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Abstract

We study the Edwards-Anderson model on a simple cubic lattice with a finite con-
stant external field. We employ an indicator composed of a ratio of susceptibilities
at finite momenta, which was recently proposed to avoid the difficulties of a zero
momentum quantity, for capturing the spin glass phase transition. Unfortunately,
this new indicator is fairly noisy, so a large pool of samples at low temperature
and small external field are needed to generate results with a sufficiently small
statistical error for analysis. We thus implement the Monte Carlo method using
graphics processing units to drastically speed up the simulation. We confirm pre-
vious findings that conventional indicators for the spin glass transition, including
the Binder ratio and the correlation length do not show any indication of a tran-
sition for rather low temperatures. However, the ratio of spin glass susceptibilities
does show crossing behavior, albeit a systematic analysis is beyond the reach of
the present data. This reveals the difficulty with current numerical methods and
computing capability in studying this problem.

One of the fundamental challenges of theoretical condensed matter physics is
the accurate solution of quantum impurity models. By taking expansion in the
hybridization about an exactly solved local limit, one can formulate a quantum
impurity solver. We implement the hybridization expansion quantum impurity

solver on Intel Xeon Phi accelerators, and aim to apply this approach on the

Dynamic Hubbard Models.



Chapter 1
General Introduction

1.1 Computer Simulations

Computer simulation is the discipline of designing a model of an actual or theoreti-
cal system, executing the model on a digital computer, and analyzing the execution
output. Computer simulations have become a useful part of mathematical modeling
of many natural systems in various disciplines of science.

In science, typically two types of computer simulations are used. First is a nu-
merical simulation of differential equations that cannot be solved analytically. In
the recent discovery of gravitational waves from a binary black hole merger, LIGO
scientists [1] used numerical simulations to provide estimates of the mass and spin
of the final black hole, the total energy radiated in gravitational waves, and the
peak gravitational-wave luminosity. They were also able to verify that their obser-
vation is consistent with general relativity equations.

Another type is the stochastic simulation. A stochastic simulation is a simulation
that traces the evolution of variables that can change stochastically (randomly)
with certain probabilities. With a stochastic model, we create a projection which
is based on a set of random values. Outputs are recorded and the projection is
repeated with a new set of random values of the variables. These steps are repeated
until a sufficient amount of data is gathered. In the end, the distribution of the
outputs shows the most probable estimates as well as a frame of expectations
regarding what ranges of values the variables are more or less likely to fall in.

One of the most widely used stochastic simulation methods is the Monte Carlo

methods. Named after the famous casino in Monaco, Monte Carlo methods use re-



peated random sampling to obtain numerical results. By the law of large numbers,
the average of the results obtained from a large number of trials should be close
to the expected value, and gets closer as more test trials are performed. Therefore,
an integral can be evaluated by randomly sampling the phase space and sum over
the samples. In physics, Monte Carlo methods are very useful for complex systems
such as disordered systems, strongly coupled systems, etc.

1.2 Disordered Systems

In physics, the terms order and disorder designate the presence or absence of trans-
lational symmetry of a system. The disorder can be put into two main categories
according to their dynamics: annealed disorder and quenched disorder.

A system is said to present quenched disorder when some parameters defining
its behavior are random variables which do not evolve with time. In these systems,
the disorder is explicitly present in the Hamiltonian, typically under the form of

random coupling J among the degrees of freedom o,
H = H(o,J). (1.1)

Spin glasses [2] are a classical example of quenched disorder. The term spin glass
was given to materials that display the lack of long-range magnetic ordering down
to zero temperature in the 1970s. Several families of spin glass materials have been
identified. The classic examples include dilute metallic alloys such as CuMn with
0.9% Mn, and concentrated insulators such as Eu,Sr;_,S. In these systems, the
quenched disorder originates in the random dilution. The magnetic moments in
Mn and Eu can be described in term of the Heisenberg spins. An example for
real material featuring Ising-like spin is the LiHo,Y;_,F, insulator[3-8]. Since the
single-ion crystal field anisotropy is strong compared to the magnetic interaction

between Ho®* ions, the magnetic moments can be mapped on to Ising spins that



only point parallel or antiparallel to the c-axis of the tetragonal crystalline structure
of the lattice.

The discovery of the spin glass materials is due to its unique behaviors of the
susceptibility. The now defining signature of spin glass materials is the cusp in the
low-field AC susceptibility, first found by Cannella and Mydosh [9]. In contrast to
the usual ferromagnetic systems, this signature strongly suggests the lack of long
range order. The physical picture of the lack of divergence in the susceptibility
indicates a transition to a state of randomly frozen spins.

In addition to the cusp, some interesting slow dynamic behaviors are also ob-
served. For example, the remanent magnetization is found if one cools the spin
glass in a field to below the transition temperature and turns off the field. The
magnetization then decays very slowly as it approaches zero, signaling a very long
relaxation time. Indeed, experimental spin glass systems can never truly attain
equilibrium. We further discuss the experimental properties in section 2.1.

The simplest model that captures the quenched random magnetic interaction is

the Edwards-Anderson model[10],

H=-— Z Jij0i0j7 (12)

<>
where the spins 0; = £1 are the degree of freedom, and the random coupling J;;
can be either Gaussian random variables, or binary random variables.

The mean-field variant of this model, the Sherrington-Kirkpatrick model[11, 12],
was solved by Parisi[13-15] using the replica symmetry breaking approach. In this
picture, there is a hierarchy of the replica overlap, which can be described by an
ultrametric tree. Although this theory has been accepted as the exact solution to an
Edwards-Anderson like model with infinite range interactions, its applicability in

lower dimensions has been debated. Below the upper critical dimension (d < 6)[16—



18], especially at the most physically relevant three dimensions, the nature of the
spin glass phase is still not clear. The main competing picture is the Droplet
picture, proposed by Fisher and Huse[19, 20], in which there is only a pair of
spin-flip related pure states in the thermal dynamic limit.

One of the most significant differences between the two pictures is the effect of
an external field[21]. The droplet picture predicts that there is no phase transition
in a field, while the replica symmetry breaking picture predicts that there is a
transition, and there is an AT line that separates the two phases.

There have been a lot of intensive numerical studies invested in this problem over
the last four decades. As we will explain in more detail in this thesis, numerical
simulations of spin glass system present a tremendous challenge. Obtaining the
ground state by minimization method such as branch-and-cut method is mostly
useful for two dimensions.

The difficulty of using minimization at three dimensions can be considered as
consequence of the proof that the ground state energy of a three-dimensional
Edwards-Anderson model is NP-complete[22]. Therefore, the study of the three-
dimensional cases is only practically feasible at finite temperatures. The best avail-
able method is the Monte Carlo. By the very nature of spin glass systems, the long
relaxation time, Monte Carlo simulation is bound to be very slow. This problem
can be attacked from two directions, the advancements in algorithms and com-
puter implementations. Over the last few decades, different methods to accelerate
the Monte Carlo have been proposed and tested, we will explain more detail on
these methods in this thesis. In addition, computer implementations have been
improved to shorten the simulation time. This is not solely on the software pro-
gramming. Due to the relatively simple Monte Carlo method, various dedicated

machines were built exclusively for the simulation of spin glass systems.



In the following, we will review a few important milestones in the numerical
study of Edwards-Anderson model. Although the model was proposed at 1975,
reliable simulations only appear from around mid-80s.

Bhatt and Young [23] studies used Monte Carlo simulations to study the three-
dimensional Edwards-Anderson model in zero field for samples with 3 < L < 20.
Results for T' > 1.2 are consistent with a conventional phase transition at T, =
1.2. However, at lower temperatures, the results indicate marginal behavior. This
existence of a spin glass transition has long been considered as an open question
due to the results from this paper.

Ballesteros et al. [24] used the parallel tempering technique to study the three-
dimensional Edwards-Anderson model in helicoidal geometry. By measuring the
correlation length in the critical region, evidence for a second order finite-temperature
phase transition was obtained and critical exponents such as v and n were calcu-
lated. This is the beginning of a new chapter in the numerical simulation of spin
glass. The wisdom from this paper is that the conventional indicators, in particu-
lar, the ratio of cumulants of the order parameter, are not sufficient for detecting
a transition. The results from this paper bring to a universal consensus that the
spin glass transition does exist in the three-dimensional Edwards-Anderson model.

Katzgraber and Young studied the model in a magnetic field-known and found
the absence of the de Almeida-Thouless line. Later, a one-dimensional power-law
diluted Ising spin-glass model has been proposed to produce an effective model
at higher dimensions[21]. Their results for the model corresponding to a three-
dimensional system are consistent with there being no de Almeida-Thouless line.

Recently, it has been suggested that the correlation length may not be a good
indicator for the model in an external magnetic field. The Janus collaboration [25,

26] used their special purpose computer with FPGA to simulate four-dimensional



spin glass in a field. They studied the ratio of susceptibilities at the two smallest
momenta, and found a crossing at finite temperature, which indicates that the
spin glass phase can exist without time-reversal symmetry below the upper critical
dimension.

1.3 Strongly Correlated Systems

Strongly correlated materials are a wide class of compounds containing ions with
d— or f—orbitals, that show unusual electronic and magnetic properties. They in-
clude insulators, magnets, paramagnets and superconductors. In transition metals,
such as vanadium, iron, and their oxides, for example, electrons experience strong
Coulombic repulsion because of their spatial configuration, and their interaction
cannot be described by a static mean field generated by other electrons. [27, 28]
The interplay of the d and f electrons’ internal degree of freedom, such as spin,
charge and orbital moment, can exhibit many interesting ordering phenomena at
low temperatures, and makes strongly correlated systems sensitive to small changes
in external parameters such as temperature, pressure, or doping.

The most important feature that defines these materials is that the behavior
of the electrons cannot be described in terms of non-interacting entities. Methods
that work well in weakly correlated electron materials, such as Fermi liquid theory;,
or density functional theory (DFT) [29], are not accurate enough when applied to
strongly correlated materials.

Traditionally strongly correlated materials have been described using the model
Hamiltonian approach, in which the full many-body Hamiltonian is reduced to a
simpler, effective model that retains the essence of the physical phenomena we
want to understand. One of the simplest models is the Hubbard Hamiltonian,

H = Z tijCIUng + U Z UL (13)

1,5,0 %



This Hamiltonian describes electrons with spin directions o moving between lat-
tices 7 and 7, and they only interact when they meet on the same lattice site 7. The
kinetic term favors the delocalization of electrons, while the potential term favors
localization, and, therefore, they compete against each other. The system property
is then determined by parameters such as the ratio of the Coulomb interaction U
and the bandwidth W, the temperature T and the hopping or number of electrons.

One of the most popular approaches used to study the Hubbard model and other
related models is the dynamical mean field theory (DMFT) [30-34]. In DMFT, a
many body lattice problem is mapped onto a single site impurity problem with
effective parameters. DMFT has been deployed to understand the Mott transition
[35-37], which has been confirmed by experiments[38-40]. DMFT has also been
applied to a range of other strongly correlated materials. With the computing
power growing, and new algorithms and ideas emerging, one can expect much a
better understanding in complicated strongly correlated materials.

1.4 Heterogeneous Computing

Heterogeneous computing refers to systems that use more than one kind of pro-
cessor or cores. These systems gain performance and efficiency by adding different
processors/accelerators, and divide the task among them to utilize their specialized
capabilities. Popular examples of such accelerators, according to this definition, in-
clude GPUs, FPGAs, Intel Xeon Phi coprocessors, etc.

Graphic processing units, or GPUs, are typically used in computers for image
processing. Due to the performance, it is becoming increasingly common to use a
general purpose graphics processing unit (GPGPU). A CPU consists of a few cores
optimized for sequential serial processing, while a GPU has a massively parallel
architecture consisting of thousands of small cores designed for handling multiple

tasks simultaneously. For example, a Nvidia K80 GPU [41] has 2496 cores, and can



achieve up to 2.91 TFlops double precision performance and up to 8.74 TFlops
single precision performance, and has a bandwidth of 480GB/s. The dominant
framework for GPU programming is Nvidia CUDA [42], which allows programmers
to write codes with C, C++ and Fortran and run the program on CUDA-enabled
GPUs.

Intel Xeon Phi[43] is a coprocessor developed by Intel that features a X86-
compatible architecture. With up to 61 cores, 244 threads, and 1.2 teraFLOPS
of performance, a Xeon Phi delivers up to 2.3 times higher peak FLOPS than Intel
Xeon processor E5 family-based servers. Since languages, tools, and applications
are compatible with both Intel X86 processor and Intel Xeon Phi coprocessors, it
is easier for programmers to design, write, compile and optimize their code.

Heterogeneous systems are capable of delivering better performance than tradi-
tional homogeneous systems, by exploits the diversity offered by different proces-
sors/instruction set architectures(ISAs). The huge performance increase over CPUs
makes accelerators popular choices for supercomputers. Tianhe-2[44], a supercom-
puter developed by Chinas National University of Defense Technology, leads the
list of top 500 supercomputers[45]. It utilizes 48,000 Intel Xeon Phi coprocessors
and 32,000 Ivy Bridge-EP Xeon processors to achieve 33.86 petaFLOPS.

Heterogeneous systems also have much better energy efficiency. The power us-
age, as well as the cooling cost required to support the computers, are now the
primary cost of ownership for HPC data centers. Therefore, the HPC commu-
nity now understands that supercomputers should not be evaluated solely on the
basis of speed, but should also consider metrics related to energy efficiency. The
most popular metric is the FLOPS/watt. By using energy-efficient accelerators,
heterogeneous systems can significantly reduce the energy footprint. In fact, het-

erogeneous accelerator-based systems have been dominating the top places of the



Green500 [46], a ranking of the most energy-efficient supercomputers in the world.
In the November 2015 edition of the list[47], the top 40 supercomputers listed all
used accelerators of one form or another.

Albeit the advantages in the hardware, the heterogeneous nature present new
and unique challenges for programmers and scientists. In parallel programming,
programmers need to explore the problem for the possibility of parallelization, map
the tasks onto threads, to schedule for communication and/or synchronization, and
to solve problems such as race conditions, etc. Communication and barriers could
result in parallel slow-down, a situation in which the overhead from communica-
tion outweighs the performance gain from parallelism, and further parallelization
increases the time to finish the workload. Accelerators use a huge number of cores
to achieve great performance. To utilize all the cores, a lot of parallelisms is re-
quired, and efficient parallelism is critical.

Different processors/accelerators often feature different memory architecture. To
achieve the best possible performance, architecture aware memory access is very
important to utilize the high memory bandwidth and reduce the latency. This
is even more important in programming for accelerators such as GPUs than in
CPU programming, since the latency is not hidden by a large cache. For example,
in CUDA there are different types of memory such as registers, local memory,
shared memory, global memory, and constant memory, etc. Each of these types is
different in terms of size, latency, bandwidth, and performance profile for various
access modes, and one has to make conscious decisions when using them in order
to avoid performance penalties and make the best of the hardware. In CUDA, this
means programmers need to put the correct qualifiers in front when declaring their

variables and move their variables around the memory hierarchy when needed.
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The different architecture of processors makes it hard to write portable codes.
First, some programming languages, such as CUDA, and associated compilers and
tools, are exclusive for their specific platforms. In order to program, debug, profile
and optimize a code for different platforms, programmers often need to understand
more than one set of tools. Second, the performance profiles for different hardware
are very different from each other, thus, an efficient code on one platform may not
be optimal for another. Fortunately, tools that aim at portable accelerated codes
with great performance, such as OpenMP[48], OpenCL[49] and OpenACC[50], are
evolving along with the hardware, and they allow programmers to worry more
about the problem rather than the language and hardware they are using, and
make it much easier to develop and maintain codes that run on heterogeneous
systems.

1.5 Scope and Structure

In this dissertation, I cover my work in two projects.

The first is the work on the Three-Dimensional Edwards-Anderson Model in an
External field. We first discuss the model and the theoretical understanding in
chapter 2. Then, an efficient GPU implementation is described in chapter 3. We
show the results obtained from this study in chapter 4. Some additional research
using the covariance matrix is covered in the appendix.

Second, we show our work on a Continuous-Time Quantum Monte Carlo solver
implemented on the Intel Xeon Phi platform in chapter 5. We first discuss the
motivation and formalism behind this implementation. Then, we show the detail
of the implementation and the optimization. We also included some preliminary

benchmarking results.
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Chapter 2
Spin Glass

2.1 Introduction and Experimental Features

Spin glasses [2] are magnetic systems where the frozen-in quenched disorder leads
to conflicting couplings among magnetic moments, which prevents the formation
of long-range magnetic ordering, e.g. ferromagnetic ordering.

