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Preface
The work presented in this thesis has been done at the Department of Physics
and Astronomy, Louisiana State University, under the supervision of Dr. Kenneth
Schafer and Dr. Mette Gaarde. This thesis is divided into two parts, corresponding
to the two different subjects I have studied during my time in graduate school. The
first part of the thesis focuses on attosecond transient absorption in gases, while the
second part focuses on high harmonic generation in solids.

Attosecond transient absorption is a very new subject, with the first experimental
demonstration in 2007. It is an all optical method to measure electron dynamics at
the sub-femtosecond time scale using an attosecond extreme ultraviolet (XUV) pulse
and a synchronized infrared (IR) pulse. I have studied attosecond transient absorp-
tion using a variety of methods from full solution of the time-dependent Schrödinger
equation (TDSE) to few-level models and Floquet theory, in order to put forward a
time-dependent picture of the absorption process. In this thesis, I give an introduc-
tion to attosecond transient absorption in Chapter 1. In Chapter 2, I discuss the
transient absorption process when the IR wavelength is near resonant to an atomic
transition. In Chapter 3, I discuss the use of second order perturbation theory to cal-
culate transient absorption and its domain of applicability to transient absorption.
Finally, the Floquet picture, which uses a steady state description of laser-dressed
absorption, is discussed in Chapter 4. The theory work presented in these chap-
ters are part of an experiment/theory collaboration with Stephen Leone’s group
at University of California Berkley, Ursula Keller’s group at Institute of Quantum
Electronics at ETH and Giuseppe Sansone’s group at Politecnico Milano.

An even newer subject is high harmonics generation (HHG) in transparent solids,
which was first reported in 2010. In chapter 5, I give an introduction to HHG in
solids. In chapter 6, I discuss the band structure in field-free solids, and interaction
of a solid with a DC field is discussed in Chapter 7. In chapter 8, the HHG generation
in a solid with an AC field is discussed. My work on HHG in solid presented in this
thesis has been part of the theory and experiment collaberation with David Reis
and Shambhu Ghimire’s group at Stanford University.

Parts of the work presented in this thesis have appeared in the following publi-
cations:

• M. Wu, S. Chen, M. Gaarde, and K. Schafer, Time-domain perspective on
Autler-Townes splitting in attosecond transient absorption of laser-dressed he-
lium atoms, Phys. Rev. A 88, 043416 (2013). Parts of Chapter 2 are based
on this publication.

• S. Chen, M. Wu, M. Gaarde, and K. Schafer, Laser-imposed phase in resonant
absorption of an isolated attosecond pulse, Phys. Rev. A 88, 033409 (2013).
Parts of Chapter 3 are based on this publication.

• M. Reduzzi, J. Hummert, A. Dubrouil, F. Calegari, M. Nisoli, F. Frassetto, L.
Poletto, S. Chen, M. Wu, M. Gaarde, K. Schafer, G. Sansone, Polarization-
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control of absorption of virtual dressed-states in helium, submitted to Phys.
Rev. A. Parts of Chapter 4 are based on this publication.

• M. Wu, S. Ghimire, D. Reis, K. Schafer, and M. Gaarde, High-harmonic gen-
eration from Bloch electrons in solids, Phys. Rev. A 91, 043839 (2015). Parts
of Chapters 5-8 are based on this publication.

Besides the above publications that are directly related to the chapters in this
thesis, I have also contributed to the follow publications that have led to many of
the ideas in this thesis:

• S. Chen, M. Bell, A. Beck, H. Mashiko, M. Wu, A. Pfeiffer, M. Gaarde, D.
Neumark, S. Leone, and K. Schafer, Light-induced states in attosecond tran-
sient absorption spectra of laser-dressed helium, Phys. Rev. A 86, 063408
(2012).

• M. Wu, S. Chen, K. Schafer, and M. Gaarde, Ultrafast time-dependent ab-
sorption in a macroscopic three-level helium gas, Phys. Rev. A 87, 013828
(2013).

• S. Chen, M. Wu, M. Gaarde, and K. Schafer, Quantum interference in at-
tosecond transient absorption of laser-dressed helium atoms, Phys. Rev. A 87,
033408 (2013).

• A. Beck, B. Bernhardt, E. Warrick, M. Wu, S. Chen, M. Gaarde, K. Schafer, D.
Neumark, and S. Leone, Attosecond transient absorption probing of electronic
superpositions of bound states in neon: detection of quantum beats, New J.
Phys. 16, 113016 (2014).

• J. Herrmann, M. Lucchini, S. Chen, M. Wu, A. Ludwig, L. Kasmi, K. Schafer,
L. Gallmann, M. Gaarde, and U. Keller, Multiphoton transitions for delay-zero
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Abstract
We present a theoretical study of attosecond transient absorption in gases and high
harmonic generation in solids. In this thesis, different features in the attosecond
transient absorption laser-dressed spectrum are studied, including features near
bright (dipole allowed) atomic states and features that appear approximately one
or two laser photons away from the bright states due to the laser-induced coupling
to dark (non-dipole allowed) states. The calculations are carried out using both nu-
merical and analytic solutions to the time-dependent Schrödinger equation (TDSE).
From these solutions, several models of time-dependent absorption and electron dy-
namics at the femtosecond time scale are presented. We discuss transient absorption
in two different regimes: a resonant regime when the dressing field resonantly cou-
ples bright and dark states; and a non-resonant regime when the dressed states are
detuned. Moreover, a Floquet picture of the transient absorption process is pre-
sented, in which the different features in the absorption spectrum are explained as
the Floquet states induced by the strong probe pulse. We demonstrate that this
Floquet picture applies even though dressing field lasts only a few cycles.

We also present a theoretical study of high harmonic generation (HHG) by Bloch
electrons in a model transparent solid. This model applies to the recent experiments
in ZnO. We solve the TDSE using a velocity gauge numerical method and the
resulting harmonic spectrum exhibits a plateau due to the coupling of the valence
band to the first conduction band. The energy cutoff of the plateau scales linearly
with field strength, which agrees with the ZnO experiment. To facilitate the analysis
of the time-frequency characteristics of the emitted harmonics, the TDSE is also
solved in the so-called Houston basis which allows the separation of the interband
and intraband contributions to the time-dependent current. The interband and
intraband transitions are shown to correspond to diabatic and adiabatic dynamics
of the system, respectively. The contributions from interband and intraband display
very different time-frequency characteristics, which can potentially be used as an
experimental signature of the intraband and interband dynamics.

x
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Chapter 1

Introduction to transient absorption

1.1 Introduction to attosecond transient absorption

With the breaking of the femtosecond barrier, attosecond pulses arrived with the
new millennium [1–3]. The pursuit of attosecond pulses dates back to the early
1990s when researchers discovered high-harmonic generation (HHG) [4,5], in which
extreme ultraviolet radiation was found to be emitted from an inert gas when il-
luminated with intense infrared laser pulses. The physical mechanism of HHG is
explained by a semi-classical model, where the electron is first tunnel ionized from
the atom and accelerated in the laser field, and then recaptured by the core [6, 7].
In 2001, the first attosecond pulse train was demonstrated experimentally through
the HHG process, and later in the same year, an isolated attosecond pulse was
reported [8, 9].

Attosecond pulses have proven to be a very useful source of XUV radiation
[10, 11]. From a fundamental physics point of view, they allow us to study ever
faster dynamics in atoms and molecules. While picosecond pulses reveal molecular
rotation and femtosecond pulses capture molecular vibrations, attosecond pulses en-
able us to observe or even control the electron motion [12–16], which is the fastest
motion outside the atomic nucleus. Along with the birth of attosecond pulses comes
many novel technologies and applications. For example, coherent short X-ray pulses
have already been used in protein crystallography by so called ”diffraction before de-
struction” techniques [17–20]. Moreover, attosecond pulses have been demonstrated
to be able to control the conductivity of a semiconductor during one laser cycle,
which can be potentially used to produce peta-Hertz transistors [21,22].

Many attosecond studies involve a time-resolved spectroscopy called transient
absorption, where the absorbance at a particular wavelength of a sample is measured
as a function of time after an ultrashort pulse excites the system [10,23–25] . Since
the ultrashort pump pulse comes from the generated harmonics that are locked in
phase with the driving field, the pump and probe pulses are naturally synchronized.
This automatic synchronization is one of the reasons that this particular pump-
probe scheme is widely used. A typical attosecond transient absorption setup is
shown in Fig 1.1. A strong infrared (IR) pulse is split into two beams. One beam is
used as the probe beam, and the other goes through a HHG process and creates a
short, extreme ultraviolet (XUV) pulse as the pump beam. The pump pulse excites
the material to some transient excited state, which is then probed by the IR probe
pulse, and the delay-dependent absorption of the pump pulse is measured.

The difference of arrival time between the pump and probe pulses can be var-
ied with attosecond precision and a delay dependent absorption spectrum can be
recorded. Although the detector measures a time-integrated quantity, by control-
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Figure 1.1: A typical transient absorption experiment setup. A strong IR pulse is
split into two beams. One beam is used directly as the probe pulse, generates XUV
harmonics which are used as the probe pulse. The delay between the pump and probe
pulses can be varied, which results in a time-dependent absorption spectrum being
recorded at the detector. Adapted from [26] with permission from the European
Society for Photobiology, the European Photochemistry Association, and The Royal
Society of Chemistry.

ling the delay between pump and probe pulses, the information of the dynamics is
encoded into the delay dependent transient absorption spectrum. One of our main
tasks is then to deconvolve this absorption spectrum and retrieve the time evolution
history of the system. This deconvolution is very much like the process of cracking of
encryption algorithms in cryptography. Given an cryptographic encryption module,
a cryptanalyst can change the input slightly each time and get a serials of output
that depends on the inputs. Then by comparing these outputs, the cryptanalyst
may reconstruct the algorithm used in the encryption. The change of input is like
the varying the delay between the two pulses, while the algorithm the cryptanalyst
tries to reconstruct is like the laser-material dynamics in our transient absorption
system.

Recent experimental and theoretical studies [22, 25, 27–35] have revealed many
interesting dynamics of the laser-material system. One area that has been exten-
sively studied is the light induced structures (LISs) in transient absorption spectra.
In a joint theory and experiment study of transient absorption in a helium gas, Chen
et. al. [36] showed that LISs can be seen in the absorption spectrum, at energies
that are not allowed in the laser-free atom. They showed that the LISs come from
the coupling between the dipole allowed states to the nearby dipole forbidden states.
Following this study, Chen et. al. [37] studied the strong sub-IR-cycle modulations
near the ionization threshold. They showed that these structures come from the in-
terference between direct and indirect pathways to excited states. Later in the same
year, Klünder et. al. [38] demonstrated theoretically that these subcycle structures
from the direct and indirect pathways are also present in the photoelectron spectrum
from helium atoms, and that they can be used to retrieve the phases of all the states
that make up the wave packets. Another area that has been studied greatly is the
modification of the absorption line shape of the atomic state in the regime where

3



the pump and probe pulses overlaps. Recent work from Pfeifer’s group [30] showed
experimentally that the line shape of the atomic states change between Lorentzian-
like and Fano-like as the delay between the pump and probe changes, and that
these changes can be explained using a simple laser induced phase model [33] . In
the following papers in 2014 [34], they pushed this idea further and demonstrated
the possibility of using the laser induced phase to reconstruct the dynamics of the
two-electron wave packet from the transient absorption spectrum. Besides, there
are many other areas have been studied. For example, quantum beating in tran-
sient absorption, transient absorption near autoionizing states which can be used
to extract their lifetimes [39], transient absorption in the near-resonant case where
time-dependent Autler-Townes splitting features can be observed [40], quarter-cycle
oscillations in transient absorption for the use of calibration of the delay-zero in the
experiment [41], etc.

1.2 Theoretical calculation of the transient absorption spectrum

In order to theoretically calculate the transient probability, we first solve the time-
dependent Schrödinger equation (TDSE) for a laser coupled He atom, using the
single active electron (SAE) approximation [42, 43]. Then the transient absorption
spectrum can be expressed as a single atom response function which is related to
the time-dependent dipole moment. The TDSE for a laser coupled atom is

ih̄|ψ̇〉 = Ĥ|ψ〉, (1.1)

where Ĥ is the Hamiltonian
Ĥ = ĤA + E(t) ẑ, (1.2)

and ĤA is the atomic Hamiltonian, E(t) is the electric field and ẑ is the position
operator. The rate of energy gain by the single atom can be written as

dE

dt
=

d

dt
〈ψ|Ĥ|ψ〉. (1.3)

Then the single atom response function can be derived by equating the total energy
gained by the atom ∆E with the excitation probability via the relation

∆E =

∫
dE

dt
dt =

∫
ω S̃(ω) dω, (1.4)

where S̃(ω) is the response function we are aiming for. And we have

dE

dt
=

d

dt
〈ψ|H|ψ〉 (1.5)

= 〈ψ̇|H|ψ〉+ 〈ψ|H|ψ̇〉+ 〈ψ|∂H
∂t
|ψ〉 (1.6)

= 〈z〉∂E
∂t
, (1.7)
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where we have denote 〈z〉(t) by z(t). Then the energy gained by the atom can be
further written as

∆E =

∫ ∞

−∞
z(t)

∂E
∂t

dt (1.8)

=
1

2π

∫ ∞

−∞
z̃(ω)(−iω′)E(ω′)e−i(ω+ω′)t dt dω dω′ (1.9)

=

∫ ∞

−∞
iω z̃(ω)Ẽ(−ω) dω (1.10)

=

∫ ∞

−∞
iω z̃(ω)Ẽ∗(ω) dω. (1.11)

If f(ω) = iωz̃(ω)Ẽ∗(ω) then clearly f(−ω) = f ∗(ω) and we have therefore

∆E =

∫ ∞

0

2 Re
{
iω z̃(ω)Ẽ∗(ω)

}
dω (1.12)

=

∫ ∞

0

−ω 2 Im
{
z̃(ω)Ẽ∗(ω)

}
dω. (1.13)

So finally we can write down the response function as

S̃+(ω) = −2 Im
[
z̃(ω)Ẽ∗(ω)

]
ω > 0. (1.14)

Since the position of the electron is related to the dipole moment by d(t) = −z(t) in
atomic units, the response function is related to the dipole moment and the pump
electric field by

S̃(ω) = 2 Im
[
d̃(ω)Ẽ∗(ω)

]
. (1.15)

The response function S̃(ω) defined this way represents the absorption proba-
bility density at a certain frequency, so that positive (negative) ωS̃(ω) equals the
amount of energy gained (lost) by the atom per unit frequency at ω. A typical
transient absorption spectrum calculated using the response function is shown in
Fig. 1.2.

1.3 Basic pictures

In this last section of this introduction, we will try to establish some basic pictures
for transient absorption, which we believe are very helpful in understanding transient
absorption.
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Figure 1.2: A transient absorption spectrum of helium is calculated. This time-
dependent absorption spectrum contains the time information of the system evolu-
tion. Reprinted from [37] with permission.

1.3.1 Short pulse as a time starter

In a typical transient absorption setup, the pump pulse usually has a duration of a
few hundreds attosecond and a central energy of a few tens of eV, while the probe
pulse usually has a duration of a few tens of femtosecond and a central frequency of
about 1 eV. The dramatic differences in the duration and central frequency of the
pump and probe pulses suggest two important points about the system dynamics.
First of all, the very different central frequencies dictate that dynamics induced by
the pump and probe pulses are on different time scales. The pump pulse couples
the ground state and the dipole allowed excited states (also known as bright states)
which are a few tens of eV apart, while the probe pulse couples those excited states to
the nearby excited states (also known as dark states because they are not coupled
to the ground state by the field) which are about 1 eV apart. In this sense, the
system dynamics separates into two parts

f(t) = ffast(t)× fslow(t), (1.16)

where ffast(t) and fslow(t) denote the fast and slow dynamics introduced by the
pump and probe pulses, respectively. Moreover, since the probe pulse cannot excite
the ground state, the start of the system dynamics only relies on the pump pulse.
No matter what the delay between the two pulses is, the system dynamics always
start at the time when the pump pulse arrives. Combining these two ideas, we
get a picture of the system dynamics: The pump pulse excites population from the
ground state to the bright states and starts the fast system dynamics. The probe
pulse couples the bright states to nearby darks states and introduce a slow dynamics
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Time

Dipole

pump probe

fslow(t)

ffast(t)

Figure 1.3: Schematic plot of the dynamics introduced by the pump and probe
pulses. The short pump pulse starts the fast system dynamics and the probe pulse
modifies this dynamics at a longer time scale. Reprinted from [40] with permission.

on top of the fast one. A schematic plot of this process is shown in Fig. 1.3. As
we will show in the following section, usually the fast dynamics ffast involves only
the natural oscillation of the bright states and thus becomes trivial. In this sense,
the dynamics of the system is mostly determined by fslow which is the dynamics
induced by the probe pulse.

1.3.2 Waiting time – all about phases

In a transient absorption setup, the frequency-dependent absorption is recorded as
a function of delay, and the system dynamics is encoded in the delay dependent
spectrum. From the simple picture we described above, varying the delay between
the two pulses has two combined effects. The first effect is that the system sees
different pulses at different delays. This is because the system dynamics starts only
after the pump pulse arrives, so that the system is transparent to the part of the
probe pulse that arrives before the pump pulse. This is the most dominant effect in
the overlap regime, where the absorption spectrum changes dramatically with delay.
The second effect of varying the delay is the change of the waiting time between the
excitation of the bright state population and its manipulation by the probe pulse.
During this waiting time, the population gains a phase that is proportional to the
waiting time. So in the time domain, the dynamics induced by the probe pulse will
have a frequency dependent phase

fslow(t− τ) = e−iωτfslow(t), (1.17)

while in the spectrum, this phase gives a delay dependent phase factor

F [fslow(t− τ)] = e−iωτF [fslow(t)] , (1.18)
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Figure 1.4: A transient absorption system involving three states. State 1 and 2 are
coupled by the pump pulse, and state 2 and 3 are coupled by the probe pulse.

where F denotes the Fourier transform. Since the transient probability is propor-
tional to the imaginary part of the electric field spectrum as shown in Eq.(1.15), this
delay dependent phase factor will show up in the absorption spectrum as a family
of stripes that satisfies

|ω · τ | = constant, (1.19)

where τ is the delay and ω is the frequency of in the absorption spectrum. In Fourier
transform nuclear magnetic resonance spectroscopy, this phenomenon is well-known
as the ”perturbed free induction decay” [44,45].

1.3.3 Primitive – two-level system

For a complicated system that is controlled by multiple parameters, it is usually
beneficial to identify the primitives of that system. The primitives should capture
most of the important characteristics of the system in the simplest possible form.
Then after a thorough understanding of the primitives, they will act like an island
from where we can start to explore the sea of parameters. If we are successful in
identifying and understanding the primitives, then we can have a very general theory
that applies to not only the phenomena we started from, but many more. [46]. For
transient absorption, a two-level system is one such primitive.

