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Preface

Understanding the ultrafast motion of electrons is central to the study of atomic and

molecular processes under intense laser fields. The natural time scale for the dynamics

of bound electrons is a few hundred attoseconds (1 as = 10−18 s). For instance, the time

it takes for a classical electron to complete its orbit around the hydrogen Bohr atom is

about 150 as. In contrast, the vibrational motion of nuclei in molecules has a characteristic

time scale of tens to hundreds of femtoseconds (1 fs = 10−15 s). From a fundamental

perspective, the measurement and the control of ultrafast electron dynamics can have

important implications for the early stages of chemical processes which occur on much

longer time scales, including charge transfer and bond formation and breaking.

The strong-field process of high-order harmonic generation (HHG) provides access to

an extremely broad bandwidth, which can be harnessed to produce ultrashort extreme-

ultraviolet (XUV) pulses with sub-femtosecond duration. With the current advancements

in ultrafast laser technology, the generation of these very short light pulses allows for time-

resolved measurements of the attosecond dynamics of electrons. For a pump-probe scheme,

a first femtosecond infrared (IR) pulse is typically used to initiate some dynamics in the

atom or molecule, which can be later probed by a second, delayed HHG pulse. Furthermore,

the HHG process itself has a natural attosecond time scale and can therefore be used in a

self-probing scheme. This idea relies on the physical mechanism behind HHG, which can

be intuitively described in terms of a recollision-based picture. In the presence of a strong,

oscillating IR field, part of the electron bound state is released into the continuum and

can be later driven back to the ionic core within one laser cycle. Here the rescattering

electron wave packet acts as a self-probe for the structure and the dynamics of the ionic

core. By characterizing the spectral amplitudes and phases of the emitted harmonics, the

community envisions to retrieve information about the ultrafast electron dynamics.
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The work that I have carried out during my PhD is mainly motivated by a large,

multi-university collaboration for studying charge migration, which is a particular form of

ultrafast electron dynamics. This collaboration involves both experimental and theoretical

efforts for developing coherent probes of charge migration in molecules using strong-field

ionization as well as HHG. In this thesis, we will focus on theoretical studies of different

types of electron dynamics in atoms and molecules driven by intense laser pulses, via the

process of HHG. The structure of this thesis is as follows. First, an introduction to essential

concepts and methods in HHG theory is provided in Chapter 1. For the remaining chapters,

we discuss our theoretical and numerical investigations, which are organized based on the

approach used for treating the laser-matter interactions. In Chapter 2, we present the

classical trajectory Monte Carlo method, wherein an ensemble of independent electron

trajectories is propagated in the presence of an atomic argon potential and a strong laser

field with elliptical polarization. In Chapter 3, we examine possible dynamical multielectron

effects in molecules, which lead to the enhancement of HHG emission, from the numerical

solution of the time-dependent Schrödinger equation for two active electrons each restricted

to one dimension. Finally, in Chapters 4 and 5, we further explore the HHG process in

more realistic molecular systems with multiple active orbitals using the time-dependent

density functional theory approach.

My PhD work, including the studies presented in this thesis, has led to the following

publications:

• F. Mauger, P.M. Abanador, K. Lopata, K.J. Schafer and M.B. Gaarde, Semiclassical-
wave-function perspective on high-harmonic generation, Phys. Rev. A 93, 043815
(2016).

• A. Sissay, P. Abanador, F. Mauger, M.B. Gaarde, K.J. Schafer and K. Lopata,
Angle-dependent strong-field molecular ionization rates with tuned range-separated
time-dependent density functional theory, J. Chem. Phys. 145, 094105 (2016).

• P.M. Abanador, F. Mauger, K. Lopata, M.B. Gaarde and K.J. Schafer, Semiclas-
sical modeling of high-order harmonic generation driven by an elliptically polarized
laser field: the role of recolliding periodic orbits, J. Phys. B 50, 035601 (2017).
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Abstract

The interaction of atoms and molecules with strong laser pulses is of fundamental inter-

est in physics and chemistry. Notably, the process known as high-order harmonic generation

(HHG) refers to the production of extreme-ultraviolet (XUV) light, which occurs when an

ensemble of atoms or molecules is subjected to a strong infrared laser field. Characterized

by an attosecond time scale (1 as = 10−18 s), the HHG process provides the capability

for experimental measurements to capture the ultrafast motion of electrons in these target

atoms and molecules. The underlying physical mechanism behind this process naturally

leaves imprints in the properties of the emitted XUV light, for instance, in the spectral am-

plitudes and phases. Within the single-atom or molecule description of HHG, we present

theoretical and numerical studies based on (semi)classical and quantum approaches for

treating the interactions with the long-range Coulomb and laser fields simultaneously in

the electron dynamics. Using the classical trajectory Monte Carlo method, we examine the

role of the atomic Coulomb potential in the single active electron dynamics responsible for

the HHG process driven by an elliptically polarized laser field. Next, we apply quantum

mechanical approaches to account for dynamical multielectron effects in molecular HHG. In

particular, we numerically solve the time-dependent Schrödinger equation for a molecular

model with two active electrons, each restricted to one dimension. Furthermore, we employ

the time-dependent density functional theory approach to model the strong field dynamics

of multiple active orbitals in more realistic full-dimensional molecular systems.
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Chapter 1

Introduction

Strong-field physics is generally understood as the regime of light-matter interactions in

which the laser light has an electric field strength comparable to that of the Coulomb field in

atoms and molecules. When noble gases are irradiated with intense laser pulses (1013–1016

W/cm2), the emitted light contains odd harmonics of the fundamental frequency, which

can go on to very high orders. This is a process known as high-order harmonic generation

(HHG), which leads to the conversion of laser light from the visible or infrared to the

extreme-ultraviolet (XUV) regime. A typical high-harmonic spectrum is shown in Fig. 1.1.

In the case of an atomic target, only the odd harmonics can be observed in the HHG

spectrum because of the inversion symmetry of the atom. The intensity of the first few

(low-order) harmonics decreases rapidly with the harmonic order as one would expect from

a perturbative response. As a signature of the nonperturbative nature of the laser-atom

Figure 1.1: A typical high harmonic spectrum. This is obtained from a theoretical calcu-
lation for a single helium atom interacting with an 800-nm pulse (1.55 eV) with a peak
intensity of 1014 W/cm2.
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interaction, the higher-order harmonics form a plateau wherein the harmonic intensity

remains almost constant. This plateau extends up to a cutoff beyond which the harmonic

intensity suddenly drops. The plateau in the HHG spectrum provides access to a large

number of frequency components that roughly have the same intensity and that are mostly

in phase. This is required for creating very short light pulses based on the inverse relation

between the pulse length and bandwidth.

Since its discovery in the late 1980s [1, 2], HHG has become one of the most exten-

sively studied phenomena in the strong-field regime because it is an important source of

coherent XUV light [3, 4]. This technique has made possible the production of extremely

short XUV pulses with duration less than a femtosecond (1 fs = 10−15 s) [5–8]. In addition,

due to the short time scale involved in the HHG emission process, experimental measure-

ments can now probe ultrafast electron dynamics on the natural time scale of attoseconds

(1 as = 10−18 s) [9–11]. For instance, multielectron dynamics in atoms and molecules

at the attosecond time scale have been characterized using high harmonic spectroscopy

(HHS), which evaluates the information contained in the harmonic spectral amplitudes

and phases [12–14]. Aside from probing the ultrafast electron dynamics itself, the motiva-

tion for studying the electronic motion within molecules is to provide insight towards the

control of the subsequent nuclear motion which occurs on a longer time scale of tens to

hundreds of femtoseconds [15]. In particular, the induced nuclear dynamics in molecules

can lead to irreversible structural changes and ultimately chemical reactions [16]. Before

delving into the numerical methods and the results of our study, we briefly discuss some

fundamental concepts in current HHG theory.1

1.1 The Three-Step Model

The semiclassical (or recollision-based) model of HHG [17, 18] provides an intuitive

picture of the process in terms of three steps in the interaction between an intense laser field

1Note that atomic units (~ = me = e = a0 = 1) are used throughout this thesis unless otherwise stated.
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Figure 1.2: High-order harmonic generation (HHG) described in terms of three steps in the
semiclassical model. The electron wave packet is shown in the combined potential due to
the ionic core and the laser field at different stages in the HHG process. Reproduced from
http://www.atomic.physics.lu.se.

and an electron bound in an atom or molecule, as illustrated in Fig. 1.2. This separation

in the HHG process is reasonable because the three steps happen at very different time,

energy and length scales. The electron tunnels through the barrier resulting from the

combined laser and Coulomb fields (first step). The liberated electron then accelerates as

it is driven mainly by the oscillating laser field (second step). Once the laser field reverses

its direction, the electron may come back and recollide with the ionic core (third step).

Since the electron “recombines” to its initial state, the third step leads to the emission of

an HHG photon with energy Ω = Ip +Er. Here Ip is the ionization potential of the target

atom or molecule and Er is the return energy or the energy gained by the electron during

its excursion from the moment of ionization to recombination.

Once the electron leaves the potential barrier, its dynamics becomes nearly classical

because of the high density of states in the continuum and can therefore be described by

electron trajectories usually called quantum paths or orbits [19]. The semiclassical model

provides a map that links the emitted photon energies with particular electron trajectories,

each characterized by its time of ionization (when it leaves the vicinity of the core) and its

time of return to the core which determines its return energy. This model predicts that the

generated harmonics will have energies between Ip and Ip + 3.2Up, where Up = F 2
0 /4ω

2 is

the ponderomotive energy (the cycle-averaged quiver energy of an electron in an oscillating

3
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field), and 3.2Up is the maximum kinetic energy that the electron can gain during its motion

in the laser field. Here F0 and ω are the peak amplitude and frequency of the laser field,

respectively. Thus, the ponderomotive energy Up scales linearly with the laser intensity

and quadratically with the wavelength. This corresponds to a semiclassical cutoff energy

of Ip + 3.2Up in the HHG spectrum. To put this into perspective, a typical set of values

for the laser intensity I = 1014 W/cm2 and wavelength λ = 1 µm corresponds to Up of

about 9 eV. Despite its simplicity, the semiclassical model predicts essential features of the

HHG process such as the cutoff energy, which has been validated by more sophisticated

calculations based on numerical and analytical solutions of the time-dependent Schrödinger

equation (TDSE) for an atom interacting with a strong laser field [17, 20].

To further illustrate the semiclassical model, we consider a simple case where the driving

laser field, given by F(t) = F0 cos(ωt) x̂, has linear polarization aligned along the x-axis. We

apply the so-called strong field approximation (SFA) in which we assume that the electron

dynamics in the continuum is influenced only by the laser field. Neglecting the effect of

the Coulomb field after ionization, the classical equation of motion of the tunneled electron

becomes

ẍ(t) = −F0 cos(ωt). (1.1)

Here we assume that at some time ti (ionization time), the electron is released into the

continuum from the origin with an initial zero velocity. While the tunnel exit has a nonzero

value, it can be taken to be zero in the first approximation. With strong driving fields, the

electron excursion length is normally much larger than the size of the atomic ground state.

This length scale for the electron motion is defined by the quiver amplitude α = F0/ω
2,

which increases with both the laser intensity and wavelength. For instance, the quiver am-

plitude is about 26 a.u. (14 Å) for the same laser parameters given before (I = 1014 W/cm2;

λ = 1 µm).

Integrating Eq. (1.1) and applying the initial conditions ẋ(ti) = 0 and x(ti) = 0, we

obtain

4



ẋ(t) = −F0

ω
[sin(ωt)− sin(ωti)], (1.2)

x(t) =
F0

ω2
[cos(ωt)− cos(ωti)] +

F0

ω
sin(ωti)(t− ti). (1.3)

The first term in Eq. (1.3) corresponds to an oscillatory motion. Meanwhile, the second

term corresponds to a linear motion with drift momentum that depends on ti. This linear

motion can dominate such that some electrons drift away from the parent ion without any

recollision. Solving Eq. (1.3) numerically, we find some classical trajectories that travel

in the laser field and that return to the origin at a later time tr (recombination time) as

shown in Fig. 1.3(a). Note that since we do not include the effect of the ionic potential as

well as any initial momentum perpendicular to the laser polarization, the motion is one-

dimensional. Electron trajectories with initial transverse momenta will most likely “miss”

the atom and therefore will not contribute substantially to the HHG process. Satisfying

the condition that trajectories do return to the ionic core, two classes of trajectories emerge

from this recollision process: the so-called short and long trajectories. From the mapping of

return energy versus recombination time in Fig. 1.3(b), we can clearly see the contributions

Figure 1.3: Semiclassical model of HHG. (a) Recolliding classical trajectories that are
ionized at different times, from the peak of the field to 0.25 of the laser cycle. (b) Mapping
of the return energy with respect to recombination time. The color of each trajectory in (a)
corresponds to its return energy as indicated in (b), with two sets of returning trajectories
labeled as short (S) and long (L) trajectories. The scales for the vertical axes in (a) and (b)
are given in terms of the quiver amplitude α and the ponderomotive energy Up, respectively.
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from these sets of trajectories. Here we only consider the two shortest possible sets of

trajectories, which are the short and long trajectories. They correspond to recolliding

trajectories that return to the ionic core only once, within a laser cycle after ionization.

For a given trajectory initialized at some time ti, there may also be (subsequent) multiple

returns, particularly when the excursion time considered is longer than one laser cycle.

In the strong field approximation the short and long trajectories arise from ionization

at different times during the laser cycle, and they provide two possible pathways for the

emission of an HHG photon with the same energy. The long trajectories, which are ionized

near the peak of the field, travel in the continuum for a longer time than the short trajec-

tories. Meanwhile, the short trajectories are ionized at 0.05–0.25 of the laser cycle after

the peak of the field, and they return to the ionic core earlier than the long trajectories.

The trajectory with travel time, tr − ti, of about 2/3 of the laser cycle corresponds to the

maximal return energy of 3.2Up, which results in the well-known semiclassical cutoff energy

of Ip + 3.2Up.

So far we have examined the semiclassical picture, which is very simple and easy to

implement. The next sections explore more formally the different aspects and implications

of the three-step model as well as theoretical methods used for the microscopic (single-

atom) description of the HHG process. In the last section we will also discuss macroscopic

effects in order to provide some perspectives on how contributions due to different quantum

paths in the single-atom emission of HHG can be separated in experiments.

1.2 Keldysh Theory and Tunnel Ionization

Historically, Keldysh (1964) [21] developed analytical methods for describing the in-

teraction of atoms with intense fields in what would become one of the most influential

papers in strong-field physics. The theoretical models for determining analytic solutions of

atomic ionization rates developed by Perelomov, Popov, and Terentev (PPT) [22] and later

extended by Ammosov, Delone, and Krainov (ADK) [23] are both based on the ground-

6



breaking work of Keldysh. Ionization by an intense laser field is the first step in the

semiclassical model; therefore, the proper description of ionization within the laser cycle is

imperative in the theoretical framework of HHG.

In his work [21], Keldysh introduced the dimensionless parameter γ =
√
Ip/2Up in order

to characterize different mechanisms for ionization. The parameter γ is often interpreted

as the ratio between the time it takes for the electron to cross the distance under the

potential barrier, which is called the Keldysh tunneling time, and the time it takes for

the laser field to lower this barrier. One approach for estimating the tunneling time is to

consider a velocity v =
√

2Ip, which is associated with an electron that has binding energy

E = −Ip. With this velocity, the electron has to travel across a barrier of length Ip/F0

due to the laser field. In the adiabatic limit (γ � 1), ionization is described in terms of

the quasistatic tunneling regime, where the electron travels through an essentially static

potential barrier. This process gives an exponential dependence on the field amplitude for

the ionization rate. On the other hand, the multiphoton regime takes place when γ � 1.

Figure 1.4: The potential due to the combined laser and Coulomb fields. The mecha-
nisms for ionization in the Keldysh theory are typically interpreted as (1) multiphoton and
(2) tunneling ionization as indicated by the “vertical” and “horizontal” channels, respec-
tively. Adapted from [24] which is released under the Creative Commons Attribution 3.0
license.

7
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Multiphoton ionization involves the absorption of several photons in order for the electron

to escape from the atomic potential barrier. In this regime the barrier changes drastically

during the tunneling process, leading to non-adiabatic effects that yield an In power law

for the ionization rate with n the number of photons. These ionization mechanisms are

depicted in Fig. 1.4.

