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ABSTRACT 

Purpose: Knowledge-based planning (KBP) leverages plan data from a database of previously 

treated patients to inform the plan design of a new patient. This work investigated bladder and 

rectum dose-volume prediction improvements in a common KBP method using a Pareto plan 

database in VMAT planning for prostate cancer.  

Methods: We formed an anonymized retrospective patient database of 124 VMAT plans for prostate 

cancer treated at our institution. From these patient data, two plan databases were compiled. The 

clinical plan database (CPD) contained planning data from each patient’s clinical plan, which were 

manually optimized by various planners. The multi-criteria optimization database (MCOD) 

contained Pareto plan data from plans created using a standardized MCO protocol. Overlap volume 

histograms, incorporating fractional OAR volumes only within the treatment fields, were computed 

for each patient and used to match new patient anatomy to similar database patients. For each 

database patient, CPD and MCOD KBP predictions were generated for D10, D30, D50, D65, and D80 

of the bladder and rectum in a leave-one-out manner. Prediction achievability was verified through a 

re-planning study on a subset of 31 randomly selected database patients using the lowest KBP 

predictions, regardless of plan database origin, as planning goals.  

Results: MCOD model predictions were significantly lower (p < 0.001) than CPD model predictions 

for all five bladder dose-volumes and rectum D50 (p = 0.004) and D65 (p < 0.001), while CPD model 

predictions for rectum D10 (p = 0.005) and D30 (p < 0.001) were significantly less than MCOD model 

predictions. KBP model predictions were statistically equivalent to re-planned values for all 

predicted dose-volumes, excluding D10 of bladder (p = 0.03) and rectum (p = 0.04). Compared to 

clinical plans, re-plans showed significant average reductions in Dmean for bladder (7.8 Gy; p < 0.001) 

and rectum (9.4 Gy; p < 0.001), while maintaining statistically similar PTV, femoral head, and penile 

bulb dose.  
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Conclusion: KBP dose-volume predictions derived from Pareto plans were lower overall than those 

resulting from manually optimized clinical plans. A re-planning study showed the KBP dose-volume 

predictions were achievable and led to significant reductions in bladder and rectum dose.
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CHAPTER 1. INTRODUCTION 

1.1 BACKGROUND 

1.1.1 RADIATION THERAPY TREATMENT DELIVERY AND PLANNING 

Radiation therapy (or radiotherapy) is the use of high-energy radiation, such as x-rays, 

gamma rays, electrons, or protons, to kill or damage cancer cells. Over half of all cancer patients will 

receive some form of radiotherapy during the course of their treatment.1 Currently, there are two 

main approaches to delivering the prescribed radiation dose: external beam radiotherapy (EBRT), 

which involves large source-to-surface distances, or SSDs; and brachytherapy, which utilizes 

radioisotopes to treat internally or with small SSDs. In EBRT, linear accelerators are used to 

generate and direct megavoltage electrons or photons toward the cancer located within the patient.  

Most modern linear accelerators support different options for delivering the prescribed 

radiation dose to the target for a given patient and disease. 3D conformal radiotherapy (3DCRT) 

collimates radiation fields of uniform intensity around lesions to simultaneously dose the target and 

spare surrounding healthy tissues using multi-leaf collimators (MLCs), which are motorized sets of 

thin, tungsten slabs that move in and out of the field to form different shapes.2 3DCRT was the first 

delivery technique based on 3D anatomical information provided by computed tomography (CT) 

scans. Access to 3D information allows more accurate delineations of targets and healthy organs and 

conformal dose distributions compared to previous delivery methods based on 2D radiographic 

projections.  

Alternatively, fixed-field intensity modulated radiotherapy (IMRT) is a delivery technique 

typically combining five to seven fixed radiation fields of spatially varying fluence patterns. Each 

beam’s modulated intensity profiles are achieved by combining complex sequences of MLC leaf 

travel, which are set to optimize the composite dose distribution. IMRT combines the non-uniform 

fluence maps from each beam (aimed from different directions) to create highly conformal dose 
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distributions that improve target coverage and in sparing of normal tissues compared to 3DCRT.3,4 

However, longer treatment delivery times and increased monitor units (MUs) are limitations for 

IMRT treatments. The latter can increase radiation exposure to parts of the body distant from the 

treatment field, whereas the former can impair patient comfort and reproducibility.5 In order to 

overcome these deficiencies, arc-based or rotational treatment techniques were developed, where 

radiation is delivered while rotating the linear accelerator about the target.  

Volumetric modulated arc therapy (VMAT), one such rotational IMRT technique, delivers 

intensity modulated fields by continuously varying three main parameters: rotation speed of the 

linear accelerator gantry, MLC positions, and dose rate (Figure 1).6 VMAT dose is computed by 

approximating a continuous arc with a large number of discrete segments. The non-uniform fluence 

profiles and ensuing MLC sequences are optimized at each control point (each segment lies between 

two control points) to create highly conformal intensity modulated dose distributions. Compared to 

fixed-field IMRT, VMAT requires fewer MUs and provides a significantly shorter treatment time.7 

Due to the relatively recent clinical implementation of VMAT, its overall dosimetric advantages over 

fixed-field IMRT are uncertain. Some studies have reported potential benefits of VMAT for specific 

treatment sites like the prostate, while others have found inconsistent dosimetric results between 

IMRT and VMAT for head-and-neck treatments.7-12 Primarily owing to efficiency, VMAT has 

quickly become a ubiquitous treatment technique for cases requiring intensity modulation. 

Radiotherapy treatment planning is the process of defining how the prescribed dose is to be 

delivered during treatment. More specifically, a treatment plan specifies the machine parameters to 

produce the desired dose distribution for the given patient. These parameters can include the 

number of beams, beam energy, beam shape, beam weight, gantry angle, intensity modulators (e.g. 

wedges, tissue compensators, MLCs), and couch angle. Computerized treatment planning systems 

(TPSs) are used to help determine these parameters to arrive at a customized treatment plan for each 
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patient. Even with the assistance of computers, treatment plan design is time-consuming and highly 

complex given the large number of parameters the must be specified.  

 
Figure 1: Diagram of a modern linear accelerator, highlighting the three varying parameters that 
differentiate VMAT from other EBRT delivery techniques.13,14 

There are two main approaches to treatment planning used today, each of which facilitate 

specific delivery techniques. “Forward planning” is employed to design treatment plans for 

conventional, uniform intensity techniques (e.g. 3DCRT). Forward planning is the process of 

manually adjusting treatment parameters to obtain the desired dose distribution. If a patient is to be 

treated with 3DCRT, for instance, the planners must manually find the appropriate machine and 

treatment parameters to obtain an acceptable plan. This forward planning approach forces planners 

to determine these parameters effectively by trial-and-error, where the dose must be computed and 

evaluated each time a set of parameters is selected. Moreover, if the resulting dose distribution is not 

Varying MLC Positions 
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acceptable, the parameters are manually adjusted and the dose is recomputed for evaluation. These 

iterations continue until the desired dose distribution is achieved.  

Alternatively, “inverse planning” is used for planning more complex treatment delivery 

techniques such as IMRT and VMAT. These techniques require many intricate MLC sequences for 

each field or arc segment to generate the necessary modulated fluence patterns. Manually optimizing 

these varying fluence maps and corresponding MLC sequences for each beam via forward planning 

would prove prohibitively difficult and laborious.15 Therefore, inverse planning optimization 

algorithms were developed and implemented into TPSs to plan these intensity modulated delivery 

techniques. Inverse planning requires the planner to specify the clinical treatment criteria, after 

which an optimization algorithm automatically determines modulated fluence maps for each beam 

or arc segment that achieve the treatment goals. More specifically, the user defines clinical dose-

volume constraints (i.e. the dose a fractional volume of a planning structure receives) for the target 

and normal tissues, which are represented as cost objective functions for the optimization algorithm 

to minimize. Once the optimizer generates a set of modulated fluence segments and beam 

parameters for the given treatment objectives, the dose is computed and the dose distribution is 

evaluated. If improvement is needed or the planner wants to assess a clinical trade-off, the planner 

must adjust the initial dose-volume objectives and run another optimization. Additionally, clinical 

inverse planning algorithms utilize a gradient-based search for optimal intensity profiles, which 

usually requires multiple optimization rounds to ensure the solution reaches a global, and not a local, 

minimum. This trial-and-error nature of inverse planning resembles that of forward planning, but 

the two protocols differ in the parameters that planners modify after each iteration. Regardless, 

inverse planning can become increasingly time-consuming for complicated cases, like head-and-neck 

patients, that require the assessment of a large number of clinical trade-offs. Paired with the time 

limitations of a clinical environment, this can limit the quality of inverse plans.  
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While it drives the planning of IMRT techniques, inverse optimization reduces a three-

dimensional dose distribution into a set of dose objectives based on one-dimensional dose volume 

histograms (DVHs). This dimensionality reduction in describing dose distributions underscores the 

importance of selecting and adjusting optimal inverse planning objectives. Planners do not currently 

know a priori what the fully optimal treatment plan is for a given patient, let alone the set of planning 

objectives needed to arrive at that plan. Further, clinical dose-volume goals for normal tissues are 

usually derived from population-based clinical studies (e.g. Emami et al.16, Quantitative Analysis of 

Normal Tissue Effects in the Clinic17, Radiation Therapy Oncology Group studies, etc.), which have 

recommended dose tolerances for clinical acceptability but do not provide any patient-specific 

information. This, in addition to unique patient anatomies and the heuristic nature of inverse 

planning, cause the quality of inversely optimized plans to be susceptible to planner bias and 

subjectivity. These limitations of inverse planning have led studies to observe a plan quality 

dependence on planner experience and “skill.”18 Batumalai et al. found within one institution that 

more experienced planners were able to produce superior IMRT plans for a head-and-neck case 

compared with less experienced planners, whose plans were also generally more difficult to deliver 

accurately.19 Planner bias results in plan quality variations between planners and institutions, which 

lead to sub-optimal plans that are clinically-acceptable but more sparing of organs at risk (OARs) is 

possible.20,21 Nelms et al. observed a wide inter-planner variation in plan quality of one prostate 

patient, which they quantified using a “Plan Quality Metric” (PQM) scoring mechanism. The PQM 

algorithm combines 14 target and OAR dose metrics, each assigned a unique value function, to serve 

as treatment goals from a hypothetical physician. With minimum and maximum possible PQM 

values of -10 and 150 respectively, they saw a large range of 58.2-142.5 in PQM (mean of 116.9; 

standard deviation of 16.4) over their 125 plan sample size. This variance in plan quality was 

independent of TPS, delivery modality (IMRT versus rotational), beam angles, total MUs, and 
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planner experience.22 Moore et al. performed a secondary study on the quality of plan data accrued 

for the Radiation Therapy Oncology Group (RTOG) 0126 protocol comparing high dose to 

standard dose 3DCRT/IMRT in patients with localized prostate cancer. They observed 42.9% of 

219 patients with ≥5% excess risk, 9.1% with ≥10% excess risk, and 0.9% with ≥15% excess risk of 

grade ≥2 rectal toxicities. This revealed how sub-optimal inverse planning can leave prostate patients 

vulnerable to excess risk of rectal complications.23  

Inverse planning has been shown to efficiently produce clinically-acceptable plans for 

sophisticated delivery modalities such as VMAT. However, achieving a fully optimal plan via inverse 

optimization requires substantial time and effort to iteratively explore the relevant clinical trade-offs. 

Planners must often sacrifice plan quality for efficiency due to clinical time constraints. The trial-

and-error and heuristic nature of inverse planning can also introduce planner subjectivity and bias, 

further affecting plan quality. Given these inverse planning deficiencies, novel planning methods and 

optimization algorithms aiming to improve patient-specific plan quality and consistency have 

become a focus in medical physics research. 

1.1.2 MULTI-CRITERIA OPTIMIZATION 

One such advanced optimization algorithm aiming to minimize the iterative and subjective 

nature of inverse planning is called multi-criteria optimization (MCO). MCO planning allows for the 

real-time assessment of clinical trade-offs by generating a database of Pareto optimal plans, which 

are plans that are computationally feasible with respect to all constraints and no objective can be 

improved without compromising another. While theoretically there are an infinite number of 

fluence-based Pareto plans, the clinical implementation of MCO used in this study approximates this 

Pareto solution surface through a discrete set of plans that emphasize user-specified planning 

objectives (Figure 2). The first N discrete Pareto plans, where N is the number of specified trade-off 

objectives, are called anchor plans and separately optimize each objective. The N+1th plan, called 
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the “balance plan,” is a Pareto plan that optimizes each trade-off objective with equal weighting. 

Additional auxiliary plans can be generated to better approximate the Pareto surface representation 

if desired.  

 
Figure 2: An example from RaySearch Laboratories of a three-dimensional Pareto surface for a 
prostate plan with three MCO trade-off objectives. The planner can search over this surface in real-
time to consider different clinical trade-offs.24 
 

After a patient-specific database of fluence-based Pareto plans is constructed, the planner 

can dynamically navigate over the computed solution space by adjusting weights assigned to each 

trade-off objective. Then the selected fluence-based Pareto plan is segmented into a deliverable plan 

through direct machine parameter optimization, which minimizes DVH differences between the 

navigated plan and the deliverable plan to optimize MLC segments.25 Then finally, the clinical dose is 

computed.  

Early investigations into the clinical viability of MCO suggest it improves IMRT plan quality 

and efficiency. Craft et al. reported an average IMRT planning time of five glioblastoma and five 

pancreatic cancer patients of 12 minutes using MCO, compared to 135 minutes using traditional 

inverse planning methods. The same study also found physicians blindly identified MCO IMRT 

plans as superior compared to the clinical plan designed through standard inverse optimization.26 
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Kierkels et al. showed novice planners using MCO could create high-quality IMRT head-and-neck 

plans with increased target dose homogeneity and reduced parotid dose compared with conventional 

clinical plans created by experienced planners.27 Similar improvements in planning efficiency and 

quality have been found for MCO VMAT planning.28,29 An example of the potential differences in 

dose distributions between inverse planning and MCO planning is shown in Figure 3. 

