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Abstract

The interactions between magnetic moments and electrons are essential in creating

many of the unique properties of magnetic systems. In this thesis, I focused on two

Fe-based systems employing multiple experimental techniques to investigate the

coupling between localized magnetic moments and conducting charge carriers in

two systems with tendencies to order into itinerant magnetic phases.

With systematic investigations of Fe1−yCoySi, we discovered a field depended

non-Fermi-Liquid (non-FL) behavior near its insulator-metal-transition (IMT) that

appears to share the same mechanism as previously discovered in Mn doped FeSi

- the underscreened Kondo effect.

A similar interaction of the charge carrier moments screening S = 1 impurity

moments are found in the y ≈ 0.01 range of Co doped FeSi as in Fe1−xMnxSi.

The conductivity results indicate a field dependent non-FL behavior at IMT of

Fe1−yCoySi that transitions to a disordered FL dependence with the application

of magnetic field or by increasing the density of Co substitutions. However, Co-

substitution between 0.01 < x ≤ 0.03 displays unique behavior which is enhanced

by the application of magnetic field. We are presently exploring the consequences of

this discovery. A relatively large density of unscreened magnetic moments at low

temperature was confirmed through specific heat measurements at several mag-

netic fields over a wide range of temperatures. These findings indicate that the

non-FL of Mn and Co doped FeSi is related to the underscreened Kondo mecha-

nism and depends only on the local interaction rather than the charge carrier type.

ix



A second Fe-based magnetic system Fe3Ga4 was investigated via neutron scat-

tering technique. In the neutron scattering investigations of on the Fe3Ga4 system,

ferromagnetic (FM) ordered states are confirmed below 68 K and between 360 - 420

K. The antiferromagnetic state which exists at intermediate temperatures between

two ferromagnetically ordered regimes consists of an incommensurate spin density

wave (SDW) order likely caused by RKKY interactions. The effect of magnetic

fields and pressure on the magnetic states of this complex material were explored.
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Chapter 1
Introduction

The couplings of charge carries and local moments can have different forms and

strengths. They could act as the Kondo effect18 that charge carrier moments

screen the local moments or as in Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-

action16;32;40, where local moments indirectly coupled via the conduction electrons.

These interactions generally play important roles in determining low temperature

material physical properties. In the work reported on here, we focus on two cases

involving such interactions to investigate the mechanisms behind material proper-

ties. The first is a carrier-doped strongly correlated Kondo insulator that displays

a field dependent non-Fermi-Liquid (non-FL) behavior. The next is an itinerant

antiferromagnet (IAFM) where charge carriers and local moments coupling acts to

create a long range modulation resulting in a spin-density-wave (SDW) magneti-

cally ordered state.

1.1 Fermi-Liquid Theory and Non-Fermi-liquid Behavior

The theories of Drude and Sommerfield3 employs the free electron gas as an ap-

proximation for electrons in metals. It is successful in explaining properties such

as Ohm’s law in the resistivity of metals and the linear temperature term in low

temperature specific heat of alkali metals. However, limited by the non-interacting-

free-electron approximation, it fails in many ways especially in transition metal

system and rare earth materials where correlated electron effects are crucial in

determining material properties.

1



In 1957, L. D. Landau21 proposed the Fermi-Liquid (FL) theory to describe

the low temperature properties of metals which includes many of the effects of

the interaction betweens electrons. The central assumption of this theory is that

charge carriers can be described as weakly interacting quasiparticles which are

electrons ”dressed” in interaction clouds resulting in fermionic particles of effec-

tive mass m∗. These quasiparticles fill up energy levels up to the Fermi surface at

T = 0 and form the Fermi sea in the ground state. The quasiparticles at the Fermi

level have a long lifetime and dominate most of the electronic material properties13.

1.1.1 Fermi-Liquid Theory

The energy of a quasiparticle is given by the free particle expression

ϵ(p) =
|p⃗|2

2m∗ , (1.1)

where m∗ is the effective mass. At zero temperature, all non-interacting quasi-

particles states |p⃗σ⟩ have |p⃗| < pF and σ = ±1
2
are occupied with a distribution

function n(p⃗, σ) = 1 and all |p⃗| > pF states are empty with n(p⃗, σ) = 0. When

there is a small change of distribution function δn, with the fermionic feature of

the quasiparticles being included, the change in energy is

δE = Sσ
′

∫
f(p⃗, σ; p⃗

′
, σ

′
)δndτp, (1.2)

where dτp = dpxdpydpz/(2π~)3 and Sα represent the the spin states parameter.

f(p⃗, σ; p⃗
′
, σ

′
) corresponds to the scattering amplitude the two quasiparticles (|p⃗σ⟩

and |p⃗′
σ

′⟩) and obeys the time reversal symmetry.

The entropy of the liquid from quantum statistics is:

S = −Sσ
′

∫
np⃗ln(np⃗) + (1− np⃗)ln(1− np⃗)dτp. (1.3)

2



Here n follows the Fermi-Dirac distribution,

np⃗ =
1

exp((ϵp⃗ − µF )/kBT ) + 1
. (1.4)

With the change of the density states, one would have

δS =
1

T

∫
(ϵp⃗ − µF )δnp⃗dτp w kB

2NF (0)
π2

3
δT +O(T 2), (1.5)

NF (0) is the density of state at Fermi-level at zero temperature

NF (0) =
VF
2π2

√
ϵp⃗

(
2m∗

~2

)3

. (1.6)

VF is the volume of the Fermi surface sphere. Hence, one can have

δS =
m∗kF
3~2

kB
2δT, (1.7)

and

CV = T
(∂S
∂T

)
V
=
m∗kF
3~2

kB
2T. (1.8)

The resistivity in the quasiparticle theory can have a form similar to the Drude

model with lifetime τ and m∗:

ρ =
m∗

ne2τ
. (1.9)

In a system with stronger electron-electron (e−e) correlations, e−e interaction need

to be considered in determining τ . With the e− e inelastic scatterings considered,

the scattering length ℓ = τee
−1 of 3D system has the form of ℓ ∼ T 2. As a result,

at low temperatures the resistivity takes on the form

ρ = ρ0 +mT 2, (1.10)

where ρ0 is the residual resistivity due to impurity scattering.

The FL explanation describes most common metals very well and also describes

the properties of 3He. 3He is the decay product of tritium and is a fermion with

3



S = 1
2
. At low temperature where 3He is a normal (nonsuperfluid) liquid, there is

a linear specific heat in temperature39. Even heavy fermion metals such as UPt3
36

and CeAl3
1 act as FL except that they have a rather large m∗ due to the vastly

renormalized (by up to 3 orders of magnitude by the interaction) effective mass

(m∗). Fig. 1.1 shows an example of U1−xYxPt3. Despite the Tc decreasing with

doping concentration increasing, the resistivity of U1−xYxPt3 clearly follows the

FL rule of ρ ∼ T 2 in the normal state.

FIGURE 1.1: Resistivity of U1−xYxPt3,with x from 0 to 0.5% (from a to g) exhibits
a quadratic temperature dependence36 at normal state.

1.1.2 Disordered Fermi-Liquid

The framework of FL theory is not limited to the clean metal systems26, but can be

modified to describe finite size systems and disordered systems. Systematic studies

of interaction and disorder correlations started in the last century23 and obtained

great success. The greatest advances were made in the regime of weak disorder,
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FIGURE 1.2: Resistivity of Si:P exhibits a ρ ∼ T
1
2 dependence as expected for a

disordered Fermi-liquid30.

where controlled many-body calculations are possible using the disorder strength

as a parameter23.

Treatments of disordered systems began with the ‘scaling description of the An-

derson localization problem’ and the diffusive electrons in the presence of a random

potential23. With the random phase renormalization and scaling theory, significant

modifications were made to the traditional FL theory of metals leading to disor-

dered FL theory. This theory is applied mostly in the heavily doped semiconductors
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systems23;26;30 while other metallic systems with weak disorder, i.e. the epitaxial

graphene22, also can be described in the framework .

FIGURE 1.3: Specific heat of Si:P exhibits a power law Cv = γT + βT 3 + mTα

dependence with α = 0.2 in the metallic region20.

In disordered systems where the scaling rule is valid26, the conductivity of the

metallic phase at low temperature yields the form:

σ(T ) ∼ tµϕσ

( T

tµz

)
(1.11)

where t = (n − nc)/nc is the dimensionless distance from the transition, ϕσ(x) is

the scaling function and µ = (d− 2)ν. Other parameters are the dimensions of the

6



system d, the correlation length exponent ν and the dynamical exponent z.

At finite temperature, ϕσ(x) can be expanded in the metallic phase:

ϕσ(x) ≈ 1 + axα (1.12)

which leads the low T conductivity

σ(t, T ) ≈ σ0(t) +mσ(t)T
α (1.13)

where σ0(t) ∼ tµ and mσ(t) is also a function of t ( m ∼ tµ−ανz).

The exponent α is a universal value in the metallic phase under the scaling

treatment. Under the condition of weak disorder, it is found to be α = 1/2. It was

clearly demonstrated by Rosenbaum et al that in the heavily doped semiconduc-

tor Si:P near an insulator to metal transition (IMT) the conductivity at T < 1 K

is well defined with a square root dependence of temperature30 as shown in Fig. 1.2.

An analogy can be used in the treatment of the specific heat which leads to a

power law form of the low temperature specific heat.

Cv ≈ γ0(t)T +mγ(t)T
α+1 (1.14)

The specific heat of the Si:P can be fit to a power law dependence of T (Fig. 1.3),

with a constant α derived from data in the metallic phase.

DiTusa et al have investigated Al doped FeSi to compare with the case of Si:P7;8.

They found that FeSi is similar to silicon after renormalization of the carrier mass,

in analogy to the heavy fermion metals that behave as a FL with large effective

mass. In this context, the behavior of doped FeSi after IMT should follow the rule

of disordered FL theory, which has T 1/2 dependence of conductivity (Fig. 1.4).
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FIGURE 1.4: Conductivity of Fe1−xAlxSi has a ρ ∼ T
1
2 dependence as a disordered

Fermi-liquid7.

The effective mass is large, in the case of Fe1−xAlxSi, a m
∗/me ratio of 14 ± 2 is

derived from the free electron theory. This study showed that though the higher

temperature properties can be largely affected by strong correlation effects, the in-

trinsic properties of ground state of the heavy fermion metals and doped strongly

correlated insulators can still be described in the framework of the FL theory.

1.1.3 Non-Fermi-Liquid Behavior

Materials with anomalous temperature dependences in low-temperature proper-

ties are considered as non-FL. Such materials include high Tc cuprate supercon-

ductors12 and some heavy-fermion systems on the verge of magnetic ordering37;41.

The emergence of non-FL behavior indicates singular Fermi surface or Fermi sur-

face reconstruction or even the critical condition that the entire Fermi surface

disappears as in cuprate superconductors5;6;34. As a result, the necessary environ-

ment for Laudau’s quasiparticles is destroyed and the system can no longer be

explained with FL theory. Due to the complexity of the problem, it has proven to
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be difficult to build a theory for such systems though non-FL behavior has been

observed in a large category of materials experimentally.

Non-Fermi-Liquid Heavy Fermion Systems

Non-FL behaviors are frequently found in the Ce-, Yb-, and U-based heavy-

FIGURE 1.5: The Uranium-based heavy-Fermion system, UxLa1−xPd2Al3, displays
anomalous T dependence on resistivity ρ and logT dependence of specific heat
∆C/T (Solid line fitting)41.

fermion intermetallic compounds. These systems have strong correlations because

of the interacting f electrons. These materials are often close to a quantum critical

point that can be tuned with doping or external parameters such as pressure or

magnetic field37. Studies of the non-FL behavior of these systems have extended for

a few decades26;37. There has been a considerable amount of experimental data to

motivate a phenomenological description of the behavior quantum critical systems

such as the temperature dependences of the electronic resistivity ρ(T ), the specific
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heat C(T ) and the magnetic susceptibility χ(T )41. For the temperature dependence

of the electrical resistivity ρ(T ), there is

ρ(T ) ∼ 1−m(T/T0)
n, (1.15)

where m can be positive or negative with |m| ∼ 1 and n ∼ 1 − 1.5. While the

specific heat and susceptibility can have more than one temperature dependent

form,

C(T )/T ∼
(
− 1

T0

)
ln

(
T

T0

)
or ∼ T−1+λ (1.16)

and

χ(T ) ∼ 1−
(
T

T0

)1/2

,

(
− 1

T0

)
ln

(
T

T0

)
or ∼ T λ. (1.17)

Here λ is typically between 0.7 and 0.8 and the characteristic temperature T0 is

identified with Kondo temperature.

An example is shown here to demonstrate the resistivity and specific heat of

UxLa1−xPd2Al3 at low temperature (Fig. 1.5). From Fig. 1.5. a) and b), the power

law coefficient n = 1.3 as ρ ∼ −T n implies that the system is a non-FL over the

measured temperature. Fig. 1.5. c) and d) displays the specific heat where a log T

dependence is apparent.

Pressure Driven Non-Fermi-Liquid MnSi

MnSi has a cubic B20 structure which lacks of center-inversion symmetry (space

group P213). Below Tc=29.5 K, the magnetic moments of MnSi tend to form a

long-wavelength helix under the influence of the chiral spin-orbital interaction. As

a materials with a rather simple structure where the Dzyaloshinsky - Moriya (DM)

interaction interaction is active, MnSi is one of the most extensively studied ma-

terials driven by both theoretical and experimental interest. Non-FL behavior of
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MnSi under 14.6 kbar pressure was reported by Pfleiderer et al in 200127 (Fig.

1.6). It was discovered that below the critical pressure, the resistivity followed a

T 3/2 dependence of a non-FL rather than the T 2 dependence of a FL. Neutron

scattering studies found that the helimagnetic spiral is unlocked so that it is only

partially long range ordered within the non-FL state. This suggests an unusual

microscopic origin of the non-FL phase in this system28.

FIGURE 1.6: Schematic temperature versus pressure phase diagram of MnSi28.

Investigations on MnSi also identified an A-phase in the conical magnetically

ordered region of the phase diagram where a topological lattice structure, called

a skyrmion lattice, was first observed in magnetic materials31. Theoretical stud-

ies reported that partial order is often related with the topological spin textures.

These findings raised interest in investigating the connection of non-FL resistivity
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behavior with the topological spin properties. A more recent study was dedicated

to this topic and revealed its nature under pressures and fields as a topological

non-FL29 (Fig. 1.7 ). They discovered that the topological Hall signal is associated

with the non-FL behavior of MnSi. The topological Hall effect is a Hall effect con-

tribution that doesn’t depends on either the magnetic field or the magnetization.

It is a signature of the skyrmion state or the A-phase in this system. The intrinsic

mechanism of the T 3/2 non-FL behavior was illustrated as the topological winding

of skyrmions. This non-trivial spin structure induced topological non-FL may be

generated from the chirality of the DM spin-orbital coupling.

1.2 Neutron Scattering Investigation of Itinerant Antiferromagnetism

The theoretical perspective of itinerant magnetism starts from Stoner’s model.

Here the local imbalance of up- and down-spins of conduction electrons are consid-

ered with the temperature dependence of the Fermi-Dirac distribution17. Stoner’s

model successfully predicts a magnetic ground state but often gives very large Tc

in comparison to experimental results. Recent progress on Stoner’s model with

Heisenberg Hamiltonian has improved it so that it can give a reasonable Tc for 3d

electron magnets33.

Neutron scattering is a commonly used experimental technique and a powerful

tool for studying magnetism. Neutrons are particles with mass m=1.675×10−27

kg, spin 1/2~ and no charge. Neutrons penetrate deep into the materials instead of

probing just a small region near the surface. Thermal neutrons have a de Broglie

wavelength comparable to typical inter-atomic distances. Thus, neutron scattering

is a probe for determining magnetic and nuclear structures as well as for studying

nuclear and magnetic thermal excitations with energy of 0.1 - 100 meV. In ad-
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FIGURE 1.7: Magnetic phase diagrams of MnSi at 7.4 kbar, 13.7 kbar and 15.7
kbar displaying the topological Hall effect and non-Fermi-Liquid resistivity .
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FIGURE 1.8: Neutron magnetic scattering intensity of Cr near (1, 0, 0) plane19.
The various energies scans are at T = 54 K (a, b, c and d) and the E = 15 meV
scans are at different temperatures (e, f, g and h). The dashed and light lines fit
to conmmensurate charge-density-wave and incommensurate spin-density-wave
components.

dition, neutron spins interact with electron spins through a strong dipole-dipole

interaction allowing the scattering to reflect the local magnetic environment in

materials.

Experimentally discovered itinerant ferromagnetic (FM) or antiferromagnetic (AFM)

materials are mostly transition metal or Rare Earth metal containing compounds.

