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Abstract 

Metal-nonmetal transition, or more specifically, metal-insulator transition (MIT) has been 

one of the most intriguing topics in condensed matter physics. Two theories describing 

fundamental driving mechanisms of MIT has been well-established over time: Mott-Hubbard 

theory and Anderson localization theory. The former mainly deals with contribution of electron 

interactions/correlations to the MIT, and the latter focuses on the role of disorder. However, it is 

an open topic how a system behaves when both effects exist in a system. This study mostly takes 

interest in a type of MIT induced by dimensionality-crossover in the transition metal oxides 

(TMOs) systems. TMO system is a perfect playground for studying the underlying mechanisms 

behind MIT due to wide presence of strong electron interactions in the d-band, and the existence 

of oxygen vacancies as an unavoidable form of disorder. The focus of this study is mainly on the 

role played by disorder. A metallic TMO system SrVO3 (SVO) was chosen to perform the 

investigation due to its simple structure and lack of magnetic ordering. Well-ordered SVO thin 

films have been fabricated in a layer-by-layer fashion on crystalline SrTiO3 (001) substrates. 

Surface structural characterization and morphology images suggest that the SVO films are of 

high quality with correct symmetry and atomically flat surfaces. The structural and chemical 

composition characterization indicates the existence of a significant amount of oxygen vacancies 

in the first three layers of the SVO films, coinciding with the critical thickness for the MIT, 

which has been confirmed by spectroscopic analysis which reveals zero density of states at the 

Fermi level for films with thickness below 3 unit cell (u.c.). Transport measurements reveal 
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weakly localized lnT behavior for metallic SVO films close to the critical thickness, agreeing 

with the picture of a 2D disordered correlated system. Negative magnetoresistance observed in 

the weakly localized films is consistent with the prediction that disorder dominates over 

correlation effects. Moreover, by deliberately introducing more disorder into metallic SVO films, 

MIT can also be induced. Through our research, we conclude that the disorder effect is the major 

driving mechanism for MIT.
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Chapter 1. Introduction to Metal-Insulator Transition, Transition Metal 

Oxides and SrVO3 

1.1 Introduction  

In this chapter, we describe the motivation of this study by reviewing the metal-insulator 

transition (MIT) and its possible driving mechanisms, following by the introduction of transition 

metal oxides (TMOs) systems. We will also review some important properties of the SrVO3 

system we are working on in the last section of this chapter. We hope that when we reach the end 

of this chapter, we would have justified our investigation in a good manner.      

1.2 A Brief Introduction of Different Types of Metal-Insulator Transition 

Metal-insulator transitions, as the name indicates, is the transition a system undergoes 

between metallic and insulating states. MIT is a widely observed phenomenon known to occur in 

many systems with various kinds of driving force like pressure, temperature and so on [1]. Being 

one of the most fundamental problems in condensed matter physics, MIT is also among the least 

understood. The study of the mechanism behind metal-insulator transition not only allows us to 

gain better understanding of the physics but also give us more control over the material and its 

engineering process which can potentially develop into devices that change every aspect of our 

daily life. 

Based on the underlying mechanism, MITs can generally be divided into two large 

categories: the MITs caused by strong electron interactions/correlations, which is known as the 

Mott-Hubbard transition [2]; and the MITs caused by the existence of strong disorder, known as 
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Anderson transition [3]. In this section, we will give a general introduction of MIT and put a 

little more focus on Mott-Hubbard theory since it is closely related to the TMO system that we 

study. For Anderson transition and related theory, a detailed introduction will be given in 

Chapter 6.  

1.2.1 Mott-Hubbard Transitions 

In order to understand MIT, we have to refer back to the basic definition of metals and 

insulators. The first theory distinguishing a metal and an insulator was established by Bethe, 

Sommerfeld and Bloch in the late 1920s [4-6], with semiconductors added to the picture a few 

years later by Wilson [7-10]. The so–called band theory states that the distinction between metals 

and insulators can be understood based on the electronic band filling. If the Fermi level lies 

inside an electronic band, the system is metallic; while if the Fermi level lies in the bad gap, it 

can be either insulating or semiconducting depending on the size of the band gap. If the band gap 

is small enough that the electrons can cross over it under thermal excitation, the system will 

show some conductivity and will be semiconducting. A schematic picture of the band diagram is 

shown in Figure 1.1.  

The band theory has been quite successful in describing the difference between metals and 

insulators. However, in this scenario, it is assumed that the band structures are formed entirely by 

the periodic crystal lattice and the electron interactions are completely ignored. When it comes to 

systems with strong electron correlations like transition-metal oxides, the model is no longer 

accurate. In 1937, de Boer and Evert Verwey stated that many transition-metal oxides such as 
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NiO with a partially filled d-band were also poor conductors or even insulators [11]. In the same 

year, Peierls pointed out that the strong Coulomb repulsion between electrons could be a critical 

contributing factor of the observed insulating behavior in TMOs [12]. Since then, strong electron 

interactions as an important mechanism driving the MIT has been extensively studied by many 

scientists. The most famous among them is probably Sir Nevill Mott. In fact the insulating state 

resulted from strong electron interactions is named after him as Mott insulator. In the model 

proposed by Mott, in each site there exists an electronic orbital. In the absence of electron 

interactions, these orbitals overlap and form a single band which becomes full when two 

electrons with opposite spins occupy the same site. When the Coulomb repulsion is sufficiently 

strong, the band will split up into two separate bands called the lower and upper Hubbard band. 

Figure 1.1. A schematic band diagram of metal, semiconductor and insulator based on the 

description of the band theory. 
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The lower Hubbard band is formed by electrons occupying empty sites, while the upper Hubbard 

band is formed by electrons occupying the sites that are already taken by another electron. When 

there is one electron per site, the lower Hubbard band will be full and the upper Hubbard band 

will be empty. The Fermi level lies in the band gap; therefore the system will be an insulator. In 

the d-electron systems, depending on the closeness between the d-band and the p-band, Mott 

insulators can be further classified into two categories: Mott-Hubbard insulators and 

charge-transfer insulators, as shown in Figure 1.2, which is taken from Ref. [1]. In this study, all 

our discussion is limited to d-electron systems, or to say, TMOs. We are going to give a more 

detailed introduction of TMO systems, in the next section. 

In Mott picture, there are two important factors which have control over the MIT: the 

electron correlation strength U/t and the band filling n. The former determines the distance 

between the lower and upper band and the latter denotes the number of electrons per site. In the 

tradition band theory picture we introduced at the beginning of this section, the band insulator is 

formed by fully filled bands, corresponding to the n=0 or n=2 cases in Mott picture. When the 

d-band is half-filled, i.e. n=1, the change of electron correlation strength U/t tunes the splitting of 

the d-bands at some critical value Uc, MIT will be induced, which is called a bandwidth control 

(BC)-MIT. Apart from tuning the electron correlation strength, the MIT can also result from 

changing the filling n by doping extra carriers in a parent Mott insulator. In this case, the 

transition is called filling control (FC)-MIT. Another schematic diagram also taken from Ref. [1] 

showing these control parameters is presented in Figure 1.3. 
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Figure 1.2. A schematic picture of the energy levels of two common types of Mott insulators [1]. 

(a) Mott-Hubbard insulator; (b) charge-transfer insulator. 
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1.2.2 Anderson Transitions 

The discussion of the Mott-Hubbard type MIT in the previous section is based on the 

existence of strong electrons interactions in the system. However, if we also take the atomic 

lattice into account, we encounter another type of MIT which is the Anderson transition. To be 

more precise, Anderson transition is induced by the existence of strong disorder in a crystal 

lattice, defects, dislocation and off-stoichiometry, for example. The existence of the defects or 

Figure 1.3. A schematic picture of the realization of Mott-type MIT with two routes shown: 

FC-MIT and BC-MIT [1]. 
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disorder introduces an additional random potential to the original periodic lattice potential and 

causes the Bloch waves to lose coherency. When the disorder is too strong that the random 

potential can no longer be treated as a perturbation, the electrons may be trapped in the local 

potential wells and become spatially localized, driving the system into the insulating state. We 

will not discuss more details of the theory regarding disorder-induced MIT here but in a separate 

chapter later. For now, the most important conclusion for us to bear in the mind is that both 

strong electron correlations and disorder has the capability of driving a system into the insulating 

state. This makes things especially interesting for transition metal oxides, where oxygen 

vacancies exist as a most common and unavoidable form of disorder and strong electron 

correlations also come into play in many TMO systems. The object of this study is to investigate 

the role of oxygen vacancies behind the MIT in a prototype TMO system SrVO3. In the 

following section, we will give a brief introduction of the TMO and perovskites and justify the 

reason we choose SrVO3 as the system for this study.   

1.3 Transition Metal Oxides 

Transition metal oxides (TMOs) have been one of the most-studied systems in condensed 

matter research for many decades. The narrow 3d band in TMOs often leads to electron 

correlations which not only give rise to MIT but also a variety of other interesting phenomena, 

such as high temperature superconductivity [13], and colossal magnetoresistance [14] and 

ferroelectricity [15]. Among the family of TMOs, perovskites have the simplest structure and are 

widely used in applications such as the making of catalyst electrodes in certain types of fuel cells 
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[16] and the manufacture of memory and spintronic devices [17]. In three-dimensional 

perovskite systems, the idea structure is cubic with an ABO3 formula, with the A-cations located 

on the corners, and the B-cation, which is a transition metal element, in the center of the cubic 

structure. The oxygen atoms occupy the six face center position, and BO6 octahedron is formed 

as shown in Figure. 1.4 [18]. Depending on the size of the ions and external conditions such as 

pressure and temperature, each octahedron may undergo shape-deformation, tilt, and rotation, 

and the whole system will deviate from a cubic structure to form an orthorhombic, tetragonal or 

rhombohedral structure [19]. One class of prototype structure distortions is Jahn-Teller distortion, 

which is usually caused by chemical doping, ionic size variation, etc. The octahedra may 

undergo an in-plane rotation and/or an out-of-plane tilt, as shown in Figure 1.5.  

Figure 1.4. Structural model ABO3 of cubic perovskite. (a) One single unit cell (u.c.). (b) A 

stack-up view. 
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In ideal cubic perovskites, the five d-orbitals of transition metal at the center of the 

octahedron are split into two categories: the doubly degenerate eg orbitals with higher 

energy, dx2−y2 and d3z2−r2, which point toward the six oxygen ions located at the corners of 

octahedron; and the triply degenerate t2g orbitals with lower energy, dxy, dyz and dzx, which point 

between the oxygen ions, as shown in Figure 1.6. When Jahn-Teller structural distortion exists in 

the system, the degeneracies of the orbitals will be further lifted, causing the system to rest in a 

more stable state with lower energy. The electronic and magnetic properties of a perovskite 

system are determined by the d-electron configuration of the transition metal ion located at the 

B-site. In Figure 1.7, we illustrated the d-electron configurations of some typical perovskite 

systems. Among these system, SrTiO3 (STO) and LaMnO3 (LMO) are insulators and the rest are 

metals [1]. The insulating behavior of STO can be easily understood due to the lack of d-electron 

(d
0
) such that it is a simple band insulator. As the number of d-electrons increase, the electrons 

Figure 1.5. Jahn-Teller distortion in the perovskite system: (a) in-plane rotation [20] and (b) 

out-of-plane tilting of BO6 octahedra. 
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tend to fill low-level t2g orbitals first, allowing two electrons with opposite spins to occupy the 

same orbital, as in SrVO3 (SVO), SrMnO3 (SMO), SrRuO3 (SRO) and LaNiO3 (LNO). The LMO 

case is somewhat different due to the existence of a strong Hund’s coupling that is larger than the 

energy gap of the eg and t2g orbitals. This results in a spin configuration in which all spins are 

aligned parallel with three electron occupying each of three t2g orbitals and one electron 

Figure 1.6. The splitting of d orbitals in perovskites. 

Figure 1.7. The d-electron configurations of the transition metal element in some typical 

perovskite systems. 



11 

 

occupying one of the eg orbitals. In the meantime, a strong Jahn-Teller distortion results in the 

further splitting of two eg energy levels and finally makes the compound insulating.  

As we stated above, the purpose of our project is to explore how oxygen vacancies as a type 

of disorder can drive the system into the insulating state. In order to achieve this, we have to 

choose a metallic system to start with; as we gradually introduce disorder into the system, the 

system will be driven towards insulating behavior. Also, to avoid the influences as much as 

possible from other driving forces such as lattice distortion and magnetic ordering, we would like 

to choose a system as simple as possible in both structure and properties to work with. Among all 

the systems mentioned above, SVO is the only metallic system with simple cubic structure and 

without magnetic ordering, which makes it a perfect candidate for theoretical understanding 

without the involvement of spin degree of freedom. In the following section, we will give a 

review of the properties of SVO and some similar TMOs.  

1.4 Physical Properties of SrVO3 

The study of the SVO compound as a strong correlated metal has been continued for about 

thirty years since the photoemission spectroscopic analysis for SVO bulk in the 1980s. Recent 

reports of dimensionality crossover-driven MIT of SVO [21] has sparkled new interests in this 

system and since then there has been quite a few new findings proposing its promising 

application as transparent conductors [22], solid oxide fuel cell anodes [23], and epitaxial 

conducting electrode in oxide heterostructures [24-26]. In this section, we will give an 

introduction of the physical properties of SVO both in bulk and in thin films. Since the 
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mechanism behind dimensionality-driven MIT is the goal of our study, we will also review some 

similar effects reported in other TMO systems. 

1.4.1 Bulk Properties 

The SrVO3 bulk is a strong correlated paramagnetic metal across all-temperature range [27]. 

When SVO is doped with Ca, the valence of vanadium remains unchanged and system remains 

metallic across all doping levels in bulk, but the V-O-V bond angle will gradually decreases from 

180° to 160° , with leads to a decrease in the one electron d-bandwith [27]. On the other hand, 

doping with La introduces an extra d-electron into the SVO system along with some magnetic 

ordering, and MIT will be induced upon a certain doping level. Figure 1.8, displays several 

Figure 1.8. Some typical Mott-Hubbard systems with SVO and related vanadates circled out. 
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typical Mott-Hubbard systems, including SVO and related vanadates. A phase diagram depicting 

filling-control MIT in the La1-xSrxVO3 (LSVO) system is shown in Figure 1.9 (a), with the single 

crystal transport data upon doping level shown in Figure 1.9 (b) clearly showing the MIT [28]. 

 

The electronic structures of SVO have been intensively studied by both theoretical 

calculations and experimental spectroscopic investigation. The three t2g bands in SVO are almost 

degenerate due to the perfect cubic structure. Band-structure calculations predicts that the weak 

hybridization between the dxy, dyz and dzx orbitals will form three two-dimensional penetrating 

cylindrical sheets of Fermi surface, as shown in Figure 1.10 (a) [29]. Fermi surface mapping by 

ARPES done by Yoshida et.al confirms the above results (Figure 1.10 (b)) [30]. In their paper, 

Yoshida reported a coherent band with clear dispersive features at ∼0.5 eV below EF, while LDA 

Figure 1.9. (a) The electronic phase diagram of La1-xSrxVO3 upon Sr concentration. (b) 

Temperature-dependent resistivity for single crystals of La1-xSrxVO3 with different Sr 

concentration [28]. 
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calculations predicts the value to be about twice (Figure 1.10 (c)-(d)) [31], indicating an electron 

mass renormalization with a factor of∼2 due to the strong electron correlations which is also 

predicted from the electronic specific heat coefficient measurements done by Inoue et. al. in the 

Figure 1.10. (a) Fermi surface of SVO bulk [29] (b) Fermi surface mapping of SVO single 

crystal by ARPES with comparison from theoretical calculations marked as blue lines. [30] (c) 

ARPES spectra of SVO displaying the dispersive coherent band [30] (d) Band structures 

calculated by LDA [31]. 
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early days [27]. In a simple picture, we can understand SVO as a Fermi liquid with an enhanced 

effective mass.     