  
Figure 3: Example of dose distribution differences between inverse and MCO planning. The same 
axial CT slice of the same prostate patient is shown with the inversely optimized clinical VMAT plan 
on top (a) and a deliverable balance MCO VMAT plan on bottom (b). A noticeable reduction in 
OAR dose is shown in the MCO plan, particularly for both femoral heads. 

 
While MCO is emerging as a viable clinical planning option for reducing inter-planner 

variations in plan quality, its overall dosimetric advantages versus traditional inverse planning remain 

inconclusive. The conversion of a navigated fluence-based dose distribution into a deliverable plan 

(a)

(b)
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can also degrade plan quality.30 However, this effect is correlated with plan complexity and 

investigators have been working on multi-criteria direct-aperture optimization and other methods to 

maximally reduce this conversion error.31-33 MCO’s other limitations are its limited commercial 

availability and substantial computational cost, especially for cases requiring a large amount of trade-

off objectives (e.g. head-and-neck cancer).34,35 

1.1.3 KNOWLEDGE-BASED PLANNING 

An alternative method proposed to reduce inter-planner variations in inversely optimized 

plan quality is knowledge-based planning (KBP). KBP methods have recently been introduced as a 

means of improving plan quality and consistency by leveraging anatomical and dosimetric data from 

previously treated patients to guide the planner in designing a plan for a new patient.  

Knowledge-based concepts have been researched in many aspects of radiation oncology 

such as imaging informatics and segmentation.36-39 However, KBP has become a main area of 

interest due to its potential applications in many aspects of the treatment planning process. For 

instance, KBP models have been used to predict patient-specific dose-volume objectives (based on 

the available previous knowledge) before inverse optimization. Chanyavanich et al. used such an 

approach with an algorithm based on mutual information to retrospectively predict prostate IMRT 

plans that were dosimetrically similar to the original clinical plans.40 KBP models can also serve as 

post-planning quality control tools by flagging patient plans where lower OAR dose is predicted 

based on previous patient data. Wu et al. developed a quality control model to flag parotids planned 

with too high a dose in IMRT head-and-neck cases.41 Also, KBP methods have been used in 

exploring the feasibility of automated planning systems that require no human intervention. Tol et al. 

recently assessed the ability of RapidPlan, Varian’s commercial knowledge-based planning module, 

to automate plan quality assurance for clinical trials.42 The possibility of achieving fully automated 

clinical treatment planning within the next ten years was recently debated.43 If this goal is to be 
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realized at any point in the future, let alone in ten years, KBP research may be important in its 

development and implementation. 

In a general KBP dose prediction model, a database of previously treated patients with high-

quality treatment plans is established. Then for a new patient (to be planned), the database is 

searched for a subset of prior patients with similar anatomy to the new patient. The dose data from 

those anatomically similar database patients are then used to predict dose-volume objectives for the 

new patient’s plan. This KBP method provides empirical dose predictions based on the patient’s 

unique anatomy. This kind of patient-specific a priori information is not present in the current 

clinical planning paradigm, where population-based dose tolerances for OARs are typically applied 

as planning constraints. Moreover, a KBP model can explicitly predict personalized DVH objectives 

or dose-volumes for new patients using previous patient data.  

Several approaches to KBP have been described in the literature. Appenzoller et al. proposed 

a KBP method using mathematical models to predict achievable OAR DVHs based on patient 

anatomy to reduce IMRT planning variability and improve treatment plan quality.44 They separated 

each OAR into sub-volumes based on the distance a collective group of voxels was away from the 

planning target volume (PTV) surface. Then all sub-DVHs (DVHs of the individual sub-volumes) 

were fitted to skew-normal distributions, which were used to predict DVHs. This predictive DVH 

model has been successfully used in quality control studies for IMRT planning.23,45 Shiraishi et al. 

further adapted this methodology to predict DVHs and identify sub-optimal plans for stereotactic 

radiosurgery (SRS) cases.46 Good et al. developed a KBP model to predict dose for 7-field IMRT 

prostate plans based on the mutual information between the beam’s-eye-view projections of a new 

patient and database patients. They found the KBP plans to have superior (i.e. lower) bladder and 

rectum DVHs compared to original clinical plan in 40% of cases.47 Moore et al. observed increased 

normal tissue sparing and reduced inter-planner variability in IMRT prostate and head-and-neck 
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cases after implementing a KBP model that correlated OAR volume overlapping the PTV with 

mean OAR dose.48 Principal component analysis (PCA) based KBP models have also been used to 

investigate how anatomical and dosimetric features affect OAR dose in prostate and head-and-neck 

patients for DVH prediction purposes.49-52 Varian’s commercial KBP optimization engine RapidPlan 

(Varian Medical Systems, Palo Alto, CA, USA) uses a combination of PCA and regression models to 

estimate DVH predictions.53 Nwankwo et al. developed an algorithm that predicted dose to each 

OAR voxel in VMAT plans of prostate patients by learning OAR sparing patterns from a database 

of previous clinical plans.54 Similarly, Shiraishi et al. used previously treated VMAT prostate and SRS 

head-and-neck plans to train an artificial neural network to predict patient-specific dose matrices for 

new cases.55 Each of these studies aims to simultaneously improve plan quality and reduce plan 

variability regardless of changing patient and planning variables. 

1.1.4 THE OVERLAP VOLUME HISTOGRAM IN KBP 

The quality of a treatment plan depends primarily on patient anatomy, particularly the 

geometrical relationship between PTVs and OARs. Using mathematical phantoms, Hunt et al. 

showed that PTV uniformity and maximum OAR dose depend strongly on PTV-OAR geometry, 

specifically the distances between them.56 They also performed a separate study that showed a 

correlation between the OAR volume overlapping the PTV and OAR sparing in head-and-neck 

cases.57 Similarly, studies on examining prostate cancer have shown an increase in rectum and 

bladder dose as prostate and seminal vesicle volumes increase.58 

The investigations on anatomical influence on dosimetric outcomes have led to several novel 

metrics relating patient anatomy to dose prediction. One common metric used in KBP DVH 

prediction models to correlate patient geometry to OAR dose is called the overlap volume histogram 

(OVH). Introduced by Kazhdan et al., the OVH is a shape relationship descriptor that quantifies a 

patient’s anatomy by defining the distance a fractional OAR volume lies from the PTV surface. 
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More specifically, it is defined for a target T and organ O, where the value of the OVH of O with 

respect to T at distance r is defined as the fractional organ volume a distance of r or less from the 

target: 

 𝑂𝑉𝐻$,& 𝑟 = )∈$|,(),&)/0
$

, (1.1) 

where d(p,T) is the signed distance of a point p from the target’s boundary and |O| is the volume of 

the OAR.59  

The clinical viability of OVH-driven quality control tools and KBP methods have been 

investigated due to the metric’s robustness and ease of clinical implementation. Wu et al. used the 

OVH within a KBP method as an anatomical similarity metric for matching a new patient to 

previous IMRT head-and-neck patients in a database. Their OVH-driven KBP model predicted 

DVH objectives for the new patients, which led to significant decreases in planning time and dose to 

the spinal cord, brainstem, and contralateral parotid.60 They have also shown the effectiveness of 

KBP methods utilizing the OVH in improving the quality, efficiency, and consistency of 

simultaneous integrated boosted-IMRT and VMAT planning for head-and-neck cancer.61,62 Further, 

they have adapted their OVH-driven KBP methodology for robotic stereotactic body radiotherapy 

(SBRT) and were able to improve bladder and rectum sparing in prostate cases.63 Likewise, Zhu et al. 

introduced the distance-to-target histogram (DTH) as a metric to estimate OAR DVHs to improve 

IMRT plan quality.49 The DTH is virtually identical to the OVH, but Zhu et al. differentiate their 

DTH by incorporating non-Euclidean distance metrics.64  

All OVH-driven KBP methods assume that the dose received by a fractional OAR volume 

depends on its proximity to the PTV, which is described quantitatively by the OVH. Therefore, each 

point on an OAR’s OVH can be mapped to one point on the corresponding DVH, establishing a 

one-to-one relationship for each OAR of each database patient. This one-to-one distance-to-dose 

mapping can be formed by relating a distance rv of an OVH for a fractional OAR volume v to a 



 13 

dose-volume Dv of a DVH (Figure 4). This serves as the foundation of using the OVH as an 

anatomical similarity metric in a KBP model for predicting DVH dose-volumes. Further, the simple 

yet powerful nature of the OVH makes it a desirable metric to relate patient anatomical features to 

optimally achievable dose distributions in KBP methods. 

 
Figure 4: Illustration from Wu et al. relating the distance a fractional OAR volume (v) lies from the 
PTV surface (rv) on the OVH (left) to the dose the fractional volume receives (Dv) on the DVH 
(right).63 

1.2 MOTIVATION FOR RESEARCH 

Many of the previous studies have concluded that the performance or accuracy of a 

particular KBP model depends directly on the quality of the plans in the patient database.60,65-69 

These original database plans in a majority of KBP studies were created via inverse planning, which 

means the KBP models are still subject to the same deficiencies of inverse planning. Recognizing 

this, Schmidt et al. utilized dose warping and scaling reduce the impact of sub-optimal inverse plans 

on the performance on their mutual information-based KBP model.66 Sub-optimal clinical plans are 

difficult to detect due to the substantial time and labor involved in fully assessing clinical trade-offs 

through the trial-and-error process of inverse optimization. Plan quality fluctuations can also result 

from varying planning priorities from patient-to-patient and planner-to-planner (or physician-to-

physician). In fact, Wang et al. recently used an in-house TPS to evaluate the performance of an 

OVH-driven KBP method based on Pareto optimal treatment plans for prostate cases, independent 

of these non-uniform treatment planning priorities.69 They found the OVH model was highly 
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accurate in predicting rectum and anus dose, but systematically underestimated achievable bladder 

dose likely due to the bladder’s lower planning priority relative to the rectum. However, the potential 

improvements in OVH-driven KBP performance utilizing a plan database with uniform planning 

priorities and void of sub-optimal inverse plans have not been examined to our knowledge. 

KBP’s susceptibility to planner bias and plan variations can be avoided through the use of 

MCO at the cost of computational burden. Therefore, the purpose of this study was to investigate 

the performance of a MCO-driven KBP planning approach as an efficient solution. Specifically, this 

work examined OVH-driven KBP dose-volume prediction dependence on database plan quality for 

VMAT treatment planning of the prostate. The study compared the use of a database containing 

manual, inversely optimized clinical plans (referred to as the CPD – clinical plan database) against a 

database of plans generated with MCO (referred to as the MCOD). Two sets of OVH-driven KBP 

dose-volume predictions for the bladder and rectum were generated: one set derived from the 

original clinical plan data (CPD) and the other set derived from the Pareto optimal plan data 

(MCOD). The optimality of the two sets of predictions were compared and their achievability was 

verified through a re-planning study. 

1.3 HYPOTHESIS AND SPECIFIC AIMS 

The hypothesis of this work was that OVH-driven KBP predictions using a MCO plan 

database (MCOD) will lead to plans with statistically significant improvements (p < 0.017) in bladder 

and rectum dose while maintaining statistically equivalent or superior target and secondary OAR 

(femoral heads and penile bulb) dose, compared with using a clinical plan database (CPD). In order 

to test this hypothesis, three specific aims were developed for this study: 

Aim 1: Establish a retrospective anonymous patient database; compile the OVH, CPD, and 

MCOD knowledge databases; investigate second-order factors influencing the 

distance-to-dose correlation strength while accounting for inter-planner variability. 
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Aim 2: Develop and apply OVH-driven KBP model for predicting bladder and rectum 

dose-volumes using each plan database; statistically analyze any dosimetric 

differences between CPD and MCOD KBP model predictions. 

Aim 3: Perform a re-planning study by applying KBP dose-volume predictions as planning 

goals; statistically analyze differences between re-planned and predicted KBP model 

values to verify the achievability of KBP model predictions. 

1.4 OVERVIEW OF THESIS 

This document follows a manuscript-style thesis format. The introductory Chapter 1 

contains background information for the entire study and establishes the motivation and central 

themes of this research. Chapter 2 and Chapter 3 mirror two separate manuscripts respectively 

prepared for submission to peer-reviewed scientific journals, of which the former has been 

submitted for peer-review at the time of writing this thesis. These two chapters contain their own 

materials and methods, results, discussion, and conclusions sections. Background and introductory 

information for both manuscript chapters were consolidated into Chapter 1 to avoid redundancies. 

Chapter 4 summarizes the overall findings of the study and discusses limitations and directions for 

future work. This thesis contains only one References section (again to avoid redundancies) and 

each cited work is listed in the order in which they appear in the document. Lastly, the Appendix 

contains extraneous methods and supplementary data either not mentioned or implicitly mentioned 

in the materials and methods sections of the thesis. 

Generally, the specific aims laid out in Chapter 1.3 are addressed chronologically in this 

thesis. In other words, if aligning the specific aims to specific chapters, Aim 1 is contained in 

Chapter 2 while Aims 2 and 3 are contained in Chapter 3. However, certain aspects of the specific 

aims are inherently present in both manuscript chapters. 
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CHAPTER 2. AN IMPROVED DISTANCE-TO-DOSE CORRELATION 
FOR PREDICTING BLADDER AND RECTUM DOSE-VOLUMES IN 
KNOWLEDGE-BASED VMAT PLANNING FOR PROSTATE CANCER 

2.1 MATERIALS AND METHODS 

2.1.1 PATIENT DATABASE 

We developed a database, compliant with the Health Insurance Portability and 

Accountability Act (HIPAA), of 124 prostate cancer patients previously treated at Mary Bird Perkins 

Cancer Center. Selected patients were prescribed dose to a single PTV and treated using two 

coplanar, 6 MV VMAT beam arcs. Patients with artificial hip prostheses, where beams are 

prohibited from entering through the implant, and patients with sequential boosts were excluded. 

