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ABSTRACT 

The SEparator for CApture Reactions (SECAR) is currently being developed at 

the National Superconducting Cyclotron Laboratory (NSCL) and the future Facility for 

Rare Isotope Beams (FRIB) for measurements of nuclear reactions critical for 

understanding energy generation and element synthesis in stellar explosions. SECAR is 

an electromagnetic recoil separator designed for sensitive measurements of radiative 

capture reactions using beams of proton-rich, short-lived isotopes at the energies 

relevant for explosive environments such as Type I X-ray bursts and classical novae.  

SECAR is designed to efficiently separate capture reaction products of interest from the 

incident beam by up to a factor of 1017 by use of the separator and detection systems 

together. 

This thesis focuses on the initial design of the focal plane for SECAR, including a 

preliminary suite of detectors and the supporting infrastructure.  The recoils from 

capture reactions that reach SECAR’s focal plane can be discriminated from scattered 

beam by velocity (via time-of-flight), trajectory, total energy, and relative energy-loss 

measurements.  The initial instruments include a pair of transmission detectors based on 

metal-foil, micro-channel plates that are separated by a drift length to provide an 

accurate time-of-flight measurement and discriminate recoils from the generally higher 

velocity scattered beam. The recoils are ultimately stopped, and their full energy 

measured, in either a silicon (Si) strip detector or gas-filled ionization chamber. At 

higher energies, the gas-filled ionization chamber provides selective determination of the 

atomic number via a relative energy-loss measurement. An ionization chamber for 

implementation into the SECAR focal plane that augments the traditional relative 

energy-loss measurement with a position-sensitive capability has been designed and 

constructed. The effectiveness of the different techniques varies; at lower energies (below 

about 0.5 MeV/A) relative energy loss becomes less effective and a full energy 

measurement with a silicon strip detector provides better resolution. A flexible 



 xi 

infrastructure was designed using the CAD software Autodesk Inventor to allow the 

focal plane configuration to be optimized for the best performance for each experiment 

given the wide range of beam conditions expected in the scientific program that is 

envisioned with SECAR.  
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CHAPTER 1. INTRODUCTION 

The SEparator for CApture Reactions (SECAR) will be an experimental end 

station at the ReA3 reaccelerated beam facility at the National Superconducting 

Cyclotron Laboratory (NSCL) and the Facility for Rare Isotope Beams (FRIB) at 

Michigan State University. FRIB, which will be operational by 2022, will be a leading 

facility in the world for nuclear science using short-lived nuclei. 

The design of SECAR is optimized for measurements of low-energy capture 

reactions vital to understanding energy generation and element synthesis in classical 

nova explosions, X-ray bursts, and other stellar explosions. The layout of SECAR is 

shown in Fig. 1-1. A beam of unstable nuclei is accelerated by the ReA3 linear 

accelerator to typical energies from several hundred keV/A up to 3 MeV/A and 

bombards the Jet Experiments in Nuclear Structure and Astrophysics (JENSA), which 

is a windowless gas jet target system [1,2]. Thus, direct measurements are performed in 

inverse kinematics since the reactions of interest involve the capture of a target of 

protons or alpha particles by a beam of much heavier proton-rich nuclei that are too 

short-lived to be made into a target.  

The capture reaction cross sections of interest are very small, resulting in low 

yields, and creating a single fusion product for typically 1011-1015 unreacted beam 

particles. Further complicating matters, the unreacted beam particles have nearly the 

same momentum as the capture reaction products because the gamma rays emitted in 

the reaction carry away little momentum. However, the difference in mass between the 

reaction products and the unreacted beam particles implies a velocity difference that can 

be exploited to distinguish one from the other. A high rejection efficiency of the incident 

beam for the eventual detection of the recoils at the focal plane is necessary to allow a 

direct determination of astrophysical reaction rates through measurements of very low  
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Figure 1-1: Overview of SECAR beamline from gas target to final focal plane where 
recoils are detected. Recoil separation accomplished with a number of components 
shown here with varying colors: dipole magnets (orange), Wien velocity filters (blue), 
and quadrupole focusing magnets (yellow). 

 

cross sections. Physical separation of the desired recoils from the beam particles will be 

accomplished with both Wein velocity filters and dipole magnets for an ultimate beam 

rejection factor of 1013 at the detection system, reducing the fraction of recoils to 

unreacted beam particles to better than 1 in 104 [2]. 

When the beam projectiles reach JENSA, the windowless gas target, they are in a 

single charge state. As they enter the target, however, interactions with the gas cause 

multiple charge states to be produced. Most of the projectiles exit the target without 
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any nuclear interaction but have a distribution of charge states dependent on the 

incident beam species, energy and target thickness. The first stage of the SECAR 

separator disperses by magnetic rigidity using dipoles to select a single charge state of 

the beam and recoils. 

Discrimination of the beam from recoils is provided by velocity filters that have 

magnetic and electric fields perpendicular to each other and the ion-optical axis. Those 

particles with velocities (v) equal to the ratio of electric (E) to magnetic (B) fields, or v 

= E/B, pass through the filters without deflection. Velocity filters spatially separate the 

reaction products from the incident beam, meaning the unreacted beam can be blocked 

by use of appropriately placed slits. The dispersion of the magnetic dipoles and velocity 

filters is combined to produce a dispersion of particles at the focal plane by charge-to-

mass ratio (q/A). After this electromagnetic separation, the identification of the 

unreacted leaky beam and reaction recoils must be carried out by the discriminating 

power of the detectors.  

SECAR is designed for measurements using beams with masses up to A = 65 to 

match the reactions of interest in astrophysics. The center-of-mass energy of the beam 

can also be varied from 0.3 MeV/A to more than 3.0 MeV/A to match the most 

important energies in astrophysical sites such as X-ray bursts and classical novae. A 

wide range of beam purities may also exist for experiments depending on the required 

isotope and performance of the gas catcher and charge breeder [2]. These factors must 

be taken into account in the design and implementation of the detectors at the focal 

plane. The detectors will identify the desired recoils, and distinguish them from 

unreacted beam particles and possible reactions on beam contaminants, for a wide 

variety of experimental parameters. 

An initial suite of detectors suited for a broad range of conditions has been 

designed including a set of metal-foil, micro-channel plate detectors for time-of-flight 

and position measurements, and an ionization chamber for atomic number Z 
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discrimination by a relative energy-loss measurement. A silicon strip detector is also 

included in the initial suite of instruments, and can be used in place of the gas 

ionization detector. The silicon strip detector is particularly useful when the beam is 

relatively low-energy (less than 0.5 MeV/A), where particle identification by relative 

energy-loss is ineffective and the superior energy resolution of silicon for total energy 

measurements is preferred. The design and initial development of the focal plane layout 

and detector configuration for SECAR are discussed in this thesis. 

 The entire focal plane structure has been designed with the CAD tool Autodesk 

Inventor. The designs are similar to other SECAR components and chambers but are 

matched to the specifications of the ion-optical trajectories and needs of the detection 

instrumentation that the structure will house. These designs are included within this 

thesis to be used as a reference for further development of the SECAR focal plane.  An 

important feature of the SECAR focal plane is its ability to be adapted and be flexible 

to the needs of the experiment as the beam properties and energies will be different for 

each experiment, and the detection capabilities should be optimized to the experimental 

conditions. With this in mind, the focal plane chambers and stands were designed with 

additional ports for diagnostic access or detector replacement, and the capability of easy 

substitution or addition of further detectors for future upgrades. 
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CHAPTER 2. MOTIVATION 

2.1. Astrophysical Impact 

 Nuclear physics plays a pivotal role in understanding how astrophysical 

phenomena behave. The modeling of astrophysical sites requires accurate nuclear 

reaction rates. Simulations of stellar explosions such as X-ray bursts, supernovae, and 

classical novae require reaction rates on unstable exotic nuclei to correctly model the 

nucleosynthesis and explosion processes. In classical novae, for example, observations of 

elemental abundances in their thermonuclear explosion ejecta give information on the 

synthesis of radioactive isotopes. Short-lived isotopes, such as 14O, 15O, and 17F that 

reach the outer accretion envelope have β-decays that provide an important energy 

source for the ejection of material [3]. 

