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Abstract
The detection of gravitational waves has further motivated the scientists to push

horizons for an improved sensitivity sphere of the advanced LIGO. Below 100 Hz, design

sensitivity of the advanced LIGO is predicted to be limited by the quantum backaction or

the quantum radiation pressure noise (QRPN). In this thesis, I present the experimental

progress towards the measurement of the QRPN. This work is in part an effort towards

establishing a tabletop test experiment to calibrate the QRPN evasion through various

proposed schemes, and further bring to light new nonlinear optomechanical dynamics.

The experiment consists of a high optical and mechanical quality microresonator used

as a movable end mirror in a high finesse optical cavity. To effectively infer the quantum

superposition of the optomechanical interactions, the optomechanical dynamics must be

stabilized and the microresonator must be maximally decoupled from the noisy thermal

environment. I demonstrate the optical dilution of the Brownian dissipation of the mechani-

cal state of the microresonator, by exploiting the optical spring effect of the optomechanical

system. I also discuss the pump-probe scheme where two fields are injected into the

optomechanical cavity, for enhancing the optomechanical correlations and hence exposing

the QRPN.

I further demonstrate a new scheme for the optical trapping of the mechanical state.

Here we exploited the polarization dependent frequency shift effects of the birefringent

microresonator test mass. Given the development towards the ability to manipulate the

frequency shifts between the two polarizations of the input field, the technique may find

potential use towards achieving the self stabilizing optomechanics to trap the macroscopic

test mass in the desired mechanical state.

In the appendices, I also discussed the computational project to investigate the laser

cooling of a two level atomic state by the stimulated emission. Given the effective control

over the heat exchange between the atom and the entropy reservoir laser field, this technique

serves potential towards the laser cooling of the macroscopic mechanical systems.

viii



Chapter 1
Rise of Gravitational Wave
Astronomy

1.1 Introduction

Gravitational Waves (GW) were predicted by Einstein in 1916 as ripples in the fabric of

space-time. The wave solution to Einstein’s field equation in the linear space-time metric

indicates the existence of gravitational waves. The energetic catastrophic processes like

supernovae, coalescing neutron stars, colliding black holes, and the remnant radiation from

the Big Bang are some of the strongest sources of the gravitational waves in the known

universe. The strain due to the gravitational waves produced from such violent events is

very small and hence any nonlinear contributions of the spacetime metric are negligible

for observations far away from the source. In this linearized gravity approach of general

relativity, the metric tensor (gµν) given by Eq 1, is approximated as perturbation of the

flat Minkowski space ηµν . These minuscale, time dependent perturbations in the curvature

of the space-time are caused by the accelerating masses and propagate with the speed of

light as gravitational waves [1].

gµν = ηµν + hµν (1.1)

The h term is the small perturbation that represent the gravitational wave. The

gravitational wave propagating in the Z direction is expressed through the wave solution

of Einstein’s field equation, in terms of the dimensionless strain polarizations h+ and h×

of gravitational waves.

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


(1.2)

1



The first indirect evidence for the existence of gravitational waves came from the

Hulse-Taylor binary in 1974 [2, 3]. The observed shrinking orbit of this inspiral pulsar-neutr-

on star system was in direct correspondence with the predicted release of energy in the form

of gravitational waves. Hulse and Taylor were awarded with the Nobel Prize in Physics in

1993, for pioneering work that further motivated the scientists for a more conclusive direct

measurement of these gravitational waves passing the Earth.

The first direct detection of a gravitational wave was made on September 14th, 2015 by

the two Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO)

sites, one each at Livingston, Louisiana and Hanford, Washington [4]. The observed

GW150914 signal, in agreement with the numerical relativity model, indicated the source

of the waveform to be the final fractional second of the coalescence of binary black hole

system. The two black holes with respective masses of about 36 and 26 times the solar

mass collided and merged to form a single black hole of approximately 62 times the solar

mass, while emitting 3 solar masses worth of energy in the form of gravitational waves

[5]. Fig 1.1 shows the waveform of the observed GW150914 gravitational wave by the two

Advanced LIGO sites [4].

This direct detection of the gravitational waves not only served as a testbed for the

theory of general relativity but it also opened up a new era in the field of observational

gravitational wave astronomy. The information imprinted onto the GW waveform is of

great astrophysical importance due to the non-scattering nature of the gravitational waves.

Hence such detections allow us to infer the far deep universe to answer the fundamental

questions about the cosmos that we live in.

The orders of magnitude improvement in the sensitivity of the recently upgraded

Advanced LIGO, is unarguably the main factor that led the two detectors towards making

the first ever direct detection of the elusive gravitational wave phenomenon. Such improve-

ment in the sensitivity goes in direct correspondence with the quality of detection and

the volume of the universe that can be probed by the GW detectors. Hence, constant

2



Inspiral Merger
Ring-

down

Inspiral Merger
Ring-

down

Figure 1.1: The observed gravitational wave GW150914 from the binary black merger, by
the two US-led Advanced LIGO sites. H1 is the observed signal at Hanford, Washington
site, and L1 is the observation at the Livingston, Louisiana [4].
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efforts are always ongoing amongst the LIGO Scientific Collaboration (LSC), to improve

the sensitivity of the next generation of GW detectors. Such efforts involve addressing the

fundamental noise sources that limit the sensitivity of Advanced LIGO and further device

the evasion schemes for these noises.

In this chapter, I will discuss about the brief history of the ground based GW detectors,

the design consideration along with the sensitivity floor of Advanced LIGO, the limiting

noise sources and the evasion schemes for the further improvement in the sensitivity of the

GW detectors.

1.2 Introduction to the Gravitational Wave Detectors

The underlying idea behind the gravitational wave detectors is to build a transducer

system that is sensitive enough to convert the minuscale distortions in the spacetime due

to the gravitational waves, into a measurable signal. The strain caused by the effects of

gravitational waves for instance from a binary neutron stars moving at relativistic velocities

can be calculated as:

h ≈ Gm

rc2
(1.3)

where G is the universal gravitational constant, r is the distance between the Earth and the

source of GWs, c is the speed of light. The strongest gravitational waves from the known

sources in the observable universe is calculated to cause a strain of the order of h ≈ 10−21.

Building a detector that is responsive to such a minuscale displacements require a state of

the art measurement precision, and isolation from the ambient noise sources.

Joseph Weber designed the first ground based GW detector in the late 1950s. The

device antennae in the form of large metal bars were designed to be set in motion by

the gravitational waves predicted by Weber. The bars were seismically isolated and were

held under high vacuum to reduce any acoustic noise [6]. Piezoelectric transducers were

connected to the center of the device to measure the driven harmonic motion of the bar.

Later improvement to Weber’s design of resonant bar detector resulted in generations

4



resonant bar detectors that applied cryogenics to cool the antennae, and used superconduting

readout devices (SQUIDS) to enhanced sensitivity measurement [7]. Further design upgrades

included a spherical resonant mass to enhance the both linear and directional sensitivity

of the detector [7, 8, 9, 10, 11]. Although some of these detectors are still operational and

essentially focused on higher frequency gravitational waves, they lack in strain sensitivity

bandwidth for the lower frequency gravitational waves from the most dominant sources.

Pulsar Timing Array detectors are the electromagnetic counterparts of the gravitational

wave detectors, where the time of flight of the EM radiation from millisecond pulsars is

measured and calibrated for the gravitational wave signal [12]. These milisecond pulsars are

extremely stable rotating neutron stars that pose as sensitive probes for any irregularities

in their environment. The upper limit to the background gravitational waves is expected

to be set by tracking any shift in the arrival time of pulses from these pulsars.

The development in the laser technology and the field of laser interferometry led to

various prototype experiments for gravitational wave interferometers primarily by Forward

and his colleagues in late 1960s [13] and then by Weiss in 1970s [14]. These experiments

along with the theoretical investigations by Kip Thorne for the sources of gravitational

waves [1], laid a foundation towards the new generation of GW detectors based on laser

interferometry. These modified Michelson interferometer gravitational wave detectors utilize

the time of flight of the laser field hitting the quasi-free mirrors that are used as test masses,

to measure the differential displacement between the orthogonal arms of the interferometer

[15].

Fig 1.2 demonstrate the effects of the gravitational waves that distort the spacetime

metric, onto the orthogonal arms (LX = LY ) of a simple Michelson interferometer. In

case of no gravitational waves and perfectly symmetric interferometer arms, the phase

accumulated by the laser light in the each arm of the interferometer should be equal and

opposite. Hence any light field from one arm, entering the dark or antisymmetric port

of the interferometer, will destructively interfere with the light field from the orthogonal

5



arm of the interferometer. Therefore the photodetector in the antisymmetric port will

ideally see no photons in the absence of any strain that changes the differential arm length

of the interferometer. As h+ or h× polarizations of the gravitational waves enter the

interferometer, the x and y arms of the interferometer experience a differential increase or

decrease in the length. The asymmetry introduced in the two arms, by the gravitational

waves will cause a net phase shift between the light field traveling in the x and the y

arms, respectively. In principle, this phase shift can be measured and calibrated at the

antisymmetric port of the interferometer, to infer the strain caused by the gravitational

waves.
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Figure 1.2: The effect of gravitational wave on a symmetric Michelson interferometer with
LX = LY. The gravitational waves are propagating in Z direction with a wave period T.
Set of figures (A) represent a differential squeezing and antisqueezing of the arms of the
interferometer, as a function of the period of the gravitational wave in h+ polarization.
(B) is the effect of gravitational waves in h× polarization, entering the interferometer.
∆L+ and ∆L× are the displacements of each arm of the interferometer, caused by the
respective polarizations of the gravitational wave. BS represent a 50 : 50 beam splitter,
and PD is a photodetector.
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In terms of technical challenge, the interferometer’s test masses should be isolated from

all the noise sources that will normally mask the gravitational wave signal. As a first stage

of seismic isolation, test masses are normally suspended in the form of pendulum with a

resonant frequency much lower than the frequency of the gravitational waves to be detected.

This condition is necessary for the test masses to behave quasi-free for the gravitational

waves to act on. Further degrees of isolation include state of the art isolation suspension,

actuations and feedback control of the ambient motion of the test masses.

The most prominent amongst the interferometer based gravitational wave detectors are

the two recently upgraded advanced Laser Interferometer Gravitational wave Observatory

(Advanced LIGO). Since the inception of the initial idea by Weiss, Thorne, and Drever;

about three decade’s worth of collaborative efforts of the LIGO team led to a breakthrough

with the first ever direct detection of the gravitational waves on Sept 14, 2015 [4]. This

detection, as discussed before, gave a new momentum towards the efforts to build an ever

expanding web of both land and space based GW detectors. Such network of detectors is

crucial for improved parameter estimation, and sky localization [16] of gravitational waves

from sources in broader ferquency spectrum. To name a few ongoing efforts towards this

progress of making more sensitive detections; the upgrade of the Italian GW interferometer

(Advanced VIRGO) is underway, construction of the cryogenic counterpart (KAGRA)

is promising, European Space Agency (ESA) recently launched LISA Pathfinder for the

feasibility test of the Evolved Laser Interferometer Space Antenna (eLISA), the third site

for Advanced LIGO is commissioned to be built in India.

In order to make a measurement sensitive to the displacement caused by the gravitational

wave, the time of flight of the laser field from the beam splitter to the end mirror of one of

the arm of the Michelson interferometer, should be equal to one-fourth the wave period of

the gravitational wave. Taking into account the double flight of the laser back to the beam
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splitter, the total time (t) required to make a sensitive measurement is given as:

t =
T

2
⇒ 2L

c
(1.4)

where c is the speed of light, T = 1/f is the wave period of the gravitational wave of

frequency f , and L is the length of one arm of the Michelson interferometer. For a

gravitational wave of frequency 100 Hz, the time of flight to and from the end mirror

of the interferometer is of the order of 0.005 seconds.

The above condition requires that in order to measure the differential change in the

length, the length of each arm of the interferometer should be equal to 750 kilometers.

Building such a long interferometer is not only technically infeasible but also unnecessary.

In the interferometric GW detectors, the Michelson interferometer is extended with a high

finesse Fabry-Perot cavity at the end of each arm. The role of the Fabry-Perot cavity is

to increase the storage time and hence the effective optical path length of the laser field.

In terms of the strain amplitude caused by the gravitational wave (h), if m is the number

of round trips made by the light field before exiting the cavity of length L, the effective

optical path length is Leff → mL such that:

h =
∆L

Leff

(1.5)

where ∆L = LX − LY is the differential change in the lengths of the interferometer arms,

h is a linear combination of h+ and h× polarizations. In terms of phase difference (∆φ)

between the laser beams from the two arm cavities, caused by the gravitational wave

amplitude h that stretches the interferometer’s arm in X direction and squeezes in Y

direction.

∆φ = δφX − δφY →
4π

λ
[m(LX + δLX)−m(LY − δLY )]→ 4πm

λ
∆L (1.6)
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1.3 Noise Budget of Advanced LIGO

1.3.1 Classical Thermal Noise

The two Advanced LIGO detectors are dual-recycled, extended Michelson interferometers

with four kilometer long Fabry-Perot cavities at the end of each arm of the interferometer.

A schematic description of the core optics of Advanced LIGO is given in Fig. 1.3. The

recently upgraded Advanced LIGO uses optical test masses that are 40 kgs in mass,

34× 20 centimeters in the diameter and the thickness, and are made from a high purity,

homogenous fused silica. The optical test masses are coated with alternating layers of SiO2

and TiO2 doped Ta2O5 for creating highly reflective surface with ultra low absorption and

scattering losses [17].

The phase sensitivity at the optical readout of Advanced LIGO is maximized as a result

of combined effective gain contributions due to the long resonant (Fabry-Perot) cavities

(GFP), the power recycling [18] at the symmetric port input of the beam splitter (Gprm),

and the use of signal recycling mirror (SRM) at the antisymmetric port of the beam splitter

(Gsrm) [19].

Advanced LIGO like any other physical system, is prone to various noise sources

that may deteriorate the phase measurement at the optical readout or may limit the

displacement sensitivity by contaminating the inertial nature of the test masses. At the

lower-frequency region of the detector’s bandwidth, the strain sensitivity is limited by the

coupling of the seismic driven motion of the test masses. Such vibrations are normally

actuated by various Human activities or wind currents, and scale as 1/f 2 above the

eigenfrequency of mechanical motion of the test mass. The typical range of these vibrations

is about 10−8m/
√

Hz at 1 Hz and above. Further, various microseismic activities and their

upconversions pose challenge towards the normal operation of the detector. In order to

minimize the effects of these seismic activities onto the strain sensitivity of Advanced

LIGO, the optical test masses should be seismically isolated along with stringent active

cancellations of the micro-seismic activities.
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Figure 1.3: The schematic showing the essential optical layout of the dual recycled
Advanced LIGO detector. After the amplifier stage (not shown), the maximum output
power capacity of the prestabilized laser is 180 Watts. The Input mode cleaner is a
traingular cavity with 32.9 m of optical path length that filter out higher order tranverse
modes and further stabilize the frequency of the input laser. A set of partially reflective
Power Recycling Mirrors (PRM) are used to further amplify the power at the beam splitter
by about 40 orders of magnitude. The Beam Splitter (BS) splits the beam equally towards
the two orthogonal arms of the Michelson interferometer. Each arm of the interferometer
is extended with a coupled high finesse resonator cavity that is 4 kms in length. These
Fabry-Perot cavities consist of a pair of quadruple pendulums with 40 kgs Input and End
Test Masses (ITMX, ITMY, ETMX, and ETMY), in each. The resonator Fabry-Perot
cavities are designed to effectively increase the optical path length by about 300 orders of
magnitude, hence enhancing the detection bandwidth. Compensation plates are used to
correct the optical curvature mismatch of the test masses. The design circulating power
in each of the 4km long Fabry-Perot cavity, at full sensitivity of Advanced LIGO, is about
750 KW. The End Reaction Masses (ERMX, ERMY) provides reference to prevent any
ambient noise from re-entering the test masses. A partially reflective Signal Recycling
Mirrors (SRM) is used both for enhanced signal detection and tuning the gain-bandwidth
of the differential arm-sensitivity. An output mode cleaner is a 1.3 m optical path length
bowtie cavity that filter the unwanted spatial and periodic components of light [19].
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As a first chain of seismic isolation, the test masses are suspended in the form of

quadruple pendulums with a very soft mechanical spring constant of mechanical eigenfreque-

ncy (fm) about 0.4 Hz. The multistage pendulum in combination with active isolation and

reference reaction mass, effectively attenuate the ground vibrations by seven orders of

magnitude at the optical test mass.