In the simplest form of transient absorption, we consider a three-level system
coupled by two laser pulses, as shown in Fig. 1.4. The short pump pulse couples
states 1 and 2 and the probe pulse couples states 2 and 3. Then the absorption
spectrum can be calculated using the response function in Eq. (1.15). Since the
response is mainly near the pump frequency, the total electric field in Eq. (1.15) can
be replaced by the electric field of the pump pulse only. Moreover, since the pump
pulse is usually very short, it can be approximately by a delta function with its
strength proportional to the pulse area. With these approximations, the response
function can be simplified as

S̃(ω) = 2Apump Im[d̃(ω)], (1.20)
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where Apump is the pulse area of the pump pulse. With the delta function approx-
imation of the pump pulse, the initial population excited by the pump pulse will
then be delay independent. This means that the initial condition for the coupling
between states 2 and 3 is also delay independent. Thus the three-level system can
be further simplified into a two-level system involving only state 2 and 3 and the
probe pulse. So in this sense, the simplest transient absorption system is a two-level
system driven by a single probe pulse. In the following chapters, we will explore
more about this two-level primitive.

In summary, in this introductory chapter, we discussed the background of tran-
sient absorption and its basic experimental setup. We also discussed the theoretical
approaches to calculate the transient absorption spectrum that is comparable to
experiments. Finally, we established some basic pictures for transient absorption
process. In the following chapters, we will continue to develop these methods and
pictures, and apply them to some concrete examples of transient absorption. Specif-
ically, we will discuss a near resonant coupling case in helium in chapter 2 and a
detuned case in chapter 3.
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Chapter 2

Rabi oscillations and coherence con-
trol in transient absorption

2.1 Introduction

In the previous section, we gave an brief introduction to transient absorption. We
briefly described the theoretical method of calculating the transient absorption spec-
trum and established some basis pictures for the transient absorption process. In
this chapter, we will discuss in detail the transient absorption in the resonant regime
where the wavelength of the IR laser is near resonant with an atomic transition, and
leave the detuned regime to the next chapter.

Figure 2.1: The wave function evolution (upper panel) for a large negative delay
where the XUV pulse is leading the IR pulse (lower panel). The upper panel shows
the wave functions at certain times that are indicated by the vertical line in the
lower panel. The IR pulse is resonant with the helium 1s-2p transition and we see
a complete Rabi oscillation in the wave function evolution.

When the laser is near resonant with the atomic transition, the laser-atom inter-
action can be described in terms of Rabi oscillations, in which the laser drives the
population cyclically through the atomic states it couples. As an example, Fig. 2.1
shows the wave function evolution of a helium atom when excited by an XUV pulse
followed by an IR pulse, calculated by solving the TDSE. The IR pulse resonantly
couples the helium 2p and 2s state and has a pulse area of 2π, where the pulse area
is defined by the integration of the pulse envelope A =

∫∞
−∞ Eenv(t)dt [47]. As shown

in Fig. 2.1, the XUV pulse first excites the atom from the ground 1s state (not
plotted) into the 2p state, then the 2π IR pulse arrives and drives the atom into 2s
state and back to the 2p state, making the atom perform a complete cycle of Rabi
oscillation.
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A typical transient absorption spectrum for a resonant case is shown in Fig. 2.2(a),
where the 2s-2p state is resonantly coupled by a 2250 nm IR pulse with 34 fs in
FWHM and an intensity of 3.0 × 1012 W/cm2. From the absorption spectrum we
can see several interesting features. The most dominant one is the fork-like structure
around 21.1 eV, where the 2p absorption line is split into two curved lines above and
below the resonant frequency when the XUV and IR overlap. This structure is very
similar to the ordinary Autler-Townes (AT) structure where an atomic spectral line
is split by a resonant oscillating electric field [48], except the spacing between the
two features depends on the IR intensity and thus changes with delay as the delay is
scanned. Inside the AT splitting structure, there are also fork like structures going
from positive to negative delays. Moreover, at large negative delays (τ < −5 cycles),
where the XUV pulse leads the IR pulse, there are hyperbolic sidebands near the
2p resonant line. These structures have also been seen recently in the absorption
spectrum of a laser coupled an autoionizing system [29]. In addition, in the region
above and below the main AT splitting structure, namely above 21.5 eV and below
20.5 eV, we can see vertical stripes across the delay scan.

full atom two-level(a) (b)

Figure 2.2: (a) Full TDSE calculation of the transient absorption spectrum of helium
atom dressed by a two color field. The XUV pulse has a FWHM duration of 356 as,
centered at 25 eV. The IR pulse has a duration of 34 fs and a wavelength 2550 nm
which is resonant with the 2p−2s transition. (b) The transient absorption spectrum
for 2p-2s two-level system driven by the same IR pulse. The two-level calculation
reproduces many of the features of the full calculation. reprinted from [40] with
permission.

In this resonant case, the IR pulse is resonant with the helium 2p − 2s energy,
so that the atomic response near 21 eV is dominated by the 1s− 2s− 2p three level
dynamics. In this sense, we can use only the lowest three levels 1s − 2p − 2s to
approximate the dynamics of the field and the helium atom, ignoring all the higher
energy states. Moreover, since the XUV pulse is short and weak in our case, we
can approximate it as a delta function with its strength proportional to the pulse
area of the full XUV field. With these approximations, the resonant coupling of
the helium atom and the laser pulses can be simplified to an effective two-level
system. The absorption spectrum calculated using this effective two-level system is
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shown in Fig. 2.2(b). Comparing Fig. 2.2(b) to Fig. 2.2(a), we see that the two-level
model reproduces many features in the absorption spectrum of the full atom. Thus,
this two-level calculation result will be the starting point for our discussion in this
chapter. In the remainder of this chapter, we will devote ourselves to understand
the different features in Fig. 2.2(b). We will show that the main structure is due
to the Rabi oscillations between the 2p and 2s states while the stripes and the
2ω oscillations come from the effects of the counter-rotating terms (CRT) in the
Hamiltonian.

2.2 Rabi oscillations in a two-level system

In this section, we will set up the formalism of Rabi oscillations in a the 2p-2s two-
level system, and will show that the main structures in the absorption spectrum can
be understood using Rabi oscillations.

In the rotating wave approximation (RWA) [49], the two-level TDSE reads

iĊ2s =
1

2
Ω(t, τ) C2p, (2.1a)

iĊ2p =
1

2
Ω(t, τ) C2s, (2.1b)

with the initial condition of

C2s(0, τ) = 0, (2.2a)

C2p(0, τ) = C0
2p, (2.2b)

where C0
2p is the initial amplitude of the 2p state excited by the XUV pulse, and

Ω(t, τ) is the time-dependent Rabi frequency whose expression will be given below.
This equation has the analytical solution:

C2s(t, τ) = −iC0
2p sin

φ(t, τ)

2
, (2.3a)

C2p(t, τ) = C0
2p cos

φ(t, τ)

2
, (2.3b)

where

φ(t, τ) =

∫ t

0

Ω(t′, τ)dt′. (2.4)

Next, consider an IR pulse that has an envelope of cos2, so that the delay-dependent
IR electric field is

EIR(t, τ) =




E0
IR cos2 ω(t−τ)

2n
sin [ω(t− τ)] 0 ≤ t ≤ πn

ω
+ τ

0 πn
ω

+ τ < t,
(2.5)
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and the time- and delay-dependent Rabi frequency is

Ω(t, τ) =





Ω0 cos2 ω(t−τ)
2n

0 ≤ t ≤ πn
ω

+ τ

0 πn
ω

+ τ < t,
(2.6)

where Ω0 = µ1E0
IR is the peak Rabi frequency, µ1 is the dipole matrix element

between the 2p and 2s state, n is the number of cycles in the full IR pulse and τ is
the delay between the XUV pulse and the IR pulse. In these expressions, we have
set time zero to be the time when the XUV pulse arrives, before which the C2p is
always zero. Substituting Eq. (2.6) into Eq. (2.3) we obtain an analytical expression
for the delay-dependent state amplitude:

C2p(t, τ) =





C0
2pcos

[
Ω0

4ω

(
ωt+ n sinωτ

n
+ n sinω(t−τ)

n

)]
0 ≤ t ≤ πn

ω
+ τ

C0
2pcos

[
Ω0

4ω

(
nπ + ωτ + n sinωτ

n

)]
πn
ω

+ τ < t.
(2.7)

Then the time-dependent dipole moment can be calculated by

d(t, τ) = µ0C
∗
1s(t, τ)C2p(t, τ)e−iω0t + c.c (2.8)

where µ0 is the dipole transition element between the 1s − 2p states. C1s is the
amplitude of the 1s state and is assumed to be always 1 since the XUV pulse is
weak. The response function then can be calculated using the time-dependent dipole
moment and the result is shown in Fig. 2.3(a). It looks very similar to Fig. 2.2(b)
in the sense that it can reproduce the main structure and the fork like structures
in that plot. The final state amplitude at the end of IR pulse can also be written
down, as a function of delay:

Cf
2p(τ) = C0

2p cos

[
Ω0

4ω

(
nπ + ωτ + n sin

[ωτ
n

])]
. (2.9)

A plot of Eq. (2.9) (normalized) is shown in Fig. 2.3(b) overlayed in white
on the absorption spectrum. We see from Fig. 2.3(b) that the final state amplitude
oscillates between positive and negative values, which matches well to the oscillation
of the response function between absorption and emission on the 2p resonant line at
21.1 eV. This oscillation in final state amplitude comes from the fact that as we are
scanning the XUV pulse, the remaining IR pulse area will change as a function of
delay. This causes the response function to oscillate between absorption (when the
2p amplitude at the end of the IR pulse is large and positive) and emission (when
the 2p amplitude at the end of the IR pulse is large and negative).

2.3 Strong driven Rabi oscillations – counter-rotating term

In the previous section, we saw that the main features of the transient absorption
spectrum in Fig. 2.2 is reproduced by the Rabi oscillation model between the helium

13



Delay (IR cycles)

Figure 2.3: (a) Response function calculated directly from Eq.(2.7). We can see
that the two-level Rabi treatment can reproduce the fork-like structure in Fig. 2.2.
(b) Closeup from (a), showing that the Rabi oscillation at the resonant line matches
with the oscillation of the final 2p state amplitude (white line). Adapted from [40]
with permission.

2p-2s states in Fig. 2.3(a). However, the sub-cycle oscillations and the stripes above
and below the main structure are not present in the simple Rabi model. In this
section, we will show that those extra features are due to the CRT, and will provide
a simple model to incorporate that into the Rabi model.

In the derivation of the Rabi oscillation model, we used the RWA in which the
CRT are ignored. The condition for the RWA to apply is

Ω << ω, (2.10)

which means the CRT oscillate so fast that their average contribution to the dy-
namics of the system is almost zero. However, in the strong coupling case, the
above condition can easily be violated. For example, in the parameters of Fig. 2.2,
Ω = 1.4ω, which means the effect of the CRT cannot be ignored. Indeed, the effects
of the CRT are the extra features in Fig. 2.2(b) that are absent in Fig.2.3.

To confirm that the extra features come from the CRT, we change the ratio of
the Rabi frequency to laser frequency by changing the laser frequency and the two
level frequency at the same time, and the result is shown in Fig. 2.4. One can see
that as the ratio decreases, and we thus enter the RWA regime, the 2ω features start
to disappear. This is expected because we are essentially enter the RWA regime.

Now that we have identified the extra features such as sub-cycle oscillations and
the stripes are due to the CRT effect, the next step is to construct a model that
can take them into account. Since the CRT have a 2ω effect as we see in Fig. 2.2,
we can empirically model the CRT effects by adding a term sin(2ωt) directly into
the time-dependent state amplitude in Eq. (2.7). As we have seen, the strength
of the CRT may be characterized approximately by the ratio Ω/ω, since strong
coupling results in large CRT effects. Combining all of these estimates, we get a
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Figure 2.4: Stepping into the RWA regime as we decrease the ratio Ω/ω. Absorption
spectrum for a two-level system using (a) the original Ω/ω = 1.4 (b) Ω/ω = 0.7, (c)
Ω/ω = 0.35, (d) Ω/ω = 0.18. The non-RWA features such as sub-cycle oscillations
and stripes are eliminated while the RWA features of the main AT splitting are
preserved. reprinted from [40] with permission.

model time-dependent 2p-amplitude:

C2p(t, τ) = C0
2pcos

[
Ω0

4ω

(
ωt+ n sin τω

n
+ n sinω(t−τ)

n

)]

×
(

1 + β Ω(t,τ)
ω

sin[2ω(t− τ)]
) (2.11)

where β is a free parameter which we take to be 1/2.

Using Eq. (2.11), we can get a model response function, as shown in Fig. 2.5.
We can see that by putting in a 2ω oscillations directly into the state amplitude,
the model can reproduce the striped structure outside the main AT splitting region.
These stripes appear at two photons above and bellow the main AT structure (at
about ω0 ± 2ω ± Ω0/2), which is reasonable since they represent the frequency
mixing of the Ω/2 and 2ω components in the time-dependent dipole. Absorption
(and emission) is possible at these frequencies because they are all within the broad
bandwidth of the XUV pulse. Adding the 2ω component by hand to the state
amplitude also generally reproduces the tilt of the sub-cycle oscillations, with a
positive (negative) tilt of the stripes above (below) the AT structure. This is because
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Figure 2.5: Adding 2ω oscillation directly into the time-dependent state amplitude
(Eq. (2.11)) reproduces the sub-cycle oscillation and the delay-dependent stripes.
These stripes can be explained as a result of frequency mixing in the dipole oscilla-
tion. reprinted from [40] with permission.

the sub-cycle oscillations originate in an interference between the excitations that
are separated by 2ω, see for instance [37]. These excitations result directly from
adding the (lowest-order non-linear) 2ω term to C2p. We note, though, that since the
simple model incorporates neither higher order terms nor the change of the effective
Rabi frequency, it does not agree quantitatively with the numerical solution of the
two-level system in Fig. 2.2(b), particularly on the phase of the fringes.

2.4 Summary

In this chapter, we have studied the transient absorption process for the case where
the IR pulse is resonant with the 2s-2p transition. We have shown that the well-
known Autler-Townes splitting of an absorption line in the presence of a resonant
coupling field generalizes and becomes delay-dependent when the coupling pulse is
short. We found prominent, delay-dependent interference features which lead to
both absorption and emission within the AT structure. We showed that the dynam-
ics of this delay dependence can be understood from the time-dependent population
dynamics of a strongly driven two-level system. We showed that although the main
AT structure and its delay-dependence is well described within the rotating-wave
approximation, the full delay-dependent absorption spectrum is strongly influenced
by counter-rotating terms which give rise to sub-IR-cycle oscillations as well as ad-
ditional absorption lines corresponding to nonlinear mixing of the IR frequency and
the Rabi frequency.
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Chapter 3

Perturbation and transient popula-
tion in transient absorption
In the previous chapter, we discussed the transient absorption process in a regime
where the probe (IR) pulse is near resonant with the spacing between two atomic
states. In that regime, the dynamics of the system can be understood mainly in
terms of Rabi oscillations between those resonant states. However, in many systems,
atomic couplings are more likely to be largely detuned with the laser wavelength.
Specifically, in those largely detuned systems the detuning between the central fre-
quency of the driving pulse is much larger than the bandwidth of that pulse

τIR|ωpulse − ω0| � 1. (3.1)

For instance, in our “standard” transient absorption calculation for helium, the left
hand side of the above equation is about 15 for the 2p-2s coupling driven by a 10
fs, 800 nm IR pulse. This detuned driving accounts for the 2s light-induced states
(LIS) feature at around 22.2 eV, as shown in Fig. 1.2, and repeated here in Fig. 3.1.

In this chapter, we will focus our discussion of transient absorption to the regime
where Eq. 3.1 is satisfied. We will show that in this regime, perturbation theory can
be used to model the transient absorption process. We will first set up the equations
of perturbation theory for a two-level system. We then calculate an absorption
spectrum using this formalism, and compare the result to that of a two-level TDSE
calculation. From the comparison, we will show that in the large detuning regime,
second order perturbation is in general a good approach to study the dynamics.
Moreover, we will discuss the transient population of the dark states and show that
it is connected to the final population as a function of delay. This allows us to connect
our delay-dependent calculations to a time-dependent picture of absorptions.

3.1 Absorption spectrum from perturbation theory

As we have discussed in the introduction, the absorption feature near 22.2 eV in
Fig. 3.1 is mainly due to the off-resonant coupling between the 2p and 2s states.
So to simplify the problem, we focus only on the 1s-2p-2s three-level system. We
further simplify the problem by assuming the XUV pulse is very short so that it can
be approximated as a delta function, which reduces the system from three levels to
2p and 2s two levels. In the remainder of this section, we will set up a formalism
using perturbation theory to calculate transient absorption in a two-level system.
We will show that second order perturbation can well reproduce a two-level TDSE
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Figure 3.1: The 2s LIS at near 22.2 eV come from the off-resonant coupling be-
tween the 2p and 2s states. We will show that this feature can be explained using
perturbation theory. reprinted from [37] with permission.

calculation. In particular, we will show that both calculations give rise to the 2s LIS
features seen in the full calculation.

For the 2p-2s two-level system, the wave function can be written as

|ψ(t)〉 = C2p(t)e
−iω2pt |2p〉+ C2s(t)e

−iω2st |2s〉 , (3.2)

where C2p(t) and C2s(t) are the amplitudes of 2p and 2s states, respectively. The
TDSE reads

i
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 , (3.3)

and the Hamiltonian is
Ĥ = Ĥ0 + µE(t)X̂, (3.4)

where µ is the dipole transition element between the two states, X̂ is the position
operator. Then the IR pulse can be written as a smooth envelope with a carrier
frequency

E(t) = f(t) cos(ωt). (3.5)

In matrix form, the TDSE is

i

˙


C2p

C2s


 =




0 Ω(t) cos(ωt)e−iω0t

Ω(t) cos(ωt)eiω0t 0


 .




C2p

C2s


 , (3.6)

where Ω(t) is the time-dependent Rabi frequency

Ω(t) = µf(t), (3.7)
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and ω0 is the energy difference between 2p and 2s state ω0 = ω2p − ω2s. We have
approximated the XUV pulse as a delta function, so the initial condition is that the
2p state is populated

C2p(0) = 1, C2s(0) = 0. (3.8)

Using perturbation theory [50], the amplitude of the two states can be written as:
Zeroth order:

C
(0)
2p (t) = 1, C

(0)
2s (t) = 0. (3.9)

First order:

C
(1)
2p (t) = 1, C

(1)
2s (t) = −i

∫ t

0

Ω(t′) cos(ωt′)eiω0t′dt′. (3.10)

Second order:

C
(2)
2p (t) = 1−

∫ t

0

dt′Ω(t′) cos(ωt′)e−iω0t′
∫ t′

0

dt′′Ω(t′′) cos(ωt′′)eiω0t′′ , (3.11a)

C
(2)
2s (t) = −i

∫ t

0

Ω(t′) cos(ωt′)eiω0t′dt′. (3.11b)

We can also go to higher orders, but second order perturbation theory is usually
enough for capturing the main dynamics in our 2p-2s system, as will be shown below.

