velocity in the free flow phase taken from the average velocity plot
(Figure 2.19) at an effective density deg given by Eq. (2.38). We evaluate Eqs. (2.36), (2.37),
and Vg (deg) directly from our simulations to find Vi.. Figure 2.55 shows the result of this
for several track lengths. The agreement with the simulations is excellent in the transition
region, and underestimates the mean velocity at higher density where this simple picture of

two-phase coexistence breaks down.

2.6.5 Coexistence at the Transition

We have described the behavior of the jams as the second phase appearing at the transition
to explain the nature of the finite-size effects for the systems with higher values of V.. In
this section, we instead focus on the free flowing phase as the existing phase. Now that we
have defined two distinct phases by separating the cars in jams, lets take a look at the free

flow phase to see if there is any quantitative difference between the low and high V.. limit.
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Figure 2.55: (a) Calculated and (b) simulated average velocity for different track lengths
versus density of cars for V. =9 and p = 0.1.
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We define the scaled free density to be:

dsf = dfree/d> (240)

where dge is similar to deg defined in Equation 2.38. The difference between these two
quantities, however, is that dg... shows the instant free density, whereas d.g is defined in the
asymptotic limit. Division by d (the total density of the cars) makes dy a dimensionless
value between 0 and 1. dy = 1 means that there is no jam in the track. When any jam
exists, dg < 1. Smaller values of dy indicate that the free flow phase is farther from the
transition area, therefore the average velocity of the cars who are still in the free row phase
would be higher. Figure 2.56 shows the time evolution of dy for same density of cars for
different track lengths and V.. = 5 and 9. In the case of V.. = 9, the plots show that
appearance of the jams is more rare in the shorter tracks. It also shows that the changes in
dss are greater for shorter tracks as explained before. For the systems with V.. = 5, there
are actually the fluctuations that grow and form the jammed phase.

To have a deeper understanding of this difference, we should look at the statistics of
the time evolution of dg. The histogram of dg is shown in Figure 2.57. The value dg = 1
indicates the portion of time that there exist no jam in the system while the values of dys < 1
indicate the portion of time that there exists at least one jam in the system. Histograms are
plotted for the same density values but different track lengths for low and high V.. values.

In low Vpax limit, histograms show how the jam phase evolves out from the free flow
phase as the track gets longer. The two phases are mixed and are not separable with the
methods described above. As discussed before, this is because the jams are being created as a
result of small fluctuations in velocity. This does not mean the argument about the change in
density does not stand here, but the effect of that is much smaller than the fluctuations effect.
Therefore, although the histograms are not exactly the same for different track lengths, in

the asymptotic limit we can not capture the finite-size effects.
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Figure 2.56: Scaled free density vs. time for Vo = 9, d = 0.84 (left) and Vi,ax = 5, d = 0.13
(right) and L = 5k, 10k & 30k. The densities is chosen as the top plot is at just the beginning
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for Viax = 5 (right).

In high V.« limit, histograms clearly show two distinct phases coexist with each other at
the transition area. While for the shortest track length the system spends most of its time at
dst = 1 (no jam), the second phase starts to grow around some value of dg < 1 as the track
length gets longer. The critical difference here is that for high V.. limit, the second phase
does not evolve out of the first phase and appears and grows around a dg value different than
one. This shows why we can claim that there exist two separable phases at the transition
area and why all our analytical description works well to describe the behavior of the system

at the transition for high V.. values.
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2.7 Conclusion

In the dilute regime of the NS model, we have shown that the interactions of a car with
the one in front of it in the NS model result, not surprisingly, is a dilute gas of vehicles
with a nearest neighbor repulsive interaction of range ~ V... The gap distribution can
be found quantitatively from solving the kinetic equations keeping only pair interactions.
Spatial correlations among cars further apart can be described quantitatively through an
Ornstein-Zernicke relation.

As has been noticed before, the transition from the free flow to jammed phase in the NS
model appears with the nucleation of localized jams in a background of free flow. As the
density is raised to the point where jams form, we see that the nearest neighbor interactions
fail to describe the density correlations. The jam formation is results in a peak in the gap
distribution P(r) for small r representing a set of closely spaced vehicles participating in
jams. At the same time, the structure factor S(q) shows a significant upturn for small g,
indicating the onset of long range correlations. These new correlations are not the result of
including just second or third neighbor correlations.