The suspended test masses are further mounted upside down to active isolation stages

that provides additional three orders of seismic isolation. These active isolation platforms

are also used to minimize the motion due to tidal forces, earthquakes, and other microseismic

activities. Additional active cancellation and servo control may be required to stabilize the

inertial frame of the seismic isolation and to mitigate the effects due to the self noise of the

various feedback loops, and the limiting Newtonian noise below 20 Hz.

To prevent from the acoustic shortening of the seismic isolation and Rayleigh scattering

of the optical readout, the core optics of Advanced LIGO reside in an ultra high vacuum

system in excess of 1× 10−6 Pascal.

With the state of art isolation system, the displacement of the test masses is minimally

coupled to the seismic vibrations at the center frequency of detection bandwidth. One

of the fundamental noise sources at this level are the Brownian impacts of the molecules

in the material of the suspension [20, 21], test mass substrate [22, 23] and the reflective

coating of the optical test mass [23, 24, 25]. These classical thermal fluctuations limit the

strain sensitivity at around 100 Hz for Advanced LIGO. These dissipative thermal forces

are guided by the fluctuation dissipation theorem, and can be quantified in terms of the

thermal fluctuation spectral density as [24]:

x2(ω) =
4kBT

mω

ω2
o/Q

(ω2 − ω2
o)

2 + ω4
o/Q

2
(1.7)

where Q ≈ 1/φ is the quality factor of the mechanical oscillator given by fo/fFWHM for

fFWHM the bandwidth of oscillator natural frequency, φ is the loss angle of the pendulum
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that quantify dissipation of the mechanical system, T is the ambient temperature of the

oscillator, kB is the Boltzmann’s constant, ωo = 2πfo is the fundamental frequency of the

mechanical oscillator. The Eq 1.7 tells that in order to minimize the thermal fluctuations

the mechanical quality factor of the test mass pendulum should be as high as possible. It

further suggests in other words in order to minimize the energy flow into the mechanical

system, the test masses should be maximally decoupled from the noisy environment. This

condition require for the mechanical spring to be as soft as possible.

Further in Advanced LIGO the test masses are suspended through very thin monolithic

glass fibers. This prevents any contact noise from entering the test masses. The heavy test

masses with low mechanical eigenfrequency along with thin suspension fibers also reduce

the effective dissipation losses because of the negligible low frequency moment of motion of

the suspension fibers. This dilution of the mechanical losses is called gravitational dilution,

where the fraction of energy imparted to the pendulum is stored as noiseless gravitational

field. The quality of the pendulum (Qp) is effectively enhanced as a ratio of the gravitational

spring constant (kg) and the elastic spring constant (kel) . The relation between the effective

quality factor of the pendulum (Qp) to the quality factor of the suspension wire (Qw) is

given as [26]:

Qp

Qw

=
kg
kel
⇒
√

4T l2

n2EI
⇒ 1

Ddil

(1.8)

where l is the length of the pendulum, T is the tension due to the weight of the suspended

mass, n is the number of suspension fibers, E is the Young’s modulus of the material, I is

the moment of the cross section of the wire, and Ddil is the ′′Dilution factor′′. The moment

of the suspension fiber is negligible at low mechanical frequency of oscillation, hence:

Ddil << 1 (1.9)

This enhancement in the quality factor of the pendulum lead to longer thermal decohere-
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nce time and hence mitigate the intrinsic thermal noise associated with the poor mechanical

quality of the suspensions.

Thermal noise can obviously be reduced by applying cryogenics, various techniques are

under ongoing investigations to effectively cool the test masses of the next generation of

the LIGO and other gravitational wave detectors [27]. Cooling of the test masses by the

known cryogenic techniques is especially challenging since a minimal contact must be made

with the test mass, in order to preserve its inertial state.

While development of the cryogenic techniques for the GW detectors is underway,

several groups have been investigating new coating materials that exhibit lower intrinsic

thermal noise [28, 30, 31]. Recently Cole et. al. demonstrated the effective enhancement of

the optical quality factor, along with reduction of the thermal noise in the test masses coated

with crystalline reflective coating of GaAs/AlGaAs [68]. The low photo-absorption losses

is another important characteristic of such crystalline coatings. Reduction of Brownian

thermal noise in the coating and suspension, and losses due to photoabsorption are crucial

to expose the quantum superposition between the test masses and the laser field.

In the later chapter, I will discuss further details about the thermal noise performance

of microresonator structures fabricated by the stacked layers of GaAs/AlGaAs material.

This work is in part an effort towards calibration and evasion of the quantum noises in the

displacement sensitivity of the optomechanical interactions.

1.3.2 Photon Shot Noise

In classical interferometry, the measure of interference between the light from the two

arm cavities can be measured with an arbitrary precision. The laws of quantum mechanics

however impose a bound on such precision owing the discrete nature of the laser field. In

Advanced LIGO, the reflected light from the test masses is calibrated at the optical readout

of the antisymmetric port to reveal the differential displacement of the test masses due to

local and non-local forces. The photon shot noise is the uncertainty in the measurement of

displacement sensitivity of the interferometer that arise in quantum statistical picture. The
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fluctuations in the arrival time of photons onto the photodetector of the optical readout is

governed by Poissonian distribution.

Thus for N photons, the error in the detection of small displacements of the test mass

falls as 1/
√
N . The number of photons available for detection at the antisymmetric port

depends on the laser power output from the antisymmetric port PASout , and the time

available for the measurement (t). For gravitational wave of frequency f = 1/t, the total

number of photons available for detection are:

N =
cPASout

2π~fλ
(1.10)

where, ~ is the reduced Planck’s constant, c is the speed of light, and λ is the wavelength

of the laser light.

The variables that control the PASout can be identified by quantifying the response of

a simplified Michelson interferometer as shown in Fig 1.4.

BS M
irror	X

Mirror	Y	

PD

E
ASE

AS

Ex,r

Ey,r
Ey

Ex
ES

ES

out

out

Figure 1.4: A cartoon of the basic Michelson interferometer, with input field ES at the
symmetric or bright port of the interferometer’s beamsplitter (BS). Ex amd Ey are the
fields input into the respective x and y arms of the interferometer. Ex,r and Ey,r are the
fields reflected from the end mirrors in the x and y arms, respectively. EAS is the input
and EASout is the output fields at the antisymmetric or dark port of BS.

The power available for the optical readout at the antisymmetric port of the interferometer
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is given by:

PASout = | EASout |
2 (1.11)

Assuming an ideal 50% beamplitter, the field ES entering the interferometer through

the symmetric port is split equally into the x and y arms. Ignoring any field contributions

EAS due to the vacuum vacuum fluctuations entering the dark port of the interferometer,

EASout = Ex,r − Ey,r. Here the fields Ex,r and Ey,r are the fields entering the BS after

reflections by x and y end mirrors of each arm, respectively. Assuming the end mirrors to

be perfectly reflective rx,y ≈ 1

EASout =
ES
2

[
ei2kLx − ei2kLy

]
(1.12)

For the lengths Lx and Ly of the two arms of the interferometer to be equal, the two

reflected beams passing through the beam splitter are π out of phase. Hence following the

small angle approximation power falling on the dark port photodetector is:

PASout = PS(sin2(∆L)) (1.13)

where ∆L = Lx−Ly is the difference in the lengths of two arms that accommodate for any

relative displacement of the test masses. PS = | ES |2 is the input power at the symmetric

port of the beam splitter.

The resolution of the minimum detectable displacement of the two arms of the Michelson

sensitivity is a function of the size of the fringe or the wavelength of the laser light. In the

GW detector, this resolution falls due to shot noise limit as:

∆L ⇒ λ√
N

⇒

√
2π~fλ3

cPS(sin2(∆L))
(1.14)

The above Eq 1.14 dictates the shot noise limited sensitivity of Advanced LIGO at

the higher frequency region of the detection bandwidth. It may seem obvious to increase
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the input power at the beamsplitter, to enhance the shot noise limited strain sensitivity.

However, at higher laser powers, the amplitude of the intensity fluctuations in the laser

fields impose a bound to the uncertainty domain of the measurement.

1.3.3 Quantum Radiation Pressure Noise

The radiation pressure exerted onto the test masses by the laser field is dependent on

the intensity of the laser field monitoring the test masses. Any fluctuations in the laser

field intensity will therefore cause perturbations in the inertial properties of the test masses.

These perturbations are encoded as phase shifts in the light field being reflected from the

test masses.

Although the laser field intensity is normally controlled by stabilization loops, the laws

of quantum mechanics impose a limit to the uncertainty of the zero point fluctuations in the

amplitude the laser field intensity. These quantum fluctuations in the laser power produce

a back-action force known as the Quantum Radiation Pressure Noise (QRPN), given for

reflection as:

FQRPN =
2δP

c
(1.15)

where δP are the power fluctuations in the field hitting the test mass. The power fluctuations

in the optical field entering the arm of interferometer through the bright port are normally

negligible at the asymmetric port, either due to the active cancellations or destructive

interference. The vacuum or zero point fluctuations that enter the asymmetric port of the

interferometer, however may lead to significant noise in the measurement.

To construct a mathematical framework for the effects of these vacuum fluctuations, the

optical field should be quantized [32, 33, 34, 35]. In Heisenberg picture, the time evolution

of the quantized optical field can be represented in terms of positive and negative frequency
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components while normalizing over the slowly evolving spatial modes, as [36]:

E(t) =

[
cos(ωot) sin(ωot))

]E+(t)

E−(t)

→ ∫ ∞
0

Ao
2
âωe

−iωtdω

2π
+ H.C. (1.16)

where

Ao =

√
4π~ω
Ac

(1.17)

A is the effective cross-sectional area of the optical beam, âω and the conjugate â†ω are

the annihilation and creation operators representing the photon state of the optical mode

with frequency ω. For the condition satisfying independent modes of the photon field, the

operators âω and â†ω obey the commutation relation as:

[
âω, â

†
ω′

]
= 2πδ(ω − ω′

), and [âω, â
′
ω] =

[
â†ω, â

†
ω′

]
= 0. (1.18)

Under the low circulating power conditions, the output light field coming out of the

interferometer can be considered as a wave of independent modes with independently

resolvable phase shifts induced by the mirror motion. These phase shifts can be seen

as the upper and lower sidebands (â± = âωo±Ω) around the carrier frequency.

In high power GW interferometers however, the phase shift induced sidebands of the

output light field are parametrically modulated due to the radiation pressure induced test

mass motion. Such modulations can be seen as paired modes of light with frequencies ω±Ω

with correlated complex amplitudes. Hence to study the dependence of the displacement

sensitivity of the optical readout on the quantum radiation pressure noise, the laser field

should be treated in a two photon formalism that was originally developed by Caves and

Schumaker [37, 38, 39]. The associated annihilation operators, in this correlated two photon
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mode description of the optical field are [34]:

â1 =
â+ + â†−√

2
, and â2 =

â+ − â†−√
2i

(1.19)

where â1,2 are the quadrature operators of the electric field that obey the commutation

relation: [
â1, â

†
2

]
= −

[
â2, â

†
1

]
⇒ i2πδ(Ω− Ω

′
) (1.20)

Under this formulation and the assumption of ideal beamsplitter (lossless, and precisely

50%), the input vacuum fluctuations at the dark port of the interferometer is given as:

δEAS(t) =
Ao
2π

 cos(ωot)
∫∞

0
(â1e

−iΩt + â†1e
−iΩt)dΩ

+sin(ωot)
∫∞

0
(â2e

−iΩt + â†2e
−iΩt)dΩ

 (1.21)

The electric field incident on the each arm of the interferometer is given as:

Ex,y(t) =
1√
2

[
ES(t) + ηδEAS(t)

]
(1.22)

where η is ±1 for y and x arms, respectively.

For the interferometer arm lengths adjusted to an integer multiple of the carrier

wavelength, the overall time shift can be normalized over an integer multiple. The displace-

ment δLx,y of the mirrors in the two arms, produced by the radiation pressure or the

gravitational waves, causes a phase shift in the reflected carrier field such that under the

assumption of small displacement.

E(x,y),r(t) ≈
1√
2

[
ES(t− 2Lx,y(t)

c
) + ηδEAS(t)

]
(1.23)

I have ignored any phase shifts in the vacuum field entered through the asymmertic
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port of the interferometer. Therefore field exiting the asymmetric port is given as:

EASout ≈
1

2

[
ES(t− 2δLy(t)

c
) + δEAS(t)− ES(t− 2δLx(t)

c
)− δEAS(t)

]

≈
[
δEAS(t) +

√
4πPS

Ac (∆L)sin(ωot)

]
(1.24)

For an ideal filtered output, any classical noise effects that modulate the carrier frequency

are rejected. Hence ∆L is the arm length difference primarily caused by the back action

due to the radiation pressure and the gravitational wave.

∆L = Lh̃+ δLQRPN (1.25)

Following Eq 1.15, the equation of motion for the mirror displacement caused by the

radiation pressure is:

d2lQRPN
x,y

dt2
= η

2δP

Mc
(1.26)

where lQRPN
x,y are the radiation pressure induced mirror motions in x and y arms, η = ± for

y and x arms, respectively. The source of intensity fluctuations in laser field reflected from

x and y mirrors (δP ), are the back action effects of the mirror motion due to the vacuum

fluctuations that enter through the dark port of the interferometer.

Following Eq 1.21. to solve for the intensity fluctuations in frequency domain, we

obtain the amplitude of the back-action induced mirror motion.

lQRPN
x,y = η

2
√
PS~ωo
cMΩ2

â1 (1.27)

or the total differential displacement

δLQRPN = lQRPN
y − lQRPN

x ⇒ 4
√
PS~ωo
cMΩ2

â1 (1.28)
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Figure 1.5: The schematic representing the input-output field operators at the beamsplitter.
The Asymmetric side of the beam splitter is by convention represented by a negative sign
owing to the field amplitudes being subtracted at the asymmetric output.