Recently, new methods based on tunneling theory have been developed in order to pre-

dict strong-field ionization yields from molecules as a function of alignment angle between

the molecular axis and the laser polarization. Analytical methods such as molecular ADK

(MO-ADK) [25] and weak field asymptotic theory (WFAT) [26] both take into account

the shape of molecular orbitals in the ionization process. An important feature that dif-

ferentiates WFAT from MO-ADK is the inclusion of possible dipole effects, e.g., due to

the permanent dipole moment of an unperturbed system, which is applicable to a polar

molecule [26]. Advancements like these show the overall impact of the Keldysh theory in

strong-field physics.

1.3 Strong Field Approximation

1.3.1 Formulation of the Lewenstein model

As an extension to the semiclassical model and tunneling theory, Lewenstein et al. [20]

constructed a quantum-based approach for obtaining the HHG spectrum from a single

atom, without solving the full quantum problem. The Lewenstein model, often interchange-

ably called the strong field approximation (SFA) model, provides an analytical solution of

the TDSE under a set of assumptions that mimic the three-step model described earlier.

For a single active electron (SAE) described by the wave function ψ(r, t), the TDSE in the

length gauge reads

i
∂

∂t
|ψ(r, t)〉 =

[
−1

2
∇2 + V (r) + r · F(t)

]
|ψ(r, t)〉 , (1.4)

8



where V (r) is the atomic potential. The potential energy due to interaction with the driving

laser field takes the form r ·F(t) in the electric dipole approximation, where the size of the

atom is assumed to be much smaller than the wavelength of the laser light.

The simplicity of the Lewenstein model is based on the following assumptions: (1) the

contribution from only the ground state |ψ0〉 is considered among all bound states, (2) the

effect of the atomic potential is neglected in the continuum dynamics, and (3) the laser

intensity is the below saturation level such that depletion of the ground state is ignored.

In general, the assumption (2) is understood to be valid in the regime when the Keldysh

parameter γ is small or in the tunneling regime. From these approximations the time-

dependent wave function can be written as

|ψ(t)〉 = eiIpt
(
α(t) |ψ0〉+

∫
d3vβ(v, t) |v〉

)
, (1.5)

where α(t) is the amplitude of the bound state, and β(v, t) are the amplitudes of the

continuum states |v〉. In our discussion we set α(t) ∼= 1 although including effects due to

the depletion of the ground state is straightforward (for example, see Ref. [27]). Each of

the continuum states is labeled by its mechanical momentum v, which is not a conserved

quantity in the presence of an oscillating field. Here the ionized component of the wave

function described by the continuum states can be represented by plane waves, consistent

with ignoring the atomic potential after ionization. Again, let us consider the case where

the linearly polarized laser field is along the x-axis (the same field in section 1.1). Since

the mechanical momentum v varies in time, it is often convenient to define the canonical

momentum p = v(t)−A(t) with the vector potential A(t). This canonical momentum is

equal to the drift momentum, which is a conserved quantity in the free electron motion

driven by the laser field.

The response of a single atom interacting with the driving laser field can be described

by the time-dependent dipole moment x(t) = 〈ψ(t)|x |ψ(t)〉, which serves as the source

term in the Maxwell wave equation (MWE) for calculating the generated electric field. By
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taking the Fourier transform of x(t), the radiation due to HHG that we are interested in can

be found in the high frequency components of the induced dipole moment. Studying the

properties of the time-dependent dipole moment therefore gives us insight into the emitted

radiation (though this is not the whole story since there are macroscopic effects as well,

see discussion in section 1.4). Inserting the expression of the wave function (1.5) into the

TDSE (1.4), further analysis [20] yields

x(t) = −i
∫ t

0

dt′
∫
d3pF0 cos(t′) dx(p + A(t′)) exp[−iS(p, t′, t)] d∗x(p + A(t)) + c.c., (1.6)

where

S(p, t′, t) =

∫ t

t′
dt′′
(

1

2
[p + A(t′′)]2 + Ip

)
(1.7)

is the semiclassical action. The notation d(v) = 〈v| r̂ |ψ0〉 denotes the dipole matrix element

for the bound-continuum transition while its component parallel to the polarization axis

is denoted as dx(v). Since the integrand in the action (1.7) is the kinetic energy minus

the potential energy, effects due to the atomic potential is included to some extent by the

dependence on Ip. Note that each component in the integrand of Eq. (1.6) shows how the

three-step model is recovered in the Lewenstein model. The factor F0 cos(t′) dx(p + A(t′))

is the probability amplitude associated with the part of the wave packet that is ionized at

time t′ with the canonical momentum p. The ionized wave packet then acquires a phase

S(p, t′, t) as it travels in the continuum. Finally, the wave packet recombines to the ionic

core at time t with the probability amplitude d∗x(p + A(t)) = 〈ψ0| x̂ |p + A(t)〉.

1.3.2 Saddle point analysis

The multidimensional integral in Eq. (1.6) can be very difficult to evaluate numerically

over many quantum paths with various drift momenta, ionization times, and recombination

times. In practice, its solution can be reduced to a set of quantum paths by applying the

stationary phase approximation [28]. This approach relies on the destructive interference
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of contributions from quantum paths with rapidly varying phases due to the semiclas-

sical action (1.7). The HHG spectrum, which is proportional to the Fourier transform∫
x(t)e−iΩtdt, can therefore be derived approximately from quantum paths with phases

S̃(Ω; p, t′, t) = −Ωt−
∫ t

t′
dt′′
(

1

2
[p + A(t′′)]2 + Ip

)
(1.8)

that are stationary with respect to the variables (p, t′, t).

The stationary solutions for p = p0, t′ = ti, and t = tr are obtained from the saddle-

point equations: ∇pS̃ = 0, ∂S̃
∂t′

= 0, and ∂S̃
∂t

= 0. Thus,

∫ tr

ti

dt′′[p0 + A(t′′)] = 0, (1.9)

[p0 + A(ti)]
2

2
+ Ip = 0, (1.10)

[p0 + A(tr)]
2

2
+ Ip = Ω. (1.11)

The integral in the left hand side of Eq. (1.9) corresponds to the electron displacement,

and it is similar to setting x(tr) = 0 in Eq. (1.3) for a given trajectory initialized with drift

momentum p0 at some time ti. This means that the first equation (1.9) is equivalent to

the condition for recollision imposed in the semiclassical model. The third equation (1.11)

is simply a consequence of energy conservation for the emitted harmonic, whose energy is

related to the kinetic energy of the returning wave packet. Note that, in the limit γ = 0, the

term Ip in Eq. (1.10) can be ignored since the energies of emitted electrons are much higher

compared to Ip. In this limit the solutions for ti and tr become real-valued and the saddle-

point equations simplify to the semiclassical model (see Fig. 1.3). Solving these equations

for all possible sets of ti and tr and calculating the stationary phases of corresponding

trajectories give the intensity and phase of the emitted radiation within the strong field

approximation.

11



1.3.3 Factorization of the HHG spectrum

From the SFA formulation proposed by Lewenstein et al. [20], the single-atom HHG

spectrum can be intuitively expressed as a product of the individual steps in the recollision

model: the tunnel ionization probability, a phase function for the propagation, and the

photorecombination cross section [12, 29, 30]. However, the approximate factorization of

the harmonic yield within the SFA framework does not generally produce accurate results,

e.g., when compared with the solution of the TSDE in the SAE approximation. Among the

various factorization schemes that improve upon the SFA model, the quantitative rescat-

tering (QRS) theory for HHG has been shown to be applicable for analyzing experimental

measurements with molecular targets [31, 32]. In general, the validity of the QRS theory

has been empirically demonstrated by the good agreement with results obtained from the

SAE-TSDE approach for calculating HHG spectra [31, 33]. From the symmetry of simple

linear molecules, the harmonic yield depends on the alignment angle θ, which is defined as

the angle between the molecular axis and the laser polarization. In this case, the complex

induced dipole D(Ω, θ) from the QRS formulation is written as [34]

D(Ω, θ) = W (Er, θ)d(Ω, θ), (1.12)

where W (Er, θ) is the returning electron wave packet and d(Ω, θ) is the transition dipole

for the recombination back to the ground state. Based on the SFA model, the emitted

harmonic energy Ω is related to the electron rescattering energy Ω = Ip + Er.

In the QRS framework [33], the harmonic yield is evaluated as S(Ω) ∼ |D(Ω, θ)|2, which

gives a factorization in the energy domain. As a result, each step of the HHG process can

be treated separately. The first component from the electron wave packet is the flux of

returning electrons |W (Er, θ)|2. The alignment-dependent ionization probability N(θ) can

be introduced as an overall factor such that |W (Er, θ)|2 = N(θ) |W ′(Er)|2, where |W ′(Er)|2

is independent of the target system. The ionization probably N(θ) can be computed from

various methods such as MO-ADK and WFAT. Furthermore, the returning wave packet
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W ′(Er) can be computed from the analytic SFA model or from the numerical solution of

the SAE-TDSE for a reference atom with the same ionization potential [33]. This assumes

the quantity W ′(Er) is mainly determined by the laser parameters, that is, it does not

change for targets with similar ionization potentials. The second component in the HHG

yield is the photorecombination cross section |d(Ω, θ)|2, which depends only on the target

system. Within the SFA model, the transition dipole is given by d(k) = 〈k| r̂ |ψ0(θ; r)〉

where the continuum state 〈k| is described by a plane wave with momentum k satisfy-

ing the relation k2/2 + Ip = Ω. The “ground state” ψ0(θ; r) is typically chosen be to the

highest occupied molecular orbital (HOMO), consistent with the SAE approximation. Al-

ternatively, the transition dipole can also be computed from established quantum chemistry

techniques for a more accurate description of the continuum states [35, 36]. Although these

techniques are originally used for calculating photoionization cross sections in molecules,

photorecombination can be simply viewed as the inverse process of photoionization.

1.4 Macroscopic Effects

The theoretical methods we have discussed so far rely on the single-atom description of

the HHG process. In experiments, the high-harmonic field is generated from a macroscopic

number of atoms (or molecules) interacting with a strong laser field. This production of

XUV light via HHG is typically achieved by placing a gas jet of target atoms close to the

focus of a laser beam, which allows for the intensities that are needed in HHG. Thus, the

measured HHG radiation comes from the collective response of individual emitters located

at different positions in the interaction region. Aside from the microscopic response via the

TDSE, the theoretical description of the entire harmonic generation process also requires

the solution of the MWE for propagating and phase matching the emitted radiation through

the gas medium. Phase matching refers to the condition in which the XUV fields being

generated from atoms at different points along the forward direction are mostly in phase so

that they interfere constructively. The coupled solution of the TDSE and the MWE can be
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computationally expensive, so simplifications for the calculation of the single-atom response

is often implemented, e.g., using the SFA model [37]. Within this comprehensive framework,

the microscopic and macroscopic effects in the HHG process can be disentangled.

For the microscopic (single-atom) description of HHG, the time-dependent dipole mo-

ment computed from the numerical solution of the SAE-TDSE is in general very compli-

cated since it contains contribution from different pathways leading to the emission of the

same photon energy [38]. In the macroscopic spectrum, the high-harmonic radiation due

to the different quantum paths, e.g., the short and long trajectories, can be preferentially

selected using phase matching or can be spatially separated in the far-field spectrum [37].

Based on the semiclassical description of the microscopic HHG process, the phase of the

atomic dipole radiation has an intrinsic intensity dependence [28]. In the SFA model, this

dipole phase is given by the semiclassical action in Eq. (1.7), which is interpreted as the

phase acquired by the electron during its motion driven by the laser field. In the limit

where the Keldysh parameter γ = 0, the dipole phase φdip only depends on the contribu-

tion from the kinetic energy which is scaled by the ponderomotive energy, φdip = αjUp/ω.

This corresponds to a linear dependence on the laser intensity with the phase coefficient

αj for a given trajectory j.

Because the long trajectory spends a longer time in the continuum, it generally has

a much larger phase coefficient αj than the short trajectory. This implies that the long

trajectory has a contribution with dipole phase that varies rapidly with the laser intensity

while the phase for the short trajectory contribution varies slowly with the intensity. The

difference in the intensity-dependent phase behaviors of the short and long trajectory has

important implications in the macroscopic level. Intuitively, the atoms “experience” dif-

ferent intensities across the spatial profile of the focused laser beam. The spatial intensity

variation of the driving field gives a curvature to the phase fronts of the generated har-

monic field, especially for large αj [39]. For certain experimental conditions, the harmonic

generation from both the short and long trajectories can be optimized, mainly by chang-
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ing the position of the gas medium relative to the laser focus [39–41]. In this case, the

long trajectory contribution is spatially separated from the short trajectory contribution

in the far field. Such practice has been utilized in recent experiments in order to study the

properties of these two sets of trajectories separately [42, 43].
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Chapter 2

Classical Trajectory Monte Carlo

The classical trajectory Monte Carlo (CTMC) method was initially designed to address

problems in atomic collisions [44]. As in HHG, the combination of bound and unbound

motion of the electron makes fully quantum calculations difficult. In the CTMC framework

the initial electronic state of a hydrogen atom, for instance, is classically described in terms

of an ensemble of Kepler orbits. Properties of interest (such as the charge transfer and

ionization cross sections due to collision with a proton) are calculated as the statistical

average from an ensemble of electron trajectories with various initial conditions. In gen-

eral, classical and semiclassical approaches such as the CTMC method allow for a more

intuitive interpretation of the underlying physics behind different phenomena compared to

purely quantum mechanical approaches. Another advantage of (semi)classical approaches is

their easy generalizability to higher-dimensional and multielectron systems [45, 46]. Conse-

quently, the CTMC method has been extended to numerous applications in the strong-field

regime of laser-atom interactions (for examples, see [47, 48]).

In this chapter we examine the implementation of the CTMC framework for modeling

HHG using an elliptically polarized laser field, which is largely based on our work presented

in Ref. [49]. This theoretical study is inspired by recent experimental HHG measurements,

where the ellipticity dependence have been resolved into contributions due to the short

and long trajectories [43]. From a fundamental standpoint, the laser ellipticity serves as a

parameter in the HHG process and thus provides a stringent test of the semiclassical model

based on recolliding trajectories. Within the CTMC framework, we study the sub-cycle

dynamics of these recolliding trajectories while treating the interactions with the laser and

the atomic potential equally, beyond the commonly used strong field approximation (SFA).

In addition to statistical analysis, we also employ nonlinear dynamical tools in order to

elucidate the global organization of the recollision dynamics in this strongly driven system.
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2.1 Classical Description of an Atom

Before the dynamical properties of a classical atomic system can be investigated, the

initial distribution of electron trajectories must be chosen. Here we revisit the formulation

of the CTMC method for a hydrogen-like atom. First proposed by Abrines and Percival

(1966) [44], the classical atom is commonly described in terms of a microcanonical distri-

bution. In this framework the initial distribution of the electronic state, which is defined

by its binding energy E = −Ip, is given by

ρ(r,p) =
1

k
δ (H(r,p)− E) , (2.1)

where r and p are the electronic coordinates in phase space, k is a normalization constant,

and H is the atomic Hamiltonian. For the case of a hydrogen-like atom, the (field-free)

Hamiltonian is

H(r,p) =
p2

2
− Z

r
(2.2)

with Z the effective core charge. The radial, ρ(r, E), and momentum, ρ(p, E), distribu-

tions are acquired by integrating the initial phase-space distribution (2.1) over all possible

momenta and positions, respectively:

ρ(r, E) =
16r2

πR3
0

(
R0

r
− 1

)1/2

, (2.3)

ρ(p, E) =
32p2

πP 3
0

(
p2

P 2
0

+ 1

)−4

. (2.4)

For normalization, the parameters R0 = Z/ |E| and P0 =
√

2 |E| are defined. Notice that

the radial distribution (2.3) extends only up to the classical turning radius R0.