The most extensively studied IAFM system is chromium, which displays a in-

commensurate SDW ordered ground state9;19(Fig. 1.8). Fig. 1.9 displays a SDW

structure scheme picture of Cr identified with neutron scattering. The wavevector
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FIGURE 1.9: Scheme image of the spin-density-wave of Cr propagates along H
direction35.

of the SDW is k = (2π/a)(1 − δ, 0, 0) with a being the lattice constant and δ is

temperature dependent. At the Néel temperature, TN = 312 K, δ = 0.037. The

nearest neighbors interact antiferromagnetically in the SDW state. When T = TN ,

the temperature dependent resistivity displays a cusp2. The sudden resistivity in-

crease indicates the loss of charge carrier density as a gap opens at the Fermi

surface. This feature is associated with the SDW ordering in Cr and is a common

feature of band antiferromagnets4. MnSi is another heavily investigated system

as weak itinerant ferromagnet14.

Besides 3d transition metal compounds, there are also f electron metal com-

pounds belonging to the catagory of IAFM, for example, UPtGa5 and UNiGa5
15.

Neutron scattering results revealed that large spin-orbit coupling induced substan-

tial magnetostriction around TN along the easy-axis direction in these itinerant

systems (Fig. 1.10). Similar to UGa3, the orbital magnetic moment is strongly

suppressed due to the hybridization of Uranium 5f and Ga-4p electron states.

Rare earth materials like GdSi also exhibits properties of an IAFM10;11.
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FIGURE 1.10: Lattice constant vs. temperature plot of UNiGa5
15.

Though the majority of the itinerant magnets contain elements that contribute

a definite magnetic moment, a few materials with no magnet constituents are

also found to behave like an itinerant manget24;25;38. TiAu is a recently reported

IAFM that contains no obvious magnetic constituents. It is first identified in a

band structure calculation survey (using a full-potential DFT with taking spin-

orbit coupling)38. Several experiments including magnetic, transport, specific heat

and neutron scattering experiments confirmed that a long range AFM order exists

in the full volume of this itinerant system. This finding enriches our knowledge of

the weak IAFM and provides insights in understanding the microscopic interaction

pictures of the localized and itinerant moment systems.

1.3 Outline of Our Work

In this work, I focus on the non-FL behavior investigation in the Fe1−yCoySi sys-

tem and neutron scattering studies of the IAFM Fe3Ga4. I began chapter 1 with a

short introduction on FL, disordered FL and non-FL behaviors as well as itinerant
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magnets. Chapter 2 concerns the experimental techniques and common models

of magnetic, transport and thermodynamic properties related to our studies of

Fe1−yCoySi and Fe3Ga4.

The following two chapters discussed the experimental studies of the Fe1−yCoySi

system where we discovered a field depended non-FL behavior that shares the same

mechanism as previously discovered in Mn doped FeSi.

. Chapter 3 includes a review of the previous studies of Co and Mn doped FeSi. This

followed by a summary on the sample preparation processes and the discussion of

our experimental results on the magnetic properties of Fe1−yCoySi, 0 ≤ y < 0.1.

We observed a systematic increase of the Weiss temperature from Mn through to

Co doping. The Θw remains negative for small y of Fe1−yCoySi. We have found

that the impurity moment in the low doping range of the Fe1−yCoySi is S = 1,

similar to what was found in Mn substituted FeSi. This suggests that there may

be a similar interaction of the magnetic moments with conducting charge carriers

in the very low doping region of Co and Mn doped FeSi.

Chapter 4 continues the investigation of Co doped FeSi concentrating on our

transport and specific heat results. The conductivity of Fe1−yCoySi 0 ≤ y < 0.03

clearly indicates a field depended non-FL behavior near IMT as previously discov-

ered in Fe1−xMnxSi. The magnetoresistance studies are also similar to that seen

in Fe1−xMnxSi while largely different from a heavily doped semiconductor (disor-

dered FL) near IMT. Specific heat measurements indicated that a large amount

of entropy is released from the system at very low temperatures - i.e. below our

lowest temperature measured (0.3 K). This phenomenon confirmed the existence

of the underscreen magnetic moments at very low temperature. These findings
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support the idea that the same mechanism for non-FL is at play in FeCoSi as was

previously proposed for Mn doped FeSi, the underscreened Kondo model.

In Chapter 5, I discuss the investigation of the magnetic structure of Fe3Ga4 with

neutron scattering techniques. Following an introduction, I summarized the sample

preparation and experimental detail. Then I presented the refinement and mag-

netic structure rendering process before focusing on the results and discussion of

the neutron scattering investigation on Fe3Ga4. A FM ordered state is confirmed

below 68 K and between 360 - 420 K. The intermediate temperature magnetic

structure of Fe3Ga4 was determined to be an incommensurate SDW. The SDW

state is propagating along the c-axis with the magnetic moments lying mostly in

the a-axis direction. Considerable non-coplanar moments were found in the b-axis

direction which is consistent with our previous Hall effect measurements. Neutron

scattering in field of H = 0.5 T revealed that the SDW coexists with the high

temperature FM state.
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moments in Si : P near the metal-insulator transition. Phys. Rev. B, 50:17064–
17073, 1994.

[21] L. D. Landau. The theory of a Fermi liquid. Soviet Physics JETP, 3(6):920,
1957.

[22] Samuel Lara-Avila, Alexander Tzalenchuk, Sergey Kubatkin, Rositza Yaki-
mova, T. J. B. M. Janssen, Karin Cedergren, Tobias Bergsten, and Vladimir
Fal’ko. Disordered Fermi liquid in epitaxial graphene from quantum transport
measurements. Phys. Rev. Lett., 107:166602, 2011.

[23] Patrick A. Lee and T. V. Ramakrishnan. Disordered electronic systems. Rev.
Mod. Phys., 57:287–337, 1985.

[24] B. T. Matthias and R. M. Bozorth. Ferromagnetism of a zirconium-zinc com-
pound. Phys. Rev., 109:604–605, 1958.

[25] B. T. Matthias, A. M. Clogston, H. J. Williams, E. Corenzwit, and R. C.
Sherwood. Ferromagnetism in solid solutions of scandium and indium. Phys.
Rev. Lett., 7:7–9, 1961.

[26] E. Miranda and V. Dobrosavljevic. Disorder-driven non-Fermi liquid behavior
of correlated electrons. Reports on Progress in Physics, 68(10):2337, 2005.

[27] C. Pfleiderer, S. R. Julian, and G. G. Lonzarich. Non-Fermi-liquid nature
of the normal state of itinerant-electron ferromagnets. Nature, 414(6862):
427–430, 2001.

[28] C. Pfleiderer, D. Reznik, L. Pintschovius, H. v Lohneysen, M. Garst, and
A. Rosch. Partial order in the non-Fermi-liquid phase of MnSi. Nature, 427
(6971):227–231, 2004.

[29] R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, and C. Pfleiderer. For-
mation of a topological non-Fermi liquid in MnSi. Nature, 497(7448):231–234,
2013.

[30] T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A. Thomas, R. N. Bhatt,
and W. Lin. Metal-insulator transition in a doped semiconductor. Physical
Review B, 27(12):7509–7523, 1983.

[31] U. K. Roszler, A. N. Bogdanov, and C. Pfleiderer. Spontaneous skyrmion
ground states in magnetic metals. Nature, 442(17):797, 2006.

[32] M. A. Ruderman and C. Kittel. Indirect exchange coupling of nuclear mag-
netic moments by conduction electrons. Phys. Rev., 96:99–102, 1954.

[33] L. M. Sandratskii, R. Singer, and E. Şaşıoğlu. Heisenberg hamiltonian descrip-
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Chapter 2
Magnetic, Transport and
Thermodynamic Properties: Models and
Experimental Detail

2.1 Magnetic Property

2.1.1 Susceptibility and Magnetization Models

In the local moment picture of magnetism, exchange interactions between local

moments on individual atoms contribute to the long-ranged magnetic order. The

magnetization of paramagnetic materials derived from Boltzmann statistics is in

the form2:

M(H,T ) = NAgJµBBJ(x). (2.1)

NA is the electron density and J is the size of the magnetic moment. BJ is the

Brillouin function:

BJ(x) =
2J + 1

2J
coth[

(
2J + 1

2J

)
x]− 1

2J
coth[

x

2J
], (2.2)

with

x =
µB

kBT
=
gJµBH

kBT
. (2.3)

At the high temperature limit, limx→0BJ(x) = [(J + 1)/3J ]x. This leads to

M(H,T ) = NgJ(J + 1)µBH/3kBT . As a result, the susceptibility χ yields the

Curie’s law

χ =
M

H
=
C

T
. (2.4)

C is the Curie constant:

C =
NA

3

(gµB)
2

kB
J(J + 1). (2.5)
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While at the high field limit, limx→∞BJ(x) = 1, which gives the saturate magne-

tization M(H,T ) = NAgµBJ .

In the ferromagnetic materials, a Weiss molecular field correction is added in the

moments coupling energy. This leads to a Curie-Weiss form of the susceptibility

above Tc:

χimpurity =
C

T −Θw

. (2.6)

The Weiss temperature ΘW is a renormalization constant of the temperature in-

dicating the type and size of the interaction of moments. The Weiss temperature

is expressed as

Θw = 2NAS(S + 1)zJeff/3kB, (2.7)

Where z is the number of cations in the first coordination sphere (z=12 for the

graphite structure). Jeff represents the magnetic interchange interaction in the

system. For example, the negative value of Θw in FeSi indicates dominated screen-

ing interactions1.

In the vicinity of the phase transition temperature Tc materials physical proper-

ties exhibit singular behavior that varies as a power law form of the temperature:

M(T ) ∝M0

(
1− T

Tc

)α

, (2.8)

where M0 is the saturation magnetization. The mean field approach gives α = 1
2
.

In narrow band gap paramagnets which has magnetic impurities, i.e. Fe1−yCoySi,

the total susceptibility includes three terms:

χ = χPauli + χimpurity + χactivated. (2.9)

23



0 100 200 300

4.0x10-4

8.0x10-4

1.2x10-3

-5 0 5
-0.004

-0.002

0.000

0.002

0.004

 

 

M
 (e

m
u/

m
ol

)

H (T)

FeSi

 

 

(e
m
u/
m
ol

)

T (K)

T=4 K

H= 0.1 T

FIGURE 2.1: Susceptibility at H = 0.01 T and T = 4 K magnetization of a FeSi
sample.

The first term is the Pauli paramagnetic susceptibility. This term is independent

of temperature and represents the contribution of free carriers (the uncoupling

moment of conduction electrons)2

χPauli = (µB)
2g(εF ). (2.10)

Here µB is the Bohr magneton, g(εF ) represents the density of states at the Fermi

surface and εF is the Fermi energy. This term is observed in all kinds of mate-

rials. It could be quite large in materials with small gap and large number of

the density of states at the Fermi level. When χPauli is large enough to exceed a

certain threshold, it is possible for the band to split spontaneously and form an

itinerant ferromagnet. The second term is the contribution of the magnetic mo-

ments stemming from the impurity species which is modeled in a Curie Weiss form.

24



The third term is due to the activated moments at moderately high temperature

under the narrow band gap feature, called the activated term:

χactivated = exp
−kBT
∆g

. (2.11)

Here the ∆g corresponds to the band gap energy. This term arise when the acti-

vation of carriers above the band gap creating magnetic moments from the singlet

states at low temperature.

Due to the combined effects of the contributions to the magnetization the sus-

ceptibility of FeSi has a unique shape (Fig. 2.1). Different contributions can be

extracted from the different temperature ranges where the susceptibility was mea-

sured since each dominates in a different temperature regime. The Curie constant

and the Weiss temperature can be obtained from the low temperature upturn, the

intermediate temperature minimum represents the size of the Pauli-susceptibility,

and the high temperature increase as a result of the activated carriers moments

indicating the size of the energy gap or the vestige of the narrow energy gap.

2.1.2 Experimental Detail

The magnetic susceptibility and magnetization of all our samples were measured

with a Quantum Design Magnetic Property Measurement System (MPMS) that is

equipped with a 5 or 7 T superconducting magnet and that could access temper-

atures ranging from 1.8 to 400 K. In at least one case we were able to make use

of an MPMS with a furnace extending the temperature range to 800 K. All mea-

sured samples have well determined phase purity and stoichiometry determined

through X-ray diffraction (XRD) and wave-length disperse spectroscopy (WDS )

characterization processes. Samples were prepared for magnetic measurements by
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mounting at the center of a narrow quartz tube. The quartz tube was attached to

the sample probe in a standard sample loading process in MPMS. The RSO mode

of MPMS that was employed as it offers the best signal to noise performance in

the range of magnetizations from 10−6 to 10−1 emu. Sample sizes were adjusted to

have the signal sizes fit within the limit.

2.2 Transport Property: Models and Measurement

2.2.1 Resistivity Models

There are three models for the conductivity of materials that we consider in this

work. These include a simple power law for describing Fermi liquid (FL) and non-

FL metallic transport, variable range hopping transport for disordered insulators,

and an activated form for the intrinsic conduction of insulating materials.

Power Law Model of Conductivity

The power law form for the conductivity,

σ = σ0 +mTα, (2.12)

is a simple way to describe both a FL and non-FL temperature dependence for

conductors. FL theory predicts an α = 2 for low disorder metallic transport. Dis-

ordered FL like the heavily doped semiconductors (Si:P) are best described by

this form with α = 1/2 which comes from the scaling theory described in chap-

ter 1. Non-FL displays an anomalous temperature dependence of the conductivity

typically displaying a power-law temperature dependence with α less than 2. In

general, this model describes the temperature dependence of conductivity in metal-

lic systems.
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Variable Range Hopping Model of Conductivity

The variable range hopping model,

σ = σ0 + exp(Tα/T )
α (2.13)

describes temperature dependence of conductivity in disordered insulators. The

original work of Mott regarding the thermal activation of carriers so that they hop

between localized states near the chemical potential predicts an α = 1/4. Shklovskii

and Efros contributed to this model by adding the Coulomb interaction4;9, which

yields an α = 1/2. The model with the Coulomb interaction between localized

moments is called the soft band gap variable range hopping model. The variable

hopping models describe the temperature dependent transport behavior of the

insulators or dilutely-doped semiconductors that they are still insulating (conduc-

tivity at zero temperature is zero).

Activated Form of the Conductivity of Insulators

Similar to the activated form of the magnetic susceptibility introduced earlier, the

activated form describes the conductivity of carriers that are thermally excited

across an energy gap. Here the conductivity is described as

σ ∝ exp(−∆g/kBT ), (2.14)

where ∆g is the energy gap. This form describes the contribution in conductivity

induced by the thermally activated charge carriers.

2.2.2 Hall Effect

In 1879, Edwin Hall observed an effect later named after him: a field depended

voltage in current-carrying conductor that is perpendicular to the charge carrier
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velocity and magnetic field5. During further studies of ferromagnetic metals12, he

discovered that there are two terms in the Hall effect (HE): a linearly field depended

term called the ”ordinary HE” and a second term know as the anomalous HE that

is normally proportional to the magnetization.

The empirical relation of Hall resistivity in Gaussian units is represented as12:

ρxy = ρOH + ρAH = R0H +Rs4πM, (2.15)

where R0 is the ordinary Hall coefficient dependent on the density and sign of

the charge carriers. The anomalous Hall coefficient Rs(T ) is a scaling factor that

relates the anomalous Hall resistivity to the magnetization. The ordinary HE is

clarified as the consequence of charge carriers accumulating on the edge of the

material due to the Lorentz force. This term is well described by the Drude model

and often employed as an experimental tool in determining charge carrier density2.

The mechanism of the anomalous HE is more complicated. After years of debate

a coherent picture is emerging on the contributions and mechanisms of the anoma-

lous Hall effect. It is generally agreed that two aspects contribute to the origin of

the anomalous HE. The first one is the extrinsic scattering in collaboration of the

spin-orbit coupling (SOC), including the skew-scattering scheme (∼ ρxx term) and

side-jump effect (∼ ρ2xx term):

ρAH
xy = aρxx + bρ2xx. (2.16)

The second aspect is the intrinsic contribution that arises from the SOC induced

band structure modification. This contribution is independent of the carrier scat-

tering rate - with the Hall resistivity related to the Hall conductivity by the form

σxy = ρxy/ρxx
2 is independent of the impurity scatterings in materials6.
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2.2.3 Experimental Detail

The samples for transport measurements were prepared first as thin rectangular

bars with low-power spark erosion cutting. The sample surfaces were polished with

0.3 µm emery paper to improve electrical contact at the surface. The sample for HE

measurements were polished down to ∼0.1 mm. Pure platinum wire (.001 Platinum

Pure TC Grade) and Epotek silver epoxy were used to make contacts for the four

probe resistivity measurement. The transport measurements (including resistivity,

magnetoresistance and Hall Effect measurements) were carried out over a 2 - 400

K temperature range employing standard low frequency lock-in techniques. The

HE results were derived by symmetrizing the data in both positive and negative

fields to correct the misalignment of the Hall leads. The transport measurements

performed in the temperature range between 50 mK and 2 K employing transformer

coupling lock-in amplifier techniques in an Oxford 200 dilution refrigerator with an

Oxford 16 T superconducting magnet and a GPIB based data acquiring program

written in Labview.