Assuming a Michelson interferometer with a perfectly reflective end test masses. The

input-output relation as shown in Fig 1.5, suggest that the field quadratures after being

reflected from the end mirrors will contain a phase shifted component due to the back

action of the motion of test masses.

Since the back action effects of the mirror motion are encoded onto the phase quadrature

of the reflected field. Therefore, the output amplitude quadrature at the asymmetric port

should be unchanged except for picking up a normalized phase. Hence,

b̂1 =
r̂y1 − r̂

y
1√

2
⇒ â1 (1.29)

The phase quadrature of the reflected field picks up a phase shifted sideband due to

the backaction of the mirror motion induced by the gravitational wave and the radiation

pressure noise.

δr̂x,y2 = ĝx,y2 −
√

Io
~ωo

2ωo
c

(∆L)
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⇒ ĉ2 + ηâ2√
2
−
√

Io
2~ωo

2ωo
c

(Lh+ δlQRPN
x,y ) (1.30)

The output field at the asymmetric port is

b̂2 =
r̂y2 − r̂x2√

2
⇒ â2 −

√
Io
~ωo

ωo
c

(Lh̃+ δLQRPN) (1.31)

Substituting the value of δLQRPN from Eq 4.5

b̂2 = â2 −Kâ1 −
√
PSω0

~c2
Lh̃ (1.32)

Here

K =
4Psωo
c2MrΩ2

(1.33)

where K is the radiation pressure coupling coefficient. M is the reduced mass of the test

mass in each arm of the interferometer, hence Mr = M/2 for an extended Michelson with

two test masses in a Fabry Perot cavity. The classical noise components, assuming efficient

filtering at the optical readout, are ignored in the above expression for the phase quadrature

(b̂2) of the output field at the asymmetric port.

The above Eqs 1.31. and 1.32. tells us that for a vacuum state with an equal uncertainty

in the two quadratures of the input field, the uncertainty in the output state quadratures is

squeezed or anti-squeezed due to the imprinted backaction effects of the mirror motion. This

parametric amplification of the output optical field quadratures is called the ponderomotive

squeezing [34, 40, 41, 42].

At the most sensitive frequency spectrum around 100 Hz, the design sensitivity of

Advanced LIGO is limited by the Brownian motion of the reflective coating molecules of

the test masses. The enhanced thermal noise due to higher laser power along with some

factor of contributions due to the thermal lensing, is relaxed by increasing the diameter of

the beam at the test masses. Additionally, the compensation plates are used to cancel the
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technical noises due to the distortion of the mirrors by thermal lensing.

Hence, the total phase noise budget of Advanced LIGO is limited by a combination

of thermal noise of the suspensions, the Brownian noise of the reflective coating, the shot

noise or the photon counting error, and the radiation pressure induced noise. Fig 1.6 shows

the measured noise during the O1 run of Advanced LIGO at Livingston, LA [4]. The total

circulating power in each arm cavity, during the O1 run, was about 100 kW. The figure

further depicts the limiting noise sources predicted to contribute to the overall noise floor

at the design sensitivity of Advanced LIGO.

In Advanced LIGO, at the design sensitivity Fig 1.6, the quantum radiation pressure

noise is projected to be the dominant noise source at detection bandwidth between 10

Hz and 100 Hz. Below 10 Hz, the suspension thermal noise is dominant and governs the

bound to the sensitivity gain by reducing the quantum noise floor. Advanced LIGO is

upgraded to have an input laser power of about 200 Watts at the beamsplitter with about

750 kW of circulating power in each arm cavity. Higher laser power is used to enhance shot

noise limited sensitivity floor at higher frequencies (above 100 Hz) of detection bandwidth.

Substantially heavier test masses of Advanced LIGO ( about 40 kgs), in comparison to the

test masses of the initial LIGO (about 11 kgs), are used to compensate for the increase in

the quantum radiation pressure noise contributions at higher input laser power.

The optimal interferometer bandwidth for Advanced LIGO lies in the GWs from the

inspiral neutron stars and binary black hole systems. This optimization along with the low

frequency noise contributions from the above mentioned factors are taken into consideration

for the detector’s half bandwidth, given by.

γ =
Tc

4L
(1.34)

where T is the transmission of corner test masses.
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Figure 1.6: Noise plot of Advanced LIGO showing the measured noise sensitivity during the
O1 run, and the projected limiting noise sources at the full design sensitivity of Advanced
LIGO.

1.4 Noise Evasion Schemes for Advanced LIGO

The total phase noise budget of Advanced LIGO is limited by a combination of thermal

noise of the suspensions, the Brownian noise of the reflective coating, the shot noise or

the photon-counting error, and the radiation pressure induced noise. The shot noise and

the QRPN are orthogonally correlated in quadrature and frequency dependence. Hence

the conventional use of nonclassical or squeezed light is not advantageous as such. In

order to efficiently enhance the sensitivity at the overall detection bandwidth of Advanced

LIGO, modified noise evasion techniques needs to be devised and tested. Many frequency

dependent noise evasion schemes that include the variational readout, frequency dependent

squeezing, and speedmeter design for the QND detection, have been proposed to relax the

QRPN and the shot noise limited bound on the sensitivity of Advanced LIGO. Although

extensively studied, a tabletop experimental investigations to quantitatively calibrate the

gain in sensitivity through these schemes is necessary to ascertain the efficiency of these

schemes before their application to the next generations of the GW detectors.
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The primary goal of my thesis project is to establish an experimental setup for the

measurement of the quantum radiation pressure noise in an optomechanical cavity. Once

QRPN is measured, the setup can be used for the prototype testing of the various quantum

noise evasion schemes. Here I will briefly overview the two main noise evasion schemes for

their applicability in the next generation of gravitational wave detectors.

A free mass respond in the frequency domain with a mechanical susceptibility Xxx(ω) =

−1/MΩ2. As derived by Braginsky [43, 44], for a continuous position measurement system,

the minimum uncertainty in the second position measurement is given as

(∆x)SQL =
2~
MΩ

(1.35)

This uncertainty in the future position measurements at the , dictates the standard

quantum limit in the strain sensitivity of the detected field in an interferometric measurement.

hSQL =
√
ShSQL ⇒

√
4~

MrΩ2L2
(1.36)

The shot noise due to the photon number fluctuations and the radiation pressure noise

due to the fluctuating force are the dominant sources of noise in Advanced LIGO. The

total noise spectral density for the strain sensitivity of Advanced LIGO is hence given as

the sum of the noise spectra due to the shot noise and the QRPN.

Sh = Shshot + ShQRPN (1.37)

The uncertainty in the output phase quadrature due to the shot noise is governed by

the root mean square fluctuations in the number of photons (
√
N). Therefore, for the

gravitational waves of frequency f, the shot noise and the QRPN spectral densities are

24



given respectively as:

Shshot =

∣∣∣∣δφshot

L

∣∣∣∣2 ≈ ~c2

PSωo
, and ShQRPN =

∣∣∣∣FQRPN

MΩ2

∣∣∣∣2 ≈ PSωo~
c2M2

rΩ4
(1.38)

Hence the spectral density and the corresponding strain sensitivity can be written in

terms of the standard quantum limit and the radiation pressure coupling constant:

Sh =
~c2

PSωo
+

~PSωo
c2M2

rΩ4
=

(
1

K +K
)
h2

SQL

2
(1.39)

The above Eq 1.39. for the spectral density of the measured strain can be rewritten in

terms of the output phase quadrature such that,

Sh =
h2

SQL

2
(∆b2)2, where ∆b2 = a2 −Ka1. (1.40)

1.4.1 Variational Output Interferometer or Frequency Dependent Homodyne

Detection

Originally formulated by Vyatchanin, Matsko and Zubova [45, 46, 47], variational

output readout is essentially a Quantum Non-Demolition (QND) technique where a frequency

dependent homodyne detection is performed at the asymmetric output of the interferometer.

In contract to the conventional balanced homodyne readout, where the local oscillator

fix the phase (Φ) of detection to the suitable quadrature, the variational output readout

homodyne phase (ξ(Ω)) follows the frequency varying quadrature of the output field. In

other words, and optimal measurement for the evasion of QRPN can be made at frequency

dependent quadrature readout as a combination of the output quadratures [34].

b̂ξ(Ω) = b̂1cosξ(Ω) + b̂2sinξ(Ω)⇒ sinξ(Ω)

(
â1cotξ(Ω) + â2 −Kâ1 +

√
2K h

hSQL

)
(1.41)

QRPN limited backaction noise in the output readout is due to the vacuum fluctuations
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entering the amplitude quadrature (a1), at the dark port of the interferometer. As is

evident from the above equation, the contribution due to the QRPN limited component,

in the output measurement, can in principle be removed by following the homodyne phase

ξ(Ω) = arccotK.

Such a frequency dependence in the proposed variational output readout scheme, is

achieved by filtering the output light field through two detuned Fabry-Perot cavities.

The filter cavities essentially put a tunable phase shift α± onto the light with respective

sidebands ωo ± Ω. The phase shifted output light from the filter cavity is then monitored

by the conventional balanced homodyne detection such that overall homodyne phase is

Φ− (α+ + α−)

2
= ξ(Ω) (1.42)

The two detuned filter cavities at the signal recycled dark port output are that are

red and blue detuned, respectively to obtain the desired tunability in the homodyne phase

matched with the output of the detuned SRM cavity. The optical losses pose as the main

limitation to the desired bandwidth and the sensitivity of these filter cavities. These losses

are minimized in the proposed scheme by making the cavities very long. Although, there

have been Electromagnetically Induced Transparency (EIT) and Optomechanically Induced

Transparency (OMIT) based counterparts for the narrow linewidth filter cavities, but such

schemes are not applicable to Advanced LIGO. This is either due to the absence of the

known atomic system with transition wavelength of the order of 1 micron, or the huge

coupling losses in the OMIT systems.

1.4.2 Frequency Dependent Squeezed Input

According to the laws of quantum mechanics, Heisenberg uncertainty principle put a

bound on the the precision in the measurement of the dynamics of a system interacting

with the optical field. This bound is dictates the minimum uncertainty or noise in the

complex amplitudes of the optical field. Such uncertainty is normally symmetric in the
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two quadratures of a vacuum state or a displaced vacuum (coherent) state of light. Such a

symmetric distribution of uncertainty however, can be experimentally modified to minimize

the noise in one quadrature at the expense of increase the noise in the orthogonal. The

state of light with minimized noise in one quadrature is called a squeezed-state light. In

principle, if a balanced homodyne measurement is made sensitive to the quadrature with

minimum noise, the enhancement in the sensitivity in measurement of the optical system

can be gained. Since the pioneering work towards generating squeezed states in 1980s

[48, 49], the improvements in the techniques for the generation of robust squeezed states

with lower noise floors have been demonstrated and exploited as an in-expendable tool by

a vast scientific community [50, 51].

In Advanced LIGO however, an improvement in the overall enhancement in the design

sensitivity require a squeezed input with a varying squeeze angle λ(Ω) that is dependent

on the frequency (Ω) of the detection band. Originally devised by Unruh and explained

by Kimble et. al. [34], the proposed FD squeezed-state input at the asymmetric port of

Advanced LIGO is expected to surpass the SQL sensitivity. The input state at the dark

port of the interferometer can be viewed as a squeeze operator (Ŝ(z)) applied onto the input

vacuum state.

|a〉 = Ŝ(z)|0〉 (1.43)

where for frequency dependent squeezing angle (θ(Ω)) and z = reiθ(Ω), the squeeze

operator in two photon formalism is given as:

Ŝ(z) = exp(re−iθâ2 + reiθâ†2) (1.44)

As mentioned in [34] and shown in Fig 1.7, at a squeeze angle of θ(Ω) given as:

θ(Ω) = −arccot(K) (1.45)
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the sensitivity at the overall detection bandwidth of the interferometer is improved by

a factor of e−2R. In other words, the spectral density Sh(SQ) of the FD squeezed input

interferometer get reduction in the noise floor as given below.

Sh(SQ) = Sh × e−2r (1.46)

where Sh is given by Eq 1.39.

1.4.3 Squeezed-Input Variational Output Interferometer

The frequency dependence to the squeeze angle is achieved in a similar fashion as in

variational output interferometer, by sending the generated squeezed state through filter

cavities.

To obtain a maximum gain in the sensitivity floor, especially at the lower frequencies

of the detection bandwidth of Advanced LIGO, the upgrade with a combination of a

squeezed-state input and a variational output optical readout is required. In this scheme

a squeezed-state input reduce the overall noise in the output spectral density at the

asymmetric port of Advanced LIGO. This reduced noise signal is further subjected to

a frequency dependent homodyne detection for the rejection of the QRPN dependent

back-action noise in the output signal.

The spectral density of the the interferometer strain signal hence becomes

Sh = e−2r × Sh(var) = e−2r
h2

SQL

2K
(1.47)

1.5 Overview

In this chapter, I have outlined the concept and the design sensitivity of Advanced

LIGO along with the proposed changes to further enhance the sensitivity of Advanced

LIGO. I have also laid foundational description to explain the limiting fundamental noise

sources in both classical and quantum regime for Advanced LIGO. In the last section of
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this chapter I briefly described the physics behind the various exploitable techniques that

can be used for the mitigation of quantum noise in the future avatars of the GW detectors.

The schematic for the overall improvement in the strain sensitivity of a GW interferometer,

by the quantum noise evasion techniques discussed earlier is shown in the Fig 1.7.

1
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100

Variational-Output

Squeezed-Input	Variational-Output	

Squeezed-Input

Vacumm	Input

QRPN	Limited

Shot	Noise	LimitedSQL

Figure 1.7: The schematic (not to scale) showing the improvement in the strain sensitivity
of a GW interferometer, with the application of various noise evasion schemes. The strain
sensitivity on y axis is normalized to the SQL strain at the optimal frequency of the
interferometer.

The proposed noise evasion schemes are the motivation for my experimental thesis work,

discussed in the later chapters. The measurement of the quantum radiation pressure noise

(QRPN) has posed a major challenge to the scientific community, either as an outcome of

being masked by the other noise sources or being partially insensitive in the measurement

quadrature. Although being recently measured in the on-resonance experimental setups,

the broadband effects of the QRPN has still been elusive. The measurement of the QRPN

in a broad detection bandwidth is important in particular to the GW community to

further demonstrate the effectiveness of the various noise evasion techniques proposed for

Advanced LIGO. Further since the quantum radiation pressure noise causes correlated

parametric amplification of the output light field, this effect can be utilize to demonstrate

the ponderomotive generation of the squeezed state of light as a pure optomechanical
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effect. It is also of particular interest to the physicist to study the quantum mechanics of a

macroscopic resonator and hence infer the entangled state in a dissipative optomechanical

system. All this is possible only after an effective measurement of the quantum radiation

pressure noise.

In the next chapter, I will discuss the fundamentals of the optomechancial coupling in

an effort to lay foundation towards the effective manipulation of the artifacts of correlations

between the mechanical oscillator and the optical cavity that are exploited in the experimen-

tal setup for the measurement of the QRPN.
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Chapter 2
Cavity Optomechanics with a
Microresonator

2.1 Introduction

The dual wave-particle nature of the light has long been explored and exploited by the

scientific community. Such exploitations had lead to pioneering work on optical trapping

of the atoms for the cooling to their motional ground states [52, 53, 54]. These frontier

experiments laid foundations towards the quest to study effects of momentum driven

radiation pressure of the photons onto the macroscopic harmonic oscillators. Further lead

by the earlier investigations of Braginsky et. al. [44, 55], about the effects of radiation

pressure on the dynamics of the suspended test mass in an interferometer, the framework

of optomechanical cavity based interferometer experiments that include the GW detectors,

was established.