In order to better represent the quantum initial distribution, Hardie and Olson [50]

later introduced a scheme based on a discrete set of microcanonical distributions. For this

model the radial distribution is written as

ρ(r) =
∑
i=1

cEi
ρ(r, Ei), (2.5)
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Figure 2.1: For a helium model atom (Z = 1.345), the radial distributions ρ(r) obtained
from a single microcanonical distribution (dashed curve) and from a linear combination of
microcanonical distributions (thick solid curve) are shown. The quantum radial distribution
is indicated by the thin solid curve.

where ρ(r, Ei) is the radial distribution of the ith microstate. The coefficients cEi
are

obtained by fitting the radial distribution (2.5) to its corresponding quantum radial distri-

bution, as illustrated in Fig. 2.1. For a hydrogen atom, the quantum radial distribution of

the ground state is given by r2R(r)2, where R(r) has an exponential dependence. Shown

in Fig. 2.1, the quantum radial distribution for a helium model atom (thin solid curve)

is determined from a scaled hydrogen-like atom with effective charge Z = 1.345. Since

the expanded initial distribution (thick solid curve) mimics the associated quantum dis-

tribution, orbits that extend into the classically forbidden region are included. This in

principle can improve the description of ionization due to strong fields. Indeed, compared

to a single microcanonical distribution, the expanded description of the initial state has

been demonstrated to ensure that classical and quantum ionization probabilities are in

better agreement for a broad range of field intensities [51].

2.2 CTMC Framework: Elliptically Polarized Field

Utilizing the CTMC method, we explore the interplay between the laser and Coulomb

fields in the HHG process for the case where the laser field has elliptical polarization. The
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ellipticity of the driving laser field serves a “knob” that can be used in experiments in

order to control the three-step recollision process. When driven by an elliptically polarized

field, the initially ionized electron acquires a transverse displacement as it travels in the

continuum and this suppresses the recollision process. Thus, the ellipticity dependence of

harmonics generated from the short and long trajectory contributions naturally contain

information about the continuum dynamics. As expected in the SFA model where the

atomic potential is ignored, the accumulated transverse displacement due to the driving

field can lead to a high sensitivity of the HHG process on laser ellipticity. Experimentally,

it is well known that the harmonic yield is strongly suppressed when the ellipticity of

the driving field is increased [52–55]. Although this dependence of the HHG yield on

laser ellipticity has been extensively studied, the behavior of short and long trajectories in

the presence of both the elliptically polarized laser and Coulomb fields remains an open

question. By comparing our results from the CTMC approach with the SFA model, we are

able to reveal the dynamics “beyond the standard model” of HHG.

Motivated by recent experimental measurements [43], we model HHG from an argon

atom driven by an elliptically polarized field within the CTMC framework. For the prop-

agation of classical trajectories, we use the Hamiltonian

H(r,p, t) = H(r,p) + r · F(t) =
p2

2
+ V (r) + r · F(t), (2.6)

where V (r) is the atomic potential, parameterized from the same calculation that yielded

the quantum distribution for the initial state. The elliptically polarized driving field takes

the form

F(t) =
F0√

1 + ε2
[sin(ωt)x̂ + ε cos(ωt)ŷ], (2.7)

where F0 and ε are the peak amplitude for linear polarization and the ellipticity of the

laser field, respectively. Note that the cycle-averaged intensity in this form is independent

of ε. From the Hamiltonian (2.6), we see that the CTMC method provides a description of
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the electron dynamics where the atomic potential and the laser field interaction are treated

on an equal footing, beyond the SFA model. The role of the atomic potential is generally

expected to be significant in the intermediate regime between tunneling and multiphoton

ionization, such that the Keldysh parameter γ ≈ 1 [56]. For instance, the inclusion of the

atomic potential has been found to have important implications for harmonics near the

(ionization) threshold Ω = Ip [42, 57, 58].

Applying the three-step model, the HHG yield can be evaluated using the factoriza-

tion S(Ω) = W (Ω)σPR(Ω), where W (Ω) is the electron wave packet and σPR(Ω) is the

photorecombination cross section (see discussion in section 1.3.3). The returning wave

packet W (Ω), which accounts for both the ionization and propagation steps, is calculated

from the flux of electrons that recollide with the ionic core in the CTMC framework [59].

When combined with a quantum mechanical representation for the recombination step, the

CTMC method has been shown to (semi)quantitatively predict experimental measurements

of the HHG spectra in Ar and Kr [59, 60]. Overall, the CTMC approach is summarized in

terms of the following steps: (1) preparing the initial probability distribution of the system,

(2) propagating the ensemble of classical trajectories, and (3) gathering the statistics of

returning trajectories.

2.2.1 Initial state preparation

We implement the CTMC approach using the initial phase-space distribution discussed

in section 2.1. Here the electronic state is represented in terms of a discrete phase-space

distribution

ρ(r,p, t) =
1

N

N∑
j=1

δ(r− rj(t))δ(p− pj(t)), (2.8)

where N is the number of electron trajectories considered. For an initial radial distribution

described in terms of m microcanonical distributions, we rewrite the expression (2.5) as

ρ(r, t = 0) =
m∑
i=1

cEi
ρM(Ei; r, t = 0), (2.9)
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where each microcanonical radial distribution ρM(Ei; r, t = 0) takes the generalized form

Cir
2
√

2[Ei − V (r)] with Ci the corresponding normalization constants.

Preparing the initial phase-space distribution requires the proper application of the

quantum-classical correspondence in the selection of both the range of initial energies and

the angular momenta, as proposed in Ref. [61]. For the Ar (3p) state, the microstate energies

we use range from -1.885 to -0.150 a.u., and the classical angular momenta |L| = |r× p| are

restricted to lie between 1 and 2 in units of ~. The coefficients cEi
are determined by fitting

the radial distribution from the linear combination of 14 single microcanonical distributions

to the quantum radial distribution from the solution of the Schrödinger equation using the

Numerov algorithm [62]. To be precise, the radial part of Ar (3p) state has a node near the

origin. But since we are interested in classical trajectories that can be favorably ionized, the

initial radial distribution is fitted such that it matches the quantum radial distribution only

in the outer region. When determining the coefficients cEi
, an additional constraint must

be satisfied such that the ensemble average energy 〈E〉ρ = −Ip = −0.58 a.u. for Ar (3p).

2.2.2 Propagation of trajectories

Once an initial condition is chosen, each independent classical trajectory is propagated

using Hamilton’s equations:

ṙj(t) = pj(t) and ṗj(t) = −∇rV (r)|rj(t) − F(t) (2.10)

from the Hamiltonian (2.6). Collectively, this corresponds to solving the temporal evolu-

tion of this dynamical system as dictated by the Liouville equation, which is the classical

equivalent of the TDSE. For our calculations we perform the integration of trajectories in

two spatial dimensions, corresponding to motion on a plane. The trajectories are allowed

to propagate for the time interval t ∈ [0, 3.25TL], which accounts for returning trajectories

that are ionized after the first laser half-cycle.

In the single-active-electron (SAE) approximation, the electron dynamics is limited to

a single valence electron that experiences an effective atomic potential due to the nucleus
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and other electrons. The model potential for Ar that we use was developed by Muller [63]:

V (r) = −1

r
− Ae−Br + (Z − 1− A)e−Cr

r
(2.11)

with optimized parameters A = 5.4, B = 1, Z = 18, and C = 3.682. This potential possesses

a Coulomb tail (−1/r) at the asymptotic region and the appropriate behavior (−18/r) near

the core. However, in practice, a small softening in the potential is introduced in order to

remove the singularity at the origin.1 This prevents spurious effects in the integration of

trajectories.

2.2.3 Statistical analysis of returns

As proposed in the semiclassical model, the HHG process is attributed to electron

trajectories that are ionized and later driven back to the ionic core. The rescattering wave

packet W (Ω) is therefore described by the flux of returning electron trajectories. Here we

identify returning trajectories as those that satisfy the condition: once it is ionized, the

electron must enter a recombination sphere, which is centered on the target atom and has a

radius Rrec. For example, Fig. 2.2(a) shows a typical returning trajectory that contributes

to the total HHG yield. Note that the ionization time ti and recombination time tr are

recorded at the instants when the electron leaves and enters the recombination sphere. For

each returning trajectory, the total energy Er = p(tr)
2/2 + V (Rrec) and the angle θr, such

that tan(θr) = py(tr)/px(tr), are also computed. With access to individual trajectories,

the short and long trajectories can be easily and clearly separated using the Er versus tr

mapping as illustrated in Fig. 2.2(b).

Various properties of the dynamical system can be evaluated using the statistical distri-

butions from an ensemble of classical trajectories. In this study we focus on the ellipticity

dependence of the HHG process for short and long trajectories. For simplicity, in our

analysis, we assume that the change in HHG yield due to the increase in ellipticity is pre-

1We substitute r with
√
r2 + α2 in the model potential (2.11) with α2 = 5 × 10−4 for the long-range

Coulomb portion (first term) and α2 = 10−3 for the short-range portion (second term).
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Figure 2.2: (a) Sample returning trajectory with return energy near the maximal value.
The recombination criterion is satisfied when the electron comes back inside the recombi-
nation circle (dashed black curve) with radius of 5 a.u. (b) Statistical mapping of return
energies Er with respect to recombination times tr for returning trajectories that are ion-
ized in the first laser half-cycle of a linearly polarized laser field. The solid orange curve
presents the corresponding prediction from the SFA model [similar to Fig. 1.3(b)]. The
separation between short and long trajectories (vertical dashed line) is determined by the
recombination time at which the return energy is maximal. Trajectories are calculated for
laser intensity 8.5× 1013 W/cm2 and wavelength 1030 nm.

dominantly determined by the rescattering electron wave packet W (Ω). From a statistical

standpoint, W (Ω) is acquired from the flux of returning trajectories

W (Ω) =
1

N

Nret∑
j=1

f(Er,j,∆E), (2.12)

where f(Er,j,∆E) is a binning function such that

f(Er,j,∆E) =

{
1, if |Ω− Er,j − Ip| < ∆E/2

0, otherwise.
(2.13)

The bin size is taken to be ∆E = 2ω since only odd harmonics of the fundamental frequency

ω are present in the spectrum experimentally. For statistical convergence, the total number

of calculated trajectories for each ellipticity considered has been set at 106.
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2.3 Effect of the Atomic Potential

We now proceed to the discussion of our results from the statistical analysis of returning

trajectories in the CTMC approach. Particularly, we consider HHG from an Ar atom using

a laser field with intensity 8.5 × 1013 W/cm2 and a wavelength of 1030 nm, for varying

ellipticity. These parameters are chosen for comparison with a recent experiment [43],

where the HHG signal has been resolved into contributions due to the short and long

trajectories from the microscopic description of the HHG process. For this experiment the

Keldysh parameter is γ = 0.97, which is within the intermediate regime between tunneling

and multiphoton ionization. Here we provide a discussion for the following cases: (1) linear

and (2) elliptical polarization.

2.3.1 Linear polarization case

Already in the limiting case of linearly polarized driving laser field, we find nontrivial

effects due to the inclusion of the atomic potential in our model. We compare our CTMC

results with the SFA model (discussed in section 1.1), where the atomic potential is ignored

after ionization. As shown in Fig. 2.2(b), the results from the SFA model and the CTMC

method are in very good agreement in terms of Er vs. tr mapping. However, the underlying

ionization mechanisms are not obviously seen from this Er vs. tr mapping. To identify

these ionization mechanisms, we present the statistical mappings of recombination times

and return energies versus ionization times, tr vs. ti and Er vs. ti in Figs. 2.3(a) and (b),

respectively. A clear deviation from the standard SFA model is observed in the distribution

of returning CTMC trajectories, where two prominent “branches” are found. These map-

pings suggest that the late trajectories, which correspond to the right branch in Fig. 2.3(a),

have behavior or motion quite similar to SFA trajectories. By inspecting the dynamics of

individual trajectories, we find that the late trajectories are nearly confined along the axis

of the laser polarization, which we attribute to being ionized with small transverse mo-

menta. Even though ionization in the CTMC framework is via a classical over-the-barrier
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Figure 2.3: Distributions of ionization times ti with respect to (a) recombination times tr
and (b) return energies Er for the case of a linearly polarized laser field. The white-and-
black curves indicate the mappings as predicted by the SFA model. For comparison, a scale
in terms of the period of the laser field, which peaks at about 35 a.u. (or 0.25 laser cycle),
is included. In both panels, only trajectories that return within a distance of 0.5 a.u. from
the core are depicted in order to highlight the two branches, which are associated with two
ionization channels (see text). Reprinted with permission from [49].

mechanism rather than quantum tunneling, the late trajectories mimic what we expect

from the SFA trajectories after the electron leaves the core. This means that the exact

ionization mechanism is not so important when analyzing the overall recollision dynamics.

From the left branch in Fig. 2.3(a), the returning trajectories can be seen to have

ionization times that are about 10 a.u. (or 240 as) earlier than the SFA prediction. We refer

to this set of returning trajectories as the early trajectories. The striking deviation from the

SFA model emphasizes the role of the atomic potential for these returning trajectories. In

contrast to the late trajectories, we find that the early trajectories are generally ionized with

relatively large transverse momenta (perpendicular to the laser field) and are subsequently

driven back to the ionic core with the aid of the Coulomb potential. Aside from inspecting

individual trajectories, we also confirm the role of the atomic potential by turning it off in

the propagation of trajectories once the electron leaves the recombination sphere. Indeed,

we find that returns from the early trajectories are suppressed when the Coulomb potential

is turned off (not shown).
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2.3.2 Elliptical polarization case

Next we extend our analysis to the general case of an elliptically polarized laser field.

Figure 2.4 presents the overall effect of ellipticity on the return angles of recolliding tra-

jectories. Again, for comparison, we also display the return angles from the SFA model

modified for the case with non-zero ellipticity. This is obtained by solving the equations of

motion in two dimensions for the driving field given by Eq. (2.7). Starting from the origin

with zero velocity, trajectories that do return to x = 0 never return to y = 0. Instead, the

electron acquires a transverse displacement (along the minor polarization axis), which in-

creases as it spends more time traveling in the laser field. In order for a given trajectory to

come back to the origin, an initial transverse momentum must be chosen such that it com-

pensates for the accumulated transverse displacement. Generally speaking, in our CTMC

Figure 2.4: Distributions of return angles θr with respect to harmonic order of the photons
emitted due to associated electron trajectories for ellipticity 0.0–0.3 (as labeled on each
panel) using the similar selection of returning trajectories for Fig. 2.3. The white-and-
black curves correspond to the mappings as predicted by the SFA model. The separation
between the short (S) and long (L) trajectories is indicated in (c) and (d). Reprinted with
permission from [49].
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model there is no need to impose any initial condition for the ionization because effects

due to both the laser and Coulomb fields are included in all steps of the HHG process.

The comparison between SFA and CTMC in Fig. 2.4 highlights the role played by

the atomic potential in driving the recollision process. For linear polarization, the CTMC

results show a much broader distribution of return angles compared with the SFA prediction

especially in the region near the ionization threshold. As the ellipticity is increased, the

contributions from short and long trajectories become separated, with return angles of

opposite signs. For relatively high ellipticities (see the panels for ε = 0.2, 0.3 in Fig. 2.4),

we see a broad agreement between the CTMC samples and the SFA model. However,

Coulomb effects are revealed particularly for near-threshold long CTMC trajectories, whose

distribution of return angles skews to lower values compared to those of SFA trajectories.

This is in agreement with the Coulomb effects measured in experiments for HHG emission

from the long trajectory [42]. Physically, the return angle of a trajectory is related to the

polarization state (vector) of the emitted harmonic, which can be measured experimentally

as an offset angle with respect to the main polarization axis of the driving field. Since

the short and long trajectories recombine with the target system at different angles, the

harmonic polarization angles are different (opposite signs) for these two sets of trajectories

in the case of an elliptically polarized driving laser.

Furthermore, Coulomb effects can be seen to alter the recombination process for short

trajectories, as evidenced by the broad distribution of return angles for ellipticities 0.2 and

0.3 in Fig. 2.4(c) and (d), respectively. The near-threshold short trajectories are associated

with multiphoton processes as described in [58]. Since near-threshold short trajectories

travel in a region near the core and they are ionized and driven back to the ionic core when

the field is close to the zero of the field, the effect of the Coulomb potential is magnified.

Altogether, these results so far indicate that additional pathways for returning trajectories

arise from the inclusion of the Coulomb field.
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2.4 Threshold Ellipticity

The sensitivity of the HHG yield with respect to the change in ellipticity of the driving

field can provide insight into the sub-cycle dynamics of the ionized electron from the target

atom. Experimentally, this dependence of the HHG process on the laser ellipticity is

typically characterized using the threshold ellipticity, which is the ellipticity required for

the harmonic intensity to be reduced to half of its value at linear polarization. Recently,

experimental measurements of the threshold ellipticities for HHG in argon have been able

to study the properties of the short and long trajectories separately [43]. As shown in

Fig. 2.5, contributions from the short and long trajectory can be spatially separated at

the “inner” and “outer” regions, respectively, of the HHG emission in the far field. The

long trajectory contribution is more divergent compared to the short trajectory contribution

since long trajectories have larger phase variations due to the intensity profile of the driving

laser [39, 41, 64]. In their experiment [43], the phase matching conditions for harmonic

generation from both the short and long trajectory are optimized mainly by adjusting the

focusing geometry [40], i.e., placing the gas jet at the focus of the laser.