After the derivation of the two state amplitude in perturbation theory, we can
then use C

(2)
2p (t) to calculate the response function. The procedure for calculating

the response function is the same as in the previous chapters (see Eq. (2.8)). Fig 3.2
shows the absorption spectrum calculated by perturbation theory compared to the
two-level TDSE. In these calculations, the IR pulse has a FWHM of 15 fs, an inten-
sity of 3×1012 W/cm2 and a wavelength of 800nm, which couples the helium 2p−2s
states with energy difference of 0.49 eV. With these parameters, the peak Rabi fre-
quency is Ω0 = 0.7 eV, and the detuning is 1.06 eV. We can see the absorption
calculated from perturbation theory looks almost identical to that of the two-level
TDSE. And the LIS feature near the 22.2 eV in the full calculation in Fig. 3.1 is
well reproduced in both results.

From the excellent agreement of Fig. 3.2(a) and (b), we can see that when large
detuning is satisfied, perturbation theory works well, even under strong coupling
conditions that the Rabi frequency is comparable to the resonant frequency Ω0 ∼ ω.
The RWA, on the other hand, will break down in this regime. This is because the
RWA assumes the counter-rotating term has no contribution. In the detuned regime,
this is not satisfied because the counter-rotating term dominants the dynamics. And
this counter-rotating term is contained in the second order perturbation theory.

The excellent agreement of the perturbation calculation suggests a strong promise
of using perturbation as a framework to study transient absorption. In many
cases, for example the continuous wave and the Gaussian pulse, the integrations
in Eq. 3.11a and Eq. 3.11b can be carried out analytically. In those cases, the an-
alytical form of the population and response function may provide clear pictures
for the different features in the transient absorption that are difficult to understand
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(a) (b)perturbation TDSE

Figure 3.2: Transient absorption spectra calculated from second order perturbation
theory (b) compared to that from two-level TDSE (b). We see the perturbation
calculation reproduces most of the TDSE results.

otherwise. Moreover, these analytical expressions may be used as a tool to ex-
tract information from the transient absorption spectrum, such as dipole coupling
strength of the bright and dark state, the IR pulse shape, etc.

3.2 Transient population and final population

When the natural frequency of a system is largely detuned from that of the external
driving force, the system in general responds at the driving frequency. A familiar ex-
ample is the classical harmonic oscillator. When driven off-resonantly, the harmonic
oscillator responses at the driving force frequency. Similarly, if an atomic transition
is driven off-resonantly, the responds of the atom also mainly happens at the driv-
ing frequency. One signature of this off-resonant driving is the transient population
transfer, where population is cycling between coupled atomic states repeatedly each
half laser cycle. This population last transiently only when the laser field is present
and goes to zero when the pulse is over. In this section, we will discuss this transient
population transfer and show its connection to the final population transfered when
the pulse is over. Specifically, we will establish the connection between population
as a function of time at a certain fixed delay and the final population as a function
of delay when the pulse is over.

As an example, a comparison of these two quantities is shown in Fig. 3.3(a),
using the same parameters as those in the previous section. In this figure, the blue
curve shows the final 2s population at the end of the pulse as a function of delay
and the red curve shows the 2s population evolution as a function of time at a large
negative delay (-10 optical cycle, however the number does not matter as long as it’s
a large negative delay). We can see these two curves agree very well, which means
in this case, the population as function of the delay directly traces the evolution of
the population as a function of time.
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Figure 3.3: (a) compares the population as a function of time and the final popula-
tion as a function of delay on the dark state. (b) shows the IR pulse. The population
at the dark state at a certain time is determined by the part of the IR pulse that
prior to that time, but also can be thought of as determined by the part of the IR
pulse that after that time, since the net population transfered to the dark state by
a complete IR pulse is near zero.

In a simple picture, this agreement can be understood as follows. Shown in
Fig. 3.3(b) is the IR pulse. One can then imagine the pulse is separated into two
parts at a time t (indicated by the dashed line). Then we can think the population
at t is driven by the part of the pulse that precedes t (light blue region). However,
we can also think this amount of population is driven by the part of the pulse that
arrives after time t (light red region), since the total population should return to
zero at the end of the pulse. This agreement can also be seen from the following
derivations. Because Ω(t) is slowly varying, it can be taken out from the integral in
Eq. (3.11b),

C2(t) = −iΩ(t)

∫ t

0

cos(ωt′)eiω0t′dt′, (3.12)

so that
C2(0, τ0) = 0, (3.13)

where τ0 is the end of the IR pulse. This means the final population on the dark
state is zero after the pulse ends, as can be expected from Eq. (3.1). Now if the
XUV pulse starts at time τ , then the final population at the end of the IR pulse is
a function of τ :

C2(τ, τ0) = −i
∫ τ0

τ

Ω(t′) cos(ωt′)eiω0t′dt′. (3.14)

But according to Eq. 3.13, this can be written as

C2(τ, τ0) = i

∫ τ

0

Ω(t′) cos(ωt′)eiω0t′dt′ (3.15)

= −C2(0, τ) (3.16)

which means that the final population as function of delay is the same as the pop-
ulation as a function of time except for a negative sign. This direct mapping of the
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final population to the population evolution can potentially be used to retrieve the
information of the system evolution.

3.3 Summary

In summary, in this section, we showed that perturbation theory is very effective
in describing the dynamics in a transient absorption system where the IR pulse is
largely detuned. In particular, we showed that the 2s LIS in the full calculation can
be well reproduced from a two-level system that involves only the 2p and 2s states.
We showed that the 2p-2s two-level system can be well described using second order
perturbation theory. The excellent agreement of the perturbation theory with the
TDSE potentially opens a new platform on which many of the common transient
absorption features can be described analytically. The analytical descriptions of the
system may provide a framework to extract the information from the absorption
spectrum as well as to formulate physical pictures of the dynamics. Moreover, we
have shown that in the large detuning case, the population as a function of time for
large negative delay is the same as the final population as a function of delay for the
overlap regime. This means that in these cases, the absorption spectrum acts more
like a recorder, which records the time evolution of the system directly into a delay
dependent absorption spectrum.
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Chapter 4

Floquet theory
In the previous chapters, we have described a general picture for transient absorp-
tion: The short XUV pulse starts the dynamics by suddenly populating bright
states, and then the IR pulse transfers population between these bright states and
their dipole allowed darks states. For example, in the near resonant case of helium
in Chapter 3, the XUV pulse populates the 2p state and the IR pulse cycles the pop-
ulation between 2p and 2s states through Rabi oscillations. This picture describes
a time-dependent process in which the system evolves in the laser-free eigenstates,
driven by the laser field. In many quantum systems, time-dependent dynamics
can be often described in a time-independent framework by switching to the true
eigenstates of the system that take account of the external coupling. In transient
absorption, those true eigenstates are the Floquet states. Although calculation in
Floquet states are not supreme than that in the bare states, as we will show in this
chapter, describing the dynamics in the Floquet states leads to a time-independent
picture of transient absorption. In this picture, the strong IR pulse transfers the
system into dressed states and the short XUV pulse probes these dressed states. We
will show that in this new way of thinking, the light induced states are very intuitive
and easy to understand.

4.1 Floquet formalism for a strongly driven two-level system

Floquet theory is best explained using a simple example. In this section we use a
strongly driven two-level system as an example to set up the Floquet formalism.
The TDSE for a periodically driven two level system is

i |ψ̇(t)〉 = Ĥ(t) |ψ(t)〉 , (4.1)

where Ĥ(t) satisfies Ĥ(t+T ) = Ĥ(t) and T = 2π
ω

. In matrix form, the Hamiltonian
can be written as

Ĥ(t) =

(
−ω0

2
ΩIR(t)

ΩIR(t) ω0

2

)
, (4.2)

and the driving term takes the form

ΩIR(t) = Ω0 cos(ωt), (4.3)

where ω0 is the energy difference between the two states, ω is the driving frequency,
Ω0 is the Rabi frequency and is a constant here. According to Floquet theory, the
wave function can be written in the form [51,52]

|ψ(t)〉 =
∑

f

cfe
−iεf t |φf (t)〉 , (4.4)
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where |φf (t)〉 satisfy
|φf (t+ T )〉 = |φf (t)〉 , (4.5)

and are called Floquet states, εf are the Floquet energies (or quasi-energies) and are
time-independent. So solving the TDSE is reduced to finding the Floquet states and
the Floquet energies of the periodically driven system. After we have the Floquet
states and Floquet energies, the time evolution of the wave function is trivial using
Eq. (4.4). Substituting the expansion of the wave function Eq. (4.4) back into the
Schrödinger equation Eq. (4.1), we have the equations for the Floquet states:

(Ĥ(t)− i ∂
∂t

) |φf (t)〉 = e−iεf t |φf (t)〉 . (4.6)

There are two ways to solve this equation for the Floquet states. The first approach
is to directly diagonalize the Floquet matrix in the product basis of the bare states
and the photon number states [51, 52]. The other approach is to diagonalize the
one period propagator directly in the bare state basis [53]. In the following, we will
discuss the first method in detail.

Diagonalize Floquet Hamiltonian

Since the Hamiltonian of the system is periodic, the solution to the Schrödinger
equation is determined only by the Hamiltonian in a single period 0 ≤ t ≤ T . The
periodicity of the Schrödinger equation can be taken advantages of using a Fourier
transform:

Ĥ(t) =
∑

n

Ĥ [n]e−inωt, (4.7)

|φ(t)〉 =
∑

n

|φ[n]〉 e−inωt, (4.8)

where Ĥ [n] and |φ[n]〉 are time-independent coefficients, and determined by

Ĥ [n] =
1

T

∫ T

0

einωtĤ(t)dt,

|φ[n]〉 =
1

T

∫ T

0

einωt |φ(t)〉 dt. (4.9)

Since the Fourier space is complete

δmn =
1

T

∫ T

0

e−inωteimωtdt, (4.10)

the Fourier transform of a general function f(t) can be thought of as an expansion
in a orthogonal basis

|n〉 = e−inωt (4.11)

〈n|f(t)〉 =
1

T

∫ T

0

einωtf(t)dt. (4.12)
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This Fourier basis is different from the ordinary basis in the sense that the basis
contains time t as a parameter, and time now has a equal footing as position in the
system. As we will explain below, the Fourier states can be thought of as the photon
number states. Then the above Fourier transforms of Ĥ(t) and |φ(t)〉 in Eq. (4.9)
are the results of projecting onto this orthogonal basis:

Ĥ [n] = 〈n|Ĥ(t)〉 , (4.13)

|φ[n]〉 = 〈n|φ(t)〉 , (4.14)

with the inversed process being:

Ĥ(t) =
∑

n

〈n|Ĥ(t)〉 |n〉 , (4.15)

|φ(t)〉 =
∑

n

〈n|φ(t)〉 |n〉 . (4.16)

We can further construct a basis that is the direct product basis of the bare state
|α〉 = {|1〉 , |2〉} and the Fourier basis |n〉:

|α, n〉 = |α〉 ⊗ |n〉 (4.17)

and express Eq. (4.6) in this new basis. Then we have

∑

β

∑

m

〈α, n| ĤF |β,m〉 〈β,m|φγl〉 = qγl 〈α, n|φγl〉 , (4.18)

where |φγl〉 is the time-independent Floquet state and qγl is its energy, ĤF is the
Floquet Hamiltonian

ĤF = Ĥ(t)− i ∂
∂t
, (4.19)

and it is the related to the Fourier transform of the Hamiltonian by

〈α, n| ĤF |β,m〉 = Ĥ
[n−m]
αβ + nωδαβδnm. (4.20)

The time-independent Floquet state |φγl〉 and the time-dependent Floquet state
|φ(t)〉 describes the same state in two different basis, with the former one being in
the product basis |α, n〉 while the latter one being in the bare state basis |α〉. Since
our two-level Hamiltonian in Eq. (4.2) only has three non-zero terms in its Fourier
transform

Ĥ [0] =

(
−ω0

2
0

0 ω0

2

)
, Ĥ [+1] =

(
0 Ω0

2
Ω0

2
0

)
, Ĥ [−1] =

(
0 Ω0

2
Ω0

2
0

)
, (4.21)

the Floquet matrix ĤF is a block tridiagonal matrix in the product basis, with
Ĥ [0] in its diagonal bands and Ĥ [±1] in its super-diagonal and sub-diagonal bands,
respectively, as shown in Fig 4.1. From this Floquet matrix, we can see that the
coupling between different states only takes place between the nearest neighbors in
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Figure 4.1: Floquet matrix ĤF with the diagonal blocks is in green indicating the
energy of the product states, and off-diagonal blocks in red indicating the coupling
between different product states.

this new basis. For example, state |1, 0〉 is only coupled to state |2, 1〉 and |2,−1〉;
state |2, 0〉 is only coupled to state |1, 1〉 and |1,−1〉. Diagonalizing the Floquet
matrix yields the Floquet states and Floquet energies, which we can use to write
down the wave function at any time (Eq. (4.4)).

Summarizing the above formalism, the procedure for solving a strongly driven
two-level system using Floquet formalism are:

(1) Calculate the Floquet matrix from the Fourier transform of the time-dependent
Hamiltonian using Eq. (4.20)

(2) Diagonalize the Floquet matrix and get the Floquet states and Floquet energies
in the product basis |α, n〉.

(3) After obtaining the Floquet states, the evolution of the system is simply the
changing of phases of the Floquet states as in Eq. (4.4).

It’s worthwhile to note that the Floquet formalism discussed above gives the
exact solutions to the time evolution problem, without any approximations. How-
ever, approximations are made when we truncate the Floquet matrix to some finite
dimensions, in order to diagonalize it numerically. Also, no Hamiltonian is truly
periodic, since the field must always be turned on and off.

Calculate absorption spectrum using Floquet theory

After setting up the Floquet formalism for a two-level system, we can now calculate
the transient absorption spectrum using this formalism. As in the previous chapter,
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we will use a two-level system to model the transient absorption where the XUV
pulse is treated as a delta function. Note that the Floquet formalism we set up
above only works for a strictly periodic driving field, so the Floquet calculation is
aimed to model a square IR pulse case, where the IR pulse starts and ends abruptly.
In order to model the case of an actual IR pulse, we would need adiabatic Floquet
theory [54], which is outside of the scope of this thesis.

Since the IR pulse is a square pulse, the delay dependence of the IR pulse with
respect to the XUV pulse is reflected only in the phase of the IR field when the
XUV pulse arrives, and the Hamiltonian is now delay-dependent through the phase
of the IR pulse:

H(t, τ) =

(
−ω0

2
Ω0 cos(ωt+ φ(τ))

Ω0 cos(ωt+ φ(τ)) ω0

2

)
, (4.22)

where φ(τ) = ωτ . Fig 4.2 (a) shows the transient absorption spectrum calculated
using the Floquet formalism we discussed above for the 2s-2p coupling. The IR
pulse is a square pulse with a wavelength of 800 nm, an intensity of 3× 1012 W/cm2

and a full duration of 11 cycles. Fig 4.2 (b) shows the spectrum with the same
parameters calculated using the traditional approach where the TDSE is solved in
the bare states. We can see the Floquet calculation gives an almost identical result
as that from the TDSE calculation.

(a) (b)

Figure 4.2: Floquet compared with TDSE in calculating the response function in a
two-level system. The driving laser is a 11 cycle square IR pulse with a wavelength
of 800 nm and an intensity of 3× 1012 W/cm2.

4.2 Floquet picture

As we have discussed in the previous section, the Floquet formalism can reproduce
the absorption spectrum very well. However, this simple Floquet formalism is lim-
ited to only the square IR pulse cases, which seems to prevent it to be useful in
calculating transient absorption spectra that can be compared with experiments. In
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Figure 4.3: Calculated single atom response for the three level helium atom. On
the left are shown the positions of the dressed states |α, n〉 where α is either 2s or
2p depending on the state in zero field. The white dots show states that have a
non-zero transition moment to the 1s ground state.

fact, the Floquet formalism is more useful in explaining the features in the absorp-
tion spectrum rather than serving as a calculation method. In this section, we will
use the Floquet formalism to explain features of a three-level transient absorption
spectrum, many of which are very common in transient absorption spectra in a vari-
ety of different systems. Moreover, we will show that the Floquet description leads
to a new, intuitive picture of transient absorption.

We first simplify the helium atom to a three state system consisting of the ground
1s state and the 2s and 2p excited states. The energies and dipole couplings are the
same as in the SAE full calculation in Fig. 1.2. We use the same laser parameters
as in the full calculation, except that we move the central wavelength of the XUV
to the 1s− 2p energy. The result of a full solution of the TDSE for the three state
model is shown in Fig. 4.3. The absorption features appear near the 2p energy and
also at energies that are approximately one IR photon away from the 2s state and
approximately two photons away from the 2p state. There are also visible half cycle
oscillations in these features. We now discuss how these features can be explained
in terms of Floquet states.

In the three level model, the Floquet states that describe the excited dressed
states are built from products of the 2p, 2s states with an integer number of photons.
Diagonalizing the two state plus IR field Floquet Hamiltonian (Eq. (4.18)) yields
time-independent states which we label as |φα,n〉, where the α label refers to the
state in zero field and is either 2s or 2p in our model, and n is the index for photon
numbers involved. We obtain a “ladder” of states for each α with energies εα + nω.
These energies are shown on the left hand side of Fig. 4.3. The states are constructed
assuming that the IR field has a maximum at t = 0. We can use these basis states to
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construct time-dependent Floquet states |Ψα(t, τ)〉 that are dressed states excited
at t = 0 with an XUV-IR phase delay ωτ :

|Ψα(t, τ)〉 = e−iεαt
∑

n

e−inω(t+τ)|φα,n〉. (4.23)

If we ignore the XUV pulse duration, then the initial excited state wave function is
a superposition of the Floquet states at t = 0:

|Ψ(t = 0, τ)〉 =
∑

α

Cτ
α |Ψα(t = 0, τ)〉, (4.24)

where Cτ
α is the dipole transition element from the ground state to the different

Floquet states,

Cτ
α = 〈Ψα(t = 0, τ)|µ̂X |ψ0〉

=
∑

n

einωτ 〈φα,n|µ̂X |ψ0〉, (4.25)

and µ̂X is the dipole operator of the XUV field. Once we have decomposed the
excited state wave function at t = 0 into dressed states, we can write it at any time
t > 0 using Eq. (4.23):

|Ψ(t, τ)〉 =
∑

α

Cτ
α |Ψα(t, τ)〉. (4.26)

Then the time-dependent dipole can be constructed using this expression

d(t, τ) =
∑

α,m,n

e−i(εα+mω−E0)tei(n−m)ωτ 〈φα,n|µ̂X |ψ0〉〈ψ0|µ̂X |φα,m〉+ c.c., (4.27)

where E0 is the ground state energy.
Using this expression, we can explain many general features in the delay depen-

dent absorption spectrum. The dipole moment oscillates at frequencies εα+mω−E0,
which means there is absorption at those frequencies if they are present in the XUV
spectrum. The absorption is also modulated as a function of delay at frequency
(n−m)ωτ . Due to the parity conservation, the XUV pulse can only populate every
other state in each Floquet ladder, and in Fig. 4.3 we have put a white dot on the
states in each ladder that have a non-zero transition moment to the ground state.
Since m− n must therefore be an even number we expect to see oscillations in the
absorption with a period of T0/2, T0/4, etc., with the half cycle (2ω) oscillations
being the strongest.