In addition to the development of highly reflective and low loss optical mirrors, the

advancements in the field of nano- and micro-fabrication has lead the field of non-linear

optomechanical spectroscopy towards exploring the non-dissipative effects of the radiation

pressure force. In order to effectively extract the information about mechanical state in

an optomechanical coupling regime, the decoherence time for the prepared optomechanical

state should be relatively large.

Hence the race towards cooling of these macroscopic resonators to the quantum ground

state has one hand gained a new momentum due to the potential applications in the hybrid

quantum systems. On the other hand such systems are limited to measurements around the

cavity resonance at high frequencies, and hence lack the information about the broadband

dynamics of the optomechanical system, in frequency space. Further to reduce the intrinsic

thermal noise of test resonator, the mechanical Q and the eigenfrequency of such resonators

are desired to be as high as possible. Building such high frequency resonators suffer
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serious technical challenges due to dissipation losses from the noisy environment, hence

these systems either mostly require intensive application of cryogenics.

The low frequency broadband mechanical oscillator system in addition to being used

at large scale in the GW detectors, also pose as valuable candidate for the tabletop

demonstration of the linear and the nonlinear dynamics of the optomechanical cavity. Such

experiments have already lead to realization of the stable optical traps, and cooling of a

suspended gram scale mechanical resonator [56, 57, 58].

In addition to the optical losses, the experimental realization of such robust optomechan-

ical systems are bound by various thermo-elastic dissipative forces acting on the mechanical

resonator. To isolate the mechanical motion from such losses, various suspension techniques

for the macroscopic mirrors have been proposed. Typically by exploiting the gravitational

dilution discussed in Chapter 1, such suspensions are made very soft to minimize the

coupling between the mechanical oscillator and the noisy environment. The soft spring

mechanical oscillators on the flip side can be very floppy and excessively responsive to the

ambient fluctuating forces, thus requiring intensive isolation at low frequencies. As will

be discussed in detail in further sections, it has been previously demonstrated that the

effective response of such soft springs can be made stiff as an outcome of optomechanical

interactions [57]. Hence such a low frequency mechanical oscillator based optomechanics

offer effective isolation from the ambient noise in addition to the dilution of the source of

thermal decoherence.

As a part of my thesis, I have built an optomechanical experiment based on the

dynamics of a Fabry-Perot cavity with a movable end mirror. The end mirror of the

one centimeter long linear cavity is a microresonator mirror fabricated in collaboration

with Dr. Garrett Cole from the Crystalline Mirror Solutions [28, 29]. The chip containing

the fabricated microresonator test mirrors is shown in Fig 2.1. The goal of the experiment

is to directly measure the broadband effects of the quantum radiation pressure noise due to

the fluctuations in the instantaneous number of photons hitting the microresonator mirror.
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The experimental effort involve isolating the mechanical system from ambient noises and

further reducing the thermal fluctuations due to the viscous damping and the structural

dynamics of the fabricated supports. The details of the experiment are mentioned in the

next chapter.

Figure 2.1: Image of the chip containing the microresonator mirror masses used in the
experimental effort to measure the QRPN.

In this chapter I will review the fundamentals of the optomechanical system with a

suspended test mass to describe the dynamical sources of decoherence, and define the

control parameters in the interaction picture. Further I will build up the theory to show

the usefulness of the effects like optical spring, optical dilution as an artifact of optical

spring, and the evasion of backaction noise due to feedback cooling.

2.1.1 Optical Resonator

In a simple highly reflective Fabry-Perot resonator cavity, the optical losses are generally

the key source of decoherence. For a given length L of the optical resonator, the roundtrip

power losses (Ploss) due to scattering, internal absorption and the finite transmission of the

cavity optics, govern the response (linewidth) of the cavity towards the small frequency

shifts in the resonant optical modes, given as [59]

δωc ∝
π2c2

L2F
√
Pc

(2.1)
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where Pc is the circulating power inside the cavity. For cavity mode of angular frequency

ωc = πc/L, finesse in terms of the cavity losses is given as:

F ≈ 2π

Ploss

(2.2)

To be noted here that the an optical resonator of finite length (L) contains an integer

(k) number of optical resonance modes (ωkc ) separated in longitudinal frequency domain

by the free spectral range (FSR).

∆ωfsr =
πc

L
(2.3)

An optical field driven Fabry Perot cavity is generally operated close resonance to

a single cavity mode ωc through one or a combination of control sequences that include

reference cavities, proportional feedback for the length control of the cavity, etc. A single

resonant mode cavity is valid under the assumptions that:

1) The finesse of the optical cavity is relatively high with minimum losses due to

transmission through the optical end mirrors.

2) The free spectral range of the cavity is much larger than the length of the cavity.

3) Detuning δ of the pump laser field from the cavity resonance ωc is much smaller

than the FSR.

In terms of the cavity decay rate κc or the inverse of photon lifetime τ inside the cavity.

κc =
1

τ
⇒ cPloss

2L
(2.4)

The finesse of the cavity can be redefined as:

F =
∆ωfsr

κc
(2.5)

The finesse of the optical resonator can be seen as an analog of a quality factor of
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the mechanical oscillator. Whereas the mechanical quality factor (Qm) is a measure of the

number of harmonic oscillations of the resonator, the finesse is the measure of the number

of round trips that a resonant photon can make before escaping the optical cavity.

2.1.2 Mechanical Resonator

The high sensitivity measurement for the effects of photon induced momentum onto the

massive particles can in principle be experimentally achieved by using a movable resonator

test mass as one of the mirror in an optical cavity. The resonant optical cavity usually

filter out most of ambient vibrational modes of the oscillator associated with the noisy

environment. The mass of the resonator is generally orders of magnitude smaller than

the input fixed mirror, so that effective dynamics of the optomechanical system is only

dependent on the mass of the movable mirror. The Fig 2.2 below shows the schematic of

the dynamics of the optomechanical cavity with a movable test mass.
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Figure 2.2: A cartoon showing an optomechanical cavity in a hemispherical configuration.
The output mirror is a suspended low mass resonator. For input optical mode represented
by the quadrature operators t̂k, the modes associated with the reflection and transmission
of the input coupler mirror are represented as r̂k and t̂k, respectively. R̂k and T̂k are the
quadrature operators associated with the reflection and the transmission of the resonator
test mass. For a resonant cavity frequency ωc, â is the cavity operator, and κc is the cavity
decay rate. x̂is the eigen vibrational mode for the mechanical resonator.

Under the boundary conditions provided by the theory of elasticity and assuming the

lowest eigenmode of vibration (Ωm) for the mechanical oscillator, the dynamics of the

associated test mass is governed by the equation of motion for a damped oscillator under
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the total external force Fext(t)

Mẍ(t) = −kmx(t)−MΓmẋ(t) + Fext(t) (2.6)

where Γm is the mechanical damping rate, M is reduced mass, and km = mΩ2
m is the

mechanical spring constant. The Fourier transform of the above equation can be solved

for the mechanical susceptibility or the transfer function of the mechanical resonator in

frequency domain.

G(Ω) =
δx(Ω)

Fext(Ω)
=

1

M(Ω2
m − Ω2)− iMΓmΩ

(2.7)

It is worth noting that the mechanical response at any given time include the contributions

due to the random influence of the dissipative Brownian force and the mechanical damping.

The Fourier transform, on the contrary, gives the response of the mechanical resonator

separated in frequency space and hence can be analyzed to infer the correlation of the known

frequency dependent forces. At thermal equilibrium, the frequency dependent displacement

noise in the mechanical resonator can hence be derived by applying fluctuation dissipation

theorem (FDT) onto the auto-correlated spectral response [55].

x(Ω) =

√
kBT

Ωm

Im(G(Ω)) (2.8)

2.2 Optomechanical Coupling

2.2.1 Hamiltonian Formulation

As previously mentioned in a pioneering work by Aspelmeyer [55], the Hamiltonian

for an single resonant mode optomechanical system can be represented in analogy to the

Jaynes Cumming model for the atom field interactions. The dynamics can be approximated

in a time independent Hamiltonian under the rotating wave approximation of the driving

laser field, as two coupled harmonic oscillators representing the optical cavity mode and
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the mechanical oscillator.

Ĥ = Ĥfield + Ĥcav + Ĥmech + Ĥint + Ĥdiss (2.9)

where Ĥcav and Ĥmech are the uncoupled contributions to the total Hamiltonian by the

optical cavity and the mechanical oscillator, respectively. Ĥfield ≈ −~ωLâ†â is the contribut-

ion due to the the driving laser, and Ĥdiss include the dissipative terms due to the optical

losses, thermal and mechanical decoherence. For a closed interaction system we can ignore

any dissipative terms.

The second quantization of the harmonic oscillator, optical field and the mechanical

oscillator are represented in terms of their respective Hamiltonian as. As per many body

formalism, the optical and the mechanical oscillators can be represented in terms of their

respective ladder operators as:

Ĥcav = ~ωc
(
â†â+ 1

2

)
, (2.10)

Ĥmech =
p̂2

2M
+

1

2
MΩmx̂

2 = ~ωc
(

ˆ̃x
† ˆ̃x+ 1

2

)
, (2.11)

where the position x̂ and the momentum p̂ operators given in term of the ladder operators

ˆ̃x, ˆ̃x
†

as:

x̂ =

√
~

2mΩm

(ˆ̃x
†

+ ˆ̃x); and p̂ = i

√
~mΩm

2
(ˆ̃x
† − ˆ̃x) (2.12)

The interaction term in the Hamiltonian essentially carry the information about the

parametric modulations of the cavity resonance due to the mechanical oscillations of the

movable mirror. To a linearized approximation, such modulations can be represented as
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displacement amplitude-dependent frequency shifts.

Ĥint = ~x̂
∂ωc
∂x

â†â = −~goâ†â(ˆ̃x
†

+ ˆ̃x), (2.13)

where go is the single photon coupling constant. While ignoring the contributions due to

the dynamical Casimir effects, the total Hamiltonian can be represented as

Ĥ ≈ ~[Ωmx̂
†x̂−∆â†â− goâ†â(ˆ̃x

†
+ ˆ̃x)], (2.14)

where ∆ = ωL − ωc is the detuning of the laser field from the cavity resonance frequency.

Further the cavity field constitute of the coherent amplitude and the fluctuations in

the amplitude. These fluctuations are the source of the radiation pressure noise in an

optomechanical system. Under linear regime, the amplitude fluctuations are:

δâ = â− 〈â〉 → â− α, (2.15)

where |α〉 is the coherent eigenstate of the annihilation operator â. Therefore the interaction

Hamiltonian can be written as:

Ĥint = −~go
√
nc

[
| α |2 +(α∗δâ+ δâ†α) + δâ†δâ

]
( ˆ̃x† + ˆ̃x), (2.16)

where
√
n̄c =

〈
â†â
〉

to be the average number of photons circulating in the resonant cavity

mode.

Here the first term is a contribution due to the average radiation pressure force of

the coherent field inside the cavity and can be modified in an experiment by selecting the

appropriate detuning of the laser field along with the feedback control loops. The second

term represent the dominant contributing dynamics due to the fluctuations in the intensity

of the driven cavity field and is the source of various optomechanical dynamics including the
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back-acting radiation pressure noise. The schematic of these optomechanical interactions

between the driven optical cavity and the mechanical resonator is shown in the Fig 2.3

below. In a stable cavity regime, assuming minimum acoustic decoherence, the movable

test mass can be excited either by the radiation pressure force or the thermal excitations

(n̄th) due to the coupling to the noisy environment.

Figure 2.3: A schematic description of the optomechanical coupling parameters between
the driven optical cavity and movable mirror that oscillate under the radiation pressure
force. n̄th are the thermal phonons responsible for the thermal decoherence.

Many other non-trivial artifacts of optomechanical interactions can be observed in

primarily two main coupling regime. In a sideband resolved regime, where the cavity

decay rate is much smaller than the mechanical frequency of the oscillator, the mechanical

oscillator can be cooled to its vibrational ground state. This cooling of the oscillator is

possible by red detuning the laser field at around mechanical frequency. The cooling occur

due to the transfer of thermal phonons into the cold reservoir of the photon modes. Here

the transition taking the oscillator from the higher quanta to the lower quanta can be

understood as an effect of (δâ† ˆ̃x+ δâˆ̃x
†
).

Similarly when the cavity is blue detuned, parametric amplifications of the reflected

optical mode can be achieved. These effects are understood in part to be the outcome of
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strong quantum correlations between the mechanical vibrational and the resonant optical

modes. These effects are the source of quantum radiation pressure noise and can in principle

be exploited to ponderomotively generate the squeezed states of light.

The dynamical effects of optomechanical can further be understood from the quantum

Langevin equations as derived in [55]. The evolution of the optical mode and the mechanical

mode as an artifact of backaction effects of each other can be seen in terms

˙̂a→ i(∆ +
go
xo
x̂)â, and ˙̃̂x→ −iΩm

ˆ̃x+ igoâ
†â (2.17)

Here, I have ignored uncoupled dissipation of each mode along with the dissipation of

the optical field due to the mechanical damping rate Γm.

2.2.2 Dynamical Backaction: Optical Spring Effect

It is worth mentioning that in order to expose the quantum mechanics of the optomecha-

nical interactions, the classical dynamical effects serve as inexpendable tools, in particular,

to manipulate the dynamics of the mechanical oscillator. These effects primarily originate

from the fact that the mirror motion shifts the detuning of the optical cavity, hence the

power circulating and the effective radiation pressure force is dependent on the motion of

the test mass.

For simplicity, if we assume a cavity with a delta-function-narrow linewidth, the cavity

response and hence the circulating power will shift instantaneously due to the mirror

motion. The resulting radiation pressure force can be given as:

FRP(x) = −∂VRP

∂x
= ~

∂ωc
∂x

n̄c(x), (2.18)

where the fluctuating number of photons circulating in the resonant mode of the optical

cavity can be described in terms of the total number of photons available in the optical
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mode (n̄c) as:

n̄c(x) =
n̄c

1 + 2(∂ωc

∂x
x+ ∆)/κ

(2.19)

Hence for an oscillator mirror, the effective back and forth shifts in the radiation

potential will drive the optomechanical system. The effective spring constant of the optome-

chanical system shifts as ∂2VRP/∂x
2. For a low mechanical frequency oscillator the shift in

the mechanical frequency of the oscillator can be approximated to be,

Ωeff ≈ 8∆
{go
κ

}2 n̄c{
1 + (2∆

κ
)2
} . (2.20)

To fully understand the above dynamics of the optomechanical response, the fact that

the optical cavity has a finite linewidth should be taken into account. This finite optical

response of the cavity lead to a delay between the mechanical motion and the resulting

change in the radiation pressure force. This delayed response of the detuned optical cavity

lead to the dynamical effects of the radiation pressure force. Such effects can be represented

in the mechanical susceptibility or the transfer function as a weak force acting on the

mechanical oscillator.