The present work shows that the nature of the transition exhibited by the vehicle flux
and spatial correlations depends on the value of V... In this regard, the value of V,,.« plays
the role of the number of degrees of freedom (possible velocities) for each object, much like
the role of the number of components of a spin variable in an equilibrium system.

Systems with V.« > 6 show a transition with an intermediate phase that exhibits sig-
nificant finite-size effects. We can attribute these effects to the existence of large isolated
jams that coexist with the free flow phase in this intermediate regime. These large jams
act to segregate vehicles and keep the free flow phase stable. The finite-size scaling analysis
shows that these long range correlations appear to be universal, with scaling exponents that
depend on V... We are able to quantitatively fit the overshoot seen in the vehicle flux in
a finite-size system by accounting for the segregation of the vehicles into jams that reduces

the average density of freely flowing cars.
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For Vyax <

o

6 we are unable to separate the vehicles into two phases and this transition
region with its finite-size effects is either absent or extremely difficult to observe. However,
both high and low values of V., show an upturn in the structure factor, indicating that
the regions of large correlated motion, even if they cannot be cleanly denoted as jams, are

responsible for the long range correlations in S(q).
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3. Optimal measurement-based feedback control for a single
qubit: a candidate protocol

3.1 Introduction

Tremendous experimental progress has been made in the last few years in the real-time
measurement of mesoscopic systems. The development of parametric amplifiers with very
low noise [32, 33, 34] has allowed single qubits to be observed in real-time [35, 36], culminating
recently in the first realizations of continuous-time feedback control of a single mesoscopic
qubit [37, 38]. Considerable experimental progress is also being made in the feedback control
of microscopic systems [38, 39, 40, 41].

It is timely therefore to reflect on the state of the theory of continuous-time measurement-
based control of simple quantum systems. While progress has been made in understanding
the dynamics induced by continuous measurements, and its implications for feedback con-
trol [42, 43, 44, 45, 46, 47, 48], except in certain special cases [49, 50, 51] the optimal adaptive
measurement for feedback control of a single qubit is still unknown. On the face of it, the
space of control protocols is defined by four parameters that must be specified as a function
of the three-parameter density matrix. Such a task is daunting even for numerical optimiza-
tion. What allows us to solve the problem is a series of arguments, applicable when the
noise and target state (the state in which we wish to keep the qubit) are invariant under z-
rotations (true for the z-eigenstates and most common noise sources) that allow us to reduce
the control problem, approximately in the regime of good control, so that it is determined
by a single valued function with a single argument.

For thermal noise the criterion for high-fidelity (“good”) control is k > max(y,ynr).
Within that regime, good control is possible even with no feedback Hamiltonian, due to
the dynamical effect of the measurement [46]. We will explore primarily the regime of good

control, since it is the most useful, but consider within it the full range of feedback strengths,

IThis chapter previously appeared as: Ashkan Balouchi and Kurt Jacobs, Optimal measurement-based
feedback control for a single qubit: a candidate protocol, 2014 New J. Phys. 16 093059 doi:10.1088/1367-
2630/16/9/093059. It is reprinted by permission of IOP under the terms of the Creative Commons Attribu-
tion 3.0 license - see the permission letter for proper acknowledgment phrase (Appendix A).
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w. Within our class of protocols, we find that the optimal protocol depends strongly on the
feedback strength. In fact, we find that there is a “threshold” at which the optimal protocol

has a discontinuity.

3.2 Measurement-Base Feedback Control

We begin by reviewing briefly how continuous-measurement based feedback is described. In
this kind of feedback control process we monitor an observable of the qubit, producing a

continuous stream of measurement results. We will denote the measured observable by