The light-induced states we have referred to as 2s±1 are simply the |2s,±1〉
dressed states. They appear close to the E2s ± ω energy due to the detuning of the
2s − 2p energy difference from ω. The light-induced oscillations in d(t) obviously
last only until the IR field ends. This explains why these features are broadened
at positive delays. We note that absorption at the |2p,−2〉 energy can be seen for
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negative delays where the XUV and IR pulses do not overlap. In this case the
dressed state is populated by the turn on of the IR pulse when 2p population is
redistributed over the 2p dressed states.

In summary, the Floquet formalism gives us a new picture of transient absorption
process. In this new picture, the XUV can be thought of probing the IR dressed
states — the Floquet states of the atom. In this picture, the presence of the laser
field upgrades the bare atomic state Hilbert space by another dimension and lifts
the degeneracy of the bare states there. This extra dimension can be thought as
the photon number space. This new basis is the product basis of the bare states
and the photon number states. Moreover, in the new basis, one can diagonalize
the atom-laser Hamiltonian and get the Floquet states as its eigenstates. Then the
time evolution can be carried out in the Floquet states. Since the Floquet states
are the eigenstates of the Hamiltonian, time evolution will only attach phases to
the Floquet states components. After the time propagation, one can go back to the
bare states simply by summing over all the photon number states in the product
basis. What’s more, as we will discuss in regards to the dynamics in solids in the
second part of this thesis, the electron dynamics in solids is very similar to that of
in a periodic driven system here, since the Hamiltonians are periodic in both cases.
Actually, as we will discuss more in detail there, the Bloch theorem, which is one of
most important fundamental principles for solids, is essentially the Floquet theorem
expressed in space.
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Part II

High Harmonic Generation in Solids

31



Chapter 5

Introduction to high harmonic gen-
eration in solids
Since high harmonic generation (HHG) in inert gases was first discovered in 1987 [4],
it has become one of the most active research areas in ultrafast atomic physics.
With about three decades of development, HHG has become a fundamental tool for
modern laser technologies in creating tunable short pulses [1, 9, 55, 56]. It has been
used widely in studying ultrafast dynamics in atoms and molecules, and in biological
molecular imaging and structure identification [9,57–59]. A high harmonic spectrum
generated by an inert gas usually exhibits a general structure as shown in Fig. 5.1(a).
After the initial rapid decline in harmonic intensity, the harmonics form a plateau
where a series of harmonics have the same intensity. This plateau ends abruptly
with a cutoff at energy Emax = Ip + 3.17Up [6], where Ip is the ionization potential
and Up is the ponderomotive energy, which is the quiver energy of an electron in
an oscillating laser field and is proportional to the laser intensity and wavelength
squared. This general structure of the harmonic spectrum can be explained by a
three step model [6, 7], as illustrated in Fig. 5.1(b). In the first step, the laser field
distorts the atomic potential so that the electron is tunnel ionized from the atom. In
the second step, this tunneled electron accelerates in the oscillating laser field and
gains kinetic energy. In the third step, if this electron recombines with the ion core,
the electron energy is converted to the emission of a high energy photon. In atomic
systems, which have inversion symmetry, three steps happen periodically every half-
cycle of the laser field, which accounts for the absence of the even harmonics in the
spectrum.

However, since the whole high harmonic generation process is highly nonlinear,
the intensity of the output high harmonics is typically 5 − 10 orders of magnitude
lower than the fundamental field intensity [61]. This poor conversion efficiency is still
one of the unresolved problems that prevents HHG from being used as a high energy
photon source outside the labs. From the single atom perspective, the efficiency for
generating extreme ultraviolet (XUV) pulses is less than 1 in a billion. Although
later on there were phase matching techniques discovered to increase the efficiency,
the overall output is still orders of magnitude lower than the input light [62–66].
Recently, Ghimire et al. discovered that high order harmonics can also be generated
from a bulk crystal [67], which has opened new possibilities to solve this efficiency
problem [68]. The higher density in a solid compared to a gas means that more
atoms are emitting high harmonics. More importantly, we may be able to engineer
the structure of the solids on the micro-meter scale, and design periodic structures
that satisfy the phase matching condition, which may greatly enhance the conversion
efficiency.
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Figure 5.1: Three-step model for HHG in gas. In the first step, the electron is tunnel
ionized from the atom. In the second step, the electron gains energy from the laser
field. In the third step, the electron is recaptured by the core and emits a high
energy photon. Adapted from [60] which is released under the Creative Commons
Attribution-Share-Alike License 3.0.

5.1 Recent experiments of HHG in solids

In this section, we briefly review the recent experiments of HHG in solids. HHG
from solids was actually reported about two decades ago, first in the metal surface
interaction with strong laser field [69]. Researcher noticed that when shining a
strong infrared laser on the metal surface, high order harmonics were generated in
a surface effect and could be detected in the reflected light. More recently, Ghimire
et al. reported that high harmonics can also be generated in transmission in zinc
oxide crystal [67]. Zinc oxide is a semi-conductor and has a band gap of about
3.2eV and lattice spacing about 2.8 Å. The laser has a wave length of 3.5 µm, which
corresponds to a photon energy of 0.38 eV.

Fig 5.2(a) shows the harmonic spectrum at two different laser intensities, as
measured in [67]. At the higher intensity, harmonics up to the 25th were observed.
Since the inversion symmetry is ensured in the interior of the solid, only the odd
harmonics appear in the spectrum. Fig 5.2(b) shows the behavior of the cut-off as
a function of intensity. Surprisingly, the cutoff is shown to be linear with the laser
field strength, which is different than HHG in gas, where the cutoff is linear in the
field intensity. This difference in cut-off behavior suggests that the mechanism for
generating harmonics in a solid is different from that in the gas phase.

5.2 Theories of HHG in solids

As discussed above, HHG in solids appears to come from different physics compared
to HHG in gas. Currently there is not one common theory that is agreed upon in the
community. An early theory, presented by the same team that performed the zinc
oxide experiment, proposes that the high harmonics come from electrons moving
anharmonically inside the conduction band. The electron motion in this model is
treated classically, under the constraint of the anharmonic dispersion relationship
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Figure 5.2: (a) HHG spectrum generated from ZnO using two intensities. (b) The
high-energy cutoff scales linearly with driven field. reprinted from [67] with permis-
sion.

required by the solid. In this model, the group velocity of an electron wave packet
is

vg =
h̄

m∗0a0

sin
[ωB
ω

sin(kz − ωt)
]
, (5.1)

where ωB = Ea0/h̄ is the Bloch frequency which is proportional to the driving field
strength and the lattice constant, ω is the driving frequency of the laser field, and k is
the wave vector of the electron. The sin

[
ωB
ω

sin(kz − ωt)
]

term in the group velocity
expands to the higher frequency components at odd harmonics of the fundamental
with an expansion coefficient proportional to the ratio between the Bloch frequency
and the driving frequency ωB

ω
. Thus the cut-off in this theory is determined by ωB

ω
.

This model explains the linearity of the cut-off, but it does not take account
of the inter-band transitions and the cut-off and only qualitatively agrees with the
experiment. As collaborators of the Ghimire and Reis’ group, we are interested
in a theory that go beyond the limitation of intra-band transitions and takes into
account both the inter-band and intra-band transitions. And developing a theory
that includes both inter-band and intra-band dynamics will be the central goal
for the remaining chapters in this part. Besides these two models, there is also a
model proposed by Vampa et. al that describes the solid using semiconductor Bloch
equation [70], and also a model proposed by Higuchi et. al that model the solid as
a parametric two-level system [71].

In summary, in this introductory chapter, we briefly reviewed the background of
HHG in solids and the recent experiments and theories. In the following chapters,
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we will progressively establish an understanding of physics of HHG in solids. We
will first consider an electron in a solid without the laser field, and show that the
allowed energies for the electron form the band structure. We will then consider the
case of a solid with a DC field, where we show that the electron performs a periodic
motion in space. And finally, we will consider the solid interaction with an AC field,
which models the process of HHG in solids.
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Chapter 6

Field free band structure
The dispersion relation defines how fast a wave packet spreads out as it propagates in
a medium, and it usually can be written as a relationship between the wavenumber
of a particular wave component and its corresponding energy. A plane wave in free
space has a simple dispersion relation E(k) = h̄2k2

2m
for a given wave number k, mass

m and energy E. This means that the energy of a free particle in space increases
quadratically as its momentum, and its energy can be any value that is greater
than 0. An electron in a solid usually has a complicated form of the dispersion
relation and, unlike the free particle, its energy can only have values within a certain
regime. These allowed energies form energy bands that are divided by gaps between
them. The dispersion relation that contains these bands and gaps is called the band
structure of the solid [72–74].

In this chapter, we will review some of the basic concepts for describing an
electron in a solid such as Bloch states and Wannier states. These basic concepts
provide the foundation of the formalism for our discussion of electron transport in
the following chapters. We will also discuss a commonly used numerical method for
calculating the band structure from a periodic potential, as well as an analytical
method that can be used for a particular class of potentials..

6.1 Band Structure and Bloch States

One of the most important characteristics of a solid is its band structure. In a
simple picture, the band structure defines the transport properties of an electron in
the solid. In this section, we will show that the band structure can be understood
as emerging from the discrete eigenstates of the individual atomic potentials.

The eigenstates of a single, isolated, atomic-like potential usually form a set of
discrete states. For example, Fig. 6.1 (a,b) shows the energies and the wave functions
of the two bound states of a single atomic potential well

V (x) = −1.94 sech2(0.81x). (6.1)

Fig. 6.2(a,c) shows the same with three potential wells, with a separation distance
of 10 a.u.. Comparing Fig. 6.1(a) with Fig. 6.2(a) we see that each of the original
atomic levels is split into three sub-levels. This splitting can be understood as the
removal of the degeneracy of the eigenstates of the individual potential well by the
perturbation of the other potentials. As more and more potentials are added, each of
the original levels splits into more and more sub-levels. Eventually, these sub-levels
are so close to each other that they form a continuous energy band. The band gaps
are what remains of the energy regions between the atomic states that have not
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Figure 7.1: Eigenenergies and eigenstates of a single isolated Sech2 potential. The
red line in the upper panel indicates the two discrete bound levels, and the curves
in the lower panel represent the two bound state wave functions.

two methods. The first methods calculate the band structure by diagonalizing the
Hamiltonian, and the second one starts from the wave function of a single isolated
potential and combines with the periodic natural of the system as a restriction to
get the band structure.

7.1.1 Diagonalizing the Hamiltonian

As we have seen in the precious section, the bands act like energy levels in atoms,
while Bloch states act like their correspond eigenstates. The equation governs the
eigenstates of the system is the time-independent Schrödinger equation, with a pe-
riodic potential for the solid. The periodicity is a symmetry we can take advantage
of, by going to the momentum space by expressing the wave function in the basis of
the lattice wave { ~Kj}, where ~Kj are the reciprocal lattice vectors ~Kj = 2⇡

a
⇤ j and

j is an integer, i.e., j = 0, ±1, ±2, ....

|�ni = eikx
X

j

Cn
j |Kji (7.2)

and k is the lattice momentum.
The Schrödinger equation then transformed into a set of equations involving co-

e�cients Cn
j . This expansion can be also understood simply as the Fourier transform

to the Schrödinger equation, since a continuous periodic function defined in position
(x) space can be uniquely maps onto a set of infinite numbers in momentum (k)
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Figure 6.1: Eigenenergies (a) and eigenstates (b) of a single isolated Sech2 potential.
The red lines in (a) indicate the two discrete bound levels, and the curves in (b)
represent the two bound state densities.
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Figure 6.2: Eigenenergies (a) and eigenstates (b) of a potential well with three
atomic potential well and (c,d) 200 atomic potential wells. In the three-potential
well case, each level is split into three sub-levels. In the 200-potential well case, each
level is split into 200 levels, approaching a continuous energy band.

been covered by the sub-levels. At the same time, each of the eigenstates spreads
out more and more in space and eventually becomes completely delocalized. These
delocalized eigenstates are called Bloch states [72–74]. As an example, Fig. 6.2(b,d)
shows the eigenenergies and eigenstates for a potential with 200 wells, where the
sub-levels already can’t be distinguished at this scale.

After this brief review of the concept of band structure in solids, we will discuss
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how to calculate the band structure for a given atomic potential, using two differ-
ent methods. The first one is a numerical method that diagonalizes the laser free
Hamiltonian in the plane wave basis, in which the band structure and the Bloch
states are the eigenenergies and eigenstates, respectively. The second one is an an-
alytical method for a special Mathieu-type potential [75]. In this special case, the
band structure and Bloch states can be constructed from the tabulated Mathieu
functions.

6.1.1 Diagonalizing the Hamiltonian

Since the Bloch states are the eigenstates of the Hamiltonian and the band structure
is formed by its eigenvalues, we can diagonalize the Hamiltonian to get the band
structure. The equation that governs the eigenstates of the system is the time-
independent Schrödinger equation

Ĥ0 |φn〉 = En |φn〉 . (6.2)

where Ĥ0 is the Hamiltonian

Ĥ0 =
p̂2

2m
+ V (x̂), (6.3)

V̂ is the periodic potential with a period of the lattice constant a0

V (x̂+ a0) = V (x̂). (6.4)

|φn〉 is the nth eigenstate of the Hamiltonian which is the Bloch state. According to
Bloch’s theorem, the Bloch states can be written as a product of a plane wave and
a periodic function [72–74]

φn(x) = eikxu(x), (6.5)

where k is called the lattice momentum and u(x) is a periodic function

u(x+ a0) = u(x). (6.6)

Since the Hamiltonian is periodic in space, we can take advantage of this symmetry
by working in momentum space. The basis for momentum space are the plane waves
|Kj〉, where

〈x|Kj〉 = eiKjx. (6.7)

The wave vectors in this basis are the reciprocal lattice vectors

Kj =
2π

a0

j, (6.8)

where j ∈ Z is an integer. In this basis, the Bloch states can be expanded as [76]

|φn〉 = eikx
∑

j

Cn
j |Kj〉 , (6.9)
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where k has values in the first Brillouin zone −π/a0 ≤ k ≤ π/a0. Inserting the
expansion of |φn〉 in Eq 6.9 into the Schrödinger equation in Eq. 6.2 and projecting
onto a plane wave |Ki〉, we get the Schrödinger equation in terms of the expansion
coefficients ∑

j

(
h̄2

2m
(k +Kj)

2δij + VKi−Kj

)
Cn
j = EnCn

i . (6.10)

The term VKi−Kj is the Fourier transform of the periodic potential

VKi−Kj = 〈Ki| V̂ |Kj〉 =
1

a0

∫ a0/2

−a0/2

V (x)e−i(Ki−Kj)xdx. (6.11)

This expansion can also be understood simply as the Fourier transform of the
Schrödinger equation, because a continuous periodic function defined in real (x)
space can be uniquely mapped onto a set of infinite numbers in momentum (k)
space. The mathematical theorem underlines this is the Pontryagin duality [77].

Although in principle we have an infinite number of coefficients coefficients Cn
j ,

in practice we can truncate and diagonalize the infinite matrix in Eq. 6.10 to get
the band structure and Bloch states. Note that this procedure is for calculating the
band structure and Bloch states at one specific lattice momentum k only. In order
to determine the complete band structure, we have to solve for all possible k′s in
the first Brillouin zone.

Fig 6.3 shows the band structure calculated using a periodic potential that re-
sembles SiO2, with the lattice spacing a0 = 9.45 au and lattice potential [76]

V (x) = −0.7 [1 + tanh(x+ 0.8)] [1 + tanh(−x+ 0.8)] , (6.12)

with all the quantities in atomic units.
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Figure 6.3: Band structure for a one dimensional solid with lattice constant a0 = 9.45
and lattice potential V (x) = −0.7[1 + tanh(x+ 0.8)][1 + tanh(−x+ 0.8)]. We have
used a 51× 51 truncated Hamiltonian matrix and 161 k points in the first Brillouin
zone in the calculation.
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6.1.2 Band structure and Bloch states using Mathieu functions

In the previous section, we briefly reviewed the commonly used numerical method
for calculating the band structure from a periodic potential. In this section, we will
describe an analytical method that solves the band structure for a Mathieu type
potential [75]. This special type of potential is often used as a textbook example
because it is the next soluble 1D potential after the Kronig-Penney potential and
its limiting case of the Delta function potential [72, 75]. This potential is also used
extensively in the optical lattice community, because of its good description of optical
lattice potentials [78, 79].

The Mathieu type potential usually has the form [75]

V (x) = −V0

(
1 + cos

(
2πx

a0

))
, (6.13)

where V0 is the strength of the potential and a0 is the lattice constant. The time-
independent Schrödinger equation we want to solve is

− 1

2
ψ′′ − V0

(
1 + cos

(
2πx

a0

))
= Eψ. (6.14)

The solutions we want are Bloch states that can be written as

φ(x) = eikxu(x), (6.15)

where u(x) is a periodic function

u(x+ a0) = u(x). (6.16)

The Schrödinger equation is very similar to the standard Mathieu equation [80]

y′′ + (a− 2q cos(2z))y = 0, (6.17)

where a and q are two parameters. Note that a is a parameter here and should
not be confused with the lattice constant a0. This Mathieu equation has a general
solution

y(z) = C1 · C(a, q, z) + C2 · S(a, q, z), (6.18)

where C(a, q, z) and S(a, q, z) are Mathieu sine (odd) and cosine (even) functions,
respectively. The similarities between the Mathieu equation and the Schrödinger
equation suggest the possibility of solving the Schrödinger equation by scaling the
solution of the Mathieu equation.