 In both classical novae and X-ray bursts, the extreme temperatures of 108-109 K 

and densities of 104-106 g/cm3 result in a sequence of reactions on unstable, proton-rich 

nuclei that drive the thermonuclear runaway, influencing nucleosynthesis and the rate of 

energy production [4,5]. Such reactions can play an important role in the 

nucleosynthesis and energy generation occurring in other types of stellar explosions [6,7]. 

Sensitivity studies using computational models have identified certain reaction rates 

that have a significant impact on astronomical observables such as the light curves, 

expansion timescales, and ejecta composition for novae [3]. Uncertainties in the rates of 

nuclear reactions hamper the accuracy of nucleosynthesis models and, consequently, the 

understanding of the observables of such astrophysical events [8,9]. In most cases, the 

ability to measure these important reaction rates directly is limited by the intensity of 

the radioactive ion beam needed to measure the reaction.  

  Novae and X-ray bursts are reoccurring phenomena at a stellar site with possible 

reoccurrence times on the order of more than 104 years for novae, to as short as hours 

for X-ray bursts [8]. The astrophysical objects that remain after stellar explosions, such 

as a white dwarf after novae or a neutron star after X-ray bursts, are affected by the 
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elements produced in the nuclear explosions. The ash composition is important for 

understanding phenomena such as “superbursts” and the possible link between novae 

and Type Ia supernova progenitors [10]. For models that track nucleosynthesis, 

uncertainty in the reaction rates produce uncertainties in the final elemental 

abundances. These uncertainties propagate further since the ashes in previous explosions 

impact reactions in successive explosions. Properties such as the crust structure, 

temperature, and composition of a neutron star are affected by the ashes of the 

explosion, which can be used to constrain the reaction sequences over time that convert 

the proton-rich ashes into extremely neutron-rich nuclei [8,10,11]. 

 Thermonuclear reaction rates are thermal averages of an energy-dependent 

reaction cross section over a range of energies at a given stellar temperature, T, given 

by: 

   〈𝜎𝜐〉 = (
8

𝜋𝜇
)

1/2

(
1

𝑘𝑇
)

3/2

∫ 𝜎(𝐸) 𝐸 𝑒𝑥𝑝 [−
𝐸

𝑘𝑇
] 𝑑𝐸

∞

0
   (1) 

where 〈σν〉 is the reaction rate, μ is the reduced mass of the particles, E is the energy, 

σ(E) is the cross section of the reaction at a given energy, and k is the Boltzmann 

constant [12]. The reaction rates are crucial input for simulations of the detailed physics 

of extreme stellar environments. Understanding these reactions in novae and X-ray 

bursts can also be used to understand the nuclear processes, like nucleosynthesis, 

occurring in other stellar explosions. Population III stars are another example of an 

astrophysical site where the energy release and explosion mechanisms are highly 

dependent on reaction rates, and for a simulation to reliably predict their evolution, 

highly accurate reaction rates must be known [13]. Knowing important details like 

reaction rates gives information that connects subatomic physics at the nuclear scale to 

astrophysics at the Galactic scale.  

 Novae occur in a binary star system when material from a companion star 

overflows its Roche lobe and accretes onto the surface of a white dwarf. As the material 



7 

 

is accreted, its gravitational energy releases causing it to compress and heat while its 

temperature and density increase to values of 108 K and 104 g/cm3 respectively, with 

novae on carbon-oxygen (CO) white dwarfs achieving lower peak temperatures than 

those occurring on oxygen-neon (ONe) white dwarfs [2,3,14]. Nuclear burning increases 

the temperature and rates of reactions, leading to thermonuclear runaway. The 

explosions themselves occur on the surface layer of the white dwarf and are fueled by 

hydrogen and helium from the envelope of the companion star. This environment is 

responsible for the synthesis of light- and intermediate-mass elements (up to A ~ 40 in 

the case of ONe novae) through radiative proton captures on unstable nuclei, though 

energy production in most novae is dominated by the CNO cycles [14,15]. During these 

bursts, energy is carried away by photons in the capture reactions as well as the ejection 

of mass from the thermonuclear runaway explosion.  

 The luminosity of a nova reaches typical maximum values of 104-105 L⊙, 

increasing its pre-nova luminosities by a factor of 106 in timescales of less than a minute 

[14]. The luminosity then decreases to its pre-nova level over the course of several days 

to several months, depending on its classification [2]. The collection of spectra and the 

light curves over this time give information about the properties and composition of the 

expanding nova envelope [14]. The material that is ejected during a nova can also be 

determined by the absorption lines in the spectrum. These inferred elemental 

abundances provide a record of the thermonuclear runaway, its peak temperatures, and 

expansion timescales of the nova [14]. Classical novae are noteworthy contributors to a 

few rare isotopes in the Galaxy, like 13C, 15N, and 17O, which are difficult to produce in 

any other stellar environment [16]. Also, the abundance of carbon, nitrogen and oxygen 

in the ejecta further supports that mixing takes place of the accreted material with the 

material from the CO or ONe white dwarf layers; however, this mechanism for mixing is  

an unanswered question in nova studies and requires a better understanding of reaction 

rates to improve models and their comparison with observables [14].  
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 Questions pertaining to the thermonuclear energy generation and nucleosynthesis 

in novae require rates of proton capture reactions on proton-rich unstable nuclei that 

occur during the explosion. Some of the most significant capture reactions in novae 

involve the lighter nuclei closer to stability where the beam intensities at the ReA3 

facility at the NSCL will be largest. One such important reaction is 30P(p,γ) which is 

critical for the production of elements between mass 30 and 40 in novae. The reaction 

rate of 30P(p,γ) also determines the Si isotopic ratios that have been observed in presolar 

meteorite grains with a nova origin, which gives clues to their stellar sources and overall 

contribution to Galactic abundances [3]. There are many other important reactions for 

novae including 22Na(p,γ), which produces radioactive 22Na that is a target for 

astronomical γ-ray observatories. 

 Similar to novae, X-ray bursts result from thermonuclear runaway caused by the 

accretion of a hydrogen- or helium- rich envelope from a companion star onto the 

surface of a neutron star [5]. Thermonuclear runaway is powered by the capture of 

protons and alpha particles on proton-rich unstable nuclei. This thermonuclear process 

happens within seconds, reaching maximum temperatures around 109 K and releasing an 

enormous amount of energy of roughly 1041 ergs primarily in the form of X-rays. The 

burst ends when the local hydrogen is depleted or when the envelope expands and cools 

enough to inhibit thermonuclear reactions [2].  

 Notably, the temperatures reached during X-ray bursts are higher than that of 

novae. Nuclear fusion through the hot CNO cycle increases the temperature until triple-

alpha burning ignites to form 12C. The CNO cycle breaks out into the production of 

heavier elements through a sequence of (α,p) and (p,γ) reactions known as the αp-

process. The αp-process, which is responsible for the rise of the burst light curve, ceases 

around mass 20-40 depending on the temperature, which even in the hottest bursts,  
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ends in the Scandium (Z = 21) region due to the increasing Coulomb barrier for alpha-

induced reactions [8].  

  Heavier nuclei past this point are formed via the rp-process, a sequence of rapid 

proton captures with time scales typically less than that of subsequent beta decay, 

causing the unstable nuclei to increase in mass number along the proton drip line. 

Despite being a much faster hydrogen-burning mechanism compared to the CNO cycle, 

the rp-process is a slower burning process compared to helium burning, due to some 

slow β-decays that occur along its path [8]. This produces a relatively slow decline in the 

X-ray flux. Depending on the properties of the explosion, the rp-process produces 

heavier elements with the upper limit imposed by alpha-unbound nuclei, causing even 

the most intense environments to stop the process at 105Te with the closed SnSbTe cycle 

[17]. 