The prototype material is a dilute magnetic alloy, with a small amount of mag-
netic impurity (such as Fe, Mn) randomly substituted into the lattice of a noble
metallic host (i.e. Cu, Au). On the other hand, insulators such as Eu,Sr;_,S, and
LiHo,Y;_,F, also show spin glass behavior.

The physics underlying the spin glass behavior comes from the quenched ran-
domness: a pair of spins has a roughly equal a priori probability of having a ferro-
magnetic or an anti-ferromagnetic interaction. For the dilute magnetic alloy, the
conduction electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tions between the localized moments oscillates strongly with distance (as shown in
Figure 2.1),

cos(2krR + ¢q)

J(R) = J, 3

,R—0. (2.1)

Here Jy and ¢y are constants, and kg is the Fermi wave number of the host metal.
Since the distance between any pair of spins is random, some of the R will be pos-
itive, some will be negative, thus forming ferromagnetic/antiferromagnetic bonds
randomly, and no spin alignment would satisfactory all exchange bonds. In the
other words, the ground state energy cannot be obtained by minimizing the local
energy of every pair of spins. Experiments demonstrated many unusual features of

spin glass materials.
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FIGURE 2.1. Sketch of RKKY interaction.

The experimental observation of a sharp cusp in the AC susceptibility, first car-
ried out on a metallic AuFe by Cannella and Mydosh [9], as shown in as shown in
Figure 2.2, sparked the research on spin glass materials. Tholence and Wassermann
[51], Wassermann and Tholence [52], Kline et al. [53] also found similar cusp oc-
curring in PtMn alloys. Upon applying a magnetic field, Cannella and Mydosh also
found that even a weak magnetic field strongly rounds the cusp of x (7). In Figure
2.2, the susceptibility data is presented for samples with 1 and 2 at.% Fe. For each
concentration, as the applied field increases, the maximum becomes smaller and
broader, similar to those observed by Lutes and Schmit [54].

The AC susceptibility of spin glass also features pronounced frequency depen-
dence. In Figure 2.3, we show the AC susceptibility of CuMn for various AC fre-
quencies v ranging from 10 Hz to 10,000 Hz. As shown in the figure, the peak of
X(T') gradually shift to lower temperature with decreased v. This is natural con-
sidering that as one probes the spin motion at longer time scales, the slowing down
and freezing of the spins tend to occur at lower temperatures.

These behaviors are in sharp contrast to conventional magnetic systems say a
ferromagnet. The susceptibility diverges at the critical point, the susceptibility,

in this case, is the linear response function to the field. This can be understood
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FIGURE 2.2. Susceptibility of Au-Fe alloys ploted vs. temperature, showing the curve
for zero field, and for various applied fields. from Cannella and Mydosh [9]. Full curves
refer to zero field. A field of ~100G destroys the peak. The data of Lutes and Schmit
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FIGURE 2.3. The AC susceptibility of CuMn with 4.6% Mn plotted vs temperature,
for various ac frequencies, from Tholence [55]. The slowing down and freezing of spins
happen at lower temperatures as one probes the spin motion at longer time scales. See

text for details.
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as the conjugate variable of the magnetization, defined as M = limy_,»(s;)/N,
is the linear magnetic field. The spins point to a fixed preferential direction in
the ordered phase. The cusp in the susceptibility has long been associated as the
defining nature of a spin glass system. However, if the spin glass transition is a
truly thermodynamic transition, we expect divergence in the response function
corresponding to the order parameter.

It was soon found by Edwards and Anderson that the order parameter should
be characterizing an order in which each individual spin can point to a fixed direc-
tion, but the direction of each spin is random. The original form of the Edwards-
Anderson order parameter can be defined as Q = limy_,o(s;)?/N. It is clear the
absence of the divergence in the usual linear response is due to that the conjugate
variable of an external field does not diverge. If the magnetization is expanded
in term of the magnetic field for two lowest orders, we can define the nonlinear
susceptibility, M = xh — xnh®, where y,; is the nonlinear susceptibility. One
can easily show that the nonlinear susceptibility is proportional to the spin glass
susceptibility as the fluctuations of the Edwards-Anderson order parameter ().

The direct evidence of a thermodynamic spin glass transition can be deduced
from the study of the non-linear susceptibility. The measurement is usually done
by superconducting-quantum-interference-device (SQUID). The non-linear suscep-
tibility can be extracted from the curve of the magnetization as a function of
magnetic field. This provides a direct access to the critical temperature and the
exponent for the spin glass susceptibility.

The magnetization process of spin glass is characterized by strong remanence
effects. Figure 2.4 shows remanent magnetization of AuMn measured in two ways:
the thermoremanent magnetization is measured by cooling the sample in a field

H from above T, to T" < T}, and removing the field afterward; the isothermal

15



034x m‘zem% Au-Fe 05% ]
TRM
024 ol 8
IRM
01 T=1.2K i
” H
O L= 4 4 - —
4] 5 10 15 20kCe

FIGURE 2.4. The isothermal remanent magnetization (IRM) and thermoremanent mag-
netization (TRM) of AuMn with 0.5% Mn vs magnetic field, from Tholence and Tournier
[56]. The temperature is 1.2K. See text for details.

remanent magnetization is measured by first cooling down the sample in zero field
to below T}, then applying a field and removing it. At lower fields, there is a clear
difference between the two cases. Upon increasing H, the TRM increases to a
maximum and the decrease, while the IRM shows a monotonic increase. With a
large magnetic field, both TRM and IRM saturate and agree.

A particularly interesting feature of this irreversible behavior in spin glasses
is the slow decay of the various remanent magnetizations with time. Relaxation
phenomena occur below Tc on a typical timescale of 1 sec — lhr [56-58]. This
relaxation is distinctly non-exponential. It can be described in terms of power-
laws[58] or even, at not too late stages, by a logarithmic behavior[57] (see Figure
2.5).

The specific heat of various spin glass materials has been measured and analyzed.
In Figure 2.6, we show the temperature dependence of magnetic specific heat of
CuMn with 1.2% Mn. The arrow on the x-axis indicates the spin glass transition
temperature T,. The data shows a broad maximum above T}, with no anomaly at

Ty. Below Ty, the specific heat exhibits T-linear behavior.
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FIGURE 2.5. Isothermal remanent magnetization of Au-Fe with 8 at.% Fe, plotted
vs. time (logarithmic scale) for several temperatures, showing the logarithm decay of
remanent magnetization. Taken from Holtzberg et al. [57]. See text for details.
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FIGURE 2.6. Magnetic part of specific heat of a Cu-Mn alloy plotted vs. temperature,
showing a broad maximum above T}, with no cusp at Tj;,. Arrow indicates where suscep-
tibility has its cusp. Taken from Wenger and Keesom [59]. See text for details.
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Other properties, such as DC susceptibility [60, 61], imaginary part of AC sus-
ceptibility [62, 63], etc., were also extensively studied. These experimental facts
suggest that spin glass system has no conventional long range magnetic ordering
and exhibits very slow dynamics. For experimental systems, equilibrium can never
be achieved.

2.2 Theoretical Understanding on Spin Glass

A simple model that captures the consequences of disorder is an Ising model
with quenched randomly disordered couplings, first proposed by Edwards and

Anderson[10]:
(i.3) i
Here S; is the spin in a d-dimensional lattice that can take values +1, (i, j) indicates
nearest neighbors with the coupling J;; between them, and h is the external field.
Numerical evidence suggests that the criticality of the three-dimensional spin
glass systems are largely independent of the distribution of the randomness, that
is they are in the same universality class for different distributions. But, the two

main paradigmatic cases for the J;; in Edwards-Anderson model are:

e Gaussian distribution of random coupling;:

1 12
P(Ji;) = or exp Jij/Q; (2.3)

e Bimodal (+J) distribution of random coupling:
1

2.2.1 Frustration

Frustration naturally presents in the Hamiltonian in Equation 2.2, when no spin

configurations can satisfy all couplings at the same time. Figure 2.7 demonstrate
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FIGURE 2.7. Frustration in Edwards-Anderson model.

two situations where frustrations happens. In Figure 2.7(a), the two spins on the
top and the left are anti-parallelly aligned due to the antiferromagnetic coupling
between them, but there is not a preferred spin direction for the third spin that can
satisfy both the antiferromagnetic bonds. In Figure 2.7(b), the frustration comes
from the random distribution of J;.

The frustration is a key factor that leads to many features which make spin glass
a complex system. These features include: the existence of many metastable states;
the rugged energy landscape; and dynamical behaviors such as slow relaxation,

irreversibility, memory effects, hysteresis, etc.

2.2.2 Mean field Solution

An infinite-ranged version of spin glass models was proposed by Sherrington and

Kirkpatrick (SK) [11, 12].

1

H=———
VN 1<i<j<N

Here J;; is chosen from a Gaussian distribution in equation 2.3. This model has an
equilibrium phase transition at 7, = 1.
For the spin glass phase below T}, Parisi[13-15] employed a novel ansatz and

developed a possible physical interpretation of the nature of spin glass, which is now
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known as the “Replica Symmetry Breaking” (RSB) picture. The main idea behind
the picture is that the spin glass phase consists of an infinite number of “pure
states” that form a hierarchy rather than follow simple symmetry transformation.

Here we discuss the Replica Symmetry Breaking picture by looking at the replica

trick. The free energy F' satisfies

exp(—BF({Jij})) = Trsy exp[—GH ({Si}; { /i })]- (2.6)

In an experimental situation, it is usually assumed that the sample is sufficiently
large that it may be considered to be composed of a large number of sub-systems,
each of which can be described as a disordered realization of {J;;}. Thus, a mea-
surement of any observable in such a systems corresponds to an average over all
sub-systems, i.e., an average of the ensemble of all realizations of J;;.

Thermodynamic quantities may be calculated from the free energy.

Fo=[F{J;})] = /P({Jij})F({Jij})d{Jij}

(2.7)
——kaT [ P} los Z({s i)
The logarithm is usually calculated by the replica trick:
. 4m =1
log Z = 7111£>r(l) — (2.8)
Then we need to calculate
(2] = H Za
a=1
= [T ey PS50 29)

= Trgr ... Trgn e/ Zm MU0
Here S',...S"m refers to n replicas of the same disorder realizations. And thus

the effective Hamiltonian H,, of the replica system is given by

o BHA(S%) _ [e—ﬂzslphazl H({sa},mn] . (2.10)
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The Hamiltonian for the n replicas of the system is symmetric under interchange
or permutation of the replicas, but is not expressible as the sum of n Hamiltonians,
one for each replica, since the disorder average has coupled the replicas. As long
as n is an integer, the permutation symmetry of the Hamiltonian H,, is manifest.
However, in the limit n — 0, this symmetry can be spontaneously broken.

Consider the quantity ¢, which measures the overlap of the samples after a long

time relaxation process:
¢’ = % Z 587, (2.11)
i
where a and [ are two copies of lattice with the same disorder configuration, but
simulated with different random seeds, so they are statistically independent of each
other.

The Edwards-Anderson order parameter, ¢, is the order parameter of measuring
the breaking of ergodicity. In the thermodynamic limit, if this is zero, the system is
ergodic, if this is finite, the system breaks the ergodicity. Some parts of the phase
space can never be sampled.

Since H,, is symmetric under permutation of the replicas, it might be considered
that ¢*? is independent of which replicas a and 3 are chosen, i.e. that ¢*? is equal
to a number ¢q. However, it turns out that this is not correct. Below the transition
temperature, ¢*° is not independent of a and /3, and replica permutation symmetry
is spontaneously broken. The order parameter ¢ is a n X n matrix, and therefore
one cannot simply take the limit of n — 0.

Replica symmetry breaking is successful in the description of infinite range
models, but whether it holds in finite dimensions remains the most prominent
open question in the study of spin glass systems. A competing picture, known as
droplet/scaling[19, 20], is based on domain-wall renormalization group ideas. In

this picture, there is only a single of pure states that are spin-flip-symmetrical at
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low temperature in any finite dimension. The difference between the consequence
from these two pictures will show up in the order parameters for spin glass as we
will define in the following.

According to the Parisi solution, for fixed J and (large) N, the structure of the
overlap is nontrivial, as displayed in Figure 2.8(a); while in droplet picture, in the
thermodynamic limit, the distribution is just a pair of delta functions at £1, as

displayed in Figure 2.8(b).

P(q) Hq)

(a) Replica symmetry breaking picture (b) Droplet picture

FIGURE 2.8. Sketch of the overlap distribution P(q) for the replica symmetry breaking
picture, and the droplet picture.

2.3 Finite Size Scaling

Most phase transitions can be described by an order parameter, which measures
the degree of order in a system. Usually, an order parameter is zero in one phase,
and non-zero in the other. At the critical point, the susceptibility of the order
parameter should diverge at the thermodynamic limit. An example of an order
parameter is the magnetization in a ferromagnetic system.

Second-order phase transitions, such as the magnetic transition in the Ising
model, and spin glass transition in the Edwards-Anderson model, can be charac-
terized by their power law behaviors for various quantities, such as heat capacity

and susceptibility, close to the critical point. The systems can be categorized into

22



different universality class according to the values of the exponents of these power

law behaviors. For example,

Magnetization M ~ |T-T,",

Magnetic susceptibility xa ~ |T =T, 7,
| o (2.12)

Heat capacity Cyv ~ |T—T,°,

Correlation length E ~ |T=T,".

Close to the critical temperature, one can use the following ansatzes:

M = L7 gp (tLYY), (2.13)
x = L""g (tL'"), (2.14)
Cy = L go(tLYY), (2.15)

where t = (T'—1,)/T,.
A frequently used method to determine the critical point is to use the intersection

points of the Binder cumulants:

Uy, = % (3 - %2;%) . (2.16)

For T > T,, (M*), = 3(M*)3. For T < T,, (M*), = (M?)3. As a result,

1( _<M4>L): 0 for T >T, (2.17)

UL=5 22 :
(M2)y 1 for T <T,
At T, the Binder ratio does not depend on L since

M* L= gapa(¢LMY y
< 2>§ ==t ULTE) - geni) (2.18)
(M) (L=29/gapa (ELY))

Therefore, U;, tends towards an universal value independent of the system size.
So one can use various system sizes L, calculate Ups as functions of T', and find

the point where the UL (T) curve cross to identify T,. The catch of the finite size
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scaling is that the power law scaling behavior is valid only for the system is large,
usually one would like to have the system sizes to be larger than the correlation
length. Even though, the finite size scaling can in principle extract the exponent
of the thermodynamic system, it is still desirable to simulate large system sizes.

2.4 Difficulties and Outstanding Problems

The Edwards-Anderson model is a deceptively simple problem. Since it is a classical
spin model, one may think that its numerical study can be simply carried out by
Monte Carlo methods on conventional hardware. One of the defining signatures of
spin glass systems is their long relaxation time. For sufficiently low temperatures,
the system becomes very sluggish and equilibration is prohibitively difficult even
for modest systems sizes. Moreover, it has been shown that finding the ground
state of the three-dimensional Edwards-Anderson model is an NP-hard problem.
[22] Until recently, there has been no consensus on whether there is a finite spin
glass critical temperature in the three-dimensional Edwards-Anderson model.

Due to the difficulty in the simulation, there is still no general consensus on
which of the two competing pictures is correct. An import discriminator between
the theories is the predicted behavior of the system when the temperature is de-
creased in the presence of an applied magnetic field. In the mean-field approxima-
tion, the de Almeida-Thouless line separates the high-temperature paramagnetic
phase from the spin glass phase (Figure 2.9(a)). With the droplet/scaling theory,
an applied magnetic field is predicted to remove the phase transition completely
(Figure 2.9(b)).

Recent work supports that there is only a pair of two ground states in two
dimensions. In four dimensions, the JANUS show evidence for the presence of a
spin glass phase transition in a field. In three dimensions, numerical simulations

give conflicting results.
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FIGURE 2.9. Sketch of the de Almeida-Thouless line in the replica symmetry breaking
picture, and the droplet picture.

2.5 Algorithms for Spin Glass Simulation

The breakthrough in the numerical study of spin glass systems came with the
introduction of the parallel tempering method[64-66]. Parallel tempering (PT),
also known as replica exchange, is a simulation method aimed at improving the
dynamic properties of Monte Carlo sampling. Instead of simulating one Markov
chain at a time, one runs N copies of the system with random seeds at different
temperatures and exchange configurations based on the detailed balance condition.
By making the configurations at high temperatures available to simulations at low
temperatures, this method allows better sampling over the entire energy landscape.
We discuss this method further in 3.2.4.