Om =10, (3.1)

where m is a real three-dimensional unit vector, and o = (0,,0,,0,) is the vector of Pauli
matrices. From the measurement results we calculate the density matrix of the qubit, p(t),
in real-time, and at each time ¢ we choose the Hamiltonian of the qubit, H(t), and the
observable we measure, om(), based on our knowledge of p(t). The rule that we use to
choose H(t) and om() as a function of the density matrix is called the feedback protocol.
Here our goal is to use feedback to keep the qubit as close as possible to its ground state,
|0). Specifically, we wish to maximize the steady-state probability, P, that the qubit is in

the ground state. Using the Bloch vector a, defined by

p=(I+a-0)/2 (3.2)

defining a = |a|, and denoting the angle between a and the ground-state Bloch vector,
ap = (0,0,—1), by 6, this probability is P = (1 + acosf)/2. We will denote the error

probability by e =1 — P. In the regime of good control, defined by ¢ < 1, we have

e=A/2+ab?/4+ O0*), (3.3)
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where we have defined A =1 — a. In the regime of good control, the qubit spends most of
its time in states for which # and A are small parameters.
Under a continuous measurement of o,,, and a Hamiltonian H, the dynamics of the qubit

are given by the stochastic master equation (SME) [52, 53],

dp =~ [H(1), ldt — Ko, [owm, ol
+ V2k(0mp + pom — 2 (o) p)dW, (3.4)

where k, referred to as the measurement strength, determines the rate at which the mea-
surement extracts information, and dW is an increment of Wiener noise [1]. The continuous

stream of measurement results, y(t), is given by
dy(t) = (om)dt + dW/V/8k. (3.5)
We can write all single qubit Hamiltonians in the form
H="h(u/2)n- o, (3.6)

where n is a real, unit norm, three-dimensional vector. Here p is the speed of rotation on
the Bloch sphere, if the initial state is such that the path is a great circle (The angular speed
of rotation in Hilbert space is u/2).

Optimal control only makes sense when there are constraints on the speed at which we
can manipulate and/or measure the qubit. Here we take these constraints to be p < w, and
k < kmax, for some positive real numbers w and k... We allow the controller to measure in
any basis, and apply a Hamiltonian that rotates in any direction.

Here we will assume our qubit is driven by thermal noise, for which the master equation
is [H4]

p:

Do |2

(nr + 1)D(0)p+ 3nsD(")p, (3.7)
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where

D(c) = 2cpct — clep — pcle. (3.8)

Here 0 = (0, —i0,)/2 = |0)(1] is the lowering operator, v is the damping rate, and ny is
determined by the temperature and the energy gap between the ground and excited states

of the qubit. The excited-state population at thermal equilibrium is given by

P%znT/(1+2nT) (39)

Thermal noise includes decay as a special case (ny = 0), and we note that the arguments
we employ below apply also to dephasing and depolarizing noise. We note that all these noise
sources are symmetric under rotations about the z-axis, and our measure of performance,
¢, has the same invariance. Combined with the fact that we can measure any observable,
and apply a Hamiltonian at any angle, this means that wherever the state moves on the
Bloch sphere, we can always redefine the xz-plane (or equivalently rotate the qubit) so that
it is in this plane, without affecting the control problem. We therefore require only the two
parameters A = 1 — a and 6 to describe the state of the qubit, and we can write the density

matrix as

p=1[I+a(sinfo, — cosfo,)|/2. (3.10)

3.3 Optimal Measurement-Based Feedback Control Protocol

We now present a series of arguments that allows us to greatly simplify the control problem
in the regime of good control. The first asserts that the future performance of the control
protocol will never be worse if we rotate the state closer to the target (that is, reduce 6).
Because the set of available controls is invariant under rotations, it is intuitively obvious that
we cannot rotate the state further from the target to gain at some later time. This implies
that we should always choose the feedback Hamiltonian so as to reduce 6 as fast as possible,

thus setting ;1 = w. The resulting feedback Hamiltonian is that given in Eq.(3.11).
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The second argument asserts that it is never beneficial to reduce the measurement
strength below its maximal value. This stems from the fact that we can always choose
to measure the qubit in the basis in which it is diagonal. Because this measurement purifies
the state of the qubit without disturbing it, it cannot be detrimental to the future perfor-
mance of the protocol. Since this measurement is always available, an optimal protocol can
always choose k = kjax.