Figure 2.5: Harmonic spectrum under experimental conditions optimized to generate har-
monics from both the short and long trajectories. (a) Spectral and spatial profile of HHG
in the far field for linear polarization (harmonics 19–23 shown). (b) Ellipticity dependence
of the spatially integrated signal of H23. (c) Extracted ellipticity dependence at three dif-
ferent regions in the spatial profile of H23. Adapted from [43] which is released under the
Creative Commons CC BY license.

28

https://creativecommons.org/licenses/


Figure 2.6: Comparison between numerically obtained results (solid lines) and measured
data (dashed lines with smaller markers) for the threshold ellipticity εth as a function
of harmonic order for the short (blue diamonds) and long (red circles) trajectories. The
experimental results are taken from Ref. [43]. Reprinted with permission from [49].

In our CTMC calculations, the effect of the increase in laser field ellipticity is exam-

ined by calculating the HHG yield from the flux of returning trajectories, as indicated in

Eq. (2.12). Here we consider electron trajectories that come back inside the recombination

sphere of radius Rrec = 5.0 a.u. From the obtained spectra at different ellipticities, the

threshold ellipticity εth as a function of harmonic order is extracted for contributions from

the short and long trajectories separately (see Fig. 2.6). For both the short and long tra-

jectories, we find an overall trend where the threshold ellipticity εth decreases (or the HHG

yield drops faster with increasing laser ellipticity) as the harmonic order increases. This

means that trajectories that correspond to harmonics near the cutoff are more sensitive

to the laser ellipticity than trajectories for low-order harmonics. The trends for both the

short and long trajectories we find are in generally good agreement with the experimental

results from Ref. [43], also plotted in Fig. 2.6. Noticeably, there is a difference between our

CTMC results and the experimental results for the near-threshold short trajectories. This

difference is probably to due effects not included in our model, for instance, macroscopic

effects which go beyond the single-atom level.

Within the recollision scenario, we can interpret the observed trends in the threshold

ellipticity. A lower (higher) threshold ellipticity means a higher (lower) sensitivity with

29



respect to increasing ellipticity, i.e., the HHG signal falls off more rapidly (slowly) as the

ellipticity is increased. Thus, our results indicate that the near-threshold short trajectory

harmonics are less sensitive to ellipticity than harmonics near the cutoff, which is consistent

with previous studies [52, 54]. This behavior can be explained by noting that lower return

energy for the short trajectory corresponds to spending less time in the continuum and

therefore less spread in the wave packet along the transverse direction.

Looking at Fig. 2.6, we see that the same argument for the long trajectory does not

necessarily hold. The near-threshold long trajectories, which travel in the continuum for a

longer time than long trajectories with higher return energies, are expected to have more

sensitivity (or lower εth). This counterintuitive sensitivity of the long trajectory has also

been addressed and reproduced in Ref. [43] with ADK tunneling theory, which includes

a field-dependent transverse momentum distribution for ionization. However, applying

such tunneling conditions for the ionization step often becomes unreliable for the short

trajectories possibly because they are ionized near the zero of the driving field. In our case

we are able to reproduce decreasing trends from the experimental threshold ellipticities

for both the short and long trajectories quite well. How can there be low-energy long

trajectories with travel times close to a full cycle that are actually less sensitive to the

ellipticity than long trajectories that have shorter travel times? In the following section we

will show that the persistence of low-energy long trajectories can be understood in terms

of so-called recolliding periodic orbits (RPOs), by applying techniques used in nonlinear

dynamics. In particular, we will see that RPOs organize the recollision dynamics and that

the low-energy long trajectories have very similar structures to weakly unstable RPOs,

which are robust with respect to the increase in laser field ellipticity.

2.5 Recolliding Periodic Orbits

We go beyond the statistical analysis provided by the CTMC approach by shifting to

an analysis based on nonlinear dynamical tools, specifically in terms of periodic orbits [65].
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Figure 2.7: Recolliding periodic orbits (red curves) for ellipticities 0.0, 0.2, and 0.4 (as
labeled on each panel). Each gray solid curve corresponds to a typical recolliding CTMC
trajectory that mimics the shape of the RPO. The recombination sphere is represented
with a dashed black curve in each panel. Reprinted with permission from [49].

Identifying pertinent periodic orbits has been demonstrated to provide a global picture for

the dynamics in strongly driven systems [66, 67]. These periodic orbits are trajectories

that repeat themselves in time, and they represent invariant structures for the dynamical

system. In our study we are interested in recolliding periodic orbits (RPOs), which have

been found to organize the way an electron can leave and find its way back to the ionic

core [67]. Numerically, finding RPOs requires an iterative nonlinear solver for a trajectory

such that it returns to its initial location in phase space after one laser cycle. The initial

conditions for the nonlinear solver we use are actually from the positions and momenta of

returning CTMC trajectories, providing an efficient way for the determination of relevant

periodic orbits.

The best candidates for organizing the dynamics are the RPOs that have the same

period as the laser field and that are weakly unstable [67]. In general, periodic orbits and

their stability properties are robust with respect to small changes in the parameters of the

dynamical system [68]. In this study we follow a set of RPOs as the ellipticity is increased,

starting from the limiting case ε = 0. When the driving field is linearly polarized, Fig. 2.7(a)

shows that the simplest RPO (red curve) corresponds to a single loop with large excursion

away from the ionic core. The shape of this RPO changes as the ellipticity is increased

as shown in panels (b) and (c). For different ellipticities, we find that low-energy long

trajectories calculated from the CTMC method (gray curves) have striking resemblance
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with the corresponding RPOs. We take this as strong evidence for the role of the RPOs in

the global organization of the recollision dynamics.

These results suggest that we can use a nonlinear dynamical approach to examine

the underlying mechanism responsible for the behavior of the long trajectory harmonics.

To our knowledge, this is the first demonstration of the role of RPOs in regulating the

dynamics responsible for HHG using elliptically polarized fields. Even at ellipticity higher

than 0.2, the RPOs provide a map for electron trajectories to be initially ionized and

to be driven back to the core with the aid of the atomic potential. The persistence of

returning trajectories for relatively high ellipticities follows from the global organization of

the dynamics by the RPOs. In particular, the RPOs explain how the low-order harmonic

yield for long trajectories survives at these ellipticities. Since the RPOs travel in the

continuum for about one laser cycle, they are more closely linked with near-threshold long

trajectories. The long trajectories with higher return energies have shorter travel times;

hence, the role of the RPOs becomes less prominent in the recollision process. In these

distant regions the effect of RPOs is felt through their stable and unstable manifolds [69],

which correspond to the pathways that a trajectory can return to and move away from the

periodic orbit, respectively [65]. The overall influence of the RPOs is therefore connected

to the associated HHG yields and the threshold ellipticity trends that we find.

32



Chapter 3

Numerical Solution of the Time-Dependent

Schrödinger Equation

The solution of the time-dependent Schrödinger equation (TDSE) provides a fully

quantum nonperturbative approach for describing fundamental processes in strong field

physics. Unfortunately, the numerical integration of the full-dimensional TDSE is currently

limited to cases with at most two electrons. From a theoretical standpoint, the inclusion

of pertinent multielectron effects beyond the single active electron (SAE) approximation

remains to be difficult, even for approximate solutions of the TSDE. In this chapter, we

are interested in signatures of two-electron effects that can be found in molecular HHG,

i.e., in the emitted light coming from the interaction of a single molecule with an intense

laser field. Using a one-dimensional (1D) molecular model with two active electrons, we

numerically demonstrate the enhancement of HHG emission due to the rescattering of the

first electron to be ionized. By solving the TDSE for this molecular system in reduced

spatial dimensions, we are able to systematically investigate the wavelength and intensity

dependence of this recollision-enhanced HHG process. The two-electron effects we find in

the calculated HHG spectra are related to the strong-field process commonly known as

nonsequential double ionization. The methods and results presented in this chapter are

largely based on our work in Ref. [70].

3.1 Mechanisms of Nonsequential Double Ionization

The semiclassical model has been widely proven successful in the physical interpretation

of fundamental processes that pertain to the interaction of atoms and molecules with intense

laser fields. Not only is the rescattering picture applicable to HHG, but it also explains the

underlying mechanism behind other strong field processes, such as nonsequential double

ionization (NSDI) [71–74] and above threshold ionization (ATI) [75–77]. Briefly, the NSDI

process involves inelastic rescattering of an initially ionized electron which leads to another
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electron being ionized from the parent ion. On the other hand, the ATI process involves

elastic rescattering which leads to the release of a high energy photoelectron. In the case

of NSDI, the theoretical description of the process requires electron-electron correlation,

which facilitates energy exchange between the rescattering electron and the electrons left

in the cation. This nonsequential physical mechanism is associated with the enhancement

of double ionization yields compared to the predictions based on sequential ionization.

The experimental evidence for NSDI was initially observed in xenon during the 1980s [78]

and later also found in helium during the 1990s [79, 80]. The enhancement of double

ionization due to the nonsequential mechanism is generally indicated by a “knee” structure

in the intensity dependence of the double ionization yield. In particular, the He2+ yield

for intensities below the saturation of the He+ yield is observed to be several orders of

magnitude higher than what is expected from a sequential double ionization mechanism.

In this sequential ionization model, the ionization of individual electrons is treated within

the SAE approximation, that is, the electrons are assumed to be ionized one by one without

any interaction with each other.

As we have discussed, the NSDI process is generally attributed to the three-step or

recollision-based physical mechanism. When the first ionized electron is driven back to

the ionic core, it may impart some of its kinetic energy to another electron which is also

released from the binding potential due to the recollision. Hence, the NSDI process is

understood to be the consequence of inelastic rescattering. Due to historical reasons, the

term nonsequential double ionization is mostly used in the literature. Note however that

this term broadly implies a correlated mechanism for the double ionization and that the two

ionization events can be well separated in time. Apart from the recollision mechanism, other

physical mechanisms were initially suggested to be responsible for NSDI. For example, the

NSDI process was proposed to be the result of a “shake-off” mechanism, wherein the abrupt

removal of the first ionized electron leads to the rearrangement of electrons left in the ionic

core and consequently the promotion of the second electron to an excited state, from which
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it is ionized [79]. In addition, the occurrence of NSDI has been theoretically modeled using

a “collective tunneling” mechanism, wherein the two electrons are simultaneously released

into the continuum via tunneling [81].

Later experiments have provided substantial evidence that supports rescattering as

the basic mechanism behind the NSDI process. Similar to HHG, the NSDI yield is found

experimentally to be suppressed with increasing laser field ellipticity [53]. Within the rec-

ollision picture, the initially ionized electron misses the ionic core because it accumulates a

transverse displacement during propagation in the elliptically polarized driving field. Both

the shake-off and collective tunneling mechanisms cannot explain this sensitivity of NSDI

to the driving ellipticity. Perhaps even more convincing evidence for a recollision-based

mechanism comes from the measurements using the cold target recoil-ion momentum spec-

troscopy (COLTRIMS) technique [82], which provides kinematic information of the double

ionization process beyond the total ion yield. The first COLTRIMS experiments indicated

that the distribution of doubly charged ion momenta parallel to the laser polarization are

peaked at non-vanishing values [83, 84]. This implies that both electrons are preferentially

released when the field is close to zero. Note that, in a sequential (uncorrelated) mech-

anism, each electron most likely enters the continuum when the field is maximal, which

corresponds to a peak at vanishing momentum in the ion yield distribution.

Depending on the target system and the driving laser parameters, there are various

physical mechanisms that are responsible for the release of two electrons. These underlying

mechanisms are summarized in Fig. 3.1. As observed in the ion momentum distribution

from the COLTRIMS experiments [83, 84], the double-peak structure at non-vanishing

values is interpreted in terms of a recollision-driven mechanism. With a sufficiently high

rescattering energy (determined by the Up scaling), the initially ionized electron can directly

knock out the second electron from the binding potential of the ionic core. This simple

rescattering mechanism is called electron-impact ionization (shown middle in Fig. 3.1). In

this case, both electrons can leave simultaneously close to a zero crossing of the driving field,
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Figure 3.1: Dominant underlying mechanisms for double ionization due to strong fields.
These mechanisms can be distinguished in terms of the energy scaling of the field-driven
electron motion, which is determined by the ponderomotive energy Up. Both the tunnel-
ing and over-the-barrier descriptions of ionization are assumed to be valid, particularly
applicable to long driving wavelengths and high intensities (Keldysh parameter γ � 1).
Reprinted with permission from [85].

which corresponds to “side-by-side” emission with non-vanishing drift momenta. From the

correlated electron momentum distribution of NSDI, it is experimentally confirmed that the

two electrons are emitted preferentially with the same parallel momenta [86]. Assuming

zero initial electron momenta and ignoring the electron-electron Coulomb repulsion, the

classical simpleman model predicts that both electron momenta distributions are peaked

at values ±2
√
Up.

Alternative routes towards recollision-driven double ionization have also been identified,

notably the recollision excitation with subsequent ionization (RESI) [87, 88]. To illustrate

the RESI mechanism (shown left in Fig. 3.1), the returning electron from the first ionization

imparts some of its kinetic energy to its parent ion, which leads to the other electron being

promoted to an excited state (recollision excitation). The second electron can later be

released into the continuum, for instance, once the laser field is close to its maximum
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(subsequent ionization). In contrast to direct impact ionization, there is an implied time

delay between the recollision of the first electron and the ionization of the second electron.

Thus, the RESI mechanism provides a pathway for “back-to-back” emission, which can

describe the portions of the correlated momentum distribution in which the two electrons

emerge with opposite parallel momenta. Specifically when the maximal rescattering energy

does not exceed the second ionization potential of the target system, one can expect the

RESI mechanism to be the dominant channel. Another possible scenario is when only

one recollision is not enough to induce the second ionization event, that is, the first ionized

electron is driven back to the ionic core multiple times. Such multiple-recollision mechanism

has also been suggested to play an important role in the double ionization process [45, 89].

3.2 Numerical Details: Solving the TSDE

There is a variety of theoretical approaches that have been implemented in order to an-

alyze atomic or molecular nonsequential double and multiple ionization. These approaches

include the numerical solution of the TDSE, classical trajectory models, and extensions

of the strong field approximation (for review papers, see [85, 90]). From the numerical

solution of the TDSE for reduced-dimensional molecular models, two-electron dynamics

reflected in HHG spectra have been investigated and analyzed for different internuclear

distances [91]. We similarly employ a model molecular system with two active electrons,

each restricted to one dimension (1+1D). Solving the TDSE in reduced spatial dimensions

provides a practical approach for us to examine the wavelength dependence of HHG due to

two-electron effects. For long driving wavelengths that we are interested in, the spatial grid

typically needs to be adjusted (in each electronic coordinate) to account for the large elec-

tron excursion length, which scales as λ2. Despite its simplicity, the 1+1D TDSE model

has been widely used in theoretical investigations of various strong field phenomena. Most

importantly, such reduced one-dimensional model has been instrumental in elucidating the

recollision mechanism behind NSDI based on electron momentum distributions [92].
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3.2.1 Molecular model in 1D

We consider a 1D molecular model (A2) with two active electrons by solving the TDSE

i
∂

∂t
Ψ(x1, x2, t) = Ĥ(x1, x2, t)Ψ(x1, x2, t). (3.1)

Applying the length gauge and dipole approximation for the laser interaction, the Hamil-

tonian is given by

Ĥ =
2∑

k=1

[
−1

2

∂2

∂x2
k

+ Vne(xk)

]
+ Vee(x1, x2) + (x1 + x2)F (t), (3.2)

where Vne is the electron-nucleus potential, Vee is the electron-electron potential, and F (t) is

the driving laser field. To avoid the singularity, soft-Coulomb potentials [93] are introduced

for the electron-nucleus and electron-electron interactions

Vne(x) = − Z√(
x+ R

2

)2
+ a2

ne

− Z√(
x− R

2

)2
+ a2

ne

(3.3)

and

Vee(x1, x2) =
1√

(x1 − x2)2 + a2
ee

, (3.4)

where Z is the effective charge, R is the separation distance between the nuclei, and ane

and aee are the softening parameters. In our study the positions of the nuclei are assumed

to be fixed during the time propagation. The parameters for the 1D A2 molecule are chosen

to be Z = 1, R = 1.9 a.u., a2
ne = 0.7, and a2

ee = 1. This gives the following values of the

ionization potentials, I
(1)
p = 21.1 eV for the A2 molecule (first ionization) and I

(2)
p = 38.9 eV

for its cation A+
2 (second ionization). Note that, compared to the atomic case (R = 0), the

difference between the first and second ionization potentials is smaller.