Fig. 6.4(a,b) shows Mathieu cosine and sine functions for a series of a-values. The
parameter q is set to 1 in both plots. We can see that the Mathieu functions can
be both bound (with bluish color) and divergent (with reddish color) for different
choices of the parameter a. The bound functions are the stable functions that we
will use to construct the solution to Schrödinger’s equation. The region in the a− q
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Figure 6.4: Mathieu (a) cosine and (b) sine functions for a set of a values ranging
from -2 to 3. The q parameter is 1 in both plots. The Mathieu functions can be
bounded or divergent depends on the value of the parameter a. For large positive
a, the Mathieu functions are bounded (blue color), whereas for large negative a, the
Mathieu functions are divergent (red color).

plane that supports stable Mathieu functions are shown in Fig. 6.5, and is defined
as the Mathieu characteristic function [80]

a = a(r, q), (6.19)

where r is a real number. This means that as long as the parameter a in the standard
Mathieu equation in Eq. 6.18 satisfies takes on the allowed values of the characteristic
function a(r, q), the solutions of the Mathieu equation are stable. Moreover, these
stable solutions can be written in the form

y = eirzu(z), (6.20)

where u is a periodic function and has u(z + π) = u(z).
Comparing the Mathieu equation and the Schrödinger equation Eq. (6.17 ,6.14),

and their stable solutions Eq. (6.15, 6.20), we can extract the transformation rules
that takes the Schrödinger’s equation in Eq. 6.14 and transforms it into the Mathieu
equation in Eq. 6.17

a→ 2a2
0(V0 + E)

π2

q → −a
2
0V0

π2

z → πx

a0

r → a0k

π
.

(6.21)

We can write down the band structure and Bloch states using these transforma-
tion rules. Substituting the transformation rules to the condition for stable solution
of Mathieu equation in Eq. 6.19, we get the requirement on the relation between the
lattice momentum k and the energy E so that stable solutions (the band structure)
are supported in the solid, which is exactly the band structure

E(k) = −V0 +
π2

2a2
0

· a
(
a0k

π
,−a

2
0V0

π2

)
. (6.22)
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Figure 6.5: The region in the a − q plan that supports stable Mathieu functions is
shown in black. Only functions in this region are used in constructing the solution
to Schrödinger’s equation.

The Bloch states can be constructed from the combination of the even and odd
Mathieu functions as [81]

φ(x) =C

[
a

(
a0k

π
,−a

2
0V0

π2

)
,−a

2
0V0

π2
,
πx

a0

]

+ i · sign(k) · S
[
a

(
a0k

π
,−a

2
0V0

π2

)
,−a

2
0V0

π2
,
πx

a0

]
, (6.23)

The periodic part of the Bloch state is simply

u(x) = e−ikxφ(x). (6.24)

So now we have both the Bloch states and band structure of our system. Note that
the lattice momentum in these expressions is in the extended zone scheme, where k
takes the values beyond the first Brillouin zone [72]. To get the band structure and
Bloch states in the folded zone scheme, we can simply fold the lattice momentum
into the first Brillouin zone by adding or subtracting corresponding reciprocal lattice
vectors.

Since we have the analytical expression for the band structure, we can easily
gain intuition about how the band structure depends on the potential depth V0 and
the lattice constant a0. Fig. 6.6 and Fig. 6.7 show the band structure at a variety of
parameters. From the varies band structures, we can gain intuition about the solid
system:

(1) For large lattice constant and deep potential, the bands tend to flatten out.
For example the first and second bands in Fig. 6.6 become flatter as the po-
tential gets deeper. This is expected because in the deep potential case, each
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atomic potential well is more isolated, which means that the dynamics are
more concentrated in the individual potential well and less in other potential
wells. At the limit of large lattice constant where the lattice constant approach
infinity, we recover the single atomic case.

(2) For small lattice constant and shallow potential, the bands tend to approach
the free electron band structure. For example, the third and fourth bands in
Fig. 6.7 become more free-electron like when the lattice constant decreases.
This is also expected because small lattice constant and shallow potential
makes the wave function spread out into many wells and behave more like
that of a free electron.

This intuition suggests that dynamics in solids may not necessarily have a universal
simple model for all band structures, as compared to the universal applicability of
the Strong Field Approximation [82] to all inert gases. Instead, the dynamics in
solids will depend more strongly on the parameter regime of the problem at hand.
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Figure 6.6: Band structure with different potential depth. As the potential depth
increases, the first and second bands tend to flatten out and the band gaps gradually
increase.

In summary, in this chapter we mainly considered the static problem of an elec-
tron in a solid without external forces. We have briefly reviewed the idea of forming
band structure from discrete atomic states. We have also discussed a commonly
used numerical method in calculating the band structure from a periodic atomic
potential. Finally, for a Mathieu-type solid, we have shown an analytical method to
calculate the band structure and Bloch states from rescaling of the standard Math-
ieu equation and its tabulated solutions. In the next chapter, we will discuss the
dynamics of a electron in a solid, interacting with of a constant external field.
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Figure 6.7: Band structure with different lattice constant. As the lattice constant
decreases, the third and fourth bands tend to become free-electron like.
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Chapter 7

Interaction of a solid with a DC
field

7.1 Introduction

In the previous chapter, we have discussed the band structure and Bloch states of
a 1D solid without external field. In this chapter, we will go to the next step and
discuss the simplest case of a solid with a field – a constant field (DC field). Although
this problem looks simple at first sight, adding a DC field introduces rich dynamics
to the system, many of which are still being actively investigated in research. These
dynamics include Bloch oscillation, Wannier-Stark localization, chaotic scattering,
etc [78, 79, 83, 84]. In this chapter, we will first review the Bloch oscillation, and
then discuss the Wannier-Stark states and finally discuss the connection between a
DC field dressed system to a quantum well system.

7.2 Bloch Oscillation and Zener tunneling

7.2.1 Bloch oscillation

When applying a constant electric field to a free electron, the dynamics are trivial.
The electron will constantly accelerate in the direction of the force. However, an
electron subject to a constant field in a periodic potential will not accelerate along
one direction, but instead will oscillate in space around some fixed point. This is
quite counter-intuitive to our daily experience, since if we tilt a carton of eggs with
the lid open we will never expect the eggs sometimes going up instead of falling
down [85]. This counter-intuitive oscillatory motion is called Bloch oscillations, the
oscillation frequency is the Bloch frequency, and the oscillation period is the Bloch
period:

ωB =
ea0F

h̄
(7.1)

TB =
2π

ωB
, (7.2)

where a0 is the lattice constant and F is the external electric field. As an example,
Fig. 7.1 shows snapshots of the wave packet evolution as it performs the Bloch
oscillation in real space in a single Bloch period. We can see that initially the wave
packet accelerates along the direction of the force, and then it reflects back in space
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as if it had hit a wall, and finally it returns to its initial position. The wave packet
will perform this oscillation periodically as long as the field is present. Fig. 7.2
shows the total current and the polarization (i.e. the integration of the current) of
the electron wave packet, both of which also have a period of TB.
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Figure 7.1: Bloch oscillation in real space. The lattice constant is a0 = 2π au,
the periodic potential is V (x) = −0.125(cos[2πx/a0] + 1), and the field strength is
F = 5.5× 10−4 au. The initial wave function spans about 10 lattice sites.

The motion of the electron in a solid with a DC field is governed by the TDSE

ih̄
∂

∂t
|ψ(t)〉 = (Ĥ0 + Ĥint) |ψ(t)〉 , (7.3)

where Ĥ0 is the laser-free Hamiltonian

Ĥ0 =
p̂2

2m
+ V (x̂), (7.4)

and V (x̂) is a periodic function with the period of a lattice constant a0

V (x̂+ a0) = V (x̂). (7.5)

ĤI is the interaction Hamiltonian, which in dipole approximation can be written
both in length gauge and velocity gauge:

ĤL
I = ex̂F (t) (7.6)

ĤV
I =

e

m
A(t)p̂. (7.7)
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Figure 7.2: Both the (a) total current and (b) polarization of the electron wave
packet have a period of TB.Parameters are the same as in Fig. 7.1.

Starting from here, the Bloch oscillation can be described in either length gauge [86]
or velocity gauge [87], corresponding to two physical pictures of the Bloch oscillation.
We will discuss the velocity gauge picture in this section and leave the length gauge
picture to the next section.

In the velocity gauge, the Bloch oscillation can be expressed in the ”semi-
classical” approach through the so-called acceleration theorem [88]

h̄k̇ = −eF, (7.8)

where k is the lattice momentum and F is the DC field. This model describes the
response of the electron to the external field, and actually applies to any wave packet
with a narrow distribution in k space. Together with the dispersion relationship of
the electron

E = E(k), (7.9)

the group velocity can be written as,

v(t) =
1

h̄

∂E(k)

∂k
(7.10)

from which the electron motion is completely determined. For example, a free
particle with zero initial momentum k0 = 0 has the group velocity and position

v(t) =
eF t

m
(7.11)

x(t) =
eF t2

2m
, (7.12)

which is the result we expected.
For an electron in a solid the dispersion E(k) is periodic with 2π/a0, which

means the allowed wave vector is confined in the the range [−π/a0, π/a0]. As the
wave function reaches the right edge of the Brillouin zone, the electron will Bragg
reflect and reappear at the left end of the Brillouin zone. This periodic process
happens with a frequency

ωB =

(
eF

h̄

)
/

(
1

a0

)
=
eFa0

h̄
, (7.13)
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which is the Bloch frequency. For a solid, considering only the nearest neighbor [72],
the dispersion relationship can be written as

E(k) = −∆

2
cos(ka0), (7.14)

where ∆ is the band width. The group velocity and the position of the electron are
then

v(t) = −∆a0

2h̄
sin (ωBt) (7.15)

x(t) =
∆

2eF
cos(ωBt), (7.16)

which exhibits the Bloch oscillation with Bloch frequency ωB as we expected.

aliasing

Figure 7.3: The aliasing effect in a digital picture of a large checkerboard. The
stripes at the far field comes from the fact that the alternation frequency of the
black and white cells exceeds the pixel density of the picture.

Although the acceleration theorem is usually referred to as a semi-classical the-
ory, it can actually be rigorously derived from the TDSE in the velocity gauge, when
the transitions to other bands are ignored [88]. We will elaborate more on this point
in the following chapters when we discuss the solid in an AC field.

An analogy to Bloch oscillations is the aliasing effect in digital signal processing.
An example is the backward rotation of the car wheels in movies. Initially when the
speed of the car is slow, we see the wheels rotate forwards as expected. As the speed
of the car increases, the wheels appear to rotate backwards. The apparent backward
rotation is because that the actual rotation frequency has exceeded the Nyquist
frequency [89] of the refresh rate of the movie, making the rotating wheels appear
to rotate at a lower, negative frequency. Depending on how much a high frequency
exceeds the refresh rate, it may appear as positive or negative low frequencies. This
is very similar to the Bloch oscillation in a solid. The lattice momentum at the first
Brillouin zone is the highest momentum that can be supported in the solid (refresh
rate), and as the electron momentum exceeds the first Brillouin zone (fast forward
rotating wheel), it will be identical to a negative momentum in the negative part of
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the first Brillouin zone (slow backwards rotating wheel). Similar aliasing effects can
be also seen in digital pictures where the change of the pattern exceeds the pixel
density of the picture. For instance, in the picture of a infinite large checkerboard
shown in Fig. 7.3, we can see stripes in the far background of the checkerboard. This
is because the frequencies at which the black and white cells flip on the checkerboard
in far field exceeds the pixel density of the image, and thus those fast frequencies
appear as low frequency distortions.

Bloch oscillation

Zener tu
nnelin

g

Lattice momentum

En
er

gy

Figure 7.4: Schematic of Bloch oscillations and Zener tunneling. Bloch oscillations
are the part of the wave packet that states on the same band while Zener tunneling
is performed by the part that tunnels to higher bands.

7.2.2 Zener tunneling

The Bloch oscillation picture applies when tunneling to other bands is small. This
condition is usually satisfied for the first band formed by the corresponding deeply
bound atomic states, but not necessarily for bands formed by highly excited atomic
states. In another perspective, Bloch oscillations dominate the dynamics if the
atomic potential is deep and the avoided crossings near the band gaps are smooth.
However, for a shallow potential, where the band gaps are small and the avoided
crossings are sharp, a large population can leave the original band and tunnel to
other bands at the avoid crossings. This tunneling is called Zener tunneling. The
tunneling process is shown schematically in Fig. 7.4. The dynamics of the two parts
of the wave packet are actually closely related to that of the diabatic and adiabatic
transitions at an avoided crossing. The Bloch oscillation describes the part of wave
packet that adiabatically follows the field and stays on the band, while the Zener
tunneling describes the part of wave packet that diabatically tunnels through the
band gap into other bands. We will come back to this point in the following chapters
when we discuss a solid in an laser field.

To demonstrate Bloch oscillations in the presence of Zener tunneling, Fig. 7.5
shows the evolution of a wave packet at different potential depths. We start from
a free wave packet that spans about 20 lattice sites in Fig. 7.5(a), and gradually
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V0= V0=

V0= V0=

time (TB) time (TB)

Figure 7.5: Bloch oscillations in a periodic potential with four different potential
depths. The numbers indicate the value of V0. When V0 = 0 the wave packet
evolution is the same as that of a free electron. When the potential is non-zero,
the wave packet splits into two parts. One part performs Bloch oscillations and the
other part continues the free electron behavior, which is the Zener tunneling part.
As the potential gets deeper the Zener tunneling part gets smaller.The initial wave
packet spans about 20 lattice sites.

increase the depth of the periodic potential in Fig. 7.5(b-d), and then plot the
evolution of the wave packet when a constant field is present. When the potential
depth is zero in Fig. 7.5(a), the wave packet accelerates along the force direction in
space like a free particle. Then as the periodic potential get deeper in Fig. 7.5(b-d),
the wave packet splits into two parts. One part stays on the same band and performs
a Bloch oscillation, while the other part continues its free particle-like behavior and
acts as if the band gap does not exist. This second part is the part of the wave
function that tunnels through the band gap into the second band. In Fig. 7.5(b,c,d)
the band gap increases as the potential get deeper, so the tunneling portion of the
wave function get smaller and smaller.

Bloch oscillation does not happen only on the lowest band, but can happen
on multiple bands, if they are populated, either initially or via tunneling. For a
Gaussian initial wave packet in space, which is a typical initial condition for cold
atoms in optical lattices [90], the dynamics of the wave packet is usually a super-
position of Bloch oscillations and Zener tunneling in multiple bands. For example,
Fig. 7.6(c) shows the evolution of a Gaussian wave function in space as a function of
time. Fig. 7.6(a) shows how the periodic potential is tilted by the external field and
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Fig. 7.6 (b) shows the initial distribution of the wave packet in space. In Fig. 7.6(c)
we can see the the wave packet evolution is quite complicated. In the following we
will break down this complicated process into several simpler ones by restricting the
initial population.
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Figure 7.6: (a) shows a the tilted periodic potential by a constant laser field. (b)
shows the distribution of the initial wave function in space. (c) shows the evolution
of the wave packet in space. Bloch oscillations on the first and second band can be
seen. Zener tunneling from the second to the third band is also present. The periodic
potential has a lattice constant a0 = 6.28 au and potential depth of V0 = 0.125 au.
The constant field has a strength of F = 1.1× 10−3 au.

We take the initial Gaussian wave packet in Fig. 7.6(c) and project it on to the
Bloch states of the first or the second band and reconstruct an initial wave packet
that only has components on the first or second band, respectively

|ψn〉 =
∑

k

〈φnk|ψ〉 |φnk〉 . (7.17)

The projection removes the component of the other bands from the initial wave
packet since Bloch states on different bands are orthogonal

〈φnk|φn′k′〉 = δnn′δkk′ . (7.18)

Fig. 7.7(a,b) shows the initial Gaussian wave packet and the wave packet recon-
structed from the projection onto the first and second band Bloch states, respec-
tively. Using these reconstructed wave packets as the initial condition, we get very
clean Bloch oscillation on the first band as shown in Fig. 7.7(c). Since the band gap
between the second and the third band is small and the Zener tunneling is large, we
still have the tunneling in Fig. 7.7(d). Moreover, since the band gap between the
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Figure 7.7: Bloch oscillations on the first and second bands. A Gaussian initial
wave packet projected on the Bloch states on the (a) first band and (b) second band
respectively. The evolution of the projected wave packet is shown in (c) and (d).
Parameters are the same as in Fig. 7.6.

second and the third band is at the band center, the Zener tunneling happens at the
integer number of Bloch periods as apposed to the half integer periods in Fig. 7.5.

Even when the Zener tunneling is small and can be safely ignored, the dynamics
of Bloch oscillations on a single band differs dramatically depending on the initial
condition [91]. Well-known special cases are 1) the initial wave packet strongly
localized in k space and delocalized in real space, which leads to the oscillation
mode or 2) the initial wave packet strongly localized in real space and delocalized in
k space, which leads to the breathing mode. In the oscillation mode, the wave packet
oscillates in real space, and its group velocity and averaged position both have a
period of TB. All the figures showing Bloch oscillation above are in the oscillation
mode. In the breathing mode, however, the wave packet periodically collapses and
revives at the Bloch frequency, and the group velocity and the averaged position
of the wave packet stay zero for all the times and the system has no net current.
These different behaviors are demonstrated in Fig. 7.8 (a-d), where evolution of the
wave packet with different initial distributions is shown in real space. In Fig. 7.8(a)
the initial wave packet spreads out about 5 lattice sites and it shows the oscillation
model, while the initial wave packet in Fig. 7.8(d) spans only 1 lattice site and shows
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the breathing mode. In between these two cases are a combination of breathing mode
and oscillation mode as shown in Fig. 7.8(c,d). These different initial conditions
are very important since the dynamics following them are completely different, so
choosing the most appropriate initial condition should be considered carefully before
studying the electron dynamics. We will come back to this point when we discuss
the electron dynamics in a solid with a laser field in the next chapter.
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Figure 7.8: The dynamics of the wave packet change from oscillating mode to be-
rating mode as the initial wave packet spanning broader spacial distribution. A
Gaussian with standard deviation σ of (a) 20 (b) 10 (c) 8(d) 5 au is used as the
initial wave function. The components on other bands are removed using Eq. 7.17.
Other parameters are the same as in Fig. 7.6.

7.3 Wannier States

As we have shown in the previous section, an electron in a solid performs Bloch
oscillations when subject to an external constant electric field. As the acceleration
theorem in Eq. 7.8 suggests, Bloch oscillations can be pictured as a particle travers-
ing the first Brillouin zone periodically along the band in momentum space. This
picture corresponds to the velocity gauge description of the Bloch oscillations. How-
ever, sometime a length gauge description is more useful to provide a conceptual
understanding of the underline physics. For instance, the three-step model [6, 7]
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is constructed entirely in the length gauge, in which a clear physical picture is
emerged. In this section, we will discuss the length gauge description of the Bloch
oscillations using the so called Wannier-Stark states [88,92]. We will show that the
Bloch oscillations in length gauge can be understood simply as quantum beatings.