The third argument concerns the basis in which we measure the qubit. Previous studies
have shown that this basis has a non-trivial effect on the dynamics of both a and . Measuring
in an basis orthogonal to the Bloch vector increase a the fastest (on average) but also causes
the maximum diffusion in the direction of the Bloch vector §. Our question is whether we
can restrict our measurement bases to those that lie in the xz-plane. It is clear that if
we measure in the y-direction, we will obtain the fastest increase in a while producing the
smallest disturbance to 6, since the diffusion is induced in the plane containing the y-axis and
the Bloch vector. However, when 6 is small, while the effect of the measurement is zeroth
order in 6, the difference between the effect of an z-measurement and a y-measurement is
first order in #, due to the rotational invariance about the z-axis. We can conclude that
measuring in a basis outside the zz-plane will have only a small effect on the performance.
Restricting our measurements to the xz-plane means that they are parametrized by a single
angle o. Naturally we define a so that @ = 6 means that the measurement axis is aligned
with the Bloch vector.

The forth and final argument asserts that in the regime of good control, little performance
is lost by allowing the measurement angle « to be independent of the length of the Bloch
vector, a. This insight comes from examining the equations of motion for the angle 6 and
length a under a measurement at angle ¢ = a — 6 to the Bloch vector. We find that the
equation of motion for # is independent of a to leading order in the small parameter A. Thus
the value of a has little influence when choosing « for the purposes of controlling 6. While

the equation of motion for a involves ¢, its form shows that the rate at which a increases,
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the key quantity affecting performance as far as a is concerned, is not increased by making ¢
depend on a. We give the details of the above analysis in the supplementary material. This
conclusion is supported by the fact that for w = 0, the optimal choice of /() that we will
obtain by numerical optimization below agrees with that obtained analytically by setting
a =1 (Eq.(3.15) below).

The above arguments allow us to fix the measurement strength k£ and the feedback rate
1, and parametrize the measurement by a single angle . They further assert that the key
question in the feedback control of a single qubit (given noise with z-symmetry) is how to
choose a as a function of #: almost all of the performance is determined by this choice. To
answer this question we now turn to numerical optimization. The problem is still potentially
rather complex, since o could be any function of . To make headway we write o = f(6)
and expand the function f as a power series in 6: o = > 7 ¢,0". We truncate the power
series, keeping only ¢y through c3, and run the resulting feedback protocol to determine the
average steady state error, (). We then perform a numerical optimization over the space of
the four parameters ¢, to find what values of the coefficients ¢, achieve the minimum (¢).
For this optimization we use the BFGS gradient search method [55]. We set k = 1 (that is,
we measure time in units of k), v = 0.01k and ny = 0.1, so that we are in the regime of
good control (we find that good control requires k > max(vy,nr7y)). The results of running
the optimization for a range of values of the feedback strength, w, are enlightening. The
error (g) is dominated by the first two parameters in the power series expansion, ¢y and ¢;.
Within the statistics of our results, in which we averaged over 128000 noise realizations, the
values of ¢y and c¢3 have no significant effect on the performance. In view of this we simplify
the class of protocols in our search space further by keeping only ¢y and ¢;: « is now a linear
function of 6.

To find the best protocol for each value of w we must explore the performance as a
function of our three parameters, cg, ¢;, and w. Using the same values for k, v, and ny as

above we calculate (g) for the full range of values of ¢y, and for ¢; € [—2,2], for a discrete set
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The Bloch sphere ‘0>

Figure 3.1: Here we depict various elements of the feedback control protocol. We have drawn
the Bloch sphere with the ground state |0) at the top. The dashed arrow is the Bloch vector
with angle . The grey arrow shows the direction of the measured spin at angle —«a. The
curved arrow shows the direction that the feedback Hamiltonian will rotate the Bloch vector,
at angular speed w .

of values of w. These results, given in the supplementary material, show that the minimum
is always at cg = 0 for w 45k, regardless of the value of ¢, and at |¢o| = 7/2 for w > 45k,
regardless of the value of ¢;. At w ~ 45k the values ¢y = 0 and |¢y| = /2 give the same
performance, at least to the accuracy of our results. The fact that the optimal landscape
has this structure considerably simplifies the task of finding the optimal values of ¢;, and
thus determining the full control protocol. All we have to do is to find the optimal values of
c¢1 along the two line segments defined by (¢ = 0,0 < w < 45k) and (cp = 7/2,w > 45k).
We find that ¢; does not have a significant effect on the performance for w > 30k, and so for
the second line segment its value is unimportant. For ¢y = 0 we obtain the optimal value
of ¢; as a function of w by hand, and find that the exponential function given in Eq.(3.14)
fits the data points quite well, with the parameters A, B, and r given in Table 3.1 for three
values of 7. In fact, the noise in, and resolution of, our data points means that they have
significant fluctuations around this fitted function. Since we do not know that the optimal