Selected patients included those having post-operative prostate fossa, seminal vesicle involvement, 

and pelvic lymph node involvement where only a single PTV was irradiated. A statistical summary of 

the resulting patient database is shown in Table 1.  

All patients in the database had an existing treatment plan that had been manually optimized 

by different planners using the commercial TPS currently used clinically at our institution (Pinnacle3, 

v9.8, Philips Medical Systems, Hanover, WI, USA). For the purpose of the present study, it was 

desirable to reduce planner-to-planner variability. Accordingly, all database patients were re-planned 

with a different commercial TPS with available tools for minimizing inter-planner variability 

(RayStation, v4.5.1.14, RaySearch Laboratories, Stockholm, Sweden). 

Specifically, re-plans were objectively generated for each database patient using MCO. As 

mentioned previously, MCO is a novel optimization algorithm based on a combination of Pareto 

optimal plans generated from user-specified trade-off objectives and constraints. Pareto optimal 

plans are those where the constraints are computationally feasible and no objective can be improved 

without worsening another. In the TPS, a “balanced plan” is the Pareto plan giving equal weight to 

all objectives.24 Previous studies have indicated MCO can provide superior plan quality and planning 
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Table 1: Distribution of patient characteristics in the database. The selected patients cover a wide 
range of prescription doses, treatment areas, and target volumes. SV stands for seminal vesicle 
involvement and LN stands for lymph node involvement. 

Prescription 
Dose Range (cGy) Number of Patients 

4500 - 7000 38 
7000 - 7600 43 
7600 - 8100 33 

8100 10 
Treatment Area  
Prostate Only 66 
Prostate Fossa 23 
Prostate + SV 

Or 
Prostate + SV + LN 

35 

PTV Volume 
Range (cm3)  

69 - 150 22 
150 - 225 56 
225 - 300 19 
300 - 729 27 

efficiency compared to traditional inverse planning.26,29 Therefore, the MCO balance plan for each 

patient was used to maximize both plan consistency and quality. Each MCO plan was created to 

match the previous prescription dose using a standard set of trade-off objectives and constraints, 

which produced consistent Pareto optimal dose distributions (Table 2). In order to account for 

patients with different prescription doses, the dose for each patient was normalized such that 95% 

of the PTV received 7600 cGy. It is important to note the effects of this scaling were examined and 

found to have no measurable impact on the dose distributions, allowing for inter-plan comparisons.  

The scripting feature in RayStation was leveraged to automate the computation of bladder 

and rectum OVHs for each database patient by uniformly contracting or expanding the PTV in 1 

mm step sizes. This OVH data was used to describe the PTV-OAR geometrical information of the 

database patients. 

To determine the strength of the distance-to-dose relationship for 30, 50, 65, and 80% 

bladder and rectum dose-volumes of database patients, the correlations between database OVHs 
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and DVHs for those specific bladder or rectum dose-volumes were calculated using the Pearson 

product-moment correlation coefficient (R). 

Table 2: MCO planning objectives and constraints used in generating balance plans for each 
database patient. The Dose Fall-off objective for the External structure reduces dose outside of the 
target. Rx refers to the prescription dose. 

Structure Trade-off Objectives 
(cGy) 

Constraints 
(cGy) 

PTV Uniform Dose = Rx Min Dose = Rx 
Max Dose = Rx + 100 

Bladder Max EUD = 0, (a=2)  
Rectum Max EUD = 0, (a=2)  

Left and Right 
Femoral Heads Max EUD = 0, (a=2)  

Penile Bulb Max EUD = 0, (a=2)  

External Dose Fall-off = [H] 3000 [L] 0,  
Low Dose Distance = 5 cm  

2.1.2 SECOND-ORDER FACTORS 

An array of dosimetric and anatomical second-order factors were chosen to examine for 

correlation with OAR dose. These factors included the derivative of the OVH (dOVH), prescription 

dose, PTV volume, bladder volume, rectum volume, and in-field OAR volume. The dOVH 

quantifies the specific orientation of the OAR relative to the PTV, where a higher dOVH value 

describes an OAR likely more difficult to spare than one with a lower dOVH. For example, it is 

possible for equal fractional OAR volumes in two different patients to have similar OVH distances, 

but have differing dOVH values that could lead to a difference in the dose each volume receives. In-

field OAR volume was defined as the amount of OAR volume that lies within transverse planes 

located 6 mm (approximating the beam penumbra at depth) superior and inferior to the most 

superior and inferior aspects of the PTV respectively.  

The ability of each second-order term to strengthen distance-to-dose correlations was 

quantified by computing the Pearson product-moment correlation coefficient (R). This coefficient 

was calculated for each factor and OAR dose-volume pair over each of the four fractional bladder 
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and rectum volumes previously listed in Chapter 2.1.1. The resulting correlation coefficients were 

averaged over the four fractional volumes for each OAR. The second-order factor with the 

strongest mean correlation with OAR dose was determined to be the strongest contributor to the 

DVH-OVH correlation variation for the given OAR. 

2.1.3 IMPROVED DISTANCE-TO-DOSE CORRELATION 

After the factor with the strongest effect on the distance-to-dose correlation variation was 

determined for the bladder and rectum, the DVH-OVH correlations were recomputed while 

including the second-order factor. These improved (OVH plus second-order term) correlations were 

compared to the nominal (OVH only) correlations to quantify any improvements in the database 

distance-to-dose correlations.  

As will be shown in the Results section, the in-field OAR volume was found to be the 

strongest contributor to variations in correlation between distance and dose for both the bladder 

and the rectum. As such, the OVH was also recomputed by disregarding out-of-field volume. 

Described by Petit et al., the in-field OVH is calculated similarly to the total OVH except only the in-

field OAR volume is considered when determining the overlapping OAR volume with the 

contracted or expanded target volume.65 This introduces a slight modification to Equation (1.1): 

 𝑂𝑉𝐻$,& 𝑟 =
𝑝 ∈ 𝑂2|𝑑(𝑝, 𝑇) ≤ 𝑟

𝑂  (2.1) 

 
where O’ is the portion of the organ O within the treatment fields (defined previously). The 

computational endpoint for the in-field OVH of a given OAR is when the PTV is expanded to 

overlap the entire in-field portion of the OAR’s volume. Further, the in-field OVH distance for 

100% overlap volume exists only when the entire OAR is within the defined treatment fields. 

Therefore, those patients in the database with fractional in-field OAR volumes less than the selected 

dose-volume value will not contribute to forming the dose-to-distance correlation. For example, if 
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only 67% of the bladder is within the treatment fields for a particular database patient, then that 

patient will not be included when calculating the correlation between the 80% dose-volume and the 

in-field OVH.  

2.2 RESULTS 

2.2.1 NOMINAL DVH-OVH CORRELATION 

Using the nominal OVH to quantify anatomy, the DVH-OVH correlation showed a 

negatively linear relationship in both OARs for each fractional volume observed. Bladder dose 

showed a strong anticorrelation with distance, having a mean R = -0.79 over the four fractional 

volumes analyzed. Rectum dose also showed a strong anticorrelation with distance, having a mean  

R = -0.82 (Table 3). Figure 5 shows each nominal DVH-OVH scatter plot associated with each 

Pearson correlation coefficient listed in Table 3. 

Table 3: Pearson correlation coefficients between nominal OVH distances and DVH dose-volumes 
of the bladder and rectum. An absolute value greater than 0.7 indicates a strong linear correlation 
with a maximum value of 1. 

Dose-Volume DVH-OVH R 
Bladder  

D30 -0.92 
D50 -0.83 
D65 -0.74 
D80 -0.66 

Mean -0.79 
Rectum  

D30 -0.94 
D50 -0.86 
D65 -0.78 
D80 -0.70 

Mean -0.82 

The variation in distance-to-dose correlation across patients can be seen in Figure 5. For 

example, the reader is directed to the DVH-OVH plot for 65% of the rectum (Figure 5 (f)), where 

the range of D65 for an OVH distance of 2 cm was 643 to 3011 cGy. This spread in dose of greater 
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than 2300 cGy for a given OVH distance is consistent with previous studies and illustrates the 

motivation of the present study.52,63,70  

 
Figure 5: Nominal DVH-OVH correlations for 30, 50, 65, and 80% dose-volumes of the bladder (a, 
c, e, g) and rectum (b, d, f, h).  

(a) (b) 

(c) (d) 
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(Figure 5 continued) 

 

 

2.2.2 SECOND-ORDER FACTORS 

Each previously investigated second-order factor was introduced as a variable into the 

nominal DVH-OVH correlation for each fractional volume of the bladder and rectum via a color 

bar. The variables were visually inspected via these color bar scatter plots to assess relational 

dependence between the second-order factors and dose for the fractional OAR volumes. Of all the 

factors studied, only the in-field OAR volume showed any noticeable influence on OAR dose, as 

seen in Figure 6 (c) and (d). The data indicated that, as the in-field OAR volume increases, the dose-

volume value for the associated OAR also increases. This trend was observed in all scatter plots for 

3011 cGy 

643 cGy 

(e) (f) 

(g) (h) 



 23 

every fractional volume DVH-OVH of the bladder and the rectum. For the other factors 

investigated, no such trends were noted (see Figure 6 (a) and (b)). 

 
Figure 6: Sample color scatter plots for qualitative review of dependence on the examined second-
order factors. There is no visible relationship between dose and PTV volume for neither 65% of the 
bladder (a) nor the rectum (b). When analyzing in-field OAR volume however, a clear relationship 
with D65 for the bladder (c) and rectum (d) can be seen. 

Pearson correlation coefficients between second-order factors and bladder and rectum dose-

volumes are listed in Table 4. Of the six variables inspected, only in-field OAR volume showed a 

strong correlation with OAR dose for both the bladder (mean R = 0.86) and the rectum (mean R = 

0.76). The in-field OAR volume had a correlation coefficient of greater than 0.7 for each bladder 

and rectum dose-volume, except for D30 of the rectum. While the dOVH was strongly correlated 

(a) (b) 

(c) (d) 
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with D30 (R = 0.75) and D50 (R = 0.74) of the rectum, the in-field OAR volume resulted in a 

stronger correlation with rectum dose overall. This indicates in-field OAR volume had the strongest 

correlation with OAR dose out of the evaluated factors, confirming the qualitative indications.  

Table 4: Pearson correlation coefficients between each second-order factor and DVH dose-volumes 
for the bladder and rectum. The mean Pearson coefficient over the four fractional volumes is also 
listed. Only the in-field OAR volume was strongly correlated (mean greater than 0.7) for both the 
bladder and rectum. 

Dose-Volume dOVH Rx 
Dose 

PTV 
Volume 

Bladder 
Volume 

Rectum 
Volume 

In-field OAR 
Volume 

Bladder       
D30 0.62 -0.44 0.50 -0.53 0.20 0.90 
D50 0.56 -0.41 0.41 -0.55 0.19 0.88 
D65 0.52 -0.41 0.39 -0.52 0.17 0.85 
D80 0.48 -0.43 0.38 -0.53 0.18 0.83 

Mean 0.54 -0.42 0.42 -0.53 0.19 0.86 
Rectum       

D30 0.75 -0.60 0.77 0.16 -0.11 0.56 
D50 0.74 -0.49 0.67 0.05 -0.07 0.74 
D65 0.67 -0.43 0.56 -0.07 -0.02 0.87 
D80 0.55 -0.53 0.60 -0.11 -0.09 0.85 

Mean 0.68 -0.51 0.65 < 0.01 -0.05 0.76 

2.2.3 IMPROVED DVH-OVH CORRELATION 

The distance-to-dose correlation showed improvement when the in-field OAR volume was 

accounted for in the computation of the OVH (Table 5). For the bladder, the in-field OVH 

strengthened the mean correlation coefficient from -0.79 to -0.85 over the four fractional volumes. 

While for the rectum, the mean correlation strengthened from -0.82 to -0.86. This increase in 

correlation strength was especially noticeable at the 80% fractional volume level for both the bladder 

and rectum, where the 80% bladder DVH-OVH R strengthened from -0.66 to -0.77 and the value 

for 80% rectum improved from -0.70 to -0.86.  

An illustrative example of the differences between the DVH-OVH correlations using the 

nominal OVH versus the in-field OVH can be seen in Figure 7. Accounting for the in-field OAR 

volume in the OVH computation resulted in an improvement in the distance-to-dose correlation for 
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65% and 80% of the bladder (Figure 7 (a) and (c) respectively) and rectum (Figure 7 (b) and (d) 

respectively). It is important to reiterate that the decrease in data points for the higher fractional in-

field OAR volumes is due to certain database patients not meeting the given in-field OAR volume 

threshold. 

Table 5: Pearson correlation coefficients between in-field OVH distances and DVH dose-volumes 
of the bladder and rectum. The correlation coefficients between the nominal OVH distances and 
DVH dose-volumes from Table 3 are also listed for comparison. Note that n refers to the number 
of database patients with in-field OAR volumes greater than or equal to the given dose-volume. 