First of all, unlike the laser-free case where the allowed energies of the system
form bands, the DC field changes the energies of the system into a ladder-like struc-
ture, known as a Wannier-Stark ladder. Shown in Fig 7.9 are comparisons between
the eigenstates of the solid with and without a DC field. The periodic potential for
the solid has a period of a0 = 10 au and a potential well of V (x) = −1.94 Sech[0.81x]
for the single lattice cell.

Fig 7.9(a-b) shows the periodic potential with and without the field. Fig 7.9(c-
d) shows the eigenenergies of the system in the two cases. The same information
are plotted in Fig 7.9(e-f) in a different way such that each vertical line indicates
an allowed eigenenergy of the system. In the laser-free case, some eigenstates have
almost degenerate energies and they form bands, as shown in Fig 7.9(e) around −1.3
au and −0.3 au. And in the DC field case, these two bands turn into two sets of
ladders. Note that in the potential we include only a few potential wells in order
to clearly demonstrate the energy shifts of the eigenenergies, otherwise ladders from
different bands will mix together.

The nature of the Wannier-Stark ladders can be seen more clearly from its field
dependence. In Fig. 7.10 we plot the eigenenergies of the system at different field
strengths. For clarity, only states belonging to the two lowest bands are shown. As
the field strength increases, the almost degenerate states belonging to each band
start to have ”Stark” effect where the degeneracy are removed by the field, forming
”Stark” states with constant energy separation. In other words, the ladder structure
in the DC field case originates in the Stark effect of the almost degenerated Bloch
states. Hence, these ladders are called Wannier-Stark ladders, and their correspond-
ing eigenstates are called Wannier-Stark states. Eventually, when the field is strong
enough, the two sets of Wannier-Stark ladders intercept and form avoided crossings,
where the diabatic process can happen. This idea is essentially the starting point
of papers by Stockman and coworkers [71, 93] in studying the HHG in solid with a
short pulse, where they treat the laser field in the adiabatic limit and track down
the evolution of the system using the adiabatic states.

The eigenstates of the DC-field-dressed system are also interesting. In the laser-
free system, the eigenstates, i.e. the Bloch states, are delocalized as waves across
the whole space, while in the DC field case, the eigenstates are localized in space.
The left column in Fig. 7.11 shows the first four Bloch states belonging to the
lowest band. In order to show the wave behavior, the real part of the Bloch state is
plotted. In the second column, we plot the lowest four Wannier-Stark states, which
are eigenstates of the DC-field-dressed system. They are very well localized at each
lattice site. This process of localization of the eigenstates is essentially a Stark effect
and is referred to as Wannier-Stark localization [83, 88]. We will discuss this more
in the next section.
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Figure 7.9: (a,b) show the periodic potential without and with the DC field. (c,d)
shows the eigenenergies of the system without and with the DC field. (e,f) shows
the spectrum of the eigenenergies of the system without and with the DC field.

7.3.1 Analogy to quantum double-well

The behaviors of the Wannier-Stark states can be understood from an analogy to a
quantum double-well system. A quantum double well system consists of two wells,
and can be thought as a first order approximation to an infinite periodic system.

Consider a quantum double-well with a bias field, the total potential of the
system is

V (x) = −sech(x+ a0/2)− sech(x− a0/2) + F · x (7.19)

where the distance between the well is a0 = 15, and F is the DC field. For the field
free case where F = 0, the eigenstates are delocalized into two wells, as shown in
Fig. 7.12(a). When applying an small non-zero field F = 0.001, the eigenstates are
localized at each well as shown in Fig. 7.12(b). The two eigenstates have a energy
difference of that of their Stark shift energies

∆E = EStark, (7.20)
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Figure 7.10: The eigenenergies of the system as a function of the field strength. A
clear Stark effect can be identified. As the field strength increase, the Stark shifted
states belonging to different bands intersect and form avoided-crossings, which are
the places where Zener tunneling happens.

since the degeneracy of the eigenstates is lifted by the DC field. This behavior is
very similar to the Wannier-Stark localization in solids, where the eigenstates of
the system change from delocalized Bloch states to localized Wannier-Stark states
after applying a DC field. Fig. 7.12(c) shows the time evolution of one of the
field-free eigenstates when a DC field is applied. Since the field-free eigenstate is a
superposition of the two field-on eigenstates (Wannier-Stark) states, as a function of
time each of the individual field-on eigenstate oscillates at its natural frequency. The
two field-on eigenstates have slightly different energies, so that their superposition
oscillates at their energy difference, which is the Stark shift energy. If we define the
Stark shift energy as a effective Bloch frequency

ωB = EStark, (7.21)

then the averaged position of the wave packet in space is oscillating at the Bloch
frequency, as shown in Fig. 7.12(d).

We can then go further and think of the 1D solid as a quantum multiple-well
system, and the Bloch oscillations as the beatings between all the initially populated
Stark-shifted states. Since the Stark shift splittings are the same for each eigenstate,
their superposition will beat at the Stark shift energy. An example of a eight-well
system is shown in Fig. 7.13. In the evolution of the wave packet and the averaged
position, we again see the localization of the Wannier-Stark states as well as the
Bloch oscillations as the beating in the superposition wave packet. In the above
analysis, we have only considered the eigenstates of the quantum well that belong
to the same atomic states, and ignored the transitions to other atomic states. For a
atomic potential which has more than one bound state, each bound state will form
a set of Stark states, similar to those shown in Fig. 7.10. If the Stark states in
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Figure 7.11: The left panel shows the first four Bloch states, which are the eigenstates
of the field free system. The right panel shows the first four Wannier-Stark states,
which are the eigenstates of the DC field case. The Bloch states are delocalized in
space while the Wannier-Stark states are localized at each lattice site.

neighboring sets get close, avoided crossings will form and tunneling will happen.
This is an analogy to Zener tunning in solids.

An initially delocalized Bloch state is one of the field-free eigenstates, which
is also a superposition of all the free-on eigenstates (Wannier-Stark states). The
evolution of a Bloch state in the field is then the quantum beating of all the Wannier-
Stark states that are initially populated. In this sense, Bloch oscillations in the
periodic potential can be understood as the quantum beatings of a superposition of
the Wannier-Stark states.

In summary, in this chapter, we have discussed the motion of an electron in
a solid with a constant field. We have shown that the electron dynamics are a
superposition of Bloch oscillations and Zener tunnelings. The Bloch oscillations can
be understood both in velocity gauge and in length gauge. In the velocity gauge,
the lattice momentum of a Bloch state becomes time-dependent through the vector
potential of the field. Because the allowed momenta of the electron in the solid are
confined in the first Brillouin zone, the time-dependent lattice momentum traverses
the first Brillouin zone periodically while the field is on. This periodic behavior is
the Bloch oscillation. In the length gauge, the delocalized Bloch state can be written
as a superposition of all the localized Wannier-Stark states. The Bloch oscillations
then can be thought of as a quantum beating of this superposition. We have also
showed that Zener tunneling is the part of the wave packet that tunnels through
the band gap into other bands, and that it strongly depends on the sharpness of
avoided crossing near the band gap. In the following chapters we will discuss our
main results in the harmonic generation of a solid in a laser pulse. The concepts we
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Figure 7.12: Wave function in quantum double-well. (a,b) shows the first two eigen-
states of the double-well without and with field. (c) shows the evolution of the wave
function with a DC field. The initial wave function is one of the eigenstate without
the field. Notice the slightly different oscillation frequencies of the DC-field-dressed
eigenstates. (d) The average position of the wave packet, oscillating at the Stark
shift energy.

have laid down in this chapter such as Bloch oscillations and Zener tunneling will
be the basic pictures to describe the electron dynamics there.
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Figure 7.13: The same as in Fig. 7.12 except in a quantum 8-well. This analogizes
to the Bloch oscillations in solids.
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Chapter 8

Interaction of a solid with an AC
field

8.1 Introduction

In the previous chapters, we discussed some of the basic concepts of the electron dy-
namics in a solid. The allowed energies for a single electron in a solid form the band
structure, and they can be calculated by diagonalizing the single-electron Hamilto-
nian. The eigenstates of this Hamiltonian are Bloch states, which are delocalized
in space throughout the solid. When applying a constant electric field, the electron
traverses the first Brillouin zone periodically, and this periodic motion is called the
Bloch oscillation. Bloch oscillations can be understood in both the velocity gauge as
the acceleration of the lattice momentum and in the length gauge as the quantum
beating between different Wannier-Stark states. We also showed that, in general, the
dynamics are a combination of Bloch oscillations and Zener tunnelings on different
bands.

In this chapter, we will focus on the studying of a single electron in a solid
interacting with an AC field, which aims to model the high harmonic generation
(HHG) process in solids by interacting with a mid-infrared laser. We will start
from the time-dependent Schrödinger equation (TDSE) for an electron in a periodic
potential, and discuss the two commonly used methods in solving the Schrödinger
equation, namely in terms of Bloch states and Houston states. We will also show the
harmonic spectrum from these two methods and present a physical interpretation for
the origins of the harmonics, together with a simple formula for the high harmonic
cutoff. Finally, we will draw a connection between the Houston treatment of the
solid-laser system and a strongly driven two-level system.

8.2 Solving the TDSE in a Bloch state basis

8.2.1 Formalism

We consider a linearly polarized laser field propagating through a thin crystal along
the optical axis. We describe the laser-solid interaction in one dimension, along
the laser polarization which lies in the crystal plane. We follow the velocity gauge
treatment in [76], in which the TDSE reads

ih̄
∂

∂t
|ψ(t)〉 = (Ĥ0 + Ĥint) |ψ(t)〉 , (8.1)
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where H0 is the field-free Hamiltonian and Hint is the interaction Hamiltonian be-
tween the laser and the electron

Ĥ0 =
p̂2

2m
+ V (x̂) (8.2)

Ĥint =
e

m
A(t)p̂. (8.3)

A(t) is the vector potential, and is related to the electric field by

A(t) = −
∫ t

−∞
E(t′)dt′. (8.4)

p̂ is the momentum operator and V (x) is the periodic lattice potential. We have
employed the dipole approximation A(x, t) ≈ A(t) because the wavelengths we are
interested in (µm) are much larger than the lattice constant (nm). According to
Bloch’s theorem, the eigenstates of the field-free Hamiltonian are the Bloch states

Ĥ0 |φnk〉 = εn(k) |φnk〉 , (8.5)

where n is the band index and the eigenvalues εn(k) represent the dispersion rela-
tionships of the bands. Each Bloch state can be written as a product of a plane
wave and a function periodic in the lattice spacing a0:

〈x|φnk〉 = eikxunk(x), (8.6)

where unk(x) satisfy
unk(x+ a0) = unk(x). (8.7)

Because the vector potential is independent of x, the lattice momentum k is still
a good quantum number [94], which means the dynamics of the different lattice
momentum channels are independent, and the TDSE can be solved independently
for each k [76].

To solve the TDSE for a specific k0, we express the wave function in Bloch states

|ψk0(t)〉 =
∑

n

Cnk0(t) |φnk0〉 , (8.8)

and solve for the time-dependent coefficients Cnk0(t)

ih̄
∂

∂t
Cnk0 = Cnk0εn(k0) +

eA

m

∑

n′

Cn′k0p
nn′

k0
, (8.9)

where the pnn′ matrix element is the integration of the momentum operator over a
lattice cell in space

pnn
′

k0
= 〈φnk0|p̂|φn′k0〉

=
1

a0

∫ a0

0

dx φ∗nk0
(x)

(
h̄

i

∂

∂x

)
φn′k0(x). (8.10)

61



Usually, the p matrix is dominated by its tri-diagonal matrix elements, which means
the transitions to higher bands are most likely to happen through successive tran-
sitions between intermediate bands. Finally, we calculate the time-dependent laser-
induced current as the sum of of the current in each of the different k0 channels
jk0 [76] where :

jk0 = − e

m
[Re [〈ψk0|p̂|ψk0〉] + eA(t)] . (8.11)

Fourier transforming this current gives us the harmonic spectrum corresponding to
that been measured in the experiments.

8.2.2 Harmonic spectrum

In this section, we use the formalism described above to calculate the harmonic
spectrum for a 1D solid with a periodic potential V (x) = −0.37(1 + cos(2πx/a0)) in
atomic units with a lattice constant a0 = 8 au. This periodic potential corresponds
to a band gap of about 4.2 eV. The band structure of this potential is shown in
Fig. 8.1. We have used 51 Bloch states in our expansion of the wave function, which
means that 51 bands are included in the calculations for each k value. Since the
lowest band (band 1) is deeply bound and very flat, we use the second band as the
initially populated valence band. We have checked that transitions involving band
1 play a negligible role in the harmonic generation dynamics.

-0.4 -0.2 0.0 0.2 0.4

-10

0

10

20

k (2π /a0)

ε(
k)

(e
V)

intra band

valence

conduction

inter 
band

band 4
band 3

band 2

band 1

Figure 8.1: The band structure used in our calculation and the scheme of the inter-
band and intra-band dynamics. The intra-band dynamics involves the motion of
the electron on the same band, while inter-band dynamics describes the transitions
of the electron between different bands. We regard the second band as the valence
band and the third band as the conduction band. Taken from [95].

To begin with, the initial population is a small superposition (∆k0 = π/20a0)
of Bloch states near k0 = 0 on the valence band, corresponding to a wave function
which is initially spatially delocalized through-out the solid. The laser pulse has
a cos4 envelope in its electric field, with a full width at half maximum (FWHM)
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pulse duration of 3 optical cycles for all the wavelengths. We have considered laser
wavelengths λ between 2 µm and 5 µm, and intensities between 1×1010 W/cm2

and 2×1012 W/cm2. The harmonic spectrum is calculated as the modulus square
|j(ω)|2 of the Fourier transform of the time-dependent current in Eq.(8.11). A
window function is used in order to suppress the resonant dipole radiation that
would otherwise dominate the spectrum in the region around the band-gap energy.
The window function matches the envelope of the laser pulse.

Fig. 8.2 shows the harmonic spectra for our model system calculated using a
laser wavelength λ = 3.2 µm and intensity 4.5×1011 W/cm2. This corresponds to a
Bloch frequency ωB = Ea0/h̄ = 0.78 eV. Although this intensity is low compared to
the experiment in [67], it is high enough to generate rich nonlinear dynamics. The
harmonic spectrum exhibits both a perturbative regime (harmonic order < 10), a
plateau regime (10 ∼ 30) and a cutoff (∼ 30), very similar to the general structure of
the harmonic spectrum generated by atoms [6, 7]. As we will show in the following
section, the plateau is due to inter-band transitions between the conduction and
valence band. This agrees with the prediction in [70]. However, in contrast to that
paper, we find that harmonics can be generated with photon energies well above the
minimum and maximum band gap energies, as shown in Figs. 8.2.
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Figure 8.2: High harmonic spectra of the laser induced current calculated by solving
the TDSE in the velocity gauge. The laser wavelength and peak intensity are 3.2 µm
and 4.5×1011 W/cm2. The black arrows indicate the minimum and maximum band
gap energies.

8.2.3 Cutoff scaling

In this section we investigate the intensity and wavelength dependence of the har-
monic plateau and cutoff. Fig. 8.3(a) shows the harmonic yield as a function of laser
strength. The thick black lines indicate the minimum and the maximum of the band
gap between the valence and conduction bands. The cutoff of the first and second
plateaus are linear in the field strength, as indicated by the white dashed lines.
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Figure 8.3: Harmonic yield as a function of electric field strength for λ = 3.2µm
using (a) 51 bands (b) 2 bands. The cutoff energy of each plateau is linear in the
field strength. The two-band model can reproduce the 51-band model in the first
plateau very well. The white dashed lines for the first plateau in (a) and (b) are for
guiding the eye and they are identical. reprinted from [95] with permission.

Let’s first focus on the first cutoff of the plateau. In order to investigate its
origin, we perform a calculation using only the valence and the conduction bands,
the result of which is shown in Fig. 8.3(b). This is done by using only the two out of
the 51 Bloch states as a basis to propagate the TDSE. As we can see, the behavior of
the first plateau is well reproduced by using only two bands. Notice that the white
dashed lines for the first cutoff in the Fig. 8.3(a) and Fig. 8.3(b) are identical. The
good reproduction of the first cutoff in the two-band model indicates that the first
plateau comes from the dynamics involving only the valence and the first conduction
band in this parameter regime.

Since our initial amplitude is only a small distribution around k = 0, the band
gap for different k channels are about the same. In this sense, the two-band version
of our model may be approximated as a two-level system. The harmonic cutoff in a
two-level system can be written as [?]

Ecut = 2
√

Ω2 + (ω0/2)2, (8.12)

where Ω is the Rabi frequency between the two-level system and ω0 is the two-level
energy difference. By analogy, in the solid case, the Rabi frequency is proportional
to the momentum operator matrix element between the valence and conduction
band pvc and the electric field F0, so that the corresponding cutoff formula for the
harmonic spectrum in a solid is

Ecut = 2

√(
pvcF0

ωL

)2

+
(ωgap

2

)2

, (8.13)

where ωL is the laser frequency and h̄ωgap is the band gap energy between the valence
and conduction bands. For strong laser fields, the second term under the square-root
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Figure 8.4: Intensity scan of harmonic yield in different wavelengths (a) 3 µm (b)
3.5 µm (c) 4 µm (a) 4.5 µm. Overlaid on top of the spectra are the prediction from
the formula Eq. 8.13 in black and Eq. 8.14 in blue.

can be ignored and the cutoff energy is simply

Ecut =
2pvcF0

ωL
=
pvc
πc
F0λ. (8.14)

Thus the cutoff energy in the solid harmonic spectrum is both linear in the electric
field strength and the wavelength, where the proportionality constant is the mo-
mentum operator between the valence and conduction bands. This is very different
than the cutoff scaling in gases where the cutoff is linear in intensity and wavelength
squared.

In order to see how well this simple formula works, we overlay predictions from
this simple formula onto intensity scans at four different wavelengths, as shown
in Fig. 8.4. At each wavelength, the harmonic yield is plotted as a function of
the electric field strength of the laser pulse. The cutoff energy from Eq. 8.13 is
shown in blue and the cutoff energy from Eq. 8.14 is shown in Black. We can see
that the simple cutoff formula generally works very well in predicting the cutoff
of the first plateau of these wavelengths. One thing to notice is that this cutoff
scaling predicts that the extrapolation of the cutoff scaling at large intensities will
go through zero at zero field. This is another difference compared to HHG in gases
where the extrapolation goes to the ionization potential [6, 7] at zero field. We will
come back to this simple two-level model in the following sections when we explicitly
compare the harmonic generation in a solid and that in a two-level system.
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8.2.4 Initial condition for the Bloch state model

In concluding the discussion of harmonic generation in the Bloch state basis, we will
discuss the initial condition used, where only a small number of lattice momentum
near k = 0 is populated. This initial condition corresponds to an initial wave
function which is spatially delocalized across the entire (1D) crystal. Other recent
calculations have considered a different initial condition in which the valence band
is initially fully populated [70,96], which in our model would correspond to an initial
wave function localized at one particular lattice site. In this section, we will argue
that our initial condition is a more reasonable choice for our single-active electron
model.