value of ¢; really follows the exponential function, the fluctuations of our data points about
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the fitted curve are a better measure of the error in our choice of ¢; than the estimated
errors in the fitted parameters A, B, and r. The mean, m, and standard deviation, o, of
these fluctuations are also given in Table 3.1. As an example of the significance of ¢;, for
v = 0.1 and w = 10k, choosing the optimal value of ¢; (~ —0.7) gives a steady-state error
of ¢ = 3.3 x 1073, whereas setting ¢; = 0 gives ¢ = 4.6 x 1073. A change in ¢; of 0.01 (the
level of our uncertainty in the optimal value) changes € by less than 5%. As w increases the
importance of ¢; decreases: for w = 20k, setting ¢; = —0.7 gives € = 3.0 x 1073, and ¢; = 0
gives € = 3.4 x 1073,

We can now summarize our control protocol. The feedback Hamiltonian is

H(t) = sgn[0(t)]h(w/2)o,. (3.11)

The measured observable is o, = sin ao, — cos ao,, with

a = co+c10(t), (3.12)
and
0 wg 45k
Ch = ~ s (313)
/2 w > 45k
¢ = —A—B[l—e /", (3.14)
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Figure 3.2: Graph of negative natural logarithm of ¢ (steady-state error) vs. control param-
eter ¢y and feedback strength (w), with the value of ¢; given by Eq.(3.14). Our protocol is
defined by the parameters ¢y and ¢;, and is defined in Eqgs.(3.11) through (3.14). The thick
lines show 1) the value of ¢, for our protocol as a function of w, and ii) the performance of our
protocol which is the result of optimizing over ¢y and ¢;. This discontinuity in the protocol
occurs at w =~ 45k.
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3.4 The Performance of the Feedback Protocol

To show how the optimal performance, defined as the minimum steady-state error, depends
on w we now plot the performance as a function of ¢y and w in Figure 3.2. In this plot we
set the value of ¢; to that given by Eq.(3.14). This choice gives the best performance (the
performance of our protocol) for ¢y = 0 and for |¢o| = 7/2 for w > 45k (that is, when ¢
has its optimal value), since in the latter case the value of ¢; is unimportant. So the plot
gives the performance of our protocol, but does not show the best performance that can be
obtained when ¢ is outside its optimal value and w g 30k.

We can understand the main features of this protocol in terms of three known dynamical
effects of continuous measurement. The first is that a measurement in a basis close to that
of the Bloch vector tends to “drag” the Bloch-vector in the direction of the measurement.
This explains why the co-efficient ¢; is negative: this causes the measurement to drag the
state towards |0). The second effect comes from the fact that measuring at an angle o # 6
generates diffusion for #. The amount of diffusion is proportional to sin(|6 — «|), and a
gradient in the diffusion rate pushes the state into regions of low diffusion [46]. Our protocol
states that when there is no feedback Hamiltonian (w = 0) we should should set o = —6/2.
This means increasing the difference between o and 6, away from the target state, thus
increasing the diffusion. The resulting diffusion gradient pushes the state towards 6 = 0.

We note that it is possible to derive the optimal value of ¢; for w = 0 from an approximate
calculation. Assuming that the system stays close to the target state throughout its evolution
so that we can set cosf ~ 1 — 0*/2, and setting a = 1, we obtain the following equation of

motion for #% under the measurement and feedback:

d(0?) = {4ynr —2w|0| + [8kci(cy + 1) — ~]0°}dt

+V2Kk(1 + ¢)02dW. (3.15)
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Table 3.1: Values for the parameters of Eq.(3.14)

v A B r m o
0.1 |-0.500 | 0.186 | 0.476 | 0.002 | 0.007
0.2 |-0.479 |0.211 |0.705 |[-0.005 |0.011
0.3 |-0.478 |0.217 | 0.529 | 0.001 | 0.008

If we set w = 0 (no feedback Hamiltonian) and take the average on both sides, then we obtain
a stochastic equation for (%) that can be solved analytically [1]. Solving this equation for

the steady-state shows that the minimum value of (6?) occurs at ¢; = —0.5.