1.4.2 Properties of SrVO3 Thin Films 

The reduction of dimensionality often causes the emergence of interestingly different 

properties in many materials and SVO is no exception. Yoshimatsu et al. reported the existence 

of quantum well (QW) states observed by ARPES in SrVO3 ultrathin films grown on SrTiO3 

(001) substrate with thickness below 10 u.c. [29]. The formation of the quantum states can be 

easily understood by considering the electrons trapped in potential well, with its edges served by 

the interface between the film and the substrate and the surface of the film. When the film 

thickness decreases to a critical value of 2-3 u.c., the film is no longer metallic and a band gap is 

finally formed at a thickness 1 u.c., which is also reported by Yoshimatsu et al in another paper 

[21]. In Figure 1.11 and Figure 1.12, we present these important findings from their original 

source.  

This MIT induced by reducing the dimensionality is what sparks the interest of our study. As 

we discussed before, two major fundamental driving forces for MIT are electron interactions and 

disorder. We have also shown in the last section that SVO is indeed a system with strong 

electron correlations, so naturally, the question come to our mind that whether electron 

correlations is responsible for this MIT, as proposed by Yoshimatsu et. al. in the reference we 

mentioned above and subsequently investigated by theoretical calculations. In this study, we 

would like to take another point of view and investigate the MIT from the role of disorder, or 
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oxygen vacancies, to be specific. It should be noted that the dimensionality-crossover MIT is not 

unique for SVO but also has been observed in other TMOs where disorder has been proposed as 

the driving force, thus it is somewhat natural for us to speculate that this is perhaps more 

universal. In the following section, we will review two such examples which can hopefully help 

to justify our study. 

Figure 1.11. Quantum wells observed in SVO ultrathin films by ARPES [29] (a) The cross 

sections of Fermi surfaces in the kz=0 plane. (b) The predicted band dispersions and quantization 

states along the two cuts illustrated in (a). (c) The observed quantum states by ARPES. 
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1.4.3 Dimensionality Properties of SrVO3 Thin Films 

In this section, we will review some of the experimental transport data showing the MIT for 

LNO and LSMO thin films with similar dimensionality effect.  

In a paper by R. Scherwitzl et. al. thickness-driven MIT was reported in the ultrathin 

LaNiO3 films grown on SrTiO3 (001) substrates [32], as displayed in Figure 1.13. The transport 

data clearly shows an MIT at a critical thickness of 5 u.c., while just above the transition, the 

Figure 1.12. Thickness driven MIT in SVO thin films by PES spectra [21]. The evolution of a 

band gap is clearly visible as the film thickness decrease down to 1 u.c.. 
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upturn 

of the resistance curve begin to show up in the low temperature regime while maintaining 

metallicity at high temperatures, which seems to fit in the weak localization picture described by 

Anderson’s MIT theory, i.e. the localization theory. The transport data in the fully-metallic 

regime (9 u.c.) was fitted with T
2
, indicating Fermi-liquid behavior. The data in the insulating 

regime (5 u.c.) is well fitted to the variable range hopping (VRH) model which behaves 

like σ = C exp[−(T0 ∕ T)α], where σ is the sheet conductance, T is temperature, T0 and C are 

constants and α =
1

d+1
 for a d-dimensional system [33]. In the regime between the two limits of 

metal and insulator, the data is fitted to lnT. The good fitting results are consistent with the 

Figure 1.13. Transport properties of thicknesses for LaNiO3 films grown on SrTiO3 (001) 

substrates. (a) Sheet resistance versus temperature for different film. Arrows mark the 

temperatures where upturns in the sheet resistance occur. (b) Resistivity versus temperature for 

a metallic 9 u.c. film. The dotted line is an extrapolation of the high temperature linear behavior. 

The inset shows the resistivity versus T
2
 for temperatures below 25 K. (c) Logarithm of 

conductance as a function of 1/T
1/3

 for a 5 u.c. film for temperatures from 1.5 to 250 K. The 

black line is the linear fit to the data between 1.5 and 5 K. (d) Sheet conductance versus the 

logarithm of temperature for a 7 u.c. film with a linear fit to the data (black line).The inset 

shows the resistivity of the same sample on a linear scale [32]. 
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description of strong and weak localization from Anderson’s theory, which we will introduce in 

more details in Chapter 6. 

A similar set of LSMO data from our group is displayed in Figure 1.14 below [34]. The 

films are grown on SrTiO3 (110), and the substrate surface in this case is rectangular instead of 

cubic. Similar dimensionality effect with a critical thickness of 8 u.c. is observed in this case 

Figure 1.14. Transport properties of La0.7Sr0.3MnO3 thin films grown on SrTiO3 (110) substrates. 

(a) Temperature dependence of resistivity for films of difference thicknesses; T1 and T2 are 

defined as transition temperatures when the derivative of the resistivity curves cross over zero. 

(b) Temperature dependence of resistivity for 9 u.c. films grown under different oxygen partial 

pressure. (c) Fitting of the resistivity curve to 1/T
1/3

 for a 9 u.c. film grown at 80 mTorr. (d) 

Fitting of the resistivity curve to lnT for 11 u.c. and 15 u.c. films grown at 80 mTorr [34]. 
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(Figure 1.14 (a)). The T1 and T2 in the graph are defined by the transition points where the 

temperature derivative of the resistivity curves cross zero. As the thickness decreases, T1 and T2 

are pushed closer until they vanish at the critical thickness. Interestingly, a very similar pattern of 

MIT has been observed in films with the same thickness but grown under different oxygen 

partial pressure, or to say, films with different levels of oxygen vacancies, as shown in Figure 

1.14 (b). The film thickness is 9 u.c. for all films displayed in this panel, which is very close to 

the transition thickness and possess the best chance to cross to a different regime with slight 

tuning of parameters. In Figure 1.14 (c) and (d), similar fitting results of the transport curves of 

films in the different regimes are illustrated, which again fit well with the prediction from the 

localization theory.  

The results from LNO and LSMO systems discussed above helps to support our speculation 

that disorder may be an important mechanism for the observed thickness-driven MIT. If this is 

the case, similar behavior in the SVO system can be expected. Indeed, in our study, we have 

shown that oxygen vacancies are capable of driving the SVO thin films to insulating. In the next 

five chapters, we plan elaborate on different aspects and characterize the SVO films in a 

systematic fashion to support our theory. 

1.5 Summary  

We have given a brief introduction of the two important driving forces for the MIT, 

electron-interactions and disorder. We are interested in the underlying mechanism of the 

dimensionality-crossover induced MIT and have chosen a strong correlated metal TMO, SVO, as 
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the system to perform our study due to its simplicity in structure and the absence of strong 

magnetic moments. In some other TMOs, similar MIT are observed with dimensionality 

decrease, and also by the tuning of oxygen content. We therefore make the bold assumption that 

oxygen vacancy as a most common type of disorder must have played an important role in the 

MIT in SVO, which concludes the motivation for this study. 
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Chapter 2. Instrumentation 

2.1 Introduction 

The main focus for our project is to study the role of disorder in the metal-nonmetal 

transition by investigating the structural and electronic properties of the SVO films. In order to 

achieve this, various experimental techniques will be applied, both in-situ and ex-situ.  

The in-situ measurements are performed in an integrated ultra-high vacuum (UHV) chamber 

system displayed below (Figure. 2.1 (a)). The system is divided into two main parts: growth 

chamber and the analysis chamber. Films are deposited in the growth chamber by Laser 

Molecular Beam Epitaxy (Laser-MBE) and monitored real-time by Reflection High Energy 

Electron Diffraction (RHEED) for the film quality; then they are transferred into the analysis 

chamber for in-situ characterization without exposing the samples to the air, which guarantees 

the cleanness and offers the beast protection for the sample surface. The analysis chamber 

features various characterization tools including Low Energy Electron Diffraction (LEED), 

monochromated X-ray Photoelectron Spectroscopy (XPS), Ultraviolet Photoemission 

Spectroscopy (UPS)/Angle-Resolved Photoemission Spectroscopy (ARPES) and Scanning 

Tunneling Microscopy (STM). The manipulator in analysis chamber is Liquid Nitrogen (LN) and 

Liquid Helium (LH) capable which makes low-temperature analysis possible. The whole 

integrated system allows us to explore the physical properties and new functionalities at the 

surfaces and interfaces which we are interested in. 
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The ex-situ characterization in this project mainly consists of structural investigation by 

Scanning Transmission Electron Microscopy (STEM)/ Electron Energy Loss Spectroscopy 

(EELS) and transport and magnetoresistance (MR) measurements done by Physical Property 

Measurement System (PPMS). 

2.2 Film growth 

2.2.1 Laser Molecular Beam Epitaxy (Laser-MBE) 

Pulsed laser deposition (PLD) is a thin film deposition technique. By focusing a high-power 

pulsed laser beam to ablate a target of the material that is to be deposited, the material is 

vaporized into the form of a plasma plume and is thus deposited on a substrate facing the target. 

The term “Laser-MBE” was introduced to describe a PLD system in which layer-by-layer 

growth is achieved and monitored by reflection high energy electron diffraction (RHEED). A 

typical set-up for Laser-MBE is shown in Fig. 2.1(b).   

Figure 2.1. (a) Our integrated Laser-MBE and in-situ characterization system: (A) In-situ 

LMBE; (B) Small-spot monochromated ARXPS/ARPES; (C) Crystal cleaving setup; (D) 

STM/AFM; and (F) LEED setup. (b) Schematic diagram of Laser-MBE setup. 
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The major advantage of Laser-MBE is that the process is far from thermal equilibrium and, 

therefore, preserves complex stoichiometry. Today, PLD has been widely used in the film growth 

of high-temperature cuprates and other complex oxides. By monitoring the intensity of RHEED 

oscillations, one is able to control the growth of thin films at an atomic layer level, which is 

stated in the following section. 

During growth, there are many experimental parameters that can be tuned to control the film 

qualities. First, the laser parameters such as laser energy, wavelength, pulse duration and 

repetition rate can be altered. Second, the preparation conditions, including substrate temperature, 

background gas and pressure, may be varied.    

Our Laser-MBE system is based on the KrF excimer laser (COMPEx201) from Lambda 

Physik Company which produces the 248nm laser with pulse duration of 25 ns, maximum pulse 

energy of 700 mJ and maximum frequency of 10Hz. In the growth chamber, the base pressure is 

usually kept at a UHV level of 10
-10 

to 10
-9 

Torr and growth pressure up to 0.1 Torr can be 

achieved by inflating gas into the chamber, depending on the condition we need for the growth. 

The targets are mounted on the target carousel which can hold six targets, and we can change 

them in-situ without opening chamber, which makes it very convenient for the deposition of 

different materials on the same substrates. The distance between the target and the substrate is 

4cm. The RHEED allows monitoring the growth pattern in real time. 
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2.2.2 Reflection High Energy Electron Diffraction (RHEED) 

Reflection High Energy Electron Diffraction (RHEED) is a surface sensitive technique to 

probe surface topography, and can be used as a monitor during film growth. The RHEED setup is 

schematically shown in Figure 2.2 (a). A high energy electron beam is shot at the sample at a 

grazing angle θ (in our system θ~2.50), and reflected onto a phosphor screen. The diffraction 

pattern is recorded by a charge-coupled device (CCD) camera. The grazing angle of electron 

beam ensures the surface sensitivity of the technique. The diffraction pattern strongly depends 

not only on the surface symmetry but also the surface topography. The relation between surface 

topography and RHEED pattern is shown in Figure 2.2 (b). 

By recording the time evolution of intensities of the diffraction spots, one is able to monitor 

Figure 2.2. (a) Schematic diagram of RHEED. (b) RHEED patterns and AFM images during 

growth of one unit cell layer. (c) Ideal layer by layer film growth [35]. 
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the film flatness. As shown in Figure 2.2 (b), when the substrate is covered by a complete 

monolayer, the intensities are the strongest. With the formation of incomplete monolayer as the 

film is deposited, the intensities decrease, and spots will evolve into streaks. When the new 

monolayer is completed, the intensities become strong and spots again come into shape. One 

period represents one complete monolayer. Thus by counting the number of the intensity 

oscillations, one can easily know how many unit cells have been deposited. 

The RHEED in our system provides electron beam with energy of 35 keV. In Figure 2.3, the 

mean free path of electron is about 25 Å. The angle of incidence is about 2.5 degrees. At these 

grazing angles the penetration depth is about 1 Å, which is as small as one atomic layer, which 

makes RHEED a surface sensitive diffraction technique. 

 

Figure 2.3. Mean free path of electrons in solids as a function of their kinetic energy. 
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2.3 In-situ Characterization 

2.3.1 Low energy electron diffraction (LEED) 

LEED is a surface sensitive technique for the determination of the surface structure of 

crystalline materials by shooting a collimated beam of low energy electrons (20-600eV) to the 

sample surface and observing the diffracted pattern on a fluorescent screen, as shown in Figure 

2.4 (a). For electrons within this energy range, the wavelength is comparable or shorter than the 

crystal lattice constant, which means that the interaction between the electrons and the crystal is 

especially strong. The electron penetration depth is in the range of 10Å, a thickness of 1~2 unit 

cell in most of the materials, which makes LEED extremely surface sensitive. 

LEED can be used in both qualitative and quantitative ways. Qualitatively the diffraction 

pattern can be analyzed to get information on the symmetry of surface structure. Figure 2.4 (b) is 

the LEED pattern of parent SrTiO3, where surface has a 1 × 1 pattern.  

Quantitatively the intensities of diffracted spots can be recorded as a function of incident 

electron beam energy to generate the so-called I-V curves. By comparing them with theoretical 

calculations, we may obtain accurate information of atomic positions or lattice structure in the 

proximity of surface, which is referred as LEED I-V structural refinement.  

More specifically, the first thing we need to do when doing LEED I-V analysis is to set up a 

model surface structure, which should be chosen to be consistent with the symmetry of the 

LEED pattern. Calculations are them done by applying multiple-scattering theory to produce 

theoretical I-V curves, which are compared to the experimental results. The surface structure is 
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finally determined by how well the two sets of curves match with each other. The so-called 

reliability factor (RP-factor) is used to quantitatively evaluate the goodness of fit between the 

theoretical and experimental I-V curves. If RP=0 there is perfect correlation between the 

theoretical and experimental I-V curves, while RP=1 means that they are completely uncorrelated. 

The lower RP factor acquired, the better is the surface structural determination. Usually, it is 

confident if RP < 0.3.  

The LEED instrument in our lab is an Omicron LEED. It works in the UHV system where the 

pressure is usually maintained at low 10
-10

 Torr. LEED I-V data acquisition is done with a high 

resolution camera and LabView programmed software.  