Throughout the single-electron model we have discussed above, we solve the
TDSE in the Bloch state basis. There is, however, another complete basis set, the
Wannier states, can be used to describe the dynamics. The Wannier states are linear
combinations of the Bloch states, and they are related by the Fourier transform

|Wnr〉 =
1

a0

∫ a0

0

|φnk〉 e−ikrdk, (8.15)

where |φnk〉 is a Bloch state and |Wnr〉 is a Wannier states. Three Bloch states
and Wannier states in space are shown schematically on the left and right column
in Fig. 8.5, respectively. As we have described above, Bloch states are similar to
plane waves and they are delocalized in space. The Wannier states, in the contrary,
are localized in space, as can be seen on the right column of Fig. 8.5. Since the
Wannier states and Bloch states are connected by the Fourier transform, both basis
are complete in describing the dynamics, but the interpretation of the dynamics can
sometimes be easier in one basis as compared to the other [97].

The Wannier states are not unique since we have the freedom to choose the phase
factor e−ikr in Eq. (8.15). As described in detail in [98] and sketched in Fig. 8.5,
depending on how we choose the phase factor, the Wannier state can be localized at
different lattice sites. For instance, if we take all the Bloch states in the left column
in Fig. 8.5 and add them together, we get one of the localized Wannier states at
the right column depending on the phase. This is also true for the opposite process,
that if we add all the right column together, we get one of the Bloch states in the
left column. So in this sense, a Bloch state is also a superposition of a number of
Wannier states that are localized at every lattice site. Note that the Wannier states
should not be confused with the Wannier-Stark states we discussed in the previous
chapter when describing the Bloch oscillation in length gauge. There are two main
differences between the Wannier states and the Wannier-Stark states. The first one
is that the Wannier states are used for a field-free case, while Wannier-Stark states
are used for a DC-field case. The second difference is that the Wannier states are
not true eigenstates of the system themselves, but the Wannier-Stark states are.

In a real insulating material, the filled valence band means that all the different
electronic states of the valence band are occupied by different electrons. The full
valence band thus only has meaning in the multi-electron context. In a single-
electron framework the valence band can never be filled in the same way, since we
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Figure 8.5: Scheme of Bloch states and Wannier states. The left column shows three
Bloch states and the right column shows three Wannier states. The Bloch states
are delocalized in space and localized in momentum space, while the Wannier states
are localized in space and delocalized in momentum space.

only have one electron, which corresponds to a much lower dimensional Hilbert space
than the multi-electron wave function. In this sense, in the single-electron framework
the solid is modeled like a super-atom with a atomic potential that is periodic. What
we can choose is only the initial wave function for this super-atom. For instance,
we can choose the initial condition of the super-atom to be a Bloch state (few k’s,
spatially delocalized) or a Wannier state (many k’s, spatially localized).

To argue that using Bloch states as the initial condition is more appropriate for
the single-electron model, consider a simpler version of the problem in a quantum
double-well system. Consider we have a super-atom with a double-well potential as
shown in Fig. 8.6, and we are interested in the electron dynamics in this system.
For this double well system, we have two eigenstates with opposite parities that
are both delocalized into the two wells. We can also construct two localized wave
function from linear combinations of these two delocalized eigenstates. Thus, for
this double-well atom, we can either choose the initial wave packet localized at one
well (Fig. 8.6(b) or (c)), or the initial wave packet spreading out to the two wells
(Fig. 8.6(a)). From a symmetry point of view, the wave function spreading out is
more fundamental and simpler. If we take the initial wave packet to be localized at
one site, then it seems that we should also take the initial condition that localized
at the other site and then sum the answers from those two. But the result from
that combination is exactly as if we take the spreading wave packet as the initial
condition in the first place. Similarly, using a full band as the initial condition in
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the one-electron model for the solid seems more symmetric and reasonable.

(a) (c)(b)

Figure 8.6: Representation of different initial conditions of the double-well potential.
The blue curves represent the potential well, and the orange curves represent the
initial wave function. The initial wave function are (a) delocalized, (b) localized at
the first well and (c) localized at the second well. Similar to that of the Bloch state
(a) and Wannier state (b) or (c) as the initial condition used for a SAE solid.

Another perspective to argue for our initial condition is that the localized Wan-
nier state is not stable in a periodic potential. As we have discussed above, Wannier
states are not the eigenstates of the laser-free potential, and they consist of Bloch
states with different energies. This means that an initially localized Wannier state
will soon dissipate in space. The rate of the dissipation is proportional to the width
of the band and can be on the same order of the laser frequency in a typical semi-
conductor. For example, Fig. 8.7 (a) and (b) show the wave function evolution for
a initial wave function that is localized over two and 20 lattice sites, respectively.
It clearly shows that the initial wave function localized in 2 lattices spreads much
faster than the wave function initially localized over 20 lattices. This suggests that
the dynamics that would be initiated from a Wannier state would depend very much
on the delay between the initial time when the Wannier state is localized and the
time when the laser pulse arrives. For a typical laser pulse with a wavelength of 800
nm and a typical valence band with a width of 2 eV, the initially localized wave
packet will spread out over nearly 100 lattice sites in 10 laser cycles. In this sense,
using a stable initial state, such as a superposition of a few Bloch states, seems more
reasonable and fundamental.

8.3 Solve the TDSE in Houston state basis

In the previous section, the electron dynamics was described in a static basis of Bloch
states using the velocity gauge interaction. In this picture the time dependence of
the wave function is due solely to the time dependence of the Bloch state coefficients
Cnk(t). Though computationally convenient, this method provides a time-dependent
current which is hard to understand at an intuitive level. For example, the familiar
Bloch oscillation of an electron with a momentum k0 in a static field is built from
the superposition of a large number of bands all at the same k0. Obviously, in this
picture there can be no separation of the current into intra-band and inter-band
contributions.
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Figure 8.7: (a) shows the initial wave function that is localized over two lattice sites.
(c) show the initial its time evolution when there is no laser field. (b,d) show the
same as (a,c) but for a wave function initially spread over 20 lattice sites. The wave
function dissipate much faster for the strongly localized initial wave packet.

In this section we describe an alternative way to calculate the electron dynamics
using a time-dependent basis set, the Houston states [87]. As demonstrated in
the following sections, the two solutions are equivalent, since they are related by
a unitary frame transformation. In the Houston basis, however, we can obtain
a separation of the induced current into intra- and inter-band components. This
will allow us to separately explore the time-frequency characteristics of the two
contributions, and show that they exhibit very different emission times.

The Houston states are best thought of as an adiabatic basis in which the lattice
momentum that would be k0 in the absence of a field has the time-dependence:

k(t) = k0 +
eA(t)

h̄
. (8.16)

By construction the Houston states are the instantaneous eigenstates of the time-
dependent Hamiltonian H(t):

H(t) |φ̃nk0(t)〉 = εn(k(t)) |φ̃nk0(t)〉 , (8.17)

where H(t) is the Hamiltonian in the same single-electron Schrödinger equation as
above Eq. (8.1) [87] except for an additional term proportional to A2:

ih̄
∂

∂t
|ψ(t)〉 =

[
(p̂+ eA)2

2m
+ V (x)

]
|ψ(t)〉 . (8.18)
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Including this term in the Schrödinger equation makes the form of the Houston
states simpler, but it has no effects on the current since the wave function only
differs by an overall time-dependent phase. In this convention, the Houston states
are related to the Bloch states with lattice momentum k(t) by [87]

|φ̃nk0(t)〉 = e−ieAx̂/h̄ |φnk(t)〉 . (8.19)

Expanding the time-dependent wave function with initial lattice momentum k0 in
Houston states

|ψ(t)〉 =
∑

n

ank0(t) |φ̃nk0(t)〉 , (8.20)

we find equations of motion for the coefficients

ih̄
∂ank0

∂t
=
∑

n′

[
εn(k(t))δnn′ − eE(t)Xnn′(k(t))

]
an′k0 , (8.21)

where we have made use of Eq. (8.4). Xnn′ is the inter-band transition matrix
element defined by

Xnn′(k) =
1

ia0

∫ a0

0

U∗nk
∂

∂k
Un′kdx, (8.22)

and can be written in relation to the momentum operator [99]

Xnn′(k) =

{
i
pnn′ (k)

En−E′
n

n′ 6= n

0 n′ = n
. (8.23)

The time-dependent Houston states describe the electron dynamics in a moving
frame in which the lattice momentum is prescribed by the vector potential as in
Eq. (8.16). Pictured in k space, one can think of an electron wave packet oscillating
on each energy band, while at the same time some of the amplitude transition-
ing between different bands, corresponding to the intra- and inter-band dynamics,
respectively. The motion on each band is governed by the time-dependent band
structure εn(k(t)). For the intensity used in Fig. 8.2, the motion of the wave packet
in k space samples about 2/3 of the first Brillouin zone.

The total current can be calculated from Eq. (8.11), using Eq. (8.20) for the
wave function:

jtot = − e

m
Re

[∑

nn′

a∗nk0
an′k0 〈φnk(t)|p̂|φn′k(t)〉

]
. (8.24)

Since now the system is described in the frame that moves along with the field, there
is no A term in the expression for the current, as opposed to that of Eq. (8.11).

The calculation of the X matrix is not trivial [99]. Because the Bloch states are
calculated from numerical diagonalizing the laser-free Hamiltonian, they are subject
to random phases. These random phases will not effect the current and all other
observables because they are all canceled out as we calculate the expectation values
of the observables. However, since the Bloch oscillation and inter-band transitions
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are not observables themselves, they do depend on these random phases. To ensure
that the X matrix is calculated correctly, we first correct these random phases in the
Bloch states before using them in Eq. (8.22). To correct the phases, we follow the
prescription in [99] and first calculate an overlapping integral between the periodic
part of the neighboring Bloch states:

z =
1

a0

∫ a0

0

un,ki+1
un,kidx, (8.25)

and then normalize the un,ki+1
by

un,ki+1
=
z∗

|z|un,ki+1
. (8.26)

We start from the first set of Bloch states at one end of the Brillouin zone, and
cascade this process until all the phases in all the Bloch states for different lattice
momentum are fixed. A comparison between the X matrix calculated from the
unfixed and fixed Bloch states are shown in Fig. 8.8, and we can see the process
indeed works.

Im
 o

f

Im
 o

f

unfixed fixed

Figure 8.8: Compare the X matrix calculated without and with the phases fixed.

After we fix the phase of the Houston states, we can use them as a basis to
calculate the time-dependent current. Fig. 8.9 shows the spectrum calculated in the
Houston basis and compares it to that in the Bloch basis. In the Houston basis, we
use three bands, while in the Bloch basis we use as many as 51 bands to calculate the
band structure as are necessary for numerical convergence. The reason for using only
three bands in the Houston basis will be discussed in following sections in connection
with the numerical properties of the X matrix elements. The initial condition used
in both cases is a single k state (k = 0) in the valence band where the band gap is
the smallest. The band structure and laser parameters are the same as in Fig. 8.2.
Fig. 8.9 shows that the calculation in the Houston basis agrees with that in the
Bloch basis very well up to the 39th harmonic. This agreement is expected, since
the two wave functions are related by a unitary transformation, as we will show in
the next section.

One advantage of the Houston basis is that the electron dynamics naturally
separate into an intra- and inter-band contribution, and can be studied separately.
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Figure 8.9: Comparison of a three-band Houston basis calculation and a 51-band
Bloch basis calculation. The initial condition used in both cases here is a single
k = 0 in the valence band. The band structure and laser parameters are the same
as in Fig. 8.2. We can see the Houston basis calculation agrees with the Bloch basis
very well up to 39th harmonic order. Note that for the Houston basis, we don’t have
the second plateau but merely a noise floor there.

In Eq. (8.24), the intra-band contribution to the current involves only Houston states
on the same band (n = n′), whereas the inter-band contribution involves transitions
between different bands (n 6= n′):

jintra = − e

m

∑

n

|ank0|2 〈φnk(t)|p̂|φnk(t)〉

jinter = − e

m
Re



∑

n,n′

n6=n′

a∗nk0
an′k0 〈φnk(t)|p̂|φn′k(t)〉




(8.27)

The intra- and inter-band contributions to the current are shown in Fig. 8.10 (a). We
find that the inter-band contribution to the plateau in the spectrum is stronger than
the intra-band contributions by serval orders of magnitude in the plateau regime.
This is in agreement with the prediction in [70]. In Fig. 8.10 (b), we show the intra-
band contribution from the valence and conduction band separately. This is done
by plotting separately the terms in the sum in Eq. (8.27). Note that the valence
band contribution to the intra-band current has a generally perturbative behavior
whereas that from the conduction band has a clear plateau. We can also show that
the single conduction band model used in [67,100] comes naturally from the Houston
model without inter-band transitions, as we will discuss in detail in the following
sections.

In order to investigate the electron temporal dynamics using the Houston basis
wave function, we perform a wavelet transform of the intra- and inter-band currents.
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Figure 8.10: (a) The intra-band (red, dashed) and inter-band (blue, solid) current
calculated using the Houston model. The low order harmonics mainly due to intra-
band current while the harmonics in the plateau are mainly due to the inter-band
current. (b) The valence band (orange) and conduction band (purple) contributions
to the intra-band current. reprinted from [95] with permission.

The wavelet transform is similar to a windowed Fourier transform and provides the
time-frequency information of the two contributions. In the wavelet transform we
use an order 10 Gabor wavelet to achieve a balanced resolution in both the time and
frequency domains. Fig. 8.11 shows the resulting time-frequency profiles for the two
different contributions, which clearly exhibit two distinct types of dynamics. We
will discuss these separately in the following.

(a) (b)

Figure 8.11: The wavelet transform of the intra-band and inter-band current of a
Houston model. The harmonics generated from inter-band dynamics mainly hap-
pens at the peak of the vector potential and there is a clear chirp, while the harmonics
generated from intra-band dynamics mainly happens at the peak of the field and
don’t have clear chirp. reprinted from [95] with permission.

The time structure of the inter-band current in Fig. 8.11(a), exhibits two emission
times that are symmetrically placed around the peak of the vector potential in each
half cycle. These two emission time profiles have opposite chirps, and are merged
at the cutoff frequency. In the momentum picture we described above, these two
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emission times arise from the fact that the lattice momentum k(t), and thereby
the time-dependent band gap ε(k(t)), traverses all allowed values twice in a half
cycle. Since the two emission times contribute to the current with about the same
strength, our model suggests that one or the other must be filtered out to obtain a
train of identical attosecond pulses from the plateau. In contrast, harmonics near
the cutoff frequency are generated near the time when the band gap ε(k(t)) is the
largest, corresponding to the peaks of the vector potential in our case.

The time structure of the intra-band current Fig. 8.11(b), on the other hand,
follows simply from the time-dependence of the band structure ε(k(t)), i.e., the
curvature of the bands. The emission times correspond to those times when the
band has the largest curvature (the largest rate of change in the group velocity),
which corresponds to the zeros of the vector potentials, as shown in Fig. 8.11(b).
The time-frequency features of the intra-band current can also be seen from the
cosine expansion of the conduction band in [67]

jintra(t) =
∞∑

s=1

Ds sin [(2s− 1)ωt] (8.28)

where Ds is related to the band structure and the strength of the field. From this
expansion, it is clear that all the harmonics are generated at the same time and
there is no chirp in the generated field. The differences in the two time-frequency
characteristics could potentially be used as an experimental signature of the intra-
and inter-band dynamics.

In conclusion, in this sub-section, we showed that the intra- and inter-band
dynamics can be clearly separated, and they have very different time-frequency
signatures. Moreover, we showed that the cutoff in the harmonic spectrum is tied to
inter-band dynamics through the time-dependence of the population in the valence
and conduction bands. We also showed that the spectrum calculated in the Houston
basis agrees with that calculated in the Bloch basis.

8.4 The unitary transformation between solutions in the Bloch and
Houston basis

In the previous section, we showed that harmonic spectrum calculated in Bloch state
basis agrees with that calculated from Houston state basis. In this section, we will
show that this agreement results from the fact that these two basis are connected
by a unitary transformation. We will derive this unitary transformation matrix by
matching the wave functions in these two basis.

In the Bloch state approach, we solve the TDSE in the velocity gauge, and the
equation reads

ih̄
∂

∂t
|ψBk0

(t)〉 =

[
p2

2m
+ V (x) +

eA(t)

m
p

]
|ψBk0

(t)〉 , (8.29)
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where k0 labels the single lattice momentum channel that we consider. The solution
can be expressed in the basis of Bloch states

|ψBk0
(t)〉 =

∑

n

cn(t) |φnk0〉 , (8.30)

where cn’s are the time-dependent energy band amplitudes that this model solves
for. In the Houston approach, TDSE reads

ih̄
∂

∂t
|ψHk0

(t)〉 =

[
(p+ eA(t))2

2m
+ V (x)

]
|ψHk0

(t)〉 . (8.31)

The wave function is expressed in the Houston states

|ψHk0
(t)〉 =

∑

n

ank0(t) |φ̃nk0(t)〉 , (8.32)

The Houston states are related to the Bloch states by [87]

|φ̃nk0(t)〉 = e−iex̂A(t)/h̄ |φnk(t)〉 . (8.33)

We can then match the wave function in these two basis, and get the unitary trans-
formation matrix between the expansion coefficients. Since |ψBk0

〉 and |ψHk0
〉 satisfy

the Schrödinger equations that differ by a time-dependent A2 term, they must be
related by a phase factor

|ψBk0
(t)〉 = e−ieΛ/h̄ |ψHk0

(t)〉 (8.34)

where

Λ = − e

2m

∫ t

0

A2(t′)dt′. (8.35)

Substitute Eq. (8.30) and Eq. (8.32) in to Eq. (8.34), we finally come to

ank0(t) = eieΛ/h̄
∑

n′

cn′k0(t) 〈φnk(t)|eiex̂A(t)/h̄|φn′k0〉 . (8.36)

The term 〈φnk(t)|eiex̂A(t)/h̄|φn′k0〉 is the unitary transformation we are seeking. Using
this unitary matrix, we can transform between the expansion coefficients in the
Bloch and Houston basis. Note that this unitary transformation is very similar
to the Kramers-Henneberger transformation in the atomic case, where a spatial
transformation shifts the system into the accelerated frame, corresponding to the
motion of a charged particle in the electric field [101]. The Kramers-Henneberger
transformation is a transformation in space whereas the transformation here is in
momentum space.