3.5 Conclusion

In the regime of strong feedback (w > 45k) our protocol tells us to measure approximately at
right angles to the Bloch vector, causing the maximum diffusion in §. This can be understood
from a third property of measurement: the average rate at which the measurement purifies
the state (that is, lengthens the Bloch vector), is greatest when the diffusion is greatest.
When the feedback Hamiltonian is sufficiently fast (w > k) it can suppress the unwanted
diffusion and thus take advantage of the increased purification. That this would be true for
sufficiently strong feedback was already known [42; 49] — what is unexpected is that the
optimal value of ¢y switches abruptly from 0 to 7/2 at a given value of w/k.

To summarize, we have obtained a feedback control protocol for a single qubit that gives
a nontrivial prescription for choosing the measurement angle as a function of the direction of
the Bloch vector and the feedback strength. Analytical arguments and numerical evidence
suggest that this protocol is close to optimal in the regime of good control. Numerical
optimization suggests that out of all protocols in which the measurement angle is chosen to
be independent of the length of the Bloch vector, this protocol is close to optimal in the
regime of good control. We suspect that in this regime, extending the protocol to allow the
measurement angle to depend on the length of the Bloch vector would have only a minor

affect on performance.
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3.6 Supplement to “Optimal measurement-based feedback control for a single
qubit: a candidate protocol”

Here in the first section we show why the measurement angle, «, can be chosen independently
of the length of the Bloch vector, a, in the regime of good control. In the second section
we present plots demonstrating that, regardless of the value of ¢;, the minimum value of €
is always at ¢g = 0 for w g 45k, and at |¢y| = 7/2 for w > 45k. In the third section we

show the data points and the corresponding fit to these points given by the function in Eq.(5).

3.6.1 The measurement angle and the length of the Bloch vector

Recall that our Bloch vector lies in the xz-plane. It is simplest to derive the equations of
motion for the length and angle of the Bloch vector by assuming that the Bloch vector is
pointing directly upwards, so that a = a, and a, = a, = 0, and make a measurement at an
angle ¢ to the z-axis. Using Eq.(1), and writing p in terms of the Bloch vector elements, we

obtain the equations of motion for a, and a,:

da, = 2ksin(2¢)a.dt + v/8ksin ¢ dW (3.16)
da, = —4ksin®ga.dt + V8kcose (1 —a2)dW. (3.17)

Defining the angle 0 as the angle between the Bloch vector and the z-axis, we have 6 =
tan(a,/a,). From the above equations we can derive the equations of motion for ¢ and a.

Given that the Bloch vector points upwards, so that # = 0, these equations are

do = 2ksin(2¢) (3 — %) dt + V/8k sin ¢ G) dw (3.18)
da = 4ksin®¢ (a - 3) dt + V/8k cos p(1 — a2)dW . (3.19)
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When a is close to unity, the regime of good control, we can expand these equations as a

power series in A = 1 — a. Keeping terms up to first order in A this gives

d9 = 2ksin(2¢) (1 —4A)dt + V8ksin (1 + A)dW (3.20)
da = —4ksin®¢ (1 + 3A)dt + 2AV8k cos ¢ dW. (3.21)

We see immediately that the equation of motion for 6 is not dependent on A to leading
order. The length of the Bloch vector has therefore little effect on the dynamics, and thus
the control, of € in the regime of good control.

Examining the equation of motion for a we see that the deterministic term is also inde-
pendent of a to leading order, but this is not true of the stochastic term. The fact that the
stochastic term is proportional to A is precisely the diffusion gradient induced by the mea-
surement, and by which the measurement increases the length of the Bloch vector (makes
the state more pure). The observation is that as far as this diffusion gradient is concerned,
making ¢ dependent on A has the same action as changing the measurement strength. On
physical grounds it is apparent that modulating the measurement strength, and thus reduc-
ing it below its maximal value, cannot increase the rate at which the measurement purifies
the state.