 The intensity of X-ray bursts increases drastically on the order of seconds and 

then slowly reduces over the course of tens of seconds to many hours, or even days for 

the classification of “superbursts” [8,10]. The bursts are also recurring, in some instances 

as fast as on the order of hours.  X-ray bursts are the most frequent thermonuclear 

explosions in our Galaxy with about 100 systems known, and are observed by orbiting 

observatories that measure their X-ray intensity as a function of time. These light 

curves provide information on the nature of the thermonuclear explosions and the 

reactions occurring within them. After burning takes place, the ashes of the event are 

incorporated into the surface of the neutron star crust and therefore contribute to the 

evolution of the star, which influences the behavior of future bursts.  

 Many X-ray burst observations exist because they are the most common 

thermonuclear explosions in our Galaxy, yet the cause of some behaviors, such as the 

observed double or triple peaked bursts or superbursts, is still uncertain [8,9,17]. These 

questions regarding X-ray bursts, particularly the duration and periodicity of some 

bursts, can be better understood by comparing observations to models with improved 
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reaction rate accuracy. The burst properties can be used to discover the underlying 

properties of the binary system, like accretion rate and neutron star mass [18]. In the 

past decade, one-dimensional simulations of X-ray bursts have reliably reproduced 

recurrence times and energies that agree with observations for certain subsets of X-ray 

bursts. Within these simulations, the reaction path the thermonuclear runaway takes in 

burning can be determined, giving information on the detailed nucleosynthesis evolution 

including how the ash composition of one burst can affect the next [9,19]. See Fig. 2-1 

for an example of the reaction path in an X-ray burst.  

 

 

Figure 2-1: Predicted path of the rp-process in a one-zone X-ray burst model. Shaded 
squares denote stable nuclei [8]. 

 

Z 

N 
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 A better understanding of X-ray bursts requires better knowledge of proton- and 

alpha-induced reaction rates on proton-rich unstable nuclei. Sensitivity studies have 

identified the most influential reactions affecting the light curve, the likely path 

nucleosynthesis takes during burning, and its subsequent possible end point [9,20]. 

However, significant uncertainties in reaction rates make these properties uncertain. For 

example, there are N = Z nuclei along the proton drip line above mass 60, such as 64Ge, 

68Se, 72Kr and 76Sr that impede the production of heavier elements due to their weak 

proton capture rate and slow beta decay that consistently appear as important in 

sensitivity studies. Proton-capture reactions on these so-called “waiting point” nuclei 

have never been directly measured, and one of the first experiments at SECAR might be 

64Ge(p,γ)65As [2]. 

2.2. Contribution of SECAR 

 The determination of reaction rates important for stellar environments such as 

novae and X-ray bursts requires better low-energy measurements of capture cross 

sections with radioactive nuclei compared to what is presently possible due to the lack 

of high-intensity radioactive ion beams, and the low nuclear cross sections at the 

energies of interest. The cross sections generally cannot be extrapolated to lower 

energies, as is often done for quiescent stellar burning, as the reactions of interest for 

stellar explosions have resonances that dominate the reaction rate [21]. The higher 

intensities of radioactive ion beams at FRIB combined with the sensitivity of SECAR 

will allow direct measurements of reactions and weaker resonances that have not been 

previously accessible, but are vital to understanding astrophysical explosions such as 

novae and X-ray bursts. SECAR will explore reactions in the energy range of about 0.3 

– 3 MeV/A, and allow for the measurement of reaction rates of (p,γ) and (α,γ) reactions 

of masses in the range A = 15 – 65.  
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 SECAR will be housed in the experimental hall of the ReA3 facility at FRIB. 

The ReA3 facility is capable of accelerating ions with a charge-to-mass ratio (q/A) of 

0.25 from energies of 300 keV/A to 3 MeV/A and q/A of 0.5 from energies of 300 

keV/A to 6 MeV/A with a spread of only a few keV/A [2]. 

 The intensity of the beams SECAR will use is of utmost importance due to the 

low cross sections at astrophysical energies that have been a major obstacle in 

astrophysical studies [8,21]. The beam intensities at NSCL and FRIB have been 

estimated, and for the initial available gas-based stopping devices, a maximum beam 

intensity is expected to be 109 particles per second (pps) (although with beams that can 

be extracted from solids, like oxygen, a higher intensity of the order 1011 pps can be 

achieved if a solid stopper is implemented) [2]. Such predictions are summarized in 

Table 2-1 and are overlaid on some reaction paths in an X-ray burst simulation in Fig. 

2-2. 

 

Table 2-1: Predicted beam intensities for important capture reactions based on ReA3 
extrapolation with the NSCL driver or the FRIB driver. *The quoted intensities neglect 
additional losses from transport through the solid stopper for chemically reactive beams 
[2]. 
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Figure 2-2: An X-ray burst reaction track overlaid with projected FRIB intensities [4].  
 

 
 The feasibility of obtaining sufficient statistics in a reasonable amount of beam 

time depends on the reaction yield, the number of reactions that occur per incident 

beam particle. The reaction yield determines the duration of experiments and also gives 

the needed rejection of the unreacted beam from the recoils that must take place for 

selective detection at the focal plane. The astrophysically important reactions that 

SECAR will measure will be primarily dominated by resonances. The yield of a narrow 

resonance Yr can be approximated by [2,5]: 

    𝑌𝑟 = [
𝜋2(ℏ𝑐)2

𝜇𝑐2
𝐸𝑟] [

𝜔 𝛾𝑟

𝜀𝑟
]     (2) 

where Er is the energy of the resonance, εr is the effective stopping power of the beam in 

the target in the center-of-mass system evaluated at Er, µ is the reduced mass of the 

system and ωγr is the resonance strength, defined by: 

   𝜔 𝛾𝑟 = [
(2𝐽𝑟+1)

(2𝐽1+1)(2𝐽2+1)
]

Γ𝑒𝑛𝑡Γ𝑒𝑥𝑖𝑡

Γ𝑡𝑜𝑡
     (3) 
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where Jr, J1, and J2 are the spins of the resonance and the two initial particles, 

respectively. Also, Γent, Γexit, and Γtot are the widths of the entrance channel, exit channel 

and total width. 

 While this formula for resonance yields assumes a narrow resonance fully 

contained in the target, the assumption that the energy loss of the beam in the target is 

larger than the energy width of the resonance is true for nearly all the resonances that 

will be studied in SECAR [2]. The resonance yield depends linearly on the resonance 

strength; with some typical strengths of resonances important in nuclear astrophysics 

shown in Table 2-2. To estimate a typical resonance yield expected in SECAR, a 

resonance energy Er = 200 keV, a resonance strength ωγr = 100 meV, an energy-loss εr = 

10-13 eV‧cm2/atom, a reduced mass µc2 = 900 MeV for mass 30, and ℏc = 197.3 MeV‧fm 

results in a typical yield on resonance of 2‧10-11 (one capture reaction in 5‧1010 incident 

beam particles). It should be noted, however, that some yields might be as low as 10-17 

for some reactions. For this reason, SECAR is designed for a projectile rejection as high 

as 1017 with the separator and detection systems [2]. Separating the desired recoils from 

the unreacted beam is challenging since the beam intensities could exceed recoil 

intensities by 1017 and because the recoils and the beam differ by only one mass unit in 

(p,γ) capture reactions [8]. 

   Direct measurements of capture reactions on stable target nuclei are usually 

made with a high-intensity proton or alpha beam on a thick target consisting of the 

heavy reactant. Once the light beam strikes the target, a capture reaction takes place 

and a germanium detector placed next to the target measures the γ rays resulting from 

the reaction. The recoils, or heavy products that are produced in the capture reaction, 

cannot directly be detected as they do not escape the target. The γ rays that are 
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Table 2-2: Predicted resonance energy and strength of the proton capture resonances on 
various beams to be used with SECAR [2].  