Figure 2.4. (a) Schematic of the LEED. The electron beam is elastically reflected by the sample 

surface and constructing diffractions are shown on the fluorescent phosphor screen as spots. (b) 

LEED diffraction pattern of SrTiO3 (001) surface with energy of 125eV at T = 300K. 
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2.3.2 Scanning tunneling microscopy and spectroscopy (STM/STS) 

The STM is a technique for imaging surfaces in real space at the atomic resolution based on 

quantum tunneling theory. When a conducting tip is brought very close to the sample surface, a 

voltage bias applied between the two can allow electrons to tunnel through the vacuum between 

them. The tunneling current can be fairly well approximated by: 

I≈
4πe

ℏ
e

-
1

2
√

8mφ

ℏ2 ρt(0) ∫ ρs(ε)dε
0

-eV
                                                 (2.1) 

where I is the current, m is the electron mass, φ is the local barrier height, ρ is the local density 

of states (LDOS), subscript t means tip and s means sample. The integral integrates the LDOS 

starts from the bias below the Fermi level up to the Fermi level.  

In Figure 2.5 (a), a photo of our variable temperature scanning tunneling microscopy 

 

Figure 2.5. (a) A photo of Omicron VT-STM. (b) A topographic image of TiO2 (110)-(21) 

surface using Omicron STM. The inset is a zoom-in image. The image is acquired at room 

temperature with Vbias = 2.0 V and I = 0.1 nA. 



30 

 

(VT-STM) is presented. The STM in our lab is a newly designed Omicron combination of STM 

and Q-Plus AFM (Atomic force microscopy). Figure 2.5 (b) is an example of high-resolution 

STM image on TiO2 (110) (21)-reconstructed surface.  

In addition to imaging the surface topography, STM also allows one to probe the local 

LDOS on the surfaces. This is due to the fact that the derivative of tunneling current with respect 

to the bias voltage is proportional to the LDOS: 
dI

dV
∝LDOS (eV). This mode is specifically 

called Scanning Tunneling Spectroscopy (STS). In the surface topography imaging mode, the 

tunneling current is held constant; while in STS mode, the tip stops scanning at a certain location 

to obtain an I-V curve. The piezo feedback signal is temporarily frozen in place to hold constant 

the spacing between the tip and the sample, while the tip-sample bias is swept through a desired 

range, and the tunneling current is recorded. Through this method, the information of the 

metallicity of the sample surface can directly be obtained by checking the dI/dV value at the zero 

bias, which makes it very useful for probing the MIT.  

Apart from the dI/dV (V) curve, the shape of the I-V curve can also provide support to the 

information of the surface metallicity of the sample. For a metallic surface, one will expect the 

I-V curve to be somewhat linear-like with varying voltage. On the other hand, for nonmetallic 

surface, the presence of gap in the density of states will result in a partially flat I-V curve, as 

shown in Figure 2.6.  
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2.3.3 Photoemission Spectroscopy: X-ray photoelectron Spectroscopy (XPS) and Ultraviolet 

Photoemission Spectroscopy (UPS) 

Photoemission spectroscopy (PES) is an extensively used technique in physics, chemistry 

and biology to investigate the electronic structure of matter based on the photoelectric effect, as 

shown in Figure 2.7. When a beam of light with energy ℏω hits a solid, an electron in the solid 

Figure 2.6. A rough sketch of the expected STS curves for metallic and insulating sample 

surfaces. 
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with binding energy Eb will absorb the photons and be emitted as a photoelectron. With the 

energy conservation, the kinetic energy Ek of the photoelectron is 

Ek = ℏω − (Eb + ϕ)                                                        (2.2)                                                                                               

where Eb, Ek are defined as above, and ϕ  is the work function of the spectrometer. These 

photoelectrons will be collected by a kinetic energy analyzer and reach the detector, where their 

momentum and energy information is recorded. PES can be divided into three regimes based on 

the energy of the photon used in the experiments. The ultraviolet regime (5-100 eV, UPS) is used 

to explore the low-energy excitations of the valences bands, the soft X-ray regime (100~10
3
 eV, 

Soft XPS) is used to investigate the core-level excitations of electrons in the sample surface 

while the hard X-ray regime (10
3
~10

4
 eV, Hard XPS) has to be achieved by synchrotron 

Figure 2.7. (a) Energetics of the photoemission process [36]. (b) A schematic photoemission 

spectrum produced by experiments. 
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radiation and is used to study the core-level excitation of electrons in the bulk. In our lab, we will 

only use the former two kinds of setup for the characterization of the sample. A schematic 

diagram of the experimental setup of XPS is shown in Figure 2.8. By replacing the X-ray source 

with an ultraviolet light source, UPS is realized. Moreover, by adjusting the relative angle 

between the sample and the analyzer in UPS, we can detect not only the kinetic energy of the 

photoelectrons but also their momentum. This mode is also named Angle-Resolved 

Photoemission Spectroscopy (ARPES). In ARPES, the initial momentum of an electron in the 

plane parallel to the sample surface, denoted as K||i , is conserved while the momentum 

perpendicular to the surface is not. Therefore, apart from the energy conservation equation (2.2), 

we also have a similar equation for the momentum: 

|K||i|= |K||f| =
√2mEk

ћ
sinϕ                                                    (2.3)                                                                                 

where ϕ is the relative angle between the sample normal and the central axis of the analyzer 

collection cone, Ek is the kinetic energy, m is the mass of the photoelectron and i and f denote 

the initial and the final momentum in the surface plane respectively. 

In our system, the XPS setup consists of an X-ray source XR 50 M with Al anode (Al Kα 

1486.6eV), a FOCUS 500 X-Ray Monochromator and a PHOIBOS-150 analyzer from the Specs 

Company. The UPS/ARPES setup shares the same analyzer with XPS, the resolution of which is 

about 7meV in energy and 0.1 rad in angle. The source for ARPES is a standard VUV5k UV 

source equipped with a VUV5040 UV monochromator, which produces plasma Helium 

discharge at ~ 21.2 eV.  
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The use of different photon energy determines the difference in functionality of XPS and 

UPS/ARPES. XPS explores the core-level of the elements and quantitatively measures the 

elemental composition, empirical formula, chemical state and electronic state of the elements 

that exist within a material.  On the other hand, UPS/ARPES mainly probes the electron near the 

Fermi surface, and serves as a direct experimental technique for the observation of the 

distribution of the electrons in the reciprocal space of solids.  

2.4 Ex-situ Characterization  

Compared to the in-situ techniques stated in the previous section, which mostly focus on 

detecting the film surface, the ex-situ techniques allow us to gain information near the 

Figure 2.8. Experimental setup of X-ray photoelectron spectrometer 
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film/substrate interface and the more general properties of the film like transport and magnetic 

properties. In the following section, we will give a brief introduction of the ex-situ techniques we 

applied in this study, Scanning Transmission Electron Microscopy/Electron Energy Loss 

Spectroscopy (STEM/EELS) and Physical Property Measurement System (PPMS). 

2.4.1 Scanning Transmission Electron Microscopy/Electron Energy Loss Spectroscopy 

(STEM/EELS)  

Scanning transmission electron microscopy (STEM) is one type of transmission electron 

microscope (TEM). In TEM, an electron beam is transmitted through an ultrathin specimen, 

forming images from the interaction of the electrons with the sample. The images are then 

magnified and collected by an imaging device, providing a direct mapping of atoms positions. 

The first TEM was designed after de Broglie’s theory of matter waves was brought up, when 

scientist realized that other than light, electrons could also serve as a powerful source which 

could theoretically allow imaging specimen down to atomic scales due to the small De Broglie 

wavelength of electrons. With years of development improvement of TEM imaging properties, 

the first modern STEM was developed in the 1970s, with Albert Crewe at the University of 

Chicago developing the field emission gun [37] and adding a high quality objective lens. As an 

improvement to the conventional TEM, in STEM the electron beam is well-focused to a fine spot 

and then scanned over the sample in a raster, which enables the application of analytical 

techniques during imaging like Energy Dispersive X-ray (EDX) Spectroscopy and Electron 

Energy Loss Spectroscopy (EELS), and allows one to gather images and spectroscopic data 
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simultaneously. A schematic diagram of STEM/EELS instruments used is shown in Fig. 2.9. The 

electron beam goes through a set of magnetic lens and aperture before reaching the sample. The 

existence of the aberration corrector enables the electron beam to be focused to sub-Angstrom 

diameters, which is the most critical part for controlling the image resolution. The most advanced 

aberration-corrected STEMs existing nowadays have been developed with sub-50 pm resolution 

[39]. The fine-focus beam is controlled by scanning coils and raster-scanned across the sample, 

Figure 2.9. A schematic view of STEM/EELS system [38]. 
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during which process various modes of signal collection are applied, the most common among 

which are High Angle Annular Dark Field (HAADF) imaging, Annular Bright Field (ABF) 

imaging and EELS.  

HAADF imaging is formed only by collecting electrons scattered at very high angles in a 

ring-shaped circumference. These angles are typically too large for coherent elastic scattering so 

the atom positions can be directly measured in the images with much reduced or even eliminated 

diffraction effect. The Coulombic interaction between the electron beam and the nucleus is 

dominating in the HAADF mode. The image intensity is ideally proportional to Z
2
, with Z being 

the atomic number, thus making it sensitive to heavy elements. For lighter elements like oxygen 

and such, HAADF is unable to identify these elements; in which case the ABF imaging comes to 

the spotlight. ABF collects the scattered electrons from a ring-shaped circumference that is much 

smaller in semi-angle compared to HAADF, near the center of the beam path. Unlike HAADF, 

ABF images are sensitive to both lightweight and heavy elements. However, ABF imaging also 

has its disadvantages. It is strongly dependent on sample thickness and defocus, which makes the 

interpretation of ABF images more complicated than HAADF.  

Apart from structural imaging, spectroscopic information like EELS can also be collected to 

give chemical composition and electronic structures about a specimen. As the electron beam 

travel through a specimen, some electrons will lose energy through inelastic scattering 

interactions with the sample. In EELS, an electron spectrometer is used for measuring the energy 

loss distribution of the scattered electrons, which allows us to identify the inelastic interactions 
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like plasmons, phonons and such. EELS is also capable of observing the fine structure of 

ionization edges, which is unique for each element, thus enabling EELS for elemental mapping 

and chemical spectroscopically mapping down to atomic scales [40]. 

Our STEM study is performed in Brookhaven National Laboratory. Cross-section TEM 

sample were prepared by Focused Ion Beam (FIB) with Ga
+
 ions  following by the Ar

+
 ions 

Nano-milling. The microscopy work was performed on a JEOL ARM200 microscope at 

Brookhaven National Laboratory (BNL) equipped with two aberration correctors. High-angle 

annular dark-field (HAADF) STEM images were collected with a HAADF detector with an 

inner angle of 18 mrad and outer angle of 160 mrad. All electron energy loss spectroscopy 

(EELS) were acquired at a convergence angle of 18 mrad and a collection angle of 120 mrad. An 

energy dispersion of 0.25eV/channel with energy resolution of ~0.8eV was used for fine 

structure study of EELS spectra. The EELS spectra of ionization edges for each element were 

obtained simultaneously at an energy dispersion of 1eV/channel for composition analysis. Dural 

EELS mode was used in order to calibrate the energy shift in the spectra collection process. 

2.4.2 Physical Property Measurement System (PPMS)  

The transport properties and the magnetoresistance in this study are measured by a 

commercial Physical Properties Measurement System (PPMS) from Quantum Design Inc. shown 

in Fig. 2.10 (a). PPMS is designed to perform a variety of macroscopic measurements like 

transport, specific heat, magnetoresistance, thermal transport and susceptibility. 
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To measure the transport, four-point probe method is applied to all our films. Four-point 

probe based measurement is a long-established standard technique which is widely used for 

measuring the average resistance of thin films. A schematic view of the four-point probe setup is 

shown in Fig. 2.10 (b). The current is passed through the outside two points of the probe and 

voltage drop is measured across the inside two points. Compared with the traditional two-point 

probe method, the four-point probe measurements can eliminate the contact resistance created by 

the ohmic contact of the probes and the sample, and are therefore much more accurate. We will 

discuss the four-point probe methods in more details in the later chapters. 

2.5 Summary 

The most important topic in surface science today is how to delicately control the fabrication 

and characterization of the material down to atomic scale. For complex materials, RHEED 

monitored Laser-MBE has been a widely used technique for achieving well-controlled 

Figure 2.10. (a) The Physical Property Measurement System (PPMS), which is the instrument 

used in this study. (b) A schematic diagram of the four-point probe measurements. 
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layer-by-layer growth with only one unit cell of surface roughness. The in-situ transfer best 

guarantees the cleanness and quality of the sample surface during characterization. LEED and 

STM can be used to study the film surface structure and morphology; while the chemical 

composition, electronic properties of the films are investigated by XPS, UPS/ARPES and STS. 

For the more general properties of the films and the information inside the film and near the 

interface, ex-situ tools like PPMS and STEM/EELS are used for analysis. The combination of 

these powerful tools allows us to systematically study the properties of the films down to atomic 

level and helps us to gain more understanding of the system from the microscopic point of view. 
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Chapter 3. SVO Film Growth and Film Quality 

3.1 Introduction 

In this chapter, we mainly focus on the growth process and characterization of SVO films to 

prove that our films are of high quality. Our SVO films are grown on the SrTiO3 (001) (STO) 

substrates, which need to be treated before achieving a flat surface that is ideal for film growth. 

We will start by introducing the process of substrate and then come to the optimization of the 

film growth by Laser-MBE and RHEED. XPS, LEED and STM are applied for confirming the 

quality of the film. 

3.2 Substrate Preparation 

In our study, STO (001) were used as the substrates for film growth. STO is one of the most 

widely used substrates for oxide thin film growth due to its compatible lattice constant with a 

variety of materials like manganites, titanates, ruthenates and so on. Many interesting 

phenomena have been observed at the interface of other materials and STO including the 

two-dimensional electron gas and superconductivity [41-43]. STO is an insulating cubic 

perovskite with a band gap of 3.2 eV. Doping by Nb or self-doping with oxygen vacancies 

changes STO to an n-type semiconductor and makes it suitable for both in-situ and ex-situ 

analysis. By HF buffer solution etching and subsequent annealing, atomically flat TiO2 

terminated surface can be obtained for the STO for the best preparation for the epitaxial film 

growth [44].  
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STO and SVO have bulk lattice constants of 0.3905 nm and 0.384 nm, respectively, which 

results in a reasonable lattice mismatch of approximately 1.6%, causing the SVO film to go 

under tensile strain. For our in-situ measurements like LEED, XPS, UPS and STM/STS, 0.1wt% 

Nb doped STO substrates were used to prevent the charging effect caused by the accumulation of 

electrical charges on the sample. For ex-situ transport measurements, the non-doped STO 

substrates have to be used to avoid interferences with the film transport. All the STO substrates 

used in our study were single crystals supplied by CrysTec GmbH from Germany, in the size of 

5 mm × 5 mm × 0.5 mm. 