 DVH-OVH R 
Dose-Volume Nominal OVH In-field OVH 
Bladder   

D30 -0.92 -0.91 (n = 108) 
D50 -0.83 -0.88 (n = 76) 
D65 -0.74 -0.85 (n = 52) 
D80 -0.66 -0.77 (n = 35) 

Mean -0.79 -0.85 
Rectum   

D30 -0.94 -0.93 (n = 124) 
D50 -0.86 -0.84 (n = 117) 
D65 -0.78 -0.82 (n = 90) 
D80 -0.70 -0.86 (n = 49) 

Mean -0.82 -0.86 

With regards to the representative example of the distance-to-dose correlation variation at 

65% of the rectum introduced earlier (referencing Figure 5 (f)), Figure 7 (b) shows the reduction in 

the dose spread at an OVH distance of 2 cm from using the in-field OVH method. The group of 

patients with rectum D65 less than 10 Gy have very low doses to the rectum, most likely due to 

having less than 65% of the rectum inside the treatment fields. The removal of these patients using 

the in-field OVH term reduces the dose spread at the OVH distance of 2 cm from over 20 Gy with 

the nominal OVH method to less than 10 Gy.  
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Figure 7: Representative examples of improved distance-to-dose correlations using the in-field OVH 
compared with the nominal OVH. The figure legends contain the number of patients (n) and the 
Pearson correlation coefficients (R) for each OVH method. The square nominal OVH data points 
are equivalent to the scatter plots shown in Figure 5. 

2.3 DISCUSSION 

In-field OAR volume was observed to be the largest contributor to variations in the 

distance-to-dose relationship for fractional overlap volumes of bladder and rectum in prostate 

patients treated with VMAT, independent of inter-planner bias. Specifically accounting for OAR 

volume within the treatment fields when computing the OVH strengthened the OVH’s correlation 

with the bladder and rectum dose in these patients. This proposed OVH refinement eliminates data 

points that would likely produce unachievable dose predictions in an OVH-guided KBP tool. This 

(a) (b) 

In-field OVH  
Variation 

Nominal OVH 
Variation 

(c) (d) 
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was evidenced by the consistent removal of a large portion of low-dose data points, which facilitated 

the strengthening of the distance-to-dose correlations. This was seen most clearly for the lower 

dose-volumes of both OARs e.g. D65 and D80 shown in Figure 7. Therefore, determining in-field 

OAR volume as an influencing factor in the DVH-OVH correlation, and accounting for this 

through the in-field OVH, will allow for more achievable and accurate dose predictions for OVH-

guided KBP models.  

Previous studies have refined OVH-guided KBP methods for different treatment sites to 

generate more precise planning predictions without fully quantifying the resulting effects on the 

distance-to-dose correlation used to estimate the DVH objectives. Reddy et al. found prostate 

volume was directly proportional to bladder and rectum dose in 3D-CRT and IMRT plans.58 

Similarly, Wu et al. implemented an empirical PTV volume filter, querying a patient database for a 

subset of patients with specific OVH values and similar PTV volumes for their KBP method for 

localized prostate patients treated with robotic SBRT.63 This work shows PTV volume to be 

moderately correlated with bladder dose (mean R = 0.42) and rectum dose (mean R = 0.65), which 

validates PTV volume as a simple, yet viable second-order factor when predicting bladder and 

rectum dose-volumes for OVH-guided KBP methods for prostate patients. However, our work also 

shows that filtering patients based on in-field bladder and rectum volume and even dOVH would 

provide an even stronger distance-to-dose model compared to using PTV volume, resulting in more 

robust dose-volume predictions. While in-field OAR volume may not be as easily defined for 

robotic SBRT as with VMAT treatments given the multitude of non-coplanar and non-isocentric 

beams, the relationship between OAR dose and in-field volume should hold across different 

treatment techniques. 

This work also confirms and builds upon the findings by Petit et al., who demonstrated that 

utilizing the in-field OVH will result in more accurate and fewer unachievable dose predictions for 
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cases with sizable portions of nearby OARs lying outside the treatment fields.65 While their group 

analyzed the in-field OVH’s effects with pancreatic adenocarcinoma patients treated with IMRT, our 

similar findings with VMAT prostate cases support the in-field OVH’s efficacy in OVH-guided 

KBP methods in any treatment site. A novel component of our study is the reduction of inter-

planner variability through the generation and implementation of a Pareto optimal plan database. 

Even with this decrease in inter-planner subjectivity, the in-field OAR volume was still found to be 

the strongest second-order factor correlating with OAR dose in these standardized plans. Another 

noted difference between these two studies is the definition of in-field volumes. Petit et al. defined a 

1 cm margin around the beams-eye-view of the PTV as the field edges, where we defined our in-

field transverse plans to be 0.6 cm superior and inferior of the most superior and inferior aspects of 

the PTV. Differences in results depending on in-field volume definitions would require further 

analysis. Regardless, our results support the claim that accounting for in-field OAR volume will lead 

to more precise and accurate OVH-driven KBP dose predictions. 

Additionally, this study supplements the results reported by Yuan et al., who analyzed factors 

impacting interpatient OAR dose sparing. While they used a stepwise multiple regression model on 

prostate and head-and-neck IMRT treatments, out-of-field OAR volume (converse to in-field 

volume) was found to be a significant factor in determining OAR dose sparing.52 It should also be 

noted this group utilized a non-Euclidean form of the OVH to account for voxels outside treatment 

fields to form their distance-to-dose correlation, resulting in a reduction in the correlation variation. 

Our work shows a similar reduction in distance-to-dose correlation spread using the in-field OVH. 

This study presents a comprehensive analysis and review of second-order factors potentially 

influencing the distance-to-dose relationship, which serves as the foundation for OVH-driven KBP 

dose prediction methods. As opposed to previous studies using patient cohorts with uniform beam 

configurations, dose prescriptions, and disease types, this work analyzes distance-to-dose correlation 
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behavior in a large patient database with a wide range of treatment parameters and structure volume 

sizes. Another feature unique to this work, that must be reiterated, was the implementation of an 

objective and standardized MCO planning protocol applied to each of the 124 database patients. 

This served to maximally reduce plan quality variations from patient to patient due to the inherent 

subjectivity and inconsistencies from inverse treatment planning and inter-planner variations. The 

composite impact of these factors was inspected over the low-, medium-, and high-dose levels of the 

OAR DVHs, capturing the overall influence each factor has on the distance-to-dose correlation.  

These results indicate an improvement in the distance-to-dose correlation, which can be 

implemented in existing OVH-guided KBP dose prediction tools by recalculating the OVH based 

on in-field OAR volume. While this reduction in the DVH-OVH correlation variation should lead 

directly to more accurate and less unachievable predictions in a prostate KBP protocol, a 

comprehensive retrospective study needs to be performed to confirm this conclusion. However, this 

study was primarily focused on how second-order factors impacted the distance-to-dose relationship 

in prostate patients treated with VMAT. Although knowledge from this and previous studies 

indicate in-field OVH strengthening the DVH-OVH correlation should generalize to other 

treatment sites, site-specific investigations are needed to support implementation of the in-field 

OVH. 

Although the in-field OVH demonstrated a reduction in distance-to-dose correlation spread, 

further study is needed to investigate how accounting for moderately influencing factors (such as the 

dOVH) would affect this spread. Further, these models could be applied in an existing OVH-guided 

KBP dose prediction tool and a study could be performed to quantify and compare the accuracy and 

achievability of the predictions generated from the unadjusted and adjusted distance-to-dose 

correlations.  
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2.4 CONCLUSIONS 

This work shows the use of the OVH in KBP methods can be improved by accounting for 

in-field OAR volume. Planner bias was minimized by objectively generating Pareto optimal VMAT 

plans for each prostate patient in a large, retrospective database. This facilitated the examination of 

non-systematic contributors or second-order factors affecting inter-plan variability. Out of the 

various treatment and patient parameters investigated, in-field OAR volume was found to correlate 

strongest with OAR dose for both the bladder and rectum. Also, the dOVH was found to be the 

next strongest correlating factor with both bladder and rectum doses, while rectum volume 

correlated least with bladder dose and bladder volume correlated least with rectum volume. 

Differences in prescription dose and PTV volume were found to be moderately correlated with 

bladder and rectum doses. The incorporation of the in-field volume into the OVH showed a 

reduction in distance-to-dose correlation variation, which can lead to more precise and achievable 

dose predictions in KBP methods.  
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CHAPTER 3. USING THE BEST KNOWLEDGE: IMPROVED 
KNOWLEDGE-BASED DOSE PREDICTIONS IN VMAT PLANNING 
FOR PROSTATE CANCER BY USING A PARETO PLAN DATABASE 

3.1 MATERIALS AND METHODS 

3.1.1 PATIENT DATABASE 

A HIPAA-compliant database of 124 prostate cancer patients previously treated at our 

institution was created for this study. Selected patients had only one PTV and were treated with two 

coplanar 6 MV VMAT arcs. Patients with artificial hip implants were excluded due to the reduction 

in degrees of freedom of the treatment arc. Additionally, patients with a sequential boost to a sub-

volume of the initial PTV were excluded. However, post-operative prostate fossa patients were 

included, as were patients with seminal vesicle and lymph node involvement so long as only one 

PTV was defined (Table 1). In order to compare patient plans with differing prescription doses, each 

patient’s dose was normalized so that 95% of the PTV received 76 Gy. 

3.1.2 KNOWLEDGE DATABASES 

The DICOM image set, structure, plan and dose files of all 124 selected database patients 

were imported into a research database of a commercial TPS (RayStation v4.5.1.14, RaySearch 

Laboratories, Stockholm, Sweden). Anatomical and dosimetric knowledge databases were then 

compiled.  

The clinical viability of the OVH as a feature metric in KBP methods has been tested due to 

the metric’s robustness and simple clinical implementation.60-63 Early research into the effectiveness 

of the OVH for sites with large OARs extending outside the treatment fields has demonstrated the 

potential advantages of accounting for the out-of-field OAR volumes through the OVH.52,65 This 

can be done through the in-field OVH, which modifies the standard OVH to include the OAR 

volume only within the treatment fields. Compared to the standard OVH, we have observed the in-

field OVH to improve the distance-to-dose correlation for bladder and rectum dose-volumes in 
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VMAT prostate cases independent of planner-bias. Therefore, the in-field OVH metric was used to 

quantify the anatomical information of each database patient. 

A custom script supported by the TPS (IronPython, Apache) was written to calculate the in-

field OVH for each patient’s bladder and rectum. The in-field OVH was computed by expanding 

and contracting the PTV in 1 mm increments until there was either complete overlap or no overlap 

with the in-field portion of the given OAR. In this study, “in-field” was defined as the volume 

extending laterally to the external patient surface and longitudinally between planes located 6 mm 

superior and 6 mm inferior to the edges of the PTV. The value of 6 mm was chosen to approximate 

the penumbra of the treatment fields.  

To establish the clinical plan database (CPD), a separate script was developed to extract the 

dose volume histogram (DVH) data from each patient clinical treatment plan. The DVHs of the 

PTV, bladder, rectum, femoral heads, and penile bulb (if segmented) for each patient were extracted 

from the TPS and placed in a repository which, along with the anatomic information, formed the 

CPD. Here, the bladder and rectum will be referred to as the primary OARs and the femoral heads 

and penile bulb as secondary OARs. 

For the creation of the MCO database (MCOD), each database patient was re-planned using 

MCO functionality available within the TPS and using the original DICOM image and structure sets 

of the patient. In the TPS, a Pareto plan is generated for each of the user-defined objectives, with 

each plan fully optimized for that specific objective. An additional Pareto plan, called the “balance 

plan,” is created with each of the trade-off objectives weighted equally. The user is then able to 

dynamically navigate over a linear combination of these plans (i.e. the Pareto surface) to assess 

different clinical trade-offs in search of a desired solution for the specific patient. In this study, each 

MCO plan was optimized with a standard set of prescription-specific trade-off objectives and 

constraints (Table 2). After the generation of the Pareto plan databases were completed for each 
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patient, a script was written to extract DVHs from each patient’s balance plan. These dose data were 

placed into a different repository which, along with the same anatomic information used with the 

CPD, formed the MCOD.  

3.1.3 KBP PREDICTIONS AND ANALYSIS 

A KBP method of predicting dose-volumes for the rectum and bladder using the in-field 

OVH was developed for this study. The process generally follows the methodology described by Wu 

et al. and is briefly described here.60  

The fundamental assumption of the approach is that the dose received by a fractional OAR 

volume depends on its proximity to the PTV, which is described quantitatively by the in-field OVH. 

Therefore, each point on an OAR’s in-field OVH can be mapped to one point on the corresponding 

DVH, establishing a one-to-one relationship for each OAR of each database patient. This in-field 

OVH to DVH mapping, in turn, allows the DVH of a new patient to be predicted from database 

patients queried to have similar OAR-PTV anatomy (i.e. in-field OVH values). 

Mathematically, given a new patient n with an in-field OVH distance of rv,n for a specified 

fractional OAR volume of v, the dose that fractional volume receives (Dv,n) can be estimated from a 

knowledge database of i patients by: 

 D7,8 = min D7,< r7,< ≤ r7,8  (3.1) 

The subset of database patients where 𝑟>,? ≤ 𝑟>,@ represents cases where the in-field OVH values 

imply the fractional OAR volumes are at least as difficult to spare as the new patient’s geometry. 

Dose-volumes were predicted for D10, D30, D50, D65, and D80 fractional volumes of bladder 

and rectum. The dose-volume predictions were generated using a leave-one-out method, whereby 

each patient was removed from the database and assumed to be the “new” patient for whom dose-

volumes would be predicted with the 123 database patients that remained.71 This process was 

repeated until predictions were made for each database patient. Two sets of dose-volume predictions 
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were made for each database patient: one set using the CPD model and the other set using the 

MCOD model. For the case where rv,n was less than rv,i for all i database patients, no dose prediction 

was made. In this case, the newly introduced patient would have a fractional OAR volume closer to 

the PTV than any patient in the database. So an achievable dose-volume prediction cannot be 

accurately generated with the given knowledge. Also, given the nature of the in-field OVH, 

predictions were not possible for patients with fractional in-field OAR volumes less than the desired 

dose-volume prediction. For example, a prediction for a patient’s bladder D50 would not be possible 

if less than 50% of that patient’s bladder was within the treatment fields. 