Simulated annealing[67] is another commonly used algorithm for heuristic opti-
mization, due to its simplicity and effectiveness. In physics, one usually select the
energy as the cost function, start the Monte Carlo simulation at a high tempera-
ture and slowly tune down the temperature during the simulation, and in the end,
the configuration of the system would stay in a local minimum. With slow-enough
annealing and multiple repetitions, one would expect to find the global minimum.

Population annealing[68] combines simulated annealing and Boltzmann weighted

differential reproduction within a population of replicas to sample equilibrium
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states. Similar to simulated annealing, population annealing involves lowering the
temperature of the system at a sequence of temperatures. However, population
annealing uses a population of replicas and this population is resampled at each
time step. By doing this, population annealing aims to ensure that the population
always stay close to the Gibbs distribution. Population annealing is naturally a
massively parallel algorithm, as realistic spin glass simulation using population
annealing require population sizes of the order 10° or more.

Another possibility to overcome the diverging autocorrelation time problem is
the multicanonical reweighting method[69]. Instead of sampling the Boltzmann
distribution P = exp(—/fFEp), multicanonical ensemble uses the MetropolisHast-
ings algorithm with a sampling distribution given by the inverse of the density of
states of the system. The density of states has to be known a priori or be computed

using techniques such as the Wang and Landau algorithm.
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Chapter 3

Implementation on Graphic Processing
Units

This following chapter is a published work titled Parallel Tempering Simula-
tion of the three-dimensional Edwards-Anderson Model with Compact
Asynchronous Multispin Coding on GPU that appears in Computer Physics
Communications. [70]

In this paper, we discussed an efficient GPU implementation of Monte Carlo
Simulation of 3D Edwards-Anderson model, with parallel tempering and multispin
coding technique.

This paper is written in collaboration with Ye Fang, Ka-Ming Tam, Zhifeng Yun,
Juana Moreno, J. Ramanujam and Mark Jarrell. This work will also appear in Ye
Fang’s doctoral dissertation.

The idea of the project was first proposed by Ka-Ming Tam. Ye Fang and I
developed the implementation together. During the collaboration, I focused on the
validity of the code, including the Monte Carlo sampling procedures, the parallel
tempering movements, and the measurements, and benchmarked the code against
published results. Ye Fang dedicated his efforts on the efficiency of the code, in-
cluding introducing and testing various multispin coding paradigms, optimizing
the procedure calls, the memory accesses, and core computations, and profiling
the code to evaluate the performance.

When writing this paper, Ye started the first draft and wrote the majority part
of implementation, optimization and benchmark. Ka-Ming and I contributed to
the physics part of this paper, including the introduction, the background, and the

algorithm, and improved the overall writing. I also plotted many of the diagrams
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and figures. During the writing of this paper, Zhifeng Yun, Juana Moreno, J.
Ramanujam and Mark Jarrell review the paper draft in several round and give
valuable feedbacks.

3.1 Introduction

Stochastic or Monte Carlo simulation is one of the most important methods in
the study of complex interacting systems. However, even with the huge success
of Monte Carlo methods, many systems remain very difficult to simulate. The
main obstacle very often is the long required simulation time, while the memory
demands are quite modest. A prominent example is the Edwards-Anderson (EA)
model, where the inherent randomness and frustration lead to very long relaxation
times. Although the Edwards-Anderson model has been intensively simulated over
the past few decades, including implementations using gate-level reconfigurable
processors [71] and some dedicated computers designed specifically for solving this
model, [72-76] many aspects are still far from completely understood. Some promi-
nent topics, such as the nature of the spin glass phase below the upper critical
mdimension, remain highly debated issues. [21, 25, 77-86]

The Graphics Processing Unit (GPU) provides an opportunity to significantly
improve the computational performance of Monte Carlo simulations of classical
systems. Massive parallelism and acceleration can be achieved by implementing
these algorithms on GPUs. In the past few years some GPU accelerated simple spin
models have been proposed, including the two-dimensional Ising model by Hawick
et al. [87] and Block et al. [88], and the Ising model in the cubic and network
lattices by Preis et al. [89]. Weigel [90, 91] studied the Ising and the Heisenberg
models in both two- and three-dimensional lattices. These implementations focus
predominately on unfrustrated systems with large lattice sizes. In this study, we

mainly focus in the simulation of a random frustrated Ising system in equilibrium.
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Due to its slow relaxation rate, a large number of Monte Carlo steps are required,
at the same time the system sizes that can be simulated are relatively small,
in most cases limited to only a few thousands sites. Precisely because of these
characteristics, Monte Carlo simulations of random frustrated systems are a good
match for the GPU computing architecture.

Our implementation targets cluster computers with NVIDIA Fermi GPUs. Us-
ing C/CUDA we control and tune details of the program. We expose the inherent
parallelism of the algorithm to the GPU accelerator, including parallel computa-
tion on multiple sites, multiple temperature replicas and multiple disorder real-
izations. The memory requirements are efficiently handled through memory tiling.
In addition, the computation is simplified and vectorized using table look-ups and
the Compact Asynchronous Multispin Coding (CAMSC). We also substitute all
floating point arithmetic with integer or bit string computations while preserve
the same precision. Combining various tuning techniques, we achieve an average
spin flip time of 33.5 picoseconds. This is the fastest GPU implementation for the
random frustrated Ising system on a 16% cubic lattice, and is comparable to that
obtained with a field programmable gate array (FPGA) hardware [92] for small to
intermediate system sizes. We note that a very recent preprint reported a faster
speed in a new FPGA system[26].

The paper is organized as follows. In Section 2, we discuss the algorithm. In
section 3, we present an outline of the code framework. The implementation and
optimization methods are described in Section 4. Section 5 shows the experimental

results. Conclusions and future directions are described in Section 6.
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3.2 Theoretical Background

3.2.1 Spin Glass

The discovery of a plethora of unusual magnetic behaviors in disordered materials
initiated the field of glassy systems.[2] Spin glasses are beyond the conventional
description of long range magnetic ordering, e.g., ferromagnetic ordering. Some of
their features, including their frequency-dependent susceptibilities and the discrep-
ancy between zero-field and field cooling measurements, suggest that spin glasses
have very slow dynamics. Notwithstanding most experimental spin glass systems,
which exhibit glassy behavior, randomness and frustration seem to share some
common properties. In real materials, dilution introduces randomness and direc-
tional or distance-dependent couplings, such as dipolar interactions in insulating
systems and the Ruderman-Kittel-Kasuya-Yoshida coupling in metallic systems,
introduce frustration.

The simplest model that captures the consequences of disorder is an Ising model
with quenched randomly disordered couplings. This model was first proposed by
Edwards and Anderson. [10] The mean field solution of the Edwards-Anderson
model for infinite dimensions was first attempted by Sherrington and Kirkpatrick.
[11] However, the replica symmetric mean field solution was found to be unstable
below the Almeida-Thouless line, [93, 94] a line in the temperature-field plane be-
low which replica symmetry is broken. The difficulty of obtaining a stable solution
was solved by Parisi with his replica symmetry breaking ansatz. [13-15, 95-97]
Although the mean field solution has been proven to provide the exact free energy
for the spin glass phase in infinite dimensions, [98, 99] the spin glass physics in
finite dimensions, which presumably is more relevant to experiments, is still not
fully understood. Indeed, it had long been debated whether a spin glass phase at

finite temperatures exists in three dimensions.
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The Edwards-Anderson model may be deceptively simple. Since it is a classical
spin model, one may think that its numerical study can be simply carried out by
Monte Carlo methods on conventional hardware. One of the defining signatures of
spin glass systems is their long relaxation time. For sufficiently low temperatures,
the system becomes very sluggish and equilibration is prohibitively difficult even
for modest systems sizes. Moreover, it has been shown that finding the ground
state of the three dimensional Edwards-Anderson model is an NP-hard problem.
[22] Until recently, there has been no consensus on whether there is a finite spin
glass critical temperature in the three dimensional Edwards-Anderson model.

The breakthrough in the numerical study of spin glass systems came with the in-
troduction of the parallel tempering method. It allowed the study of larger systems
at lower temperatures than the simple single spin flip method. [64-66] Combined
with improved schemes for finite size scaling, it is now widely believed that the
thermodynamic finite-temperature spin glass phase does exist in the three dimen-
sional Edwards-Anderson model [24]. As the upper critical dimension of the model
is six [16-18], a prominent remaining question is the nature of the spin glass phase
below the upper critical dimension [21]. In particular, if the spin glass can still be
described by the replica symmetry breaking scenario, there should be an Almeida-
Thouless line below the upper critical dimension. A possible test of whether the
Almeida-Thouless line exists is to determine whether a spin glass phase exists un-
der an external magnetic field. Correlation length scaling analysis seems to suggest
the absence of the spin glass phase in cubic lattices when a finite external field is
applied.[21] On the other hand, a recent study in four-dimensional lattices suggests
that by using a different quantity for the finite size scaling analysis, a spin glass
phase can be revealed. [25] Given the relevance of spin glasses and the on-going con-

troversy on the nature of the spin glass phase below the upper critical dimension,
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it is desirable to implement an efficient parallel tempering Monte Carlo algorithm
using graphics processing units to accelerate the simulations. In this work we show
that using the multispin coding method, [100] an efficient Monte Carlo algorithm

can be implemented on the GPU.

3.2.2 Edwards-Anderson Model

We consider the Edwards-Anderson Model [10] on a simple cubic lattice. Spins
on each lattice site have two states S; = +1 or —1. The couplings J;; are be-
tween nearest neighbors. In this study, we focus on a distribution of the couplings
which is bimodal with a mean value of zero. That is, there are equal numbers of
anti-ferromagnetic and ferromagnetic couplings. The effect of the distribution is
certainly a non-trivial problem. We choose to focus on the bimodal distribution
because it is best suited for multispin coding. In addition, a constant external field,

h, is included in our implementation. The Hamiltonian is given by

H==> SiJ;S;+h) 5 (3.1)
1,5 i

3.2.3 Single Spin Flip Metropolis Algorithm

We implement the Metropolis algorithm as our sampling method. The spins are
visited and tested for flipping according to the probability P = exp(—SAE), where
[ is the temperature and AFE' is the energy change associated with the proposed
spin flip. As the algorithm satisfies detailed balance, the sampling will generate
a distribution according to the partition function provided that the simulation is
performed long enough. This type of Monte Carlo simulation is called a Markov
process, because the evolution of the state only depends on the state at the current

step, and not on its history.
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3.2.4 Parallel Tempering

For the simulation of glasses, the local single spin update algorithm is very slow
in thermalizing the system. This problem is particularly severe when the tempera-
ture is close to the critical temperature for the second order transition. For certain
spin glass models where random dilution is sufficiently large, some form of cluster
algorithm can improve the rate of thermalization. Unfortunately, there is no effi-
cient cluster methods for general spin glass systems. The possible exceptions are
some random diluted systems or systems in low dimension [101-103]. Various other
methods have been proposed in the past to improve the rate of thermalization
including the umbrella sampling, the multi-canonical method, and rejection-free
methods. It is now widely accepted that the parallel tempering method is one of
the most efficient algorithms for improving the thermalization rate of general spin
glass systems.

Parallel tempering uses several samples of the system within a range of tempera-
tures (Figure 3.1). The low temperature sample is more difficult to thermalize due
to the larger barriers between low energy configurations [65, 66]. However, as the
probability to swap the configuration between the high and the low temperature
samples increases, the chance of the system to escape from a local minima in the
low temperature sample also increases. The efficiency of such a parallel tempering
move can be measured by the time it takes for a sample to perform a round trip
along the temperature axis, that is from the lowest to the highest temperature
and back to the lowest temperature. This largely depends on the system being
simulated. Fine tuning the range of temperatures and the spacing between them
is crucial to optimize the performance. Some recent proposals have been tested on
the non-disorder Ising model [104-106]. Models with explicit disorder such as the

Edwards-Anderson lack an efficient general method. For a practical GPU imple-
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mentation, one also needs to consider the effect of the number of replicas on the

performance.

Low Temperature

High Temperature

Configurations

FIGURE 3.1. Schematic diagram of the free energy landscape. At high temperatures
(small 3) the barriers between configurations are reduced allowing the system to search
through configurations more efficiently.

3.3 The Framework

The GPU implementation is discussed in this and the following sections. In our

replica exchange spin glass simulation we exploit three levels of parallelism:

1. Several tens of thousands, or more, of independent disorder realizations are

required to obtain good statistics.

2. For each disorder realization, usually a few tens of systems at different tem-
peratures are needed to study the physics, such as the possibility of a criti-
cal point. We denote these systems as temperature replicas. In the parallel
tempering simulation, different temperature replicas communicate with each
other only during the parallel tempering swap; these swaps are performed

after every few Metropolis single spin sweeps of the lattice.
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3. We are mainly interested in systems on bipartite lattices. These are lattices
that can be divided in two sub-lattices (A and B) with same sub-lattice spins
do not directly coupling with each other. As a result, the update of the A

sublattice is independent of the B sublattice.

These three levels of inherent parallelism allows an efficient GPU implementation.
In this section we focus on the main structure of the code, which consists of three
parts: (i) distributing the spin updates into different GPU threads; (ii) distributing
different disorder realizations into different GPU blocks; and (iii) integrating and

vectorizing the bit computations of many temperature replicas

3.3.1 Map Lattice Sites to GPU Threads

The spin lattice is represented by a three dimensional primitive cubic system. To
update the sites in the lattice, we follow the common practice of employing a
checkerboard decomposition that splits the sites into two sub-lattices shown in
blue and red in Figure 3.2 . Since a blue site is surrounded by red sites and never
directly interacts with other blue sites and vice-versa, it is permissible to update
each sub-lattice in parallel. We construct two consecutive stages concentrating in-
dependently on each of the sub-lattices for parallel computation. The combination
of the two stages delivers a lattice sweep of Monte Carlo updates. The lattice is as-
signed to a GPU thread block, and sites are split across the threads. Details about
the lattice site to thread mapping will be discussed in Section 3.4.2 where we dis-
cuss memory optimizations. The total available thread-level parallelism is half of
the total lattice sites, and specifically, falls into the range between 82/2 = 256 to

163 /2 = 2048 since our simulation targets lattices between 8 to 167 sites.
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FIGURE 3.2. A demonstration of the 3D checkerboard decomposition. The blue and red
sites are on different sub-lattices. Since the sites in a sub-lattice never directly interact
with each other, it is permissible to update different sites in parallel.

3.3.2 Map Temperatures Replicas to Bits

The parallel tempering technique facilitates the systems to achieve equilibrium. We
choose the temperature as the tempering parameter and generate systems with the
same couplings but different temperatures, called temperature replicas. The tem-
perature replicas are uncorrelated during the spin-flip process and can therefore be
updated in parallel. However, they communicate and swap temperatures (Figure
3.3) after a few Monte Carlo sweeps. To better utilize the parallelism of multiple
temperature replicas and minimize the communication overhead we have devel-
oped the Compact Asynchronous Multispin Coding (CAMSC), where spins from
different temperature replicas at the same position are encoded into an integer.
This leads to sub-word vectorization and a significant reduction of memory trans-
actions. Details of our multispin coding procedure can be found in Section 3.4.3.

The number of temperature replicas depends on the system size and the temper-
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ature range. In our simulation we used 24 replicas for smaller systems, and 56

temperatures for bigger systems (for example, 103 and 123).

[

FIGURE 3.3. Many temperature replicas can be simulated simultaneously, each using an
independent Monte Carlo process. These replicas may be exchanged after a configurable
steps of updates. A single GPU thread block is responsible for updating all the Monte
Carlo processes and manipulating the parallel tempering exchange.

3.3.3 Map Realizations to GPU Blocks

Spin glass simulations usually require a larger number of disorder realizations (10*
or more) for reliable disorder averaging. A realization including all temperature
replicas has been designated to a thread block. We launch numerous thread blocks
across multiple GPUs of multiple hosts until we get the sufficient number of real-
izations for disorder averaging (Figure 3.4). To distribute these jobs across multiple

nodes, we employ a Pthreads/MPI wrapper for the job distribution.

Measure

FIGURE 3.4. The outline of the simulation application. Disorder realizations are com-
pletely independent and can run simultaneously. Each realization contains a unique
Monte Carlo parallel tempering process as depicted in Figure 3.3, and is assigned to a
GPU thread block. This task level parallelism yields sufficient number of thread blocks
and can fully occupy a parallel computer system.
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3.3.4 Discussion

Some parallel processes are sequentialized for better memory locality. For example,
although the temperature replicas could be fully parallelized as individual tasks or
a lattice may be partitioned across multiple thread blocks, we avoid these forms
of parallelism. The remaining parallelism is rich enough (with 10* or more thread
blocks) to fully occupy the cluster.