In order to get an atomically-flat substrate surface for the best of film growth, a certain 

process of treatments has to be applied on STO. Firstly, the STO substrates are cleaned using an 

ultrasonic cleaner to get rid of the impurities attached on the surface in the following sequence: 

(1) in acetone for 4min, (2) in ethanol for 4 min and (3) deionized water for 4 min. The 

substrates are then dried subsequently by ultrapure N2 gas to remove the residual water. 

Secondly, the clean STO substrates are etched for 30s in the buffered-oxide- etch 10:1 solution 

(also known as buffered-HF) from J.T. Baker. The substrates are then rinsed off with water to 

remove the residual HF and dried again. Thirdly, the STO substrates are annealed in oxygen in a 

furnace under 950˚C for 1h to ensure an atomically flat TiO2-terminated surface and efficiently 

reduce the forming of oxygen vacancies in the substrates.  
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3.3 SVO Film Growth and Quality 

In this section, we discuss the details of the optimization of the growth conditions and the 

confirmation of the quality of the SVO films. We show that successful 2D layer-by-layer growth 

has been obtained by PLD while monitored by RHEED. The film was checked by XPS, STM, 

LEED and XRD, which proved the films are of good quality. 

3.3.1 SVO film Growth with Laser-MBE and RHEED 

With a near-stoichiometric SrVO3 target, we have deposited SVO films on the 

TiO2-terminated substrates prepared as stated in the last section using the Laser-MBE system. 

During the growth process, RHEED patterns and oscillations were used to monitor the film 

surface to make sure the growth occurs in a 2D layer-by-layer fashion. The LBME growth is a 

complicated dynamic process which involves many parameters, like substrate temperature, gas 

partial pressure, laser energy intensity, laser frequency, and so on. In order to get optimized 

growth, we have explored the effects of tuning each parameter mentioned above, and found out 

that the SVO film growth can only be stabilized within a somewhat narrow parameter window. 

In the following, we will explain this in details. 

3.3.1.1 Oxygen Partial Pressure 

The naturally stable valence for vanadium is 5+, making a SrVO3 a very easily oxidized 

compound. With this fact in mind, we assume that oxygen partial pressure would be the most 

sensitive growth parameter in SVO film growth, which later proved to be the case. We have 

found that introducing oxygen even in the order of 10
-7

 Torr will result in a 3D growth pattern, 
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which indicates that the film is of poor quality with a significant amount of islands formed on the 

film surface. Therefore, we have chosen to grow the SVO films in ultra-high vacuum of 10
-8

 Torr 

without oxygen, which allowed us to stabilize a 2D growth. 

3.3.1.2 Substrate Temperature 

We have tried growing SVO films with substrate temperatures from 500˚C to 800˚C and 

found the growth optimized at 600-650˚C. At lower temperatures, the growth speed tends to slow 

down and eventually becomes 3D. At higher temperatures, the growth is maintained in 2D mode, 

but the RHEED oscillations vanish faster than those of the films grown at the optimized 

temperature, indicating the likely possibility of having step-flow growth instead. To obtain 

layer-by-layer growth, we have fixed our substrate temperature at the optimized 600-650˚C. 

3.3.1.3 Laser Energy and Frequency 

For film growth, we used a 248 nm KrF excimer laser to ablate the target at a frequency of 

3Hz with an energy intensity of approximately 2.5 J/cm
2
. We have found that lower frequency 

and intensity would slow down the speed of growth and make it go to 3D easily, while a 

frequency/intensity too high was likely to cause uneven ablation of the target, which is also not 

preferable for achieving layer-by-layer growth.  

Overall, we had found that the best SVO growth was always achieved with a growth speed 

of 13-22 seconds/layer. In order to control it, we have optimized the growth parameters as 

follows: no oxygen, base vacuum level of 10
-8

 Torr, substrate temperate of 600-650℃, laser 

pulse rate of 3Hz and energy intensity of 2.5 J/cm
2
. Figure 3.1 is a picture of the RHEED pattern 
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and the intensity oscillation curve of a 20 ML SVO sample grown under the conditions stated 

above. We can conclude from the pattern that 2D layer-by-layer growth was successfully 

achieved. 

 

3.3.2 SVO Film Quality Characterization  

We performed different characterizations to check the quality of the SVO films grown under 

the optimized condition mentioned in the previous part. With a good 2D layer-by-layer growth, 

the SVO film should be atomically flat on the surface. We demonstrate this fact by STM 

Figure 3.1. (a-b) The RHEED patterns of the substrate STO and after the SVO film growth, 

respectively. (c) The intensity oscillation during film growth. Each oscillation corresponds to the 

formation of a single unit cell, as shown in the upper right panel. 
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morphology and LEED. Also, to confirm that the film is of correct phase, we did XPS 

composition check and XRD. The results will be discussed in the following sections. 

3.3.2.1 STM Morphology 

In Figure 3.2 (a) and (b), we present two STM morphology images of 3 u.c. and 50 u.c. SVO 

films respectively. In Figure 3.2 (a), we can see that the 3 u.c. film growth evidently follows the 

steps of the STO substrate, while some extra coverage can be seen as a result of imperfect timing 

for the termination of film growth. By drawing a line profile across the terraces, the height 

difference can be analyzed, which is displayed in the upper right panel. If we subtract the 

difference between two adjacent terraces, we get the same different of ~ 0.4 nm, which is 

approximately the height of the one single unit cell of SVO. The 50 u.c. film, on the other hand, 

Figure 3.2. The STM images of SVO films of (a) 3 u.c. and (b) 50 u.c. with height profiles 

displayed in the upper right panels. 
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as shown in Figure 3.2 (b) has a rougher surface compared to the 3 u.c. film. The step edges are 

no longer in straight and almost-parallel lines, which is a natural outcome as the film thickness 

increases. To analyze the surface roughness, we also draw the line profile across different terrace 

features. The same height difference of ~ 0.4 nm is obtained. The absence of clusters on the 

surface in both cases indicates that our films are grown in a good 2D layer-by-layer fashion with 

atomically flat surfaces. 

3.3.2.2 LEED Image 

In Figure 3.3 (a) and (b), we show the LEED images of a 100 u.c. SVO film at a beam 

energy of 80eV and 150eV, respectively. The 80 eV image displays a c(2x2) reconstructed  

pattern with bright and well-defined fractional spots at the center of the original 1x1 diffracted 

pattern. The increase of the beam energy brings more diffraction spots to the screen, but the spots 

Figure 3.3. LEED image of a 100 u.c. SVO film at beam energy of (a) 80 eV and (b) 150 eV. 
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remains sharp and clear; no extra spots other than the √2 fractional spots can be observed. This 

indicates that even at 100 u.c. thickness, the surface of the film is still well-ordered.  

We have done some structure refinement investigation of the possible reasons behind the 

c(2x2) reconstruction but failed to come to any conclusion due to the complication of the system. 

The best guess seems to be the self-arrangement and buckling of the surface atoms, along with 

some possible ordered oxygen vacancy. The details will not be included in this thesis.  

3.3.2.3 XPS Composition Check  

The composition check of the SVO film is performed by the XPS scan across the whole 

binding energy range, which is shown in Figure 3.4. The spectrum is obtained from a 50 u.c. 

Figure 3.4. The XPS spectrum of a 50 u.c. SVO film, scanned across the binding energy range 

from 1050 eV to -10 eV. All the peaks are attributed to Sr, V and O. 
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SVO film, in which case the signal only comes from the film and not the substrate. By 

comparing the spectrum with the standard database of core level energies, we can see that every 

peak we observed in the spectrum comes from Sr, V or O and no other elements. This indicates 

that our film growth does not involve any impurities from other source. However, it should be 

noted that the above observation only proves that our film is made purely from the desired 

elements, but does not guarantee that it is the correct phase. To check if the film is in the correct 

phase, other tools like XRD or STEM must be applied.     

3.4 Discussion and Summary  

In the chapter, we discussed the recipe for high-quality growth of SVO films. The STO (001) 

substrate was prepared in a way to ensure an atomically-flat TiO2-terminated surface without 

reconstruction. The growth of SVO films was optimized by changing different growth 

parameters like growth temperature, oxygen partial pressure and laser energy and frequency. We 

found that 2D layer-by-layer growth can be achieved at a growth temperature of 600~650˚C at a 

vacuum level of 10
-8

 Torr without introducing oxygen, with a laser intensity of ~2.5J/cm
2
 at a 

frequency of 3Hz. Under this optimized growth condition, the atomically-flat surface of SVO 

films is confirmed by STM and LEED while the composition and phase of the films are checked 

by XPS and XRD. In the next chapter, we will focus on the characterization of the structures and 

chemical information of our SVO films. 
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Chapter 4. Structure and Chemical Composition of SVO Film 

4.1 Introduction  

In the last chapter, we have shown how to fabricate the SVO thin films in a layer-by-layer 

fashion by PLD through the control of the growth parameters and confirmed the quality of the 

SVO films by RHEED, LEED and STM. In this chapter, we will mainly focus on the 

investigation of the film structure and the chemical composition. Through STEM/EELS 

measurements, we can obtain a microscopic picture of both atomic arrangement and chemical 

information for each single layer all the way from the interface. A more global investigation of 

the chemical composition of SVO films of different thicknesses near the film surfaces is 

performed by ARXPS. We find that the SVO films we have grown does not shown preference of 

a single termination of VO2 or SrO, possibly because of the unavoidable introduction of defects 

caused by strain relaxation. Moreover, near the interface of SVO/STO a decrease of the 

V-valence can be observed, indicating the existence of a significant amount of oxygen vacancies. 

4.2 Structure Characterization with STEM Images 

A large scale high-angle annual dark field (HAADF)-STEM image of a 50 u.c. SVO film is 

shown in Figure 4.1 (a). The regions of the SVO film and the STO substrate are marked out on 

the image with two blue arrows as indication of the location of the interface. From the image we 

can tell that the majority of the SVO film is uniform, but still, some stripe-like inhomogeneous 

features can be observed. This may be caused by defects or dislocation, but it is also possible that 

the features represent a completely different phase than the expected SVO (113) phase. 
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Therefore, in order to confirm that the film is in the correct phase, we performed selected area 

electron diffraction (SAED) on the image and compared it to the simulated diffraction pattern of 

SrVO3. The results are shown in Figure 4.1 (b) and (c). The extra trails in the SAED pattern are 

artifacts due to CCD saturation. From the SAED pattern, we observed no extra spots compared 

to the simulation of SVO (113) phase. This indicates that our film is indeed in the desired phase.     

From the image in Figure 4.1, another interesting thing can be observed, and that is the 

obviously different intensity contrast at the interface. This implies us that near the interface there 

Figure 4.1. (a) Large scale HAADF-STEM image taken along [100] direction. The blue arrows 

indicate the location of the interface. (b) Selected area electron diffraction (SAED) pattern and 

(c) simulated diffraction pattern for SrVO3 phase along the [100] direction showing good 

agreement. 
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may also be another feature. Later in this section, we will zoom in in this region and take a closer 

look.  

Since we have confirmed that the majority of the film is in the correct phase, we will limit 

our following discussion to the uniform region of the SVO film. In Figure 4.2, we display a 

comparison of the zoomed-in HAADF and ABF images in the uniform region of the SVO films, 

with SVO structural models superposed on top showing the position of atoms from each element. 

As stated previously in Chapter 2, HAADF image is sensitive only to heavy elements with 

column intensity proportional to atomic number Z, while ABF image is sensitive to both heavy 

and light elements. This is clearly presented in Figure 4.2. Since Sr has a larger atomic number 

(38) than V (23), it is represented by the brighter dots in Figure 4.2 (a). The O element is absent 

in the HAADF image since it is too light to be detected. In the ABF image in Figure 4.2 (b), the 

O atoms do show up, however. The darker dots in the image represent Sr/V and the lighter dots 

Figure 4.2. A comparison of (a) HAADF-STEM and (b) ABF-STEM images of SVO films, taken 

along [100] direction. Ball models of each element are shown in the images. 
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are O. Both HAADF and ABF images have shown the expected stacking sequence of SVO in the 

correct phase. To make sure that the effect is global, several different areas in the uniform region 

of the film have been checked and the results are the same, once again proving that the film is in 

the right phase.   

Now we come back to the interesting feature that we observed at the interface as shown in 

Fig. 4.1 (a). After zooming in the area near the interface, as shown in Figure 4.3, we can see that 

the interface between the film and the substrate is very sharp and well defined, which 

indicates a coherent epitaxial growth of the SVO film on the STO substrate. In the first three 

layer of the SVO film, however, which we have highlighted out with visual guidelines for 

Figure 4.3. Zoomed in HAADF-STEM image near the interface. The dashed yellow lines are for 

the guidance of the eye. An intensity profile is plotted out and displayed for the area marked in 

the blue box, showing a decrease in the first three u. c. of SVO film. 
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convenience, a darker contrast is indeed visible; although the stacking sequence of the atoms 

does not appear any different from the other part of the film. We can see this more clearly from 

the plotted out intensity profile in the bottom right. A decrease of the intensity is obvious over 

the first three unit cells of film above the interface. To simply the argument later in this chapter, 

we will refer this part of the film as the “dark area” (DA) hereafter. To better understand this 

special feature, in the following section, we will apply EELS mapping and spectroscopy study to 

achieve more quantitative results. 

4.3 Composition Probe with STEM/EELS Spectra 

By the application of EELS, we have performed various detailed quantitative analysis of the 

region near the interface and the results are presented in Figure 4.4 and Figure 4.5. We first 

calculated the out-of-plane lattice constants as a function of distance from the interface, as shown 

in Figure 4.4 (b). The lattice constant of the STO substrate is consistent with its bulk value 

3.905Å (dotted line in the red zone). For SVO film beyond the ‘DA’, the measured out-of-plane 

lattice constant also converges to the value of bulk SVO (3.84Å, dotted line in the blue zone). 