  

produced in the capture reaction can provide the needed reaction information, but γ-ray 

detection alone is not generally feasible with radioactive beams due to the high 

background from the decay of the beam. However, this heavy-target approach cannot be 

used with capture on most unstable nuclei as the lifetimes are so short that they usually 

cannot be made into a target [2]. To avoid these issues, SECAR will measure capture 

reactions in “inverse kinematics”, using beams of radioactive nuclei incident on a helium 

or hydrogen gas target. This produces fusion capture reactions that then get filtered by 

velocity and momentum selection to eventually impinge upon a detector that measures 

the heavy recoils. Such an approach has already been successfully implemented for 

capture reactions at facilities such as the Detector of Recoils And Gammas Of Nuclear 

reactions (DRAGON) at the Tri-University Meson Facility (TRIUMF), the Daresbury 

Recoil Separator (DRS) at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak 

Ridge National Laboratory (ORNL), and with stable beams using St. George at the 

University of Notre Dame.  

 With DRAGON, the 21Na(p,γ)22Mg capture reaction was measured to improve 

nucleosynthesis models of the important NeNa cycle within novae, which is initiated by 
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radiative proton captures on 20Ne. The nucleosynthesis in novae that occurs during the 

NeNa cycle creates the unstable 22Na nucleus, which is extremely important 

astronomically as its beta decay leads to a potentially observable 1.275 MeV γ ray. 22Na 

is created by the proton capture on 21Na to 22Mg, with a subsequent beta decay to 22Na.  

The energies and resonance strengths for the most important resonances contributing to 

the 21Na(p,γ)22Mg reaction rate were studied in DRAGON at TRIUMF using inverse 

kinematics to detect the 22Mg recoils via silicon-strip detectors at the focal plane [15]. 

The beam energy of 220 keV/A prompted the use of a Si detector for a total energy 

measurement of the recoils as it provides better total energy resolution than a gas 

ionization chamber at this energy. 

 Another successful study of capture reaction at ORNL was the 17F(p,γ)18Ne  

reaction that is important to both novae and X-ray bursts. Within novae, the β+ decay 

of 18F produces a positron which annihilates with other electrons, creating a large 

number of 511 keV γ rays that are potentially observable with γ-ray telescopes; however, 

the flux of γ rays depends on the amount of 18F produced which in turn depends on the 

17F(p,γ)18Ne reaction rate. In X-ray bursts the important 14O(α,p)17F(p,γ)18Ne(α,p)21Na 

reaction sequence initiates the α-p process and depends on the 17F(p,γ)18Ne reaction rate. 

The cross section of this reaction was studied with the DRS where the 18Ne recoils were 

detected in a gas-filled ionization chamber [22]. The relative energy-loss versus total 

energy plot of this experiment is discussed further in Chapter 5. The beam energy of 637 

keV/A prompted the use of an ionization chamber instead of a Si detector since the 

relative energy loss provides a determination of atomic number (Z) at this energy. 

 Observations from cataclysmic variables are useful in tandem with theory, but 

data-driven simulations are required to fully understand the underlying stellar properties 

and processes that observations cannot detect. The experiments at TRIUMF and ORNL 

have impacted the nucleosynthesis modeling of novae and X-ray bursts by studying 
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pertinent reaction rates with capture reactions and successful recoil separation. The 

successful study of capture reactions possible with SECAR will further improve our 

understanding of the evolution of cataclysmic variables and the nucleosynthesis 

occurring within.  
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CHAPTER 3. FOCAL PLANE BEAM PROFILE  

Despite very high discrimination of the scattered beam particles from the fusion 

reaction recoils through electromagnetic separation, the recoils will not be the only 

particles reaching the focal plane. This mix of particles could be dominated by the 

unreacted beam particles with up to 10,000 unreacted particles to 1 fusion product [2]. 

Both the fusion products and unreacted particles arriving at the focal plane will have 

made it through the velocity filters and dipole magnets. An ion-optical simulation of the 

beam trajectory for a given initial energy and angle as it travels through SECAR is 

shown in Fig. 3-1. The key difference, and the difference that will allow their 

discrimination upon detection, is that the reaction recoils will have a higher mass, and 

thus lower velocity and kinetic energy, than the unreacted beam particles. The 

unreacted particles may not be the only undesired ions present. If the beam is not pure, 

reactions on contaminant ions can produce recoils with similar velocity and momentum 

as the beam, providing a particularly dangerous background that must rely on 

discrimination through techniques such as a relative energy-loss measurement. The 

detectors within the SECAR focal plane will be positioned relative to the ion-optical 

focus, which is 2.86 m downstream from center of the last quadrupole magnet (Q15), 

corresponding to a distance of 2.53 m from the beginning of the focal plane adapter to 

the focus. 

Ion optics simulations show that a key feature of the beam at the focus is that it 

is dispersed more horizontally than vertically. This can be seen in a calculated cross 

section of the beam at the ion-optical focus from a Monte Carlo simulation as shown in 

Fig. 3-2 for a 21Na(p,γ) experiment at an energy of 6.3 MeV (0.3 MeV/A) [23]. The 

initial energies and angles are sampled based upon realistic conditions for the reaction 

kinematics, taking energy loss in the target into account, and an ion optics simulation of 

trajectories was performed using the theoretical SECAR field maps. The spatial 

dispersion of the beam increases after the focus. As can be seen from Fig. 3-2 and 3-3, 
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nearly all the recoils at the focus are within a 2 cm diameter area. However, at the 

location of the stopping detector (about 21 cm downstream of the focus) the horizontal 

size of the recoils has increased to a little more than 3 cm. This horizontal dispersion is 

important for setting the location of the slits around the focus that will block some of 

the beam from entering the stopping detector, as well as the size and orientation of the 

MCP’s foil (discussed further in chapter 5).  

 
Figure 3-1: Ion optics of the beam through SECAR. There are 189 characteristic rays in 
the horizontal and vertical planes in upper and lower panel, respectively. The focal 
plane, with the MCP detectors and stopping detector, is located at FP4. In addition to 
the characteristic rays, rays representing mass resolving powers of 350, 600 and 900 are 
shown in blue, red and yellow respectively [24].  
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Figure 3-2: Cross section of the beam at the ion-optical focus [23]. 

 

Figure 3-3: Cross section of the beam at the entrance of the stopping detector (Ion 
chamber or Si detector). Notably the spread in the x-direction is much larger than the 
vertical dispersion [23]. 

 

The use of slits to block the beam within SECAR differs from its use in 

experiments as those using tagging spectrometers, where the analysis of data is not 

hindered if the slits block some of the recoils of interest so as to not include a significant 
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background at the final focal plane. In SECAR, all of the recoils of a selected charge 

state should arrive at the focal plane to improve statistics and the efficiency 

determination that enters into the total cross section. The slit system will therefore be 

inserted for tuning and diagnostic purposes and then positioned in an experiment 

appropriately to ensure no recoils will be blocked [2].  

Fig. 3-4 shows the number of recoiling 22Mg nuclei as a function of position from 

the 21Na(p,γ) reaction for both the intensity versus positon at the ion focus location and 

the entrance to the ion chamber. The majority of the particles are tightly grouped 

within a 2-3 cm diameter. A larger detector is required to collect the small number of 

particles further from the center of the beam, in the “tails” of the histograms. 

 

Figure 3-4: Histograms for the relative intensity of the beam as a function of its 
horizontal position at a.) the ion chamber entrance and b.) the ion focus [23].  

 

  

a.) b.) 
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CHAPTER 4. FOCAL PLANE CHAMBERS AND INFRASCTRUCTURE 

This chapter addresses the design of the focal plane chambers and their stands to 

meet specifications for the location of the ion-optical focus, the initial suite of 

instruments, as well incorporating the overall goal of flexibility for future development 

and adapting to different experimental conditions. Initially, the focal plane will house 

two micro-channel plate (MCP) detectors and a stopping detector of either a gas-filled 

ionization chamber or a silicon strip detector. 

  To accommodate these detector systems, as well as future instrumentation, the 

chambers of the focal plane are designed with multiple access ports for flexibility. 