After calculating the Bloch states and the Houston states, the unitary trans-
formation can be calculated from Eq. (8.36). Fig. 8.12 shows a plot of its matrix
elements as a function of k, with the same parameters as that in Fig. 8.9. As
a demonstration of this unitary transformation matrix, we use it to calculate the
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Figure 8.12: Plot of the matrix elements of the unitary transformation matrix that
takes the solution in the Bloch state basis to that in the Houston state basis. In
order to show the structure clearly, two Brillouin zones are plotted.

inter- and intra-band currents from the Bloch basis. This is done by taking the
expansion coefficients in Bloch state basis and calculate those in the Houston state
basis using the unitary transformation Eq. (8.36). Then we use Eq. (8.27) to cal-
culate the inter- and intra-band currents. The currents calculated in this way is
compared to those calculated directly in the Houston basis in Fig. 8.13, and they
show a very good agreement.
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Figure 8.13: Compare the (a) total (b) intra-band (c) inter-band currents calculated
directly in the Houston basis to those from the unitary transformation of currents
in Bloch basis. They show very good agreements.

8.5 Connection of the single band model to the intra-band motion

In the original paper of high harmonic generation in solids experiment [67, 100],
Ghimire et. al. proposed a single-band model accounting for the nonlinear current
in the solids. In this section we will show that this single-band model is essentially
a limiting case of the Houston model when the inter-band transitions are ignored.
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If the inter-band dynamics is not allowed in the system, the inter-band transition
matrix X vanishes in Eq. (8.21), and the population on each band stays the same
as the initial condition. The solutions for Eq. (8.31) are exactly the Houston states
apart from a phase

ank0(t) = ank0(0)e−
i
h̄

∫ t
0 εn(k(t′))dt′ (8.37)

|ψHk0
(t)〉 = e−ieA(t)x̂/h̄

∑

n

ank0(t) |φnk(t)〉 . (8.38)

Substituting ank0 into Eq. (8.24) the total current is

jtot = − e

m

∑

n

|ank0(0)|2 〈φnk(t)|p̂|φnk(t)〉 . (8.39)

If we consider the same situation as in [67, 100] where initially only the lowest
conduction band is populated and other bands are empty, then the total current
reduces to

jtot = − e

m
〈φck(t)|p̂|φck(t)〉 . (8.40)

This then reduces to the single conduction band model used in [67, 100], where the
semi-classical current is derived from a group velocity

jtot = −evg = − e
h̄

∂εc
∂k

∣∣∣∣
k=k(t)

, (8.41)

since the diagonal elements of the momentum operator is related to the band struc-
ture by

〈φnk|p̂|φnk〉 =
m

h̄

∂εn
∂k

. (8.42)

The proof of the last step can be found in many textbooks. For example, see
chapter III in [102] or Appendix E in [72].

8.6 Numerical Difficulty in Houston Basis

In this section we will discuss the numerical difficulties of including more bands in
Houston basis. As we include more bands, the band gap between high lying bands
becomes very small, and the X matrix elements increase rapidly, which makes the
numerical calculation difficult to converge. In this section we will first show this
problem and then give some insights on the origin of this problem.

As we go to higher and higher bands, the band gap becomes smaller and smaller.
An important consequence of the decrease of the band gap is the blow up of the
X matrix at the avoided crossings and are almost zero at anywhere else. This is
exactly the case as we try to calculate the X matrix directly, as shown in Fig. 8.14
(a). In fact, the X matrix seems to grow exponentially as a function of the number
of bands, as shown in Fig. 8.14 (b). One can also expect the blow up of the X
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Figure 8.14: (a) The X matrix elements as a function of lattice momentum. (b) The
largest element of X matrix as a function of the number of bands.

matrix from Eq. (8.23) where the band gap is in the denominator, which means the
X matrix blows up as the band gap get smaller and smaller in high bands.

Since the X matrix is responsible for the inter-band transitions, in order to have
the TDSE numerically converged, we have to use a time step that is small enough
to resolve its largest matrix element

∆t ≤ 1

2

2π

XmaxȦ
. (8.43)

Apart from resolving the X matrix, the time step must be also small enough to
resolve the largest band gap in the band structure. As the number of bands is
increased, the requirement of the X matrix on the time step becomes the dominant
one. For example, to include 7 bands, the highest X matrix element values requires
a million time steps per laser cycle, which is about 3 order of magnitude more points
than the usual case.

Another numerical problem encountered in the Houston basis is the discontinu-
ity in the momentum operator matrix. As we go to high bands, the band structure
has sharp turning points at the band center and band edge. These turning points
result an almost discontinuous behavior of the momentum operator matrix element
as shown in Fig. 8.15. This discontinuous behavior can also be expected from the
relationship between the momentum operator and the derivative of the band struc-
ture Eq. (8.42). For higher bands, the slope of the band structure changes suddenly
near the band center and band edge, giving almost discontinuities in the momen-
tum operator at both of these points. In the previous section we have shown the
unitary transformation between the Houston and the Bloch basis. Even we can get
numerically stable results in the Bloch basis, the unitary transformation will not
save us from the problem when transform into the Houston basis. This is because
the unitary matrix itself is illy behaved. It can be already seen in Fig. 8.12 that
the unitary operator element will peak at the points where the bands form avoided
crossings, this behavior will get worse as we go higher bands.

These numerical difficulties suggest that separation of the inter-band and intra-
band dynamics may not be an optimal picture for an electron in the higher bands
where Zener tunneling between the neighboring bands is so large that an electron
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Figure 8.15: The diagonal part of the P matrix is approaching discontinuous as the
bands get higher.

never performs solely intra-band motion, as sketched in Fig.8.16. Instead, it tunnels
through the avoided crossing almost like a free electron [96]. The artificial separation
of a Bloch oscillation motion from the almost free electron motion complicates the
physical picture as well as makes the numerical calculation difficult. This separation
is the underlying cause of the problematic behaviors of the p and X matrix shown in
Fig. 8.14 and Fig. 8.15. This is also a general problem for studying strongly driven
systems using an adiabatic basis. In these systems, the avoided crossings between
the adiabatic states are so small that the transitions between them blow up.

lattice momentum

en
er

gy

Figure 8.16: In high lying bands, the electron almost never perform solely Bloch
oscillation (dashed line), but mainly tunnel the band gap like a free electron (solid
line).
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8.7 Analogy of the Houston treatment to a two-level system

In this section, we will drawn an analogy between the Houston state treatment of
the laser-solid interaction and a strongly driven two-level system. Through this
analogy, we will show that the intra- and inter-band dynamics in the solids are in
fact the adiabatic and diabatic dynamics of the system, respectively. We will first
setup the general formalism for describing the dynamics of a system in the adiabatic
basis, and then use this formalism to solve a two-level system, from which a strong
connection to the Houston basis treatment of the laser-solid system is made.

8.7.1 Formalism of adiabatic basis

The time-dependent Schrödinger equation for a general system reads

ih̄ |ψ̇(t)〉 = H(t) |ψ(t)〉 , (8.44)

and the adiabatic states are the instantaneous eigenstates of the time-dependent
Hamiltonian

H(t) |φn(t)〉 = En(t) |φn(t)〉 . (8.45)

Note that the adiabatic states are time-dependent themselves, but they are orthog-
onal to each other at the same time

〈φn(t)|φm(t)〉 = δnm, (8.46)

and they form a complete basis set. This means the wave function can be expanded
in this adiabatic basis as

|ψ(t)〉 =
∑

n

Cn(t) |φn〉 . (8.47)

In the following, we will leave out the explicit indication of time-dependence of the
adiabatic states and write |φ(t)〉 as |φ〉 for short. Substituting the wave function
into the Schrödinger equation, we have

ih̄
∑

n

Ċn |φn〉+ ih̄
∑

n

Cn |φ̇n〉 =
∑

n

CnH |φn〉 . (8.48)

Project on one of the adiabatic states, we have the equation for the expansion
coefficients

ih̄Ċn + ih̄
∑

m

Cm 〈φn|φ̇m〉 = CnEn. (8.49)

To calculate the term 〈φn|φ̇m〉, we take the derivative of Eq. (8.45) and projecting
on one of the adiabatic states

Ḣ |φm〉+H |φ̇m〉 = Ėm |φm〉+ Em |φ̇m〉
〈φn|Ḣ|φm〉+ En 〈φn|φ̇m〉 = Ėmδmn + Em 〈φn|φ̇m〉 . (8.50)
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So we have

〈φn|φ̇m〉 =

{
− 〈φn|Ḣ|φm〉En−Em m 6= n

0 m = n
. (8.51)

We further write down the Hamiltonian as a sum of time-independent and time-
dependent part

H(t) = H0 +HI(t)

HI(t) = F (t) ∗ X̂, (8.52)

where H0 is the laser free Hamiltonian, HI is the interaction Hamiltonian, F (t) is
some general time-dependent force, and the X̂ is the coupling operator that the
force acts on. Substituting Eq. (8.51) and Eq. (8.52) into Eq. (8.49), the TDSE in
the adiabatic basis can be written as

ih̄Ċn =
∑

m

[
Emδmn + Ḟ (t)Xmn(t)

]
Cm, (8.53)

where

Xnm(t) =





ih̄ 〈φn|X̂|φm〉En−Em m 6= n

0 m = n
(8.54)

indicates the transition probabilities between the adiabatic states.
So in the adiabatic basis, studying the dynamics of the system is reduced to

calculating the adiabatic states |φ〉 and solving the coefficient equation Eq. (8.53).
In the next section, we will use this formalism to study a two-level system and draw
a connection to the Houston treatment of the solid-laser interaction system.

8.7.2 Two-level system in adiabatic basis

After setting up the general formalism for describing the dynamics in the adiabatic
basis, we will now apply it to a two-level system for demonstration. The Hamiltonian
for a two-level system can be written as

H(t) =h̄

(
ω0

2
Ω(t)

Ω(t) −ω0

2

)

=h̄

√
ω2

0

4
+ Ω2(t)

(
cos θ(t) sin θ(t)
sin θ(t) cos θ(t)

)
, (8.55)

where

θ(t) = tan−1

[
2Ω(t)

ω0

]
, (8.56)

and Ω(t) is the time-dependent Rabi frequency

Ω(t) =
µ · F (t)

h̄
. (8.57)
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The instantaneous eigenstates are

|φ1〉 =

(
− sin θ

2

cos θ
2

)
, |φ2〉 =

(
cos θ

2

sin θ
2

)
, (8.58)

and the instantaneous eigenenergies are

E1 = −
√

Ω2(t) +
ω2

0

4

E2 = +

√
Ω2(t) +

ω2
0

4
. (8.59)

Using Eq. (8.54), the X matrix is then

X =
ω0Ω̇(t)

ω2
0 + 4Ω2(t)

(
0 −i
i 0

)
. (8.60)

Fig. 8.17(a) and (b) show the energies of the two adiabatic states and the mag-
nitude of the X matrix elements as a function of time. The time-dependent Rabi
frequency used in these figures is

Ω(t) = 1.6 cos6

(
ωt

16π

)
sin(ωt) (8.61)

and the driving frequency is very detuned

ω = ω0/11. (8.62)

The grid lines are placed at the times when the electric field crosses zero. At those
times, the two adiabatic states form sharp avoided crossings as shown in Fig. 8.17(a)
and the X matrix has sharp peaks as shown in Fig. 8.17(b). This behavior is expected
from general physics about dynamics near avoided crossings. When the field is strong
compared to the two-level energy spacing, the avoided crossings are very sharp so
that the amplitude tunnels through the avoided crossings very easily, which means
the transition probability between the two instantaneous eigenstates peaks at those
places. As a result, the X matrix element is very large at the avoided crossings.

We can solve the TDSE in the adiabatic basis using Eq. (8.53), and the popula-
tions of the two adiabatic states are shown in Fig. 8.18. In this basis, the adiabatic
process manifests itself as the populations staying the same, while the diabatic pro-
cess manifests itself as the population changing abruptly. We can clearly see the
diabatic process happens at the peaks of the field when the two states form avoided
crossings. Between the avoided crossings the system evolves almost adiabatically,
so the populations on the two instantaneous eigenstates stay almost the same. In
summary, in the adiabatic basis, the evolution of the system is like this: When the
system is far from the avoided crossings, it is almost stationary. The populations
on the adiabatic states stays the same as a function of time. When the system is
close to the avoided crossings, it evolves very diabatically, and the populations on
the two adiabatic states change dramatically.
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Figure 8.17: (a) The energies of the adiabatic states of the two-level system. At
the peak of the field, the adiabatic states form avoided crossings. (b) The X matrix
transition matrix element, which has sharp peaked at the avoided crossings. Grid
lines indicate the zeros of the field.
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Figure 8.18: Amplitude on the adiabatic states as a function of time. As time when
the adiabatic states form sharp avoided crossings, the amplitude jump suddenly,
indicating the diabatic transitions. As times far from avoided crossings, the am-
plitudes are almost states the same, indicating the adiabatic following. Grid lines
indicate the zeros of the field.

We can get additional insight by calculating the dipole moment in this basis.
The time-dependent dipole moment is

d(t) = 〈ψ|D̂|ψ〉 (8.63)

= Re

[∑

mn

C∗mCn 〈φm|D̂|φn〉
]
, (8.64)

where D̂ is the dipole operator. Similar to the separation of inter- and intra-band
current in the solids, the two-level time-dependent dipole moment also can be sep-
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arated into an adiabatic and a diabatic contributions

d(t) = dad(t) + dda(t) (8.65)

dad(t) =
∑

n

|Cn|2 〈φn|D̂|φn〉 (8.66)

dda(t) = Re



∑

m,n
m 6=n

C∗mCn 〈φm|D̂|φn〉


 . (8.67)

The adiabatic dipole moment involves the dynamics on the adiabatic states, while
the diabatic dipole involves the transitions between different adiabatic states. This
separation is essentially the same as the separation of the current into the intra-
and inter-band contributions in the Houston treatment of the dynamics in solids.
Fig. 8.19(a) shows the total dipole moment and Fig. 8.19(b) shows the adiabatic
and diabatic dipole moment separately. Since there is no decay for the coherence
in the simple two-level system, this diabatic coherence continuous after the pulse is
ended.

The wavelet transforms (time-frequency analysis), as shown in the Fig. 8.20,
giving more information on the high harmonics. In Fig. 8.20 we see that both the
adiabatic and diabatic dipole moment can generate high harmonics. In particular,
two-branch structures are presented in the diabatic dipole moment, and a harmonic
cutoff can be read off at the joining of these two branches. The adiabatic harmonics,
however, don’t have this branch structure. Moreover, the harmonics are generated at
different times in the laser cycle for the adiabatic and diabatic dipole moment. The
diabatic harmonics are generated at peaks of the field while the adiabatic harmonics
are generated at the zeros of the field. These structures in the wavelet spectrum of
the diabatic and adiabatic dipole moment are very similar to that of the inter- and
intra-band current shown in Fig. 8.11.
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Figure 8.19: (a) The total time-dependent dipole. (b) The adiabatic and diabatic
part of the dipole, analogy to the intra- and inter-band current.

From the above results of the two-level system, we see strong similarities to
the laser-solid interaction system we described in previous sections of this chapter.
First of all, in both systems there are avoided crossings. In the laser-solid system,
the avoided crossings are in the band structure, while in the two-level system the
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avoided crossings are in the instantaneous energies. Secondly, X matrix has sharp
peaks in both systems at the avoided crossings, meaning that large population can
tunnel through the avoided crossings easily. Thirdly, the dynamics in both system
can be separated into an adiabatic part and a diabatic part. The adiabatic dynamics
involves the evolution of the system along the adiabatic states. In the laser-solid
system, this adiabatic dynamics is the intra-band motion (laser driven Bloch oscilla-
tions). The diabatic dynamics involves the transitions between the adiabatic states,
corresponding to the inter-band motion in the laser-solid system. Finally, in both
system both the adiabatic and diabatic dynamics can generate high harmonics, but
the harmonics from the adiabatic motion are mainly generated at the zeros of the
driving field, and the harmonics from the diabatic motions are mainly generated at
the peaks of the driving field. And high harmonics in both system are dominated
by the diabatic contribution. Note that the driving field is the electric field in the
two-level case and vector potential in the laser-solid case.
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Figure 8.20: The wavelet transform of the diabatic and adiabatic dipole. Harmonics
from diabatic dipole mainly generated at the peak of the field while harmonics from
adiabatic dipole mainly generated at the zeros of the field. The structures are very
similar to those in Fig. 8.11.

In summary, in this chapter, we have studied high harmonic generation in a
model transparent solid using a 1D single-electron model and found that this sys-
tem presents rich nonlinear dynamics. In the laser induced current, we see a high
harmonic spectrum with multiple plateaus. Using the numerically robust Bloch
basis, we have shown that the primary plateau is due to transitions between the
valence band and the lowest conduction band, whereas the secondary plateau and
more generally higher frequencies in the spectrum are due to contributions from
higher lying bands. We find that the cutoff of the primary plateau scales linear in
the field strength and the wavelength. We have also shown that the dynamics of our
model system can be expressed in either the Bloch basis or the Houston basis, and
solutions in these two basis are connected through a unitary transformation. The
Houston basis allow for an intuitive separation of intra- and inter-band dynamics,
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and we found that for moderate intensities the harmonic radiation is due primarily
to inter-band dynamics. Finally, we showed that in dynamics in the Houston state
picture is very similar to that of a strongly driven two-level system. Namely, the
dynamics can be separated into a diabatic and an adiabatic part. The harmonic
from the diabatic parts are mainly generated at the peaks of the field while the
harmonics from the adiabatic parts are mainly generated from at the zeros of the
field.

86



Bibliography
[1] P. Agostini and L. F. DiMauro. The physics of attosecond light pulses. Reports

Prog. Phys. 67, 813 (2004).

[2] L. Plaja. Attosecond Physics, volume 177 of Springer Series in Optical Sci-
ences. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).

[3] P. B. Corkum and F. Krausz. Attosecond science. Nat. Phys. 3, 381 (2007).

[4] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, et al. Studies of
multiphoton production of vacuum-ultraviolet radiation in the rare gases. J.
Opt. Soc. Am. B 4, 595 (1987).

[5] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, et al. Multiple-
harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B At. Mol.
Opt. Phys. 21, L31 (1999).

[6] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander. Above threshold
ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599 (1993).

[7] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys.
Rev. Lett. 71, 1994 (1993).

[8] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, et al. Observation of
a train of attosecond pulses from high harmonic generation. Science (80-. ).
292, 1689 (2001).

[9] M. Hentschel, R. Kienberger, C. Spielmann, G. a. Reider, N. Milosevic, et al.
Attosecond metrology. Nature 414, 509 (2001).

[10] E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, et al. Real-
time observation of valence electron motion. Nature 466, 739 (2010).

[11] A. Wirth, M. T. Hassan, I. Grguras, J. Gagnon, A. Moulet, et al. Synthesized
Light Transients (2011).

[12] S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, et al. Probing
proton dynamics in molecules on an attosecond time scale. Science 312, 424
(2006).
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