G−1
opt(Ω) = (M(Ω2

m − Ω2)− iMΓmΩ) +MΩ(2Ωeff(Ω)− iΓopt(Ω)) (2.21)

where the real and imaginary parts of the susceptibility yield the effective shift in the

mechanical frequency and the optomechanical damping rate.

Ωeff ≈ g2
o n̄c

{
∆ + Ω

(∆ + Ω)2 + κ2/4
+

∆− Ω

(∆− Ω)2 + κ2/4

}
(2.22)

Γopt ≈ g2
o n̄c

{
κ

(∆ + Ω)2 + κ2/4
− κ

(∆− Ω)2 + κ2/4

}
(2.23)

In a bad cavity regime, where the frequency of measurement (Ω) to be much smaller

than the cavity linewidth, the above equations can be approximated as:
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Ωeff ≈ g2
o n̄c

{
2∆

(∆)2 + κ2/4

}
(2.24)

Γopt ≈ g2
o n̄c

{
2κ

(∆)2 + κ2/4

}
(2.25)

Hence the effective frequency of oscillation of the mechanical oscillator driven by the

detuned optical cavity can either be made soft or stiffe as a function of red or blue detuning

of the optical cavity mode. In addition the driven optical cavity also provide the damping

(red detuned) and antidamping (blue-detuned) forces. The dynamics of the mechanical

oscillator can hence be manipulated by changing the resonance condition of the optical

cavity mode.
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Figure 2.4: A schematic showing the effects of detuning in a driven optomechanical cavity,
on the mechanical oscillator.

If the cavity is operated blue detuned to the resonance, the low eigenfrequency mechani-

cal oscillator can be driven at much high frequency of oscillation due to the restoring force

provided by the high frequency optical cavity mode. Hence, the movable mirror mass act as

being attached to a very stiff spring. This effect is called the Optical Spring effect. Unlike

the high frequency mechanical spring which couple the oscillator to the noisy environment

and hence increase the thermal dissipation of the mechanical oscillator, the optical field is

noiseless and does not add to the thermal dissipation.
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The optical spring effect is an in-expendable tool in the field of broadband cavity

optomechanics and in the large interferometers like GW detectors. The larger test masses

that naturally have a lower eigenfrequency of oscillation can be effectively isolated from

the excessive motion due to the low frequency acoustic and seismic vibrations, by optical

spring effects. An exact derivation of the optical spring constant with notation consistent

with the experimental details of Chapter 4, is given in the Appendix A of this thesis.

For a red detuned cavity the mechanical oscillator can be cooled through feedback

where the oscillation optical field acts as an error signal carrying the information about

the mechanical mode. Further in the sideband resolved regime, where the detuned cavity

frequency oscillating with the mechanical motion can be seen in terms of asymmetric Stokes

and anti-Stokes sidebands. The cooling of the mechanical oscillator can effectively be

achieved by the red detuned optical cavity mode. Here the dominant anti-Stokes scattering

causes the energy flowing out of the mechanical oscillator. Cold damping techniques have

been proposed to trap the mechanical oscillator in its ground state. This can be explained in

scattering picture where where the oscillating the net energy is taken out of the mechanical

mode as a result of asymmetry in the Stokes and anti-Stokes sidebands.

2.3 Overview

In this chapter, I have build up a theory for the optomechanical interactions in an

optical resonator with a movable end test mass. I have also described the interaction

Hamiltonian for the cavity optomechanics, in an effort to expose the nonlinear effects

arising due to the fluctuating laser field and the mechanical motion of the movable mirror.

Further I have laid foundation towards the optical spring effect used in my experimental

setup for the measurement of QRPN and other optomechanical effects.
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Chapter 3
Design Consideration:
Microresonator Test Mass

3.1 Introduction

In this section I will describe the experimental consideration for the design of the

movable test masses used for the tabletop demonstration of the nontrivial artifacts of

optomechanical interactions and the direct measurement of the quantum radiation pressure

noise.

As discussed earlier, the next generation of the GW interferometers are expected to

be limited by the quantum radiation pressure noise or QRPN at the low frequencies of

the detection bandwidth. QRPN arises in a continuous measurement as an outcome of the

backaction of the mirror motion caused by the photon number fluctuations of the impinging

laser field. These mirror motions in turn imprints as phase fluctuation in the light field

being reflected from the mirror.Intensity F luctuations
of the Input F ield

⇒
Mirror

Motion

⇒
 Phase Shift

of the Output F ield


Hence the contributions of the radiation pressure noise can be seen in the output phase

quadrature as an input amplitude quadrature dependent term is given as:

b̂2 = Krpâ1 + â2 + h̃;

where as per Eq 1.33, the radiation pressure coefficient is given as

Krp =
4Psωo
c2MrΩ2

Here we can see that the effects of QRPN are enhanced with the increased input
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laser field, reduction in the mass of the mechanical oscillator, and a lower frequency of

measurement. Hence the fabricated microresonator bragg mirrror structures that has a

mass of about few hundred nanograms are the ideal candidates to directly measure the

QRPN in a tabletop experiment.

Since our goal is to setup a prototype experiment for the testing and calibration of

various noise evasion schemes to test their feasibility for the future generation of the GW

detectors, the measurement of the optomechanical interactions should be close in frequency

and bandwidth to the GW detectors. Taking into consideration the practical constraints

of minimizing the requirement of active seismic isolation, we chose the natural mechanical

mode frequency of the movable test masses to be mechanical oscillator to be in the range

of few hundred Hz.

Ideally to infer the quantum mechanical of the prepared optomechanical state, the

decoherence rate due to dissipation should be as low as possible. This condition require

the microresonators to have very low transmission, mechanical and absorption losses. The

decoherence time is further enhanced by using a high finesse, free space Fabry-Perot cavity

as discussed in the earlier chapter.

Techniques like optical spring for vibrational isolation, optical dilution enhanced effective

quality factor, and laser intensity/frequency stabilization for shot noise limited input laser

field, are exploited to enhance the stable displacement response of the optical cavity. The

noise floor for the measurement is further reduced by applying cryogenics to reduce the

mechanical losses due to the Brownian noise. These considerations are discussed in details

in the next chapter, where I will discuss the experimental details for the measurement and

stabilization of thermal noise limited frequency response of the optomechanical setup.

3.2 Testing New Optical Coating for the Future Gravitational Wave Detectors

The test masses of advanced LIGO are made of high quality fused Silica (SiO2) and

coated for high reflectivity with an alternating layers of amorphous SiO2 and Tantala

(TaO5). The SiO2/TaO2 coating provide high optical quality and low losses, but suffer a
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severe limitation of introducing excess coating Brownian noise [17].

While cryogenic techniques are being considered to reduce these thermal fluctuations

in the mirror masses of LIGO, new coating materials with lower Brownian noise are also

being investigated for the next generation optics [30, 28, 29]. In the recent investigations,

Cole et. al. studied the crystalline coatings of alternating stack layers of gallium arsenide

(GaAs) and aluminum-alloyed gallium arsenide (AlxGa1−xAs). These studies were done

in part for developing new for the optical systems that include test masses for the next

generation gravitational wave detectors. The optical, thermal conductivity and thermal

noise performances of such crystalline coatings are asserted to be surpassing the amorphous

metal oxides counterparts. It was also noted that mirrors fabricated with such crystalline

coatings enjoy low optical losses over a wider spectral range [68].

In the next chapter, I presented the experimental investigations for the Brownian

fluctuations in the highly reflective microresonator structures that are fabricated from the

crystalline coatings of GaAs and (AlxGa1−xAs). The further design considerations and the

fabrication details of the cantilever microresonator structures are discussed below. Our

investigations, being performed at a center wavelength of 1064 nm, are in parallel to the

research and development of the new optical systems for the next generation gravitational

wave detectors.

3.3 Fabrication Details of the Microresonator

The cantilever microresonators are fabricated by Dr. Garrett Cole from the Crystalline

Mirror Solutions, from a molecular-beam-epitaxy-grown GaAs/AlxGa1−xAs/InyGa1−yP het-

erostructure using a novel double etch stop technique. The material structure consists of a

single-crystal distributed Bragg reflector (DBR) based on an epitaxial GaAs (high index,

nominal thickness of 77.8 nm for a center wavelength of 1078 nm) Al0.92Ga0.08As (low index,

thickness of 90.4 nm) multilayer.

As the ultimate goal is to operate this structure at cryogenic (liquid 4He) temperatures,

the mirror center wavelength is red-shifted to 1078 nm to take into account thermorefractive
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effects upon cooling [30]. As shown in Figure 3.1, the DBR is grown atop a lattice-matched

In0.49Ga0.51P etch stop, a GaAs structural layer, and a second 3/4-wave optical thickness

(271 nm) Al0.92Ga0.08As etch stop.

Figure 3.1: Layout of the stack layer structure of the Bragg mirror made from the single
crystal GaAs and Al0.92Ga0.08As

Unlike the full-thickness mirror structures explored in our earlier work [28], in this

design a circular mirror pad is fabricated on a thin film of GaAs in order to de-couple

the optical and mechanical properties of the structure, enabling in this case a significant

reduction in both the resonator effective mass and spring constant, while maintaining a

smaller resonator footprint. This separately optimized structure is similar to previous

demonstrations of epitaxial and dielectric resonator designs [60, 62, 63, 64]. To begin

the fabrication procedure, the resonator mirror pad is first defined via optical contact

lithographically, by patterning small discs ranging from 114-154 microns in diameter. The

resist pads are then used as a mask for vertical etching of the DBR layers using a SiCl4-based

inductively-coupled plasma etch process. The etch depth is monitored in real time using

an in-situ laser interferometer and carried out until only one mirror period remains above
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the first etch stop. A phosphoric acid based wet etch (H3PO4 : H2O2 : DI) is then used

to remove the final DBR layer pair, stopping with a selectivity of at least 35:1 on the

underlying In0.49Ga0.51P. Minimizing the total time of this wet etching step avoids excessive

undercutting of the DBR structure, maintaining the as-designed diameter to the <5 µm

level.

After definition of the epitaxial mirror pad, the first etch stop is then removed with

a dilute HCl solution, stopping with near infinite selectivity on the underlying GaAs

structural layer. The addition of a lattice matched ternary In0.49Ga0.51P film atop the

GaAs structural significantly simplifies the microfabrication procedure due to the excellent

chemical selectivity between the DBR and etch stop, as well as between the etch stop

and underlying GaAs film, allowing excellent control over the mirror pad geometry and

structural layer thickness. It is important to note that previous measurements on free-stand-

ing strained InyGa1−yP resonators has shown the potential for high mechanical quality

factors in this material system [31], thus we anticipate no additional mechanical losses

from the addition of this layer to the resonator structure.

Moreover, the surface of the thin GaAs support layer is only exposed to wet chemical

processes and avoids potentially damaging reactive ion etching steps that may lead to excess

mechanical losses. These structures ultimately show comparable room temperature quality

factors (on the order of 20,000 at 300 K) to our previous low-frequency resonators sculpted

from a full-thickness DBR [28]. To complete the definition of the lateral geometry of the

resonator, a second lithography and ICP etch step is employed. Here, the etch progresses

through the GaAs support layer, Al0.92Ga0.08As backside etch stop layer, and into the

GaAs growth substrate, ensuring vertical sidewalls on the final GaAs cantilever structure.

The chips are then thinned using a mechanical lapping process to a final thickness of

approximately 200 micrometers (original substrate thickness of 675 micrometers), re-polish-

ed, and, following a thorough clean, the chip is inverted and a silicon nitride (SixNy) hard

mask is deposited on the backside of the GaAs growth wafer via plasma enhanced chemical
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vapor deposition (PECVD).

After temporarily mounting the chip to a glass handle using a high temperature wax,

a backside lithography step is used to define windows in the PECVD hard mask. The

windows defined in this step will ultimately be used to release the micromechanical devices.

An SF6-based RIE process is implemented to pattern the SixNy film and the devices are

finally undercut and left free-standing by selectively removing the underlying GaAs growth

substrate with a selective H2O2 : NH4OH-based wet chemical etch. This process is carried

out in an ultrasonic bath to ensure removal of any passivating films formed in etching.

This process ultimately terminates on the backside Al0.92Ga0.08As etch stop layer, while

the sidewalls of the cantilever and Bragg mirror are protected by the mounting wax layer.

To clean up and free the resonators, the etch stop is removed in a dilute hydrofluoric (HF)

acid solution and, after rinsing thoroughly, the samples are soaked in acetone to remove

the protective wax and demount the chips from the glass handle. Finally, the samples are

transferred to an ethanol bath and a critical point dryer is used to avoid collapse of the

free-standing resonators during the solvent removal stage.

As discussed previously [65], a small but finite lattice mismatch in the high and low

index layers of the epitaxial DBR result in the birefringent properties of the epitaxial

DBR. The additional InGaP film may also contribute local stress in this case assuming

imperfect composition control [31]. We exploited, the birefringence property of the Bragg

microresonator structures are exploited to achieve a single input field stable optical trap.

The details of the experiment are discussed in Chapter 5 of this thesis.

49



Chapter 4
Experimental Details: Towards the
Measurement of the Quantum
Radiation Pressure Noise

4.1 Phase I: Thermal Noise limited Measurement.

4.1.1 Introduction

In an movable end mirror Fabry Perot cavity, the response of the mechanical system

is monitored by the laser light circulating inside the cavity. The precision of such an

interferometric system is fundamentally limited by the classical thermal noise inherent to

the reflective coatings of the optical test masses. Such classical noise normally mask any

nonclassical optomechanical effect that include the quantum backaction due to the photon

number fluctuations inherent to the laser light probing the mirror motion [33].

Generally, a mechanical oscillator is coupled to its noisy environment through the

cantilever support that may lead to dissipative flow of thermal phonons from the noisy

environment. This flow of energy into the optomechanical system leads to excess mechanical

dissipation along with large Brownian fluctuations of the macroscopic oscillator. In order

to infer the quantum superposition of an optomechanical system, it is desirable to prepare

the system in a low energy state that can survive more than one oscillation period nosc

[66, 32]. To minimize the thermal decoherence of the prepared ground state, the test mass

should be mechanically decoupled from the environment. The rate of thermal decoherence

is ideally governed by the mechanical damping of the oscillator, and can be quantified as:

1

τ
=

ΓmkBT

2π~Ωm

, (4.1)

where τ is the thermal decoherence time, Γm = MΩm/Qm is the mechanical damping

constant for M to be the mass of the oscillator and Qm is the mechanical quality factor, T
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is the effective temperature, and Ωm is the eigenfrequency of the mechanical resonance.

Hence to maximize the thermal decoherence time, it may seem obvious to develop

mechanical oscillators with a higher eigenfrequency. But the excessive damping of such

high frequency oscillator may lead to decoherence of the prepared optomechanical state,

unless compensated by a very high mechanical quality factor. The fabrication of a high

Qm and high Ωm oscillator pose a great technical challenge due excessive mechanical, other

thermoelastic losses.

In addition, most of the macroscopic mechanical oscillators that include LIGO test

masses, tend to have a very low mechanical eigenfrequency due to their masses. Hence it is

of vast scientific interest to develop optomechanical systems with low mechanical frequency

oscillators that has high optical and mechanical quality.