Standard flanges are used to minimize cost and increase adaptability. The size of the 

focal plane chambers is optimized to allow for full acceptance of the recoil beam 

envelope without being superfluously large. The focal plane chambers are supported on 

two separate steel stands. The longer stand located upstream supports chambers 

housing the time-of-flight detectors while the shorter stand downstream supports the 

diagnostics box and the stopping detector. 

The focal plane chambers and support structure, shown in Fig. 4-1 and Table 4-

1, house the detectors responsible for the discrimination and measurement of the recoils. 

Measurements using beams with a wide range of conditions (mass, energy, purity) are 

expected given the range of the SECAR experimental program. Since no one approach is 

best suited to all these conditions, a guiding principle of the focal plane design is to 

provide flexibility to optimize the configuration to the beam conditions of any given 

experiment.  
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Figure 4-1: Isometric schematic of SECAR focal plane chambers with numbered part list 
described in Table 4-1.  Ion-optical focus approximate location within the diagnostic box 
is denoted with a yellow square. Approximate MCP locations within the 6-port 
chambers are denoted with blue squares. 

 
 
 
Table 4-1: List of parts within SECAR focal plane. 

  
  

Number Part Reference 
1 Ion Chamber Rail system and support 
2 Ion Chamber 
3 Diagnostic Box 
4 Vacuum Valve 
5 84 mm-112 mm Adjustable Bellows 
6 4-port and 6-port chambers 
7 Aluminum Vertical Support 
8 U-channel Tie-down tabs 
9 Planar Adjustable Plates 
10 Upstream 8” to 6” adapter  

 

 

1 

2 3 4 
5 6 

7 

8 

9 

10 
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Beyond the excellent discrimination from charge-to-mass (q/A) selection created 

by a combination of velocity and momentum separation, the recoils can also be 

discriminated from the beam using several approaches: the relative energy-loss (ΔE-E) of 

an ion as it transverses through the gas of an ion chamber, the total energy of the ion, 

and the time-of-flight of the ion. Ideally, the best discrimination comes from a 

combination of all of these techniques, but in reality, the relative energy-loss (ΔE-E) 

works best for fast and light ions, while time-of-flight works best for slow and heavy 

ions. 

The focal plane is designed so that the focus falls inside a diagnostics chamber 

where slits and a variety of diagnostics will be located.  With all the bellows at their 

midpoint (relaxed) length, the focus is 0.36 cm upstream from the center of the 

diagnostics box. The upstream connection of the focal plane to the rest of SECAR is 

shown in Fig. 4-2 and shows the location of the ion-optical focus from the center of the 

last quadrupole magnet (Q15). The location of the focus and the lengths of the focal 

plane chambers are shown in Fig. 4-3.  

 

 
Figure 4-2: Top view of the focal plane connected to the last quadrupole magnets in 
SECAR. The quadrupole magnets Q14 and Q15 are shown. Q15 is connected to the 
focal plane adapter by a vacuum gate valve. Dimension shown (in meters) is given 
length from the center of Q15 to the location of the ion-optical focus. 

 

2.86 m  

Q15  Q14  
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Figure 4-3: Side-view drawing of focal plane chambers that the beam will travel through 
to show relative lengths. All shown dimensions in inches. 

 
4.1. Time-Of-Flight Section 

The time-of-flight section, shown in Fig. 4-4, is built to support two sections, 

each with their own independent adjustment plates. Both sections contain identical 4-

way and 6-way crosses, but with the order reversed, with the 6-port chambers being on 

opposite ends. The steel stands are generally designed similar to other stands within the 

SECAR beamline, following the same dimensions for the height and width. The chamber 

lengths upstream from the focus are chosen to maximize the time-of-flight measurement 

with a pair of MCP detectors housed in 6-port chambers at a distance apart of 139 cm 

along the beam axis between the two detectors. A MCP detector (described in more 

detail in chapter 5) consists of a thin foil centered in the beamline 
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Figure 4-4: Longer steel stand supporting mirrored chamber and planar adjustable plate 
setup with adapter facing upstream. Adjustable bellows connects the 4-port chambers. 

 
which, upon impact, will release electrons to be collected by an MCP. Each MCP’s thin 

foil is placed at the center of its 6-port cross chamber. A MCP detector, electric field 

grids, and magnets are mounted on the top flange of its 6-port chamber. The foil and 

accompanying electric field grids are mounted on one of the horizontal ports 

perpendicular to the beam axis, with a viewing window on the opposite horizontal port. 

One of the 4-port chambers houses a pumping station and gauges while the second 4-

port chamber is not instrumented initially but could be used for other future 

diagnostics. 

A 3-point support design is implemented for the chambers that allows for leveling 

and a ± 3” vertical adjustment around the beam axis while eliminating the unnecessary 

constraint that a four-post support would have. The long steel stand has six 2” holes 

drilled through the top beams in two mirrored triangular patterns where tapped steel 
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inserts will be welded in the cavities. These steel inserts have 3/4”-16 sturdy tapped rod 

inserted into them with a spherical washer on top of the rod to fit into a dimple on the 

lower aluminum plate. An exploded view of the long stand with steel inserts and 

threaded rods is shown in Fig. 4-5 while the spherical washer connecting to the lower 

plate is shown in Fig. 4-6. Lastly, the stand has two sets of four steel U-channels welded 

into the inside of the stand which will be used as a tie-down for the aluminum plates 

held up by the spherical capped steel rods.  

 

 
 

Figure 4-5: Exploded view of the long steel stand with threaded steel inserts and 
threded rods that will hold up the slidable plates. 

 
Two layers of aluminum plates are implemented to allow for horizontal 

adjustment, they consist of a lower and upper plate, where the lower plate sits on the 

spherical washers on the steel support rods, and the upper plate slides in two dimensions 

in a horizontal plane across the lower plate. The upper and lower plate assembly can be 
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Figure 4-6: Close-up of how the adjustable plates are supported with the spherical washer 
capped rods in a triangular pattern. The spherical cap fits into a dimple on the bottom of 
the lower plates. 

 
seen in Fig. 4-7 where the lower plates are colored dark gray and upper plates beige. 

Both the lower and upper plate assemblies consist of four separate aluminum plates 

bolted together into a hollow rectangle, with the lower assembly being larger. For both 

the upper and lower plates, the longer plates along the beam axis have smaller thickness 

than the end plates. This is so that when the upper plate assembly slides across the 

lower, only the end pieces will be in contact, reducing the friction in sliding. In addition, 

this design requires only the end plates to be parallel reducing the constraints on 

flatness and parallelism, simplifying assembly. 

The lower plates have two aluminum blocks attached to each side (8 in total) 

with a height that extends to the top of the upper plates. These blocks have one 3/8” -

16 tapped hole where a jack screw will be located to push against the top plates. These 

jack screws push the top plates to slide in a horizontal plane and allow for finely-tuned 

alignment. The jack screws allow for a movement of ± 3/4” in the direction 

perpendicular to the beam axis, denoted as the y-direction in Fig. 4-8. The other push 

screws allow for a ± 1” movement in the direction parallel to the beam axis, denoted as 

the x-axis.  
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Figure 4-7: Isometric view of how two sets of aluminum plates, upper (beige) and lower 
(dark gray), lay on top of one another. The upper plate can slide on top of the lower 
plate. 

 
The top plates have four pairs of counter bored holes, two pairs on each end 

plate, that connect to four aluminum vertical pillars that support the steel vacuum 

chambers. These 11” tall aluminum supports are shimmed to the correct height to 

connect to a 90-degree steel tab which is welded directly to the vacuum chambers; an 

exploded view of this assembly is shown in Fig. 4-9. The adjustable plates have a 

semicircular hole on the inside of one end that allows for clearance of the vertical port 

on the 6-port chamber, which makes internal access much easier. Different supports (e.g. 

of another height or location) could be implemented with new mounting holes and 

supports in the top plate if alternate chambers were desired for future detector systems. 