2.3 Thermodynamic Properties

2.3.1 Specific Heat Models

The specific heat Cv contains rich information of the intrinsic characteristics on the

thermodynamic response of materials7. It quantifies the temperature response of a

material in exchanging energy, which illustrates features of the excited states in the

temperature range studied. The specific heat can assist in identifying the dominant

excitations in solid systems as mechanisms can be identified via their temperature

or field response. Lattice vibrations (phonon) in insulators at low temperature can

be explained by the low temperature limit of the Debye model, which says that the

specific heat of materials follows a T 3 rule under a temperature below θD, Debye
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temperature. Debye model has the form of

Cph = 1944

[
T

θD

]3
= βT 3. (2.17)

This model works in a wide range in identifying phonon contributions in specific

heat.

In metals, there is another major contribution to the specific heat due to the

conducting charge carriers. With electron movements taken into consideration, the

specific heat of metals at low temperature follows a T−linear dependence. The

simple relation (equation) followed by

C = γT + βT 3, (2.18)

where γ is the Sommerfeld constant. The low temperatures means that the temper-

ature is small comparing with Debye temperature in phonon modes or with Fermi

temperature in considering electrons. This form is limited to temperatures being

low compared to the Debye temperature which is below 20 K for most materials.

When investigating a magnetic metallic material, a third contribution to the

specific heat due to magnetic excitations needs to be taken into account. The

magnetic moments yields a T−2 exp−Ts/T contribution from the nuclear Schottky

upturn. Thus, for a metal with magnetic contributions, the specific heat at low

temperature (The region with thermal energy small comparing with internal field

of the magnet) should be:

C = γT + δT−2 exp−Ts/T + βT 3. (2.19)

At T < 1K where the phonon movements are negligible, only the first two terms

are important in explaining the specific heat properties of magnetic materials.
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2.3.2 Thermo Relaxation Method and Experimental Detail

Despite of the various theoretical models used to understand the specific heat,

experimentally obtaining specific heat data is usually difficult at the low temper-

atures. Large heat exchange rate and small noise to signal ratio problem becomes

more and more substantial as the temperature decreases in low temperature ex-

periments11. Moreover, specific heat measurement requires an adiabatic condition

or at least a quasi-adiabatic condition being met for ease of analysis. As a result,

reducing the heat transfer rate between measurement system and the environment

is the key to design a successful calorimeter.

In the early days, the specific heat was measured according to the classic defini-

tion10:

Cp = lim
dT→0

(dQ/dT )p. (2.20)

This method is called the adiabatic method, which requires a thermally isolated

sample that is large enough to minimize the stray heat leaks affections. Because of

the strict limitations of the method, i.e. large size, it is difficult to apply in material

studies, especially in studying small samples at low temperatures.

In 1968, Sullivan and Seidel11 proposed an ac method measuring the specific

heat of small samples employing the commercial lock-in amplifiers. By generating

an ac heat pulse of frequency 1/2ω, the ac temperature of the sample at frequency

of ω is:

Tac =
Q̇

2ωC

(
1 +

1

ω2τ12
+ ω2τ2

2 + const

)1/2

. (2.21)

Here τ1 is the sample-bath relaxation time, and τ2 is a combined exchange time of

sample to heater (τh), sample to thermometer (τθ) and sample internal (τinternal)
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time constants: τ2
2 = τh

2 + τθ
2 + τinternal

2. It is obvious that to maintain a quasi-

adiabatic condition, τ1 ≫ τ2 is a necessary requirement. However, at very low

temperature, due to the rapid increase of the thermal contact resistance, τ2 could

be considerably larger than the other thermal time constants. As a result, the fre-

quency needs to be very low to meet a reasonable experimental condition, which

makes an ac method undesirable.

Bachmann et al proposed another method for low temperature specific heat

measurement of small samples3, called the thermal relaxation method. It involves

a 1-D heat-flow equation that describes the sample temperature as it is allowed

to rise above the thermal bath with a constant heat pulse and then to decay to

the bath temperature exponentially8. The sample temperature varies during the

decay process in the form:

Ts(t) = T0 +∆T exp

(
− t

τ1

)
. (2.22)

Here Ts represents the sample temperature and T0 refers to the bath temperature.

∆T is the initial temperature difference between bath and sample. τ1 is the time

constant of sample to bath heat exchange, also called the sample-bath relaxation

time:

τ1 = Cp/Kb, (2.23)

where Cp is the heat capacity of the sample and the Kb is the thermal conductivity

of the thermal link from sample to the bath. With these relationships the heat

capacity could be derived with measured τ1 and Kb.

The specific heat measurements in our investigation were done employing the

Quantum Design PPMS with 3He dilution refrigerator inset in temperature range
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of 300 mK - 20 K at 0 - 5 T magnetic field. We also developed a home-made specific

heat data acquiring system with Labview programming on the Oxford He3-He4 di-

lution refrigerator to allow temperature reaching 50 mK. Both systems employed

the thermal-relaxation method.

The experimental realization of the thermal-relaxation method relies on a weak

permanent thermal link with a constant low temperature bath where the heater,

thermometer and sample are combined as a core connecting to the bath with weak

thermal links. The intermediate thermal resistance between the heater, the ther-

mometer and the sample must be reduced to be as low as is possible in order to

allow a fast heat exchange within the core. A slow exchange between the core and

the bath is ensured with the weak thermal link that is in the form of thin, high

resistance, conducting wires. Therefore, a quasi-adiabatic condition in the core is

fulfilled for a possible calorimetric method, where the fast heat exchange within

the core refers to a small time constant τ2 and the slow thermal relaxation process

governed by the weak link leads to a large time constant τ1 (τ1 ≫ τ2). Since τθ and

τh could be reduced to minimum with a reasonable experimental design, one can

achieve the best condition that all the τ2 contributions are from τinternal.

The home-made specific heat measurement device was built following the quasi-

adiabatic environment τ1 ≫ τ2 requirement. The core of the system is an addenda

being installed to the sample holder with only four high thermal resistance wire

contact with the sample holder. The addenda is constructed by an evenly divided

1 kΩ RuO2 resistor. This is created by carefully cutting the resistor so that there

are two parallel 3.3 kΩ RuO2 resistor on one sapphire base. One resistor serves as

the heater connecting to the pulse generator circuit and the other is a resistance
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FIGURE 2.2: An example of heat pulses specific heat measurement.

thermometer which is measured via a small current and lock-in techniques. The

thin resistive wires connected between the heater or the thermometer to the sam-

ple probe pillars serves as a current or voltage probe as well as a heat link to the

bath. The sample holder and the entire dilution refrigerator environment act as the

heat sink. Large τ1 is achieved under this design. Small internal time constant τ2 is

guaranteed naturally since both the heater and thermometer are directly sitting on

one piece of the sapphire base with good thermal conductivity. Thus, the τ1 ≫ τ2

requirement is fulfilled.

The measurement procedure for the homemade specific heat measurement sys-

tem is as following:

Computer sends command to a SRS DS345 synthesized function generator asking

for an adequately long period square wave heat pulse of & 250s corresponding to

the large τ1; the heat pulse (Vp) reaches the heater after passing through a voltage

divider consisting of a large resistance (11.8 MΩ); the voltage on the heater is

recorded indirectly with a voltmeter (Vm); the entire addenda including the ther-

mometer is heated and cooled according to the heat pulse cycle; the lock-in am-

plifier records the thermometer resistance (Rθ) during the entire heating - cooling

cycle and the data is recorded via a computer. The heat pulse voltage is adjusted
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according so that a heating level of 5% is maintained over the temperature range

of 0.05 to 2 K. The current excitation for the thermometer is maintained to levels

less than 5 nA. The heat pulse period was set properly to allow the addenda time

to reach adequate thermal equilibrium. Therefore, at the two step edge of each

square wave heating pulse, we can detect distinct heating and cooling processes as

reported by the thermometer resistor through lock-in amplifier. An example of the

resistance change on the thermometer in six heat pulses is shown in Fig. 2.2. The

heating (or cooling) cycle of the thermometer resistance follows an exponential

form:

Rθ(t) = Rθ0 −∆R exp

(
− t

τ1

)
. (2.24)

By fitting the heating (or cooling) curve, we can directly get the time constant
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FIGURE 2.3: Averaged results of six pulses and the fits of the heating (cooling)
process.

(τ1 . 30 s), current temperature resistance Rθ0 and resistance change ∆R which

35



indicates the temperature change of the resistor with the amount of heat absorbed

(or dissipated). The relation of the thermometer resistance to temperature is ob-

tained with no current to the heater through careful measurement over the entire

temperature range of the measurement and characterized via a fit of the data by

a variable range hopping form:

Rθ(T ) = m1 exp

[(
m2

T

) 1
4

]
. (2.25)

The two parameters m1 and m2 are carefully found from the best fit of the model

to the data.

Fig. 2.3 displays the result of averaged six pulses and the fits with Eq. 2.24. The

temperature difference between the heating and cooling cycles was extracted with

the aid of equations 2.24 and 2.25. The heat transfer rate Q̇ can be derived from

the total input heat power based on the circuit resistor relationships. Thus, one

finally have the specific heat:

Cp = τ1
Q̇

∆T
. (2.26)

After calibration of the addenda specific heat, this home-made device can be

used for measuring specific heat of small samples. The quality of the data was

determined by the small background to signal ratio and a good thermal contact

between sample and addenda fulfilling the τ1 ≫ τ2 requirement. The base of the

addenda was polished with sand paper so that the thickness of the sapphire was

less than 0.2 mm (1.4 mg in mass) in order to reduce the addenda specific heat.

Samples were attached to the addenda surface with very thin layers of Ge varnish

that has a high thermal conductivity (5×10−3 W/cm at T = 1 K)7 to minimize

τinternal and τ2. The sample surface was polished with emery paper to increase the

contact area and decrease the thermal resistance between sample and thermome-
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ter. The experiment measured addenda specific heat was ∼ 10−8 J/K. Increase the

size of the samples benefit the signal to noise ratio since the specific heat of the

addenda being fixed. While the smallest sample around 2 mg have the background

to signal ratio less than 20%, which is adequate for determining the specific heat

of our samples.
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Chapter 3
Single Crystalline Fe1−yCoySi Magnetic
Properties

As we have stated in chapter 1, Landau’s Fermi-Liquid (FL) theory has been a very

successful tool in understanding how the interactions between electrons affect the

metallic state. Under the assumption of almost independent fermion quasiparticles,

FL theory predicts material behaviors such as the T -linear dependence of specific

heat and the T 2 dependence of conductivity at low temperature. The FL hypothe-

sis is a satisfying description for most common metals, heavy fermion metal such as

UPt3
8. It can be modified to describe heavily doped semiconductors as disordered

FL9. Experimental research has found unusual temperature dependences in the

low-temperature properties of many exceptional materials, such as high Tc cuprate

superconductors and heavy-fermion systems on the verge of magnetic ordering18.

In this chapter and the following chapter, we will concentrate on the Co doped

small band gap insulator FeSi to compare with Mn doped FeSi, in which a field

depended non-FL behavior is discovered near an insulator-metal-transition (IMT).

A comprehensive study of the magnetic, transport and thermodynamic properties

has been performed and the results will be discussed in the following two chapters.

3.1 Introduction

FeSi, a binary compound with a noncenterosymmetric B20 structure (P213) (Fig.

3.1), displays interesting anomalous magnetic and electrical properties. It is com-

posed of half iron, however, contains no net magnetic moments. Activated mag-

netic moments appear quickly with the temperature rising. Because many of its

properties are similar to a set of insulating cerium compounds3;5, FeSi has been
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described as a Kondo insulator7. CoSi and MnSi are isostructural with FeSi10;15.

CoSi is diamagnetic(DM) semimetal, while MnSi is a well-known weak itinerant

ferromagnet13;16. Doping FeSi with Mn or Co introduces magnetic moments with

charge carriers as holes or electrons while the system maintains the B20 structure.

The effect of the addition of charge carrier is significant that the system quickly go

through an IMT with a few percentage of chemical substitution (Fig. 3.2). When

doped with a small percentage of Mn, the system appears to be paramagnetic (PM)

and insulating first, and stays PM and metallic at rather high doping concentra-

tions. With Co doping, the system goes through a magnetic transition from PM to

helimagnetic (HM) with chemical substitutions just beyond the IMT. Fe1−yCoySi

stays HM until y ≈ 0.8 where it transitions to a diamagnet.

Within this simple structural system, there are complicated interactions of spin-

FIGURE 3.1: FeSi crystal structure in a unit cell. Brown balls represent Fe atoms
and the blue ones are Si.

orbital coupling with the hole or electron types of disorder. One can tune the dopant

level to manipulate the interactions and investigate across the magnetic transitions
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and IMT. In addition, as silicon based semiconductors, they are also potential spin-

tronic materials10;12. With both fundamental research significance and application

potentials, pure and doped FeSi system has continuously attracted considerable

research interest over the last few decades10;15.

FIGURE 3.2: Fe1−x,yMnxCoySi magnetic and transport phase diagram10.
a, Conductivity σ vs. temperature and concentration. b, Magnetization M at 1 T
vs. temperature and concentration. c, Spontaneous magnetization (Ps ) as
determined from the saturated value of the magnetization at high magnetic field
vs. concentration. Gray line represents behavior of Co per 1 µB moments.

Manyala et al11 reported a field depended non-FL behavior in Mn doped FeSi

near its IMT. Instead of the T 2 dependent conductivity in FL or T 1/2 dependence

in disordered FL9;17, at low temperature, Fe1−xMnxSi displays an anomalous tem-
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perature dependence on conductivity (σ ∼ Tα, 0 ≤ α ≤ 1). Fig. 3.3 taken from

ref.11 depicts the color contour plot of conductivity dependence on the temper-

ature and Mn substitution x (magnetic field H). The dark area with x ≈ 0.02

corresponds to the very small α region, indicating where the system does not have

a temperature and field dependence expected for a disordered Fermi liquid (Fig.

3.3). The field sensitive nature of the non-FL state is clearly shown in Fig. 3.3 d, as

it takes less than a 1T field to return the temperature and field dependencies back

to what is expected for a disordered Fermi liquid. Magnetotransport and magnetic

data support that the non-FL behavior is related with uncoupled spins remain-

ing at low temperature near the IMT. It was observed that the in-field entropy is

larger than zero-field case indicated by data taken above 50 mK due to the en-

tropy associated with relatively non-interacting magnetic moments existing below

the lowest temperature in specific heat measurements. The extra entropy apparent

upon applying a magnetic field verifies the existence of the under-screened spins.

As a result, the non-FL behavior in Fe1−xMnxSi could be interpreted as being due

to the under-screened or under-compensated Kondo effect4;11 .

Co doping brings in electron type of charge carriers with the S = 1/2 moments.

When comparing with the Mn doping, it brings in the question of whether or

not Co doped FeSi yields a similar non-FL behavior as in Fe1−xMnxSi. Co doping

in FeSi induces electrons instead of holes in Mn doping case. There are different

magnetic behaviors in different doping cases: electron doping beyond the IMT

results in helimagnetic ordering while the hole doping produces a PM metal12.

These differences may be reflected in the behavior close to the IMT. And detailed

studies of the Co doping FeSi are required to explore the effects of the carrier type

and the role of the interactions of the carriers with the local magnetic moments
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FIGURE 3.3: Conductivity (σ ) vs. temperature (T ) of Fe1−xMnxSi at magnetic
fields (H) identified in the figure depicting Fermi-liquid to non-Fermi-liquid tran-
sition11.
(a) Low temperature conductivity of zero field and H = 9 T data fitting with
disordered FL behavior T 1/2. Lines represents fits of the behavior expected for a
disordered Fermi liquid. (b) (c) Color contour plots of conductivity (σ ) vs.
temperature (T ) and Mn concentration x parameterized by the logarithmic
derivative of σ with respect to T : α = d ln(σ− σ0)/d ln(T ) at H = 0 T and H = 9
T. The parameter σ0 is chosen by fitting the data below 0.7 K to a power law
form σ = σ0 +mσT

α. (c) Color contour plots of conductivity (σ ) vs. field (H)
and T parameterized by α. The dark areas correspond to the very small α region,
indicating where the system displays behavior distinct from that of a disordered
Fermi liquid.
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associated with the Co-dopants. DiTusa et al 6 discussed the IMT of Al doped

FeSi, which is similar to the classic IMT in the semiconductor Si:P, a disordered

FL albeit with a somewhat enhanced carrier mass. A comparison between those

two cases of Fe1−y CoySi and Si:P would also be meaningful in defining whether or

not Co doping is a non-FL or just the conventional disordered FL. The contents

that will be covered in this chapter are as following. First, I discussed the synthesis

methodology in producing the single crystalline Fe1−y CoySi, 0≤ y ≤ 0.1. Then,

the magnetic properties studied in temperature range 2 - 400 K and fields between

0 and 5T are discussed and compared with Mn doped FeSi.