To evaluate the performance, we employ a performance metric of average time

(in picoseconds) per proposed spin flip for a single GPU card:

t= T‘total/NMCS/ (Nspins X NT X Nsamples)a (32)

where Tia 1S the total wall time of a simulation; Nyics is the number of Monte
Carlo sweeps; Ngpins is the number of spins within a lattice; N7 is the number of
temperature replicas; Ngamples 1S the total number of disorder realizations on one

GPU card. We develop and benchmark the code on a NVIDIA GeForce GTX 580

GPU. Detailed platform configurations can be found in Section 3.5.

3.4 Implementation

We discuss implementation details in this section, including the construction of
the GPU kernel, memory optimization, and various techniques used to simplify

the computation.

3.4.1 Kernel Organization Optimization

Our simulation starts with the Pthreads/MPI job dispatcher that forks many CPU
processes across the cluster computer system. Each CPU process is responsible for
initiating a lattice realization, which is offloaded to its attached GPU for simulation
until the spin variables or thermal averaged results are retrieved from the GPU
back to the CPU for analysis. The GPU workload has three major components

(Figure 3.5):
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1. Metropolis moves: The Metropolis steps for the single spin update for
each temperature replica. This is done by calculating the local energy change
and then comparing the acceptance ratio to a uniformly distributed random

number.

2. Parallel tempering moves: Parallel tempering swaps are performed after
a few complete Monte Carlo sweeps of the lattice. This step requires the
calculation of total energy for all temperature replicas; we use this to evaluate

the acceptance ratio of parallel tempering swaps.

3. Measurements: The spin configurations are dumped to the GPU global
memory periodically to provide data for the measurements. In practice, we

perform one measurement for every few thousands Metropolis sweeps.

- . ( 1

[ Measure |

N .

FIGURE 3.5. Three major components of the GPU program. One kernel calls Monte
Carlo and parallel tempering, implemented as two device functions. Measurement is
implemented as a separate GPU kernel.

The measurement code has little overlap with the Monte Carlo and parallel
tempering codes, and it is called much less frequently. We implement this part of

the code as an separate GPU kernel.
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Both Monte Carlo and parallel tempering functions compute spin local energies.
Parallel tempering requires additional steps to sum the local energies. Since an
efficient implementation of sum (a form of reduction) consumes a considerable
amount of shared memory, it may be efficient to separate the parallel tempering
as a dedicated GPU function apart from the Monte Carlo. We denote this scheme
MC-PT separated. Alternatively, the MC-PT integrated scheme combines
both the Monte Carlo and parallel tempering in a single GPU kernel. Benchmarks
(Figure 3.6) show that the MC-PT separated scheme always performs better
regardless of the frequency of parallel tempering. However, we find that roughly
10 full Monte Carlo sweeps of the lattice between parallel tempering attempts is a

speed /effectiveness sweet point.

[ MC-PT integrated, no PT
"""""""" [0 MC-PT integrated, PT overhead |1
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FIGURE 3.6. A comparison of the performance of the MC-PT integrated and the
MC-PT separated schemes with different numbers of Monte Carlo sweeps between
an attempted parallel tempering swap. The test is conducted with a 163 cubic lattice,
shared memory probability table of integers, CURAND, and CAMSC.
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3.4.2 Memory Optimization

Each spin interacts with its six nearest neighbors (Figure 3.7) as a seven-point 3D
stencil [107, 108] with periodic boundary conditions. Unlike some stencil problems,
e.g., the Jacobi finite difference solver for partial differential equations, in which
the data for the new time step is completely based on the previous time step, the
checkerboard decomposition allows the spin glass simulation to proceed with two
consecutive update phases. Only half of the spins are updated in each of the phases.
This unconventional stencil, associated with the checkerboard decomposition, leads
to a stride-2 memory reference pattern and presents a more challenging memory

optimization problem compared to the stride-1 pattern of typical stencils problems.

e

FIGURE 3.7. The memory access pattern for a single spin update where in addition to
the state of the local spin, we also need the states of its 6 neighbors. Periodic boundary
conditions are used.

We propose three different schemes to address this problem.

1. The Unified allocation (Figure 3.8(a)) stores the checkerboard lattice in its

native way as a single piece.

2. The Separated allocation (Figure 3.8(b)) breaks the sub-lattices into two

chunks stored separately.
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3. The Shuffled allocation [109] (Figure 3.9) mixes and integrates two tem-
perature replicas, so that the memory access pattern is now identical to the
conventional stencil. This is done by mixing the two temperature lattices in
such a way that all the A sublattice spins from temperature 1 and the B
sublattice spins from temperature 2 are packed together in the memory as-
sociated with one lattice. When the spins are being updated on this lattice,
they are all independent of each other. They can be considered sequentially
and continuously written into memory. Since there is no gap between each

memory write, this should theoretically enhance the memory access speed.

The performance comparison on Table 3.1 suggests that the separated allocation
is inferior due to its significantly lower memory performance. This is because of the
more complicated control flows in the code. Overall, the unified allocation provides
the best memory performance in terms of time spent for each spin and is used in

our implementation.
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FIGURE 3.8. Unified and separated memory allocation schemes. The unified scheme
stores the entire checkerboard lattice together. The separated scheme breaks the memory
associated with each sublattice into separate continuous blocks of memory.

1These numbers are calculated by measuring the difference of execution time of a memory load and the

execution time of assigning a constant to the variable.
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FIGURE 3.9. The shuffled allocation mixes and integrates two lattices, shown on the
top of the figure. The first transformation is taking the A sublattice on the left (blue
dots) and the B sublattice on the right (blue circles) to construct an intermediate lattice
(middle left figure of blue color). Another intermediate lattice of red color is constructed
similarly. We then integrate these two intermediate lattices together, which occupy dif-
ferent bit positions under the compact multispin coding scheme (Section 3.4.3). By using
one integer lattice instead of two, we avoid doubling the memory consumption. Also, the
memory access pattern is identical to that of the 7-point 3D Jacobi stencil.

The basic idea of multispin coding (MSC) is to present many binaries or short
vectors in a longer packed word. For example, Ising spins may be stored with
a single bit per spin, with 0 being spin down and 1 being up. In our particular
implementation, we also encode the 4 bit string of one site’s spin-flip probability

table’s row index (section 3.4.3) into an integer word. MSC [100, 110] yields a more
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TABLE 3.1. Performance comparison of the unified /separated /shuffled storage allocation
schemes for a 163 lattice. The definition of a transaction is a sequence of 7 loads and a
store that serve the spin update.

Unified Separated Shuffled
Bandwidth(GB/s) 645.1 279.0 $32.6
Time per transaction (ps) 49.608 107.756 38.432
Spins per transaction 24 24 16
Time per spin (ps) 2.067 4.345 2.402

efficient way of calculating local energies (£) and reduces the memory required for
the spin configurations. This packing prevents the Arithmetic Logic Unit, which
performs integer arithmetic and logical operations, and the memory bandwidth
from being under utilized. Also, a memory transaction (7 loads and 1 store) can
serve the calculation of multiple spins, which helps improve the relative memory
performance.

The usual practice for a single lattice MSC is integrating a line of spins into
an integer. We denote this conventional method as Synchronous Multispin Coding
(SMSC). For the simulation of spin glass models, the temperature replicas provide
an alternative approach with a different memory layout. One can pack the spins at
a specific site but at different temperature replicas into an integer; we call this the
Asynchronous Multispin Coding (AMSC). The main idea of these two multispin

coding schemes are:

e SMSC: A packed word stores the spins from a single replica, but different

sites.

e AMSC: A packed word stores the spins belonging to different temperature

replicas of the same site.

We find the ASMC scheme to be more efficient. Its storage consumption is small
enough to fit in the GPU shared memory. Furthermore, AMSC’s index system is

more straightforward, thereby simplifying optimization. The performance of these
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different MSC schemes is described below. Here, we briefly discuss how the words
associated with either scheme are organized into memory.
Three levels (Figure 3.10) of the memory hierarchy are employed that reflect the

GPU memory architecture of global memory, shared memory and registers:

e Level 1: The main data resides in the GPU global memory. Due to the
limitation that a 32 bit integer represents at most 32 spins, we may need
multiple integer cubes (with an integer cube including one integer per site

on the cubic lattice) if there are more than 32 temperature replicas.

e Level 2: The shared memory scratchpad holds the working set of an entire
integer cube (no larger than 4 x 16> = 16K B). The data transfer between
global and shared memory is quite modest because we do not need to switch
to another integer cube until the Monte Carlo and parallel tempering swaps
within the temperature replicas contained within the current cube are ex-

hausted.

e Level 3: The GPU threads scan the shared memory scratchpad for two
consecutive sublattices and load the data into registers. The threads are
organized as multiple layers of 2D plates. We observe the optimal thread

configurations are two or four layers (16%/2 x 2 = 256 or 16%/2 x 4 = 512).

3.4.3 Optimizing the Computation

We may take advantage of the MSC mapping of the spins onto bits to dramatically
reduce the number of floating point operations needed by the Monte Carlo parallel
tempering calculations. For example, we may use a bitwise XOR (@) as opposed
to multiplication to calculate the energy. In the equations below, we denote the

variables in the original notation with a superscript ¢, and variables without su-
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(a) Global Memory (b) Shared Memory (c) Registers

FIGURE 3.10. Memory tiling. The global memory may hold several integer cubes (in-
cluding one integer per lattice site) if there are more than 32 temperature replicas. The
shared memory scratchpad holds the working set of an entire integer cube (no larger
than 4 x 162 = 16 K B). The registers hold the data needed for local spin updates.

perscripts are used in the transformed notation. The variables S, J, e and E stand

for spin, spin coupling, bound energy and local energy respectively.
See{-1,1},J° e {-1,1}
Ef =) S0 x Jyx S9, B¢ € {—6,-4,-2,0,2,4,6}.
J
Se{0,1},J€{0,1}
Ei=Y S;®Ji;®8;, E €{0,1,2,3,4,5,6}.

J

Note that local energy EY?, the energy of a spin ¢ in the field of its nearest neighbors,
can only take one of seven values as indicated.

The computation is composed of four steps:

1. Energy: Compute the bound energy (e) and the spin’s local energy (E).

€ij = SZ@JZ] @Sj

E’i = Z@ij
J

(3.3)
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2. Probability: Compute the flip probability (P) for the Metropolis Monte

Carlo, where the temperature (7") is an input parameters.

E°=2xE—6
S°=2x5-1 (3.4)

1
P = exp(2 x <T X E°+h x 5?))
3. Rand: Generate a random number (R).

4. Compare: Compare and update spins.

S=(P<R)®S (3.5)

Equation 3.4 expresses the straightforward yet expensive method to generate the
spin flip probabilities. However, since the number of input/output values is finite
(i.e., combinations of 7 possible local energies E, 2 spins S, and no more than
32 temperatures 7T'), a better solution is to deploy a pre-calculated look-up table.
The table is a two-dimensional matrix (Figure 3.11), with 7" as the row index and
(E x 2+ 95) as the column index. The column index, as the combination of E and
S, requires 4 bits for the address space. The maximum storage consumption of the
table is 16 KB, assume that we have 32 rows times 14 columns times 4 bytes per
entry (again, assume 32 temperature replicas). When a parallel tempering swap
between two replicas at temperatures 7; and 7} is accepted, the two corresponding
rows in the table are swapped.

We evaluate four different ways to calculate the probability in Equation 3.4
(Figure 3.12): (a) using the floating point exponential function from the math
library, (b) using a less accurate GPU specialized exponential intrinsic function,
(c) using the texture memory to store a table, and (d) a shared memory table.

The result shows that an optimal table look-up saves close to half of the total
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FIGURE 3.11. The organization of the probability look-up table.

computation time compared to direct computation of the probabilities. In addition,
the shared memory table outperforms the texture memory table. This is because
GPU threads are simultaneously computing on the same temperature replica, and
are therefore accessing the same row of the table. This avoids bank conflicts, so that
the high bandwidth and low latency performance potential of the shared memory

is fully exploited.
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FIGURE 3.12. A comparison of the overall time consumed per spin flip using four dif-
ferent methods to compute the exponential probability in Equation 3.4 as described in
the main text. The experiment is done for a 163 lattice, fp32 CURAND and AMSC1. No
parallel-tempering is performed.
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The simulation requires uniformly distributed random numbers between zero
and one. However, due to the fact that pseudo random number generators (RNGs)
manipulate integer values internally, directly using integer return values from the
RNG provides higher performance and preserves identical precision. As a conse-
quence, we convert the pre-generated probabilities from single precision floating
point numbers to 32 bit unsigned integers.

We evaluated three random number generators: (i) NVIDIA CURAND library
of XORWOW algorithm [111], (ii) rand123 [112] philox4x32_7 (version 1.06), and
(iii) our implementation of a multi-threaded 32 bit linear congruential generator
(LCG). We decide to adopt CURAND due to its higher performance (Figure 3.13)

and quality [113].
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FIGURE 3.13. A comparison of the overall time required per spin flip using different
random number generators. The experiment used a 162 lattice, a shared memory prob-
ability table and CAMSC. No parallel-tempering is performed. The loop that consumes
random numbers has been unrolled four times to match the four return values of rand123
philox4x32_7.
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We have briefly described the Multispin Coding (MSC). We have developed the
Asynchronous Multispin coding (AMSC) as a more efficient alternative to the con-
ventional Synchronous Multispin Coding (SMSC) for calculating the local energies
(E), generating the 4 bit string for the column index of the spin-flip probability
table (section 3.4.3), and optimizing the memory bandwidth utilization. In our
particular GPU implementation, we use four byte unsigned integers, which hold
up to 32 bits, as a packed word. Each spin, denoted as 0 or 1, takes only one bit
of this packed word. Thus, the calculations in Equation 3.3 can be vectorized via
bit-wise operations. We integrate the J bits with the S bits in the same integer, so
that we can fetch both the coupling and the spins in only one memory transaction.
We then multiply the coupling with a bit-mask to match the pattern of S, and
calculate the bond energy with bit-wise XOR operation. The next step is to add
the six bond energies around a spin to obtain the local energy. To vectorize this
process we need to reserve empty bits to avoid overflow, since the local energy
takes 3 bits of storage. In this way, each spin, together with the empty bits re-
served for calculation, constitute a virtual segment. We derived three variations of
AMSC with different segment width of 1, 3 and 4, denoted as AMSC1, AMSC3
and AMSC4 respectively. In AMSC1 and AMSC3, some calculations are sequen-
tialized to avoid overflow. Figures 3.14 and 3.15 demonstrate how the the different
variations of MSC parallelize the computations in Equations 3.3, 3.4 and 3.5.

Figure 3.16 illustrates that AMSC3 and AMSC4 are favored over AMSC1 due
to improved overall performance. However, we also observe proportionally longer
times for the memory transactions. This demonstrates the limitation of the AMSC
scheme: there does not exist an optimal segment width that simultaneously pro-
vides the highest memory density, and the richest vectorization opportunities in

computation.
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FIGURE 3.14. This figure demonstrates the computation of (E x 2+ .5) for the purpose
of accessing the probability look up table with the deployment of two variations of
Asynchronous Multispin Coding (AMSC). Each line in the figure represents an integer,
each box of a line represents a bit, and boxes of the same color represent a segment
that hold a variable from one of the temperature replicas. We give the name AMSC1
and AMSC3 for these two AMSC schemes according to their segment width. Unlike the
AMSC1, the AMSC3 scheme reserves three bits for each segment, and is a less dense
storage format. For the calculation of the local energy, we need two spins (S) and the
coupling (J) between them. The J bits and S bits are integrated in the same integer, so
that we can fetch both the coupling and the spins using only one memory transaction. The
local energy (e) of each bond can be calculated by performing two XOR operations. The
total local change of energy (EEE) is the sum of the contributions from all six nearest
neighbors. Since EFE requires three bits for storage, the AMSC1 scheme compute each
segment sequentially to avoid overflow, while the AMSC3 scheme can compute multiple
segments in parallel. After we obtain FEFE in three-bit format, we combine it with the
spin state () by doing string concatenation.