To use a more direct mathematical argument, if we choose ¢ as a function of A so that
the stochastic term is proportional to a higher power of delta, then we reduce the diffusion
gradient. Numerical simulations show that if we make the stochastic term proportional to

VA, instead of A, the rate at which @ increases is also reduced.

97



3.6.2 The maximum performance and the value of ¢

In Figure. 3.3, we display four plots that show how the maximum performance changes
abruptly from ¢y = 0 below w ~ 45k to |cg| = /2 above it. For w < 30k there is only a
single maximum in the performance as function of ¢y, and this occurs at ¢y = 0.) Between
w = 30k and w = 45k a second local maximum appears at ¢g = £7/2. At w = 45k the
two maxima are approximately equal (to within the accuracy of our simulations), and for

w > 45k the second maxima overtakes the first, and so the optimal value of ¢y switches from

0 to +m/2.

~Ln(1-P)

Figure 3.3: Plots of the negative natural logarithm of € = 1 — P (the steady- state error)
vs. control parameters ¢y and ¢; for four values of the feedback strength: (a) w = 10k; (b)
w = 30k; (¢) w = 45k; (d) w = 50k. The simulation is done by setting & = 1 (that is,
we measure time in units of k), v = 0.01k and ny = 0.1, and averaging over 128000 noise
realizations.
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3.6.3 Fitting the function for ¢;

In Figure 3.4 we show the numerical results for the optimal value of ¢; as a function of

feedback strength, for three values of the noise rate . This function is

¢ = —A—B[l—e TN, (3.22)

where A, B, and r are the fitting parameters. The values of theses parameters, for the three
values of 7 are given in Table 3.1. For these simulations we set &k = 1 (that is, we measure

time in units of k) and ny = 0.1, and we average over 128000 noise. realizations.
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Figure 3.4: The fitted function for the optimal value of ¢; as a function of feedback strength,
for three values of the noise rate v: (a) v/k = 0.1; (b) v/k = 0.2; (¢) v/k = 0.3. The
error-bars show our estimates of the error in the numerical value of ¢;, given the accuracy
with which we can determine the minimum of ¢.
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4. Conclusion

Nature is filled with complex stochastic dynamical systems. Studying dynamical systems is
of great importance in understanding the world around us. The main outcome of studying
dynamical systems is to figure out the macroscopic behavior of the system for different sets of
microscopic configurations of its components. To achieve this goal, we need to use probability
theory, statistical tools, and stochastic analysis.

The complexity of the dynamical systems is in general due to the large number of degrees
of freedom in the system. This can be either due to the large number of system components
or large number of degrees of freedom of even a single component. Dynamics of the traffic
flow is an example of many body complex dynamical systems. Dynamics of a single qubit is
an example of a complex system with only one component and many degrees of freedom.

In addition to understanding the underlying dynamics of the system, one might be inter-
ested in controlling the system. Control theory is designed to alter the input of the system
or its dynamics in order to temper the outcome of the system toward the desired state.
Feedback control is a protocol to control the system using the information of the current
state of the system. Due to its definition, feedback control theory is based on real time
measurements of the properties of the system.

In classical systems, e.g. in traffic flow, measurement does not change the current state
of the system, therefore the information can be obtained independently and be fed to the
feedback protocol. In quantum systems, e.g. in qubit problem, measurement itself may alter
the current sate of the system. We need to keep track of the possible changes of the system
due to measurement process as well. We can benefit the effects of the measurement on quan-
tum mechanical systems in our feedback protocol by applying weak measurement on the
system. In other words the measurement itself could be used as the altering Hamiltonian in
the feedback protocol. This specific arrangement of continuous weak measurements is known

as measurement-based feedback control.
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In this dissertation, I have studied two choices of classic and quantum dynamical systems
by implementing a variety of numerical analyses and statistical tools. I performed a study on
properties of the Nagel-Schreckenberg traffic flow model as an example of a classical many
body complex dynamical system. In addition, I have studied the cooling process of a single
qubit using the measurement-based feedback control theory as an example of a quantum
dynamical system with may degrees of freedom.

Nagel-Schreckenberg is a simple cellular automaton model. In this model, each vehicle is
considered as a cell with very simple rules for its dynamics. The complexity of the system
is due to the large number of vehicles in the system. The NS model mimics some of the
important features of the traffic low. I have shown that in the dilute regime of the NS
model, there exists no long range correlation in the system. The interactions of the car with
the one in front of it is a dilute gas of vehicles with nearest neighbor repulsive core of range
~ Vinax.