3.2 Sample Synthesis and Preparation

When chemically substituting Co for Fe in FeSi, the system goes through IMT

at a Co concentration of 0.01. Therefore, the investigation of dilute Co doped

FeSi near its IMT requires high quality crystals whose stoichiometry are precisely

determined. To achieve this goal, I first synthesized polycrystalline samples with

the doping levels and growth process meticulously controlled. After verifying the

crystal structure with X-ray diffraction (XRD), polycrystalline samples were ei-

ther served as a starting charge for single crystals growth or as a check group on

the systematic study of the doping induced properties in Co doped FeSi. The stoi-

chiometry was checked with the Wavelength dispersive X-ray spectroscopy (WDS).

3.2.1 Polycrystalline Sample Synthesis

All polycrystalline samples were grown from high purity (99.999%) Fe (Co) pow-

ders and (99.999%) silicon pieces via the Arc melting method in a water-cooled

Cu-crucible in an argon atmosphere. The high current electric arc is produced

between a sharp tip anode and a large volume oxygen free copper crucible that

serves as the negative electrode.(Fig 3.4). Power is supplied using a Miller Gold

Star 400SS Direct Current Arc Welder Power Source.
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FIGURE 3.4: Synthesis of polycrystalline Fe1−xCoxSi samples in an arc furnace.

The arc melted Co doped FeSi samples are ellipsoidal pellets of mass between 1

and 3 grams. After arc melting, the pellets were sealed in quartz tubes in vacuum

and annealed at a temperature of 1200◦C (1000◦C) for 1(4) days. Mass losses

(mainly due to silicon vaporization) during melting and annealing process were

carefully monitored to ensure the sample quality.

3.2.2 Single Crystalline Sample Synthesis

Single crystals of Fe1−yCoySi were prepared via the flux growth method and the va-

por transport method. The choice of flux was antimony, which has a distinctly dif-

ferent atomic radius and a lower melting point than Co, Fe and Si. Pre-synthesized

polycrystalline sample powders were mixed with antinomy chips at a desired ratio

(1:5) in an alumina crucible. The crucible is covered with quartz wool on top and

fitted into an evacuated quartz ampule. The whole assembly is placed upright into

a box furnace and allowed to react at 1000◦C for 4 days. It is cooled to 670 ◦C

and spined in a centrifuge immediately after taken out of the furnace. Most of

the antinomy liquid is filtered through the quartz wool, leaving single crystals of
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FIGURE 3.5: Pictures of single crystalline Co doped FeSi samples.

Fe1−yCoySi in the crucible. The Flux growth technique has been successful for all

Fe1−yCoySi 0 ≤ y ≤ 0.1. The chemical substitution levels in crystals are close to

the nominal doping levels as verified with WDS (Table. 3.1). Single crystals ob-

tained in this method are usually shiny small bars or needles with dimensions of

several millimeters long and less than 1 mm thick (Fig 3.5. (b)). The flux growth

technique has the advantage of high homogeneity and low impurity, but there is

a possibility of the inclusion of flux elements, especially in very low doping level

(less than 1%) samples. And our flux grown y ∼ 0.01 samples display an abnormal

R vs T behavior with a surprisingly large magnetoresistance.

In order to exclude the possibility of flux inclusions, we employed a standard

Iodine vapor transport method (VTM) for growing the pure and very low doping

samples. Low concentrations of Iodine and starting charge mixtures were placed

in one end of an evacuated quartz ampule and a temperature gradient of 100 ◦C
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TABLE 3.1: Stoichiometry analysis result with WDS of selected vapor transport
grown Fe1−yCoySi

samples (VTM) and flux grown samples (flux).

Synthesis Method Nominal Co WDS Co
% %
1.0 0.89(0.03)
2.0 0.52(0.43)
5.0 0.07(0.10)

VTM 6.0 0.34(0.23)
1.0 1.03(0.03)
2.0 1.74(0.12)
2.5 2.35(0.06)

flux 3.0 2.81(0.08)
5.0 4.46(0.06)
8.0 8.50(0.17)
10.0 9.09(0.16)

was applied via a tube furnace. The mixtures were allowed to react at 1000 ◦C for

10 - 14 days. Crystals obtained through this method are small lumps that could

reach 10 mg and roughly 2 mm×4 mm in size, see Fig 3.5.

The VTM synthesized crystals usually have doping concentrations that are much

lower comparing with the nominal Co levels. As a result, synthesizing high level

doping samples with VTM becomes troublesome. This method served as a supple-

ment for the flux growth method to obtain pure and the very low doping concen-

tration (up to 1.2%) single crystals (Table. 3.1).

3.2.3 Characterization

To ensure the quality of the crystals, all the samples were examined with X-ray

diffraction on a Nonius Kappa CCD diffractometer (Mo Kα, λ = 0.71073Å). No

indications of secondary phases were found in the single crystalline samples. The

single crystal XRD refinement result confirmed that the Fe1−yCoySi crystals are in

a B20 structure which lacks a center of inversion symmetry (space group P213).
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Lattice constants of the Fe1−yCoySi follow an increasing trend with increasing y in

agreement with Vegards law and previous work12.

Due to the requirements for high precision in crystal stoichiometry for our Fe-

CoSi samples, the WDS technique was employed to quantitatively identify the ratio

of Fe, Co and Si within our samples. The results of the WDS investigations are

presented in Table. 3.1. The WDS technique uses the characteristic X-rays gen-

erated from a sample to identify the elemental constituents14. Different from the

more commonly applied Electron dispersive X-ray spectroscopy (EDS), it acquires

one wavelength at a time and collects the spectrum profile of the full wavelength

range, which is more time consuming but gives an apparently improvement reso-

lution compared to EDS.

In order to separate the spectrum by wavelength, the characteristic X-rays are

diffracted with a analyzing crystal of specific lattice space. The diffraction angle

follows the Bragg’s law: nλ = 2dsinθ. Here λ is the wavelength of the charac-

teristic X-ray, d is the lattice spacing of the analyzing crystal; and θ is the angle

between the X-ray and the crystal diffraction surface. The interference between

other elements in WDS are greatly reduced after diffraction. As a result, it is ef-

fective quantifying the level of trace elements in a sample. As in the analysis of

Fe1−yCoySi, one can have resolution of 10−3 in atomic ratio as shown in table. 3.1.

3.3 Susceptibility and Magnetization of Fe1−yCoySi

The susceptibility χ versus temperature T plots of the single crystalline Fe1−y

CoySi, 0≤ y ≤0.1 taken at 1000 Oe field are shown in Fig. 3.6. The most obvious

feature of the plot is the systematic increase of susceptibility at low temperature
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with y. The y = 0.045 and the y = 0.091 samples show signs of ordering above

1.8 K. For y < 0.03 Co doping, no peak associated with magnetic ordering was

observed in the T > 1.8 K region. This is supported with an Arrot-plot analysis1

and the details of the ordering temperature consistent with the Arrott-plot will be

presented later in this chapter.
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FIGURE 3.6: Susceptibility of Fe1−yCoySi single crystalline samples 0≤ y ≤0.1 at
H = 1000 Oe magnetic field.

The susceptibility curves were fit with Eq. 2.9, where the Curie-Weiss term corre-

sponds to the low temperature upturn of susceptibility above ordering temperature

(Tc). The impurity moment contribution can be extracted from the parameters de-

termined from the best fit to the data with Eq. 2.6. The Curie constants and Weiss

temperatures derived from the fits are presented in Fig. 3.7. The Weiss temper-
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atures and Curie constants from a previous study of Mn-doped FeSi11 are also

included for comparison(Fig. 3.7 red bullets).

As shown in Fig. 3.7 (a), the Weiss temperature Θw of Fe1−x,y Mnx CoySi is sys-

tematically increases with both x and y. Mn doping yields a negative Θw indicating

a tendency for singlet formation as a result of dominated screening effect. While

for Co doping, Θw are positive except in the very low doping regime y > 0.01,

indicating an ordering effect dominated interaction. In the Curie constant plot

(Fig. 3.7 (b)), low Mn doping induces S = 1 impurity moments. With larger x

the magnetic moments tend to decrease, which reduced into S = 1/2 at the dop-

ing level y ≈ 0.08. For Co doping, an S = 1 impurity moment similar to what

was observed for Mn doping. However, at larger y the magnetic moment gradually

grows to S = 3/2 at y ≈ 0.05 where the system tends to order magnetically at low

temperature.

With the evolution of the magnetic moments induced with chemical substitution

characterized above, one can compare the impurity concentration to the Curie

Constant. The result is plotted in Fig. 3.8. density of magnetic moments determined

from the Curie-Weiss fits to the magnetic susceptibility agrees well with the density

of Co atoms determined from our WDS data. In addition, we have characterized

our nominally pure FeSi sample in the same way leading to the conclusion that

this sample contains as much as 0.5% of S = 1 impurities perhaps as a result

of defects or Si deficiencies in this sample. This level of impurity is consistent in

crystals grown in either VTM or flux method.
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FIGURE 3.7: Curie-Weiss parameters of Fe1−x,yMnxCoySi from fits of the Curie-
Weiss form to the susceptibility data.
(a) Weiss temperature of Fe1−x,yMnxCoySi displaying a systematic increase with x
and y. Solid line is a linear fit to the data. (b) Cuire constant of Fe1−x,yMnxCoySi
changing as a function of x and y. The three lines are nS(S + 1)g2 with S = 1/2,
S = 1 and S = 3/2 using the dopant densities of Mn(Co).
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FIGURE 3.8: The concentration of magnetic moments of Fe1−y CoySi, 0≤ y ≤0.1
obtained from Curie constant with J = 1 at y ≤ 0.03 and J = 3/2 at y > 0.04.

The magnetization (M(H)) plots of the Fe0.991Co0.009Si, Fe0.972Co0.028 and Fe0.909Co0.091

samples are shown at Fig. 3.9, 3.10 and 3.11. The almost linear behavior in magne-

tization of Fe0.991Co0.009Si in the entire temperature range explored indicates that

there is no ordered moments contributions. This is consistent with our determi-

nation of a negative Θw for this sample. By y = 0.028 the magnetization curves

appear to be close to a magnetic ordering. Fe0.909Co0.091Si is likely to be helimag-

netic as we find that it orders at T ≈ 20 K. For all samples, a PM M(H) curve is

apparent at T > 20 K.

Magnetizations at T = 4 K of selected Fe1−yCoySi, 0≤ y ≤ 0.1 sample are plotted

in Fig. 3.12. In general, the magnetization increases consistent with value of y and

the Curie constant determined from the temperature dependence of the magnetic

susceptibility. Evidence of ordering is observed in the magnetization with y ≈ 0.03.
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The value of the high field magnetization appears to scale well with y, particularly

for the magnetic ordered samples. The saturated moment or the ordered moment

in the y ≥ 0.45 samples are in a small size of 0.5 ∼ 0.6 µB at T = 4 K. Comparing

with the Curie-Weiss moment in a magnitude of 3
2
µB, the saturate moment size

is apparently smaller. The strong Curie Weiss dependence and small weak ordered

moments indicate a weak magnetism2 system.

In order to determine precisely the thermodynamic Curie temperature, the Ar-

rott analysis1;19 is employed following Eq. 6.16 in the discussion of Appendix A.

The Arrott plots H/M vs. M2 of three ordered or near-ordered samples are shown

in Fig. 3.13, 3.14 and 3.15. The y = 0.091 sample is fully ordered which has al-

most linear H/M vs. M2 behavior in large field range. Fe0.955Co0.045Si displays a

ferromagnetic feature above ∼1 T field. The y = 0.028 sample can barely fit to a

linear fit above H ≈ 2 T suggesting a paramagnet. We derived the intercept Ms

from a linear fit of the ferromagnetically ordered part of the H/M vs. M2 curve

(Fig. 3.16). The Curie temperatures are where the intercepts become zero. The Tc

of the Fe0.909Co0.091Si is T = 21.98 K and Fe0.955Co0.045Si orders in over 1 T field

at T = 8.15 K.

3.4 Conclusion

We have investigated the magnetic properties of single crystalline Fe1−yCoySi,

0≤ y ≤0.1. Surprisingly, an S = 1 impurity moment in Fe1−yCoySi with small

y is similar to what was observed for Mn substitutions. For higher Co substitu-

tions, we observed an S = 3
2
moment differing from the S = 1

2
state found for

Mn doped samples with x > 0.05. A systematic dependence of the Weiss tem-

perature through the entire range of x and y is observed. From Mn to Co side of

the Fe1−x,yMnxCoySi, the Weiss temperature is increased from negative to positive
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value. The very low doping ones with y ∼ 0.01 still has a negative Θw, indicating

a similar screening effect dominated environment on the S = 1 local moments as

in the low doping concentration Fe1−xMnxSi. In the narrow region of y < 0.03, our

crystal show no indication of magnetic ordering, likely a fruitful place to search for

NFL behavior.
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FIGURE 3.9: Magnetization of Fe0.991Co0.009Si in the unit of Bohr magneton (µB)
from 0 to 5 T magnetic field at 4 - 400 K temperatures.
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FIGURE 3.10: Magnetization of Fe0.971Co0.029Si in 0 - 5 T magnetic field at 4 -100
K temperatures.
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FIGURE 3.11: Magnetizations of Fe0.909Co0.091Si in 0 - 5 T magnetic field at 4 -100
K temperatures.
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FIGURE 3.12: Magnetization of Fe1−yCoySi, 0≤ y ≤ 0.1 in 0 - 5 T at T = 4 K.
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FIGURE 3.14: Arrott plot of Fe0.955Co0.045Si.
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FIGURE 3.15: Arrott plot of Fe0.909Co0.091Si.
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Chapter 4
Single Crystalline Fe1−yCoySi Transport
and Thermodynamic Properties

In this chapter, we continue with the discussion of the investigation of single crys-

talline Fe1−yCoySi transport and thermodynamic properties. These measurements

will directly demonstrate the non Fermi-Liquid (FL) behavior near the insulator-

metal-transition (IMT). We have investigated the transport and thermodynamic

properties of Fe1−yCoySi, 0≤ y ≤ 0.1 paying particularly attention to the region

of dilute doping (0≤ y ≤ 0.03).

4.1 Fe1−yCoySi Transport Properties

4.1.1 Resistivity and Magnetoresistivity of Fe1−yCoySi
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FIGURE 4.1: Conductivity of Fe1−yCoySi, 0≤ y ≤ 0.1.
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The temperature dependence of zero field conductivity of Fe1−yCoySi for 0≤ y ≤

0.1 is shown in Fig. 4.1. The low temperature conductivity increases systematically

with y. While pure FeSi is an insulator, the doped samples are more metallic as the

analytic continuation of their measured conductivities to zero temperature is non-

zero. The higher doping level samples, y = 0.091 and y = 0.045, display increasing

conductivity with decreasing temperature, which is a clear metallic behavior. The

product of the Fermi wave vector, kf , and the mean free path, l, is often used

as an benchmark for metallic behavior (kf l > 1). The kf l can be obtained from

carrier density and resistivity with free electron models6. We plotted the kf l of

the Fe1−y CoySi, 0≤ y ≤ 0.1 crystals in Fig. 4.2 to demonstrate the crossover from

insulating to metallic behavior. While the two higher doped samples are clearly on

the metallic side, the samples with 0.01 ≤ y ≤ 0.03 have kf l around
1
2
, indicating

that the carriers are likely to be weakly localized at T = 4 K. The kf l of the

nominally pure FeSi sample is near zero with no intentional dopants.

Energy gap at high temperature can be obtained for low doping samples from

activated behaviors. We have extrapolated the energy gap in the 100 - 300 K region

by fitting the activated form σ ∝ exp−∆g/2T to our data of y ≤ 0.03 samples.

Those data are compared with activation gap energy ∆g obtained from fitting the

susceptibility data in Fig. 3.6. The two sets of data (0≤ y ≤ 0.03) agree well with

each other (Fig. 4.3) with a trend of gap decreasing with y indicating that the high

temperature activated magnetic moments and charge carriers are well correlated.

The temperature dependent conductivities of the y = 0.009, 0.017 and 0.028

samples below 10 K in H = 0 or 9 T (8 T) magnetic fields are plotted in Fig. 4.4.

The solid lines are fits of the disordered FL behavior σ ∝ T 1/2 to the data. From
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FIGURE 4.2: kf l of Fe1−yCoySi , 0≤ y ≤ 0.1.

the zero field data, it is clear the disordered FL theory doesn’t describe the y=0.009

sample conductivity well. This sample appears to be very close to the IMT as the

extrapolated conductivity is zero for all reasonable forms of the temperature de-

pendence. We also fit the Variable Range Hopping model and the soft gap Variable

Range Hopping model to the zero field conductivity of the y = 0.009 sample. Nei-

ther of them return reasonable fits indicating that the y = 0.009 sample cannot be

described by the standard insulating models of the temperature dependent conduc-

tivity as well. With the application of a magnetic field of H = 8 T the conductivity

of the y=0.009 sample increases and the temperature dependence resembles that

of a disordered FL (α =0.5) much more closely. We have fit a power-law form

for the temperature dependent conductivity to the zero field data allowing the

power-law, α, to float. The best fit value was found to be close to 0.79. Thus, we

can conclude that a field dependent non-FL behavior was found in the low doping

level of Fe1−yCoySi with σ displaying an anomalous T−dependence. The zero field
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FIGURE 4.3: Energy gap of Fe1−yCoySi, 0≤ y ≤ 0.03 derived from activated
function of susceptibility and conductivity.

conductivity of slightly larger y samples agree somewhat better with a T 1/2 depen-

dence. Similar to Mn substituted FeSi, the non-FL behavior in Fe1−yCoySi, where

y is close to the critical region of IMT, can be tuned away with a large density of

substitutions. The conductivity Fe0.983Co0.017Si and Fe0.972Co0.028Si in field do not

appear to be described well by disordered FL theory as power-law fits to the data

indicate α close to 1.