For each of the five dose-volumes of both OARs, three distributions of dose-volumes were 

compared: the set of original clinical values, the set of CPD KBP model predictions, and the set of 

MCOD KBP model predictions. Differences between the three data sets were tested for statistical 

significance using two-sided Wilcoxon signed-rank tests for each dose-volume. Statistical 

significance was set at p = 0.017, which results from applying a Bonferroni correction of three to the 

traditional significance level of 0.05. 

3.1.4 PREDICTION PERFORMANCE AND ACHIEVABILITY 

In order to confirm the achievability of KBP-predicted dose-volumes, 31 patients were 

randomly selected from the original database and re-planned using inverse optimization with the 

bladder and rectum KBP predictions as planning objectives. Because each patient had two sets of 

KBP dose-volume predictions, the lowest dose-volume prediction between the CPD and MCOD 

KBP models was used as the planning goal for each “new” patient. Again, bladder and rectum D10, 

D30, D50, D65, and D80 dose-volumes were used for these re-planning goals. 

Re-plans attempted to maintain similar PTV and secondary OAR dose compared the original 

clinical plans while simultaneously aiming to attain the bladder and rectum KBP dose-volume 

predictions. This was done in order to make an assessment of the clinical achievability of the 
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predicted bladder and rectum KBP dose-volumes. Two-sided Wilcoxon signed-rank tests between 

the bladder and rectum KBP dose-volume predictions and the re-planned values were used to 

quantify prediction achievability. Two-sided Wilcoxon signed-rank tests were also used to verify the 

re-plans maintained clinical PTV and secondary OAR dose. The significance level for these statistical 

tests was set at p = 0.05. Various dose metrics were analyzed to compare PTV and secondary OAR 

dose shown in Table 6. In this study, the homogeneity index (HI) and conformity index (CI) were 

calculated according to their ICRU definitions:72,73 

 HI =
DC − DEF
DGH

 

 

(3.2) 

 CI =
treated	volume
target	volume  (3.3) 

where the treated volume is defined in this study as the tissue volume that receives at least 95% of 

the prescription dose. 

Table 6: Dose metrics used to statistically verify clinical PTV and secondary OAR dose was 
maintained in the re-plans. Vx represents the percent volume receiving x% of the prescription dose. 

Planning Structure Evaluated Dose Metrics 

PTV D2, D50, D98, Dmax, Dmean, Dmin, 
V95, V98, V100, V107, HI, CI 

Femoral Heads D2, Dmax, Dmean 

Penile Bulb Dmean 

3.2 RESULTS 

3.2.1 DATABASE AND PREDICTION ANALYSIS 

When comparing the DVHs from the two KBP plan databases, the MCOD showed better 

PTV coverage, primary OAR sparing and secondary OAR sparing (Figure 8). On average over the 

124 database patients, the MCOD plans improved PTV HI (p < 0.001) and CI (p < 0.001) compared 

to the CPD plans. The MCOD plans yielded average decreases in Dmean of 21.9 Gy over both 

femoral heads (p < 0.001) and 9.9 Gy for the penile bulb (p < 0.001) compared to the CPD plans. 
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The MCOD plans also decreased the average Dmean of the bladder and rectum by 5.8 (p < 0.001) and 

4.3 Gy (p < 0.001) respectively from the original clinical plans. 

 
Figure 8: Comparison between the average DVHs of the labeled planning structures from plans in 
the CPD (solid lines) and MCOD (dashed lines). Note: the femoral heads are plotted separately (i.e. 
left and right femoral heads) but are difficult to resolve as they are nearly identical and their curves 
overlap each other. 

Figure 9 shows boxplots of differences in bladder and rectum dose-volumes from the 

original clinical plans, the CPD KBP model predictions, and MCOD KBP model predictions. These 

boxplots show how both KBP models compare with the original clinical values including how the 

two KBP models compare with each other. When interpreting the plots in Figure 9, a positive value 

for either of the first two boxes indicates the KBP model prediction was lower than the 

corresponding clinical dose-volume. Additionally, positive values for the third box indicate the 

MCOD model prediction was lower than the corresponding CPD model prediction. 
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Both KBP models generated predictions with a lower median dose than the clinical plans for 

all five bladder and all five rectum dose-volumes. The medians of the MCOD KBP dose predictions 

were lower for all five bladder and three rectum dose-volume points compared to the corresponding 

CPD KBP medians.  

The results from the statistical analysis comparing the patient database dose-volumes from 

the clinical plans, CPD KBP model, and MCOD KBP model are shown in Table 7. For each of the 

five bladder and five rectum dose-volumes analyzed, both the CPD and MCOD KBP model 

predicted statistically lower dose compared to the clinical plans (p < 0.001). 

 
Figure 9: Set of boxplots showing differences in dose-volumes between the clinical plan values, the 
CPD KBP model predictions, and MCOD KBP model predictions for the bladder (a) and the 
rectum (b). Below each dose-volume lists the number of patients, n, where a KBP prediction was 
possible under the protocol detailed in Chapter 3.1.3. Note: data points outside boxplot whiskers are 
more than 1.5 times the interquartile range (first quartile to third quartile i.e. length of boxes) from 
the first or third quartiles, the grey circles represent the mean of each distribution, and the horizontal 
black lines within each box represent the median of each distribution. 
  

(a) 
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(Figure 9 continued) 

 

Bladder dose-volumes predicted from the CPD and MCOD models were on average 7.34 and 11.09 

Gy lower than the clinical values respectively. As for the rectum, the predicted dose-volumes from 

the CPD and MCOD models were on average 8.96 and 8.91 Gy less than the clinical plans 

respectively.  

When comparing the two KBP methods, the MCOD model predicted significantly lower 

dose than the CPD model for all five bladder (p < 0.001) and two of the five rectum dose-volumes 

(D50; p = 0.004 and D65; p < 0.001). The MCOD model bladder dose predictions were on average 

3.75 Gy less than the CPD model predictions over the five dose-volumes. Whereas the MCOD 

model predictions were on average 1.04 Gy less than the CPD model values of D50 and D65 for the 

rectum. CPD model predictions of rectum D10 (p = 0.005) and D30 (p < 0.001) doses were 

(b) 
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statistically lower than the MCOD model. These predicted dose-volumes were on average 1.19 Gy 

lower for the CPD model compared to the MCOD model. 

Table 7: Statistical comparison of CPD and MCOD KBP model and clinical dose-volumes, with 
associated mean differences between combinations of the clinical, CPD model, and MCOD model 
dose values. These mean differences correspond to the grey circles in Figure 9. 

  Mean Differences (cGy) Two-sided Wilcoxon p-values   

Dose 
Metric N† 

Clinical 
– 

CPD 

Clinical 
– 

MCOD 

CPD 
– 

MCOD 

Clinical 
vs. 

CPD 

Clinical 
vs. 

MCOD 

CPD 
vs. 

MCOD 
Bladder        

D10 123 105.4 677.2 571.8 < 0.001* < 0.001* < 0.001* 
D30 107 598.8 1199.8 600.9 < 0.001* < 0.001* < 0.001* 
D50 75 840.2 1143.4 303.2 < 0.001* < 0.001* < 0.001* 
D65 51 1043.8 1189.6 145.7 < 0.001* < 0.001* < 0.001* 
D80 34 1080.4 1335.7 255.3 < 0.001* < 0.001* < 0.001* 

Rectum        
D10 123 302.4 204.0 -98.4 < 0.001* < 0.001* 0.005* 
D30 123 966.5 827.7 -138.8 < 0.001* < 0.001* < 0.001* 
D50 116 1211.5 1262.5 51.0 < 0.001* < 0.001* 0.004* 
D65 89 1036.3 1192.3 156.0 < 0.001* < 0.001* < 0.001* 
D80 48 961.1 969.0 7.8 < 0.001* < 0.001* 0.049 

*Indicates a statistically significant result of p < 0.017, which was Bonferroni corrected from 0.05 
† N represents the number of database patients where an in-field OVH-driven KBP prediction was possible 
i.e. predictions were not made for patients with fractional in-field OAR volumes less than the given dose-
volume 

3.2.2 KBP PREDICTION ACHIEVABILITY 

Figure 10 shows the average PTV and secondary OAR DVHs from the 31 re-plans 

compared with the corresponding DVHs from the clinical plans. Re-planned PTV dose was 

statistically equivalent to clinical dose and showed a significant improvement in CI (Table 8). Re-

plans also significantly decreased Dmean of both femoral heads by an average of 2.76 (left; p < 0.001) 

and 2.50 Gy (right; p < 0.001). A statistically significant increase (p = 0.007) in re-planned right 

femoral head Dmax was observed. However, D2 serves as a more stable surrogate for maximum dose 

since Dmax represents a point dose that is susceptible to interpolation errors, especially in large dose 

gradients. Compared with the clinical plans, the re-planned D2 values were 0.91(p = 0.02) and 0.56 
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Gy (p = 0.16) lower for the left and right femoral heads respectively. Lastly, the mean dose to the 

penile bulb decreased by an average of 4.0 Gy (p < 0.001) in the re-plans. 

 
Figure 10: Average PTV and secondary OAR DVHs of the 31 re-planned patients comparing the 
clinical plans (solid lines) and re-plans (dashed lines). Note the penile bulb was not segmented in 3 
of the 31 patients. 

The average bladder and rectum DVHs from the re-plans and the clinical plans are shown in 

Figure 11. The re-planned bladder and rectum dose was statistically lower (p < 0.001) than the 

clinical plan dose for each dose-volume observed (Table 9). This resulted in an average decrease in 

mean dose of 7.81 (p < 0.001) and 9.41 Gy (p < 0.001) for the bladder and rectum respectively. 

Statistical results from comparing KBP model and re-planned bladder and rectum dose are 

shown in Table 10. Overall, seven of the ten predicted bladder and rectum dose-volumes were 

statistically equivalent to the attained re-planned values. The re-planned D10 dose-volumes of the 

bladder and rectum were on average 1.06 (p = 0.03) and 0.82 Gy (p = 0.04) higher respectively than 
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the KBP model predicted values. Additionally, the KBP model predicted D65 of the rectum were on 

average 1.74 Gy lower (p = 0.03) than the re-planned values. 

Table 8: Statistical results of the dose comparison between the clinical plans and re-plans for the 
PTV and secondary OARs. While the PTV and femoral head dose metrics were averaged over the 
31 patients, the penile bulb was averaged over the 28 patients in which it was segmented. 

Dose Metric Mean 
Re-plan – Clinical  Wilcoxon p-value 

PTV 
D2 (cGy) 8.8 0.62 
D50 (cGy) -0.4 0.98 
D98 (cGy) 21.9 0.37 
Dmin (cGy) -160.1 0.08 
Dmean (cGy) 0.6 0.95 
Dmax (cGy) 20.7 0.43 
V95 (%) 0.06 0.89 
V98 (%) 0.07 0.98 
V100 (%) -0.2 0.22 
V107 (%) -0.4 0.80 
HI -0.002 0.84 
CI -0.07 0.03* 

Left Femoral Head 
D2 (cGy) -91.2 0.02* 
Dmax (cGy) 80.8 0.11 
Dmean (cGy) -275.7 < 0.001* 

Right Femoral Head 
D2 (cGy) -55.6 0.16 
Dmax (cGy) 127.0 0.007* 
Dmean (cGy) -249.7 < 0.001* 

Penile Bulb 
Dmean (cGy) -404.9 < 0.001* 

*Indicates a statistically significant result of p < 0.05 

3.3 DISCUSSION 

This study showed the KBP models utilizing either plan database predicted a significant 

improvement in both bladder and rectum dose compared with clinical plans. Concretely, the two 

KBP models predicted that more than 7 and 8 Gy dose decreases to the bladder and rectum 

respectively were possible. These observed improvements are consistent with previous results from 

similar KBP models for prostate cancer.40,68,74 The large dose reductions again reveal the presence of 
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Figure 11: Average DVHs over the 31 patients of the bladder and rectum for the clinical plans (solid 
lines) and re-plans (dashed lines). 

sub-optimal clinical plans, resulting from the inconsistent nature of current inverse planning 

processes. This emphasizes the need for planning quality control methods, such as KBP, in clinical 

workflows to consistently achieve the best treatment plans for each patient.  

When comparing differences between the two individual KBP methods, the MCOD model 

predicted significantly lower bladder dose-volumes than the CPD model. Averaged over the five 

bladder dose-volumes, the MCOD KBP model predicted dose 3.75 Gy less than the corresponding 

CPD KBP model. While the MCOD KBP model did not predict statistically lower dose-volumes for 

every rectum dose-volume observed, it predicted an average of 1.04 Gy lower rectum dose than the 

CPD KBP model for D50 and D65. Also, the results from the re-planning study affirm the 

achievability of these lower MCOD KBP dose-volume predictions. Therefore, this study shows how 
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a KBP model using a database of Pareto plans can lead to a higher degree of plan quality than a 

clinical plan database overall. 

This study supplements and advances the implications from Wang et al.’s validation of the 

OVH KBP model using an in-house MCO protocol with consistent prostate planning priorities.69 

They realized the shortfalls of evaluating the accuracy of planning quality assurance methods by 

comparing predictions with the potentially sub-optimal clinical plans. However, their set of Pareto 

plans was generated based on a hierarchical wish-list that prioritized certain OAR sparing over 

others, which they suspect may have led to an underestimation of bladder dose. Our study used a 

uniformly weighted MCO planning protocol within a commercial TPS to generate consistent Pareto 

plans. This study also quantified the degree to which an OVH KBP method can be improved by 

using a Pareto plan database compared to using a clinical, inversely optimized plan database. 