However, for the ‘DA’, the out-of-plane lattice constant expands around 3.97 Å, which is larger 

than both SVO and even STO. This is weird because we originally expected the lattice constant 

in the film near the interface to be at least the same as the bulk value, if not smaller. Our 

assumption is not difficult to understand because if SVO in ‘DA’ is stoichiometric, then the 

tensile strain induced by the substrate STO would like to ‘stretch’ the film in the in-plane 

direction; in order to maintain the same unit cell volume, the out-of-plane lattice constant must 
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Figure 4.4. (a) HAADF-STEM image across a 50 u.c. SVO/STO film taken along [100] 

direction. The orange dotted line marks the interface. (b) Out-of-plane lattice constant as a 

function of distance from the interface (x=0), measured from HAADF-STEM image by 

averaging 20uc along b-axis direction. The lattice constant for bulk STO and SVO are indicated 

by dotted lines. (c) Falsed colored elemental maps for Sr (green), Ti (red) and V(blue), with 

lateral averaged profiles overlaid. (d) Oxidation state of Ti and V ions across the interface layer 

by layer. 
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then be reduced. So what should be accounted for this abnormal lattice expansion (so as the unit 

cell volume) that we observed in the ‘DA’? Here we give the speculation that it is likely related 

to existence of considerable oxygen deficiency. There have been many reports on how 

oxygen-deficiency driving the lattice expansion in complex oxides, both in bulk and in thin film 

[45-47]. Also, the fact that the ‘DA’ has a dark contrast in HAADF-image itself indicates 

possible existence of oxygen-deficiency [48]. To test this speculation, we explored the film 

further by performing EELS elemental mapping to characterize the composition distribution and 

electronic structure across the interface. In Figure 4.4 (c), the atomic resolved elemental 

mappings of Sr-L2,3, V-L2,3 and Ti-L2,3 edges are displayed. By averaging along the interface, we 

are able to obtain the EELS composition profiles. The elemental concentration profiles are 

derived from the intensity profile, which is superimposed on the corresponding atomic sites in 

the elemental maps. The STO substrate is terminated with a TiO2 layer, as expected from the 

substrate preparation. From the concentration profile, we can see that there is a mixture of B-site 

atoms (Ti and V) occurring in the top layer of the STO substrate and the first two u.c. of SVO 

film. If we assume that the Ti and V level to be 100% in STO and SVO far away from the 

interface, respectively, the Ti intensity drops to about 80% in the TiO2 termination layer of the 

substrate, 30% in first VO2 layer and 10% in the second VO2 layer. Besides the B-atom 

intermixing, we have also observed a slight depletion of Sr in the ‘DA’, which is around 10% of 

the amount in SVO and STO. The reason behind this Sr deficiency is still unknown to us, but 

there is a possibility that it has something to do with the growth process.   
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We further analyzed this region from the EELS spectra. The EELS spectra of V-L2,3 and 

Ti-L2,3 edge taken across the interface is displayed in Figure 4.5 (a) and (b); in Figure 4.5 (c) and 

(d), we plotted out the peak positions of the V and Ti L2 and L3 peaks respectively. The 

extraction of O-K edge in SVO is hampered by the proximity of the V-L2,3 edge so no O edges 

are analyzed here. For better comparison, the EELS spectra have been normalized to the 

Figure 4.5. (a-b) Background subtracted V-L2,3 and Ti-L2,3 EELS spectra. (c-d) The energy 

position of V-L and Ti-L peaks. 
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integrated intensity under the V-L edge; the spectra of Ti-L edge are normalized to the 

continuum interval 25 eV before the onset of the oxygen K edge. From the Figure 4.5, it is 

observed that a red shift of about 0.4 eV of the V-L3 peak occurs within the first 3 u.c. from the 

interface, namely our ‘DA’. This indicates that the vanadium valence state is reduced in this 

region [49]. The two Ti spectra of the TiO2 termination layer and the doped VO2 layer also shift 

towards lower energy, implying a decreased valence state of Ti ions [50]. The details on the 

valence change of V and Ti are calculated and plotted in Figure 4.4 (d). A drop of V-valence to 

about 3.6+ within the ‘DA’ is quite evident, along with a decrease in the oxidation state of Ti to 

~3.5+ in the same region.  

As a system which does not favor tilt and rotation and also being non-polar along the [100] 

direction, no polar-discontinuity need to be compensated by structural/charge reconstruction at 

the interface when SVO is grown on STO. Therefore, in order to maintain the charge neutrality 

near the interface (‘DA’), we expect the existence of a significant amount of oxygen-deficiency; 

one part for compensating the slight-Sr deficiency that we observed, and the other part for the 

reduced oxidation of Ti and V. As we may recall from the introduction, the reported critical 

thickness of metal-insulator transition for SVO films is also around 2-3 u.c., about the same 

thickness with our ‘DA’. The coincidence makes us wonder if this oxygen-deficiency that we 

have observed has played a certain role behind the MIT. In the next two chapters, we aim to test 

our assumption from two aspects: first, we would like to test the MIT itself-- whether we can 

observe the thickness-dependent MIT and whether it occurs at the same critical thickness; second, 
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if we can observe the same MIT behavior, then whether oxygen deficiency should be accounted 

for this. These two points are elaborated in Chapter 5 and 6, respectively. In the rest of this 

chapter, however, we plan to do a bit more investigation of the composition of the SVO films by 

another tool, angle-resolved X-ray photoelectron spectroscopy (ARXPS).  

4.4 ARXPS Studies  

ARXPS is no other than XPS measurements performed at a set of different emission angles. 

Although not designed for structural analysis, it has some different advantages compared to 

STEM/EELS. In ARXPS, the beam size is around 1.5 mm
2
, thus it is a much more global tool 

compared to STEM, which allows us to explore the properties of the entire film rather than 

locally at microscopic level. Also, by increasing the emission angle, ARXPS can be tuned from 

being bulk sensitive to surface sensitive; while in STEM, during the sample preparation the 

surface of the film will be damaged, thus STEM mostly focus on the study inside of the film, 

including getting important information about the interface. In our study, we performed ARXPS 

on SVO films of three different thicknesses, 3 u.c., 6 u.c. and 50 u.c., and tried to analyze the 

films by termination and the elemental concentration characterization. 

In Figure 4.6, we present the raw ARXPS spectra of Sr3d, O1s and V2p core levels for 3 u.c., 

6 u.c. and 50 u.c. SVO films for a set of different emission angle θ. It is not difficult to notice 

that the shapes of the peaks seem to change with thickness. Partially, this is due to the change of 

intrinsic properties of the films with different thickness; there is also another important factor 

which cannot be ignored, though, which is the influence of the substrate. In the measurements 
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done on the 3 u.c. and 6 u.c samples, the penetration depth exceeds the film thickness by a fair 

amount, at least in low emission angles; therefore, the peaks we obtained contain signals from 

both the film and the substrate. For a more reasonable comparison among the different films, we 

would like to try and remove the signals from the substrate and compare those only from the film. 

This is in fact a very tricky procedure which is not very widely tested and therefore not very 

exact. But still, we think it may offer some side support to our conclusion and we would like to 

try and propose a way to apply it to our study.  

Figure 4.6. The raw ARXPS spectra of Sr3d, O1s and V2p core levels for 3 u.c., 6 u.c. and 50 

u.c. SVO films. 
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To begin with, we would first like to explain a little about the penetration depth we 

mentioned earlier. When we speak about the ‘penetration depth’ in ARXPS, in most of the cases 

we are not really referring to the actual penetration depth of the X-ray into the sample; rather, we 

mean an average of the depth from which the electrons can still escape out of the sample under a 

given emission angle, which is usually much smaller compared to the actual penetration depth of 

the photon itself. Therefore, we are really talking about the ‘electron escape depth’ when we talk 

about the ‘penetration depth’. In the following argument, we will still refer to this concept as the 

‘penetration depth’ when we do not elaborate.  

It is natural that we would assume the penetration depth to be in the same order of the 

electron mean free path, which actually proves to be true. Experimentally, the penetration depth 

can be examined by checking films with different thicknesses but grown on the same substrate. If 

the core level peaks from elements that only exist in the substrate can be observed, it means that 

the penetration depth still goes beyond the film thickness, vice versa. To be more specific, in our 

case, the SVO film is grown on STO substrate, so Ti is an element that only exists in the 

substrate and not in the film. We find that once the SVO film thickness exceeds 20 u.c., the Ti 

peaks can no longer be observed at normal emission, indicating a penetration depth of about 8 

nm in SVO film. At an emission angle θ other than the normal emission, the penetration depth, 

or the part of the film that we can pull information out of from the spectra, can be roughly 

estimated by multiplying the normal emission penetration depth, which is 8 nm in our case, by 

cos θ. However, this method is not so experimentally accurate and can deviate from the actual 
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results by a factor of 2 approximately. To obtain more reliable results, it is recommended that we 

check each angle in the same way for normal emission.  

According to theory, the XPS intensity ratio of two core level peaks A and B at emission 

angle θ can be calculated by [51]: 

IA

IB
=

∑ NA∙exp (
−id

λAcosθ
)i

∑ NB∙exp (
−jd

λBcosθ
)j

∙
σA

σB
                                                      (4.1) 

where σA is the photoionization cross section of element A, d is the interlayer spacing, λ is 

the inelastic mean free path of the photoelectrons with a certain energy, θ is the emission angle 

with respect to the surface normal, and NA is number of A atoms at the ith layer. For the top 

surface layer, i is defined to be zero. For the quantities with the B index, same definitions apply, 

except they are for another element B. 

By applying the above equation to the simply case of STO substrate, we will be able to get 

an estimate of the intensity ratios between the Sr3d, Ti2p and O1s peaks under different emission 

angles. Similarly, when we have films of thickness t on top of the STO substrate, the same 

equation can apply, except in this case, we have to add the extra thickness into the calculation. 

Therefore, from the above calculation, we will be able to get a whole profile of intensity ratios 

between Sr3d, Ti2p and O1s that comes purely from the substrate for calibration purpose.  

Next, when we perform the measurements on the ultrathin films, by which we mean that the 

substrate can still be detected under such a film thickness, it is important that we should also 

collect the Ti2p peak information at all emission angles, along with the other elements we desire. 
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Take our case for example; for 3 u.c. and 6 u.c. SVO films, we will collect the peak intensity 

from Sr3d, V2p, O1s, and Ti2p. Once all the information is available, we will be able to use the 

intensity ratio calibrations from the substrate to estimate the actual contribution of substrate in 

the experimental collected peak intensities, and by subtracting that part, we can get the 

information on the contrition from the film. Although theoretically applicable, the actual 

quantitative analysis can result in a very big error bar due to the inaccurate estimate of the mean 

free paths and the cross sections. Nevertheless, it still offers us some qualitative insight for the 

film composition and we present them in the following figures. 

Figure 4.7 display the intensity ratios between Sr3d, V2p and O1s peaks for SVO films of 

different thicknesses, both before and after the subtraction of the contribution from the substrate. 

By comparing the Sr3d/V2p ratios at low and high emission angles, we do not see any obvious 

trend of increase or decrease. This indicates that in all three cases, it is most likely that our films 

do not prefer a single termination of SrO or VO2. By referring back to our observation from the 

STEM where we see the stripe-like defects along the growth direction, a mixed termination 

seems to be the reasonable outcome. 

If we ignore the diffraction effect observed at certain angles in between and only compare 

the 0˚ and 81˚ cases and plot out the intensity ratio change over thickness, we get the results 

shown in Figure 4.8. Note that all results displayed here in this figure are from after subtracting 

the contribution from the substrate. Under both emission angles, the Sr3d/V2p ratio and the 

Sr3d/O1s ratio for 50 u.c. seem to be bigger than the thin films; we may interpret this as that the 
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50 u.c. film is more Sr-rich. This is likely to be related to the introduction of more SrO defects in 

the growth process as the film thickness increases. For O1s/V2p ratio, it seems also to increase 

with thickness, at least under the normal emission. This also seems to imply that the thin films 

are more oxygen-deficient than the 50 u.c. film. From the top panel of Figure 4.8, we may also 

try and deduce some information about the surface termination. Although in all three cases, the 

surface termination seems to be mixed, yet in 3 u.c., a smaller Sr3d/V2p ratio at high emission 

angle suggests that the faction of SrO termination is slightly smaller than VO2; in contrast, in 

Figure 4.7. Intensity ratios between Sr3d, V2p and O1s peaks for SVO films with different 

thicknesses. The left panels are calculated without subtraction of the contribution from the 

substrate, and the right panels are the corrected calculations after subtracting the substrate 

information. 



65 

 

thicker films, the SrO fraction seems to be higher. This is reasonable considering the possible 

introduction of more SrO defects as the film grows thicker. However, as we pointed out in the 

previous argument, these results can have very large error bars due to the estimate of parameters; 

so to avoid over-interpretation, we shall only consider them as a side support rather than solid 

proof.     

Figure 4.8. The intensity ratios comparison at 0 and 81 degrees, as a function of film thickness. 
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4.5 Discussion and Summary 

In this chapter, we have reported our studies on the structural characterization and 

composition check of our SVO films by STEM/EELS and ARXPS. We have found that in the 

first three u.c. of the SVO film above the interface, a reduction of the oxidization state of both V 

and Ti can be observed, which leads to the conclusion that a significant amount of oxygen 

deficiency must exist in the same area. The coincidence of the thickness and the reported critical 

thickness has brought to our attention that there may be a link between this oxygen deficiency 

and the reported MIT. In the next chapters, we plan to test if the similar MIT can be observed, 

and whether our speculation is right that oxygen deficiency has a role to play behind it. 
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Chapter 5. Thickness-Dependent Properties   

5.1 Introduction 

In this chapter, we aim to test if our SVO films show the similar thickness-dependent MIT as 

the results reported by other groups, which we have already reviewed in the introduction chapter 

[21]. In order to do this, we will mainly focus on the investigation of the electronic properties of 

the SVO films and see if the behaviors show any significant change with the variation of film 

thickness. We have performed UPS, STS and transport measurements and found that the 

thickness-dependent MIT with the same critical thickness of 3 u.c. as previously reported was 

also observed in our SVO films. 

5.2 Thickness-Dependent Properties and Metal-Insulator Transition 

5.2.1 Transport Behavior 

The most direct way to characterize the MIT is through the transport measurements. In order 

to measure the transport, four-point probe method is applied. In Chapter 2, we have given a 

general introduction about this widely applied technique. Now we would like to elaborate a little 

bit and discuss how this method is applied for the thin films.  

For a two-dimensional thin film, sheet resistance is usually used for the characterization of 

transport behavior. In a regular bulk conductor with length L, width W and thickness t, the 

resistance is given by  

R=ρ
L

Wt
                                                                    (5.1) 
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where ρ is the resistivity of the sample. The above equation can be rewritten with a definition of 

sheet resistance Rs: 

R = 
ρ

t

L

W
= Rs

L

W
                                                             (5.2)    

If the thickness of the sample is known, then the bulk resistivity can be calculated from the 

above equation to be ρ=Rst. 

When four-point probe method is applied on a thin film, different configurations of the 

probes will usually lead to slight differences in the determination of transport. In our 

measurements, the most common configuration is applied like the one shown in Figure 5.1 (a). 

The four probes are aligned with an equal spacing of s between adjacent probes. For a thin film 

sample with infinite size (d>>s, a>>s) and a film thickness much smaller compared to the probe 

spacing s (t<<s), the current flow in the film is ring-shaped and the sheet resistance can be 

calculated to be [52-55] 

Rs = 
π

ln2
(

V

I
) = 4.5324∙ (

V

I
)                                                    (5.3) 

Where V and I are the measured voltage and applied current in the four-point probe setup. If the 

sample size is finite or the sample thickness cannot be ignored compared to the probe spacing, 

then additional correction factors f1 and f2 should be introduced into the above equation, and the 

new expression for the sheet resistance will be   

Rs = 4.5324∙ (
V

I
) f1f2                                                         (5.4) 
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For our ultrathin SVO films, the sample thickness is negligible compared to the probe spacing 

which will give f1=1. The f2 correction factor can be looked up from the chart displayed in Figure 

5.1 (b) once the sample size and probe spacing are measured.     