The temperature dependence of conductivity in magnetic fields can be viewed

in fig. 4.5. The zero field conductivity, σ0, also can be obtained from the fit. In

zero field σ0 is nearly zero while adding field increase conductivity with σ0 ≈ 22

(Ωcm)−1 at H = 8 T. This indicates an field induced IMT - similar to what was

found in Mn doped FeSi. Meanwhile, the agreement of T 1/2 law to the in high field

data indicates that the system is pushed toward a disordered FL with application
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at magnetic fields (H) identified in the figure.

Solid lines are fits to the disordered Fermi-Liquid behavior σ = σ0 +mT 1/2.
Dashed lines are fits to σ = σ0 +mTα with α as marked in the figure. Dot line is
the soft gap variable range hopping model fit.
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FIGURE 4.5: Conductivity vs. T for Fe0.991Co0.009Si at various fields identified in
the figure. Lines represent the best fit of disordered Fermi liquid behavior to the
data.

of magnetic field similar to what we observe upon increasing y.

The field dependence of the non-FL to FL transition suggests that the non-

FL behavior is associated with magnetic interactions. To evaluated the strength

of the orbital contributions of the charge carriers in the system, we have per-

formed both the transverse and longitudinal MR measurements. Orbital effects

only contribute to the MR in transverse but not in the longitudinal geometry.

The results of MR with the both directions at low temperatures are shown in Fig.

4.6 for Fe0.991Co0.009Si. One can see that there are negligible differences between

the transverse and longitudinal MR in temperatures higher than 0.4 K where the

temperature differences between two set ups are within 1 mK. The lowest temper-
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FIGURE 4.6: Transverse and longitudinal magnetoresistance for Fe0.991Co0.009Si.

ature case is sightly different due to a temperature deference of 3 mK between two

geometries. Similar transverse and longitudinal MR rule out the contamination of

the orbital components in charge carrier in the field dependent transport behaviors

of Fe1−yCoySi. The independence of MR on the angle between current and field

suggest that the non-FL behavior is associated with the spin degrees of freedom

of the carriers.

In doped semiconductors like Si:P, the transport properties can be described

with either the Coulomb interaction model or the localization model based on the

level of donor concentrations5;14. At dopant concentrations in proximity to the IMT

the Coulomb interaction dominates and the field. The field depended resistivity at
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low temperature with dominate Coulomb interaction has a form of

ρ(H,T ) = ρ(0, 0)− α(
4

3
− F )

√
T + 0.77αρ2(0, 0)F (gµB/k)

1/2
√
H. (4.1)

Here F is a dimensionless term with 0 ≤ F ≤ 1. The constant α is defined as:

α =
1√

TF
mDc

~

, (4.2)

with Dc diffusion constant and TF the Fermi temperature determined by donor

concentration. A positive magnetoresistance (MR) with
√
H dependence can be

derived from Eq. 4.1. This dependence has been observed in heavily doped semi-

conductors, i. e. Si:P with carrier densities approaching and larger than the critical

concentration for the IMT14.

In the model of weak localization Kawabata5 derived a field dependent MR

contribution for heavily doped semiconductors in the high field limit. This form

yields a negative MR contribution as

ρ(H,T )− ρ(0, T )

ρ(0, 0)
≡ ∆ρ

ρ(0, 0)
= −0.918ρ(0, 0)F (gµB/k)

1/2
√
H. (4.3)

Fig. 4.7 (a) shows the MR of Fe0.991Co0.009Si at temperatures from 0.07 to 10 K.

At T = 0.07 K, a large negative MR is observed. A few percent negative MR is also

found in the prototypical semiconductor materials as Si:P on the insulating side of

the IMT14 which was attributed to weak localization contributions. However, the

60% negative MR in Fe0.991Co0.009Si is an order of magnitude larger. This cannot

be explained within the model of weak localization, not only due to the large mag-

nitude but also because of its independence on the direction of the magnetic field

with respect to the current. With increasing temperature a positive contribution

to the MR most likely due to e− e interactions is apparent in the low field region.
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FIGURE 4.7: Magnetoresistance of Fe0.991Co0.009Si at selected temperatures (a) and
magnetoresistance of Fe1−yCoySi at T ≈ 0.07 K (b).

Fig. 4.7 (b) displays the MR of the Fe1−yCoySi 0 < y < 0.03 samples at T ≈ 0.07

K. There is a significant difference in the high field MR as only the y = 0.009

sample displays a large negative MR. At larger y the MR is negative at small fields

(H < 1 T) and positive at higher fields. The positive MR is expected in the e− e

interaction model which is thought to dominate the response of semiconductors in

proximity to the IMT.

The negative low field behavior is similar to what was observed in Fe1−xMnxSi

where it was shown to be associated with the non-FL behavior. Seen Fig. 4.9

where both Fe1−xMnxSi samples display a low field positive magnetoconductivity

(MC) (negative MR) which is not consistent with the usual models of doped semi-

conductors. Fe1−xMnxSi x ≈ 0.02 at lowest temperature distinctly deviates from

an e − e interaction behavior. The MC of Fe0.991Co0.009Si and Fe0.983Co0.017Si are

also plotted in the H1/2 scale for a direct comparison (Fig. 4.8). Consistently in
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FIGURE 4.8: Magnetoconductivity of Fe0.991Co0.009Si (a) and Fe0.983Co0.017Si (b)
plotted in H1/2 scale. Inset: Magnetoconductivity of Fe0.983Co0.017Si vs. H

2 plot.

Fe0.991Co0.009Si , the approximately H1/2 dependence but opposite sign MC at high

fields clearly violates the rule of Si:P. In Fig. 4.8 b, it is obvious that the MC follows

the H1/2 dependence at high fields similar to FeAlzSi1−z. While Fe0.983Co0.017Si also

displays a positive MC at low field as observed in the Fe1−xMnxSi x = 0.02 and

x = 0.04 samples. The cross-over field of positive to negative MC decreases with

increased y or increased temperature is apparent in both Co doping and Mn sub-

stituted of FeSi. In conclusion, for small doping (y < 0.01) and low temperatures

(T < 1 K) an unconventional negative MR contribution dominates, while either

an increased temperature or an increased y produces a more standard behavior

associated with e− e interactions.

4.1.2 Hall Effect of Fe1−yCoySi

The Hall Effect (HE) of Fe1−y CoySi, 0≤ y ≤ 0.1 is shown in Fig. 4.10. Large Hall

effect signals are observed in the studied crystals. The anomalous HE contributions

at y & 0.05 are obvious as the Hall data resemble the magnetization as a function

of field for these samples. Small y samples have a HE that is nearly linear in H
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FIGURE 4.9: Magnetoconductivity of Fe1−xMnxSi and FeAlzSi1−z plotted in H1/2 7.

indicating the absence of anomalous HE contributions. Our data show a systematic

decrease of normal HE with increasing y as would be expected for an increased

charge carrier concentration. Due to the combined effects of the two HE contribu-

tions, a decrease of HE signal magnitude is first observed in the y ≤ 0.03 samples

and then the HE signal magnitude increases with the anomalous HE contribution

dominating at larger y.

Manyala et al 8 reported a large anomalous HE on Fe1−yCoySi y ≈ 0.1. They

confirmed that the off-diagonal anomalous HE conductivity σxy = ρxy/ρxx
2 is more

efficient in illustrating the anomalous contributions. The σxy contribution to the

Hall conductivity is expected to be independent of charge scattering rates. This

was demonstrated by a survey of σxy vs M including different group of materials

from itinerant magnets, carrier hopping system and even heavy fermion systems

(Fig. 4.11). Different regions in the plot display different dependence of the Hall
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FIGURE 4.10: Hall Effect of Fe1−yCoySi , 0≤ y ≤ 0.1 at 4 K.

FIGURE 4.11: Hall conductivity σxy vs. magnetizationM plot, showing the intrinsic
nature of materials8.
The different group of materials include itinerant magnets, carrier hopping
system and the heavy fermion systems. Dilute doping or higher doping
Fe1−yCoySi are all belonging to the category of itinerant magnets.
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effect on the magnetization pointing out the dominance of different mechanisms

in these classes of materials. It was found that Fe1−yCoySi, 0.1≤ y ≤ 0.3 shares

the same behavior as the Mn-doped III − V magnetic semiconductors such as

(GaMn)As.

The more dilutely substituted Fe1−yCoySi samples investigated here display a

similar trend in the σxy vs M figure where Dilute Co doped FeSi with y > 0.01

falls on top of the trend line of itinerant magnets with lower magnetization val-

ues. Therefore, despite the differences in the mechanisms of ferromagnetism, the

intrinsic properties of (GaMn)As and Fe1−yCoySi are similar at low temperature.

4.2 Fe1−yCoySi Thermodynamic Properties

With the comparable transport behavior observed in Fe1−y CoySi and in Fe1−xMnxSi,

the question that remains is if the non-FL in Fe1−y CoySi shares the same origin

as in Mn doped FeSi. With this question in mind I review some of the main find-

ings from chapter 3. First, the impurity moments of both Mn and Co doping in

Fe1−x,yMnxCoySi is consistent with an S = 1 magnetic moment at low x and y.

Second, though majority of the Fe1−y CoySi sample have ΘW > 0 with ΘW sys-

tematically increasing, the low y samples close to the IMT have a negative ΘW .

This indicates the tendency for singlet formation either from the coupling of local

magnetic moments associated with the Mn or Co dopants, or between the conduct-

ing charge carriers and these same moments. As a result when system is near IMT

at low temperature, for either hole or electron doped FeSi, the local interaction is

about the S = 1 local moments and s = 1/2 charge carriers moments in a screening

effect dominated system.
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Meanwhile, in section 4.1.1, we observed a non-FL behavior near IMT of Co

doped FeSi similar as what has been discovered in Fe1−xMnxSi and confirmed that

the non-FL only relates with spin moment interactions. All our findings in the

magnetic and charge transport data suggest that the non-FL in Co doped FeSi has

a same origin as in the Mn doping side - the “under-compensated Kondo effect”,

which leaves freely fluctuating magnetic moments at the lowest temperature. The

existence of the unscreened moments at low T was verified in Fe1−xMnxSi while

it was not observed in the similar hole doping nonmagnetic system - FeAlzSi1−z
7.

The last part of the investigation on non-FL is to demonstrate the likelihood of

underscreened moments in Fe1−yCoySi at the low T . To explore the thermodynamic

contribution of fluctuating magnetic moments at low temperatures in Fe1−yCoySi,

we have measured the specific heat in a variety of magnetic fields.

4.2.1 Specific Heat Measurement to Confirm Existence of
Underscreened Spins

The top frame of Fig. 4.12 presents the specific heat data for our Fe1−yCoySi crys-

tals with 0 ≤ y ≤ 0.03 from 300 mK to 20 K. The magnitude of specific heat is

increase with doping level. At zero field, all four samples display a sharp upturn

in the C(T )/T at the lowest temperatures measured. With an applied field, the

upturns move to slightly higher temperatures and a full Schottky anomaly peak

appears. The magnitude of the peak is reduced with increasing field as the entropy

reduction is moved to higher temperature. There is an extended temperature range

where the C(T )/T is larger in fields than in the zero field. At our highest tem-

peratures the specific heat loses its field dependence as expected for fields and

temperatures of these magnitudes. The field dependence of the specific heat is

observed in all samples, including the nominally pure sample since the impurity

moment level extrapolated from the Curie constant is close to 0.5% in FeSi. The
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FIGURE 4.12: Specific heat divided by temperature C(T )/T and change of entropy
(Bottom) of Fe1−yCoySi, 0 ≤ y < 0.03 for several applied magnetic fields.
The change in entropy is expressed with the difference between the magnetic
contribution of the in-field entropy and the zero field entropy
(S(H)− S(0))/yRln2. R is the universal gas constant. Shade region indicates the
contribution from magnetic moments that whose entropy is hidden below 300
mK at zero field.
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specific heat data was fit with Eq. 2.18 (Fig. 4.13) to separate the contributions of

phonons and Fermi liquid like electron gas components from the magnetic contri-

butions. The graph shows the C(T )/T in the scale of T 2 to illustrate the phonon

and electron contributions. The fitting parameters are presented in table. 4.1. With

increased y the electron contribution to specific heat is enlarged as expected due to

the increased electron density of states. Meanwhile, there is a trend toward larger

β with increased y which corresponds to a decreased Debye temperature. This is

not observed in Fe1−xMnxSi where specific heat of different x samples are similar in

value and shape at the higher temperature range. The consequence of the specific

heat upturn in higher temperature is the significant decrease in Debye temperature

which is not understood at this time.
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FIGURE 4.14: Undercompensated Kondo effect scheme graph.7.
a, Comparison of underscreened, compensated and overcompensated Kondo
problems. b, c, and d, Spin screening mechanisms in a magnetic semiconductor
such as Mn or Co doped FeSi. Green arrows represent the impurity spin S = 1
and red arrows represent the charge carrier moment (S = 1/2). b, The random
distribution of rapidly fluctuating impurity and carrier spins at high T . c, At
T ≤ TK) the carrier gas incompletely screens the impurity spins. d, When
T ≤ TJ , the impurity moments tend to couple into screened singlets, denoted by
blue shade. A few impurity moments are incompletely screened (yellow shade)
and contribute to entropy.
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TABLE 4.1: Fe1−yCoySi specific heat data fitting coefficients of eq. 2.18 with derived
Debye temperature ΘD for fitting.

y γ β ΘD

mJmol−1K−2 mJmol−1K−4 K
0 1.77472 0.01170 552.06

0.09 2.80758 0.01155 554.44
0.17 6.64014 0.02219 445.99
0.28 5.69320 0.04947 341.40

To probe the existence of the uncoupled spins at the lowest temperature we

calculated the entropy from our specific heat data of Fe1−yCoySi. At zero field

uncoupled magnetic moments occupy a manifold of degenerate magnetic states

and thus the entropy associated with these states is not apparent at finite tem-

peratures. Application of a magnetic field will split these degenerate states via

the Zeeman effect allowing the entropy of these states to be apparent in specific

heat measurements at temperatures where T ∼ H. The entropy associated with

these states can be found by comparing the integration of the specific heat over

the temperature in finite and zero fields. With the definition of the entropy that

dS =
δQ

T
=

(C
T

)
dT, (4.4)

it can be obtained from the integral:

S(T ) =

∫ T

0

(C
T

)
dT. (4.5)

In practice the lower limit of integration is limited to the lowest measured temper-

ature, in this case 300 mK. The differences in the result of numerical integration

of the in-field entropy and the zero-field entropy of Fe1−yCoySi, 0 ≤ y < 0.03 are

presented in Fig. 4.12 bottom frame. It is obvious that the in-field entropy within

the measured region is larger than the zero-field case. As indicated by the shaded

areas above zero there is between 12 and 15 % difference for the three samples

probed in our experiments. Given that entropy cannot be produced by applying
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field, there must be considerable entropy at zero field which is not accessed over

the range of integration (300 mK to temperature T ). The presence of a magnetic

field effectively splits the magnetic states by the Zeeman energy moving the low

temperature entropy into the temperature window of our experiments. The miss-

ing entropy in the zero-field integration indicates that a large collection of early

degenerate states persist at the lowest temperature. Those degenerate states corre-

spond to fluctuating magnetic moments at very low temperature, well below likely

Kondo screening temperature scales.

An estimate of the density of magnetic moments that are free to fluctuate below

300 mK can be obtained from the ((S(H)−S(0))/yRln2). This quantity represents

the ratio of the unbound moments as compared to the magnetic moments induced

via chemical substitution of Co for Fe. This estimate assumes a contribution of

each moment being ∆S = Rln2, where we have used the result from the Curie

constant in chapter 3 that S = 1. In the case of the y = 0.009 sample with T = 20

K this estimate yields a density of 12 - 15% of the local magnetic moments asso-

ciated with the Co dopants fluctuating, rather than being tied up in an ordered

state or completely Kondo screened, below 300 mK. The population of the free

fluctuating moments is larger than what was discovered at Mn doped FeSi. Such

missing entropy in zero field is not seen in Al doped FeSi indicating that the extra

low temperature entropy is more likely related to the presence of S = 1 magnetic

moments, rather than the smaller s = 1/2 moments found for Al doping.

At this point, it is clear that the field dependent non-FL behavior in Co doped

FeSi near IMT likely has the same origin as previous discovered on Mn doping

side - the “under-compensated Kondo effect” (Fig. 4.14. a). In this scenario, the

78



S = 1/2 moments associated with the charge carries are not able to fully compen-

sate the S = 1 local moments when forming Kondo singlets (Fig. 4.14. a).