In our discussion we analyze and identify possible two-electron effects present in the

HHG process by comparing the results from the A2 TAE model to an effective SAE model.

The temporal evolution of the molecular system, within the SAE approximation, is deter-
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mined by a single-electron wave function ψ(x, t) such that

i
∂

∂t
ψ(x, t) = ĤSAE

eff (x, t)ψ(x, t)

=

[
−1

2

∂2

∂x2
+ V SAE

eff (x) + xF (t)

]
ψ(x, t).

(3.5)

Here the effective SAE potential V SAE
eff (x) is obtained using the same form as in Eq. (3.3).

In particular, the parameters are adjusted (Z = 0.5 and a2
ne = 0.4235) to match the

first ionization potential of the two-electron A2 molecular system. For both the TAE

and SAE calculations, the solution of the TDSE is initialized from the ground state of the

respective system. These calculations are implemented using the grid-based quantum code,

OCTOPUS [94].1 We ensure that our results are converged with respect to the numerical

grid discretization, e.g., by applying sufficiently small grid spacing ∆x = 0.4 a.u. (in each

electron coordinate) and time step ∆t = 0.03 a.u.

To examine the physics behind potential two-electron effects in the 1D molecular model

used here, we calculate HHG spectra for a wide range of laser intensities and wavelengths.

In our calculations we use a linearly polarized driving field, F (t) = F0 f(t) sin(ωt), with an

envelope

f(t) =


0, t < 0

sin2(πt/2τ), 0 ≤ t ≤ τ

1, t > τ.

(3.6)

We use τ = 4π/ω so that the envelope ramps up during the first two laser cycles and

remains constant afterwards. This “flat-top” field envelope gives a well defined peak am-

plitude for the later cycles, which allows for a simple interpretation in terms of the maximal

rescattering energy (≈ 3.2Up). For HHG driven by long wavelengths, the associated re-

turning trajectories classically extend at very large distances, i.e., up to about twice the

quiver amplitude α [see Fig. 1.3(a)]. Thus, we use a spatial grid with an extent larger than

1In the next chapter, we provide a more detailed discussion of the Octopus code in the context of
full-dimensional calculations. We also refer the reader to the online documentation for specific features.
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the electron excursion length. In addition, to prevent effects due to unphysical reflections

at the edges of the grid, absorbing boundaries are incorporated using a complex absorbing

potential [95]. By sufficiently increasing the grid extent, we are able to significantly reduce

the noise level due to reflections such that it is much lower compared to the signal from

the two-electron effects we are interested in.

3.2.2 Calculation of HHG spectra

For the two-electron molecular system, the (total) time-dependent dipole moment and

dipole acceleration are evaluated as

d(t) = 〈x1 + x2〉 = 〈Ψ(t)|x1 + x2 |Ψ(t)〉 (3.7)

and

a(t) =
d2

dt2
〈x1 + x2〉 =

〈
Ψ(t)

∣∣∣∣−∂V (x1, x2)

∂x1

− ∂V (x1, x2)

∂x2

∣∣∣∣Ψ(t)

〉
, (3.8)

respectively. The expression of the dipole acceleration follows from the Ehrenfest’s theorem

for electrons experiencing the potential V (x1, x2). The corresponding HHG spectrum is

then computed from the Fourier transform of the dipole moment or dipole acceleration.

Note that calculating the dipole moment gives more weight to the density at distances far

away from the ionic core, whereas calculating the dipole acceleration gives more weight to

the density near the ionic core. The agreement between these two ways for acquiring the

HHG spectrum is usually checked to test the quality of the spatial grid used. In practice,

it has been shown that using the dipole acceleration results in a more numerically exact

computation of the harmonic spectrum [96]. We also apply a Hanning window function [97]

to the time signal from our calculations over a duration of several laser cycles. Such window

functions make the time signal go smoothly to zero at both ends and, in general, prevent

spurious frequencies associated with a discrete Fourier transform used for analyzing the

time signal. In addition to calculating HHG spectra, we employ a time-frequency analysis
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of the dipole acceleration using the Gabor transform [98] defined as

aG(Ω, t) =

∫
dt′a(t′)

exp [−(t′− t)2/2σ2]

σ
√

2π
exp (−iΩt′) , (3.9)

where the standard deviation for the Gaussian window function is set as σ = 1/(4ω) or

about 4% of the laser cycle. Performing the Fourier transform over a small window provides

a way to resolve the “emission time” for various harmonics throughout the spectrum.

3.3 Recollision-Enhanced HHG Process

Based on the numerical techniques presented in the previous section, we discuss the

results from the 1D A2 molecular model. From the solution of the TDSE for two active

electrons, we explore the enhancement of the HHG yield due to rescattering of the first

ionized electron. To demonstrate this effect, we first show the results for the case with laser

wavelength equal to 1400 nm and peak intensity equal to 5 × 1013 W/cm2 (see Fig. 3.2).

Here the laser intensity is chosen such that it is well below the saturation intensity for

the first ionization. From Fig. 3.2, we observe that there are two noticeable plateaus and

cutoffs in the harmonic spectrum generated from the A2 TAE model (solid red). Indicated

by the vertical dashed lines, we see (1) a primary cutoff at about 55 eV and (2) a secondary

cutoff at about 72 eV. The first plateau and cutoff from the A2 TAE model is generally in

good agreement with the spectrum generated from the A2 SAE model (dashed blue). This

indicates that the primary cutoff can be attributed to the dynamics of the first ionized

electron. The position of the primary cutoff is rather consistent with the estimated cutoff

energy from the semiclassical model, I
(1)
p + 3.2Up ≈ 50 eV. However, the returning electron

can gain additional kinetic energy due to the potential of the ionic core [20], which explains

the discrepancy between the actual and estimated cutoff energies.

Extending beyond the primary cutoff predicted by the A2 SAE model, we additionally

find a secondary cutoff in HHG spectrum from the A2 TAE model shown in Fig. 3.2.

Notice that the secondary cutoff matches the corresponding cutoff energy for HHG in the
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Figure 3.2: Harmonic spectra from the A2 TAE (solid red) and SAE (dashed blue) molecule
and from its corresponding cation A+

2 (dotted green). These spectra are acquired from the
time-dependent dipole acceleration over the duration of t = 3–8 laser cycles. For each
system the simulation is initialized from its ground state. Here the driving laser field has a
peak intensity of 5× 1013 W/cm2 and a wavelength of 1400 nm. The vertical dashed lines
correspond to the first and second cutoffs. Reprinted with permission from [70].

A+
2 cation, which is predicted to be I

(2)
p + 3.2Up ≈ 68 eV. From the dynamics of the

two-electron wave function provided by the TDSE, contributions due to the singly ionized

cation (A+
2 ) are in principle also included [99]. To confirm the origin of the secondary cutoff,

we also calculate the HHG spectrum initialized from the A+
2 cation (dotted green). This

involves solving the TDSE using the potential (3.3) for only one electron and thus we refer

to it simply as the A+
2 SAE model. Although the position of the secondary cutoff in the

A+
2 TAE molecule closely matches the result from the A+

2 SAE cation, the observed HHG

yields from the two models are very different. Surprisingly, there is an overall enhancement

of several orders of magnitude in the HHG yield at the secondary plateau compared to

the A+
2 SAE model. These results suggest that two-electron effects included in the TSDE

model lead to the large enhancement of HHG from the cation. In a sequential mechanism,

one would expect that the HHG yield from the cation is predominately determined by the

ionization probability from the ground state of the cation, which in turn give an HHG yield

similar to the A+
2 SAE model. Hence, we attribute the enhancement of HHG in the TAE

neutral molecule to the correlation between the rescattering electron and the other electron
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remaining in the cation. This mechanism for the enhancement of HHG due to rescattering

has also been recently reported in a model atomic system [100].

The recollision-enhanced HHG process we find is similar to the well known enhancement

of NSDI dominating over sequential double ionization. Using classical trajectory models,

the underlying physical mechanisms related to double ionization have been investigated

in great detail [101–105]. For instance, in Ref. [104], the optimal efficiency of NSDI has

been interpreted in terms of the available energy provided by the rescattering electron. In

the context of the RESI mechanism [105], the initially ionized electrons recollides with the

cation and imparts some of its kinetic energy with the second electron left in the cation.

Depending on the amount of energy exchanged between the two electrons, the cation may

be left in an excited state. This mechanism enhances the second ionization probability and

thus the respective HHG yield from the cation. We note that the available rescattering

energies from the laser parameters considered in Fig. 3.2 are comparable to first excitation

energy of the A+
2 cation (13.3 eV), which is consistent with the RESI mechanism. In the

following we will analyze the time-frequency profiles of the emission from the recollision-

enhanced HHG process. Furthermore, we will provide insight into the wavelength and

intensity dependence of the associated second-cutoff HHG yields.

3.3.1 Time-frequency analysis of the HHG emission

Using the Gabor analysis given by Eq. (3.9), we further substantiate the recollision

mechanism behind the enhancement of HHG emmission in the secondary plateau and cutoff.

We obtain the time-frequency profiles from the calculated HHG signals in order to visualize

the emission times as well as the relative intensities of the first and second-cutoff harmonics.

In Fig. 3.3, we compare the Gabor profiles of the harmonic emission from the (a) TAE and

(b) SAE A2 molecular models based on the results shown in the previous figure. Overall,

we find that the position of the first cutoff is consistent for both models, as demonstrated in

Fig. 3.2. Near the primary cutoff in both panels of Fig. 3.3, we can see distinct structures

that are recurring every half-cycle after the field ramp-up at t = 2 laser cycles. This can
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Figure 3.3: Gabor analysis of the HHG from A2 molecule with the same laser parameters as
in Fig. 3.2. The time-frequency profiles are obtained from (a) TAE and (b) SAE simulations.
The horizontal dashed lines correspond to the first and second cutoffs (same as previous
figure). Only the first cutoff is indicated in (b). Reprinted with permission from [70].

be understood in terms of the recollision mechanism which happens every half-cycle of the

laser field. From the semiclassical model, the short and long trajectories are expected to

merge in this cutoff region. Meanwhile, at lower energies in the primary plateau, there

are overlapping structures that reflect contributions from different trajectories including

multiple recollisions [106]. In our analysis, we therefore mainly focus on the harmonic

emission close to the first and second cutoff energies.

From the A2 TAE model in Fig. 3.3(a), we see that the harmonics in the primary

cutoff are emitted with nearly constant yield starting from the first half-cycle after the

field ramp-up. Beyond the first cutoff, we also observe the HHG emission in the secondary

plateau, which is not visible in the SAE model as expected from the previous figure. Com-

pared to the first-cutoff harmonics, the time it takes for the harmonic intensity near the

secondary cutoff to reach a full value is delayed by several half-cycles. This delayed emission

supports the recollision-enhanced mechanism for the HHG in the cation, in agreement with

the time-frequency analysis from Ref. [100]. The secondary HHG process in the cation

is triggered by the recollision of the first ionized electron, which is associated with the

HHG emission in the neutral molecule. Therefore, the time delay between the first and

second-cutoff emission is determined by the travel time of the second electron after being
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Figure 3.4: Gabor analysis of the HHG from A2 molecule with the same laser peak intensity
as in Fig. 3.3 but with a different wavelength, 2750 nm. The horizontal dashed lines for the
first and second cutoffs are shown, similar to Fig. 3.3. The white arrows indicate emission at
the second cutoff present in (a) TAE simulation but not in (b) SAE simulation. Reprinted
with permission from [70].

ionized from the cation. For the harmonics generated in the secondary cutoff, the second

electron has to travel in the continuum for about 2/3 of a laser cycle. This explains why

the observed delay in the emission of the second-cutoff harmonics is more than half a laser

cycle. Nevertheless, notice from Fig. 3.3(a) that there is already some weak emission in

the second-cutoff harmonics starting at t = 2.45 laser cycles. In general, we attribute these

residual second-cutoff yields to the recollisions of the first electron at earlier times during

the ramp-up of the laser field.

Next, we examine how the recollision-enhanced HHG process is affected when the

wavelength of the laser field is increased. In Fig. 3.4, we similarly display the time-frequency

profiles of the harmonic generation from the (a) TAE and (b) SAE A2 models, for a longer

laser wavelength equal to 2750 nm. Here we fix the laser peak intensity at 5×1013 W/cm2.

This corresponds to about four times the ponderomotive energy Up from the previous case

shown in Fig. 3.3. For the longer wavelength case in Fig. 3.4(a), we also find emission of

harmonics that are beyond the primary cutoff (see white arrows). Note that the position

of the second cutoff relative to the first cutoff does not change with the driving wavelength.

This is consistent with the recollision model of HHG, wherein the relative position of the

second cutoff is determined only by the difference in the ionization potentials, I
(2)
p − I(1)

p .
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Comparing the results from Figs. 3.3(a) and 3.4(a), we observe that the secondary plateau

has a much weaker relative yield in the case with longer wavelength. In Fig. 3.4(a), there is

almost no second-cutoff HHG yield that is present during the first cycle after the field ramp-

up. In contrast to the shorter wavelength case, we can clearly see that the emission of the

second-cutoff harmonics is delayed by a full laser cycle relative to the first-cutoff harmonics.

Moreover, the TAE and SAE time-frequency profiles from the longer wavelength case are

much more similar, notably throughout the primary plateau. The agreement between the

results from the two molecular models suggests that the recollision-enhanced HHG process

is suppressed for the longer wavelength case and that HHG from the neutral molecule

dominates over HHG from the cation.

3.3.2 Wavelength and intensity dependence

We now proceed to a more comprehensive analysis of the efficiency related to the

rescattering mechanism behind the enhancement of HHG. To this end, we calculate HHG

spectra from the A2 TAE model for a wide range of laser parameters and evaluate the

relative harmonic yields at the first and second cutoffs. In particular, the pertinent yields

YC1 and YC2 are directly obtained from the calculated HHG spectra, based on the values of

the spectral intensities at the respective cutoff harmonics. As illustrated in Fig. 3.5, we first

analyze the harmonic yields at the two cutoffs for varying laser wavelengths from 1000 to

3000 nm while the peak intensity is fixed at 5× 1013 W/cm2. Aside from the fluctuations

presumably due to channel closings [107, 108], we find that YC2 decreases more drastically

compared to YC1 as the wavelength is increased. Overall, the scaling of the first-cutoff yield

with respect to the driving wavelength is about λ−1, whereas the wavelength scaling of

the second-cutoff yield is about λ−6. This indicates that the enhancement of HHG yield

due to two-electron effects may be reduced substantially for relatively long wavelengths,

specifically when the maximal return energies exceed the second ionization potential.

As we have previously discussed, the mechanism responsible for the HHG emission in

the secondary plateau is an additional rescattering event by the second electron. Based on
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Figure 3.5: Wavelength dependence of the yields at the first and second cutoffs obtained
from TAE calculations, as indicated by diamonds (YC1) and circles (YC2). The fitted trends
(dashed curves) are also shown with λ−1 and λ−6 dependence for YC1 and YC2, respectively.
The peak intensity is fixed at 5× 1013 W/cm2. The scale for the corresponding maximal
return energies, 3.2Up, is included. Reprinted with permission from [70].

this physical mechanism, we further investigate the various factors that contribute to the

difference in the wavelength scalings for the first and second-cutoff yields. The rescattering

mechanism following the ionization of each electron is essentially the same. We therefore

expect the HHG process in the neutral molecule and the cation to have a similar wavelength

scaling of λ−1 due to the wave packet spreading in 1D. Meanwhile, the remaining factor

of λ−5 in the wavelength scaling of the second-cutoff yield is attributed to the recollision

enhancement. In particular, this factor can be separated into two key components: (1) the

electron wave packet that rescatters with the cation and (2) the inherent efficiency of the

rescattering mechanism for enhancing the second ionization [109]. The former component

simply gives another factor of λ−1 due to the wave packet spreading while the latter com-

ponent, which is equal to λ−4, comes from the efficiency for the ionization enhancement.