To overcome the intrinsic limitation of AMSC, we propose a new scheme named
Compact Asynchronous Multispin Coding (CAMSC). We dynamically change the
segment width to match the data range. Longer width is adopted for larger data
to qualify the vectorization of computing multiple segments. For small range data,
we use shorter width to avoid blank bits reservations. For example, we allocate 1
bit per segment for S and e, and then expand to 4 bits when calculating E. The
segment width expansion is implemented with shift and mask operations. Figure
3.15(b) demonstrates the procedures of CAMSC and how it differs from traditional
AMSCs. Our experiment (Figure 3.16) shows 28.4% performance improvement

when we switch from AMSC3 (46.8 ps/spin) to CAMSC (33.5 ps/spin).

o1



(313033303 - [sssslssss|

o ISSSSIS5 5TS]
< Jeeecelecee
[EIEIEIEIEIEINEE S| s .. Jeeeclecee
R
AND
R
e e
P —
i6 :
R g T EE
- [ TE[Ele] [EEE) -« [ETETETEITETETE]
-+ |IEIEIEITTETETE] - JEIETETEITTETETE
] s s o TS s
AND AND
(a) AMSC4 (b) CAMSC

FIGURE 3.15. This figure demonstrates how the AMSC4 and CAMSC schemes help
exploit bit-level parallelism in computing (E x 2 4+ 5). Similar to that of the AMSC1
and AMSC3 (see the text and the caption of Figure 3.14), the XOR operations and
summation over six nearest neighbors produces the total local energy (EEFE). However,
since we reserve four bits for each segment, and is capable of holding one more bit over
EFEE, the string concatenation of FEFE with S can now be vectorized. The difference
between CAMSC and AMSC4 is that S and J are stored in a more compact format.
With such a design, CAMSC avoids waste of space and provides much better parallelism
in computing e.
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FIGURE 3.16. Comparing the performance using different multispin coding schemes.
The experiment is done for a 162 lattice, a shared memory probability table with integers
and CURAND. A parallel-tempering move is performed every 10 Metropolis single spin
sweeps.
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3.5 Experimental Results
3.5.1 The Platform Settings

Our development and performance evaluations are carried out on a workstation
with an Intel Core i7 x990 CPU and an NVIDIA GeForce GTX 580 GPU card.
The GeForce GTX 580 is equipped with a Fermi architecture GPU of 512 stream
processors. We use Linux 2.6.32 x86-64, CUDA toolkit version 4.1 and gcc 4.4.6,
and optimization flag -O2. We always configure the GPU on-chip memory as 48KB
shared memory plus 16KB L1 cache.

3.5.2 Performance Evaluation

To evaluate the performance we use the time spent (in picoseconds) per spin flip
proposal, abbreviated as ps/spin (See Equation 3.2).

When we study the equilibrium properties of a spin glass, the system sizes that
can be equilibrated within a reasonable time are not very large. Therefore, we
used L = 16, or Nypins = 4096 as the maximum system size. Meanwhile, to achieve
efficient parallel tempering moves, we set the number of temperature replicas to
Ny =24 or 56, and perform frequent parallel tempering moves (one parallel tem-
pering move after every 5 to 10 Monte Carlo sweeps). The typical number of Monte
Carlo steps required to equilibrate such a system is approximately 107. Due to the
huge sample-to-sample variation, a large number of disorder realizations (10* or
more) are usually required. However, since there is no correlation among different
realizations, we can scatter the jobs to different GPU cards or nodes on a cluster.
On each of the cards we only need 16 to 64 realizations to fully utilize all the
multiprocessors.

For benchmarking, we simulate 64 disorder realizations of the Edwards-Anderson
model on a 163 lattice with 24 temperature replicas, and propose to swap adjacent

temperatures every 10 Monte Carlo sweeps. We are able to complete 10” Monte
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Carlo sweeps in 40 minutes. This wall time consists of the single spin flip Monte
Carlo time, the parallel tempering swap time, and the measurement time. Discard-
ing the measurements, the average computational speed is 33.5 ps/spin, for a single
GPU device. If we simulate without parallel tempering and serve all temperature
replicas with the same random number, we could obtain 17.6 ps/spin. Generat-
ing random numbers consumes about one third of the total simulations time, as
shown in Figure 3.16. We believe we are approaching the limit of performance
optimization. For reference, our single thread CPU code (using AMSC4 without
parallel tempering on a 163 cubic lattice) runs at the speed of 14737 ps/spin; this
represents a speed up of almost 440 for the GPU code over the CPU code.

Figure 3.17 compares our implementation with similar existing codes, where
not all reference programs target at the random frustrated Ising systems, present
the external magnetic field, and feature parallel tempering. Our program is sub-
stantially faster than any other GPU implementation [87, 88, 90, 91] for small
to intermediate system sizes. We are comparable to the performance achieved by
special-purpose FPGA implementations[92].

3.5.3 Simulation Results

We test the code by simulating both the simple ferromagnetic Ising and the
Edwards-Anderson spin glass models. In Figure 3.18, our results from the GPU
code are found to be consistent with the results from our CPU code for the fer-
romagnetic Ising model, at various external magnetic fields. We also compare the
results with and without parallel tempering as a check to determine whether the
parallel tempering swap is performed correctly. We find that the results with and
without the parallel tempering swap are consistent with each other. In Figure
3.19 we plot the correlation length for the ferromagnetic Ising model in three di-

mensions; here, the crossing point for the correlation length coincides with the
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FIGURE 3.17. Performance comparison with other heterogeneous Ising model simulation

programs. Hawick et al. [87] reports 4360.1 millio

n Monte Carlo hits per second, which

equals to 229 ps/spin. Block et al. [88] reports 7977.4 spin flips per microsecond, which

equals to 125 ps/spin.

; ! T CPUH=0
—2001 A4 CPUH=1
&4 CPUH=2
A4 CPUH=3
—300f s CPUH=4 i
+ + GPUH=0,NO PT
—400} -5, o X X GPU,H=0 A
h\xﬁ‘xx \X\"x% X X GPUH=1
5 —500} K X X GPU,H=2
g F\X % X GPUH=3
E _gool "&xxxyy\x\) X X GPUH=4
700 (\"‘&H\,ﬁ
~800]
—900L--: 5 J
0.10 0.15 0.20 0.25 0.30
1/T

FIGURE 3.18. Comparing the total energy of the 163 sites Ising model with nearest
neighbors coupling J = —1, to CPU generated results. At each value of the external
field, the GPU results are nearly identical to the CPU results.

known critical temperature for the ferromagnetic ordering. [114] For the Edwards-

Anderson model we calculate the Binder ratio

of the system at zero external mag-

netic field as shown in Figure 3.20. The results match reasonably well with the

published data. [115] Figure 3.21 demonstrates the effectiveness of parallel tem-
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FIGURE 3.19. Correlation length vs. inverse temperature for the Ising model. The lines
from different system sizes cross close to 1/T" = 0.2217, which is in agreement with the
published result for the critical temperature. [114]
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FIGURE 3.20. Binder Ratio for the 3D Edwards-Anderson model. The data generated
by our GPU code is compared with the data extracted from the paper by Katzgraber et
al. [115]

pering for the Edwards-Anderson spin glass. The parallel-tempering simulation
reaches equilibrium after 10> Monte Carlo sweeps, while without parallel temper-
ing, the system did not reach equilibrium even with 100 times more iterations.
This further supports that we have implemented the parallel tempering swapping

correctly.
3.6 Conclusion and Future Works

We design and implement a CUDA code for simulating the random frustrated

three-dimensional Edwards-Anderson Ising model on GPUs. For small to interme-
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FIGURE 3.21. The convergence of the Binder ratio vs. number of Monte Carlo steps
for the Edwards-Anderson model in a system with 8 sites, with and without parallel
tempering for 1/7 = 2.0. Parallel tempering dramatically improves the convergence to
equilibrium.
diate system sizes, our code runs faster than other GPU implementations, and its
speed is close to that of the specially built FPGA computer. We note a very recent
preprint has reported an improvement in FPGA system. [26] Our performance
tuning strategies include constructing three levels (tasks, threads, bits) of parallel
workloads for GPU; optimizing the memory access via a proper data layout and
tiling; speeding up the computation by translating time consuming floating point
operations to integer point operations and table look-ups; and finally, vectorizing
bit computations with our binary format, the Compact Asynchronous Multispin
coding.

Our program can be extended for other models such as the Potts models and

models with different random coupling distributions. The structure of our code

may adapt well to upcoming GPUs and future massive parallel accelerators.
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Chapter 4

Results for Three-Dimensional Edwards
Anderson Model in an Externel Field

This following chapter is a work titled Three Dimensional Edwards-Anderson
Spin Glass Model in an External Field, submitted for review to appear in
Physics Review E. In this paper, we discussed the results for Monte Carlo Simula-
tion of 3D Edwards-Anderson model.

This paper is written in collaboration with Ye Fang, Ka-Ming Tam, Zhifeng Yun,
Juana Moreno, J. Ramanujam and Mark Jarrell. The idea of the project was first
proposed by Ka-Ming Tam. Ye Fang and I developed the implementation together.
With the code, I ran simulations on the GPU clusters, accumulated and analyzed
all the data. This paper is written in collaboration with Ye Fang, Ka-Ming Tam,
Juana Moreno, and Mark Jarrell. I started a first draft, including the introduction,
the simulation methods, the measured quantities and the conclusions. I also plotted
all the figures from the data obtained in the simulation. Ka-Ming contributed to
the introduction and conclusions. Juana Moreno and Mark Jarrell also reviewed

the paper and improved the conclusions.
4.1 Introduction

Most spin systems order when the temperature is sufficiently low. Conventional
magnetic orderings break the spin symmetry, and the moments align in a pattern
with long range order. However, magnetic systems with random frustrated cou-
plings can avoid conventional ordering by breaking ergodicity. Typical spin glass
systems with such competing magnetic couplings include localized spins in met-
als coupled via the oscillating Rudermann-Kittel-Kasuya-Yosida exchange as CuFe

and CuMn, and in insulators with competing interactions as in LiHoYF and EuSrS
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[2, 116, 117]. These systems do not display long range order for a wide range of
diluted spin concentrations.

A widely studied model to describe spin glass physics is the Edwards-Anderson
(EA) model[10]. It is composed of spins interacting with their nearest neighbors
via random couplings. The mean-field variant of the Edwards-Anderson model,
the Sherrington-Kirkpatrick (SK) model[11, 12], was solved by the replica tech-
nique in 1975 with the striking observation that the entropy can be negative at
low temperature[11, 12]. A cavity mean field method was proposed by Thouless,
Anderson and Palmer (TAP) in which the local magnetization of each site is con-
sidered as an independent order parameter[118]. The hope was to obtain a more
physical mean field solution without involving the replica technique. However, mul-
tiple solutions were found[119].

Motivated by the deficits of previous approaches, de Almeida and Thouless fur-
ther studied the replica symmetric mean field solution and found a line in the
temperature—magnetic field plane where the replica symmetry solution is unstable
towards replica symmetry breaking (RSB) [93, 94] The replica overlap has more
structure than simply a constant. The way to characterize this structure for a
stable mean field solution was developed by Parisi [13-15]. There is a hierarchy
of the replica overlap, and this can be described in terms of an ultra-metric tree.
The replica symmetry breaking scheme resolved the negative entropy crisis and
naturally explained the many solutions found in the TAP approach.

The replica symmetry breaking theory is accepted to be the correct description
of the Sherrington-Kirkpatrick model; indeed it provides the exact free energy
(98, 99]. However, its applicability to low dimensional spin glass systems has been
intensively debated over the last three decades, especially in the three dimensions

case. For systems below the upper critical dimension [16-18] the most prominent
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competing theory is the droplet model elaborated by Huse and Fisher [19, 20] and
based on the idea of domain wall scaling by Moore, Bray and McMillan [120, 121].
In this theory, there exists a finite characteristic length scale where droplets of
excitations can lose energy by aligning with the field. The spin glass phase is thus
destroyed by any finite external field. Moreover, those excitations are assumed
to be compact and with fractal dimension smaller than the spacial dimension, in
contrast with the space-filling excitations in the mean field theory.

Thus a possible scheme to discern between the replica symmetry breaking and
the droplet theories is to determine whether a spin glass phase exists at a finite
external field [21]. There are other schemes based on the differences in the overlap
and the excitations in these two theories. For example, the distribution of the
overlap and the parameters that characterize it [122-127], the existence of the ultra-
metric structure in the overlap [128, 129], and the nature of the ground state and
its excitations [124, 130-135]. Unfortunately, the conclusions drawn from different
studies are often controversial. This is mostly due to two factors, the limitation in
the system sizes that can be simulated and the interpretation of the data.

Using the same techniques on the three dimensional Edwards-Anderson model
under an external field, no signal of a crossing of the scaled correlation length for
different system sizes can be detected[21]. We will show this is also the case for
the Binder ratio. The absence of crossing is powerful evidence that a spin glass
phase is absent in the presence of an external field. However, it has been argued
that the system sizes studied may be too small and far from the scaling regime. To
remedy this problem, one dimensional models with long range power-law decaying
interactions [136] which mimic the short range models at higher dimensions have
been intensively studied over the last few years [137-139]. In these models much

larger systems can be studied [83, 85, 140, 141]. It is worthwhile to mention that
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the studies using Migdal-Kadanoft approximations for hierarchical lattice tend to
support the droplet picture [142, 143].

On top of these controversies, it has been recently argued that the scaled corre-
lation length is not a good parameter for the spin glass transition in a field since
its calculation involves the susceptibility at zero momentum [141]. The latest pro-
posal is to study the ratio of susceptibilities at the two smallest non-zero momenta,
denoted it as Rys [25]. It has been shown that in four dimensions this quantity dis-
plays a crossing at finite temperature which is an important clue that the spin glass
can still exist without time reversal symmetry below the upper critical dimension
[25]. Giving the success of using Ry to capture the spin glass phase at four dimen-
sions, we reexamine the three dimensional Edwards-Anderson model on a simple
cubic lattice using a new development in computer architecture, and the recently
proposed Rjs. We will demonstrate that graphic card computing is particularly
well suited for equilibrium simulations of spin glass systems, in particular for cases
where a huge number of realizations is required such as the model we study in this
work.

The paper is organized as follows: The simulation methods and the quantities
we measured are introduced in the Section II. In the section III, we show the data
from our simulations. We conclude our results and discuss the possible directions

for the future study in the section IV.

4.2 Method and Measured Quantities

The Hamiltonian for the Edwards-Anderson model is given as

<i,j> 7
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where S; indicates Ising spins on a simple cubic lattice with N = L3 sites and peri-
odic boundary conditions. The coupling J;; is bimodal distributed with probability
P(J;;) = 5(6(J;j — 1) + 6(J;; + 1)), and h is an external field.

The spin glass overlap is defined as

1 (a) o(B) ik-r;
qk) = ¥ Xj:Sj S} exp™ ™, (4.2)

where o and [ are two independent realizations of the same disorder model. We

calculate the overlap kurtosis or the Binder ratio from the overlap as [123, 144]

. ( (a00) - won))
9=5 3~ 2
<<q(0)—w>2>

Note that (---) indicates averaging over different disorder realizations, and (- - -)

(4.3)

denotes thermal averaging.

The wave vector dependent spin glass susceptibility is defined as [123]

x(k) = N((¢*(k)) — (a(k)) ), (4.4)
and the correlation length as

B 1 RO ES
5L_25m<1<mm/2) {X(kmm) 1] ’ (4.5)

where ki, = (27/L,0,0).
We define R;5 as the ratio between the susceptibilities with the two smallest

non-zero wave vectors [25]

(4.6)

where k; = (27/L,0,0), ko = (2n/L,27/L,0).
Parallel tempering[65, 66] is used to accelerate the thermalization, in which Ny

samples of the same disorder coupling are simulated in parallel within a range
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of temperatures. In order to compute the spin glass overlap (Equation 4.2) we
simulate two replicas of the system with the same bonds J;; = £1 and field h at
each temperature.

We implement the Monte Carlo simulation with parallel tempering on graphics
processing units using the CUDA programming language [42]. Multispin coding[100,
110] is used to pack the Nr replicas into the small but extremely fast shared mem-
ory. We achieve a performance of 33ps per spin flip attempt on a GTX 580 card. We
use the CURAND implemented XORWOW generator to generate random numbers
[111]. Since the GPU is a commodity hardware and widely available in large com-
puter clusters, it is now easy to greatly accelerate these simulations. The details
of the implementation can be found in Ref [145].

We list the parameters of our simulation in Table 4.1. We benchmarked the code

TABLE 4.1. Parameters of the simulations. L is the linear system size. Ngamp is the
number of samples, Ngyeep is the total number of Monte Carlo sweeps for each of the
2N replicas for a single sample, Syax and Bpin, show the temperature region simulated,
and Nrp is the number of temperatures used in the parallel tempering method. The
temperature set in each simulation follows a geometric distribution, i.e. 8, = Bmina™ ",
where & = (Bmax/Bmin) N~V n € [1, N7]. The first half of the Monte Carlo sweeps
are used for thermalization and the second half are used for measurement.