4.1.2 Optical Dilution

In 2007 Corbitt et al. [57] demonstrated the technique of optical dilution for an

enhanced displacement sensitivity of a broadband optomechanical measurement. The

optical dilution is based on fluctuation-dissipation model, where a soft mechanical spring

(Km) ensure a maximal decoupling of noise sources from the mechanical oscillator. The

prepared oscillator state is rendered stiff by a strong optical restoring force provided by

radiation pressure of the blue detuned laser field. The optical spring Kos provided by the

laser field shifts the mechanical oscillator’s resonant frequency without adding any excess

sources of mechanical decoherence. This effect leads to an enhanced effective quality factor

(Qeff) of the optomechanical system at an observation frequency Ω > Ωm, given by equation

below.

Qeff = Qm
Kos

Km

⇒ Qm

(
Ωos

Ωm

)2

, (4.2)

where Ωm is the eigenfrequency of the mechanical oscillator, and Ωos is the effective resonant

frequency of the optomechanical system. It should be noted that counter-intuitively the
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mechanical spring is desired to be as soft as possible in order to maximize the thermal

decoherence time of the prepared optomechanical state. The effective shift in the resonance

frequency of the fabricated microresonator with a mechanical eigenfrequency of about 264

Hz is shown in Fig 4.1 below. Here the microresonator is used as an end mirror of a high

finesse optomechanical Fabry-Perot cavity.
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Figure 4.1: A plot showing the enhanced shift in the resonance frequency of the
microresonator of eigenfrequency 264 Hz. The detuning of the blue shifted optical cavity
is given in terms of the transmission power measured at the photodetector.

The principle of optical dilution works similar to gravitational dilution, where a fraction

of energy is stored in the noiseless gravitational field. In optical dilution the fraction of the

energy is stored in the noiseless optical field that has a very low moment of motion at the

low frequencies.

Together with the high mechanical quality microresonator test mass, we exploit a high

finesse optical cavity to achieve a displacement sensitivity that is limited by the Brownian

fluctuations of the microresonator test mass. We further demonstrate the improvement in

the sensitivity of our optomechanical system by the use of cryogenics that minimize the

thermal fluctuations. Such improvements in the displacement sensitivity of the optomecha-

nical system lays the foundation towards our further research to expose and exploit the

quantum mechanics of a macroscopic test mass.
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4.1.3 Numerical Analysis

Further design considerations and the thermal noise budget for the cantilever microres-

onators to be fabricated for our experiment are inferred through a finite element analysis

(FEA). The FEA derived modal masses (mn) and the respective frequencies (Ωn) depends

on the microresonator mass, mechanical eigenfrequency, and the structure of the cantilever

support. The theoretical prediction for the root-mean-squared thermal fluctuations xrms of

the microresonator structures is calculated as:

x2
rms,therm =

∞∑
n=1

4kBT

mnQnΩ

Ω2
n

(Ω− Ω2
n)2 + Ω4

n/Q
2
n

(4.3)

where Qn is the quality factor for n modes, kB is the Boltzmann constant, and T is the

temperature of the microresonator bath.

The numerical model based on the FEA substantiate the thermal noise predictions that

for for a given mechanical quality factor (Qm) and at the observed frequency (Ω) higher

than the mechanical resonance (Ωm), the effective coating Brownian noise that is driven

by the excess mechanical dissipation, is reduced as the resonant frequency of the resonator

is reduced. Fig 4.2, shows a predicted thermal noise floor for the two microresonator

structures with mechanical eigenfrequencies of 264 Hz and 700 Hz, and a mechanical quality

factor of 20000.

Using the designed geometry and anisotropic elastic constants of the multilayer microre-

sonator, the FEA produces resonant frequencies within a margin of error. The numerical

model incorporates a Gaussian probe on the cantilever head with a radius matched to that

of the optical cavity mode in order to accurately predict the optically-sampled effective

modal masses. The calculated noise curve assumes a constant loss angle for each mechanical

resonance, an assumption independently verified through ringdown measurement of the

individual mechanical modes. Furthermore, the measurement of similar Q values at MHz

frequencies for the same materials system suggests that the damping mechanism is likely
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velocity-independent and structural in nature. This realization suggests that reduced

thermal noise could be obtained by engineering the geometry of the system to reduce

the impact of these modes.
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Figure 4.2: Comparison of FEA model for the broadband thermal noise of the
microresonator of different eigenfrequencies of mechanical oscillation.

4.1.4 Experimental Setup

The schematic of the experiment performed to measure the thermal noise of the

microresonator structure, is shown in Fig 4.3. We use an intensity stabilized, Nd:YAG

laser of center wavelength 1064 nm, to probe a one centimeter long Fabry-Perot cavity

that is placed in vacuum to reduce any noise due to acoustic effects. The high finesse

in-vacuum cavity consists of a fixed 0.5 inch input mirror that has a high optical quality,

and a radius of curvature of 1 cm. The optical field transmitted through the input mirror

is focused onto a highly reflective microresonator that acts as a movable end test mass.

The microresonator is about 400 nanograms in mass and about 100 micron in diameter.

The natural (eigen-)frequency of mechanical oscillation for the microresonator used in the

experiment, is about 180 Hz. The input mirror is mounted onto an agilis mirror mount

through a piezoelectric device that gives us both an ability to fine tune the cavity axis

and sweep through the resonant modes of the cavity. Cryogenics is applied through an
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open cycle helium cryostat, to cool the microresonator test mass that is thermally isolated

from the rest of experimental setup. Scattering losses are minimized by a precise alignment

of the microresonator end test mass that is mounted onto the Agilis mirror mount and a

movable three axis stage. The transmitted field from the microresonator end test mass

is used to qualitatively analyze the cavity modes, study the cavity noise spectrum, and

generate a feedback error signal to stabilize the intensity of the input laser field.
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Figure 4.3: Experimental setup: The 1064 nm Nd:YAG laser outputs a 500 mW of laser
field. The intensity of the input light is stabilized by actuating the amplitude modulator
(Amp Mod) through a high pass feedback control loop. The input laser field enters the
in-vacuum optomechanical cavity from the back of a fixed half inch diameter curved input
mirror that focuses the intracavity field onto the 100 micron wide mirrored microresonator
(inset). The input mirror is mounted on a piezoelectric device to sweep the cavity through
its resonant modes. A 90:10 beam splitter (BS) splits the transmitted field towards a
broadband photodetector for signal analysis and a CCD camera for a qualitative view
of the resonant intracavity mode, respectively. The photodetector signal is used both to
generate an error signal for the feedback control and signal analysis for the displacement
noise spectrum. The microresonator chip is cooled by a continous flow helium cryostat.

The system resides far into the “bad-cavity” regime where the cavity linewidth γ is

much greater than the fundamental mechanical resonance frequency, γ
Ωm
∼ 105. In addition

to the side of fringe locking scheme and large oscillator compliance, this ensures that there

will be a significant optical spring effect [67, 58, 69, 59]. In order to achieve accurate

calibration, we directly measure the transfer function from an injected modulation of the
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laser frequency to the error signal and use this information to convert the measured voltage

spectral densities into displacement. It should be noted that this method takes into account

the optomechanical response of the cavity, including the optical spring. Figure 4.4 shows

the measured displacement noise of the 180 Hz cantilever for a frequencies from 1 kHz

to 30 kHz. The displacement noise is measured both at room temperature and when the

microresonator is cooled to about 16 Kelvin. Below 1 kHz the spectrum is limited by

excess acoustic vibrations of the laboratory setup. At frequencies above 100 kHz, radiation

pressure contributes much less to the total imprecision and the noise contribution from the

higher order mechanical modes dominate the displacement spectra.
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Figure 4.4: Displacement spectra of a microresonator with a mechanical eigenfrequency
of 180 Hz at 293 Kelvin and 16 Kelvin. The dotted green curve is the FEA model
prediction of the thermal noise for the microresonator at 293 Kelvin. The peak at around
3 kHz is the higher order mechanical mode of the microresonator. The predicted QRPN
shows anti-resonances because of interference between different degrees of freedoms of the
mechanical system.

It should be noted that the predicted QRPN is in principle exposed when the microreso-

nator is cooled to 16 Kelvins. The detection of QRPN however is more tricky in the

continuous dc readout detection. This is due to a number of reason. As explained in [61],

the photodetector in principle is insensitive to the origin of power fluctuations. Since the

measured noise is in the same quadratrure that is responsible for the backaction effect, the

error signal gnerated by the photodetector contains the information about these fluctuations
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and hence may partially get cancelled by the feedback loop. Further assumptions for the

deterioration of the cavity finesse, and the quality factor of the microresonator, are valid

but can be offset by higher input power.

Hence to measure the quantum radiation pressure noise and eventually the ponderomot-

ive squeezing effects of the optomechanical interactions, either a modified detection (homod-

yne) scheme for the signal extraction through common reference must be employed, or the

feedback scheme must be modified to avoid cancellation of the QRPN signal.

It should be noted that a single field homodyne detection is especially challenging

owing to the fact that a limited output signal available for both the feedback control and

the Homodyne detection.

4.2 Phase II: Measurement of the Quantum Radiation Pressure Noise

4.2.1 Introduction

As asserted in the previous section, the mirror motion due to the quantum fluctuations

in the intensity of the laser field can be effectively cooled by feedback control. In other

words it is not ideal to use the same signal that controls the cavity dynamics through

feedback, to analyze the effects of backaction effects caused by the feedback controlled

input field. The effective cancellation is proposed to mitigate the backaction noise or the

quantum radiation pressure noise. Being said that, it is important to quantify the amount

of cancellation so weigh in the efficacy of such a mitigation scheme. Hence the direct

measurement of the QRPN is still very important. In this section, I will briefly describe

the ongoing investigations and the experimental development towards the measurement of

the QRPN.

4.2.2 Experimental Setup

For exposing the quantum backaction of QRPN effects, we chose a pump-probe scheme,

where the optical cavity is driven by the pump field blue detuned to the resonant frequency.

The pump field generate the error signal for the feedback control to manipulate and stabilize
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the dynamics of the optomechanical cavity. A second (probe) laser field that is mode

matched and phase locked at an offset to the pump field, is injected into the optical cavity.

The input probe field is intensity stabilized to minimize the classical noise in the amplitude

of the input probe field. Schematic of the experimental setup is shown in the Fig 4.5, below.

The pump and the probe fields are input in orthogonal polarizations in the reference frame

of the cavity axis. The orthogonal output transmissions due to the pump and the probe

field are seperated by a polarizing beam splitter. Similar to the experimental setup for the

thermal noise measurement, the pump field is sent to a CCD camera and a photodetecto.

The photodetector signal from the pump field is used for generating an error signal for

the feedback loop, and process the signal for inferring the dyanamics of the mechanical

microresonator. The probe field is simply detected by another photodetector in orthogonal

polarization that gives an information about the circulating power in the probe field. A

future upgrade for the homodyne detection of the probe field is possible to further expose

the SQL limited performance of our experimental setup.

Figure 4.5: A schematic of the experimental setup for the proposed measurement of the
quantum radiation pressure noise and the artifact of the quantum correlations between the
optical cavity and the microresonator end test mass.
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4.2.3 Measurement of Quantum Correlations

The pump-probe scheme exploited here for the measurement of the QRPN offer various

advantages in the continous measurement schemes.

a) Since the optomechanical dynamics are controlled by the orthogonal pump field, the

probe field does not get stabilized by the feedback signal. Hence any mirror motion caused

by the probe field is not cancelled by the subsequent intensity manipulations of the input

field. Further such mirror motions

b) The probe field can be operated close to the resonance to enhance the quantum

effects, which can be used in future, to improve the level of ponderomotive squeezing

generated due to parametric correlations of the optomechanics.

c) Probe field can be used as a test bed for the experimental demonstration of the noise

evasion by various proposed schemes that include the variational readout, speedmeters, and

other QND detections.

d) Such scheme further lay foundations towards investigating the exotic regimes of

hybrid quantum optomechanics, quantum chromodynamics and the macroscopic many

body investigations,

In principle any mirror motion induced by the quantum fluctuations in the intensity

of the probe field, should induce a correlated noise in the pump field. Hence for a pump

field to be essentially limited by the noise from the probe field, the quantum backaction

effects can be extracted either through signal processing or averaging out the random noise

similar to Weiner filtering. Fig 4.6 shows the experimental progress towards building up the

correlations between the pump and the probe field. Ideally the cavity dynamics stabilized

through the pump field, can be rendered noisy by the probe field. If the probe field is

intensity stabilized to be shot noise limited, the quantum correlations between the probe

field and the mechanical resonator should in principle be visible in the analyzed pump

signal.
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Figure 4.6: Noise plot showing the total noise in the pump field and the noise contribution
of the probe field that is projected onto the pump field.

4.3 Overview

In this chapter, I have described the ongoing experimental investigations for the measur-

ement of the quantum radiation pressure noise in an optomechanical cavity. The fabricated

high quality microresonator are used as end test mass of the high finesse Fabry-Perot cavity.

The sensitivity of our optomechanical system is limited by the mechanical dissipation and

the noise due to the thermal decoherence of the microresonator. These dissipative forces

are reduced by applying cryogenics to cool the thermal fluctuations in the mechanical

mass. At low temperature the displacement noise sensitivity is masked by the combination

of shot noise limited input field, and the exciations of the higher order mechanical mode.

Further I have shown the future goals towards exposing the quantum correlations using two

input optical fields in a pump-probe regime. These artifacts of these quantum correlations

are further proposed to push the sensitivity of the experimental setup beyond the Standard

Quantum Limit. The aspiration to achieve the sub-SQL sensitivity is based on our numerical

analysis of the displacement noise performance of the microresonator, as shown in Fig 4.7.

It is to be noted that given and ideal detection, the sub-SQL performance is expected at
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the higher than 40 kHz frequency band.

Figure 4.7: FEA based numerical model for the sub-SQL noise performance of the
microresonator based optomechanical cavity.

Future upgrades include exposing the quantum correlations at room temperature. This

idea require a very high finesse and stable optomechanical cavity that is probed by a shot

noise limited input field. The prospective signal processing schemes for the averaging of

the random noise is under consideration. One such effort is to build a high frequency

dual optical trap, where a feedback signal is not required to stabilize the dynamics of

the optomechanical cavity. Such optical traps serve as potential candidates exposing

the quantum mechanics of the macroscopic objects without a need to cool them to their

mechanical ground states.

61



Chapter 5
Stable Optical Trap due to the
Birefringence of the Microresonator

5.1 Introduction

It is well established that in an opto-mechanical cavity, the radiation pressure due to

the circulating field can act as a (anti-)restoring and (anti-)damping force, depending on

whether the cavity is red or blue detuned [70, 59, 58, 71]. The (anti-)restoring force is

generated by the position dependent intracavity power and radiation pressure, while the

(anti-)damping force is due to the finite response time of the cavity to changes of the mirror

position. When the cavity is detuned to a frequency higher than the resonant frequency

(blue detuned), the radiation pressure gives rise to a positive restoring force and an

anti-damping force. Likewise, when red detuned, anti-restoring and positive damping forces

are generated. For systems that operate below the detuning frequency, this generally leads

to instability from either an anti-restoring or anti-damping force. The optical spring formed

by a restoring force has a profound effect in systems with soft mechanical suspensions and

can be used to enhance the sensitivity of detection by amplifying the mirror’s motion. The

strong anti-damping force can dominate the mechanical damping in this scenario giving

rise to dynamic instabilities [72, 67, 73], and is usually stabilized by actively controlling

the optical response of the cavity through feedback loops [72, 67].