Physically, this means that increasing the available electron rescattering energies results in

an overall decline in the efficiency of the HHG enhancement mechanism. Based on classical

NSDI studies [110], the dramatic wavelength scaling that we find can be interpreted in

terms of the energy exchange between the two electrons during recollision.
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Figure 3.6: Intensity dependence of the yields at the first and second cutoffs obtained from
TAE calculations, as indicated by diamonds (YC1) and circles (YC2). The laser wavelength
is fixed at 900 nm. Similar to Fig. 3.5, the scale for the corresponding maximal return
energies is included. Reprinted with permission from [70].

From the wavelength scaling of the second-cutoff yield, we have demonstrated that the

underlying mechanism is highly sensitive to the available rescattering energies, which are

determined by Up. Additionally, we explore how the Up scaling for increasing laser intensity

affects the recollision-enhanced HHG process. For instance, a natural question is whether

there is an optimal condition for the efficiency of the recollision enhancement. In Fig. 3.6,

we provide the trends in the intensity dependence of the extracted yields YC1 and YC2 for

a fixed wavelength of 900 nm. Here we consider maximal return energies that are close

to the first excitation energy of A+
2 (13.3 eV). Within an intermediate range of intensities

around 0.5–1.0 × 1014 W/cm2, we observe that the ratio YC2/YC1 is optimal over all the

intensities considered and is almost unaffected by the increase in intensity. This indicates

that in general the efficiency of the recollision enhancement become relatively high for the

intermediate intensities. For intensities lower than 0.5 × 1014 W/cm2, the second-cutoff

yields begin to drop by about 3–5 orders of magnitude below the first-cutoff yields because

the associated return energies are hardly sufficient to excite the cation. Furthermore, we

see that the resulting efficiency, which is evaluated by YC2/YC1, drastically decreases when

the laser intensity is increased above 1.0 × 1014 W/cm2. In this case, the second-cutoff
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yield remains almost constant while the first-cutoff yield increases. Again, these results

are consistent with the classical analysis of NSDI trends for varying laser intensities [110].

Altogether, the trends we find suggest that the efficiency for the HHG in the cation is

primarily determined by the Up scaling of the available rescattering energies. These results

are consistent with our proposed recollision-driven mechanism for the enhancement of the

HHG process.
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Chapter 4

Time-Dependent Density Functional Theory: Part 1

As recent studies move towards more complex molecular target systems, the need to

account for dynamical multielectron effects becomes apparent. In terms of HHG theory,

molecular systems are more complicated compared to atomic systems because of the lower

levels of symmetry. Generally speaking, the binding energies of molecular orbitals can be

very close to each other such that the strong-field ionization involves multiple orbitals.

Based on the shape of molecular orbitals alone, one can qualitatively predict from which

valence molecular orbitals ionization is dominant, depending on the molecular alignment

with respect to the laser polarization. Furthermore, molecular orbitals are in general effi-

ciently dipole coupled to each other due to the interaction with a strong laser field. With

these theoretical considerations in mind, we apply time-dependent density functional the-

ory (TDDFT) as an ab initio approach to treat the interaction between a single molecular

system and the driving laser field.

In principle, describing strong-field processes in molecules involves the solution of the

time-dependent Schrödinger equation (TDSE) for a many-electron wave function Ψ(t).

However, solving the many-electron TDSE remains an impractical computational task ex-

cept in the case of few electrons. As an alternative, time-dependent density functional

theory provides a viable approach based on an exact formulation for solving such many-

electron problems with time-dependent external fields. This approach is established from

the density functional theory (DFT) formalism first proposed by Hohenberg and Kohn [111]

and later extended by Kohn and Sham [112]. The generalization of DFT to time-dependent

systems is demonstrated by Runge and Gross [113]. TDDFT is essentially a first-principles

approach, which requires no input from experiments, for calculating pertinent properties

of time-dependent systems with many electrons. Generally speaking, the (original) success

of TDDFT has allowed the calculation of excited-state properties, which is a deficiency in

the traditional ground-state DFT framework.
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The TDDFT approach allows us to study characteristic features in HHG spectra for

molecular systems, which we later compare with experimental measurements from our col-

laborators (see Part 2 in Chapter 5 for the results and discussion of our study). This work

is mainly motivated by a large collaborative project that investigates charge migration in

molecular systems using high harmonic spectroscopy (HHS). Charge migration refers to

the ultrafast motion of a positively charged hole that is triggered by ionization or core-level

excitation [114]. Molecular dynamics via ultrafast charge migration is driven by the many-

electron correlation and relaxation effects, which results in the created hole moving through

the molecule. Because multielectron effects in the molecular dynamics are inherently in-

cluded, TDDFT provides a direct approach for calculating the induced single-molecule

response due to a strong laser field. By direct we mean that the TDDFT approach does

not rely on a factorization scheme provided by the three steps in the semiclassical model.

From a theoretical perspective, we believe that this distinction is particularly important

in cases where there are nontrivial effects coming from multiple molecular orbitals. In

this chapter, we provide a brief introduction of the TDDFT framework and discuss the

numerical details of our TDDFT calculations. Moreover, we present some properties of

approximate density functionals that we think are important in HHG.

4.1 TDDFT Framework

The main idea behind TDDFT is to extract properties of a time-dependent N -electron

system without directly calculating its wave function Ψ(t), which depends on 3N spatial

coordinates. Since observables of interest are often obtained from integrated quantities,

the many-body problem can be significantly reduced by using functionals of the electron

density

n(r, t) = N

∫
Ψ∗(r, r2, ..., rN , t)Ψ(r, r2, ..., rN , t) d

3r2...d
3rN , (4.1)

which depends only on three spatial coordinates. The TDDFT formalism is based on the

exact mapping between time-dependent densities and potentials [113]. In this framework,
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the multielectron system is constructed in terms of a fictitious non-interacting system of

Kohn-Sham (KS) orbitals φi(r, t) such that the exact density is reproduced,

n(r, t) = 2

N/2∑
i=1

|φi(r, t)|2 . (4.2)

Neglecting spin degrees of freedom, we consider a (spin-restricted) system with N/2 doubly

occupied orbitals. For our purposes we employ spin-restricted TDDFT calculations since

we are mainly interested in closed-shell systems.1 The temporal evolution of the KS orbitals

is determined by a set of single-particle Schrödinger-like equations

i
∂

∂t
φi(r, t) = Ĥ(r, t)φi(r, t) =

[
−∇

2

2
+ vKS(r, t)

]
φi(r, t). (4.3)

The KS potential vKS(r, t), a functional of the density, is typically written as

vKS(r, t) = vKS[n](r, t) = vext(r, t) + vH[n](r, t) + vxc[n](r, t), (4.4)

where vext(r, t) is the external potential which includes the interaction of the electrons

with the nuclei and with any applied field, vH[n](r, t) =
∫
d3r′ n(r′,t)

|r−r′| is the Hartree potential

due to electron-electron repulsion, and vxc[n](r, t) is the exchange-correlation (xc) potential

which describes other nontrivial multielectron effects. The exact form of the xc potential

is not known; therefore, approximate forms are in practice needed. Despite the limitation

from this choice in the xc functional, TDDFT continues to be a widely used approach.

The success (or failure) of TDDFT largely depends on the extensive effort dedicated to the

development of new xc functionals as well as methods for extracting observables related to

various applications [115].

The extension of DFT to time-dependent systems poses unique difficulties for practical

calculations. In some sense, TDDFT is still a relatively new field compared to its pre-

1Including spin effects requires additional computational costs because the number of orbitals is doubled.
Spin-unrestricted or spin-polarized (TD)DFT is typically applied to open-shell systems such as singly
ionized cations of various molecules or, interestingly, the neutral O2 molecule with a triplet ground state.
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decessor (ground-state) DFT. Today most of TDDFT calculations rely on xc functionals

designed for ground-state properties, i.e., apply the same xc functional from the ground-

state calculation in the subsequent time propagation using an adiabatic approximation

vxc[n](r, t) = vxc[n(t)](r). This means that the xc potential is calculated simply from the

instantaneous density. As mentioned above, one of the main problems in TDDFT comes

from the inaccuracy due to approximating the xc functional, especially its lack of depen-

dence on the history of the density (or memory dependence) [116, 117]. Functionals, which

depend explicitly on the KS orbitals themselves, have generally been accepted to address

memory effects [115, 118]. However, these orbital-dependent functionals can be compu-

tationally expensive and thus their applicability are presently limited to certain cases,

depending on the “size” of the system considered. For example, the calculation of HHG

spectra using TDDFT often requires large spatial grids in order to properly describe the

ionized parts of the density extending far away from the atom or molecule.

4.2 Numerical Details: TDDFT Approach

4.2.1 The OCTOPUS code

OCTOPUS is an open-source software designed for the real-time and real-space im-

plementation of TDDFT [94]. The qualifier real-time refers to explicitly solving the time

evolution of the KS equations (4.3) using propagators [119]. The real-space implementa-

tion means that functions, e.g., the KS states φi(r, t) and the electron density, are repre-

sented on a spatial grid. The real-space grid representation is an alternative to established

schemes used for electronic structure such as atom-centered Gaussian-type orbital (GTO)

and plane-wave (PW) basis sets [120]. The main advantage of the grid-based representation

is its scalability for massively parallel architectures, currently available in graphics process-

ing units and supercomputers [121]. Particularly when considering a large spatial grid,

the parallelization in OCTOPUS is carried out by separating the grid into several regions

as shown in Fig. 4.1. Uniform Cartesian grids are primarily used in OCTOPUS because
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Figure 4.1: Benzene molecule represented in a grid used in OCTOPUS. With paralleliza-
tion, the grid can be divided into regions (shown in different colors) that are assigned
among processors. Reprinted with permission from [121].

of their simplicity; for instance, numerical derivatives can be easily obtained with finite-

difference techniques [122]. More complicated discretizations can also be employed such

that grids are adapted locally at the atomic core regions [123]. By reducing the distance

between neighboring points in a uniform grid, the results from such real-space methods can

be improved systematically within a desired accuracy. This is equivalent to adjusting the

(momentum-space) cutoff energy, which is the main parameter in the PW representation.

To overcome the high resolution necessary for the core regions, real-space methods

usually introduce psuedopotentials, which approximate the potential due to the nucleus

and core electrons. The use of psuedopotentials also allows us to reduce the KS system in

terms of only the valence electrons for each atom in a molecule since they are the ones that

participate in chemical bonding and naturally in strong-field processes. In addition, we

assume that the positions of the ions (the nuclei plus the core electrons) are fixed during

the time propagation of the KS system although the ionic motion can be coupled with

the electronic motion using a classical treatment [124]. From these approximations the

expression for the external potential in Eq. (4.4) becomes

vext(r, t) = vion(r) + r · F(t), (4.5)
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where the first term vion(r) is the interaction of electrons with the ions while the second

term is the interaction with the laser field.

In this work we are mainly interested in the application of TDDFT for studying HHG

in molecules. Calculations of HHG spectra using the TDDFT approach have been imple-

mented by various groups [124–126]. The calculation of the time-dependent dipole moment

(or acceleration) in the TDDFT framework is straightforward, as in the single-particle

TDSE framework. With the time-dependent density n(r, t), the induced dipole moment

and dipole acceleration are expressed as

d(t) =

∫
n(r, t)x d3r = 2

∑
i=1

〈φi(r, t)|x |φi(r, t)〉 (4.6)

and

a(t) = −
∫
n(r, t)

∂vKS(r, t)

∂x
d3r, (4.7)

respectively. Here we only show the HHG component in the direction x̂, which is chosen to

be parallel to the polarization axis of the linearly polarized driving field. Note that from the

composition of the density n(r, t) in terms of KS states (4.2), the total dipole moment can be

written as the sum of contributions from individual KS states [127]. The dipole moment of

each KS orbital di(t) = 2 〈φi(r, t)|x |φi(r, t)〉 comes from the solution of an effective single-

particle TDSE, as indicated in Eq. (4.3). In this way the TDDFT framework provides

an ab initio approach for the microscopic description of HHG in molecules, without the

commonly used factorization imposed for the HHG spectrum. Thus, our approach does not

rely on any ad hoc assumptions on which of the (valence) molecular orbitals are relevant

in the collective HHG process.

4.2.2 Properties of functional approximations

Developed by Perdew and Schmidt, the Jacob’s ladder where each class of xc functionals

is represented as a rung provides a conceptual overview of density functional approxima-

tions [128]. The most simple class of xc functionals is the local density approximation
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(LDA), originally derived for a homogeneous electron gas by Kohn and Sham (1965) [112].

Based on their pioneering work, most LDA functionals today apply the expression for the

the exchange-correlation energy Exc given by

ELDA
xc [n] =

∫
n(r) εxc

(
n(r)

)
d3r, (4.8)

where the exchange-correlation energy per particle εxc

(
n(r)

)
is assumed to be determined

by its value for a homogeneous electron gas at each point in space. The xc potential vxc[n](r)

is evaluated by taking the functional derivative of the xc energy Exc with respect to the

density, which follows from the variational principle for energy minimization provided by

Hohenberg and Kohn [111]. Within this LDA framework, the KS mean field is computed

from the total density including all the occupied KS states. Thus, each KS orbital expe-

riences this mean field that also includes a contribution from itself. This is a problem in

xc functionals commonly known as the self-interaction error. One consequence of the self-

interaction error is that the KS potential has the incorrect long-range behavior mainly due

to an exponential decay of vxc [129]. Intuitively, the ionic and the Hartree contributions in

the KS potential cancel out for a neutral system (or should decay as −Q/r where Q = 0

is the net charge) at large distances. However, an electron ejected from the molecular

binding potential does not physically interact with its own charge. This means that the xc

potential, which is the last component in the KS potential, should decay as −1/r.

The next improvement to the xc energy is known as the generalized gradient approxi-

mation (GGA)

EGGA
xc [n] =

∫
f
(
n(r),∇n(r)

)
d3r, (4.9)

where the information on the deviations of the density is included with a dependence

on the gradient ∇n in the function f(·). Although the GGA is now routinely used in

ground-state DFT calculations due to its applicability to a wide range of systems, it still

fails in reproducing the proper asymptotic behavior of the KS mean field. Consequently,
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the underestimation of ionization potentials for molecules within both the LDA and GGA

is generally attributed to this lack of asymptotic Coulomb behavior. In other words, the

outermost electron becomes “loosely bound” because of the self-interaction present in these

xc functional approximations. This implies that addressing self-interaction errors present in

(TD)DFT calculations requires xc functional schemes that are more sophisticated than the

LDA or GGA. Specifically for time-dependent applications, the self-interaction error and

the associated long-range behavior of the KS potential have been shown to have important

implications in strong-field interactions such as ionization dynamics [130, 131].

4.2.3 Self-interaction corrections

Perdew and Zunger (PZ) proposed a scheme to remedy spurious self-interaction errors

in the local approximation of the exchange-correlation energy [129]. Their work has inspired

the development of a class of schemes, dubbed self-interaction corrections (SIC), which can

be applied to existing local functionals. The original (PZ)SIC involves subtracting the

self-interaction due to the contributions from individual orbital densities ni(r) = |φi(r)|2.

This correction is applied at the energy functional level such that the combined Hartree

and xc energy reads

EPZSIC = EH[n] + Exc[n]−
N∑
i=1

(
EH[ni] + Exc[ni]

)
(4.10)

As seen from this PSZIC formulation, the energy is no longer a functional of the density

alone. The modified KS potential is derived in a similar manner from the variation of the

SIC energy with respect to the occupied KS orbitals φi. This can lead to both practical

and conceptual difficulties since the potential that is used in the effective single-particle

KS equations becomes orbital-dependent.

One of the simplifications of the PZSIC scheme is based on the average density SIC

(ADSIC), which has been extensively compared with other SIC schemes in Ref. [132]. Aside

from returning to a mean-field potential independent of the KS state it is acting on, the
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advantage of the ADSIC is that is does not require the computation of the Hartree and xc

potential for each orbital. Instead, the SIC is calculated from the average density n(r)/N ,

replacing the contributions from each KS state in Eq. (4.10). In this way, the ADSIC

assumes that the electrons in the KS system are represented by the same orbital density

and therefore delocalized across the entire atom or molecule. Despite this seemingly gross

simplification, the ADSIC performs very well in the calculation of ionization potentials

tested for a variety of atoms and molecules (in most cases even better than PZSIC) [133].