L Nsamp Nsweep NT ﬁmax /Bmin

6 500,000 2,000,000 56 1.8 0.1

8 350,000 2,000,000 56 1.8 0.1

10 240,000 2,000,000 56 1.8 0.1

against existing results at h = 0. The smallest S used in the parallel tempering
is well below the critical temperature (1/8. = 1. ~ 1.1019 & 0.0029) [146] of the
spin glass transition at zero field|[24, 146], while the largest § is about two times
larger. The estimated critical field at zero temperature is around h =~ 0.65 for the
model with zero mean and unit variance Gaussian distributed couplings[147]. We
choose to work in a relatively small field, h = 0.1. The jackknife method is used

to estimate the statistical errors from disorder averaging.
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4.3 Results

We plot the spin glass susceptibility in Figure 4.1. As in the zero field case, the
susceptibility increases as the temperature is lowered, however there is no obvious
asymptotic scaling behavior. In particular, for temperatures below the zero-field
critical temperature, the slope of the curves decreases and they begin to bend down-
ward. This result is similar to the one obtained for the one dimensional model[83],
but in contrast with the results of the four dimensional lattice which displays

asymptotic divergent susceptibilities [123].
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FIGURE 4.1. Spin glass susceptibility at zero momentum, x(0), as a function of inverse
temperature for system sizes L = 6, 8, 10.

As the susceptibility does not show a behavior in accordance with the conven-
tional finite size scaling theory for a second order transition, we move to study
various cumulants and ratios of susceptibilities of the overlap parameter. We show
the Binder ratio in Figure 4.2. It does not display any signal of crossing. Indeed,
the curves for different system sizes do not even tend to merge as the temperature
is lowered. Note that the Binder ratio corresponds to the fourth-order cumulant of
the distribution, and the possible issues related with the soft mode contributing to

the zero momentum susceptibility should likely be canceled in the Binder ratio.
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FIGURE 4.2. Binder ratio as a function of inverse temperature in the range § = 0.1 ~ 1.8
for system sizes L = 6,8, 10.

Figure 4.3 displays the scaled correlation length. This is now a standard diagnosis
for the detection of a spin glass transition. The correlation length is extracted from
the Ornstein-Zernike form (Equation 4.5), and thus essentially given by the ratio
between the zero and the smallest finite momentum susceptibilities. Similar to the
Binder ratio, and consistent with other results in the literature, there is no crossing

or even merging down to a rather low temperature [21].
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FIGURE 4.3. Scaled correlation length &/L as a function of inverse temperature for
system sizes L = 6,8, 10.

From now on we focus on Ri3. We performed simulations in zero field where
R15 shows a crossing close to the expected critical temperature found from the

Binder ratio and the correlation. Therefore, the crossing in R15 should be a viable

66



indicator for the phase transition. Unfortunately, we find that R is in general
much noisier than other quantities. This is due to the fact that the sampling
of higher momentum quantities is almost always characterized by larger statistical
fluctuations. Taking the ratio between two susceptibilities at finite momenta clearly
further harms the quality of the data. To reduce the error bars we generate long
runs and larger pools of disorder realizations (see Table 4.1). This is the main
reason we have generated a rather large number (2.4 x 10°) of realizations for the
largest systems size we present here, and even more for smaller sizes. To further
reduce the fluctuations, we impose all point group symmetries. For example, when
we calculate x(27/L,0,0) we average the susceptibility at three different directions
(x(2w/L,0,0), x(0,27/L,0), and x(0,0,27/L)). This averaging implicitly assumes
that the point group symmetry is restored which is justified only when the number
of realizations is rather large.

Figure 4.4 displays Ris. In contrast to other quantities, R;5 shows an intersection
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FIGURE 4.4. Rjs as a function of inverse temperature for different system sizes. An
intersection can be seen at around 7" ~ 0.6. We use the jackknife method to estimate
the error bar from sample-to-sample variation.

at about T ~ 0.6. We do not think we have sufficient data to perform a reasonably

accurate finite size scaling analysis to report the exponent or even to quantify

the correction [148]. Moreover, the data for L = 6 does not seem to fit into a

67



finite size scaling form with the curve bending downward. Unfortunately, parallel
tempering Monte Carlo is not robust enough for simulating larger lattices in a
reasonable amount of time; this can be related to the temperature chaos [149-151].
The number of replicas needed to equilibrate the system also increases substantially
as the system size increases, we already used 56 temperature replicas for L = 10
simulations. We plot R15 versus the number of Monte Carlo sweeps in Figure 4.5.
We believe the data is sufficiently equilibrated for averaged quantities. The major
contribution to the error is from the limited number of disorder realizations. Figure
4.6 shows Ry for L = 10 for different numbers of realizations. We clearly see that
the data converges only when the number of realizations is fairly large. This is one
of the prominent hurdles of using higher momentum susceptibility as a diagnosis.
We note that the effective one dimensional model also shows crossing behavior,

albeit the crossing points do not show a systematic trend[83].
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FIGURE 4.5. Rjs for L = 10 at § = 1.8, as a function of the number of Monte Carlo
sweeps. We believe the averaged data is equilibrated for 10 sweeps, and it passes the
logarithm binning test [152]. The main contribution to the error is from the realization
averaging.

Given the difficulty in using the Rjs, we investigate the source of the noise by
studying the distribution of the susceptibility. We calculate the susceptibility for

each disorder realization, and plotted the histogram at the lowest temperature, g =
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FIGURE 4.6. Ry2 for L = 10 and low temperatures (5 > 1.0). We show five different
numbers of realizations from fifteen thousand to two hundred forty thousand.

1.8. The distribution is highly skewed. The mean of the distribution is dominated by
rare events, as suggested in Figure 4.7. The non-Gaussian nature of the distribution

suggests that the mean value might not be a good indicator.
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FIGURE 4.7. Histogram for y; at low temperature.

As a first attempt to handle the distribution which is dominated by rare samples,
we used the geometrical average [153] over the susceptibilities to find Ris. In the
Figure 4.8, we show the plot of Ris calculated from geometric averaging. We see
that the lines are quite different from those obtained with arithmetic mean, and
the crossings appear at different temperatures. Rather this approach can provide
a better signal for phase transition is unclear at present, but is is worthwhile for

further investigation.
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FIGURE 4.8. Rj> calculated from the geometrical average of susceptibilities, as a func-
tion of inverse temperature, for different system sizes.

4.4 Discussions and Conclusions

In summary, we perform Monte Carlo simulations of the three-dimensional Edwards-
Anderson model in a finite external field. The goal is to reexamine the long-standing
problem of whether mean field behavior, specifically a spin glass phase, can exist
in such a model without time-reversal symmetry. We focus on the equilibrium
quantities of this notoriously difficult system. By taking advantage of the new
commodity multi-threaded graphic computing units architecture we drastically re-
duce the computation time. The results for the Binder ratio and correlation length
for different cluster sizes show no signal of an intersection, thus, they point to the
absence of a spin glass transition as found in previous studies. On the other hand,
the ratio of susceptibilities R, does show intersections for relatively small system
sizes (L = 6,8,10). We did perform simulations for larger system sizes, but the
data for Rq5 is too noisy to draw a conclusion. With the present system sizes and
the statistical error bar, a rigorous data analysis does not seem to deliver unbi-
ased information. This situation is rather discouraging, as simulations at this low
temperature for much larger system sizes using the present method are already

rather challenging. Although we cannot reach a definitive conclusion on whether
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a spin glass phase transition exists under a finite magnetic field, we attempt to
understand the source of the noise in the R15 We showed that the susceptibilities
are far from normally distributed and their mean is dominated by rare events. This
motivated us to study the geometric average of the distribution. We showed that
for different system sizes, there is similar crossing behavior in the R, as those
calculated from the linear average.

The results are obtained with a rather small external field, A = 0.1. It is possible
that a larger field, such as h = 0.25, would give us a stronger signal of crossing
predominately due to the distance away from the known critical point at h = 0.
While this may give us a slightly clearer signal on the phase transition, should
the transition exist at h = 0.25, it would likely occur at a significantly lower
temperature which further jeopardizes the quality of the simulation data. As the
result stands now, we cannot find a clear phase transition in A = 0.1, and if there
were no phase transition, it would also rule out the possibility of the transition
occurring in a larger field. On the other hand, if we found evidence for the absence
of a transition at h = 0.25, we cannot determine if the spin glass phase would
survive a smaller field like h = 0.1. There is no simple rule of thumb which can
be used to determine what value of h is the best for the purpose of answering the
question on the existence of the transition under an external magnetic field. But
we believe that the possible advantage of using a larger field does not outweigh the
disadvantages, both in term of the difficulty of the simulation, and its predictive
power.

Thanks to our efficient GPU implementation, we are able to leverage the comput-
ing power of supercomputing clusters with GPU accelerators, and study a large
number of disorder realizations. Our results show that with current numerical

methods and computing capability results obtainable in a reasonable amount of
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time and resources are still not robust enough to provide dispositive insight into
the nature of a spin glass at three dimensions. This makes a call to the method
of interpreting the data. We propose that a possible direction for the future study
should go beyond simply calculating the average value of critical quantities, such
as susceptibilities. The disordered nature in both the spatial and temporal direc-
tions should benefit from recent advances in big data analysis. Various clustering
and pattern recognition methods develop should provide new opportunities for the
analysis of data from spin glass simulations.

We notice a preprint before we finished the present paper where the conditioning

variate method is used to expose the silent features from the data [154].

4.5 System with L=16

We further tested with a bigger system size, L = 16. We used 11,200 realizations,
and divide them into four batches, each containing 2800 samples. We then calcu-
lated the Rp5 for the four batches, and compared them, as shown in Figure 4.9.
The results shows that a few thousand realizations is not enough, even for a system

size of L=16.
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FIGURE 4.9. Ry, for a larger system with L = 16. We used four batches of samples, each
batch contains 2800 disorder realizations. The results shows that for different batches
Ry15 is quite different, especially at low temperatures.
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Chapter 5

Continuous Time Quantum Monte Carlo
Solver for Strongly Correlated Materials

5.1 Introduction

Many interesting phenomena in materials can be simply described in term of a
picture in which particles are independent of each others. For a periodic system,
Bloch’s theorem provides the basis for the description of materials in term of band
structure. The energy eigenstates can be expanded in term of the periodic func-
tion with definite momentum number. Even such a seemingly simple independent
particle picture harbors a vast amount of interesting phenomena. Nine decades
have passed after the Bloch’s theorem, the physics of non-interacting electrons are
still being investigated intensively today. The exotic physics, such as the topolog-
ical structure of the band theory still have not been exhausted, typical examples
include quantum hall effect and topological insulators [155].

Effects from the interaction among particles cannot be completely ignored in
many interesting systems. The physics can quickly become very complicated when
the interaction becomes a dominating factor in the system. Unlike the simple single
particle picture, there is no generic efficient method for the study of quantum
interacting systems. From a computational point of view, the size of the quantum
system, Hilbert space, grows exponentially as the number of particles. It is in
general very difficult to analyze such systems by simple numerical mean.

However if one can reduce the systems into a somewhat single particle like sys-
tems, the analysis can be greatly simplified. The Landau Fermi liquid theorem, a
landmark achievement in the study of correlated systems, tells us that in many

circumstances the interacting system can be reduced into a single particle system
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with some modifications. [156, 157] The non-interacting particle can be adiabati-
cally deformed into quasi-particle with a finite lifetime. This important prediction
by Landau can only be explained few decades later when the concepts of renor-
malization group of fermion systems are applied in the condensed matter physics.

Although the Fermi liquid theorem can satisfactory explained a lot of metallic
systems, its limitation is obvious. It fails in the low-dimensional cases, by now, we
know that this is invalid in one dimension. [158, 159] However, the question of its
validity in two dimensions is more subtle. As many of the interesting systems, their
physics are believed to be largely dictated by the correlation in two dimensions.
This is also the main battlefield of strongly correlated systems. In one dimension,
various rather accurate numerical methods are available; in higher dimensions,
mean field theory is presumably a good starting point. At two dimension, there
is usually no good control on analytical calculations, and numerical methods for
lattice models are hindered by the minus sign problem in Quantum Monte Carlo or
the lack of good renormalization of the Hilbert space. Another clear deficit of the
Fermi liquid theory is its inability to describe the quantum criticality, It is obvious
that the criticality involves collective behaviors. [160] An independent particle pic-
ture is doomed to fail in describing critical points. Further increase the interaction,
the independent particle picture in the momentum space has to be replaced by the
Mott picture in the real space, and there is no adiabatic continuation which can
tune the single particle metallic system into a real space picture of Mott insulator.
[161]

Thus, a systematic, even though approximated, method is sought for the study
of strong correlation. The method which can describe the physics from metallic,
to critical, to insulating phase as the interaction is cranked up is crucial for the

study of strongly correlated systems. We will discuss in the following that the
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dynamical mean field method and its cluster extension, dynamical cluster approx-
imation, fulfilled such a request. [32, 162] Combining with the density functional
theory, semi-quantitative numerical results can sometimes be obtained for strongly
correlated materials.

In a sense, from the above discussion, the term strong correlation refers to the
behavior of electrons that cannot be well-described by simple one-electron theories.
Materials which naturally have a tendency to strong correlation are those involved
unfilled d or f orbitals. This is due to the small orbital radius of d and f orbitals
and so does the overlap of orbitals. This reduces the kinetic energy of the system,
the electrons are said to be living in the narrow band, and thus the interaction
becomes more important. Many interesting materials discovery which host a range
of interesting experimental observations, the most prominent example is the high-
temperature conductivity, pseudogap behaviors, quantum criticality, in the past
few decades involve transition metal or inner transition metal. This is precisely
because of the effective strong correlation due to the d or f orbitals.

Understanding those exotic behaviors is extremely challenging. There is a major
obstacle. Once the single particle picture fails, there is no good starting point
for many perturbative calculations. It renders into a regime almost all analytical
methods will fail. In the following we will discuss two majors progress in attacking
correlated systems. The first one is density functional theory (DFT)[163, 164] ,
a many-site single particle treatment; and the other one is dynamical mean field
theory (DMFT) [30, 32, 165], a single site many-body treatment.

5.2 Numerical Approaches in Strongly Correlated Materials

Numerical calculation in strongly correlated fermion systems is a major challenge
in condensed matter physics. In real world, materials consist of 10?% interacting

particles, which is impossible to solve at first glance. Fortunately, not all the par-
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ticles contribute to the property of materials. For example, in a metal only the
electrons close to the Fermi level can be excited and contribute ,e.g., to the trans-
port and magnetic properties. In a lattice, lattice excitations are few at low T, but
they are responsible for inelastic neutron scattering. Even though, the remaining
problem is still hard.

Density functional theory (DFT)[163, 164] provides a framework to solve the
electron structure problem. Using this theory, the properties of a many-electron
system can be described by a functional of election density. Combined with ap-
proximations that address the exchange-correlations such as the local density ap-
proximation (LDA) [166], density functional theory produces satisfactory data that
agrees well the experiments for many cases. However, despite the success in weakly
correlated materials, there are still difficulties in applying this method to other
cases, such as systems with strongly correlation [167]. The accuracy of density
functional theory has seen gradually improve over the year, the continual develop-
ment in functional to include correction from beyond local density plays an impor-
tant part. However, it seems to be quite difficult to handle such strong correlation
by simple improvements of the density functional theory. A promising direction
is to combine other methods which can treat strong correlation with the density
functional theory method. A popular choice is to employ the dynamical mean field
theory[30, 32] (DMFT) to include the effect from the electron-electron correlation
on top of the single particle dispersion obtained from the density functional theory.

Dynamical mean field theory has been widely used on a range of strongly cor-
related systems. It is a method well suited for strongly correlated systems, in
particular, it captures the Mott transition, a hallmark of strong correlation, of the
Hubbard model. In this approach, the solution of the lattice model is mapped to

a quantum impurity model with self-consistency conditions. A quantum impurity
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problem describes an atom embedded in a host medium. The impurity consists of
a set of orbitals with different parameters, populated with electrons that interact
with each other. The orbitals are hybridized to bath orbitals representing the de-
grees of freedom of the host materials. The solution of impurity problem can be
obtained in a few different ways. We will focus on the different variants of Monte
Carlo methods.

A commonly used technique is the Hirsch-Fye method [168], in which a Hubbard-
Stratonovich transformation is used to decouple the interaction part, leading to
determinants which give the weights associated with the configurations of the aux-
iliary fields, which are then sampled by a Monte Carlo procedure. One issue is that
Hirsch-Fye cannot be easily applied to complicated interaction that includes more
than just density-density interaction, due to the lack of simple ansatz to decouple
the interacting terms. The matrix size scales to the interaction as well as the in-
verse of temperature, which makes the calculation inefficient at low temperatures.
This method also requires discretization of the imaginary time interval, which in-
troduce systematic errors, and may not be optimal for the multi-orbital case with
complicated off-diagonal couplings.