Above the Kondo temperature, moments from mobile electrons are not paired

with the local moments in the system (Fig. 4.14. b). When temperature drops below

the Kondo temperature, the mobile moments bind with the local moments and

form undercompenstated spin pairs since the S = 1/2 moments are insufficient to

screen the equal density of larger S = 1 magnetic moments (Fig. 4.14. c). At lower

temperatures, the remaining magnetic moments form singlets with surrounding

magnetic moments (Fig. 4.14. d). This mechanism is thought to explain the low

temperature behavior of common semiconducting systems near the IMT where

a random AFM state is thought to develop1. However, in Fe1−yCoySi the extra

entropy associated with the underscreened Kondo effect may be playing a role

in producing a much larger fraction of fluctuating magnetic moments down to

very low temperatures. The magnetic moments that do not form singlets at the

lowest temperature are free to scatter charge carriers inelastically. Those scattering

centers induce inelastic scattering that destabilizes the FL state, which is thought

to produce NFL behavior. Meanwhile, these uncoupled moments lead to a large

spin-degeneracy, which correspond to the residual entropy in zero-field that we have

observed. Application of an external magnetic field Zeeman splits the degenerate

states associated with the fluctuating magnetic moments reducing the effective

cross section for inelastic scattering. The result is a return to Fermi liquid-like

behavior in finite magnetic fields as previously observed in conductivity data.

4.2.2 Discussion of the Structure Discovered in the Specific Heat

An close examination of the temperature dependent specific heat data reveal

anomalous peak structure as the temperature is scanned. The structure is observed
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on top of the smooth temperature dependent data expected for a non-interacting

system of magnetic moments (Fig. 4.15 ). Such structures in the specific heat data

are more apparent in finite magnetic fields and the magnitude of the anomalous

peaks grow larger with increased doping levels and higher fields in the studied

range.

A similarly non-monotonic temperature dependent specific heat was observed in

the insulating dilute dipolar magnet LiHo0.045Y0.955F4 that structure peak features

dominated in the thermal response at low temperature4. In addition, there is an

usual correlation between the specific heat and the susceptibility as the susceptibil-

ity is smooth. The susceptibility of LiHo0.045Y0.955F4 follows an inverse power-law

behavior rather than the Curie-Weiss law revealing an interacting picture of mag-

netic moments. The combination of a highly structured specific heat along with

a smoothly varying susceptibility is explained with quantum entanglement - the

mixing of classical ferromagnetic and antiferromagnetic contributions to the spin

pair wavefunctions of free moments.

Looking back to our system, we see the possibility of similar effects existing in

Fe1−yCoySi. It has been confirmed through entropy study that Fe1−yCoySi has con-

siderable density of freely fluctuating magnetic moments below our experimental

temperature. Given the system dominated by Kondo screening and singlet cou-

pling of residual moments, a biparticle interaction may exist between two nearby

underscreened moments. As y is increased this system has a tendency to order fer-

romagnetically. At intermediate Co-concentrations, it is likely to have a partially

degenerate ground state either characterized by spin glass ordering or more inter-

estingly with a mixed FM and AFM interaction that intrigues a similar quantum
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entanglement. In fig. 4.12, one can see that the hidden entropy in field is still in

the process of releasing up to 20 K. This hints a relatively large temperature range

for the system to recover from missing entropy of the freely fluctuating moments

in zero field at the lowest temperature.

The susceptibility of Fe1−yCoySi appears to be smoothly diverging with inverse

temperature. However, plotting the derivative of the susceptibility vs. temperature

as in Fig. 4.15) highlights the variations away from such a smooth dependence. Here

we observed that the anomalous peak structure also appears on the susceptibility

data in a more subtle way. Two peaks can be easily identified on the dχ/dT vs T

plot that correspond with the specific heat structure. One is below T = 5 K and

another weaker one is near 10 K. There are hints of a third peak between 16 -18

K where there is large peak observed in the specific heat. The correlation between

specific heat and susceptibility indicates a magnetic moment related underlying

mechanism. In addition, a magnetic field may not simply move entropy to higher

temperatures, but also play a role in bringing out the feature of the ground state

as the structure of the specific heat is more profound in fields. In Fig 2.16 I display

the temperature dependence of the susceptibility in Fe1−yCoySi by comparing the

measured χ with a T−α dependence and the Curie-Weiss law (Fig. 4.16). The low

field χ increase faster with cooling than is predicted by the Curie-Weiss law depen-

dence so that our power-law fits give α > 1 (H = 0.01T , α = 1.3) and a positive

difference between data and fit in the lower frame. At higher fields chi increases

more slowly so that a power-law fit yields α < 1 at H ≥ 1 T at fields that the

wave structure in specific heat is observed.
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In comparing Fe1−yCoySi with LiHo0.045Y0.955F4 we must acknowledge several

differences. First, instead of being a insulator, Fe1−yCoySi in our investigations

ranges from insulator to metal. Second, Fe1−yCoySi is not likely well described as

an Ising spin system and Kondo screening generally tends to suppress long range

interactions and ordering3. This would make it difficult to apply a similar theoret-

ical approach in Fe1−yCoySi. In addition, the specific heat structure in Fe1−yCoySi

continues to temperatures at least as high as 20 K with signatures of the same

structures shown in the derivative of the susceptibility. In the current study, it

is difficult to draw a conclusion of a directly comparison of Fe1−yCoySi and the

LiHo0.045Y0.955F4. However, our system provides an interesting case where spin

clustering effects may exist when the system is exposed to a magnetic field sug-

gesting that it is in a spin-liquid like state in zero field and low temperature.

4.3 Conclusion

We have discovered a similar field dependent non-FL behavior near the IMT for

Co-substitution (an n-type dopant) as was discovered for Mn-substitution (p-type

doping) in Fe1−x,yMnxCoySi. The same origin - “undercompensated Kondo effect”

is the mechanism we have identified for this behavior. Due to the equal densities of

S = 1/2 charge carriers and S = 1 local moments that are associated with the Co

substitution at low temperatures, the local moments tends to form an incomplete

collective singlet state at low temperatures in a screening effect dominated system.

However, neither the Kondo screening nor the low T singlet formation are suffi-

cient to remove all the entropy from the magnetic degrees of freedom. As a result,

large number of scattering centers are left at the lowest temperatures accessed in

our measurements due to the presence of the underscreened moments. This results

in abundance inelastic scattering of the charge carries which destabilizes of the
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FL. Application of magnetic field aligns the remaining magnetic moments, thus

removing the inelastic scattering and allows the system to return to a disorder FL

behavior. The discoveries on both Mn and Co doping of FeSi indicate that this

field depended non-FL behavior is not associated with the sign of charge carriers

but instead related to the interaction between carriers and local moments.

Three scenarios have been proposed for non-FL behavior in heavy-fermion sys-

tems13. In the first scenario, the anomalous temperature dependence of material

properties are associated with the disordered induced distribution of Kondo tem-

peratures10. Non-FL behavior in a large group of the d and f electron systems are

classified in this category9;15. The second mechanism associates the non-FL to a

single-impurity. The quadrupolar Kondo effect falls under this heading, which was

a mechanism proposed to describe the uranium based superconductors2 and has

been experimentally observed on GaAs/AlGaAs quantum dots12. The third sce-

nario is related to a quantum phase transition (QPT), for example, CeCu6−xAux

with xc ∼ 0.1. In CeCu6−xAux, the QPT is induced by the competition between

the Kondo screening effect and the RKKY magnetic ordering interaction.

Our system of Fe1−x,yMnxCoySi provides an interesting example of a field depen-

dent non-FL under clear local moment and charge carrier interacting picture. This

undercompensated Kondo mechanism is due to the unique S = 1 impurity mo-

ment of FeSi when doped with a magnetic substitution. A few rare earth materials

also exhibit non-FL behavior induced by the undercompensated Kondo effect11.

However, the non-FL behavior of the same mechanism hasn’t been discovered yet

in any other transition metal systems.
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Chapter 5
Neutron Scattering Study on Fe3Ga4

5.1 Introduction

Incommensurate spin density waves (SDW) emerge in materials with either a Fermi

surface instability known as nesting29, as in the most extensively studied itinerant

antiferromagnet chromium8;15;19, or a long range indirect exchange interaction be-

tween local moments and conduction electrons - the RKKY interaction in the case

of rare earth compounds4;5;12;16;28. The interplay between incommensurate order

and properties like superconductivity1–3;18;25 or ferroelectricity14;27 are observed in

a large category of materials. While Fermi surface nesting and local moments are

not usually seen coexisting in one material, there are cases crossing that boundary.

GdSi is a particular example9;10, in which the RKKY interaction due the localized

moments of the Gd orbitals cooperate with a Fermi surface nesting, leading to the

incommensurate SDW order.

In this chapter, we discuss the metamagnetic transition metal compound, Fe3Ga4.

In this material, there are complex interactions between local Fe moments and

conducting charge carriers. We discovered that this material exhibits a incommen-

surate SDW structure over a intermediate temperature range likely due to the

RKKY interaction.

Fe3Ga4 has a monoclinic crystal structure (Lattice parameters list in Table. 5.1),

with 4 non-equivalent Fe sites in the unit cell as shown in Fig. 5.1. Previous studies

have shown a series of magnetic transitions in this material over a wide temperature

range21;22. Most of the previous experiments were conducted using polycrystalline
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samples in establishing the framework of its magnetic phase diagram6;13. However,

the details of its rich magnetic states and the mechanism behind the close compe-

tition of magnetic states still remain unclear.

In order to thoroughly explore the magnetism and the origin of the complex mag-

netic phase diagram, an investigation on the magnetic, transport, and thermody-

namic properties of single crystalline Fe3Ga4 samples was performed in a previous

study17. This investigation confirmed the important conclusions in polycrystalline

samples and established a moderate anisotropy in the magnetic properties. The

magnetic measurements indicate a ferromagnetic (FM) state below T1 = 68 K as

well as between T2 = 360 K and T3 = 420 K with an antiferromagnetic (AFM)

state existing at intermediate temperatures. A sharp anomaly in the resistivity was

found at T2. A large anomalous Hall effect as well as a rather large topological Hall

Effect was observed in the AFM state of Fe3Ga4. The anomalous field dependence

of the Hall effect at different temperatures suggest changes to the electronic struc-

ture coinciding with the magnetic phase transitions while the topological Hall effect

suggests that the magnetic moments in the AFM state may be non-coplanar. Elec-

tronic structure calculations suggested that the ground state can be tuned through

anitsite disorder whereby Fe exists at a small density of Ga sites within the crystal

structure. The calculation predicted a ground state of AFM order which shifted to

a FM ground state with 1.2% antisite defects.

TABLE 5.1: Fe3Ga4 crystal lattice parameters at room temperature.

Formula: Fe3Ga4 Space Group: C2/m
a b c β V
(Å) (Å) (Å) (◦) (Å3)

10.0979(15) 7.6670(15) 7.8733(10) 106.298(10) 585.06 (16)

89



FIGURE 5.1: Crystal structure of Fe3Ga4 shown with 2 unit cells.
Four in-equivalent Fe sites are Fe1 (Dark green), Fe2 (Green), Fe3 (Cyan) and
Fe4(Dark blue). The Fe-Fe distances are indicated in three levels from 2.5 Å to 3
Å with tubes to dashed lines. There are also 4 inequivalent Ga sites plotted all in
pink in this figure.

Despite the fruitful results in previous investigations, questions still remain re-

garding the nature of the magnetic states. Single crystal neutron scattering inves-

tigations are required to determine the character of the AFM state as well as its

relation to the FM state of Fe3Ga4. In order to study the magnetic structure, neu-

tron diffraction experiments have been performed using single crystals of Fe3Ga4

at ORNL employing the HB-3A four circle diffractometer at HFIR. Peak inten-

sity measurements of the Bragg position confirmed FM ordering below 68 K and

between 370 and 420 K. We also determined the magnetic structure in the low tem-

perature FM state and the intermediate AFM phase between the two regions of FM

ordering. A FM structure with moments lying along c direction is confirmed in the

refinement result at 5 K. While the refinement result at 100 K indicates that the

intermediate state consists of an incommensurate spin-density wave (SDW) struc-
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TABLE 5.2: Fe3Ga4 crystal structure in atomic coordinate at room temperature.

No. Site Wycoff x y z Occ. Ueq(Å
2)

Notation
1 Fe1 2c 0 0 0 1.00 0.0049(2)
2 Fe2 4i 0.49442(7) 0 0.31088(10) 1.00 0.00557(16)
3 Fe3 4i 0.22488(7) 0 0.63791(9) 1.00 0.00511(16)
4 Fe4 8j 0.13563(5) 0.20024(7) -0.15176(7) 1.00 0.00542(12)
5 Ga1 4i 0.26998(6) 0 0.08446(8) 1.00 0.00849(14)
6 Ga2 4i 0.04142(6) 0 0.34817(8) 1.00 0.00825(14)
7 Ga3 8j 0.60841(4) 0.20297(6) 0.15127(5) 1.00 0.00794(11)
8 Ga4 8j 0.35194(4) 0.18674(6) 0.44958(6) 1.00 0.00889(11)

ture with a wavevector of q ≈ 0.27c∗. In this complex SDW structure there is a

significant out of plane magnetic moment that is likely the cause of the topological

Hall signal. Field depended studies indicate that the SDW wave state coexist with

FM state above the high temperature transition for a magnetic field of H = 0.5 T.

5.2 Magnetic Structure Investigation of Fe3Ga4 with Neutron
Diffraction

5.2.1 Crystal Preparation and Experimental Techniques

High purity (99.999%) Fe powder and (99.999%) gallium pieces were first melted

in an RF induction furnace in an Argon atmosphere to synthesis polycrystalline

Fe3Ga4. Single crystals of Fe3Ga4, of mass up to 700 mg, were synthesized from the

polycrystalline charges employing either the floating zone technique or a modified

Bridgman method in an RF furnace. To reduce non-equilibrium defects, the result-

ing single crystals were sealed in quartz tubes under vacuum and annealed at 550

◦C for 48 hours. The crystal structure was confirmed with powder X-ray diffraction

and further determined via single crystal X-ray diffraction using a Nonius Kappa

CCD diffractometer (Mo Kα, λ = 0.71073 Å). We confirmed the c-centered mon-

oclinic structure (space group C2/m)21;22. The refined atomic coordinates for Fe

and Ga at room temperature are given in Table. 5.2.

Different temperature x-ray diffraction studies was performed within the temper-
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ature range 5 - 295 K in a previous investigation of Fe3Ga4
6. No structure change

was found in all temperatures indicating there is no significant coupling between

the lattice and the magnetism in Fe3Ga4 below ambient temperature. To con-

tinue the investigation above room temperature, we have performed powder X-ray

diffraction (XRD) studies at several temperatures between 300 - 670 K to investi-

gate the structure change through T2, T3 and the small change in high temperature

susceptibility17 observed at 650 K. We have also examined the temperature range

300 - 380 K in 10 K steps with single crystal XRD to search for a possible con-

nection between crystal structure and the magnetic transition at T2. Within the

entire temperature range no structure change or abrupt lattice parameters changes

were observed in both our single and powder XRD results (Fig. 5.2). Therefore, the

mechanism behind the close competition of the magnetic states and re-emergence

of ferromagnetism at high temperature is not related to any structural changes

but instead may depend on more subtle mechanisms such the exchange between

magnetic moments and itinerant electrons.

A single crystal of mass 24 mg was chosen for magnetic structure determination

via neutron scattering. The magnetic properties of the sample were first measured

with a MPMS to check the magnetic states and the magnetic transition temper-

atures. The sample was pre-aligned with the single crystal X-ray diffractometer

to determine a, b and c axial directions. The single crystal neutron diffraction in-

vestigation was performed using the HB-3A four-circle diffractometer at the High

Flux Isotope Reactor of Oak Ridge National Laboratory with neutron wavelength

of 1.536 Å. The crystal was placed in a close-cycle refrigerator allowing a tempera-

ture range of 5 - 450 K to be explored. Initial coordinates for UB-matrix calculation

was taken from the X-ray scattering refinement. The UB-matrix is the Miller index
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FIGURE 5.2: Selected powder X-ray diffraction patterns across high temperature
magnetic transition (Courtesy of Katherine Benavides and Julia Chan, University
of Texas, Dallas.)
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connecting the reciprocal space position of (hkl) to the Cartesian coordinate (xyz)

in lab reference system with the zero goniometer position of the instrument. The

FM order parameter was obtained by scanning the temperature dependence of the

(1 1 1) and (2 0 1) Bragg reflections over the 5 to 450 K range. Wave-vector scans

along the (2 0 L) direction with 0.4≥ L ≤1.1 were collected at large numbers of se-

lected temperatures to determine the magnetic phase diagram. In addition, a large

volume of the reciprocal space was scanned at 5 K and 100 K collecting all of the

low q reflections at Bragg position as well as all of the low q magnetic peaks associ-

ated with the AFM ordering. Altogether 94 peaks were used for a full refinement of

the FM state at 5 K and 154 q-scans taken at 100 K were employed in determining

the AFM structure. Wave vector scans along (2 0 L) were also collected with the

sample exposed to a 0.5 T magnetic field with a permanent magnet. Refinements

of the magnetic structures were performed using the FULLPROF program suite

1023.