Each section consists of a 4-port chamber connected to a 6-port chamber. The 

ports on the 4-port chamber have a 6” outer diameter standard tube (DN160 CF flange) 

along the beam axis with 8” outer diameter standard tube (DN200 CF flange) for access  
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Figure 4-8: Isometric view of the two layer sliding plates. The x-axis points along beam 
axis and z-axis points vertically. Movement of upper plate is in x-y plane. 

 
 

to the ports facing horizontally. The 4-port chambers can be oriented vertically instead, 

but this restricts the access to the downward facing port by the aluminum plates. It is 

likely that the 4-port chamber that houses one of the pumping systems will be oriented 

vertically and the downward facing port is not planned to be instrumented initially and 

will be blanked off. The 6-port and 4-port chambers will be connected along the beam 

axis by the smaller (DN200 CF) flanges. The 4-port and 6-port cross chambers, which 

are held up with the aluminum pillars on the adjustable plates, attach to an identical 

but mirrored setup via an adjustable (84 mm to 112 mm in length) bellows, allowing for 

flexibility in both the connection and overall length. The positions of the chambers are 

ordered with the two 4-port chambers closest to each other and is chosen such that the 

6-port chambers that will house the MCP detectors are a maximum distance apart from 

one another to get the largest time-of-flight possible. 
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Figure 4-9: Exploded view of the connections between the adjustable plates, the 
aluminum vertical pillars, and 4-port and 6-port chamber system. 

 
4.2. Diagnostics and Ion-Chamber  

The shorter of the steel stands is downstream from the longer steel stand and 

supports the diagnostic box on its own adjustable planar plates, as well as the ionization 

chamber and its rail support system. As seen in Fig. 4-10, a vacuum valve (yellow) and 

an adjustable (84 mm to 112 mm) bellows (orange) connects the downstream 6-port 

chamber on the long stand to the diagnostic box and ionization chamber on the short 

stand. 

The ionization chamber utilizes a rail system for removing the back end of the 

housing for maintenance, or the removal of the entire ion chamber for substitution of 

the window to the ion chamber to match the beam conditions and ion chamber pressure. 

This rail system also allows for quick substitution of pre-aligned instrumentation in 

place of the ionization chamber if this is required by an experiment. The design of the 

cradle for the ionization chamber includes a preliminary vertical and horizontal 
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Figure 4-10: Isometric view of the Diagnostic box, its slidable plates, and the ionization 
chamber supported by the short stand. 

 
adjustment capability with a plate that holds the ion chamber being able to slide across 

the plate that is connected to the rails.  

The diagnostic box and ionization chamber will frequently be manipulated during 

experiments, and the vacuum valve separating the chambers from the diagnostic box 

allows the moisture sensitive MCP’s to remain in the vacuum-sealed chambers while this 

happens. A slit system is placed in the diagnostic box just upstream from the focus that 

will have horizontal and vertical slits to help stop leaky beam from reaching the 

ionization chamber. The multiple ports of the diagnostic box serve many functions, 

including a connection for a pumping station. The housing of a Faraday cup, a 

segmented beam-centering monitor, and a low intensity diagnostic are contained inside 

the diagnostic box, which has numerous ports to accommodate additional diagnostics or 

future modifications.  
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A shorter steel stand supports the ionization chamber and diagnostics box. The 

short steel stand contains the same vertical adjustment approach using three vertical 

3/4"-16 support bolts like the long stand, which hold up a similar planar adjustable 

plate setup. However, here the adjustable plates are shorter in length and do not require 

a semi-circular hole for an access port. The aluminum vertical pillars that attach to the 

top plate here are also like those that hold up the chambers in the long stand, but are a 

shorter height.  
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CHAPTER 5. MICRO-CHANNEL PLATE DETECTOR 

The detectors at the focal plane must provide a high discrimination between the 

desired capture reaction recoils and the other background ions. This section describes 

the design of the first detector that the ions will encounter in the focal plane; the micro-

channel plate (MCP) detectors provide high resolution timing and position 

measurements. The micro-channel plate detectors are position-sensitive timing detectors 

that are well suited for detecting low-energy heavy ions with minimal effect on the ion’s 

trajectory.  SECAR’s focal plane uses two MCP detectors for a time-of-flight 

measurement of the particles due in part to the MCPs’ excellent timing resolution. The 

desired recoils have a slightly greater mass than that of the unreacted beam, but also a 

lower velocity; meaning the discrimination of these species can be accomplished by 

accurately measuring the time they take to travel between the two MCPs. The design of 

the MCPs to be utilized in SECAR is based upon the design of Shapira et al. [25], which 

demonstrated excellent position (~1 mm) and timing (~1 ns) resolution, and tolerance of 

high rates (up to 106 particles per second).  

The MCP layout, shown in Fig. 5-1 uses a single metalized foil, tilted 45-degrees 

from the horizontal plane of the beam axis to allow the beam to pass through the foil 

relatively uninhibited. As seen in the cross sections in Fig. 3-2 and Fig. 3-3, the recoils 

are more spatially dispersed horizontally.  Tilting the foil in this orientation maximizes 

horizontal acceptance and allows all of the recoils to pass through. The emitted 

secondary electrons following the heavy ion impact are then accelerated through a 

potential difference on the order of 100V by a grid of thin, high-voltage wires that 

accelerate the electrons towards the MCP detector. To help guide these electrons, which 

can start out with significant transverse momentum, a permanent magnet is placed 

behind the detector, causing the electrons to move in a spiral motion along the magnetic 

field lines to the MCP detector, as shown in Fig. 5-2. A calculation of the magnetic 
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focusing shows that for a 12,300 Gauss permanent magnet located a distance of 2” 

behind a 40 mm diameter MCP, and the foil a distance 4.68” from the MCP, relates to a 

magnetic image magnification of 0.48. This means that for a 40 mm diameter MCP, a 

84 mm foil can be used to effectively capture all of the secondary electrons.  The 45-

degree orientation of the foil gives a 84 mm horizontal acceptance, but a 60 mm vertical 

acceptance. 

 

Figure 5-1: A schematic showing the orientation of the MCP as well as the foil the beam 
will be incident upon [25].  

 
Figure 5-2: A diagram showing the helical motion of the secondary electrons towards the 
MCP, influenced by magnetic and electric fields [25].  
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The MCP detector, shown in Figs. 5-3 and 5-4, consists of two electron-

multiplying micro-channel plates stacked on top of each other. The plates are a thin (~5 

mm) ceramic material with an array of tubes with diameters of approximately 12 µm a 

slight angle (~10°) from the normal to the surface. These electron-multiplying plates are 

stacked on one another with opposite angles of the tube arrays. The pulse of the initial 

electron entering a channel, and its subsequent electron multiplication, strikes a resistive 

anode plate that has four electrical contacts at the edge, spaced 90-degrees from each 

other. The position is determined by comparing the magnitude of the signals from the 

four contacts, since this magnitude depends on the path resistance [26]. Two such 

signals from opposite ends of the MCP outputs are shown in Fig. 5-5 from initial testing 

at LSU with alpha particles of a 241Am source.  

 

Figure 5-3: The MCP, and its wiring, mounted on test flange at LSU. The 241Am source 
emits alpha particles incident on a metal-foil in the test chamber.  

 

Mounting 

 holes 

241Am  

source 
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Figure 5-4: a.) Top view of the 40 mm diameter MCP on test flange. b.) Side view of 
MCP prior to mounting and wiring. 