The Trotter error in Hirsch-Fye algorithm can be eliminated by using the Con-
tinuous Time Monte Carlo algorithms. For example, one can solve the problem
exactly in non-interacting limit, and treat the interaction with a Taylor-series ex-
pansion. By doing stochastic sampling of diagrams in the weak-coupling expansion
of partition function, the interaction expansion (CT-INT) algorithm [169] provides
a discretization error free alternative Hirsch-Fye algorithm. Still, in the CT-INT
algorithm, it is difficult to treat non-Hubbard-type interactions. Also, the size of
the matrix used in the CT-INT method grows quickly with the interaction, making

the calculation very time-consuming at very strong interactions.
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Another way to treat the impurity problem is the hybridization expansion (CT-
HYB) approach [170-173]. The fact that the order of expansion decreases with
increasing interaction makes this method favorable for strong interaction systems.
The algorithm is also found to work at very low temperatures and is applicable
to a wider class of impurity models including those with complicated off-diagonal

couplings since the local problem is treated exactly.

5.3 Algorithm
5.3.1 Hybridization Expansion CTQMC Algorithm

A quantum impurity model may be represented as a Hamiltonian Hgqy

Haqr = Hioe + Hypath + Hiyp (5.1)
Hoo = HYo+ HL, =Y E®dld,+ > 1 didid,d, (5.2)
ab pqrs
Hypan = Z &Tkac;tacka (5-3)
ka
Hip = ) (Viclody +hc.) (54)

kab

Ho. describes the “impurity” (a system with a finite (typically small) number
of degrees of freedom), Hyan describes the non-interacting system, and Hyyp, gives
the coupling between the impurity and bath.

The Anderson impurity model describes a localized electronic level, subject to a
local Coulomb interaction, which is coupled to a band of non-interacting conduction

electrons. In the single-impurity single-orbital case, its Hamiltonian is given by

Hang = Z SkCL(,C/w + Z z—:odlda +Unyny + Z (V}gclgd(, + h.c.) (5.5)
ko o ko

J/ N
-~ ~ -~

Hbath Hloc thb
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In Hybridization Expansion Continuous Time Quantum Monte Carlo (CT-HYB)

[170-173], we take the hybridization term as a perturbation, i.e.

Hb = thb = Z(Vp]c;;d] + Z V;yj*d;r-cp),
pj pj
and thus the partition function becomes
> B B B ) B o
Z:Z/ dﬁ.../ di/ dTl.../, diZ ZVJ;V;),:
k=0 "0 Tk—1 0 k-1 disdi PLY

.71 ]kpl pk

x Ty |Tre™ o, (m)dly () -y, (r)d, ()]

X Tr, [TTe_BHbathc;k (Tk)cpk/ (TI;) T c;fn (T1>Cp/1 (T{>] :

The bath partition function could be integrated out:

Zoath = TreBHbath — H H<1 + 6_681’).
p

g

With the anti-periodic hybridization function A,

Vixym —e A 0<T1<p
_ p P
Alm(’r) = Z —ef':pﬁ + 1 X )
p

e—rT —0<7<0

and by separating the contributions from each spin, we obtain

Z = Zbath

o B ) B )

XHZ/ de.../_ dr'y,

J k;j=0 7"1797-71
xTrd[Te Stoc dy(rf )l (7). d;(r])d ()| det A,
where ~ -

A(rg — 1) Alrg— 1) Aty — 70)

A A(r] — 1) A(1] — 1) A(r] — )
A(1) — 1) A1, — 1) A(1) — 1)

80

(5.6)

V]k ij
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(5.7)

(5.9)
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We can sample the partition function above using Monte Carlo method. To
determine the weight of each configuration, we need to calculate the contribution
from the local part (the trace) and the hybridization part (the determinant). We
would discuss both in the following sections 5.3.2, 5.3.3, and introduce scalable

algorithms in 5.6.3 and 5.6.2.

5.3.2 Evaluation of the Trace Using the Segment Picture

The trace factor represents the impurity with particles hopping in and out at imag-
inary times 7/ and 7, and the determinant sums up all compatible hybridization
events with the bath. In the impurity basis (|0),/1),4), [1})) the Hubbard Hamil-
tonian is diagonal, and the creation and annihilation operators for given spin have
to alternate for the trace to be finite. This allows the configuration of the op-
erators to be represented in a segment picture, where each pair of neighboring
creation/annihilation operators are represented by a segment on the imaginary

time axis, as shown in Figure 5.1.

FIGURE 5.1. A segment picture showing a possible configuration of the two spin chan-
nels. The blue section indicates the overlap between two spin channels, [oyerlap in Equation
5.12.

In the said basis, the contribution of the local Hamilton can be evaluated as:

VI/IOC — STSieﬂ(lT+l¢)7Uloverlap, (512)
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where [, is the total length of segments on spin channel o, loyenap is the total
overlap between two spin channels. The sign s, is —1 when one of the segments

winds around from S to 0, and +1 otherwise.

5.3.3 Evaluation of the Trace for Non-diagonal Hamiltonian

In models such as Dynamical Hubbard Model, the local part of Hamiltonian is
not diagonal in the occupation number basis, and, therefore, we cannot use the
segment picture to evaluate the trace easily. In this case, we need to evaluate the

trace of this term:

e HH Bty o~Hta—tot)pp [ o~Hl0 (5.13)

n

where H is the Hamiltonian, and £}, is a Fermion operator at time ¢;.

To evaluate the exponential terms, we diagonalize the Hamiltonian with
H=UvU"

where V is a diagonal matrix with eigenvalues of H, each column of U is an
eigenvector of H. Using

Ut =1,

we have

— _ T —
e Ht — o= UVUTE _ [ -VigT

and the term 5.13 becomes
Ue V0T F, Ue™V*tnmtnt) | F Ue” VU,

Define

D, =UTFU,

the term is then

Ue VBt p, o=Vilta=ta-1) D o=ViorsT (5.14)

n 0
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We can then evaluate the full trace of the matrix above, using a series of matrix

multiplications.

5.3.4 Monte Carlo Sampling Procedure

To sample the configuration space with Monte Carlo procedures, one can propose

a new configuration by:
e Adding a new segment to the existing configuration;
e Removing a segment to the existing configuration;
e Shifting an end of a segment in the existing configuration;

To satisfy the detailed balance condition, we must make sure that
Wap/Wpa = W[B]JW[A] (5.15)

where A and B are two configurations, and W g is the transition probability from
configuration A to configuration B, and vice versa.
In the case of adding a segment (Figure 5.2), one can first randomly choose
a starting point for a segment, say 7" in (3,0]. If 7" falls on one of the existing
segments, the proposal is rejected. Otherwise if 7’ is located between two segments
7; and 77, we pick the end point from [0, lay], Where I = mod(7},, — 7+ 83, ).
Assuming there is an infinitesimal grid with grid size dr on the imaginary time

axis, the proposal probability can be found as:

dr?
Pprop:k—>k+1 - Blmax. (516)

In the case of removing a segment (Figure 5.3), one can randomly pick a segment

from k, existing segments, and thus the proposal probability is

1
Pprop:k—>k—1 = k’_ (517)

o
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FIGURE 5.2. A segment picture showing the addition of a segment (74, 73) (red line) to
the |}) channel. The red shade shows the change of overlap from this addition.

Combined with the detailed balance condition and previous weight calculations,

we have the probability of accepting an addition as:

flrj_axl d(eit tAAk;:l /.Lle—UAloverlap) ,
- (§

Paccpt:k—>k+1 = min (17 Sign(T - Tl) (518)

where [ is the length of segment to be added, and Algyelap is the change in overlap

between two spin channels.
Similarly, the acceptance ratio for removing a segment is:

k, det AF1
Blmax det AF

Paccpt:k%kfl = min (17 SigH(T - T/) eﬂleUAloverlap) . (519)

The probability for accepting a shifting move (Figure 5.4) is:

. . s p det A A Al
Prceptx—kx = min | 1, sign(7, — 73,)sign(m — Tk,)me e overlap ) (5.20)

In the case where one or more channels have no segments, we need to evaluate
the trace from the Hamiltonian. Here k refers to the number of segments on the
channel where the move is proposed, and k&’ refers to the number of segments on

the channel with opposite spin direction.
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FIGURE 5.3. A segment picture showing the removal of a segment (75, 73) (red line)
from the |1) channel.

1. Adding a segment to channel o.

. . Inax det AFFL
Pageicnn = min (Lsign(r = /) 222 S50 Q) . (s
where () is the ratio of the new trace verses the old trace.
(a) k=0,k"#0
—les ,—lowU
Q=—"~ (5.22)

T 1t e Pl
where [ is the length of the segment to be added, [,, is the overlap
between the new segment and the segments on channel 7, and [; is the
total length of segments on channel 7.

(b) k#0,K =0

o Qe o
N 1+ e BereloU ’ '

where [/ is the length of the segment to be added, and [, is the total

length of segments on channel o.
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FIGURE 5.4. A segment picture showing shifting the end of a segment (7, 71) (red line)
on the |}) channel. The red shade shows the change of overlap from this shift.

() k=0,k =0
e_lirﬁf(]_ + e_ﬁefe_lirU))

@ = e B 1 o B (5:24)
where [/ is the length of the segment to be added.
2. Removing a segment.
k, det AF~1
Paccpt:k%kfl = min (LSign(T - T/)ﬁlmax (jet Ak * Q_l) , (525)

where () is calculated in Equations 5.22 ~ 5.24, in corresponding situations.

3. Shift a segment. In the case of shifting, k£ cannot be zero. Therefore the only
special case is k # 0, k' = 0. In this case,

e—(o=lo)es (1+ e*ﬁef@*léU)
1+ e PereloU

Q= , (5.26)

where [, is the length of the chosen segment before the shift operation, I/ is

the length after the operation.

When adding/removing/shift a segment on a channel, the hybridization matrix

needs to be updated accordingly.
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1. Shifting

One can shift either the beginning or the end of a segment, which corresponds

to modifying a column/row in the hybridization matrix. For example, when

shifting the end of segment i from 7/ to T,

the ith row of the matrix is

TL@’LU )

updated:
A(rg—10) Ay —71) A7 — 1)
A(r{ —10) AT —11) AT = 7,)
=
A1) —10) A1} — 1) A(1! — 1)
A(T —m) A —7) - A( —7)
A(1) — 7o) A1) — 1) A1) — 1)
A(r{ —7m) A1 —71) AT —7)
(5.27)
A(T;LG’UJ - 7—0) A(T;Lew - 7—1) A<T7/chw - Tn)
A(r), — 1) A7) — 1) AT — 1)

2. Adding Adding a segment (7,7") between the original i — 1 and ith segment

corresponds to adding a row and column in the hybridization matrix.

[ A(7) — 10) A(Th—Tiz1)

A(r{ — 70) A1 —Ti—1)
A(1_y — 1) A(1{_y — Ti-1)

AT — 79) (7" — Ti—1)

A(T{ — ) A(r] = 7i-1)

I A(Tn—To) A(Tn_T’i—l)

3. Removing Removing a segment (7,

A(rg — ) Almg =) ]
A(r{ — ) A(T{ — )
A({_y =) A(1;_y — )
A(T' —71) A(T’l Tn) (5.28)
A(r] =) A(1] — 1)
At —7) A(T), — 1)

!
T;

) also removes the corresponding row

and column in the hybridization matrix.
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5.4 Measurement

5.4.1 Single Particle Green’s Function

The imaginary time green’s function can be found by:

< Ek: ;—Tj)>MC < ZM’% Tj)>Mc.

(5.29)
To reduce noise and save memory, we split 5 in to fine grids N_TAU and bin data.

We can also find the Matsubara frequency Green’s function by Fourier transform:

. 1 iw(Th—T;
Gliw) = —<B > " exp™T) My e (5.30)
,J

Note that for a small number of N_TAU, the Fourier transform back to Matsubara

frequency may be inaccurate.

5.4.2 Susceptibilities

The charge susceptibility is defined as

1 5
Xe(T) = ([n4 + ny](7)[ng + 1] (0)) = E/o dro[ny+nyJ(T+70)[ny +ny](70). (5.31)

Here [ny + n|(7) stands for ny +n; at the imaginary time 7.

The spin susceptibility is defined as

1 [P
Xo(7) = ([nt — ny(7)[ny — nyJ(0)) = B/o dro[ny —ny)(T+70)[ny —ny)(70). (5.32)

In CY-HYB, the terms can be easily evaluated by shifting all of the segments on
one channel, and measure the overlap between the shifted channel and the other

channel.

5.5 DMFT Loop

A commonly used method to solve lattice problems is to use the dynamical mean
field theory (DMFT) to approximate the original problem by an impurity problem

plus a self-consistency condition.
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The impurity problem is solved by the CT-HYB impurity solver described above,
and an impurity Green’s function G (iw) is obtained. The impurity Green’s func-
tion is used to produce the lattice Green’s function G(iw) by the coarse-graining
process. The impurity Green’s function and the lattice Green’s function should

obey Dyson’s equation:

1
Gsliw) = . 5.33
109) = G0y 1 20, i) (5:33)
For next-neighbor hopping ¢ on the Bethe lattice with density of states
412 —¢2
Y forle| < 2|t
pBethe(e) — 2t ) (534>
0 otherwise
the self-consistency equation yields a simple relation
G(iw) = iw + p — 2G4 (iw) (5.35)
or
A(iw) = 2G4 (iw). (5.36)

This also allows us to do the Fourier transform from Matsubara frequency to
imaginary time easily.

Overall, the DMFT loop is implemented as following (Figure 5.5):

1. Initialize the hybridization function A(7).
2. Call the impurity solver and get G (iw).
3. Obtain the new hybridization function by A'(iw) = 2G(iw).

4. Linearly mix the new hybridization function with the old by

A(iw) = m* A'(iw) + (1 — m) Ao (iw). (5.37)
5. Fourier transform A(iw) to A(7).

6. Goto 2, and iterate till converge.
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FIGURE 5.5. A diagram for the DMFT loop.

5.6 Implementation

We implement an impurity solver based the CT-HYB algorithm for Intel Many
Integrated Core Architecture, or Intel MIC. Intel MIC is an x86-compatible multi-
processor architecture that can utilize existing parallelization software tools, such
as OpenMP, OpenCL, etc. The x86 compatibility makes it easy to execute the pro-
gram on coprocessor with little code modification. The Xeon Phi 7120P is capable
of 1.2 teraFLOPS of double precision floating point instructions with 352 GB/sec
memory bandwidth at 300W. The current top supercomputer on TOP500 list,
Tianhe-2, uses Intel Ivy Bridge processors and Xeon Phi coprocessors to achieve
33.86 petaFLOPS.

5.6.1 OpenMP Parallelization

We use a straightforward OpenMP approach to parallelizing our code. By deploying
multiple Markov chains on each processor/coprocessor, we have an embarrassingly
parallel program, where each of the processes is independent of another, thus,
no communication overhead is required. Next, we discuss how we speed up the

computation and optimize our performance.
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5.6.2 Fast Matrix Update

The most time-consuming part of the algorithm is the update of the hybridization
matrix. For each proposed update, the determinant of the new matrix is required
to compute the accepting probability. A straight forward determinant computation
scales to k3, where k is the expansion order. Due to the fact that in each update
move, only one row and one column are changed, one can use the Sherman-Morrison
formula to update the matrix determinant and the inverse matrix in k2, thus
making the update process much more efficient, especially at low temperatures.
Suppose A is an invertible square matrix, and u and v are column vectors that

describe the update to the matrix, then the determinant of the new matrix is
det(A +uv’) = (1 + vI A u) det(A). (5.38)

To update the inverse of the matrix, one can use

A luvA!

A A=
(A+uv) 1+ vIA-1u

(5.39)

In practice, the update of the inverse includes a few more steps, such as insert-
ing /removing empty rows/columns, to ensure the size of the matrix reflects the
change in the number of segments. Each Monte Carlo move requires two updates
to the matrix and its inverse, one for the column, and one for the row.

With the vectorization on Intel CPUs and MIC coprocessors, this procedure can

be done efficiently on both platforms.
5.6.3 Krylov Method

When the Hamiltonian is not diagonal, the update of the trace can be very expen-
sive. The complexity of the method described in 5.3.3 is O(m®n), where m is the

size of the matrix, and n is the number of fermion operators in the series. Since

m scales exponentially with the number of orbitals, this can be very expensive
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even for a moderate number of orbitals (say 5). Instead, we can use the Krylov
method[172] to find the trace.
First, we find the few lowest eigenstates of the Hamiltonian |i), since they are

usually more relevant at low temperatures. Then the trace is approximately

> (ilem TR, et By By e M0d). (5.40)

Then each of the term in the summation become of a series of the following

operations:
o e o),
o Flv).