In 2007, Corbitt et al. introduced a dual carrier stable optical trap, in which a damping

force due to a red detuned sub-carrier field cancels out the anti-damping force due to

the blue detuned carrier field [56]. That approach eliminated the need for electronic

feedback, but required using two distinct optical fields incident on the cavity. Recently, a

new approach that exploits the bolometric backaction due to the photothermal effect was

proposed by Kelley et. al. [74]. This approach produces a damping force by exploiting

the thermal expansion of the mirrors from absorption the intracavity optical field. Though
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stable, such optical absorptions introduces excess vacuum fluctuations and deteriorates the

sensitivity of the device.

In this chapter, I will introduce a new scheme to achieve a stable optical trap by

exploiting the birefringence inherent to the mirrors, without relying on absorption or

multiple carrier fields. In this scheme of stable optical trap, a single field with linear

polarization is injected into the optical cavity. The cavity consists of a 0.5 inch input

mirror and a microfabricated mirror supported on a cantilever as the end mirror. The

microresonator is fabricated from a stack of crystalline Al0.92Ga0.08As/GaAs layers and

is inherently birefringent, resulting in differing resonance conditions for the orthogonal

polarizations. The two polarization components of the input field undergo a relative

phase shift as a function of the birefringence. This phase shift allows the two polarization

components to operate at different cavity detunings from each other, which gives the stable

double optical spring effect. We note that the phase shifted polarizations behave as if there

were two input fields. We will call these orthogonal polarization components as the carrier

(C) and the subcarrier (SC) polarizations, for convenience.

The schematic shown in Fig 1 describes the experiment performed to demonstrate our

scheme. Initially the intensity of the laser field from the Nd:YAG laser is modulated by

an amplitude modulator through a servo-controlled feedback signal from the transmitted

cavity output field. This feedback is necessary to keep the opto-mechanical effects stable

until the cavity reaches the self-stable regime. The polarization angle of the input field is

set using a combination of two half wave plates and a polarizing beam splitter, such that

the power in the C polarization is about 22 times the power in the SC polarization.

The in-vacuum cavity is one centimeter long and consists of an input mirror that has

a radius of curvature of one centimeter. The input mirror is mounted on a piezoelectric

device, to allow for fine tuning of the cavity length. The optical field is focused on a

microresonator that is about 100 micron in diameter, and about 400 nanograms in mass.

The microresonator has a natural mechanical frequency of Ωm = 2π × 274 Hz with a
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mechanical quality factor Qm ≈ 2× 104. The birefrengence induced frequency shift of the

resonance condition between the two polarizations in our experiment is measured to be

about 7.4 times the cavity linewidth (HWHM) of γ ≈ 2π × 254 kHz.

1064 nm

Nd:YAG
Amp Mod

Servo Amp

High Vacuum

Microresonator

Cavity Piezo 
    Control

PBS

HWP

HWP

Feedback ON/OFF
         Switch

High Pass

PD

BS
Scope

PBS

1 cm

Camera

High Freq Spectrum
Analyzer

PD

~100   m

Figure 5.1: Experimental setup: The 1064 nm Nd:YAG laser outputs a 500 mW of laser
field. The intensity of the input laser field is controlled by the amplitude modulator (Amp
Mod) through a high pass feedback control loop. The first half wave plate (HWP) and
a polarization beam splitter (PBS) sets the power of the input laser field to 64 mW and
the second HWP controls the power ratio between the carrier (C) and subcarrier (SC)
polarization components of the input field to about 22:1. The cavity is located inside
a vacuum tank and consists of a 0.5 inch input mirror and the 100 micron diameter
microresonator (inset). The transmitted signals from the carrier (red) and the sub-carrier
(blue) components are separated by a PBS. A 90:10 beam splitter (BS) splits the carrier
transmission for a signal detection by a photodetector and a qualitative detection by a
camera. The carrier photodetector signal is used for signal analysis and as an error signal
for the feedback control.

The transmitted field from the end mirror is used to qualitatively analyze the cavity

modes, analyze the cavity noise spectrum, and to generate a feedback error signal for the

initial control of the cavity. The C and the SC components of the transmitted fields are

separated using a polarizing beam splitter, and the amplitude of the SC transmission is

measured by a photodetector. The transmitted C polarization is further split by a 90:10
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beam splitter for which 10% of the signal is detected by a CCD camera for a qualitative

analysis of the cavity modes. The rest of the C transmission is detected by a photodetector

and is used both for the initial feedback control and the signal analysis of the cavity

features. The electronic feedback control to the intensity of the input field is turned off

once the self-stable regime is reached.

5.2 Calculations and Measurements

The power inside the cavity and the resulting radiation pressure on the microresonator

test mass depends on the resonance condition of the cavity. For a large cavity linewidth,

we take the frequency of motion Ω� γ, such that the associated spring constant is given

by [74].

Kos =
16πPinT1

√
R1R3

2

cλo(1−
√
R1R2)3

δγ(
1 + δ2

γ

)2 (5.1)

where Pin is the input power of the laser field. Ti and Ri are the transmittance and the

reflectance of the input mirror (i = 1) and the end test mass (i = 2), δγ = δ/γ is the field

detuning in terms of the cavity linewidth, λo is the center wavelength of the input laser

field, and c is the velocity of light.

In addition, the detuned cavity has a finite response time on the scale of γ−1 and hence

the intracavity power buildup lags the mirror motion. This lag in effect leads to a viscous

damping force with a damping coefficient given by [59, 67], again under the assumption

that Ω� γ:

Γ =
2Kos

Mγ[1 + δ2
γ]

(5.2)

where M is the reduced mass of the two cavity mirrors. Compared with the fixed mirror

the microresonator has a negligible mass and hence the reduced mass is simply equal to

the mass of the cantilever.

In a stable cavity operation, the equilibrium is maintained by a positive restoring force

and a strong damping force. These forces requires a positive spring constant (K > 0) and a
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negative damping coefficient (Γ < 0). But as is evident from the dependence of K and Γ on

the sign of δ (Eq. 1 and Eq. 2), a positive (restoring) spring constant implies instabilities

due to negative damping force, under the assumption that Ω� γ. The instabilities due to

negative damping usually requires a feedback control.

In our experiment, the system is stabilized by adjusting the detuning of the C and SC

components of the intracavity field such that the blue detuned C polarization component

creates a large restoring force and only small anti-damping force, while the red detuned SC

polarization creates a small anti-restoring force and a large damping force. At detunings of

δC ≈ 5.3γ and δSC ≈ −2.1γ, the intracavity carrier and subcarrier polarizations component

fields interact with the mechanical system resulting in Ktot ⇒ KC + KSC > 0 and Γtot ⇒

ΓC + ΓSC < 0.

Fig 5.2 depicts the numerical model for operating regimes of our system at a fixed

input power. The total optical rigidity due to the two polarization field components is

plotted as a function of carrier and the sub-carrier detunings. The numerical model is in

agreement with our experimentally observed stable optical trap, as can be seen from the

locking acquisition of our opto-mechanical system (Fig 5.3). The blue dotted line in Fig 5.2.

correspond to the locking acquisition in Fig 5.3 where the amplitudes for the transmission

of the carrier (I), subcarrier (II), and the feedback control signal are shown. The feedback

control signal is designed to provide a damping force and is capable of counteracting the

optical anti-damping that is dominant during initial locking, which is shown as region 1 in

Fig. 2 and 3. When the system crosses into region 2, the SC crosses onto the other side of

resonance, and exerts a strong anti-restoring force. The feedback is unable to counteract an

anti-restoring force, and the system oscillates uncontrollably. As the SC detuning increases,

and the system moves into the stable region 3, the system stabilizes as the restoring force

from the C exceeds the anti-restoring force of the SC. At this point, the feedback loop is

turned off, and the system remains locked and stable. This does result in slightly higher

vibration levels in the absence of the damping feedback loop.
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Figure 5.2: Graphical representation for the total optical rigidity as a function of detunings
of the carrier C and subcarrier SC at a fixed input power ratio of 22:1, respectively. The
shaded regions [I], [II], [III], and [IV] respectively correspond to statically unstable region
with K<0 and Γ<0, dynamically unstable region with K>0 and Γ>0, anti-stable region
with K<0 and Γ>0, and stable region with K>0 and Γ<0. The dotted blue line represent
the trajectory of the C over the cavity resonance and agrees with both the calculated and
the experimentally measured data. Regions 1, 2, and 3 on the trajectory of C are in direct
correspondence with the real time sweep data as shown in Fig 3. A stable optical trap is
achieved at δC/γ ∼ 5.3 and δSC/γ ∼ −2.1. The inset (b) shows the spring constant and
damping as a function of δC/γ, K and Γ where the vertical red line represent the stable
optical trap from the experimental data.

The inset plot (b) of Fig 5.2 depicts the total spring constant and the damping

coefficient due to the two polarization components, as a function of carrier detuning

around the stable optical trap region. The results further correspond to the experimental

measurement for the optical spring response at a polarization dependent stable optical trap,

as discussed above.
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Figure 5.3: The real time sweep data showing the output signal for the C polarization (I),
the SC polarization (II), and the feedback to the Amp Mod (III). The region 1 of the plot
shows the rise in the amplitude for the C and the SC polarizations, as they sweep up the
resonant cavity. Oscillations as a result of static instabilities are shown in the region 2 of
the plot and are magnified in the inset plot (b). The region 3 of the plot shows the system
being stable and independent of the feedback control, as shown in region of the plot where
the feedback is turned off.

As shown in Fig 5.4, the mechanical resonance of the microresonator is shifted from

274 Hz to about 21 kHz. The optical trap is stable as can be seen from the decrease in

the phase, allowing the system to be operated without any electronic feedback control.

The fluctuations of the optically trapped mirror are relatively large for the performed

measurement regime, and we believe that these fluctuations may give rise to some non-linea-

rities that may be contributing to the noise in this measurement. Fig 5.4 shows the effects

of such fluctuations on the measured Q of the oscillator as compared to the calculated Q.

We have verified that this stabilization is due to polarization and not other effects, such as

photothermal effects, by confirming the polarization dependence of the observed stability.
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We note that by varying the input polarization angle and hence the power in the C and

the SC, the observed stability region shifts in agreement with the expected shifts in the

detunings of the C and the SC polarizations, and lies in the stable region IV of Fig 5.2.
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Figure 5.4: The measured transfer function of a signal sent to the amplitude modulator
to the transmission photodetector of the carrier is shown (blue), along with the calculated
optical response (dotted red). We note that this measurement is performed open-loop,
where the feedback signal to the amplitude modulator is turned off here and the cavity is
self-stabilized as a result of an optical trap. The disagreement between the measured and
calculated Q is attributed to the fact that the the resulting vibrations in the system are
sufficient to jitter the intracavity power and modulate the optical spring frequency in the
time that it takes to perform this measurement.

Further the Fig 5.5 shows the available range fot the stable optical trap. The experime-

ntal data is fitted to have a smooth fit for a better understanding of the dynamical range

and the affects on the overall quality factor of the optical spring. Since the frequency shift

is proportional to the birefringence, the range is fixed for a particular resonator unless a

rotational degree of freedom is added to the microresonator end mirror. Such effects hence

need further investigations to explore the full range of usable dynamics to achieve a high

quality dual optical trap
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Figure 5.5: The smooth data showing the available range of stable optical trap due to the
birefringence of the microresonator

5.3 Overview

Owing to the simplicity of the technique, the polarization based optical trapping

technique has many potential applications that include but not limited to the high sensitivity

optomechanical systems for gravitational wave detectors, dark matter detection, and many

body interactions in a macroscopic system. Since our technique does not depend on the

absorption, the application can be used without degrading the quantum limited sensitivity

of the experiment. In conclusion, we have exhibited a polarization dependent stable optical

trap for a microresonator based opto-mechanical system, as the outcome of a strong

optical spring and optical damping. The dynamics of the system are controlled by the

radiation pressure and depend on the detunings of the polarization components of the

input field. We experimentally demonstrated the stability of the system and confirmed

that the deactivation of the feedback control does not render the system unstable. We

believe our scheme to be a useful technique for manipulating and stabilizing the dynamics
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of the vast variety of opto-mechanical systems. We note that it would beneficial to have

control over the birefringence effect, so that the difference in the detunings of the carrier

and subcarrier, δC − δSC could be adjusted, ideally to lie in the range of about 3γ. In the

present measurement, the large separation of the two polarizations leads to a smaller than

desired optical spring.
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Appendix A
Calculation of the Optical Spring

A.1 Optical Spring

For complete form for the optical spring, we need should identify the source of decohere-

nce for the cavity decay. Under the assumption of no scattering losses, the cavity decay rate

is an outcome of the finite transmission of the optical mirrors in the cavity For an input

electric field Ein, the displacement operator x̂n for the vibrational modes of a mirrored

resonator can be represented as harmonic oscillation around the measurement frequency

[75].

x̂n(Ω) = xoe
iΩte−iΩ(2n−1)τ (A.1)

where xo is the zero point motion of the mirror, τ = L/c is the time taken by light to

travel from the input mirror to the movable end mirror, L is the length of the Fabry-Perot

cavity. Under the approximation that the measurement frequency cavity linewidth Ω<<γ,

and single mode cavity, n = 1.

For the transmission amplitude t1 of the input mirror, the coupled optical field into the

cavity is t1Ein. The displacement x1 of the movable end mirror causes the phase shift of

the circulating optical field. If r1 and r2 are the reflection amplitudes of the input mirror

and the movable end mirror, the total circulating optical field can be written as:

Ecirc = t1Ein + t1Einr1r2e
−i2k(L+x1) ⇒ t1Ein(1 + r1r2e

−i2kLei2x1) (A.2)

where the factor of 2 comes due to the field being reflected and hence the total distance

covered by the circulating field is 2L.
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To the first order approximation, the above equation can be written as:

Ecirc ≈
t1Ein

1− r1r2e−i2kL

{
1− i2kx1r1r2e

−i2kL

1− r1r2e−i2kL

}
. (A.3)

Therefore the power circulating inside the cavity is:

Pcirc = −‖Ecirc‖2 =

∥∥∥∥ t1Ein

1− r1r2e−i2kL

{
1− i2kx1r1r2e

−i2kL

1− r1r2e−i2kL

}∥∥∥∥2

. (A.4)

Pcirc ≈
t1

2Ein
2r1r2x

(1− r1r2e−i2kL)(1− r1r2ei2kL)

{
r1r2e

−i2kL

1− r1r2e−i2kL
+

r1r2e
i2kL

1− r1r2eikL

}
(A.5)

By definition of the optical spring.

2Frad = −Kosx and Frad = 2r22

c
Pcirc

Therefore after simplifying the above equation A.5 for a given detuning δ = ωo − ωc.