   By using the method stated above, we have measured and plotted out the sheet resistance and 

the corresponding bulk resistivity of a series of SVO films with thickness ranging from 3 u.c. to 

20 u.c.. The results are displayed in Figure 5.2. The sheet resistance shows an overall increase 

with decreasing film thickness, which agrees with our expectation that the system is driven 

Figure 5.1. Taken from reference [52, 53]. (a) The schematic configuration for the four point 

measurement for a finite thin film. (b) The corresponding correction factor f2 for the calculation 

of the sheet resistance with different diameter-spacing ratios. 
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towards MIT with thickness change. The 3 u.c. SVO film clearly shows an insulating behavior 

with its sheet resistance increasing with decreasing temperature. For the films with thickness 

between 4 u.c. and 10 u.c., the behaviors of the transport are similar. The sheet resistance first 

decreases with decreasing temperature start from 300 K, then at some point, it reaches a minima 

and starts increasing with further temperature decrease all the way to 5 K. As the film thickness 

increases, the minima temperature is pushed to the low temperature side and finally vanishes at 

20 u.c., where a fully metallic behavior is observed. We thus make the claim that we have 

observed an MIT with a critical thickness of 3 u.c.. The upturn of resistivity (sheet resistance) of 

the 4-10 u.c. SVO films at low temperatures fits into the picture of weak localization described in 

Figure 5.2. (a) The sheet resistance and (b) the calculated resistivity versus temperature for SVO 

films from 3 u.c. to 20 u.c.. The minima are indicated by arrows and the corresponding 

temperatures are marked out on the side. 
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the Anderson theory, in Chapter 6, we will perform more detailed analysis on these transport data 

and investigated the mechanism behind it. 

Also evident in confirming the MIT, there exists a small problem with transport 

measurements for our SVO films: the measurements are conducted ex-situ, and the SVO thin 

films are sensitive to degradation in the air. We solved this by depositing a layer of amorphous 

STO capping on top the SVO films for film protection before taking them out from high vacuum. 

However, the capping may still cause change to the properties of the film surface. To bypass this 

problem, we have also performed in-situ measurements on the electronic properties of SVO by 

UPS and STS, which are discussed in the following two sections. 

5.2.2 UPS Measurements 

As stated in Chapter 2, UPS is a very useful tool for detecting the electronic band structure. 

By probing the density of states near the Fermi surface, we will be able to observe the MIT 

directly if a band gap opens. In Figure 5.3 (a) and (b), we presented our UPS measurements for 

the valence band and near the Fermi edge for SVO films with 1-4 u.c. and 25 u.c. of thicknesses. 

The V 3d spectra observed at the Fermi surface show an obvious evolution with the change of 

film thickness. For help with the analysis, a plot of the intensity at the Fermi edge is shown in 

Figure 5.3 (c). A drop of the intensity at the Fermi edge is clearly noticeable in the SVO films 

with decreasing thickness, which eventually evolves into a gap of ~0.4eV at film thickness of 1 

u.c., as shown in Figure 5.3 (b). Considering the error bar of the measurements, we can conclude 

that below 2 u.c. thickness, there is no intensity at the Fermi edge. From 3 u.c., the intensity at 
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the Fermi edge starts to increase. The intensity at the Fermi edge for 4 u.c. film almost reach to 

the same level for 25 u.c. one, and the film becomes fully metallic. Our observed spectra are 

quite consistent with the reported results from Ref. [1], confirming the quality of our samples.    

5.2.3 STS Measurements 

Besides UPS, we have also taken STS measurements for our SVO films to help investigate 

the electronic properties on the film surface. We have mentioned in Chapter 2 that the intensity 

of the STS dI/dV measurements is proportional to the local density states, therefore making the 

observation of MIT possible. A note of caution must be mentioned here that the STS is a fairly 

local technique and not meant to detect a large portion of the sample like UPS does; therefore, 

single STS measurements performed in a limited area cannot represent the properties for the 

whole film. Nevertheless, this problem can still be solved in a statistical manner by taking 

Figure 5.3. (a) The UPS spectra of SVO films with thicknesses of 1-4 u.c. and 25 u.c.. (b) The 

same plot in (a) zoomed in near the Fermi edge (EF). (c) The intensity change at the Fermi edge 

with increasing thickness. 
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measurements on a reasonable number of points randomly sampled in different locations on the 

same sample. By comparing and averaging of these results, we will be able to obtain a more 

general look of the film’s electronic properties.  

In our experiments, we have measured the SVO films from 1-4 u.c., along with a STO 

substrate. Both STS current v.s. bias voltage (I-V) curves and the dI/dV curves are obtained with 

ten or more points are sampled for each film, with about 20 curves taken for each point. Figure 

5.4 (a) presents the averaged I-V curves of SVO films of different thicknesses compared with the 

one from STO substrate. The semiconductor-type curve shape exists in both STO substrate and 1 

u.c. SVO film, although the gaps are clearly in different voltage ranges, indicating that the 

deposition of 1 u.c. SVO drives the n-type STO substrate into p-type. When the film thickness 

increases to 2 u.c., the gap is no longer visible and the curves become more and more like the 

Figure 5.4. (a) Scanning Tunneling Spectroscopy I-V curves for 0.1% Nb-doped STO substrate 

and SVO films with thicknesses of 1-4 u.c.. (b) dI/dV-V curves for the samples in (c), measured 

by the lock-in amplifier. All the curves are measured at 100 K. 
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ones for metallic surfaces as the thickness increases. For more accurate analysis, we refer to the 

dI/dV v.s. bias voltage curves obtained by the lock-in measurements shown in Figure 5.4(b). 

With the directly proportional relationship between dI/dV intensity and local density of states, 

based on STS theory [8], dI/dV curves provide us a good indication of the metallicity of the 

sample. From the dI/dV results, obvious gaps can be observed in the both STO substrate and 1 

u.c SVO film; in the 2 u.c. film the gap is clearly closing and yields zero density of states only at 

zero bias; as the film thickness further increases, the density of states near zero bias also 

becomes higher, completing the transition from insulating to metallic structure. The observation 

is consistent with those from transport and UPS, confirming the occurrence of the 

thickness-dependent MIT with a same critical thickness as reported.    

5.2.4 Surface LEED Images 

Apart from the thickness-dependent MIT that we have confirmed above, we have also 

noticed some interesting phenomena from the LEED measurements. We have taken the LEED 

images for SVO films of different thicknesses, and observed surface structure change occurring 

at a critical thickness of 2-3 u.c.. As shown in Figure 5.5 (a), the LEED pattern remains 1x1 at 1 

u.c. and 2 u.c., while at 3 u.c. weak factional spots start to emerge and beyond 4 u.c. these 

fractional spots become clearly visible, forming a reconstructed c(2x2) pattern. A plot of the 

intensity profiles drawn from the images in Figure 5.5 (a) along a line connecting the (-1, 1) and 

(-0.5, 0.5) spots is shown in Figure 5.5 (b). From the intensity profile we can clearly see that 

below 3 u.c., there is no intensity at the place where the fractional spots emerge, and above 3 u.c. 
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the fractional spot intensity increase with film thickness. At the thickness of 100 u.c., the 

intensity of the factional spots is so strong that it exceeds the integer spots by a great amount, 

which is quite unusual. Since our trials on the LEED-IV refinements are not successfully, we are 

not able to obtain a possible surface structure model for these SVO films; However, the change 

of the surface LEED pattern occurring also at 2-3 u.c. hints that there might be some sort of 

structural change accompanying the MIT. Although we are unable to get any solid proof for this 

speculation, we still present the observation here in hope that it might become useful for future 

researchers. 

Figure 5.5. (a) Low Energy Electron Diffraction (LEED) patterns of SVO films with thicknesses 

of 1-4 u.c., 50 u.c. and 100 u.c. at E=80eV. (b) Intensity profiles along the cut line across the 

integer spot (-1,1) and the fractional spot (-0.5,0.5) from the patterns displayed in (a). The cut 

line is shown in the 100 u.c. pattern in (a) as the red dotted line. 
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5.3 Discussion and Summary 

In this chapter, we have confirmed that a thickness-dependent MIT is indeed occuring in our 

SVO samples with a same critical thickness of 2-3 u.c. as reported. Combined with our previous 

observation from STEM/EELS that points to the existence of oxygen vacancies in the first three 

u.c. of SVO films, we aim to united them under a big theoretical picture--the Anderson 

localization theory which predicts disorder-induced MIT. We will discuss about this in the 

following chapter. 
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Chapter 6. Nature of Metal-Insulator Crossover 

6.1 Introduction and Motivation  

In the previous chapters, we have investigated the SVO films from both structural and 

electronic point of view. We have shown by STEM and EELS that there exists oxygen deficiency 

in the first three layers above the interface, and UPS, STS and transport measurements confirms 

that the SVO film we grow on STO (001) substrate undergoes a similar thickness-dependent MIT 

as reported, with the same critical thickness. Now we will test our speculation that the oxygen 

deficiency we have observed is possibly responsible for inducing the MIT. 

In this chapter, we will first present some basic introduction of the long-established theory of 

Anderson localization and discuss how theory predicts that disorder can induce the MIT in a 

system. We will then continue to go further on the transport analysis we observed in the last 

chapter and also present some magnetoresistance measurements and show how oxygen 

deficiency drives the SVO films to insulating. 

6.2 Introduction of the Anderson Localization Theory 

This part of the theoretical discussion is mostly based on two very well-written reviews on 

Anderson localization: one by Kramer and MacKinnon on the general introduction on both 

localization theory and experiments [56], the other by Lee and Ramakrishnan which mostly 

focus on theory and the electron-electron correlation effects in disordered systems [57]. In the 

following sections we plan to address several aspects of the theory introduction. We will first 
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give a brief review of the history of localization and scaling theory; then we will talk about the 

weak localization scenario; and last, how electron-electron correlation effects fit in the picture.     

6.2.1 General Introduction and History 

Being a major part of condensed matter physics, the study of crystalline materials have been 

done intensively by many physicists since the introduction of band theory. In an ideal crystal, the 

periodicity of the lattice allows the single-electron Schrödinger equation to be solved with Bloch 

waves as solutions: 

ψ(𝐫) = eik∙r ∙u(r)                                                            (6.1) 

When the symmetry and atomic information are given, the band structures of a crystal can be 

calculated. However, in real life, the crystal is never perfect ordered. Defects can exist in many 

forms from impurities and vacancies to dislocation and grain boundaries. The existence of such 

“disorder” introduces an additional random potential to the periodic potential. When the disorder 

is weak, the random potential can be considered as a perturbation to the periodic potential; the 

electrons can still propagate in the lattice as Bloch waves, but will lose coherency on a scale of 

the phase coherence length lϕ, which is on the same order of the electron mean free path l, as 

shown in Figure 6.1(a) [56]. In such a case, we name the wave functions “extended states” since 

they can extend through the whole crystal. 

However, when the disorder in a system gets sufficiently strong that the random potential 

can no longer be treated as a perturbation, the situation becomes completely different. It was first 

pointed out by P. W. Anderson in 1958 [3] that in the case of strong disorder, the electrons may 
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become localized at the absolute zero of temperature, which means that the amplitudes for the 

electron wave functions are exponentially decaying from some point in space,  

|ψ(𝐫)| ∼ exp (|𝐫 − r0|/ξ)                                                     (6.2) 

where ξ is the localization length, like shown in Figure 6.1(b). Under such a scenario, the 

zeroth-order of the eigenstate is bound by the random potential and the admixtures between 

different orbitals can be treated as perturbation. It is not likely that the admixtures will produce 

extended states through the linear combinations of localized orbitals because for the orbitals that 

are close in space and have significant overlaps in the wave functions, their energy are generally 

very different which makes the perturbation term small; while for the orbitals that are close in 

energy, they are usually far from each other in space and almost does not overlap. As a result, the 

wave functions will be exponentially localized and restricted to finite regions in space. 

Figure 6.1. Taken from Reference [56]. Electron wave functions of (a) extended states with 

mean free path l and (b) localized state with localization length ξ. 
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Experimentally, these electrons cannot contribute to transport and the DC conductivity σDC will 

vanish at the absolute zero temperature, T=0K, making the system into an insulator. 

From the above discussion of the cases of weak and strong disorder, we would naturally 

assume that for a system with moderate disorder, there exists a mixture of extended states and 

localized states, which is indeed the case. In 1967, Mott proposed that by changing the energy of 

the eigenstates the states may change between being localized to being extended. The critical 

energy that marks this change is called the mobility edge [58]. If the Fermi energy falls in the 

region with only localized states, the conductivity σDC will be zero at T=0 K, like in the 

strong-disorder limit; while if the Fermi level falls in the region with extended states then σDC 

will have some finite value and the system will be metallic. Therefore, the mobility edge also 

marks the transition of a system between being metallic and insulating.  

In the mid-seventies of the last century, Thouless and many others began to quantitatively 

discuss the localization problem and pointed out that when a finite system doubles in size, the 

nature of the eigenstates, localized or extended, seems to be able to be controlled by the 

sensitivity to boundary conditions [59-61]. In the paper he stated that the conductance of the 

finite size sample G is dimensionless and introduce the quantity of dimensionless conductance, 

g =
G

e2

ℏ⁄
                                                                   (6.3)    

which is directly related to the sensitivity of the boundary conditions and can be physically 

measured, thus being the single parameter which controls the nature of a system when its size 

gets doubled. The theory was further developed into the scaling theory by Wegner in 1976 [62-65] 
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and later combined with perturbation theory by the famous “Gang of Four” in 1979 [66]. In the 

following section, we will introduce the scaling theory in more details. 

6.2.2 The Scaling Theory 

In scaling theory, the basic assumption is that the behavior of the system near the transition 

between localized and extended states can be sufficiently described by using only one scaling 

variable, namely the conductance. In order to describe the conductance g(L) of a system with the 

volume L
d
, where d is the dimension, we construct the scaling function β(g) by taking the 

logarithmic derivative of g(L): 

β(g) =
d(lng)

d(lnL)
=

L

g
∙

dg

dL
                                                        (6.4) 

It is assumed that β(g) only depends on the conductance itself and not on the system size L. 

Later we will discuss more about this function; for the moment let us first take a look at the 

conductance itself. We have briefly mentioned the a few characterization lengths of the system in 

the previous introduction section and now we plan to elaborate a bit more for the purpose of 

understand the conductance g(L) in different regimes. 

In a disordered system with size L, the momentum of the electrons will be destroyed after 

they travel for some distance, mainly due to due to the elastic scattering by the static centers in 

the lattice; this distance is called the electron mean free path l. Beyond l, the electron motion is 

no longer ballistic; therefore l defines the lower length cutoff for the diffusive motion of the 

electron. Now let us consider two extreme limits. When the disorder in the system is very weak, 

the scattering due to the extra randomness is small and the electrons still behaves very much like 
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plane-waves. In such a case, one would expect a larger electron mean free path l compared to the 

Fermi wavelength kF
−1. In the limit of (kFl)−1 ≪ 𝑙, we end up in the metallic regime where the 

DC conductivity is independent of the size of the system L when the system is large enough and 

the electron mean free path is well-defined, or to say, L ≫ 𝑙. The Ohm’s Law holds true under 

this limit, which gives for L ≫ 𝑙, 

g(L) = σLd−2                                                               (6.5) 

In the other limit, we may have a smaller mean free path compared to the electron 

wavelength λ. In such a case we enter the insulating regime where the electrons are localized. 

The DC transport under this scenario is contributed by electron hopping between localized states 

which are energetically close. The envelopes of the localized wave functions are characterized by 

the localization length ξ. Generally speaking, the localization length ξ is bigger than the electron 

mean free path l in this regime and therefore we use ξ as a characteristic parameter. For a large 

enough system L ≫ ξ, we have a non-Ohmic description of the conductance 

g(L) ∝ e−L/ξ                                                               (6.6) 

Now that we have the two forms of the conductance in different regimes, we can calculate 

the scaling function β(g). 