The second operation is O(m?), so we’ll ignore it for now. For the first term, we

can generate a Krylov space using the following method:
1. vy =v/|v||,
2. Iteration: do j =1,2,...,k
(a) w= Hv,
(b) Iteration: do i =1,2...,j

i. hi,j =W - V;

i w=w— h@jw
(¢) hjrr; = |lwl|, viy1 = w/hj1;

With these iteration, we generate a orthonormal basis Vi, = [vq,vg, ..., v;] and
a k x k matrix Hy, where Hy(i,7) = h; .

The exponential term can be just evaluated by:

ey & o] |Vye Hrtey (5.41)
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where e; = [1,0,0,...0]". The complexity of this operation is O(k® + mk? + m?k).
Usually a small value (~ 3) of k is needed, thus, the complexity of the computation

is reduced. Overall the complexity scales as O(m?kn).

5.6.4 Using Legendre Polynomials for Measurement

To reduce high-frequency noise in the measurements of Green’s function, one can

use a set of Legendre polynomials[174] as basis and measure the coefficients:

_ AT / L dr PG (). (5.42)

In CT-HYB:
G =— 2l+ <Z PZT—TJ> : (5.43)
MC
where
. B 0
P(r) = et T (5.44)
—P(z(t+p)) 7<0
and

x(r) =27/ — 1L (5.45)

To restore G(7) or G(iw) from the measured set of coefficients,

V2l +1
G(r)=> Py(x(7))Gy (5.46)
1>0 p
and
V21
zw Z Gl + / GXpMnT B Z Tanl, (547)
1>0 1>0
where

Ty = (1) 20 4+ 15 (M) (5.48)

and j;(z) are spherical Bessel functions. Note that in the procedure, no model-
guided Fourier transform is used.

By setting an appropriate cut-off at the number of Legendre series, high-frequency
noise is filtered. One can measure the error in the Legendre polynomials to deter-

mine where the cutoff should be.
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5.6.5 Optimization

We use Intel Vtune Amplifier to benchmark the code and identify the bottlenecks.
The Intel Vtune Amplifier provides a set of performance insight into CPU and Xeon
Phi performance, threading performance, etc. We use Command Line Interface

(CLI) of Intel Vtune Amplifier, and inspected metrics such as:

o Walltime of application

Hotspot, tells the time consumption

Cycles per instruction, or CPI rate

L1 Hit Ratio

Estimated Latency Impact

Vectorization Intensity

L1 Compute to Data Access Ratio

L2 Compute to Data Access Ratio

Several techniques are used to eliminate the bottlenecks and improve overall

performance, including:

e Random number generators The Monte Carlo sampling technique we use re-
quires multiple random numbers generated on each thread with every update
step, and we use pseudo-random generators (random number generator) to

produce them.

The most commonly used random number generator in C is the rand()
function, which returns a pseudo-random integer using a hidden state. The

srand () set its argument as the seed for a new sequence of pseudo-random
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number to be returned by rand(). The function rand() is not thread-safe,
since the hidden state it uses is modified on each call. When called from
multiple threads, this cause congestion, and the performance penalty is even

worse for a massively parallel platform like Xeon Phi comparing to CPUs.

In order to get thread-safe behavior in our multi-threaded application, we
can use the function rand r(). Unlike rand(), rand r() uses a pointer to
an unsigned int to store state between calls, so each different thread can
use its own state. Therefore, rand () calls should be replaced with thread-
safe rand r() to avoid performance penalty (Figure 5.6) and ensure code

correctness.

0.08

0.06

@ cpu,rand()
®—@ mic,rand()
A&—A cpu,rand_r()
&4 mic,rand_r()

0.04

Performance, 1/(Total wall time)

0.02

oo . . i
24681216 24 32 64 128 228 256
OMP threads

FIGURE 5.6. Performance using different random number generators.

We also tested other more advanced random number generators in our code,
such as Mersenne Twister, and PCG. They offer better statistical quality in
the pseudo-random number sequence, and also have great multi-threading
efficiency. However, the overall performance gain is not significant, since the
thread-safe random number generator itself is not very time consuming com-

paring to other parts of the code.
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e Move memory allocation out of the OpenMP region In our implementation,
the hybridization matrix needs to be updated for each accepted Monte Carlo
move, and the size of the matrix depends on the number of segments in each
channel. In addition to the old and updated matrices, temporary storage for

the intermediate matrices used in the fast update process are also required.

We find that the repeated allocation and free of memory used for the said
matrices poses a huge performance penalty. A better practice would be al-
locating all the space for the matrices before the OpenMP region, and free
after the threads join. This sets a limit on the max size of the matrices. For
a low temperature, more segments are expected, which means the size of

the matrices would be bigger, and thus a larger space needs to be assigned

(Figure 5.7).

016 //////////////“\\\\\.</<AV —
B
il s
b

0.14}

0.12

A
0.10 /// %
_zrZ '\\
008 / X,\ﬁ

0.041| /‘
b

—a
0.02 / cpu
+ mic

e—e mic_optimized

Performance, 1/(Total wall time)

0.00

162‘432 64 123 228 256 512
OMP threads

FIGURE 5.7. Performance before and after memory allocation optimization for MIC.
e Improve data access pattern in kernel by

— Separating loops to avoid cache bank conflict
— Interchanging loops to guarantee Unit-Stride Access

— Aligning elements in array
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— Enhancing matrix storage

With these optimization methods, we improved CPI rate, L1 hit ratio, and vector-

ization intensity. We achieved more than two times speedup comparing to original

CPU code.

5.7 Preliminary Results and Discussion

We benchmark our CTQMC solver with another Hirsch-Fye code and compare the
results, as shown in Figure 5.8. This verifies that we can match the results of other

impurity solvers.

— CTQMC
— Reference

10 20 30 40 50
3

FIGURE 5.8. Results for G(7) on Anderson Model, from our code comparing with

weak coupling results. Here 8 = 50, U = 2, p = 1, v = 0156, D = 1

A = v%(log(iw + D)log(iwD))

)

Although the formalism shown in 5.3 is derived for single impurity Anderson
model, the CT-HYB algorithm can be extended to more orbitals, or other models
easily, by changing the Hy,. term in the Hamiltonian and treating the term exactly.

For example, we can easily extend the code to two or more orbitals, and use exact
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diagonalization to calculate the contribution of the local term. For more orbitals, a
Krylov solver[172] can be used to reduce the cost of trace computation, as discussed
in section 5.6.3.

One of the possible application of the solver is the Dynamical Hubbard Mod-
els. The Dynamical Hubbard models contain the idea of break the electron-hole
symmetry, due to the insufficiency of conventional Hubbard model in describing
some scenarios in real materials, where important physics happens in transport
and other processes. With the new methods applied, we hope one can answer the

question about superconductivity in the Dynamical Hubbard model.
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Chapter 0
Conclusion

In this dissertation, the work on two projects is covered.

In the Three-Dimensional Edwards-Anderson Model project, we developed an
efficient GPU implementation of Monte Carlo simulation with parallel tempering
and multispin coding technique. We achieved world-leading performance in GPU
implementation on this model. We then used the code to study the model in an
external field. Our results show that susceptibilities are not normally distributed
and mean is dominated by rare events. As a result, a huge number of disordered
samples must be included in the average. With the current method and computing
power, we cannot gain a definitive answer on the nature of the spin glass phase.

In the Hybridization Expansion Continuous Time Monte Carlo Solver, we de-
livered an impurity solver on the Intel Xeon Phi platform, using the fast update
procedures. We showed that this code is twice as fast than our original CPU
implementation, and can be easily extended to include more orbitals and compli-
cated interactions. In collaboration with Roozbeh Karimi and Prof Koppelman,
we developed a Krylov solver for systems with more orbitals. This impurity solver
combined with the density functional theory and dynamical mean field theory can
be used for calculations on multi-orbital systems, such as cuprate and iron-based

superconductors.
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ChapterAppendix A

Notes on Covariance Matrix Spectrum

A.1 Covariance Matrix Spectrum

The covariance matrix is defined as

1 a 1 o 1
M“’ﬁ:NZSi( )555)—N255 )NZSJ('B)
7 7 j

where «, [ are replicas of the same disorder configuration, but from different
Markov chains.

One can then examine the spectrum use Singular Value Decomposition, since
the covariance is always a positive definite matrix. We then calculate the average
of the singular values over different disorder configurations. Figure A.1 shows the

singular value calculated with this method, using the data we gathered on Shelob.

— =138
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FIGURE A.1. Singular values of covariance matrix for 3D EA model, h=0, L=8, averaged
over 1000 disorder realizations. Each matrix is formed from 140 samples of the same
disorder realizations.
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A.2 Different Phases/Scenarios

Here we discuss a few possible scenarios of this model.

1. High temperature or paramagnetic phase

The diagonal elements in the covariance matrix would be

)

1 o _
Mo =1- (Y s ~1-0(N)
the off diagonal elements would be

1 a 1 ! B
Mo pta = sti( 57— ¥ > s )N S 8P~ o)

In general the matrix is not singular, and the distribution should look like

the 5 = 0.1 line in Figure A.1.

2. Ferromagnetic phase

In the ferromagnetic limit, the system has two symmetric degenerate states.
All the replicas should then fall into one of these states. The vacuum cancels
the contribution from the overlap, and therefore all elements in the matrix

would be close to zero.

3. Droplet picture

There is only a pair of degenerate ground states in the Droplet picture. In
this case, the matrix would be composed with only +1 and —1, since the
vacuum term is zero on average. The matrix is singular and has only 1 finite

singular value (Figure A.2).

4. Replica Symmetry Breaking (RSB) picture

In RSB, there is a tree-like hierarchy in the structure of phase space. We can

assume the overlap also follows a tree structure (Figure A.3).
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FIGURE A.2. Theoretical distribution for the eigenvalues of the Droplet model, N=128.
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Figure 3.12: Sketch of the tree structure of ultrametric overlap. The over-
lap between a pair of states (represented by ‘leaves’ of the tree) depends
only on how many levels one must go up to find a ‘common ancestor’.

FIGURE A.3. Illustration of the tree structure. From Fischer and Hertz [175], page 93

For simplicity, we used a binary tree to represent the structure of states. In

equilibrium, all replicas should fall onto one of the leaves of the binary tree.

The depth of the tree determines the degree of degeneracy of ground state. A
larger depth is favorable since RSB predicts an infinite number of degenerate
ground states in the thermal dynamic limit. We used 32, which corresponds
to 232 ground states. The distribution of ¢ levels shows the similarity of

ground states. We start with a power-law distribution. We can then use this
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tree structure to investigate the behavior of covariance matrix in the RSB

picture.

To mimic the simulation, we generate multiple sets of samples. Each set
contains 140 samples. Each sample is a ground state, i.e, a random leaf of
the binary tree. We can then find the overlap between each pair of samples
from their position on the tree, form the covariance matrix and calculate the

singular values. We average over 2000 sets of samples (Figure A.4).

— Simulation,beta=1.8
— RSB tree

log10(SVD)
|

2}

-3l

4

0 20 40 60 80 100 120 140
Index

FIGURE A.4. Comparison between the simulation data and the RSB tree test. For the
RSB tree, we used a tree depth of 32, gmaz = 1.0, ¢min = 0.2, power-law distributed ¢
levels.

We see some interesting similarities in the distribution between the singular
values we generated using this method, and the singular values we calculated

from real simulation data.

A.3 Distribution of Eigenvalues

To understand the spectrum better, we look at some of the distribution of a few

eigenvalues (Figure A.5 and A.6). Here \; stands for the ith largest eigenvalue.
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FIGURE A.5. Histogram of the largest two eigenvalues, § = 1.8. The distribution is not
symmetrical and non-Gaussian.
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FIGURE A.6. Histogram of the three eigenvalues, A1g,A20, Asg, for 5 = 1.8 and § =0.1

From the distribution, we see that the distribution of first few largest eigenvalues
at § = 1.8 (Figure A.5) is not Gaussian. All the other data are almost normally
distributed (Figure A.6).

Take A\, = 1.8 for example. It seems that for a portion of realizations, \; is
much larger than the smaller eigenvalues, i.e. there are more than one large eigen-
values. For other realizations \; is on the same order and has similar distribution
with the smaller eigenvalues, i.e. there is only one large eigenvalue.

The disorder realizations can be very different from each other. Previously for

the droplet model, we only looked at one disorder configuration, and this may not
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be enough. We need to do more realizations and examine the distribution/average
to see if all the realizations have only 1 large eigenvalue.

The largest eigenvalue of the covariance matrix is the variance in the direction
that the data varies the most. The second largest eigenvalue is the the greatest
variance among the directions that are orthogonal to the first eigenvector, and so
on. So if there is only one large eigenvalue, this means there is only one pair of
states that are dominant, since the system only varies in that one direction. In any
other direction, the energy penalty to make a move is much higher and thus the
variance is much smaller, hence a smaller eigenvalue.

Counting degenerating ground states is possible for some toy systems. For exam-
ple, for a system of three spins in a triangle that have nearest neighbor interaction.
If all interaction are ferromagnetic, then the system is ferromagnetic, and has only
two degenerate states. This corresponds to the case with only one dominant eigen-
value.

Consider the same system with all anti-ferromagnetic bonds. Then the system
has six degenerate ground states, with a set of four possible values of overlap be-
tween each other. The corresponding covariance matrix has two finite eigenvalues.
Another example is a system of four spins in a square, with three anti-ferromagnetic
bond and one ferromagnetic bond. Then the system has eight degenerate ground
states, with a set of nine possible values of overlap between each other. The corre-

sponding covariance matrix has three finite eigenvalues.

A.4 Data from Droplet Model

We ran the model with a weakly correlated random disorder (van Hemmen model),

where

Jij = miC; + G
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The distribution of q is shown in Figure A.7. The distribution of eigenvalues is
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FIGURE A.7. The distribution of q in the droplet model.

shown in Figure A.8(a). The histogram of the largest few eigenvalues is shown in

Figure A.8(b).

log10(SVD)
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FIGURE A.8. Singular values of covariance matrix, and the distribution for 3D droplet
model, h=0, L=8, averaged over 1000 disorder realizations. Each matrix is formed from
100 samples of the same disorder realizations.

Comparing the result from Droplet model and EA model, we do not see much

difference. Even there is a difference between the Droplet model and EA model, it

seems the system size we use is not large enough to show it.
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A.5 Data from RSB Model

We use the Sherrington-Kirkpatrick Model here:
He-—0 S
== ij0i0]
VN 1<i<j<N
This model has an equilibrium phase transition at 7, = 1. The distribution of

eigenvalues is shown in Figure A.9. At low temperature, the data seems very similar

i —  3=0.1
1& — p=2.0||

log1l0(sv)

=5

i i i i i i
0 10 20 30 40 50 60 70
index

FIGURE A.9. Singular values of covariance matrix for SK model, h=0, N=64, averaged
over 280 disorder realizations. Each matrix is formed from 64 samples of the same disorder
realizations.

to that of EA model and Droplet model.

A.6 Comparison Among Three Models

We further inspect the temperature dependency of the eigenvalues for different
models,by plotting the (second largest eigenvalue of the covariance matrix / linear
size of the covariance matrix) vs (3/5.) for three different models, where . is the
critical beta for each model, as shown in Figure A.10.

At first glance, the second largest eigenvalue reveals a big difference among the
three models. The assumption is that the droplet picture has a simple structure in

its phase space, thus, all eigenvalues except the largest will converge to zero at zero
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FIGURE A.10. Temperature dependency of the largest eigenvalue and second largest
eigenvalue, for EA, droplet and RSB model.

temperature, while the RSB picture has a rich structure in the phase space and
the second largest eigenvalue will persist. From the figure, it may seem the data for
EA model is more droplet-like. They both have a peak near the critical beta and
goes down at the lower temperature. However, when going into lower temperatures,
we see that the second largest eigenvalue for SK model shows a similar trend, by

decreasing at lower temperatures (Figure A.11).

Second, Third, and Fourth eigenvalues of SK model
T T T T T T T
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FIGURE A.11. The second, third and fourth largest eigenvalues for RSB model vs 8/f..

In conclusion, the data from the study on the covariance is not conclusive to

discriminate the models and decide the nature of the spin glass phase.

119



Vita

Sheng Feng is born and raised in Wuxi, China. He went to University of Science
and Technology of China for his bachelor’s degree in physics, and graduated in
2010. After that he has been studying in Louisiana State University, in pursuit of

his Ph.D. degree in physics. He is expected to graduate in May 2016.

120