Further, these more optimal dose-volume predictions obtained through the MCOD KBP model 

were shown to be achievable through traditional inverse optimization.  

Table 9: Average differences in re-planned and clinical dose values over the 31 patients with 
Wilcoxon test results for the primary OARs. 

  Wilcoxon p-value 

Dose Metric 
Mean 

Re-plan – Clinical 
(cGy) 

Re-plan 
vs. 

Clinical 
Bladder 

D10 -584 < 0.001* 
D30 -1184 < 0.001* 
D50 -939 < 0.001* 
D65 -833 < 0.001* 
D80 -703 < 0.001* 
Dmean -781 < 0.001* 

Rectum 
D10 -345 < 0.001* 
D30 -1223 < 0.001* 
D50 -1543 < 0.001* 
D65 -1366 < 0.001* 
D80 -857 < 0.001* 
Dmean -941 < 0.001* 
*Indicates a statistically significant result of p < 0.05 
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This suggests that institutions without MCO capabilities could leverage external Pareto plan data in 

an existing KBP model to achieve treatment plans more optimal than those predicted by historical 

clinical plans. In other words, a MCO-driven KBP model can be made portable and used to achieve 

MCO-type plans through traditional inverse optimization. 

Table 10: Dosimetric and statistical results for evaluating prediction performance and achievability. 
   Wilcoxon p-value 

Dose Metric 
Number  

Of 
Predictions 

Mean 
Re-plan – Prediction 

(cGy) 

Re-plan 
vs. 

Prediction 
Bladder    

D10 31 106 0.03* 
D30 27 -5 0.77 
D50 18 -12 0.65 
D65 13 -165 0.13 
D80 9 17 0.95 

Rectum    
D10 31 82 0.04* 
D30 31 -174 0.23 
D50 30 -13 0.52 
D65 23 -174 0.03* 
D80 13 -151 0.12 

*Indicates a statistically significant result of p < 0.05 

Our study shows that predictions from an OVH KBP model can be improved through the 

use of a consistently generated Pareto plan database without compromising prediction achievability 

or accuracy. However, we did not find the MCOD model to be more optimal in each analyzed dose-

volume, namely the two high-dose rectum volumes. It is possible the CPD model predicted lower 

doses for rectum D10 and D30 due to varying clinical priorities placed on the rectum. Conversely, it 

may be a result of the fixed planning priorities imposed on the Pareto plans of the MCOD. The 

minimum dose constraint to the target used in the MCO planning protocol (Table 2) likely serves to 

increase the dose to rectum volumes close to the target. This could suggest a refinement of the 

Pareto plan generation, such as additional trade-off objectives emphasizing high-dose rectal 

volumes, could further improve these rectum dose-volume predictions.  
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Planning efficiency was not accounted for or analyzed in the present study as the main 

purpose was to investigate the effects of utilizing a dose database of improved quality and 

consistency on KBP performance. The present workflow was also not optimized for efficiency. 

However, given the previous findings of KBP methods improving planning efficiency, it would 

seem reasonable that incorporating another dose database into an existing KBP protocol would not 

compromise the method from an efficiency standpoint. However, an examination on treatment 

planning efficiency of a KBP method with a separately constructed plan database is needed to verify 

this claim. 

In order to further improve KBP model performance, a logical progression of the OVH-

driven KBP dose-volume prediction method would be the development of an OVH-based KBP 

prediction tool for equivalent uniform dose (EUD) planning objectives. The accurate prediction of 

an optimally achievable EUD objective could further improve patient-specific KBP plan quality. 

Additionally, as with all KBP planning methods, the plan databases may be continuously updated to 

include high-quality plans generated via the KBP method.  

3.4 CONCLUSIONS 

The results from this study showed the dosimetric advantages of an OVH-driven KBP 

model using either a clinical plan database or a Pareto plan database. This study also demonstrated 

that a Pareto plan database can produce lower dose-volume KBP predictions than a clinical plan 

database without jeopardizing achievability. Five out of five bladder and two out of five rectum 

dose-volume predictions were found to be more optimal using the MCOD compared with the 

conventional CPD. Overall, dose-volume predictions were shown to be achievable regardless of 

plan database origin, with average differences of no more than 1.74 Gy with the re-planned bladder 

and rectum dose-volumes. Further, these results indicate the possibility of achieving MCO-type 

plans through inverse planning optimization.
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CHAPTER 4. CONCLUSIONS 

4.1 SUMMARY OF FINDINGS 

The main goal of this study was to evaluate the extent to which the performance of an 

OVH-driven KBP model for predicting dose-volumes is affected by plan quality deficiencies and 

variations in the plan database. Sub-optimal and inconsistent treatment plans in a large database of 

prostate patients due to inter-planner subjectivity were controlled for by applying a uniform MCO 

planning protocol to create a balanced Pareto optimal plan for each database patient. KBP model 

dose-volume predictions generated from the clinical, manually-optimized plan data (i.e. the CPD) 

were compared to those derived from the database of Pareto plans (i.e. the MCOD). Achievability 

of those dose-volume predictions were verified by re-planning a subset of randomly selected patients 

with the KBP model predictions as planning goals. 

When establishing the distance-to-dose relationship for querying new patients against the 

database for patients with similar anatomies (see Chapter 2), we observed a sizable variation in dose 

a specific fractional OAR volume received (i.e. a DVH point) at a given distance away from the PTV 

surface (i.e. a OVH point). These large spreads in the DVH-OVH correlations for a fractional OAR 

volume could lead to less accurate and namely less achievable dose-volumes in an OVH-driven KBP 

model. Therefore, we investigated the influence of second-order factors on this distance-to-dose 

correlation variation while again accounting for sub-optimal planning due to inter-planner bias. We 

found the in-field OAR volume correlated strongest with MCOD dose for each observed dose-

volume of both the bladder and rectum. Other second-order variables, such as prescription dose and 

bladder and rectum fill volumes, did not correlate with OAR dose. The derivative of the OVH and 

PTV volume moderately correlated with OAR dose. Recalculating the OVH to only consider OAR 

volume within the treatment fields resulted in an overall strengthening in the distance-to-dose 

correlation of the bladder and rectum. This in-field OVH removed data points that would likely 
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result in unachievably low dose-volume predictions and was selected to be the feature querying 

metric for the KBP model used in this study. 

Chapter 3 detailed the results from comparing an OVH-based KBP model using a clinical 

plan database (CPD) with one using a Pareto plan database (MCOD). The MCOD KBP model 

predicted statistically lower dose than the CPD KBP model for all five bladder dose-volumes and 

two of five rectum dose-volumes observed. A re-planning study confirmed the achievability of these 

KBP predictions while maintaining statistically similar PTV and secondary OAR dose as the original 

clinical plans. Therefore, a database of uniform Pareto plans can produce more optimal dose-volume 

predictions that lead to improved plan quality compared with a conventional clinical plan database. 

The hypothesis of this study was that OVH-driven KBP bladder and rectum dose-volume 

predictions derived from the MCOD database of Pareto plans versus those derived from the CPD 

database of inversely optimized clinical plans would result in plans with statistically improved (p < 

0.017) sparing of the bladder and rectum, while also maintaining statistically equivalent PTV and 

secondary OAR dose. To this end, the results fully support this hypothesis for the bladder as the 

MCOD model produced achievable and statistically lower predictions than the CPD model for each 

dose-volume considered. As for rectum, however, MCOD model predictions were statistically lower 

than those from the CPD model for only D50 and D65 dose-volumes. Nonetheless, the MCOD KBP 

model led to improved and achievable overall bladder and rectum dose sparing, while still 

maintaining statistically similar PTV and secondary OAR dose. 

4.2 LIMITATIONS 

One limitation of this work is the size of the patient database. Naturally, the larger the 

patient database, the more robust a KBP method should be. Boutilier et al.’s study found that more 

than 200 samples gives the most consistent OVH-driven KBP model dose-volume predictions.74 

However, they also show a database size of 100 patients still results in a similarly consistent and 
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accurate KBP model compared with a 200 patient database. Specifically, a KBP model with a sample 

size of 100 patients produced a similar number of “over-predictions” (i.e. predictions where a 

dosimetric value was worse than the clinical value) for bladder and rectum dose-volumes compared 

to a model with 200 patients. Given time constraints, the working sample size of 124 was 

predetermined to yield adequate model performance and statistical power for the purposes of this 

project. 

This study also restricts database patients to those with only one prescribed PTV. This 

aspect has been discussed by previous groups dealing distance-to-dose KBP methods similar to the 

one used in this study.44,69 For cases that require more than one segmented PTV, such as 

simultaneous integrated boosts (SIB), an OAR will have separate OVHs for each defined PTV with 

likely differing prescription doses. However, the model in this study could theoretically be adapted 

to predict dose-volumes for SIB treatments by compiling a database of previous SIB patients. Wang 

et al. provides an example of such a formalism.69 This logic extends to other, more complex 

treatment sites as well (e.g. head and neck), although model testing would still be needed to confirm 

the method’s clinical viability. 

There was also not a comprehensive analysis of how the in-field OVH KBP predictions 

compared to the nominal OVH KBP predictions in this study. Despite being out of the scope of 

this thesis, results from qualitative inspection comparing the two OVH methods in the re-planning 

study can be found in the supplemental material (see Appendix F). A preliminary statistical analysis 

between the achieved re-planned and the predicted nominal OVH dose-volumes can also be found 

in Appendix G. Additionally, Petit et al. performed a similar comparison study with IMRT pancreatic 

adenocarcinoma patients and they found the in-field OVH produced more accurate and achievable 

liver dose-volume predictions than the standard OVH. These findings suggest a similar discovery is 

likely with the VMAT prostate patients in this study. 
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Since in-field OVH-driven KBP dose-volume predictions were not made for patients with 

less than the given in-field OAR volume threshold, there were missing statistical data when 

evaluating the prediction achievability in the re-planning study. The signed-rank Wilcoxon statistical 

function used for these comparisons cautions the inability to perform a normal approximation with 

a sample size of less than 10. This warning only arises for D80 of the bladder, which had only 9 KBP 

predictions. Although these missing data do decrease the statistical power of the Wilcoxon test, 31 

re-planned patients is a sufficient overall sample size to confidently interpret the results. Further, a 

pilot study determined that 30 or more patients was an adequate sample size in order to detect a 

significant difference of about 2 Gy with 80% power.  

Another limitation of this study is the lack of biological plan quality metrics (e.g. target 

control probability, normal tissue complication probability, secondary cancer complication 

probability etc.) that could be used to evaluate potential outcome differences in two treatment plans. 

The purpose of this study was to assess dosimetric differences between plans only. Although outside 

the scope of this project, investigation into the differences in biology-based metrics between both 

sets of KBP predictions and results from the re-planning study could supplement the dosimetric 

findings in this study. 

4.3 FUTURE WORK 

The next logical and immediate step for this project would be to further identify outliers 

present in the patient database. This was addressed primarily through the in-field OVH in the 

present study. However, one could imagine taking other factors that were found to moderately 

influence the distance-to-dose relationship (e.g. dOVH and PTV volume) and incorporating them 

into the dose-volume prediction through multiple linear regression, for example. 

Another direction that one could take is the investigation of a more optimal MCO planning 

protocol than the one used in this work. While the MCO balance plan yields a plan independent of 
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inter-planner variations, there likely exist Pareto plans that are more optimal for a specific OAR. The 

MCO planning protocol applied to each database patient in this study produced uniformly 

consistent Pareto plans, regardless of relative OAR priorities. This is in contrast to the manually 

optimized clinical plans, where physician preference can result in plans where one particular OAR 

was emphasized at the expense of the other. The independence of OAR sparing priorities in the 

MCO planning protocol may explain, at least partially, why the CPD model predicted statistically 

lower D10 and D30 rectum dose-volumes. Regardless, a custom optimization protocol could be 

developed to search each patient’s Pareto surface based on certain planning priorities, which could 

result in even more optimal KBP dose-predictions, albeit at the expense of increased computational 

overhead.  

As mentioned in Chapter 1.1.3, KBP methods can be applied at multiple levels of the 

treatment planning process. The KBP method developed in this study can be adapted for pre- or 

post-planning quality assurance. Therefore, clinically implementing this KBP method for either pre-

planning dose-volume predictions or flagging sub-optimal plans post-planning is a natural 

progression from this work. Further, the extension of this KBP structure to other treatment sites 

should be investigated before considering clinical implementation. 

As part of the clinical validation of this KBP model, a study would need to be done verifying 

the deliverability of the KBP-assisted plans (e.g. the re-plans in this study). While not studied in 

detail, a cursory inspection of the re-plans indicated a sizeable increase in the MUs required relative 

to the original clinical plans. The amount of required MUs is a general, although not exact, indicator 

of plan complexity as defined by the modulation complexity score.75,76 The increased complexity of 

the re-plans trying to achieve the KBP model dose-volume predictions may affect the plans ability to 

pass quality assurance tests. As the re-plans were not planned under the exact same conditions (from 

a technical perspective e.g. different TPS, machine, etc.) as the clinical plans, a quality assurance 
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assessment of the re-plans is needed to confirm the clinical viability of the resulting plans. This, 

however, was outside the purpose and scope of the current project.  
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APPENDIX A. EXTRANEOUS MATERIALS AND METHODS 

A.1 PATIENT ANONYMIZATION 

The process of patient data anonymization is an important step in performing treatment 

planning research. This task was laborious in this study due to the various locations patient data can 

reside within Mary Bird Perkins Cancer Center (MBPCC) depending on the treatment status of a 

particular patient. In other words, a patient could be in the middle of his or her treatment or fully 

completed, meaning the DICOM data could be active or archived respectively. For the purposes of 

this project, active patient DICOM data within MBPCC can most easily be obtained from within 

Mobius3D (Mobius Medical Systems LP, Houston, TX), a software application for quality assurance 

and treatment plan verification that also features a DICOM anonymization tool. On the other hand, 

archived patient data housed in MBPCC’s radiation oncology information system MOSAIQ (Elekta, 

Stockholm, Sweden) must be restored before anonymization. 