In the metallic regime, the conductance is very large, i.e. g ≫ gc, where gc is a characteristic 

conductance on the order of π 
-2

. In this case we have 

β(g) = d − 2                                                               (6.7) 

In the insulating regime, g ≪ gc, 
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β(g) = ln (
g

gc
)                                                               (6.8) 

Between the two limits or strong localization and Ohmic behavior, we may have an 

intermediate precursor state which is the weak localization. In this case, a correction to the DC 

conductivity can be calculated according to the perturbation theory. The results for all three 

dimensions are given in the following forms: 

σ3D(L) = σ0 −
e2

ℏπ3 (
1

𝑙
−

1

L
)                                                   (6.9a) 

σ2D(L) = σ0 −
e2

ℏπ2 ln(
L

𝑙
)                                                     (6.9b) 

σ1D(L) = σ0 −
e2

ℏπ
(L − 𝑙)                                                    (6.9c) 

Correspondingly, a correction of a g
-1

 term is added to the scaling function  

β(g) = d − 2 −
a

g
                                                           (6.10) 

where in this case, g is defined as σ(Lπ)d−2. 

Given the above equations, the behavior of the scaling function β(g) can be obtained on the 

plausible assumptions that β(g) is monotonic and continuous. The results are shown in Figure 6.2 

[66]. 

In one dimension, i.e. d=1, β(g) is always negative and decreases with decreasing 

conductance. In other words, as the system size keeps increasing, the conductance g will 

decrease to zero at a faster and faster pace. All states are localized under this scenario. 

In two dimensions, again we always have β(g) < 0; so when the system gets big enough, it 

will always become localized. In the weak-disorder limit the localization length can be estimated 

based on the perturbation theory as  
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ξ ∼ le
π

2
kFl

                                                                 (6.11) 

We can see that in this case the localization length shows an exponentially dependence on 

the mean free path. This means that although there are no truly extended states in two dimensions, 

for a system with large conductance and weak disorder, the localization length can be 

astronomical and the corresponding effects will be difficult to observe from experiments. Later in 

Figure 6.2. Taken from Reference [66]: Plot of the scaling function β(g) v.s. lng for different 

dimensions. 
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the next section, we plan to have some more detailed discussion about the 2D weak localization 

case since this is of major relevance to our study. 

In three dimensions, we have positive β(g) on the large conductance side and negative β(g) 

on the small conductance side, which means that depending on the initial g0 we start with, the 

conductance either decreases or increases as the system sizes increases, ending up on one limit of 

the β(g) curve. Macroscopically, this means that the system can be either metallic or insulating. 

The point where β(g) passes zero therefore marks a change of regime, i.e. the metal-insulator 

transition. Compared to the previous cases, the three dimensions is the only case where a 

disorder-induced MIT can occur in the system. However, this is already beyond the scope of our 

study and we will not give more discussion about this scenario. 

One thing to note is that the whole discussion above is based on the simplified assumptions 

that there are no electron-electron correlations or magnetic scattering in the system. With 

electron correlations, thing get more complicated and extra corrections have to be made. We will 

also talk about this in more details later in this chapter.  

6.2.3 Weak Localization 

Now that we have discussed the basic predictions of the scaling theory, let us come to the 

regime of weak localization which is most closely related to our experimental observations, by 

which we mean the upturn of resistivity at low temperatures in the 4-10 u.c. ultrathin SVO films 

that we presented in the last chapter. We know from the arguments from the previous section that 

weak localization is some sort of intermediate state between the metallic and insulting limits 
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which is induced by a moderate amount of disorder. Now we would like to go deeper into the 

discussion about the nature of this effect and how it caused the resistivity increase at low T.  

To understand the origin of weak localization, we have to come back to the quantum 

mechanical nature of transport. We have mentioned about that in a system with disorder the 

nature of electron motions is diffusive, which we can understand as a random walk controlled by 

the random scatterings from the impurities. The transport process is related to the probability of 

an electron to propagate in space between point A and point B. Classically, it is assumed that the 

total probability is simply the sum of the probabilities of the paths between A and B; but in 

quantum mechanics, this total probability for an electron to move from a point A to a point B is 

calculated by summing up the amplitudes rather than the probabilities of the paths. This will 

result in a number of extra interference terms caused by the self-intersecting paths and increase 

the probability of the electron to go around in loops, thus increasing the resistivity. The process is 

also called coherent backscattering, which controls the weak localization effect. In low 

dimensions, due to the dimensionality restriction, it is much more likely to find self-intersecting 

paths compared to the higher dimensional case, thus, the weak localization effect is much 

stronger in 1D and 2D.  

Experimentally, in 2D, the weak localization takes form as the logarithm decrease of the 

conductivity of thin metallic films with decreasing temperature as T approaches the absolute zero. 

All the discussion we have had so far from the previous part is still limited to zero temperature 

and we have to make some modification to the theory to predict the temperature dependent 
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behavior of a disorder system. In his 1977 paper, Thouless pointed out that [67] the quantum 

interference that accounts for the weak localization will be reduced by the random fluctuations in 

the time evolution of an electronic state caused by inelastic scattering. Assume that an electron 

state has a lifetime of τi before its phase again gets destroyed by the inelastic scattering, then the 

distance that the electron diffuses within τi can be calculated as  

Lin = √Dτin                                                              (6.12) 

where D is the diffusion constant, τin is the lifetime of the electron state we talked about and is 

temperature-dependent. Lin denotes the mean distance between two successive inelastic 

scattering processes that the electron undergoes, which serves as a cutoff length for the quantum 

interference. Therefore, the temperature-dependent Lin(T) can be used as a system size in the 

original T=0 theory. Suppose p is a parameter characterizing the scattering mechanism and 

τin ∝ T−p, we can then obtain  

Lin = aT−p/2,                                                             (6.13)
 

By plugging this expression back into Equation 6.9a-c, we get   

σ3D(T) = σ0 +
e2

ℏπ3

1

a
Tp/2)                                                  (6.14a) 

σ2D(L) = σ0 +
p

2

e2

ℏπ2 ln(
T

T0
)                                                  (6.14b) 

σ1D(L) = σ0 −
e2

ℏπ
T−p/2                                                    (6.14c) 

and now we have the formula for temperature-dependent behaviors of conductivity. Later in this 

chapter, we will apply these to our experimental data for test. However, one thing to note is that 
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electron-electron interactions/correlations will also result in a lnT correction to the conductivity 

in 2D [68, 69], which we show in the next section. 

The inelastic cutoff length is important for the determination of effective dimensionality 

when characterizing the system. In the case of a thin film with film thickness t, if t < Lin, we can 

view it as a 2D case; otherwise the 3D theory has to be applied. Moreover, since Lin is 

temperature-dependent, for the same film, the change of temperature may also change the 

behavior with a dimensional crossover at some temperature Tcrossover. It has also been proposed 

by a few scientists that the electric field can also provide a cutoff length [70-72]; however, it is 

beyond the scope of our study and therefore will not be discussed here. 

6.2.4 Electron-Electron Correlation Effects and Magnetoresistance (MR) 

The discussion we have had above is based on non-interacting disordered system; with 

electron interactions/correlations the behavior of the disordered system gets more complicated. 

There have been many studies from the 1980s dealing with disordered Fermi liquid [73-83]. We 

will not address to the detailed calculation except presenting the experimental prediction here. In 

a 2D system, the electron correlations give rise to a correction to the conductivity which is also 

proportional to lnT, so that in the correlation picture, the conductivity can be rewritten with an 

additional Coulomb term, 

σ(T) = σ(T0) +
1

2

e2

ℏπ2
[αp + (1 −

3

4
Fσ̃)]ln(

T

T0
)                                    (6.15) 

where p is the parameter that determines the dominant inelastic relaxation mechanism; usually 

p=1 for electron-electron scattering and p=3 for electron-phonon scattering.  
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Since both localization and electron-electron correlation effects contribute to a σ ∝ lnT 

behavior in 2D, we need to find a way to distinguish the two effects. It has been proposed that 

this problem can be solved through the application of an external magnetic field. It has been 

proposed by Altshuler et al [84] that a uniform magnetic field will break the time-reversal 

symmetry and suppress the localization effect by destroying the phase coherence of the closed 

path electron waves, thus giving rise to a negative magnetoresistance experimentally. Later it was 

found by the quantitative studies of Hikami et al [73] on the MR for 2D disordered systems that 

in the presence of spin-orbit scattering a positive magnetoresistance may also be possible. 

However, while both negative and positive MR can happen for a disordered system; electron 

correlations, on the other hand, always lead to a positive MR.  

When neglecting the Zeeman splitting, the conductivity of a 2D disordered system in a 

magnetic field with can be expressed by a modified version of the Maekawa-Fukuyama formula 

[85], 

σ(H)−σ(0)

e2

πh

=

α {−Ψ (
1

2
+

He

H
) +

3

2
Ψ (

1

2
+

Hin+Hso

H
) −

1

2
Ψ (

1

2
+

Hin

H
) − [ln (

Hin+Hso

He
) +

1

2
ln (

Hin+Hso

Hin
)]} + AH2                       

                                                                         (6.16) 

where Ψ is the digamma function, α=1 for weak localization, A is constant, and He, Hin, Hso are 

effective fields related to the elastic, inelastic and spin-orbit relaxation times respectively. The 

forms of He, Hin and Hso are similar, given by  

He=h/(8πeDτe)=h/(8πeLe
2
)                                                   (6.17a) 
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Hin=h/(8πeDτin)=h/(8πeLin
2
)                                                 (6.17b) 

Hso=h/(8πeDτso)=h/(8πeLso
2
),                                                (6.17c) 

where τin, Lin are inelastic relaxation time and the inelastic cutoff length we mentioned in the 

previous section and τso, Lso is defined similarly for spin-orbit scattering. Note that when we have 

both inelastic scattering and spin-orbit scattering, when we make the argument about the 

dimensionality of the system, we have to be careful about which is the more dominating effect 

and using the correct cutoff length. The inelastic cutoff length can also be used for determining 

the p-parameter for scattering mechanism, according the Equation 6.13. However, when we add 

the existence of electron correlations to this picture, an extra Hartree term correction will be 

introduced which predicts lnH behavior in high field and H
2
 behavior in low field [57]. This 

makes the experimental interpretation much more difficult. Later we shall see this when we 

present our MR data in the next section.       

6.2.5 Strong Localization 

Till now, we have discussed about the weak localization and the effects due to correlations, 

but what about the case of strong localization? A classical theory to treat the transport behavior in 

the strong localization regime is the variable-rang hopping (VRH) model proposed by Mott [86]. 

Earlier in this chapter, we have mentioned that the transport in a strongly localized system is still 

possible by the hopping between localized states that are spatially far apart while being 

energetically close under thermal activation. Mott proposed that the hopping probability p 

between the states is given by 
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p ∝ exp (−αR − βΔ)                                                        (6.18)  

where R and Δ are respectively the spatial and energetical distance between the localized states, α 

is proportional to the inverse of the exponential decay length of the states, and β is (kBT)
-1

, with 

kB being the Boltzmann constant and T being the temperature. In order to get the largest 

probability, we have to find the relationship between R and Δ. If we assume the localization 

centers have a homogeneous distribution in a d-dimensional space, then we have 

Δ ∝ (Rdn(EF))−1                                                          (6.19) 

From Equation 6.18 and 6.19, we will be able to maximize p at some distance Rmax by 

minimizing the part in the exponent. After some algebra, we get lnp ∝ T−1/(d+1). Since the DC 

conductivity is also proportional to the hopping probability p, we can express it as    

σ = σ0 ∙ exp (−(
T0

T
)1/(d+1))                                                   (6.20) 

which is also known as the famous Mott T
-1/4

 law in 3D case (d=3). This is also part of the theory 

that we plan to test with our data in the next section. 

6.3 Experimental Study of disorder in SVO Films 

Now that we finished the discussion on theory, let us come back to our experimental data 

and see how well they fit in the picture. This is discussed from two major aspects: transport and 

MR data. We will show that the transport data is consistent with the theoretical predictions for a 

system with both disorder and electron correlations; and the competition of the two mechanisms 

can be seen from the MR data. By introducing extra oxygen vacancies into the system, we can 

drive the system into insulating state.    
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6.3.1 Transport  

We will start with some more detailed analysis of the transport data we have presented in the 

last chapter. In Figure 5.4, we have shown that the thickness-dependent MIT is indeed observed 

in the SVO transport data with a critical thickness of 3 u.c.. For SVO films between 4 u.c. and 10 

u.c., the upturn for resistivity in the low temperatures are clearly visible and therefore these films 

fall into the weak localization regime. For 3 u.c. and 20 u.c. SVO film respectively, the insulating 

and metallic behavior is observed for all temperature range. We will analyze each of these cases 

separately below. 

6.3.1.1 The Insulating Regime 

The VRH model can be used to describe the strong localization behavior. By rewriting 

Equation 6.19, we get 

lnσ = A + B ∙ T-1/(d+1)                                                        (6.21) 

where σ is the conductance, d is the dimension, T is the temperature, and A and B are constants. 

In our case of ultrathin films we have d=2, thus a linear relationship of the logarithm of the 

conductance and T
-1/3

 is expected. In Figure 6.3, we present the fitting trials we have performed 

on our 3 u.c. SVO transport data with different models. We first tested the fitting with the simply 

thermal activation model where we expect lnσ ∝ 1/T according to the Arrhenius equation, the 

result is shown in Figure 6.3 (a). We can see that in the 1/T Arrhenius plot there is an obvious 

curvature in the data, indicating the failure of the linear fitting. We then tested the strong 

localization VRH model both in 3D and 2D, and the results are shown in Figure 6.3 (b) and (c). 
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The 2D model fitting of lnσ v.s. T
-1/3

 seems to describe the data better compared to the 3D model 

with a higher R-square value of 0.9989 v.s. 0.9980. It should be noted that the original VRH 

model applies for low temperature, and our data ranging from 125-300 K does not fit into this 

category. However, it has also been argued that VRH at high temperature may still be possible 

due to polaron assisted hopping [87]. Due to the lack to low temperature transport data due to the 

limited measurement range of the instrument, the thorough interpretation of the insulating 3 u.c. 

film cannot be obtained; but the good fit of the 2D VRH model indicates that at the high 

temperature range we have observed, VRH may still be our main conduction mechanism, thus 

supporting the 2D strong localization picture.          

6.3.1.2 The Metallic Regime 

The 20 u.c. SVO film we have grown already lands in the metallic regime and we have fitted 

its resistivity data using the following formula:  

Figure 6.3. Fitting of the transport data of the 3 u.c. SVO film with different test models. (a) The 

thermal activation model lnσ v.s. 1/T; (b) the 3D VRH model lnσ v.s. T
-1/4

; (c) the 2D VRH 

model lnσ v.s. T
-1/3

. 
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ρ=ρ
0
+AT

2
                                                                (6.22) 

As shown in Figure 6.4 (a), the good fit between the experimental data and the quadratic curve 

indicates a Fermi liquid behavior as predicted for correlated system which is also observed in the 

bulk SVO and other TMOs [27, 88-92]. For the 4-10 u.c. films in the weak localization regime, 

the metallic part of the transport data also shows the same quadratic behavior, as shown in the 

resistivity v.s. T
2
 plot in Figure 6.4 (b). The fitting parameters for all five films are summarized 

in Table 6.1 below. 