5.2.2 Magnetic Structure Refinement and Magnetic Moment
Calculation

Assuming that all the atoms (nth unit cell, νth atom) in the crystal have a magnetic

moment, a moment vector µnν for each atom can be defined giving amplitude

and direction of this magnetic moment. This periodic moment distribution can be

Fourier expanded as

µ⃗nν =
∑
nν

mνke
2iπ·R⃗nν , (5.1)

where k⃗ is the propagation vector and R⃗nν is the atomic coordinate of the specific

atom in unit cells. mνk is a complex Fourier transform parameter that associates

with the propagation vector k⃗: mνk = Reνk + iImνk.
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Given that the magnetic atom position is based on the underlying nuclear struc-

ture, the wave vector k⃗ in the summation has a periodicity in the reciprocal space.

One can chose wave vectors in the unit cell of the crystal groups, i.e. within the

first Brillouin zone of unit cell.

The differential magnetic cross section is:

dσN
dΩ

(Q⃗) =
(2π)3)

V
N

∑
H⃗

∑
k⃗

m|F⃗N(Q⃗)|2δ(Q⃗− H⃗ − k⃗), (5.2)

where N is the number of unit cells contained in the crystal, Q⃗ is the scattering

vector and H⃗ is the lattice vector. F⃗N(Q⃗) is the unit cell magnetic structure factor

in non-polarized neutron beam:

F⃗N(Q⃗) = p
∑
ν

fν(Q⃗)µnνe
iQ⃗·r⃗ν . (5.3)

∑
ν sums over the scattering from atoms in the unit cell. When Q⃗ = H⃗, as limited

by the δ function, function, the Bragg condition is satisfied for the particular re-

ciprocal lattice23.

With a determined propagation vector, integrated magnetic peak intensities, and

knowledge of nuclear structure, one can deduce the F⃗N⊥(Q⃗) for all the magnetic

peaks. From here, it is possible to refine the coupling, direction and magnitude of

the Fourier components µνk with constrains of the crystal structure and symmetry

groups.

With the relation of −k⃗ = k⃗∗, the moment vector can be expressed as

µ⃗nν =
∑
k

Reνk cos(θnν + ψkν) + Imνk sin(θν + ψkν), (5.4)

where θnν = 2πk⃗ · R⃗nν is the scattering angle and ψkv is the magnetic phase factor.

R⃗nν is the positional vector of atom:

R⃗nν = (xv · a⃗+ yv · b⃗+ zv · c⃗) + (na · a⃗+ nb · b⃗+ nc · c⃗). (5.5)
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Here (xv, yv, zv) is the atomic coordinates of the atom site in unit cell and n=(na,

nb, nc) defines ”the n’th the unit cell” from the origin where the atom is located.

The summation of Eq. 5.4 is arranged for the propagation vectors over pairs of

(k⃗
′
,−k⃗). The coefficients of the real and imaginary parts correspond to the Fourier

decomposition. Thus, with known crystal structure and a group of well refined

basis vector coefficients, one can obtain the magnitude and direction of magnetic

moments of any atoms in the crystal cell with Eq. 5.4 and Eq. 5.5.

To obtain the coefficients of the moments or moment vectors after Fourier trans-

formation Eq. 5.1 is used to determine the magnetic structure. To perform the

refinement one needs the initial crystal structure data information as well as a

large number of neutron scattering magnetic peaks with the peak reciprocal lat-

tice index, peak position in d-space (or 2θ), and the peak intensity determined. In

a relatively simple structure case such as the low temperature FM state of Fe3Ga4,

one can obtain the magnetic moment on each site directly from the refinement

with Fullprof since the magnetic structure is commensurate.

Determining an incommensurate structure such as the AFM structure of Fe3Ga4

is a more complex task. The crystal symmetry is reduced when materials undergo

AFM transitions so that the original four inequivalent Fe sites break into seven

inequivalent Fe sites. In the AFM state, a propagating SDW structure is found for

its complicated moment distribution. The magnetic moment vector rather than

the moment magnitude is produced in the refinement result. The magnetic peaks

were taken at 100 K, where the AFM peak intensity is nearly the strongest. The

100 K data refinement was first carried out with no symmetry restrictions between

the symmetry split Fe-sites. This yields a SDW structure with Fe-sites that are
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structurally equivalent having the same average and maximum magnetic moments.

Based on the refined basis vector coefficients, the AFM moments could be calcu-

lated using Eq. 5.4. At 5 K the magnetic structure refinement yielded a structure

of FM ordering with moments lie along c direction.

The AFM magnetic structure is produced with the following procedure to render

the magnetic moment on each atomic site. For a particular site (xν , yν , zν), the po-

sition of all R⃗nν is created by adding the translation to the nearby cells (na, nb, nc).

θnv is derived in fractional coordinates. The base vector coefficients and the basis

vectors in the refinement output are employed to create the specific coefficients

Renνk and Imνk of the 7 Fe sites. With the θnν , Renνk and Imνk determined, one

can now directly derive the magnetic moment magnitude of each axial direction

following Eq. 5.5. The calculation procedures outlined above and the following

magnetic structure imaging were performed with a package of originally composed

IDL codes.

5.2.3 Results and Analysis

Fig. 5.3 displays the results of q-scans along the (2 0 L) 0.4≥ L ≤1.1 plane which

reveal an incommensurate an incommensurate magnetic ordering peak in the inter-

mediate temperature AFM state. The temperature dependence of Bragg scattering

and the scattering from the incommensurate magnetic ordering is dramatic. With

temperature approaching 48 K, a weak magnetic ordering peak first emerges at

(2 0 0.74) with a relatively narrow width. As temperature is increased toward T1

the incommensurate peak increases in intensity and evolves to slightly lover L val-

ues while the (2 0 1) Bragg peak suddenly decreases in intensity at T1. At 100K

the incommensurate AFM peak is centered at (2 0 0.73) with a strong intensity.

When the temperature rises toward T2, the AFM peak grows wider and gradually
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diminishes. In summary, the magnetic scattering evolves with temperature with L

varying from 0.7 to 0.8 clearly demonstrating the incommensurability of the AFM

state.

The temperature dependence of the scattering intensity at the (2 0 1) Bragg po-
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FIGURE 5.3: Neutron diffraction along the (2 0 L) direction at various temperatures
in H = 0 T.

sition, which is closely related to the FM order parameter, can be better viewed

in Fig. 5.4. b. Similar behavior was also observed on the (1 1 1) Bragg peak in-

tensity scans. Fig. 5.4 presents a comparison between the intensity of the (2 0 1)

Bragg peak and dc susceptibility, χ, of the same crystal taken at a field of 0.01 T.

Two temperature regions with extra scattering at the (2 0 1) Bragg position are

consistent with the temperature where χ is large, illustrating their ferromagnetic

behavior.
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T2 = 360 K and T3 = 420 K indicate the three transitions of Fe3Ga4 in the
studied temperature range.
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In order to verify that there is no other contributions beside the thermal effects

in the Bragg scattering intensity of intermediate state a fit of the expected Debye-

Waller (DW) dependence using the Debye temperature determined from specific

heat measurements17;20;24 is displayed in Fig. 5.4 b (red line). The DW factor is the

correction factor for the lattice thermal vibration induced decrease of scattering

intensity on the Bragg position:

I = I0 exp(−2M). (5.6)

With M approximated as:

M = B(sinθ/λ)2, (5.7)

Here B is the Debye parameter:

B =
( 12h2

mkbΘM

)[Φ(y)
y

+
1

4

]
. (5.8)

ΘM is the mean Debye temperature and Φ(y) is the Debye integral:

Φ(y) = (1/y)

y∫
0

[exp(x)− 1]−1xdx. (5.9)

Here x = (hν/kBT ) and y = (hνm)/kBT = ΘM/T . A commonly used half-

numerical expression for DW parameter B 20 is in the form of

B = (11492/A)
T

Θ2
D

[
Φ(

ΘD

T
) +

1

4
(
ΘD

T
)
]
(A−2). (5.10)

ΘD is the Debye temperature, which was obtained from ref.17 as ΘD=125 K.

A is the atomic weight in the unit of 12C. The Debye integral was also ob-

tained numerically. The sinθ/λ can be derived from the Bragg scattering law,

with n =
√
h2 + k2 + l2, (h, k, l) = (2, 0, 1) and d=3.355 Å. Thus, the DW factor

can be calculated and fitted to the scattering intensity. This part of analysis were

carried out with a Matlab code.
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As can be seen from the quality of the fit to the data, the decreased Bragg

intensity as the temperature increases is consistent with the thermally increasing

DW factor excluding the extra scattering due to FM order. There appears to be

a large difference between the magnetic scattering intensity at q = (2 0 1) for

T2 < T < T3 and that at T < T1. The reason for the weak scattering at high

T FM state is likely to be the usual decrease of the magnetization as the Curie

temperature is approached. A detailed investigation of the magnetic scattering in

this temperature regime is needed to ruled out a more complex magnetic order for

T2 < T < T3. However, it is clear that the magnetic ordering has a FM component

and we do not detect any additional scattering outside of that meeting the Bragg

condition.

As mentioned in section 5.2.1, we have carried out an extensive survey of the

scattering in reciprocal space at 5 - 100 K in order to fully characterize both the

low T FM state as well as the intermediate incommensurate AFM state. These sur-

veys have allowed us to refine the magnetic structures of both states. The results

of the refinement for the low T FM state are presented in Table 5.3. In Table 5.3,

we report both the atomic positions of the four crystallographically distinct Fe po-

sitions in the monoclinic crystal structure as well as the magnetic moment on each

corresponding site calculated with the magnetic moment constrained to the crys-

tallographic c-axis. The magnetic structure is plotted in Fig. 5.5. A. The size of the

magnetic moments corresponds well to the results of Mössebauer experiments13

and are in general agreement with the average magnetic moment determined from

magnetization measurements6;17. The magnetic moment is constrained to lie along

the c-axis since the refinement result along the a and b directions yields only small

contributions that are no larger than the error bars in the refinement (∼0.3 µB).

101



TABLE 5.3: Magnetic structure data for the low temperature ferromagnetic state
at 5 K. m∗ is taken from Mössebauer experiments13.

Atom Atomic Coord. Moment(µB)
Site a b c mc m∗

Fe1 0 0 0 1.54(28) 1.75
Fe2 0.4935(6) 0 0.3096(7) 1.20(22) 1.33
Fe3 0.2240(7) 0 0.6376(8) 1.24(21) 1.15
Fe4 0.1352(5) 0.2019(5) -0.1519(6) 1.49(12) 1.48

mmean 1.37(22) 1.36

Therefore, we neglect any non-collinear magnetic moments as their existence is

beyond our ability to discern in the low temperature FM state of Fe3Ga4.

Table 5.4 lists the magnetic moments determined from the refinement of the

magnetic peaks at 100 K for the AFM order. In the AFM state of Fe3Ga4 the

4 nonequivalent Fe crystallographic sites in the unit cell split into 7 nonequiva-

lent positions based on the symmetry group reduction since they have differing

locations along the c-axis which is the propagation direction of the SDW. The

crystallographic equivalent Fe-sites at different c positions are no longer equivalent

in the new magnetic unit cell with the wavevector propagating along c-axis. The

refined structure is consistent with a SDW structure with a propagation vector of

q = [0, 0, δ], δ = 0.27 at T = 100 K. The resulting moments on the 7 nonequiva-

lent sites have large variations. Due to the incommensurate nature of the ordering,

the moments from cell-to-cell along the propagation will change accordingly. The

averaging over 1600 (4 × 4 × 100) unit cells shows that the magnetic moments

has a maximum amplitude of 2.38(8) µB. The total average magnetic moment is

1.30(4) µB which is within error of the average moment in the low T FM state. In

addition, the averaged magnetic moment magnitudes of Fe sites in each crystal-

lography symmetry are also comparable to the FM magnetic moment magnitudes.

In the AFM state at 100 K the magnetic moments are mostly along the a-axis
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with a maximum of 2.30(6) µB and mean of 1.24(3) µB. However, there are consid-

erable contributions that lie along the crystallographic b- (mmax=0.57(7) µB and

mmean=0.37(4) µB) and c axis (mmax=0.58(2) µB and mmax=0.31(1) µB) direc-

tions as non-linear and non-coplanar components. The magnetic moment along the

b-direction is found only for Fe sites 6 and 7 which are equivalent in the unit cell

(Fe4). Though b components only exist on 4/9 of the atoms, they are not negligi-

ble and are in similar amplitude of the more ubiquitous magnetic moments in the

c-direction.

A graphic rendering of our refined magnetic structure at 100 K is shown in

Fig. 5.5. C where the variation in the magnetic moments is presented over five

Fe3Ga4 unit cells to include more than one full period. Compared with the SDW

materials such as Cr8;15, the SDW state of Fe3Ga4 is more complex. Fig. 5.5. B is

a plot of the 100K magnetic structure projected to the b− c plane. It is clear how

the moments with b-axis contributions lie on the Fe sites 6 and 7 which originate

from the splitting of the crystallographic Fe4 sites. This confirmed the previous

suggestion of the existence of a non-coplanar magnetic moment based on the large

topological Hall effect in the intermediated temperature AFM state17. Meanwhile,

the large variation of magnetic moments indicates the richness of the magnetic

interaction in this system.

Now a comparison of the effectively competing magnetic states in Fe3Ga4 can

be easily made by looking at Fig. 5.5. A and C. The direction of the magnetic mo-

ments are along the c-axis at the FM state, while they lie mainly along the a-axis

in the AFM structure. There is clearly a spin reorientation at the T1 transition. As

stated in previous study17, the mechanism that drives this transition and leads to
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spin orientation is temperature and field dependent. The magnitude of the moment

depends on its corresponding crystallographic Fe sites and is modulated in cells

with the incommensurate SDW propagation. The magnetic moments within a− c

layers are close to parallel, contract to Cr, which has an incommensurate SDW

phase that exhibits AFM interaction between nearest neighbors8;15.

FIGURE 5.5: Refined magnetic structures of T=5 K Ferromagnetic (FM) state
and T=100K incommensurate spin density wave (SDW) state.
A: Magnetic structure of T=5 K FM state in one unit cell. B: Magnetic structure
of the incommensurate state at T=100 K projected to the b− c plane. C:
Magnetic structure of the incommensurate SDW state at T=100 K shown in five
unit cells along propagation direction. The Fe atoms are categorized into different
colors based on the crystallographic nonequivalent Fe sites: Fe1 (Dark green), Fe2
(Green), Fe3 (Cyan) and Fe4 (Dark blue).
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FIGURE 5.6: Temperature, T , dependence of the neutron scattering intensity in
the (2 0 L) direction.
a: the intensity map of the scattering in the (2 0 L) reciprocal lattice direction.
Scans were performed with L varying between 0.65 and 1.05 reciprocal lattice
units (rlu) in increments of 0.005 rlu over T range of 5 - 450 K. b: the
300 ≤ T ≤ 450 K region showing the additional scattering at the (2 0 1) Bragg
peak position above 330 K. c: the scattering at the incommensurate wavevector
(2 0 1-δ) for 5 ≤T≤ 450 K with δ evolving into smaller values as the system
approaches the T3. Color-bars indicate the scattering intensity in counts/s.

A summary of our neutron scattering data at zero field is presented in Fig. 5.6.

There are three features of this plot that represent the main experimental findings

in the zero field neutron scattering study of Fe3Ga4. First is the large increase in

the scattering cross section at the (2 0 1) Bragg position below 68 K demonstrat-

ing a robust FM ordering that is consistent with previous measurements of the

magnetization and the Mössebauer spectrum of Fe3Ga4
13;17. When temperature

rises above T1 the reduced scattering at the Bragg position is accompanied with an

increase of scattering at (2 0 1-δ) representing the presence of an incommensurate

SDW phase with propagating vector (0,0,δ) with 0.2 < δ < 0.3. The details of the
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T and q dependence of this scattering contribution can be better viewed in Fig.

5.6. c where an abrupt loss of scattering is evident near T1 while a more continu-

ous change is evident above 300 K. At these higher temperatures, the peak center

position moves to somewhat higher q before the intensity of the peak is reduced

below the level of the background scattering at T2. In the T2 < T < T3 temperature

range the scattering at the (2 0 1) Bragg position increases in intensity as can be

observed in Fig. 5.6. a and b before abruptly decreasing at T3. This behavior is

also consistent with the previous magnetization measurements, which indicate a

paramagnetic state above the high T FM state. To conclude, in Fe3Ga4 there is a

strongly FM ordered state below T1 which transitions to an incommensurate SDW

state for T1 < T < T2. There is a re-emergence of ferromagnetism at T2, however

we have not ruled out a more complex ordering in this temperature range.