At MBPCC, the DICOM data is transferred to Mobius3D for a plan check once a plan has 

been completed and physician-approved in Pinnacle. This patient data and the plan report remain in 

the plan check list for a given amount of time before the data is archived to MOSAIQ. From this 

list, a patient’s anonymized DICOM data can be downloaded using the Mobius3D anonymization 

feature. Therefore, this plan check list was first searched for suitable database patients. If a patient 

met the previously defined selection criteria, the anonymized DICOM data was downloaded before 

being transferred to and imported into RayStation.  

After the patient search through the Mobius3D plan check list was exhausted, archived 

database candidates were searched using MOSAIQ. A report categorized by primary diagnosis was 

run in MOSAIQ in order to selectively search the entire MOSAIQ database for a cohort of possible 

candidates. The report was configured to return a list of all patients treated within a specified time 

frame in the MBPCC system with a primary cancer diagnosis of “Prostate.” Patients with statuses 
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other than “New” were reviewed for database selection (i.e. only patients with clinically-approved 

treatment plans). The plan summary of each potential database patient was examined to determine 

whether selection criteria were met. The DICOM data of patients meeting the selection criteria 

needed to be restored in the TPS. 

Patient data can be backed up to electronic media in Pinnacle. Patients at MBPCC are 

archived to the MOSAIQ Data Director (MDD), an integrated image and data archiving software 

system. When patient data is ready to be archived, all image sets and DICOM-RT files associated 

with that patient are backed up to MDD. Specifically, all archived image sets are listed along with a 

Pinnacle-specific .tar file that contains header information needed to restore the patient DICOM 

data to Pinnacle. In order to restore an archived database patient to Pinnacle, the original primary 

image set and the corresponding .tar file need to be downloaded and pushed to the Pinnacle server. 

Once the .tar file was transferred to the Pinnacle server, the patient was restored via the 

header file contained in the tarball. The primary CT set transferred from MOSAIQ was then 

imported into that patient. However, for the DICOM image set to be exported to Mobius3D with 

the same instance as the other DICOM-RT files (i.e. so that all DICOM files can be properly 

imported into RayStation), the restored DICOM image set must be assigned as the primary image 

set of the patient. This was done by copying the restored plan to the imported DICOM image set, 

which produced an identical plan to the restored plan except with no dose. The dose was 

recomputed for both VMAT beams and the patient data was ready to be exported to Mobius3D for 

anonymization. 

All patient data was anonymized in Mobius3D and imported into RayStation in this fashion 

until the target number of database patients was achieved. In total, 124 database patients were 

imported into RayStation for this study. 
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A.2 DATABASE STANDARDIZATION AND PREPARATION 

There are numerous benefits to standardizing nomenclature for body and organ structures, 

DVH metrics, toxicity, units etc. in radiation therapy. For example, standardizing RT nomenclature 

can enable easy pooling of data across institutions as well as minimize systematic communication 

errors within a single institution. With the growing prevalence of large data studies and clinical trials, 

the American Association of Physicists in Medicine recently approved the formation of Task Group 

No. 263 for Standardizing Nomenclature for Radiation Therapy. For this study, the nomenclature 

standardization of select patient data objects was necessary for scripting automation and analysis 

purposes. 

Each anonymized patient imported into RayStation underwent a series of modifications in 

order to standardize each patient for future use, including OVH computations and DVH data 

extraction. First, the Tissue Name under the regions of interest (ROI) properties for each specified 

ROI was designated according to the list in Table 11, which were largely adapted from the RTOG 

0126 protocol.77 These labels would serve as object identifiers in future automation routines, as the 

names of the structures created by original planners were not uniform. Additionally, each External 

ROI was modified in RayStation to encompass the entire patient surface included in the CT set.  

Each patient image set was required to have an assigned Imaging System. Therefore, each 

database patient’s Imaging System was set to the Generic CT table used to commission the TPS. 

Then, each imported plan was copied and renamed “MCO_pw,” which would serve as the plan file 

where the MCOD plan would be generated for each database patient. Plan properties were set to 

uniquely differentiate the MCO plan from the clinical plan and each MCOD plan was set to the 

same treatment machine. From there, MCO plan development commenced. 
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Table 11: List of structures used in this study and their assigned standardized Tissue Name labels. 
The in-field structures were created for computing the in-field OVH in this study as will be 
discussed in A.3. 

Patient Structure Standardized Tissue Name 
PTV PTV 

Bladder BLADDER 
Rectum RECTUM 

Left Femoral Head FEMUR_LT 
Right Femoral Head FEMUR_RT 

Penile Bulb PENILE_BULB 
External EXTERNAL 

In-field Bladder BLADDER_IN 
In-field Rectum RECTUM_IN 

A.3 NOMINAL AND IN-FIELD OVH COMPUTATIONS 

An IronPython script was written to automate the OVH computation process from within 

RayStation. The script was designed to loop through a list of patients in the RayStation database and 

compute the OVHs for the bladder and rectum of each patient. The script takes a list of unique 

patient IDs as input and outputs the bladder and rectum OVH data in a patient-specific text files. 

The script algorithm takes advantage of the built-in ROI tools of RayStation by first 

selecting and copying the PTV ROI in the plan, which serves as the working copy of the original 

PTV contour. Then, ROI algebra is performed to find the intersections between the bladder and 

PTV ROIs and between the rectum and PTV ROIs, which represent the bladder and rectum volume 

overlapping with the PTV respectively. Then those overlap volumes are divided by the total volumes 

of the bladder and rectum ROIs respectively, yielding the bladder and rectum OVH values at a 0 cm 

expansion distance. Three data items are then written to a patient-specific text file: the current OVH 

expansion/contraction distance (cm), the bladder OVH value, and the rectum OVH value. The 

newly created ROIs required for this process are deleted before moving to the next OVH data point 

to prevent memory leaks. Then a new copy of the PTV is created with a surface uniformly expanded 

by 1 mm and the process continues as just described. This entire process continues until both the 

bladder and rectum OVH values are above 85% volume.  
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Once the OVH expansions are completed for both bladder and rectum ROIs, the same 

iterations described previously are executed, except the PTV ROI surface is uniformly contracted in 

1 mm steps. This process continues until both the bladder and rectum OVH values are 0%. At this 

point, the text file contains both bladder and rectum OVHs from 0% to at least 85% volumes. This 

script prevented the computation from continuing until 100% volume overlap due to time efficiency 

and the specific needs of this project (i.e. largest value needed was 80% to predict the D80 dose-

volume). The PTV ROI copying process becomes prohibitively time-consuming the larger the 

expansion value presumably due to the memory requirements from the large number of structure 

voxels.  

This script would then loop to the next database patient in the input list and begin the OVH 

computation for that patient. The script would continue in this manner until each patient in the list 

was complete.  

In order to compute the in-field OVHs for the bladder and rectum ROIs, in-field ROIs for 

each structure needed to be generated. A separate IronPython script was written to consistently 

automate this process like the OVH computation script. In-field volume was defined as ROI volume 

within the transverse planes located 6 mm (to approximate beam penumbra at depth) superior and 

inferior to the most superior and inferior aspects of the PTV, respectively. Therefore, to create these 

in-field ROIs, a copy of the PTV ROI was expanded by 6 mm in the superior and inferior directions 

and 15 cm in the left, right, anterior, and superior directions. Then the intersections between the 

bladder and new PTV ROI and between the rectum and new PTV ROI were created to represent 

the in-field bladder and rectum ROIs. An example of the ROIs generated from this script is shown 

in Figure 12. This process was repeated for each database patient. 
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Figure 12: Sagittal CT slice of a database patient showing the estimation of the treatment fields. The 
horizontal lines are part of the ROI created from the original PTV contour to represent the 
treatment fields. Given Tissue Names are listed with their corresponding ROIs, with the in-field 
OAR portions indicated by “_IN.” Note the femoral heads are not visible and are located to the left 
and right of the shown CT slice. 

 
The OVH computation script was modified and adapted to compute the in-field OVHs for 

the bladder and rectum ROIs in each patient. The major adjustment was to select the 

“BLADDER_IN” and “RECTUM_IN” planning objects instead of the nominal objects at the 

beginning of the script. The in-field OVH computation process was identical to the standard OVH 

script, except the in-field OVH script continued expanding until 100% of the in-field bladder and 

rectum ROIs were overlapped by the expanded PTV. Again, patient-specific text files were written 

to contain the in-field OVH data for both the in-field bladder and rectum ROIs.  

A.4 STATISTICAL ANALYSIS OF CLINICAL AND PREDICTED DOSE-VOLUMES 

The Wilcoxon signed-rank test used in this study is a non-parametric test for testing the null 

hypothesis that two related paired samples come from the same distribution. It is the non-parametric 

version of the student t-test. Deciding to use this particular test was based on results from testing 

data distribution assumptions. The use of parametric statistical tests assumes the data are normally 

distributed and the variances of the compared samples are similar. Therefore, prior to the individual 

statistical comparisons performed on the dose-volume distributions of the clinical, CPD, and 
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MCOD data (detailed in Chapter 3.1), normality and omnibus statistical tests were performed on the 

three distributions of data. This statistical analysis process was adapted and based on the methods 

described by Chaikh et al.78 Also, all statistical tests were performed using the statistical functions 

module in SciPy (scipy.stats), an open-source Python library for scientific computing. 

Out of the numerous possible statistical tests designed to assess normality, the Shapiro-Wilk 

test was used in this work (scipy.stats.shapiro). The Shapiro-Wilk test tests the null hypothesis that 

the data was drawn from a normal distribution, where a p-value of less than 0.05 indicates a 

significant difference between the test data and a normal distribution (i.e. the data is likely non-

normal). Normality tests are often complemented by measuring the skewness and the kurtosis of the 

data distributions. The skewness describes the symmetry of the data while kurtosis quantifies the 

spread or peak sharpness of the distribution. A statistical test based on D’Agostino and Pearson’s 

test was used in this study to further evaluate normality of the distributions of data 

(scipy.stats.normaltest). This test combines skew and kurtosis tests to produce an omnibus test of 

normality where again, a p-value of less than 0.05 indicates a significant difference (i.e. the data is 

likely non-normal).  

These normality statistical tests were performed on each of the three distributions of data: 

the original, clinical data, the CPD-derived KBP predictions, and the MCOD-derived KBP 

predictions. These tests yielded p-values for each of the five bladder and five rectum dose-volumes 

observed in this study and can be seen in Table 12. These results indicated that a large majority of 

the data sets tested were likely non-normal distributions. To further support this interpretation, each 

data set was visually inspected via histograms and compared with fitted normal distributions. Two 

representative examples can be seen in Figure 13. Boxplots of the data may also be used as a visual 

tool when determining normality. The data visualization confirmed the normality tests and the 



 65 

decision was made to proceed with non-parametric statistical tests. Uniform variance was not tested 

in this study since a repeated measures design was used. 

Table 12: Normality statistical test p-values for the three distributions of data. A statistically 
significant result may be interpreted as the given data likely representing a non-normal distribution. 

Dose-Volume N† Clinical Data CPD Model MCOD Model 
Shapiro Normal Shapiro Normal Shapiro Normal 

Bladder        
D10 123 < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* < 0.001* 
D30 107 0.01* 0.046* 0.001* 0.002 < 0.001* < 0.001* 
D50 75 0.03* 0.10 < 0.001* <0.001* < 0.001* 0.006* 
D65 51 0.03* 0.03* < 0.001* <0.001* < 0.001* < 0.001* 
D80 34 0.08 0.03* < 0.001* <0.001* < 0.001* < 0.001* 

Rectum        
D10 123 < 0.001* < 0.001* < 0.001* 0.43 < 0.001* < 0.001* 
D30 123 0.25 0.72 < 0.001* < 0.001* < 0.001* < 0.001* 
D50 116 0.86 0.77 < 0.001* 0.005* < 0.001* < 0.001* 
D65 89 0.63 0.76 < 0.001* < 0.001* < 0.001* < 0.001* 
D80 48 0.31 0.28 < 0.001* 0.005* < 0.001* < 0.001* 

*Indicates a statistically significant result of p < 0.05 
† N represents the number of database patients where an in-field OVH-driven KBP prediction was possible 
i.e. predictions were not made for patients with fractional in-field OAR volumes less than the given dose-
volume 

After carrying out the normality statistical test, an omnibus test was performed. Conducting 

an omnibus test is typically the first step when performing more than one statistical comparison. A 

total of three comparisons were made in this part of the study: Clinical vs. CPD, Clinical vs. MCOD, 

and CPD vs. MCOD distributions. The omnibus test checks whether there exists a difference 

between any of the datasets. In other words, it tests whether all datasets are statistically equivalent. If 

no statistically significant result is achieved, there is no need to continue to one-on-one comparisons 

between the individual datasets.  

This study used the Friedman test to conduct the omnibus test 

(scipy.stats.friedmanchisquare), which tests the null hypothesis that repeated samples of the same 

individuals have the same distribution. Therefore, a statistically significant result means it is likely a 

difference exists between the distributions tested. This test is the non-parametric equivalent of the 

repeated measures analysis of variance (ANOVA) test. The p-values resulting from the Friedman test  
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Figure 13: Representative examples of data visualization via density distribution histograms along 
with estimated normal curves, plotted using the mean and standard deviation of the data. (a) is an 
example of a distribution determined to likely be non-normal and (b) is an example of a distribution 
deemed to be normal. 