 

From the table above, an increase of the residual resistivity ρ0 with film thickness is 

observed as expected, while the coefficient A does not show obvious trend with the change of 

thickness. The fitting parameters for all our SVO thin films presented in this section are 

Figure 6.4. Fitting of the transport data of the 4-20 u.c. SVO films to the Fermi-Liquid model 

ρ=ρ0+AT
2
 in the metallic regions. (a) 20 u.c. SVO film, from 5-300 K; (b) 4-6 u.c. SVO film, 

from 170-300 K; and 8-10 u.c. SVO film, from 120-300 K. 
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consistent with those reported for the SVO bulk with ρ0 ranging from 6.0 x 10
-6

 Ω cm to 3.0 x 

10
-2

 Ω cm and A ranging from 4.0 x 10
-10

 Ω cm/K
2
 to 6.0 x 10

-8
 Ω cm/K

2
 [27, 89, 93, 94]. 

Table 6.1. Fitting parameters of resistivity of the 4-20 u.c. SVO films to the quadratic Fermi 

liquid model ρ=ρ0+AT
2
. 

Film Thickness ρ0 (Ω cm) A (Ω cm/K
2
) R-square 

20 u.c (1.2696 ± 0.0004) x 10
-4 

(5.90 ± 0.01) x 10
-10

 0.9992 

10 u.c (2.561 ± 0.001) x 10
-4

 (8.61 ± 0.02) x 10
-10

 0.9989 

8 u.c (2.194 ± 0.001) x 10
-4

 (6.27 ± 0.02) x 10
-10

 0.9987 

6 u.c (1.7812 ± 0.0005) x 10
-4

 (6.866 ± 0.009) x 10
-10

 0.9997 

4 u.c (1.4125 ± 0.0002) x 10
-4

 (4.909 ± 0.003) x 10
-10

 0.9999 

  

6.3.1.3 The Weak Localization Regime 

We have shown above that the on both metallic and insulating sides, the behavior of the 

SVO thin films can fit in the picture describing a disordered correlated system. Now we would 

like to come to the most important regime of weak localization and analyze the system behavior. 

From Equation 6.14b, we expect a linear relationship between the conductance and the logarithm 

of temperature in the 2D weak localization case. In Figure 6.5, the fittings of σ v.s. lnT for 4-10 

u.c. films in the low temperature range are displayed with the fitting parameters summarized in 

Table 6.2; the fitting range for the 10 u.c. film is 5-30 K while for 4-8 u.c. films it is 5-50 K. 
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From Table 6.2, an obvious decrease in the coefficient A with thickness can be observed, 

which is directly related but not equal to the residual conductance. For the analysis on parameter 

B, let us come back the original expression of the 2D weak localization model. From Equation 

6.14b, we can get B =
p

2

e2

ℏπ2 and convert the B coefficient to the value of p. The calculations 

gives p=3.87 for 4 u.c. film, p=4.04 for 6 u.c. film, p=3.18 for 8 u.c. film and p=2.89 for 10 u.c. 

Figure 6.5. Fitting of the conductance v.s. the logarithm of temperature for the 4-10 u.c. SVO 

films based on the 2D weak localization model. The fitting range is 5-30 K for the 10 u.c. film 

and 5-50 K for the 4-8 u.c. films. 
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film. We have stated before that the value of p dependents on the inelastic scattering mechanism. 

If p=1, the main mechanism is electron-electron collisions; while p=3 indicates electron-phonon 

scattering [57]. Our values of p do not seem to be in very good agreement with this prediction. 

As we may recall, the electron-electron correlations will also give rise to a lnT behavior in the 

conductance at low temperature, and this correlation effect is additive to the effect caused by 

disorder. Therefore, we can conclude that in our SVO films, the conductance is not only 

attributed from disorder; the correlation effect must have also played a role. But which effect is 

more dominating calls for further investigation.   

Table 6.2. Fitting parameters of the conductance v.s. the logarithm of temperature for the 4-10 

u.c. SVO films based on model σ=A+BlnT. 

Film Thickness A (S∙square) B R-square 

4 u.c (3.465 ± 0.008) x 10
-4 

(4.76 ± 0.03) x 10
-5

 0.9988 

6 u.c (7.724± 0.004) x 10
-4

 (4.97 ± 0.01) x 10
-5

 0.9996 

8 u.c (1.520 ± 0.002) x 10
-3

 (3.913 ± 0.007) x 10
-5

 0.9998 

10 u.c (2.560 ± 0.001) x 10
-3

 (3.56 ± 0.04) x 10
-5

 0.9983 

 

To make sure that we are not messing up with the system dimension when we analyze the 

data, we have further checked it by trying to fit the conductance to the 3D weak localization 

model where σ ∝ Tp/2 is expected. Since the p-values we have obtained are close to the 

electron-phonon scattering case, we have used p=3 for the fitting. The results are displayed in 
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Figure 6.6. For all four cases, the low temperature side data shows obvious deviation from the 

fitting, with R-square values ranging from 0.84 to 0.87, apparently indicating the failure of the 

3D weak localization model. 

6.3.1.4 The Effects of the Introduction of the Oxygen Vacancies 

Now let us stop and make a brief summary of what we have observed so far: in the 

insulating regime, the 2D VRH dominates the conduction; in the metallic regime, the behavior of 

Figure 6.6. The fitting of the conductance v.s. T
3/2

 for the 4-10 u.c. SVO films based on the 3D 

weak localization model. The fitting range is 5-30 K for the 10 u.c. film and 5-50 K for the 4-8 

u.c. films, same for the fitting with the 2D weak localization model. 
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the SVO thin films fit into the Fermi liquid theory which can be used to describe a disordered 

system with correlations; in the weak localization regime, the 2D lnT behavior is observed, but 

as an effect of the coexistence of disorder and correlations. In one word, what we have observed 

so far all points to the conclusion that neither disorder and correlation effects are negligible when 

it comes to the contribution to the transport of the SVO thin films, which is not beyond 

expectation due to the nature of this system, as we stated in the introduction chapter. But as our 

purpose is to investigate how significant the effect of disorder is in this system, we would like to 

try and find a way to separate the effect of disorder and correlations. Since the major disorder in 

our films is oxygen vacancies, we cannot help wondering: what would happen if we deliberately 

introduce more oxygen vacancies into the SVO thin films? If the disorder-induced localization 

effect is truly significant, then it is very likely that by introducing extra oxygen vacancies into an 

originally metallic film, we will be able to drive it to insulating. In fact this is what we did. Since 

we are already growing the SVO films in vacuum, it is not possible for us to introduce oxygen 

vacancies into the films during the growth process by tuning down the oxygen partial pressure. 

Therefore, we have turned to an alternate way by post-annealing the film after growth in vacuum, 

but under a higher temperature than the growth temperature. With a reasonable annealing 

temperature and long enough annealing time, we should be able to introduce a significant 

amount of oxygen vacancies into the SVO thin films.  

In Figure 6.7, we present the transport data for three 10 u.c. SVO films, one as grown 

without any post-annealing, and other two post-annealed under 850˚C for 20 and 40 minutes in 
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vacuum, respectively. We can see that both the 10 u.c. as-grown film and the 10 u.c. film 

post-annealed for 20 minutes show similar weak localization behavior, while the 10 u.c film 

post-annealed for 40 minutes has already become insulating. Although it may seem unbelievable 

that the extra annealing time could make such a significant difference, we can try and offer an 

explanation for this observation. At the beginning of the post-annealing process, just like in most 

cases, the atoms will rearrange themselves due to the extra thermal activation and result in a 

Figure 6.7. The sheet conductance for 10 u.c. SVO films as grown and post-annealed under 

850˚C for 20 minutes and 40 minutes, respectively. 
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more ordered film. Once the best order is achieved, the disorder effect resulted from the 

accumulation of oxygen vacancies becomes more and more significant as the annealing time 

increases. Eventually, at some point, the disorder finally drives the system to insulating.     

6.3.2 Magnetoresistance (MR) 

We have shown in the previous section that by introducing more oxygen vacancies, we are 

able to drive an originally metallic SVO film to insulating. This indicates that disorder caused by 

oxygen vacancies may be the dominant driving force for MIT, as we predicted. For more support, 

we have conducted more investigations with the magnetoresistance measurements. To begin with, 

we have chosen a 4 u.c. and a 6 u.c. SVO film to perform MR measurements on since these films 

are closer to MIT and show more obvious upturn in the resistivity at low temperatures. We have 

also tested the MR for the 10 u.c. films, without and with post-annealing, to see if they yield any 

difference. The results are presented in Figure 6.8 and Figure 6.9.     

In Figure 6.8 (a) and (b), we present the MR data for the 4 u.c. and 6 u.c. SVO films. We can 

see that for the 4 u.c. film, an overall negative MR is observed below 7 K, which is consistent 

with the prediction that the disorder, rather than electron correlations, is a more dominating 

factor for the transport behavior. As the temperature increases, the cutoff provided by the 

temperature becomes more significant than that provided by the field, so the negative MR is no 

longer observed. However, we have also noticed that in the regime where negative MR exists, a 

slight positive magnetoresistance can be seen at low field despite the overall negative trend. This 

can be explained with the consideration of the spin-orbit effect, which has a smaller effective 



102 

 

field Hso and becomes more significant at low field if Hso and Hin are comparable. This effect is 

also seen for the 6 u.c. SVO film. At 5 K, the MR for 6 u.c. film shows strong competition 

between weak localization and spin-orbit scattering and a smaller absolute value for MR 

Figure 6.8. (a-b) The field-dependent MR data at different temperatures for a 4 u.c. and a 6 u.c. 

SVO films, respectively. The magnetic field is applied in the perpendicular direction to the film 

plane. (c-d) The magnetoconductance the same films as a function of the magnetic field under 

different temperatures. The solid lines are the fitting curves based on the model depicted in 

Equation 6.16. 
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compared to the 4 u.c. film. Also, above 5 K the negative MR can no longer be seen in the 6 u.c. 

film, while for the 4 u.c. film this does not happen until 9 K. These results indicated that the 

disorder-induced weak localization effect is weaker in the 6 u.c film than the 4 u.c., which agrees 

with our assumption. 

In Figure 6.8 (c) and (d), we conducted the fitting of the magnetoconductance based on 

Equation 6.16 on the 4 u.c. and 6 u.c. curves with the negative MR. This equation takes the effect 

of spin-orbit scattering into consideration in a weakly disordered system, the extra AH
2
 term 

accounts for the Lorentz force at strong magnetic fields. All of our fitting results give α value 

equal or close to 1, which is consistent with the theoretical prediction for weak localization α=1. 

The Hso and Hin values are summarized in Table 6.3. For all the fitting data, the Hso and Hin 

values are comparable, which is consistent with the observation of the competition between the 

positive and negative MR. From the Hin value, the inelastic cutoff length Lin can be calculated 

from Equation 6.17b. The Lin value ranges from 11.08~16.16 nm for these two films, which is 

way beyond the film thickness. Therefore, our arguments for the 2D localization regime hold true. 

For the curves with positive MR and negative magnetoconductance, similar fitting with the same 

model can be applied. However, since this model does not include the electron correlations, the 

quantitative interpretation for the positive MR data will not very accurate, which makes estimate 

of p-parameter from Lin impossible due to the limited number of reliable data points. Therefore, 

we are not able to determine the major inelastic mechanism for our SVO films from the 
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experimental data. Nevertheless, the qualitative analysis of MR shows consistency with the 

speculation that the disorder effect dominates over the electron correlations in our SVO films.  

Table 6.3. Hso and Hin value for 4 u.c. and 6 u.c. films obtained from the fitting to the 

Maekawa-Fukuyama formula (Equation 6.16). 

Temperature 

4 u.c. 6 u.c. 

Hin (T)
 

Hso (T)
 

Hin (T) Hso (T) 

5 K 0.636 0.315 0.69 0.66 

7 K 1.181 0.874 - - 

9 K 1.34 0.93 - - 

   

Similar MR measurements have been carried out for two 10 u.c. SVO films, one as grown, 

and one post-annealed at 850˚C for 40 minutes. The results are shown in Figure 6.9. As displayed 

in Figure 6.9 (a) and (b), the MR for a 10 u.c. film remains positive down to 5 K, while the post 

annealed film shows negative MR below 6 K. Similarly, calculations of Lin can be obtained from 

the fitting on the magnetoconductance data in Figure 6.9 (c) and (d) which ranges from 

15.57~20.29 nm, again satisfying the 2D limit for our argument.  

The negative MR observed for the 10 u.c. post-annealed film agrees with the previous 

prediction that the post-annealing process introduces a significant amount of disorder into the 

film, which dominates over the electron-electron correlation effects. Combined with the observed 

MIT induced by the same post-annealing process, the MR data acts as a support for our theory 
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that both disorder and electron correlations exist in the SVO ultrathin films and that disorder 

makes more significant contribution in the control of the transport behavior, and therefore is 

responsible for the observed thickness-dependent MIT. However, one other explanation exists for 

Figure 6.9. (a)-(b) The field-dependent MR data at different temperatures for a 10 u.c. as grown 

SVO film, and a 10 u.c. SVO films post-annealed under 850˚C for 40 minutes, respectively. 

The magnetic field is applied in the perpendicular direction to the film plane. (c)-(d) The 

magnetoconductance the same films as a function of the magnetic field under different 

temperatures. The solid lines are the fitting curves based on the model depicted in Equation 

6.16. 
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the MR effects observed in this study: the diffusion of the Ti atoms with reduced oxidation states 

into the SVO film near the interface may have possibly introduced a small order of magnetism in 

the film which could also result in a negative MR. This possibility cannot be completed ruled out 

due to the nature of the film growth, since the intermixture of atoms at the interface due to 

diffusion is unavoidable. Nevertheless, the possible magnetism is resulted from the reduction of 

the Ti oxidation states and therefore can still be attributed to the existence of the oxygen 

vacancies we have deduced in Chapter 4 from STEM/EELS. As a conclusion to this study, we 

state that our observations are all consistent with the picture of disorder-induced MIT. However, 

how exactly disorder plays its role remains a very complicated topic calling for more 

investigation from the future research workers.   

6.4 Summary 

In the previous chapters, we have characterized our SVO films with various tools on its 

structural and electronic properties. We have deduced the existence of significant oxygen 

vacancies in the first three layers of the SVO film near the interface, coinciding with the critical 

thickness for the thickness-dependent MIT, which is confirmed by the measurements from UPS, 

STS and transport data. We have made the assumption that the oxygen vacancies as a form of 

disorder is mainly responsible for the observed MIT, and in this chapter, we have tested our 

assumption by further analysis of the transport data and MR measurements. The transport data 

for our SVO films in all three regimes fit into our expected picture of a disordered Fermi Liquid. 

The MR data is consistent with the prediction that disorder effect is more dominant than 
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electron-electron correlation effects in the ultrathin SVO films close to the critical thickness. By 

deliberately introducing more oxygen vacancies into the system, we manage to drive an 

originally metallic SVO film to insulating one, and the disorder effect is again observed from the 

MR data after post-annealing, which supports our speculation that disorder is the major 

contribution behind the thickness-dependent MIT, thus completing the story of this thesis 

project. 
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