Note that both the PZSIC and ADSIC can also be implemented to treat the densities from

electronic spin states separately similar to commonly used LDA and GGA schemes. Other

approaches such as splicing corrections [134, 135] and tuned range-separated hybrid (RSH)

functionals [136] also recover the proper asymptotic behavior of the mean-field potential.

However, because of the length and time scales we are interested in, we find that the LDA

augmented with ADSIC provides the efficiency needed for our TDDFT calculations.
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Chapter 5

Time-Dependent Density Functional Theory: Part 2

The process of high-order harmonic generation (HHG) offers the capability for experi-

mental measurements to probe not only molecular structure but also ultrafast multielectron

dynamics. Using the time-dependent density functional theory (TDDFT) approach, we an-

alyze distinctive features in HHG spectra that can be linked with the electronic structure

of different target molecular systems. In particular, we study structural minima found in

the spectral intensity due to quantum interference effects as well as their associated spec-

tral phase behavior. For the exchange-correlation potential, we employ the local density

approximation (LDA) supplemented with the average density self-interaction correction

(ADSIC). This provides an efficient way to calculate the single-molecule response in our

TDDFT calculations, with the proper long-range behavior of the mean-field potential. The

theoretical work presented in this chapter is motivated by the collaboration with the Agos-

tini and DiMauro group from Ohio State University (OSU). In their experiments, the spec-

tral intensity and phase have been fully characterized using high harmonic spectroscopy

(HHS) measurements for simple linear molecules: OCS, CO2, and N2O. Our theoretical

study serves as groundwork for first-principles modeling of the harmonic amplitude and

phase measurements using HHS, which is an important technique for identifying charge

migration effects in molecular systems.

5.1 Structural Minima in Molecular HHG

From the recombination step in the HHG process, the electron wave packet acts as

a self-probe of the molecule from which it was ionized. The primary goal of the HHS

technique is to access the recombination dipole matrix element (RDME) of the target

molecule, via the coherence between the returning wave packet and the electronic bound

state (see discussion in section 1.3.3). In HHS studies, prominent features in the spectral

intensity and phase due to interferences in the RDME are analyzed in order to extract
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information about the molecular structure or dynamics. The most simple example of a

structural feature is the two-center minimum, which is a consequence of the destructive

interference between contributions from two emitters that are spatially separated within

the molecule. The appearance of pronounced (two-center) minima in HHG spectra was first

demonstrated in numerical studies using TSDE for H2 and H+
2 model systems [137, 138].

Aside from the minimum in the spectral intensity, the two-center interference effect also

has a characteristic found in the spectral phase. Note that the destructive interference can

be explained in terms of a sign change in the RDME or in complex representation, the

RDME goes through zero with its phase varying by π. This was also theoretically shown

for the H2 and H+
2 model systems, wherein phase jumps of about π are found to coincide

with minima in the HHG spectral intensity [137, 138].

Later experiments have verified the two-center interference effect in HHG for aligned

molecules, which allows for detailed measurements in the molecular frame [139–142]. In

these experimental studies [139–142], the structural minima are observed in the HHG spec-

tra for aligned CO2. Note that the CO2 molecule has a highest occupied molecular orbital

(HOMO) with antisymmetric combination of two 2p orbitals located at the O centers, as

illustrated in the middle portion of Fig. 5.1. For a returning wave packet defined by the elec-

tron de Broglie wavelength λe = 2π/k, the destructive interference with an antisymmetric

molecular orbital occurs when

R cos θ = mλe. (5.1)

Here R is the separation distance between the two centers, θ is the angle between the molec-

ular axis and the electron propagation direction given by the laser polarization, and m is an

integer. Based on results obtained from TDSE calculations [143, 144], the heuristic disper-

sion relation Ω = k2/2 between the emitted photon energy and the electron momentum is

typically used to predict the interference position in the harmonic spectrum. However, the

SFA equation Ω = k2/2 + Ip is also applicable, particularly when one considers the asymp-

totic electron momentum at large distances away from the core [145]. From Eq. (5.1) and
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Figure 5.1: Highest occupied molecular orbitals (HOMOs) of OCS, CO2, and N2O (from
left to right). These linear molecules have HOMOs that can be described in terms of two

“centers” with p-type orbitals at either ends. In the middle, the internuclear vector ~R
is indicated while the rescattering angle θ for an electron wave packet is also shown with
respect to the molecular axis.

the dispersion relation, we see that the structural minimum shifts to higher energies when

the alignment angle θ is increased, which corresponds to a decrease in the effective distance

between the two centers projected on the rescattering direction. In principle, contributions

from multiple channels (or molecular orbitals) can also lead to interferences in the total

recombination dipole. Nevertheless, structural minima can generally be distinguished from

dynamical minima in experimental measurements [146, 147]. These dynamical minima

rely on additional contributions from lower-lying orbitals and therefore tend to have strong

sensitivity to the driving laser intensity and wavelength.

The main motivation for our collaborative study is to investigate possible effects of the

recombination dipole phase differences in two-center interferences. For an extended model

of HHG in aligned polar molecules [148], the condition for two-center interference can be

written as

kR cos θ + ϕ2(k, θ)− ϕ1(k, θ) = (2m+ 1)π, (5.2)

which includes additional terms for the phase difference between the two atomic centers. In

the case of polar molecules, the distinction between alignment and orientation is important.

Aligned molecules generally refers to some preferential direction for the molecular axis

regardless of the “up” and “down” configurations, whereas a specific configuration is implied
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Figure 5.2: Experimental alignment dependence of HHG spectral intensity for OCS, CO2,
and N2O (from left to right). These measurements are taken in similar HHG laser condi-
tions, with intensity of about 1× 1014 W/cm2 and wavelength of 1300 nm. The alignment
of the gas sample is controlled by changing the time delay between the alignment pulse and
the HHG pulse, which is shown on the horizontal axes. The time delays for parallel and
perpendicular alignment with respect to the laser polarization are marked by red arrows.
The spectrum for each time delay is normalized to the unaligned spectrum (red boxes) to
indicate the relative enhancement of the spectral intensity for varying alignment angles.

in oriented molecules. Here we will mostly consider the case with aligned molecules, such

that the HHG spectrum is described in terms of the superposition of opposite molecular

orientations. As a standard technique for experimental studies, the molecular alignment is

achieved using an initial laser pulse, which creates a coherent superposition of rotational

states in the molecule [149, 150]. The induced rotational wave packet provides high degrees

of molecular alignment at regular time intervals which are associated with the rotational

revivals. This means that, in experiments, HHG for aligned molecules can be studied by

applying a generating pulse at various time delays after the aligning pulse.

As the motivation for our theoretical study, we present some of the experimental results

from the OSU measurements. In Fig. 5.2, the alignment dependence of the HHG spectral

intensity are shown for three molecules: OCS, CO2, and N2O. Notice that specific time

delays between the alignment pulse and the HHG pulse are assigned to molecular align-

ment angles from 0◦ to 90◦ (red arrows). From the middle and right panels of Fig. 5.2, we
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see that there is a clear minimum that starts from 0◦ for both CO2 (≈ 48 eV) and N2O

(≈ 50 eV) and then shifts to higher energies as the alignment angle increases to interme-

diate angles. This is a signature of the two-center interference effect. The quite similar

behavior of the alignment-dependent HHG yield in CO2 and N2O can be explained by the

structure of their HOMOs, which are depicted in the middle and right portions of Fig. 5.1.

Even though N2O is polar unlike CO2, these two molecules are isoelectronic and have sim-

ilar separation distances between the terminal atoms. Compared to CO2 and N2O, the

results for the harmonic spectral intensity in OCS (left panel of Fig. 5.2) show a different

alignment-dependent profile of the minimum. Specifically, the deepest minimum in the

spectral intensity for OCS is found around 30–40◦ alignment (≈ 48 eV) while the minimum

for the 0◦ alignment is rather faint. Although OCS has a HOMO with two centers (shown

in left portion of Fig. 5.1) similar to CO2, the substitution of S (instead of O) results in a 3p

orbital (instead of 2p orbital) centered at one of the terminal atoms. Hence, the difference

in the experimental measurements of the alignment-dependent harmonic yields for CO2

and OCS indicate that the HHS technique has the sensitivity to probe structural features

specific to the target molecule in the aligned sample. In what follows we discuss the results

of our HHG calculations using the TDDFT approach and the post-processing analysis that

we apply to the HHG signal for extracting harmonic amplitudes and phases.

5.2 Molecular HHG: TDDFT Approach

Based on the numerical methods detailed in the previous chapter (4), we solve the time-

dependent Kohn-Sham (KS) equations (4.3) to model the multielectron dynamics in single-

molecule systems interacting with a strong infrared (IR) field. In our calculations, we focus

on the HHG emission from molecular target systems, CO2 and OCS, which we compare with

the experimental measurements. The exchange-correlation potential is approximated using

the LDA, including the Perdew-Zunger formulation for the correlation functional [129].

Since the LDA is generally known to have self-interaction errors, we implement the LDA
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augmented with the ADSIC [132], which gives the proper long-range decay (−1/r) of

the KS potential. This generally results in an improved ionization potential, determined

by the energy of the highest occupied molecular orbital, Ip = −EHOMO. Applying fixed

molecular geometry, we set the bond lengths similar to their experimental values: RCO =

1.16 Å for CO2, RCO = 1.15 Å and RCS = 1.56 Å for OCS. We assume that only the

16 outermost electrons (with 8 corresponding active orbitals) participate in the dynamical

response. The electron-ion interactions [vion(r)] are represented by the nonlocal Kleinman-

Bylander form [151] of the norm-conserving Troullier-Martins pseudopotentials [152]. The

ground-state properties are obtained from the self-consistent solution of the (field-free) KS

equations, checking for the convergence in both the densities and the orbital energies from

successive iterations. The computed values for the ionization potentials are 14.5 eV for

CO2 and 11.7 eV for OCS, which are in good agreement with their respective experimental

values, 13.8 eV and 11.2 eV [153].

Initialized from the ground state of the molecular system, the time-dependent KS

equations are propagated with an applied laser field. In this study the envelope for the

linearly polarized laser field has a similar form given by Eq. (3.6), which ramps up dur-

ing the first two cycles and remains constant afterwards. This “flat-top” pulse allows a

straightforward comparison with the SFA analysis for a well-defined peak intensity during

the half-cycles after the field ramp-up. Because of the long driving wavelengths that we

consider (1300–1500 nm), we used a spatial grid that accounts for the ionized parts of the

density extending far away from the molecule. The extent of the uniform Cartesian grid

is taken to be |x| ≤ 195 a.u. and |y| = |z| ≤ 30 a.u. For alignment-dependent calculations,

the molecular axis is varied such that the plane of rotation is the xy-plane while the laser

polarization is fixed along the x-axis. Thus, we define the molecular alignment angle θ

relative to the +x-axis. The grid spacing is set as 0.4 a.u. and the propagation time step as

0.05 a.u. We ensure the convergence of our calculations with respect to the discretization of

the numerical grid, e.g., by checking against results obtained using a smaller grid spacing
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or time step. We also apply an optimized complex absorbing potential near the edges of

the spatial grid to prevent spurious reflections.

5.2.1 Seeded HHG using attosecond pulse train

From the theoretical side, it is important to characterize the molecular HHG emis-

sion preferably at the sub-cycle level in order to extract information about the molecular

structure and the induced ultrafast dynamics. This can be a challenging task since the

harmonic signal obtained from numerical methods consists of contributions from multi-

ple quantum paths, which interfere in the spectral domain. In experiments, the different

phase matching properties of these quantum path contributions can be harnessed so that

they can be preferentially selected or spatially separated in the far field (see discussion of

macroscopic effects in section 1.4). However, macroscopic calculations of HHG typically

require several hundred single-molecule calculations and are therefore not currently feasible

for systematic studies of charge migration effects exhibited in harmonic spectra. In this

work we calculate the single-molecule response in the presence of two fields: (1) a strong

IR field and (2) an attosecond pulse train (APT) composed of several odd harmonics of the

IR field. The objective of the seeded HHG using APT is to launch the electron wave packet

on the short trajectory upon ionization, thereby obtaining clean spectra wherein the short

trajectory contribution is preferentially selected. When the time delay between the IR

and the APT pulses is appropriately chosen, the two-pulse scheme has been theoretically

and experimentally demonstrated to generate harmonic spectra that are dominated by the

short trajectory contribution [154–156].

In our TDDFT calculations, the total field with polarization along the x-direction is

expressed as

F (t) = F0f(t) sin(ωt) + F1f(t)
∑
q

sin(qω[t− td]), (5.3)

where the peak intensities for the IR and the APT fields are tuned by the amplitudes F0

and F1, respectively. The field envelope f(t) given by Eq. (3.6) is set to be the same for
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both fields. Each of the short bursts in the APT is naturally synchronized with the IR field

and the sub-cycle delay between the IR and the APT fields is controlled by parameter td.

Five consecutive odd harmonics are chosen such that the central harmonic is close to the

ionization threshold. Since there are no relative phases introduced in the odd harmonics,

each burst in the APT is Fourier-transform limited. In these seeded HHG calculations, the

APT peak intensity needs to be high enough in order to substantially enhance the HHG

yield from the short trajectory, i.e., to enhance the ionization yield at the correct release

time. Nevertheless, we also keep the APT intensity relatively low compared to the IR

intensity in order to reduce excitations coming from lower-lying orbitals due to the APT

(which is not present in the experiment). For relatively weak APT intensities about 1–3%

of the IR intensity, our results are in general robust except for an overall enhancement of

the harmonic yield that is roughly linear with the APT intensity.

We first consider the case of aligned CO2 with parallel molecular configuration relative

to the driving field polarization. For the IR field, we apply laser parameters similar to the

experiment, with the peak intensity equal to 8× 1013 W/cm2 and the wavelength equal to

1300 nm. The APT field is composed of five odd harmonics of the IR field (H7–15) and

has a peak intensity that is 2% of the IR intensity. As seen from the Gabor time-frequency

analysis in the left panel of Fig. 5.3, the resulting HHG emission has contribution from

the short trajectory which is significantly enhanced. This is achieved by tuning the time

delay td between the IR and the APT fields, which essentially controls the time at which

the electron wave packet is released into the continuum during the IR laser cycle. The

subsequent dynamics of the initiated wave packet can then be driven by the strong IR

field. From this enhancement process, the properties of the short trajectory contribution is

therefore mostly determined by the IR field (independent of the APT field). In our study

we mainly present results for an optimized delay of td = −0.17 laser cycle for the short

trajectory contribution. Here the negative sign in the time delay means that the APT field

comes before the zero crossing of the IR field.
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Figure 5.3: The left panel shows the time-frequency profile of the seeded HHG in aligned
CO2 (θ = 0◦) using an IR field and an APT field. For the time-frequency analysis, a
Gabor transform is applied as indicated in Eq. (3.9). The IR field has a peak intensity of
8 × 1013 W/cm2 and a wavelength of 1300 nm. The APT field is constructed from odd
harmonics of the IR field (H7–15) and its intensity is set to 2% of the IR intensity. The time
delay between the IR and the APT fields is optimized such that the harmonic yield is mostly
from the short trajectory contribution. In the right panel, a prominent minimum is seen
from the corresponding HHG spectrum for the IR+APT case (solid blue). For reference,
the HHG spectrum for the IR only case is also shown (dashed red). The harmonic spectra
are obtained by taking the Fourier transform of the dipole acceleration for the duration of
1.5–3.5 laser cycles.