(a) 

(b) 



 67 

are shown in Table 13. Each bladder and rectum dose-volume yielded a statistically significant result, 

indicating the need to perform one-on-one comparisons. This was accomplished via multiple 

Wilcoxon signed-rank tests, the results of which are detailed in Chapter 3.1.3. 

Table 13: Results from the omnibus test. Each dose-volume yielded statistically significant results, 
indicating a difference likely exists between the three distributions of data. 

Dose-Volume N† Friedman Test 
p-value 

Bladder   
D10 123 <0.001* 
D30 107 <0.001* 
D50 75 <0.001* 
D65 51 <0.001* 
D80 34 <0.001* 

Rectum   
D10 123 <0.001* 
D30 123 <0.001* 
D50 116 <0.001* 
D65 89 <0.001* 
D80 48 <0.001* 

*Indicates a statistically significant result of p < 0.05 
† N represents the number of database patients where an in-field OVH-driven KBP prediction was possible 
i.e. predictions were not made for patients with fractional in-field OAR volumes less than the given dose-
volume
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APPENDIX B. CPD VERSUS MCOD NOMINAL DVH-OVH 
CORRELATIONS  

 
Figure 14: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 30% dose-volume of the bladder. 

 
Figure 15: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 50% dose-volume of the bladder. 
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Figure 16: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 65% dose-volume of the bladder. 
 

 
Figure 17: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 80% dose-volume of the bladder. 
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Figure 18: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 30% dose-volume of the rectum. 
 

 
Figure 19: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 50% dose-volume of the rectum. 
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Figure 20: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 65% dose-volume of the rectum. 
 

 
Figure 21: Nominal DVH-OVH correlation (R) using the CPD DVH data (circles) and the MCOD 
DVH data (squares) for the 80% dose-volume of the rectum. 
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Table 14: Summary of the Pearson correlation coefficients for the distance-to-dose relationships 
formed with the CPD and MCOD dose data. The nominal OVH data was used for these 
correlations. The MCOD dose produced a stronger correlation with distance overall, most 
noticeably in the rectum. This is most likely due to the removal of the inter-planner subjectivity 
present in the CPD dose data. 

Dose-Volume 
DVH-OVH R 
CPD MCOD 

Bladder   
D30 -0.91 -0.92 
D50 -0.84 -0.83 
D65 -0.73 -0.74 
D80 -0.65 -0.66 

Mean -0.78 -0.79 
Rectum   

D30 -0.75 -0.94 
D50 -0.67 -0.86 
D65 -0.68 -0.78 
D80 -0.65 -0.70 

Mean -0.69 -0.82 
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APPENDIX C. COLOR BAR CORRELATION PLOTS OF SECOND-
ORDER FACTORS 

 
Figure 22: Color bar scatter plot for distance-to-dose relationship for 30% of the bladder, where the 
color-mapped variable is the derivative of the OVH. 

 
Figure 23: Color bar scatter plot for distance-to-dose relationship for 50% of the bladder, where the 
color-mapped variable is the derivative of the OVH. 
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Figure 24: Color bar scatter plot for distance-to-dose relationship for 65% of the bladder, where the 
color-mapped variable is the derivative of the OVH. 
 

 
Figure 25: Color bar scatter plot for distance-to-dose relationship for 80% of the bladder, where the 
color-mapped variable is the derivative of the OVH. 
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Figure 26: Color bar scatter plot for distance-to-dose relationship for 30% of the rectum, where the 
color-mapped variable is the derivative of the OVH. 
 

 
Figure 27: Color bar scatter plot for distance-to-dose relationship for 50% of the rectum, where the 
color-mapped variable is the derivative of the OVH. 
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Figure 28: Color bar scatter plot for distance-to-dose relationship for 65% of the rectum, where the 
color-mapped variable is the derivative of the OVH. 
 

 
Figure 29: Color bar scatter plot for distance-to-dose relationship for 80% of the rectum, where the 
color-mapped variable is the derivative of the OVH. 
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Figure 30: Color bar scatter plot for distance-to-dose relationship for 30% of the bladder, where the 
color-mapped variable is the prescription dose. 
 

 
Figure 31: Color bar scatter plot for distance-to-dose relationship for 50% of the bladder, where the 
color-mapped variable is the prescription dose. 
 



 78 

 
Figure 32: Color bar scatter plot for distance-to-dose relationship for 65% of the bladder, where the 
color-mapped variable is the prescription dose. 
 

 
Figure 33: Color bar scatter plot for distance-to-dose relationship for 80% of the bladder, where the 
color-mapped variable is the prescription dose. 
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Figure 34: Color bar scatter plot for distance-to-dose relationship for 30% of the rectum, where the 
color-mapped variable is the prescription dose. 
 

 
Figure 35: Color bar scatter plot for distance-to-dose relationship for 50% of the rectum, where the 
color-mapped variable is the prescription dose. 
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Figure 36: Color bar scatter plot for distance-to-dose relationship for 65% of the rectum, where the 
color-mapped variable is the prescription dose. 
 

 
Figure 37: Color bar scatter plot for distance-to-dose relationship for 80% of the rectum, where the 
color-mapped variable is the prescription dose. 
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Figure 38: Color bar scatter plot for distance-to-dose relationship for 30% of the bladder, where the 
color-mapped variable is the PTV volume. 
 

 
Figure 39: Color bar scatter plot for distance-to-dose relationship for 50% of the bladder, where the 
color-mapped variable is the PTV volume. 
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Figure 40: Color bar scatter plot for distance-to-dose relationship for 80% of the bladder, where the 
color-mapped variable is the PTV volume. 
 

 
Figure 41: Color bar scatter plot for distance-to-dose relationship for 30% of the rectum, where the 
color-mapped variable is the PTV volume. 
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Figure 42: Color bar scatter plot for distance-to-dose relationship for 50% of the rectum, where the 
color-mapped variable is the PTV volume. 
 

 
Figure 43: Color bar scatter plot for distance-to-dose relationship for 80% of the rectum, where the 
color-mapped variable is the PTV volume. 
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Figure 44: Color bar scatter plot for distance-to-dose relationship for 30% of the bladder, where the 
color-mapped variable is the bladder volume. 
 

 
Figure 45: Color bar scatter plot for distance-to-dose relationship for 50% of the bladder, where the 
color-mapped variable is the bladder volume. 
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Figure 46: Color bar scatter plot for distance-to-dose relationship for 65% of the bladder, where the 
color-mapped variable is the bladder volume. 
 

 
Figure 47: Color bar scatter plot for distance-to-dose relationship for 80% of the bladder, where the 
color-mapped variable is the bladder volume. 
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Figure 48: Color bar scatter plot for distance-to-dose relationship for 30% of the rectum, where the 
color-mapped variable is the bladder volume. 
 

 
Figure 49: Color bar scatter plot for distance-to-dose relationship for 50% of the rectum, where the 
color-mapped variable is the bladder volume. 
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Figure 50: Color bar scatter plot for distance-to-dose relationship for 65% of the rectum, where the 
color-mapped variable is the bladder volume. 
 

 
Figure 51: Color bar scatter plot for distance-to-dose relationship for 80% of the rectum, where the 
color-mapped variable is the bladder volume. 
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Figure 52: Color bar scatter plot for distance-to-dose relationship for 30% of the bladder, where the 
color-mapped variable is the rectum volume. 
 

 
Figure 53: Color bar scatter plot for distance-to-dose relationship for 50% of the bladder, where the 
color-mapped variable is the rectum volume. 
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Figure 54: Color bar scatter plot for distance-to-dose relationship for 65% of the bladder, where the 
color-mapped variable is the rectum volume. 
 

 
Figure 55: Color bar scatter plot for distance-to-dose relationship for 80% of the bladder, where the 
color-mapped variable is the rectum volume. 
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Figure 56: Color bar scatter plot for distance-to-dose relationship for 30% of the rectum, where the 
color-mapped variable is the rectum volume. 
 

 
Figure 57: Color bar scatter plot for distance-to-dose relationship for 50% of the rectum, where the 
color-mapped variable is the rectum volume. 
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Figure 58: Color bar scatter plot for distance-to-dose relationship for 65% of the rectum, where the 
color-mapped variable is the rectum volume. 
 

 
Figure 59: Color bar scatter plot for distance-to-dose relationship for 80% of the rectum, where the 
color-mapped variable is the rectum volume. 
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Figure 60: Color bar scatter plot for distance-to-dose relationship for 30% of the bladder, where the 
color-mapped variable is the in-field OAR volume. 
 

 
Figure 61: Color bar scatter plot for distance-to-dose relationship for 50% of the bladder, where the 
color-mapped variable is the in-field OAR volume. 
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Figure 62: Color bar scatter plot for distance-to-dose relationship for 80% of the bladder, where the 
color-mapped variable is the in-field OAR volume. 
 

 
Figure 63: Color bar scatter plot for distance-to-dose relationship for 30% of the rectum, where the 
color-mapped variable is the in-field OAR volume. 
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Figure 64: Color bar scatter plot for distance-to-dose relationship for 50% of the rectum, where the 
color-mapped variable is the in-field OAR volume. 
 

 
Figure 65: Color bar scatter plot for distance-to-dose relationship for 80% of the rectum, where the 
color-mapped variable is the in-field OAR volume. 
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APPENDIX D. NOMINAL VERSUS IN-FIELD OVH DISTANCE-TO-
DOSE CORRELATIONS 

 
Figure 66: DVH-OVH correlation (R) using nominal OVH data (squares) and in-field OVH data 
(diamonds) for the 30% dose-volume of the bladder.  

 
Figure 67: DVH-OVH correlation (R) using nominal OVH data (squares) and in-field OVH data 
(diamonds) for the 50% dose-volume of the bladder. 
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Figure 68: DVH-OVH correlation (R) using nominal OVH data (squares) and in-field OVH data 
(diamonds) for the 30% dose-volume of the rectum. 
 

 
Figure 69: DVH-OVH correlation (R) using nominal OVH data (squares) and in-field OVH data 
(diamonds) for the 50% dose-volume of the rectum. 
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APPENDIX E. PLAN DATABASE DOSIMETRIC COMPARISON 

Table 15: Statistical results of the dose comparison between the two plan databases for the PTV and 
secondary OARs. The mean differences between the MCOD and CPD dose metrics were averaged 
over the 124 database patients. 

Dose Metric Mean 
MCOD – CPD  Wilcoxon p-value 

PTV 
D2 (cGy) -140.8 < 0.001* 
D50 (cGy) -124.6 < 0.001* 
D98 (cGy) 133.4 < 0.001* 
Dmin (cGy) 650.5 < 0.001* 
Dmean (cGy) -101.5 < 0.001* 
Dmax (cGy) -62.3 < 0.001* 
V95 (%) 0.56 < 0.001* 
V98 (%) 1.40 < 0.001* 
V100 (%) -6.05 < 0.001* 
V107 (%) -0.23 < 0.001* 
HI -0.03 < 0.001* 
CI -0.13 < 0.001* 

Left Femoral Head 
D2 (cGy) -2506 < 0.001* 
Dmax (cGy) -2077 < 0.001* 
Dmean (cGy) -2189 < 0.001* 

Right Femoral Head 
D2 (cGy) -2492 < 0.001* 
Dmax (cGy) -2058 < 0.001* 
Dmean (cGy) -2187 < 0.001* 

Penile Bulb 
Dmean (cGy) -994 < 0.001* 

*Indicates a statistically significant result of p < 0.05 
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Table 16: Statistical results of the dose comparison between the two plan databases for the primary 
OARs. The mean differences between the MCOD and CPD dose metrics were averaged over the 
124 database patients. 

  Wilcoxon p-value 

Dose Metric 
Mean 

MCOD – CPD 
(cGy) 

Re-plan 
vs. 

Clinical 
Bladder 

D10 -542 < 0.001* 
D30 -879 < 0.001* 
D50 -643 < 0.001* 
D65 -520 < 0.001* 
D80 -473 < 0.001* 
Dmean -581 < 0.001* 

Rectum 
D10 -137 < 0.001* 
D30 -434 < 0.001* 
D50 -541 < 0.001* 
D65 -578 < 0.001* 
D80 -557 < 0.001* 
Dmean -435 < 0.001* 

*Indicates a statistically significant result of p < 0.05 
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APPENDIX F. PATIENT-BY-PATIENT PREDICTION ACHIEVABILITY 
PLOTS 

 
Figure 70: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for bladder D10. 
 

 
Figure 71: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for bladder D30. 
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Figure 72: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for bladder D50. 
 

 
Figure 73: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for bladder D65. 
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Figure 74: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for bladder D80. 
 

 
Figure 75: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for rectum D10. 
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Figure 76: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for rectum D30. 
 

 
Figure 77: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for rectum D50. 
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Figure 78: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for rectum D65. 
 

 
Figure 79: Patient-by-patient data from re-planning study comparing the original, clinical value 
(triangle), in-field OVH KBP prediction (square), standard OVH KBP prediction (diamond), and re-
planned value (circle) for rectum D80.
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APPENDIX G. PRELIMINARY ACHIEVABILITY RESULTS FOR 
NOMINAL VERSUS IN-FIELD OVH PREDICTIONS 

Table 17: Statistical results comparing predictions from KBP model using the in-field OVH versus 
the nominal OVH feature metric.  

   Wilcoxon p-value 

Dose Metric Predictions 

Mean 
In-field – Nominal 
OVH Prediction 

(cGy) 

In-field 
vs. 

Nominal OVH 

Bladder    
D10 31 -6.9 0.32 
D30 27 239.0 0.05* 
D50 18 97.6 0.25 
D65 13 776.1 0.003* 
D80 9 865.2 0.007* 

Rectum    
D10 31 0.6 0.16 
D30 31 33.1 0.14 
D50 30 315.4 < 0.001* 
D65 23 917.3 < 0.001* 
D80 13 1056.2 0.002* 

*Indicates a statistically significant result of p < 0.05 
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