 

 

Figure 5-5: Signal from two (opposite) sides of the resistive anode of the MCP.  The 
relative amplitude of the pulses will be used to determine the position. 

a.) 

b.) 
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The first MCP the ions encounter in the focal plane will be positioned 21.3” from 

the entrance of the upstream bellows, which is 78” upstream from the ion-optical focus, 

and measures the position of the ions as they enter the focal plane chambers in addition 

to initiating the time-of-flight measurement. The second MCP is positioned 54.9” 

downstream from the first and works with the first MCP to give a time-of-flight 

measurement for the ions. Additionally, the position on the second MCP allows a 

trajectory measurement of the ions that can be used to improve time-of-flight and 

provide additional discrimination since trajectories of the recoils and leaky beam may be 

different. The MCPs are positioned before the optical focus so that the stopping 

detector (gas ionization or silicon strip detectors) can be placed close to the optical focus 

to reduce the detector size and ion divergence [2]. The flange mount that the MCPs are 

attached to inside of the 6-port chamber is shown in Fig. 5-6. The metal-foil (not 

shown) is mounted on one of the side ports such that the foil is in the path of the beam 

and parallel to the plane of the MCP.  

 

Figure 5-6: Side and Isometric cross section views of the MCP mount from the top 
flange inside the 6-port chamber. The MCP and permanent magnet (both not shown for 

clarity) mount on the 45-degree plate. The beam axis is through the smaller (8”) 
horizontal ports. A retractable mount for the metal-foil will be placed on one of the 

larger (10”) horizontal ports. 

Mounting 

 holes 
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As an example of the time resolution capabilities of the MCPs with the typical 

energies used in SECAR, a beam of 0.2 MeV/A has speed v/c ~2% and takes 

approximately 230 ns to travel between the two MCP detectors ~55” apart.  Assuming 

~1 ns individual MCP timing resolution, this corresponds to a relative resolution (δt/t) 

of approximately 0.6% in a time-of-flight measurement between the two MCPs. This 

should be compared to the relative time difference of ~2% expected from the difference 

in velocity between the beam and recoils, which is more than three times greater than 

the relative timing resolution. Thus, for the 0.2 MeV/A energy beam, the recoils can 

easily be resolved from the beam. For higher energy beams of 3 MeV/A, the recoils have 

a speed v/c ~8% and take approximately 58 ns to travel between the two MCP 

detectors. This relates to a time-of-flight resolution (δt/t) of about 2.4%, which is nearly 

identical to the difference in time-of-flight of the recoils and the beam, requiring an 

additional means of resolving the two. However, when higher energy beams give a time-

of-flight relative resolution that cannot be easily resolved, a gas ion chamber provides 

better discrimination of ion species. 

The MCP position resolution also improves particle discrimination in two ways. 

First, the incoming beam is mass-dispersed at the optical focus, meaning the trajectory 

measurements may allow the rejection of scattered beam not centered on the beam axis 

leaving the last quadrupole magnet Q15. Secondly, the position measurements allow a 

correction to the distance between the MCP’s further improving the recoil time-of-flight 

resolution [2]. After their flight through the MCPs, the ions pass through the diagnostics 

box where the ion-optical focus is located. At this point slits are used to block leaky 

beam and can be adjusted accordingly by the trajectory measurements from the MCPs. 
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CHAPTER 6. FINAL STOPPING DETECTOR  

After the diagnostic box, the ions are stopped by a gas ionization chamber or 

silicon strip detector.  In the case of a gas ionization chamber, the ions enter the gas 

ionization chamber through a thin window (typically of mylar or kapton) and lose 

energy in ionizing the gaseous contents of the chamber. As stated previously, the desired 

recoils and the scattered beam have nearly identical momentum, but the energy of the 

recoils is slightly smaller. Additionally, the recoils and scattered beam differ in atomic 

number Z by only 1 (or 2) for the fusion (p,γ) (or (α,γ)) reactions. Furthermore, any 

beam contaminants that add to the background of the scattered beam typically have a 

lower Z than the beam and are easily discriminated in the ion-chamber.  

The ionization chamber is typically filled with 50-500 Torr of isobutane (C4H10), 

which is ideal because of its low ionization potential of 10.8 eV and mean energy for ion-

electron pair creation of 23 eV [27]. This results in the largest signal and best resolution 

for a given energy loss [28]. As the entering heavy ions are slowed in the gas, they ionize 

gas molecules, creating charged particles that are accelerated towards a cathode and 

anode. The electrons created in ionization drift relatively quickly in the electric field and 

can then be measured by means of the voltage they induce on three collecting anode 

sections, which is related to original energy of ionizing ion. A relative energy-loss 

measurement between the sections provides discrimination of the initial ion’s atomic 

number from that of the beam. For example, a plot of energy-loss in the first section of 

the detector vs. the total energy in an ion chamber is shown in Fig. 6-1 for a resonance 

in the 17O(p,γ)18F reaction that was measured using the DRS, with the desired 18F recoils 

denoted in the black circle [29]. The ionization chamber for SECAR uses this same 

relative energy loss measurement technique. For ion energies greater than around 0.5 

MeV/A, the relative energy-loss (ΔE-E) that an ion experiences in the gas-filled 

chamber gives an accurate discrimination of the atomic number.  
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Figure 6-1: Energy-loss vs. Total Energy of particles as they travel through the 

ionization chamber for a 557 keV resonance in 17O(p,γ)18F [29]. 

 

The ionization chamber to be implemented in the SECAR focal plane has been 

designed and constructed at Louisiana State University. A CAD drawing of the initial 

design is shown in Fig. 6-2 and the constructed result is shown in Fig. 6-3. The design of 

the gas ionization chamber uses a standard cross-field ∆E−E design similar to the one in 

DRS [29] but augments it with a position-sensitive capability, using an electric field 

parallel to the motion of the heavy ions. 

The position measurement is accomplished as the ions enter the isobutane filled 

chamber, where they pass through a series of equipotential surfaces defined by a plane 

of thin horizontal and vertical wires that generate a uniform electric field that is parallel 
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Figure 6-2: An isometric view of the 3D CAD model the ion chamber was constructed 
from. 

 

to the direction of motion of the incident heavy ions. These wires are suspended by 

frames or printed circuit boards (colored green in the CAD model Fig. 6-2). There are 

five parallel frames in total arranged as alternating ground (cathode) planes and 

positively-biased anode planes. These thin gold-plated tungsten wires, of 25 µm 

diameter, are equally spaced over the frame and can be seen looking down the beam axis 

in Fig. 6-4. The wires are spaced 2 mm apart from one another in the grounded grids 

while the position-sensitive grids have wires that are 3 mm apart to give a larger area 

(100 mm x 100 mm) with fewer signals for the position-sensitive grids. 

 As the incoming particles ionize the gas, electron-ion pairs are created according 

to the properties of the gas, as discussed previously for isobutane. The electrons are then 

accelerated toward, and collected on, the positive horizontal or vertical wires. The 
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Figure 6-3: The ion chamber electronics being wired in the lab at LSU for testing. 

 

signals induced on each wire are then read out separately and can be plotted as function 

of position with the net result being a x-y position measurement of the incoming 

particles with a resolution of 3 mm or less. This approach of position measurement has 

been used in counters developed by LSU for use at Florida State University (FSU), 

Michigan State University (MSU), and with the Helical Orbit Spectrometer (HELIOS) 

at Argonne National Laboratory [30]. While the wires do block some of the beam as it 

travels through the ion chamber, the loss of efficiency for these wires spaced 2 mm apart 

is less than 1% per grid giving total transmission of 94.7% [30].  

Following the position measurement section of the ionization chamber is a section 

that uses a traditional approach with a uniform electric field perpendicular to the 

direction of the incident ions. This more traditional transverse geometry achieves better 
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Figure 6-4: Looking down the beam axis of the ion chamber. The position-sensitive wires 
are seen at a 90-degree angle to each other. 