The NS model exhibits a phase transition from the free low regime to the jammed regime.
I studied this transition for different values of maximum velocity V... The main tools I
have used to study the phase transition in the NS model are the spatial correlations in the
system: nearest neighbor correlation P(r), pair correlation G(r), and its Fourier transform
(the structure factor) S(q). I have shown that long range correlation appears and grows in the
system at the transition. This long range correlation is mainly among the cars participating
in the jams.

This study shows that the nature of the transition depends on the value of V... In this
regard, the value of V.« (as a number of different values of velocity the vehicle can obtain)
can be considered as a measure of number of degrees of freedom. Existence of the long range
correlation causes significant finite-size effects for variety of order parameters in the system

for a range of V.« = 7. No size sensitive behavior could be observed for V.. < 7.
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I have performed finite-size scaling analysis to find the critical exponents of the NS
model. I introduced a numerical optimization method to find the scaling exponents. The
performance of this method has been checked for 3d Ising model. I showed that the obtained
values for the critical exponents of the 3d Ising model are in great agreement with commonly
accepted values.

We can attribute the finite-size effects of the NS model to the existence of an intermediate
phase in the system with V.« > 7 at the transition. In this intermediate regime large isolated
jams coexist with the free flow phase. These large jams act to segregate vehicles and keep
the free flow phase stable. This effect is more observable for the tracks with shorter length,
therefore the order parameters such as average velocity and average flux intend to have larger
values in the shorter systems at the transition. This effect can not be observed in the systems
with Viax < 7 due to large fluctuations in the vehicle’s velocity.

The main goal in controlling the traffic flow is to maximize the average flux of the ve-
hicles. The fundamental diagrams of the average flux for a given system size show that the
flux increases as the random slow down factor p decreases at any given density. They also
show that for a given random slow down value, there is a certain density which maximizes
the flux. The fundamental diagrams of the average flux for different system sizes, show that
around the transition area, the flux has a higher value for the shorter tracks. Comparing
the average flux for different values of V., indicates that in certain ranges of density, there
is an optimum value for the V.« which can maximize the flux. The most important key
in controlling the transition in traffic flow is existence of the long range correlation. Long
range correlation in the system indicates that global information is needed for the feedback
protocol in order to control the system. In other words, in future smart car technology,
just local commutation between the cars (e.g. via bluetooth) would not provide sufficient
information for the control protocol and global information of all the vehicles on the road

(e.g. via GPS) should be provided to the protocol.
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Not only in classical but also in quantum systems we can apply the feedback control
theory to obtain a desired state. Preparing quantum systems in pure states is important
in quantum technologies. To prepare a pure state, entropy is needed to be extracted from
the system similar to cooling to a non-degenerate ground state. Finding the maximum
achievable ground state population of a single qubit for a given maximum control force and
the environment noise is the goal of feedback control protocol I have studied. I have used
the measurement as the controlling force in the control protocol, since measurement of the
quantum system changes its state.

I showed that for a broad class of noise processes, a series of compelling arguments can be
applied to greatly simplify the problem of steady-state preparation of the ground-state. Using
numerical optimization, I have obtained a measurement-based feedback control protocol for
cooling a single qubit that gives a nontrivial prescription for choosing the measurement
angle as a function of the direction of the Bloch vector and the feedback strength. The
measurement angle is independent of the length of the Bloch vector. The protocol can be
described relatively simple, and contains a discontinuity as a function of feedback strength.

Ability to apply real time feedback control theory on stochastic dynamical systems is
currently one of the most demanding applications. Although most of the problems in this
field need particular case studies, a few tools are commonly used. In this dissertation, I
have presented two examples of classic and quantum complex dynamical systems. I have
performed a vast variety of analytical and numerical analyses and I have used several sta-
tistical tools for this study. Most of these tools such as Monte Carlo simulation, correlation
functions, finite-size scaling, Bayesian probability, and stochastic master equation can be
used in many other similar problems. It is of great importance to use these tools in a proper
way to explore the underlying features of the complex dynamical systems and eventually to

control these systems.
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