SDW transitions are often accompanied by sharp changes to the Fermi surface

which can modify the charge carrier conduction properties. The conductivity, σ,

as shown in Fig. 5.7 and Fig. 5.8 is measured with current flowing along c-axis and

b-axis respectively. It were also measured in a transverse magnetic field of 0.5 T in

the same current directions. As magnified in the insets, there are small anomalies

that appear at T1 and T2 position indicating changes in the electronic structure

and a partial Fermi surface gapping (and gap closing) associated with the SDW

phase. It is clear that the charger carrier density is modified and a sudden change

of conductivity appears. When the system transitions from a high T FM to the

incommensurate SDW state an energy gap at the Fermi surface opens. As the

temperature decreases this gap grows with the internal magnetic fields increasing.

The Fermi surface structure appear to recover as the gap closes when entering the

FM state at both T1 and T2 from the incommensurate SDW state. Accompanying
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this change is a charge carrier density increase and a discontinuity appears on the

conductivity data.

In Fig. 5.7 the conductivity anomaly at T2 is smaller than the anomaly at T1,

with ∆σ2 = 0.082(mΩ × cm)−1 comparing to ∆σ1 = 0.457(mΩ × cm)−1. At low

temperatures thermal scattering is reduced resulting a larger value of the conduc-

tivity when no other interactions are present. As a result, the change in relative

conductivity at the transitions can be taken as a true reflection of the extent of

Fermi surface that is gapped by the presence of the SDW state. We obtained the

ratio of the conductivity change as ∆σ2/σ2 = 1.75% and ∆σ1/σ1 = 3.41% in-

dicating that the gap decreases with temperature in the SDW state. Due to the

relative large value and rapid change trend of the conductivity at low T it’s not

surprising that even a wider gap induced discontinuity might not be always easily

measurable. As the discontinuity at T1 is less apparent on the conductivity curve

when current was added along the b axis. The T2 behavior is, in contrast, always

noticeable on top of a relatively slowly varying resistivity. With a moderate sized

magnetic field the transition becomes slower as indicated by the greatly smoothed

T2 discontinuity.

The anomalies in the conductivity at the magnetic phase transition tempera-

tures can be directly compared to rare earth elements and compounds where the

mechanism behind the SDW instability is RKKY coupling. As in the rare earth Dy,

the incommensurate magnetically ordered state originates from indirect exchange

(RKKY coupling)5;7. As Dy evolves from a paramagnetic state into a SDW state

a gap open up at the Fermi surface as a result of the ordering. These gaps become

larger as the magnetization builds up below TN . It is believed that as the gap
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grows the RKKY coupling is reduced so that the metamagnetic field is suppressed.

At about 85 K the metamagnetic field is reduced to zero so that the FM state

becomes the zero field ground state.

The character of the magnetism in transition metal compounds is typically more

itinerant than in f-electron materials In Fe3Ga4 complex interactions render rich

magnetic moment contributions in non-equivalent Fe sites including the emergence

of non-coplanar moments. The large (1.3 µB) and diverse moments suggest the

existence of more localized magnetic moments. No sign of nesting in the complex

Fermi surface was found in the theoretical simulations17, which makes the RKKY

mechanism a reasonable explanation for the mechanism causing the development

of an SDW state in Fe3Ga4. It is not typical for a Fermi surface-nesting caused

SDW state to be unstable towards ferromagnetism as these materials have a SDW

ground state2;8;26. While materials with RKKY interaction induced SDW are often

observed to go through transitions from a high T PM to SDW and end up with a

FM ground state5;7;28 as the RKKY can be greatly reduced by the development of

energy gaps at the Fermi surface. A direct Fermi surface study, such as an ARPES

experiment, could be employed to confirm this conjecture.

The effect of a magnetic field on the SDW phase and the transition temperatures

between the FM and SDW phases are demonstrated in Fig. 5.9. This figure displays

the integrated intensities of the (2 0 1) Bragg peak representing the FM order

parameters in H = 0 and H = 0.5 T. A comparison of the two curves shows that

the temperatures where low T FM phase is stable has been dramatically increased

by the application of H = 0.5 T field. Fig. 5.9. b shows the integrated intensity of

the peak at (2 0 1 − δ) indicative of the spin density wave state at the same two

fields. It is obvious that the temperature range of the SDW wave has been greatly
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FIGURE 5.7: Temperature, T , dependence of the conductivity with current along
c direction.Data in field are displaced by -1 (mΩ× cm)−1 (low T ) or -0.15 (mΩ×
cm)−1 (high T ) for ease of view.

reduced due to the increasing of T1. As evidenced by the dramatic increase in T1

with the application of field, one can conclude that although the field doesn’t have

an apparent effect on the size of the magnetic moments, the stability of the low

T FM state over the SDW state is increased substantially. The high sensitivity

to moderately sized magnetic fields is one of the defining features of Fe3Ga4 and

a sharp metamagnetic transition is first identified in the previous magnetization

measurement17. Here, the neutron scattering data confirms that moderate field

substantially favors low T FM state.

Fig. 5.9. c displays the SDW wavevector, δ, dependence on T at both fields.

The SDW shows signs of being influenced by the lattice, which would favor a com-

mensurate state, and the RKKY interaction, which ought to be rather temperature

independent. As we have stated in section 5.2.1, through a wide temperature range
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XRD study there are only very subtle changes to the lattice constants at the mag-

netic transition temperatures indicating small coupling between the lattice and the

magnetic states. Thus, the system never enters a commensurate SDW phase. The

competition between the coupling to the lattice and the natural RKKY ordering

vector is less apparent when a field is applied. At T > 300 K the significant de-

crease in δ with T that has been observed at H = 0 is replaced by a nearly constant

δ at H = 0.5 T.

Fig. 5.9 d displays the correlation length determined from fits of the resolution

function convoluted to a Lorentzian to the q-dependence of the AFM scattering

peaks. At zero field, the incommensurate SDW peaks begins to broaden around

200 K leading to small correlation length of 80 Å near T2. The correlation length

in a field of 0.5 T has a similar T -dependence but appears to have an even smaller
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value as it approaches - and seemingly exceeds - T2. This suggests an interest-

ing scenario that the SDW phase coexist with the high T FM state in Fe3Ga4.

Together with the nominal change of the SDW wave vector and the stabilization

of the FM state in field, this experiment presents evidence that a real case that

metastable SDW state can coexist with ferromagnetism when under the influence

of an external magnetic field11.

5.3 Conclusions

In this chapter, we discussed the results of the neutron scattering investigation of

Fe3Ga4, in which we discovered the magnetic structure of the low temperature FM

state and the intermediate temperature AFM state. The low temperature ground

state is a robust FM state with magnetic moments lying along c-axis. Ferromag-

netism is also confirmed for temperatures between 360 and 420 K. A wide ranging

search in q-space for magnetic scattering in the intermediate temperature range

revealed an incommensurate AFM state in the structure of a SDW. We confirmed

the existence of non-coplanar moments in the SDW state that has been predicted

through transport measurements based on the large topological Hall Effects. Trans-

port measurements with current in different orientations and fields revealed Fermi

surface gapping associated with the SDW state which grows larger with reduced

temperature in the intermediate state.

With the consistent picture of SDW state to low T FM state transition and a

Fermi surface which is gapped and which widens with cooling, we propose a RKKY

coupling mechanism for the long range ordering force that causes the SDW insta-

bility. period here then start a new sentence. The behavior of Fe3Ga4 appears to

be comparable to Rare-Earth marerials where RKKY interactions are thought to

113



dominate the magnetic interactions. The study of the neutron scattering in mod-

erate magnetic field indicate that the SDW coexist with the high T FM state.

In conclusion, we have successfully determined the magnetic structures of this

interesting compound and our neutron scattering results have confirmed a number

of the important findings in previous magnetic or transport measurements. Those

findings include the tendency to stabilize the low T FM state to higher temper-

atures in moderate magnetic fields and the non-coplanar moments in the incom-

mensurate SDW phase which corresponding to the topological transport proper-

ties. The results in high temperature that the SDW survive with a small value of

correlation length before disappearing and the field enhanced SDW to coexist with

the high T FM state scenario indicate interesting mechanism behind the T2 tran-

sition. We have discovered an rare case of the indirect exchange coupling between

charge carries and local moments introduces incommensurate SDW instability in

a transition metal system where there is no noticeable Fermi surface nesting. A

low temperature transition occurs when the Fermi surface gapping associated with

the SDW phase becomes wide enough to decrease the RKKY interaction such

that the FM state becomes the lower energy state. With the mechanism behind

the intermediate SDW state and its transition to low T FM unraveled, mysteries

on the reentered FM above T2 still remain. Future work work on the high temper-

ature FM region is required to fully understand the complex magnetism of Fe3Ga4.
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Chapter 6
Summary

Two iron-based magnetic systems have been investigated in this thesis. We illus-

trated that the physical properties of each material corresponds to one type of

local magnetic moments and itinerant charge carriers interactions.

In dilute Co doped FeSi the Kondo effect was found to incompletely screen the

local magnetic moments associated with the dopants. This leaves partially compen-

sated magnetic moments which tend to form spin-singlets well below the Kondo

temperature. As a result, there are a large density of free fluctuating moments

which remain freely fluctuating down to our lowest measured temperatures (300

mK). Those underscreened magnetic moments induce inelastic scattering leading

to the non-FL behavior near the IMT region of Fe1−x,yMnxCoySi. Application of

magnetic field removes these inelastic scattering centers allowing the system to

return to a disordered FL. When the dopant level is increased the Kondo effect

between charge carriers and local moments is overshadowed by the collective behav-

ior of the impurity moments. Therefore, an ordering effect between local moments

overturns the undercompensated Kondo mechanism.

In Fe3Ga4 the local spins couple indirectly through conducting itinerant elec-

trons - the RKKY interaction. The long range periodic RKKY interaction induces

a SDW order and stabilizes the incommensurablility in the SDW phase. The partial

Fermi surface gap related with the SDW phase grows with decreasing temperature

which leads to a decreased metamagnetic field with cooling. Meanwhile, the car-
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rier density continues to decrease as the gap grows with cooling until the RKKY

interaction weakens so that the ferromagnetic exchange dominates the system be-

low 70 K. At these temperatures the SDW state surrenders to the ferromagnetic

ground state, the related gap in Fermi surface closes, and a carrier density increase

is reflected in the conductivity data.

In the two Fe-based compounds that we investigated, either the Kondo effect or

RKKY interaction works independently in affecting the material properties. How-

ever, the interplay between the two mechanisms have been discovered in rare earth

materials such as Ce compounds like (Ce, La)PdSn5 and uranium compounds like

UTe or UCu0.9Sb2
2;3;7. The competition scenario of Kondo lattice and RKKY in-

teraction was first proposed by Doniach1 and extended2;4 for underscreened Kondo

effects to describe the ferromagnetic Kondo properties of uranium compounds. It

has been discovered that non-FL behavior may coexist with FM order in rare earth

materials, i.e. URu2−xRexSi2 and CeRuSi2
6;8. The competition the Kondo effect

and RKKY interaction is important in such f -electron systems where non-FL be-

havior is associated with quantum criticality. Here, the non-FL behavior occurs in

doped semiconducting systems when in an underscreened regime and the interest-

ing behavior continues as the magnetic state is nucleated via higher densities of

dopants in Fe1−yCoySi. In addition, the investigation on Fe3Ga4 presents that the

incommensurate magnetically ordered states in transition metal compounds could

have the origin of the RKKY interactions.
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Appendix: Noncentrosymmetric
Magnetic Materials

The lack of an inversion center allows a type of spin-orbital interaction in mag-

netic materials, named after Dzyaloshinsky and Moriya, which can have important

effects on the magnetic and charge carrier properties. In magnetic B20 materials,

it was established that there are three hierarchy of interactions with well sep-

arated energy scales1;3. The strongest is the ferromagnetic exchange interaction

that leads to a polarized spin alignment. This is followed in importance by the

Dzyaloshinsky-Moriya (DM) interaction that produces long range order modula-

tions and is usually about one order of magnitude weaker. Dzyaloshinsky proposed

that long period helices could form as a result of spin-orbital interaction in non-

centrosymmetric materials2, such as MnSi.

The role of DM interaction in HM materials, such as MnSi and Fe1−yCoySi,

has been studied for several decades. Much progress have been achieved, yet there

are still new and interesting results being reported such as the recently discovered

skyrmion lattice. The weakest interaction in the list is the crystal-field interaction.

It is the higher order spin-orbital terms that effects the directionality of the heli-

magnetic wavevector with respect to the crystalline lattice.

The DM interaction can be described by an additional term in the Ginzburg-

Landau free energy:

D · H⃗ = D⃗ · M⃗ ·∆× M⃗. (6.1)

Here M is the magnetization and D⃗ is the DM exchange constant (Typically

|D| ≪ |J |). This interaction tends to align the magnetic moments perpendicu-
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lar to each other and to D⃗ which lies along the symmetry axis. Since |D| ≪ |J |

and J⃗ is usually antiferromagnetic, the DM interaction tends to produce canted

antiferromagnetic structures.

Based on a Ginzburg-Landau expansion of the free energy of itinerant ferromag-

nets, the magnetic field B that stabilizes the magnetization M⃗ is given by the

usual magnetic equation of state:

B(M⃗) =
1

V

∂F

∂M⃗
= AM⃗ + bM⃗3. (6.2)

The temperature-dependent inverse susceptibility

A = a+ b[3⟨m2
∥⟩+ 2⟨m2

⊥⟩] (6.3)

includes the effects of thermal spin fluctuations. Here ⊥ and ∥ denote fluctuations

transverse and longitudinal to the local magnetization. The parameters a and b

represent the zero temperature inverse initial susceptibility. The initial mode-mode

coupling parameter is ms,0 = −a/b which can be derived from the magnetic field

dependence of M⃗ .

Here we introduce the Ginzburg-Landau treatment for helimagnets. Even in the

isotropic helimagnets, the DM interaction, the transition at conical upper critical

field (Hc) and crystal anisotropies all need to be considered to describe the reori-

entation transition at lower conical critical field. Note that the upper critical field

is not dependent on orientation, while the lower one depends on the orientation

of the field with respect to the crystal lattice. The form of the Ginzburg-Landau

potential of the magnetization for an isotropic helimagnet is:

V(M⃗) =
a

2
M⃗2 +

b

4
(M⃗2)2 +

D

2
M⃗(∆× M⃗)− c

2
M⃗∆2M⃗ − B⃗M⃗ (6.4)
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where c is a parameter related to high order terms in susceptibility. In a general

regime of the phase diagram outside of the A-phase, the potential can be described

by minimization of M⃗ with the conical-helix Ansatz as

M⃗(r⃗) =MB̂ +MQcos(Q⃗r⃗)ê1 +MQsin(Q⃗r⃗)ê2. (6.5)

Q⃗ is the helix wavevector as Q⃗ = QB̂. ê1 and ê2 are unit vectors that has

ê1 × ê2 = B̂. (6.6)

Now the Eq. 6.4 can be simplified as

V(M,MQ, Q) =
a

2
(M2 +MQ

2) +
b

4
(M2 +MQ

2)2 − D

2
MQ

2Q+
c

2
MQ

2Q2 −MB.

(6.7)

It leads to three equations:

∂V
∂M

= aM + b(M2 +MQ
2)M −B = 0, (6.8)

∂V
∂MQ

= aMQ + b(M2 +MQ
2)MQ −DQMQ + cQ2MQ = 0 (6.9)

and

∂V
∂Q

= −D
2
MQ

2 + cQMQ
2 = 0. (6.10)

Eq. 6.10 can be solved at a finite MQ > 0 with the helix wavevector

Q =
D

2c
. (6.11)

Then the Eq. 6.9 can be simplified as

a+ b(M2 +MQ
2)− D2

4c
= 0 (6.12)

When comparing with Eq. 6.8, there can be a simple form

B

M
= −D

2

4c
= cQ2 (6.13)
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This indicates that magnetization is a linear function of the magnetic field and

their relation is determined by 1
cQ2 in the conical phase. And the final result for

magnetization at conical field is

MQ =
1√
b

√
cQ2 − a− b(

B

cQ2
)2 (6.14)

with

Bc2 = cQ2

√
cQ2 − a

−b
(6.15)

The conical phase and the ferromagnetic phase are delimited by the upper critical

field Bc2. When the magnetic field is small, B < Bc2, one can have the stable con-

ical helix. When the field is larger than Bc2, the system orders ferromagnetically

with MQ = 0. The magnetization goes back to Eq. 6.2.

The characteristics of the spin fluctuations depend on the energy range. In the

range that energy is larger than the spin-orbit coupling and momenta larger than

the DM interaction D, the spin fluctuation is ferromagnetic. Spin-orbital coupling

is important in the limit of small energies where system is far from an itinerant

ferromagnet. The approximate form for magnetization where B ≥ Bc2 and close

to Bc2 is:

B(M)

M
≈ A+ bM2 (6.16)

and Bc2 = cQ2Mc2. As a result, the Arrott form in the noncentrosymmetric itin-

erant ferromagnetic system can be obtained from Eq. 6.16, with B
M

vs. M2 being

approximately linear.
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