 

energy resolution and eliminates wires in the path of the incident ions that reduce 

efficiency and introduces slight non-linearities into the energy measurement [30]. The 

transverse electric field is established by a set of uniformly spaced field-shaping 

electrodes that are held at regular voltage differences supplied by a voltage divider to 

create a uniform electric field. In total, there are 10 such field shaping electrodes 

utilizing the base of a 10-stage PMT tube as the voltage divider between them, as seen 

in Fig. 6-5 and Fig. 6-6. As the particles enter this section of the ionization chamber and 

ionize the isobutane, the electrons are swept towards three anode plates, while the 

positively charged heavy ions are swept in the opposite direction toward the cathode 

plate. The upstream part of the chamber has two smaller anodes, 5 cm in length each, 

for two ΔE measurements followed by a longer 20 cm anode for residual full energy 
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Figure 6-5: Side-section view of gas ionization chamber, with ions entering the chamber 
from the right. The electronics shown indicate where the potentials lie on the electrodes 
in both the position-sensitivity and energy measurement sections. Typical voltages are 8 
V Torr-1 in the anode (Va) and 4 V Torr-1 in the cathode (Vc) [28].  

 

measurement. The current collected on each anode relates to the amount of energy lost 

from the ionization of the incident particle in that section. The higher Z ions traveling 

through the gas lose more energy to ionization in the first two anodes (compared to a 

lower Z ion) for the same total energy-loss. This ΔE-E technique provides the necessary 

information for Z discrimination of the heavy ion. This discrimination is more effective 

for lower Z [2]. A plot of the energy-loss versus total energy was shown in Fig. 6-1 for an 

experiment using this type of ionization chamber to separate the 18F recoils from the 17O 

beam. 
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Figure 6-6: a.) Side view of ion chamber wired to outputs in lab. The uniformly spaced 
field-shaping electrodes plates are connected in a voltage divider and supply a uniform 
electric field. b.) Electronics of ionization chamber inside cylindrical housing 
(transparent here) that will contain isobutane gas. 

 
 An important feature of the design is a grid of grounded wires placed in front of 

the anodes to shield them from induced potential from the electrons as they travel 

towards the anodes. If this shielding, known as a Frisch grid, is not present, the induced 

potential reduces the timing resolution of the signal as the signal and results in a 

response that is dependent on the position of the leaving ion and initial ionization [31].  

 One limitation of this type of ionization chamber design arises from the heavy 

ions that are slow to move in the electric field. One heavy ion may not make it to the 

cathode before the second enters the counter, restricting the overall flux of incoming 

beam as to not produce pileup. However, with the modest radioactive beam intensity 

and excellent rejection of SECAR, the count rate at the focal plane is sufficiently low 

a.) 

b.) 
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that pileup should not be an issue for the ionization chamber. The chamber of a similar 

design operated at rates of more than 104 particles per second without significant pile up 

[32]. 

The ionization chamber can be removed from its housing for maintenance as 

shown in Fig. 6-7. Also, for measurements at low energies, the entire ion chamber 

(including the chamber) can be retracted for substitution of a silicon strip detector 

which provides better total energy resolution than the gas ionization detector at the 

same energy. The silicon strip detector also does not require a gas chamber which 

eliminates energy-loss of the ions by the ionization chamber window.  For this purpose, 

we plan to use a standard off-the-shelf double-sided silicon strip detector design from 

Micron Semiconductor, shown in Fig. 6-8. The detector will be repackaged onto a 

printed circuit board (PCB) that has a smaller footprint that may allow the silicon 

 

Figure 6-7: Electronics of ionization chamber in exploded view showing the removability 
from the housing. 
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to be used in the future as a stopping detector inside the ionization detector.  The 

design BB-7 detector has 32 strips on each face with 2 mm pitch, for a full active area of 

64 mm x 64 mm. This is smaller than the acceptance of the ionization chamber, but this 

size should be sufficient since the silicon detector will be located close to the ion-optical 

focus using a new compact chamber designed especially for this purpose.  

 

 

Figure 6-8: Double-sided silicon strip detector design from Micron Semiconductor that 
will be used as a stopping detector in substitution of the ion chamber. The detector 
package will be a printed circuit board that is being designed to reduce the overall 
package size.  
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CHAPTER 7. CONCLUSIONS 

7.1. Final Remarks 

 The exciting new physics possible with SECAR will answer questions regarding 

the nature of stellar thermonuclear explosions such as X-ray bursts and classical novae. 

SECAR will measure (p,γ) and (α,γ) capture reactions in inverse kinematic process 

where the heavy reaction products are measured after being separated from the 

overwhelming number of unreacted beam particles. SECAR is being installed in the 

ReA3 hall and will concentrate on the energy range of 0.3 MeV/A to 3 MeV/A and the 

mass range of A = 15 – 65, matched to the most important energies for stellar 

explosions. The resonance strength sensitivity is at least 100 meV, down to possibly 

better than 1µeV for the best case.  SECAR’s technical aspects include a total particle 

rejection of order 10-17, an angular acceptance of ± 25 mrad, and an energy acceptance of 

± 3.1%. Discrimination of the recoils is possible through a separator of mass resolution of 

~750 and a factor of 10-4 discrimination by the detector systems. 

 The focal plane for SECAR is designed to accommodate a variety of 

instrumentation including two micro-channel plate detectors and a gas ionization 

chamber. The MCPs provide precise position and time-of-flight measurements while the 

ionization chamber measures the total energy of the ions and discriminates atomic 

number (Z) via relative energy-loss. Time-of-flight measurements using the MCP 

detectors are more effective for separating relatively slower and heavier low-energy 

recoils whereas gas ionization is more selective for faster and lighter ions. The time-of-

flight measurement from the MCP and the energy-loss measurement from the ionization 

chamber provide an excellent initial set of parameters for discriminating the heavy ion 

recoils from the unreacted beam at the SECAR focal plane. Additionally, the 

configuration of these detectors at the focal plane allows for other instrumentation such  
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as silicon strip detectors or scintillators used in place of a gas ionization chamber for 

total energy measurements, which could be advantageous especially in the lower energy 

regime [2].  

The chambers, stands, and horizontal adjustment plates were designed in 

Autodesk Inventor with the goal of creating a flexible configuration for the experiments 

in SECAR. The properties of beams available in the future may present the need for 

additional detectors to be placed in the focal plane chambers, and the easy addition or 

substitution of new parts in the design will allow for quick and simple modification of 

SECAR for many future experiments. 

7.2. Timeline Of Events 

The gas ionization detector will be tested at FSU with beams from the LINAC. 

The focal plane stands, adjustable plates, and chambers are currently being constructed 

at LSU. The timing and position resolution of the MCPs will be tested at LSU using 

alpha sources in the summer and fall of 2017. The focal plane will be delivered to MSU 

before the end of 2017, with installation occurring in time for possible commissioning in 

late 2018. FRIB is scheduled to be completed in June 2022 and is managing to early 

completion by December 2020 [33]. The SECAR project is also managing to an early 

completion in April 2020, and will be available for the first experiments at FRIB.  

 

  



51 

 

APPENDIX: TECHNCAL DRAWINGS

 
Figure A-1: Ion chamber window. 
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Figure A-2: Ion chamber window flange. Smaller diameter side will face downstream. 
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Figure A-3: Drawing of adjustable plate assembly for relative dimensions. 
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Figure A-4: Technical drawing of lower (bottom) adjustable aluminum plates. 
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Figure A-5: Technical drawing of upper (top) aluminum plates. 



56 

 

 
Figure A-6: Technical drawing of adjustable aluminum blocks that hold the jack screws for the adjustable plates. 
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Figure A-7: Aluminum pillar. Bottom (2 holes) connects to adjustable plates. Top (1 hole) connects to steel tab. 
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Figure A-8: Drawing showing the connections from the adjustable plates, to the aluminum pillars, to the steel tabs, to the 
chambers. 
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Figure A-9: Drawing of short steel stand including the tie-down tabs on the inside of the stand.
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Figure A-10: Drawing of long steel stand including tie-down tables on the inside of the stand. 
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Figure A-11: Connection and alignment of steel tabs onto chambers. 
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Figure A-12: Tapped steel inserts that hold vertical adjustment threaded steel rod. 
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Figure A-13: Steel tabs that are welded to chamber and connect to pillar. 
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Figure A-14: Foot of both short and long steel stands that will connect to floor. 
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Figure A-15: 4-port chamber dimensions and flanges. 
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Figure A-16: 6-port chamber dimensions and flanges. 
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