Under the approximation:

e−i2kL = e−2iδτ ≈ 1− i2δτ

The optical spring coefficient is given as:

Kos ≈ −4Pint1
2r2

2 i2kr1r2

c(1− r1r2 + i2δr1r2τ)(1− r1r2 − i2δr1r2τ)
(A.6)

×
(

1−i2δτ
1−r1r2(1−i2δτ −

1−i2δτ
1+r1r2(1+i2δτ

)

This under further definition of δ/γ = δγ and wave number k = 2π/λo

Kos ≈
16πPint1

2r2
2r1r2

cλo(1− r1r2)3(1 + δγ)2
(A.7)
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Appendix B
Laser Cooling by Stimulated
Emission

B.1 Introduction

Thermodynamic tasks in the quantum regime have been the subject of intense study

in the recent past, where quantum coherence can aid in improved performance. For

instance, quantum thermal machines have been recently studied from the standpoint of

efficiency of work extraction [76, 77, 78, 79] and entropy production [80]. Another example

involves conventional schemes like sideband cooling that have been recently improved by

the application of quantum control protocols [81, 82, 83]. Laser cooling often represents the

first step in quantum-state engineering protocols that are important for various quantum

technology tasks. Such tasks include preparing Bose-Einstein condensates [84] for precision

metrology [85, 86] and engineering cold mesoscopic systems such as nano-mechanical resona-

tors [73] for sensing.

Most conventional laser-cooling schemes, as shown in B.1, assume spontaneous emission

to be the carrier of entropy lost by the atoms being cooled. Such cooling schemes, for

example in Doppler cooling [87, 88], typically involve cooling of motional degrees of freedom

by momentum exchange between the atoms and the field.

Since these conventional schemes do not take into account the cooling of any electronic

degrees of freedom, such cooling methods only work for specific alkali atoms. Cooling of

other atoms and molecules, which have excitations in multiple degrees of freedom, is not

possible with these aforementioned cooling schemes. Furthermore, the efficiency of these

spontaneous emission based cooling schemes is limited because of effects such as Doppler

shift and optical pumping [89].

Sub-Doppler cooling of external and internal spin atomic degrees of freedom, along

with the issues related to optical pumping and Doppler shifts, were addressed in Sisyphus
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cooling by interacting atoms with counter-propagating, orthogonally polarized beams of

light [90]. The random recoil fluctuations caused by spontaneous emission still limit the

cooling of atomic momentum spread beyond the recoil limit [91]. Sub-recoil temperatures

are attainable with techniques including velocity selective coherent population trapping

and Raman cooling [91], but are only investigated for sub-micro-Kelvin regimes.

Ground Thermal State

Figure B.1: Schematic of the conventional cooling scheme as compared to the cooling of
excited energy states of the atoms by stimulated emission due to atomic interactions with
the bichromatic field. Photon carrying momentum ~k hits the atom travelling in opposite
direction with velocity v. The gained photon is spontaneously emitted in random direction
reducing the effective velocity to v − ~k/m. In bichromatic interactions the atom initially
in random thermal state undergo stimulated emission to its ground thermal state.

Metcalf et al. [92], proposed a more efficient cooling scheme based on stimulated

emission of the atoms produced by a bichromatic field. In yet another work, the control

and the robustness of the bichromatic force was investigated [93]. It was suggested that

the fields constitute enough of a reservoir to carry the entropy, lost by the atoms, away

from the system being cooled. The controllability of the stimulated emission here serves

as a mechanism to circumvent issues such as Doppler shifts, optical pumping, and the

recoil limit. In later experimental investigations, Metcalf et al. [94] demonstrated such

non-spontaneous emission based cooling of He atoms.

83



Furthermore, since the stimulated emission based cooling is not dependent on the

random spontaneous emission of light, a broader range of atoms and even molecules can be

prospectively cooled over a wide range of temperature. But in complex atomic systems and

the molecules, the internal vibrational and rotational motions are more prominent rather

than just the translational motion. Such investigation dealing with the de-excitation of the

internal degrees of freedom has not been well studied for the stimulated emission model of

cooling and hence need to be addressed for an efficient laser cooling scheme.

In this current article I carry out a study of bichromatic cooling to determine its

feasibility for cooling of the internal degrees of freedom of atoms. I study the stimulated

emission model for laser cooling of a two level atomic state, interacting with a standing

wave of a bichromatic field. Such a model requires quantization of the field to incorporate

both, the angular momentum transfer for cooling of internal degrees of freedom, and the

entropy flow from the atom to the fields. In our model, the fields are used as the low-entropy

reservoirs into which the atomic entropy is transferred [95]. I contrast this with standard

cooling techniques where spontaneous emission is employed to transfer entropy. Interaction

cycles for increasing average number of photons in the field were studied numerically to

observe the flow of von-Neumann entropy in the atom-field system, the change in the

population, and suggestively the excitation spread of the atom. I further show, by analyzing

the Carnot-like thermodynamic cycles that this scheme of employing simulated emission

using bichromatic field constitutes an efficient laser cooling scheme.

In Sec. B.2, I outline the physical system considered and various sources of decoherence.

I also detail the control protocol used to cool the atomic degrees of freedom. In Sec. B.3,

I solve for the dynamics of the two-level atom and highlight the cooling of the atom based

on stimulated emission. In the final section, I present our conclusions.

B.2 Model Description

Our model of the physical system consists of a two-level atom interacting with a

bichromatic field, schematically shown in Fig. B.2. Here the atomic states are represented
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respectively by ground state |g〉 and excited state |e〉. Coherent states are used to describe

the light field [96, 97]. The two counter-propagating light fields that are red and blue

detuned with respect to the atomic transition frequency, form a standing wave of bichromatic

field to a close approximation. Hence the atoms interacting with the bichromatic field

experience a potential gradient that excites the atoms and subsequently pump the atoms

to the ground states.

The standard Jaynes-Cummings interaction [98] is used to describe the atom-field

interaction Hamiltonian of our system, namely:

Ĥint = ~[gre
−iδrtr̂†σ̂− + gbe

−iδbtb̂†σ̂−] + H.C. (B.1)

where σ̂± are the atomic raising and lowering operators, r̂†, b̂† are the creation operators

for the red and blue fields respectively, δr,b are the detunings of the fields and gr,b are the

coupling constants.

The decay coefficients of the system that includes the atom and the bichromatic field,

are set such that stimulated emission caused by the standing wave of the counter-propagating

quantized bichromatic field is a dominant mode of de-excitation of the atom. This condition

is important to show that the interacting fields provide an efficient reservoir for entropy

flow.

The system as a whole loses its entropy through the field interactions with the outside

environment at a rate of γr and γb for the red- and blue-detuned fields, respectively. To

avoid Rabi flopping between the system and reservoirs, and hence staturating the entropy

transfer, I assume a physical system where atoms interact with a fresh beam of pulsed laser

fields. In our work, the above mentioned model of the physical system is simulated as a

series of atomic interactions with a pure state bichromatic field. The time period for each

interaction cycle is tuned to ensure efficient cooling. Furthermore the condition τ < 1/γr,b

is imposed such that the relaxation time of the fields τ is slow enough to see the entropy

changes in the interacting fields but fast enough that the fields decay without reheating
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the atom.

Figure B.2: Schematic for atomic interactions with a bichromatic field. The states |g〉 and
|e〉 are the ground and excited energy states of the atomic subsystem. Fields at frequencies
ωb and ωr are equally detuned (δr = −δb), above (blue) and below (red) from the atomic
resonance frequency ωo. Decay constants associated with the interaction of the fields with
their respective environments are represented by γb and γr respectively.

Time evolution of the system density matrix ρ is calculated according the Lindblad

Master equation given by Eq. B.2 [99, 100].

˙̂ρ(t) =

− i
~ [Ĥint, ρ̂(t)]− Γ

2
[n̄+ 1]D(σ−)[ρ̂(t)]− Γ

2
[n̄]D(σ+)[ρ̂(t)]−∑

k=r,b

[
Γi

2
[n̄k + 1]D(σ−)[ρ̂(t)]− Γk

2
[n̄k]D(σ+)[ρ̂(t)]

]
 (B.2)

Note that D(ĉ)[ρ̂(t)] := {ĉ†ĉ, ρ̂(t)} − 2ĉρ̂(t)ĉ† for operator ĉ. The sum over k = r, b

represents the interaction cycles for red-detuned and blue-detuned fields, respectively. At

time t = 0, the initially uncorrelated state of the system ρ̂A(0) is the thermal state given

above and ρ̂k(0) are the initial pure state density matrices of the respective fields.

In Eq. B.2, the second and third terms represent the evolution of the system to its
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steady state at time t, and Γ is the decay coefficient related to it. Here n̄ represents

the number of thermal excitations in the atomic steady state given by plank’s law. The

fourth and the fifth terms represent the emission and absorption cycle of the atom-field

interactions [99]. Γr, Γb are set much greater than Γ = 1/τa, for τa to be the steady state

lifetime of the atom. This condition artificially set the atom to be in quasi steady state

during the interaction and hence compensates for the relatively lower quantum number of

the field in our calculations. This would be not be an issue in the real experimental world,

where the average field quantum number is in excess of 1010 per second.

B.3 Cooling by Stimulated Emission

I calculated the changes in von Neumann entropy of the atomic and the bichromatic

field subsystems from their respective time-evolved density matrices. I further investigated

the entropy profile of the total atom-field system along with changes in the ground state

population of the atomic subsystem.

Our generalized model is an effort suggestive of stimulated emission based laser cooling

in various atomic systems. For instance, here I investigated the system similar to the D2

transition of Sodium atom with an atomic transition frequency ωo of 2π × 508.8 THz [101].

Following the large detuning approximation, the coupling constants were set to inversely

follow the detuning. A spread in the overall velocity distribution of the atom was considered

as a result of the excited internal quantum states of the atom. For a weaker coupling regime

the respective detunings of the red and the blue fields were set to be ∓1.5 MHz around ωo

and corresponds to a velocity spread ∆v = δλ/4π of about 0.29 m/s that is also the recoil

velocity of the sodium atom . The decay coefficients Γr, Γb, for the two fields, were set

equal to 100Γ. For a stronger coupling regime, the coupling constants were doubled and

the detunings were reduced correspondingly.

Fig. B.3 shows the results of our calculations for entropy flow of the atom-field system

during weakly and strongly coupled atomic interactions with the standing wave of the

counter-propagating bichromatic field. Three distinct cases of field quantum numbers 8,

87



18, and 50 are presented. As expected, the decrease in the entropy of the atom is directly

proportional to the increase in the field quantum number and the coupling between the

atom and the fields. The lowered effects of the increased field for the n̄r,b = 50 case is

understood to be the truncation error and hence resulting from the lower effective number

of available modes.
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Figure B.3: Entropy flow during atomic interactions with the bichromatic field. Curves (I),
(II), and (III) represent the results of atomic interactions with 8, 18, and 50 photon fields
respectively. Subplots (A) and (B) show the change in entropy of the atom in the weak
and strong coupling regimes. Subplots (C) and (D) show the corresponding changes in the
entropy of the field in weak and strong coupling regimes. (E) and (F) are the changes in
the total entropy of the system (atom and field). The steps at definite intervals of time are
the injection points for the fresh field into the system.

Also from Fig. B.3, I see that the decrease in atomic entropy is accompanied by

corresponding increase in the entropy of the light field. An increase in the reservoir capacity

of the light field, with increasing field quantum number, is observed resulting from the

increasing number of available modes in the fields. Discontinuities at definite time intervals

are the injection points of fresh field into the system and are an artifact of our model.

Although each interaction cycle with a fresh beam light field is parametrized to have no

information of the previous cycle, I kept track of the cumulative entropy gained by the
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fields to ascertain the total entropy lost from the system. The total entropy of the system,

as expected, stays constant until the end of the interaction cycle where it undergoes a

sharp decrease, owing to the fields carrying the entropy away from the whole system and

dissipating it into the outside environment.

To ascertain the cooling of the atoms, I also studied the changes in the ground state and

effectively the excited state population of the atomic subsystem as a function of the time of

interaction. As evident in Fig. B.4, I see an increase in the ground state population of the

atom. The change in the ground state atomic population of the atom is directly dependent

on the intensity of the light field, and the coupling strength of the atom-field interaction.

This dependence directly corresponds to the changes in the entropy of the atoms, hence I

confirm the decrease in the entropy of the atoms to be the indicator of cooling the atomic

sample towards its ground state.
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Figure B.4: Increase in population of the ground state of the atom during (A) weak and (B)
strong interactions with the bichromatic field. As before (I),(II) and (III) are the changes
due to interactions with 8-, 18- and 50-photon fields.

Further, the decrease in the probability of the excited state population of the atom

indirectly corresponds to the decrease in the velocity spread and hence the temperature of
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the atomic sample. Considering the energy states of the atom to be thermal, the population

of the two atomic states can be described by the Boltzmann distribution. I calculated the

maximum fractional change of the logarithm of the population of the atomic sample by a

factor of 2, for the strong coupling regime of the field quantum number 50 that may suggest

about ×1.4 decrease in the velocity spread of the atomic sample being cooled . It is worth

mentioning that the suggestive drop in the velocity spread requires further explicit analytic

calculations to identify the cooling limit of our scheme.
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Figure B.5: Comparison of the thermodynamic cycle occurring during strong (green, red,
and blue curves) and weak (black curve) atom-field interactions of the modeled system.
Change in the total entropy of the system is plotted against the change in entropy of the
atomic sample. Subplots (A), (B), and (C) are the cases for atom interacting with 8, 18,
and 50 photon bichromatic field, respectively. Dotted curve in each subplot represents a
hypothetical model for atom being heated by the field, back to its initial state.

Finally, to check the efficiency of cooling of our system, I investigate for a thermodynamic

cycle between the entropy of the atom and the total entropy of the system. Since at the

beginning and the end of the interaction cycles, the total entropy of the system is equal

to that of the atoms, it makes sense to associate the entropy of the atom to the total

entropy of the system. Hence the initial and final entropy of the atom can be regarded

as that of the hot and cold reservoirs, respectively. The cycle can also be seen as energy

passed out of the system for the amount supplied by the hot reservoir, which in our case
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are approximately equal (as is evident from the initial and final entropy of the total system

for each interaction cycle).

Fig. B.5 shows the relationship between the entropy change of the atomic subsystem

and the total entropy change of the system, for both the weaker and the stronger coupling

regime. I note that the cooling of the atoms becomes more and more efficient with an

increase in the strength of the light field and that of the atom-field interactions. This

increase in the efficiency, as a function of the field intensity and the interaction strength, is

also evident from the cooling from total interaction. Hence our results are suggestive of our

system reaching maximal efficiency at intense field strength and the appropriate coupling

strength.

B.4 Conclusions

I presented a suggestive model for the efficient cooling by stimulated emission of two

level atoms produced by a standing wave of counter-propagating bichromatic fields. The

decrease in the entropy of the atoms along with an increase in the ground state population of

the atoms, confirm the cooling of the atom to its ground state. The rise in the entropy of the

fields along with a constant total entropy of the system during the interaction are suggestive

of the fields being an efficient reservoir for the entropy lost by the atoms. While our simple

model shows only cooling of internal degrees of freedom of the atoms, we can expect this

cooling to be transferred to external (motional) degrees of freedom through collisions and

thermal equilibrium. The cooling limit as such, and quantifying the relationship between

rotational and vibrational atomic energy to the atomic states population, is still under

investigation.

Stimulated emission of the atoms is evident from the atom-field entropy profile and the

enhanced effects of increased field intensity on the atomic system.

Our numerical model is limited by the computation power available. Analytic calculati-

ons to further understand the dynamics of the more complicated system along with the

consideration of ground-state splitting of the atomic state and other effects such as stronger
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light fields, effects of polarization of the fields and center-of-mass motion of the atom are

under ongoing investigation.
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