From the Gabor analysis in Fig. 5.3, we find that the harmonic signal is mostly similar

for the subsequent half-cycles after the field ramp-up at t = 2 laser cycles, except for the

additional quantum path contributions that appear in later half-cycles. The associated

HHG spectrum taken from the first few half-cycles after the field ramp-up (solid blue) is

shown in the right panel of Fig. 5.3. A clear minimum is found in the HHG spectrum for the

case with the APT field. The position of the minimum is close to where one would expect

the two-center interference effect to occur, which is a good indication that the seeded HHG

process is a sensitive probe of the molecular structure of CO2. In addition, notice that the

enhancement of the ionization due to the APT results in an overall HHG signal that is

much higher than the IR only case (dashed red). Since we are interested in extracting the

harmonic spectral amplitudes and phases, it is crucial that the short trajectory contribution

due to enhancement from the APT field is substantially higher than the “noise level” given

by the HHG signal from the IR only case.
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For various alignment angles, we calculate the HHG spectra from both CO2 and OCS

molecular targets. To ensure that the ionization due the IR field alone is kept very low, we

adjust the IR field parameters to peak intensity equal to 6× 1013 W/cm2 and wavelength

equal to 1500 nm. These laser parameters are chosen such that the cutoff energy is about

same as the HHG spectrum in Fig. 5.3 but with much lower ionization from the IR field

alone. The overall noise level in the signal is therefore significantly reduced for the seeded

HHG calculations compared to the 1300 nm case. In our analysis, we check whether the

signal from the seeded HHG is sufficiently high relative to the HHG signal when only the

IR field is present. As labeled in each panel of Fig. 5.4, we display the Gabor profiles of

the emitted harmonics from CO2 and OCS for alignment angles 15◦ and 45◦. Here we only

Figure 5.4: Gabor analysis of the HHG emission along the x-direction in aligned CO2 (upper
panels) and oriented OCS (lower panels) single molecules. For each molecular system, we
show two alignment angles that are defined relative to the laser polarization (+x-axis). The
IR field has a peak intensity equal to 6× 1013 W/cm2 and a wavelength equal to 1500 nm.
The applied APT fields are composed of harmonics 9–17 with 2% of the IR intensity for
CO2 and harmonics 7–15 with 1% of the IR intensity for OCS. In all cases, the delay of the
APT field is set to 0.17 laser cycle before the zero crossing of the IR field, as in Fig. 5.3.
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consider the harmonic signal parallel to the laser polarization. These time-frequency profiles

confirm that in general the HHG signal is dominated by the short trajectory contribution,

regardless of the molecular target or the alignment angle.

By comparing the time-frequency profiles for CO2 and OCS in Fig. 5.4, we observe

striking differences in the sub-cycle HHG emission for OCS during the first two half-cycles

after the ramp-up. Each alternating half-cycle corresponds to ionization from and recom-

bination to either side of the polar OCS molecule. The returning wave packet rescatters

with a different orientation of the molecule and thus a different photorecombination process

occurs every half-cycle of the IR field. In principle, the HHG signal for the two orienta-

tions need to be coherently added in order to compare with the experiment, where the

target system is an aligned molecular sample. We note that, in the case of alignment angle

θ = 45◦ (lower right panel), we find that the HHG signal from the first half-cycle after

the field ramp-up dominate over the signal from the next half-cycle. This variation in the

strengths of the harmonic signal in two consecutive half-cycles can be attributed to a strong

preference in the ionization for one molecular orientation over the other.

5.2.2 Sub-cycle analysis of the HHG signal

So far our TDDFT calculations indicate that the HHG seeding with an APT field

provides a viable tool for preferentially enhancing the short trajectory contribution in the

harmonic signal. Next we proceed to the discussion of the numerical techniques that we

utilize for the post-processing analysis of the HHG signal at the sub-cycle level. The primary

goal of this post-processing analysis is to analyze pertinent features in the harmonic spectral

amplitudes and phases, which are associated with the electronic structure of the target

molecule. The left panel of Fig. 5.5 shows a typical time-dependent dipole acceleration

signal (red curve), which is dominated by large below-threshold oscillations. This makes a

direct time-frequency analysis of the harmonic signal rather problematic. As an alternative,

we implement the following procedure: (1) filtering out the low-frequency components from

the raw signal during specific half-cycles of the IR field and (2) taking a windowed Fourier
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Figure 5.5: Processing of the HHG signal. Left panel: A typical dipole acceleration signal
obtained from seeded HHG calculations using TDDFT (red curve). The high-frequency
signal (green curve) is acquired from the full signal by filtering out the frequency com-
ponents below 25 eV, with a 10-eV smooth transition. A cos4 window used to select the
short trajectory contribution is also shown (black curve). Right panel: Time-frequency
map from SFA analysis (dashed gray curve) with matching parameters for the ionization
potential and the laser intensity and wavelength. Time-frequency map from a reference 1D
SAE calculation with the same matching parameters (blue curve). As in the left panel, the
cos4 window used for the short trajectory contribution is similarly shown (black curve).

transform of the filtered signal to select the short trajectory contribution. We restrict our

analysis to the first few half-cycles after the field ramp-up since they are relatively “clean”

compared to the later half-cycles when additional quantum path contributions start to

appear (see for instance the left panel of Fig. 5.3).

The procedure for the post-processing analysis is illustrated in Fig. 5.5. In the left

panel, we display the filtered signal (green curve), which is acquired by filtering out the

Fourier components below 25 eV and taking the Fourier transform back to the time domain.

Because of the APT introduced in the TDDFT calculations, this filtered signal is already

observed to have characteristics that reflect contribution from the short trajectory. For

instance, the frequency of the oscillations increases over time within the duration of a laser

half-cycle. We also find a minimum in the overall envelope of the filtered HHG signal at

about t = 2.3 laser cycles, which is consistent with the minimum in the harmonic spectral
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intensity. To further isolate the short trajectory contribution, we apply a cos4 window

to the filtered signal over the duration 0.05–0.55 laser cycles, from the beginning of a

given half-cycle (see both panels of Fig. 5.5). For the sub-cycle analysis, we analyze the

total harmonic yield in CO2 for different alignment angles. We note that there can be

substantial contributions in the total harmonic yield coming the HHG signal along the y-

direction, particularly when the molecular axis is not perfectly parallel or perpendicular to

the laser polarization. As previously demonstrated in numerical studies of the two-center

effect in H+
2 , the harmonic signal perpendicular to the driving field can sometimes obscure

the appearance of the interference minimum [157]. We therefore take the total HHG yield

to be the sum of contributions along the x- and y-directions, |Sx(Ω)|2 + |Sy(Ω)|2.

To test the accuracy of our methods, we follow the two-center interference minimum

in the total HHG yield as the molecular axis is rotated relative to the laser polarization.

In the left panel of Fig. 5.6, the alignment-dependent spectral intensities in CO2 show

that the positions of actual minima (open circles) generally move to higher energies as the

alignment angle is increased. Except for some alignment angles, we see that the minima in

the HHG yield are consistent with the geometric expectation for the position of a two-center

interference minimum, i.e., with a 1/ cos2 θ dependence (dashed white curve). We attribute

the discrepancies between our TDDFT results and the geometric expectation to possible

shifts in the positions of the interference minima caused by the APT field. By analyzing

the individual orbital contributions to the harmonic yield (not shown here), we have found

that inner KS orbitals below the degenerate HOMOs can also have a strong response to

the APT field. For consistency, we also give the alignment-dependent harmonic yields from

OCS in the right panel of Fig. 5.6. Similarly, we find an overall good agreement between

the observed minima from the calculated harmonic yields and the geometric expectation.

Besides the minimum found in the harmonic spectral intensity, the two-center interfer-

ence effect is also associated with a variation in the spectral phase [137, 138, 141]. Within

the QRS framework (see discussion in section 1.3.3), the spectral phase is generally known
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Figure 5.6: Alignment-dependent harmonic spectral yields in CO2 (left panel) and OCS
(right panel). These are extracted from the time signal during the first half-cycle after
the field ramp-up for CO2 and from the averaged time signal during the first two half-
cycles after the field ramp-up for OCS. The plot is shown in log10 scale and the spectral
intensity for each harmonic energy is normalized by the angle-averaged value. Actual
positions of minima from the spectral intensity are indicated by open circles in the left
panel. The dashed curve in the each panel is shown as a guide for the eye and is given
by a 1/ cos2 θ dependence, which is the geometric expectation for two-center interference
minima at varying alignment angles.

to have two contributions: (1) from the rescattering electron wave packet and (2) from

the RDME which is the one we are interested in. The first contribution is directly related

to the attochirp, which have been experimentally measured in Ref. [158]. Based from the

semiclassical model of HHG, the attochirp is attributed to the monotonic increase in the

emission time with harmonic order for the short trajectory. By carefully removing this

contribution (1), features in the phase variation that are specific to the molecular target

can therefore be analyzed. In addition to the filtered short-trajectory signal, we calculate

the corresponding time-frequency map from two methods, namely the SFA model and the

numerical solution of the SAE-TDSE for a 1D soft-Coulomb atom. For both methods we

match the parameters from our TDDFT calculations, such as the ionization potential and

the laser intensity and wavelength. As exhibited in the right panel of Fig. 5.5, there is

a systematic shift to earlier emission times in the 1D SAE model compared to the SFA
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Figure 5.7: Extraction of the harmonic spectral intensity and target-specific phase for CO2

at alignment angle θ = 5◦. In both panels, the spectral intensity and its associated phase
(dashed black curves) are obtained from the total HHG signal, which include contributions
from the signal along the x- and y-directions (red and blue curves). The target-specific
phase shown in the lower panel has been corrected by subtracting the generic phase from
an atomic reference signal (see text). The vertical dashed lines indicate the position of the
two-center interference minimum.

model. In general, we find that the 1D SAE model gives a more accurate description of

the time-frequency map for the short trajectory. Hence, we use the calculated signal from

the 1D SAE model as a reference for the extraction of the target-specific phase.

To exemplify the “full” extraction procedure using the windowed Fourier transform,

the acquired spectral intensity (upper panel) and target-specific phase (lower panel) in CO2

at alignment angle θ = 5◦ are shown in Fig. 5.7. In both panels we provide the results from

the total HHG signal (dashed blacks) which includes contributions from the signal along the

x- and y-directions. For our purposes we are only interested in the phase variation, rather

than the actual values. The target-specific phase contribution shown in the lower panel has

been corrected by subtracting the generic phase contribution for the reference signal, which

is calculated from the 1D SAE atomic model. Consistent with a two-center interference
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effect, we observe from the lower panel of Fig. 5.7 that a near-π phase jump is recovered

in the HHG signal parallel to the laser polarization (red curve). Notice that the shift in

the spectral phase coincides with the position of the minimum in the spectral intensity

(vertical dashed lines). Interestingly, we find that the contribution from the perpendicular

HHG signal (blue curve) can modify the phase behavior of the total HHG signal near the

minimum, i.e., resulting in a slightly lower phase jump. This means that including the HHG

contribution from the perpendicular direction is important for analyzing the spectral phase

near the interference minimum. We have found reasonable agreement with experimental

measurements of the harmonic spectral phase, but only for small alignment angles in CO2.

In this thesis, we are not showing any of the systematic calculations of the spectral phase or

any of the experimental phase measurements. Understandably, it is much harder to extract

the angle-dependent spectral phase from the numerically obtained HHG signal compared

to the spectral yield. In this regard, we will examine how the APT field itself may affect

the extraction of both the spectral intensity and phase.1

5.3 Future Work

In conclusion, we are working closely with our collaborators from OSU in the analy-

sis and interpretation of their experimental results. From the theoretical side, our results

indicate that first-principles calculations using TDDFT provide a feasible approach for ex-

tracting harmonic spectral amplitudes and phases, which can be compared directly with

experimental HHS measurements. To further improve our procedure, refinements can be

made in the calculation of the single-molecule harmonic signal within the TDDFT frame-

work as well as in the time-frequency analysis of the harmonic signal. For future studies,

we are also interested in investigating the control of charge migration via its dependence on

the molecular alignment and how pertinent dynamical features are manifested in HHS mea-

surements. Additionally, the evolution of such dynamical features in the HHG spectrum

1From a different perspective, the APT or an isolated XUV pulse can also be used to potentially initiate
the ultrafast electron dynamics within the molecule (see for instance [159, 160]).
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with respect to changes in the laser parameters such as the peak intensity and wavelength

will be explored.
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Chapter 6

Summary and Outlook

In this thesis we report theoretical studies using (semi)classical and quantum ap-

proaches, which we utilize to examine the HHG process in a variety of systems and models.

The properties of the emitted extreme-ultraviolet (XUV) light via HHG naturally contains

information about the ultrafast electron dynamics driven by a strong infrared (IR) laser

field. In Chapter 2, we have discussed the first approach based on classical trajectory Monte

Carlo (CTMC), wherein an ensemble of independent classical electron trajectories is prop-

agated in the presence of an atomic argon potential and the IR driving field with elliptical

polarization. Recolliding trajectories, which are initially ionized from the atomic core and

subsequently driven back by the laser field, are assumed to contribute to the HHG process.

Within this recollision model of HHG, we demonstrate that the inclusion of the atomic

potential can give rise to a rich and complex recollision dynamics. This goes beyond the

commonly used strong field approximation, where the atomic potential is ignored during

the propagation dynamics. Moreover, our nonlinear dynamical analysis reveals that the

behavior of these returning trajectories is regulated by a set of recolliding periodic orbits

that survive even at relatively high ellipticity. Notably, these RPOs provide a way for the

low-energy long trajectories to return to the ionic core with the aid of the atomic potential,

which explains their persistence with increasing laser ellipticity.

Next we shift to quantum approaches that we employ in order to model the HHG

process in multielectron molecular systems. In Chapter 3, we have presented a theoreti-

cal investigation of dynamical multielectron effects that can lead to the enhancement of

molecular HHG emission. Using a model molecular system (A2), we numerically solve the

time-dependent Schrödinger equation (TDSE) with two active electrons, each restricted to

one dimension. Our results show that even at intensities well below the single ionization

saturation, harmonics generated from the cation (A+
2 ) is significantly enhanced due to the

rescattering of the electron that is initially ionized. This two-electron effect is observed from
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the appearance of secondary plateaus and cutoffs in the calculated HHG spectra, thereby

extending beyond the predicted cutoff from the single active electron (SAE) approxima-

tion. In addition, the time-frequency analysis of the calculated HHG signals confirms a

delayed mechanism for the emission of the second-cutoff harmonics relative to the first-

cutoff harmonics. Based on the laser intensity and wavelength dependence of the relative

second-cutoff HHG yields, we provide an interpretation of the inherent efficiency of the

recollision-enhanced HHG process in terms of the available rescattering energies.

Finally, in Chapters 4 and 5, we explore the HHG process in more realistic molecular

systems using the real-space numerical grid implementation of the time-dependent density

functional theory (TDDFT). Here the TDDFT framework provides a mean-field approach

for describing the strong-field dynamics in simple molecular systems with multiple active

orbitals. In our single-molecule TDDFT calculations, we include a weak attosecond pulse

train (APT) constructed from a few odd harmonics of the linearly polarized IR driving

field. As determined by the delay between the IR and the APT fields, the ionization time

for the initiated electron wave packet can be chosen such that the short trajectory contri-

bution is preferentially enhanced. Additionally, we have developed numerical techniques

for the post-processing analysis of the HHG signal obtained from the TDDFT calculations.

Overall, this scheme allows for a direct comparison with experimental alignment-dependent

measurements of the harmonic spectral intensity and phase. From our benchmark calcu-

lations in CO2 and OCS, we demonstrate the applicability of our approach for studying

structural features in harmonic spectra generated from molecules aligned at different angles

relative to the laser polarization. The characterization of these pertinent features provide

insight towards systematic studies of correlation-driven dynamical effects in molecules.

To conclude, we expect high harmonic spectroscopy (HHS) to continue as an important

technique in future studies for characterizing attosecond charge migration dynamics in in-

creasingly complex molecules. In experiments, the molecular alignment or orientation will

remain to be the primary limitation for accessing the recombination dipole matrix element
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(RDME) in these target systems. From the theoretical perspective, continuous efforts will

also be required in order to develop numerical and analytical models that will help inter-

pret the experimental measurements of harmonic spectral amplitudes and phases. Since

TDDFT provides an “all-at-once” (or top-down) approach for calculating HHG spectra in

molecular systems, we believe that it will be advantageous to use TDDFT for studying

charge migration in large molecules particularly in cases with many participating molecu-

lar orbitals. This is in stark contrast with factorization (or bottom-up) schemes for HHS,

where individual contributions are essentially treated as SAE channels. Nevertheless, the

combination of both top-down and bottom-up approaches can potentially address which

signatures of charge migration are relevant in molecular HHG. Aside from the electron

dynamics, it will also be interesting to investigate the coupled electron-nuclear dynamics

and determine how the ultrafast electron motion within molecules can play a decisive role

in the longer time scale processes, e.g., dissociative ionization.
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C.-G. Wahlström, Phys. Rev. A 60, 4823 (1999).
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