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ABSTRACT
 

This work is devoted to the development of novel photon-detector models at room temperature 

using quantum optics elements. This work comprises of two photon-number-resolving detector 

(PNRD) models, and the application of PNRD in LIDAR. 

The first model is based on using a two-mode squeezing device to resolve photon number at 

room temperature. In this model we study the average intensity-intensity correlations signal at  
the output of a two-mode squeezing device with |N) |α) as the two input modes. We show 

that the input photon-number can be resolved from the average intensity-intensity correlations. In 

particular, we show jumps in the average intensity-intensity correlations signal as a function of 

input photon-number N . Therefore, we propose that such a device may be deployed as photon

number-resolving detector at room temperature with high efficiency. 

In the second model we study the atom-vapor based PNRD from first principles, including 

quantum mechanical treatment of the electromagnetic field. We analyze a photon detector model 

that combines coherently controlled absorption of light and resonance fluorescence to achieve pho

ton counting at room temperature. In particular we identify the fundamental limits to this particular 

scheme of photon detection. We show that there exists a time-energy uncertainty between the inci

dent pulse strength and the time period of the incident pulse. We verify the role of a large ensemble 

of atoms in boosting the efficiency of such a detector. 

Lastly, we show the application of PNRD technique to enhance laser range finding and light 

detection and ranging. We present a technique that improves the signal-to-noise-ratio (SNR) of 

range-finding, sensing, and other light-detection applications. The technique filters out low photon 

numbers using PNRD. This technique has no classical analog and cannot be achieved with classical 

detectors. We investigate the properties of our technique and show under what conditions the 

scheme surpasses the classical SNR. Finally, we simulate the operation of a rangefinder, showing 

improvement with a low number of signal samplings and confirming the theory with a high number 

of signal samplings. 
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CHAPTER 1
 
INTRODUCTION
 

We are in very exciting times of quantum optics and communication. Sometime ago quantum 

computers, and quantum networks were just theoretical ideas and their full implementation seemed 

so distant. However, in recent years there has been an astounding progress in the field. As the 

Moore’s law is beginning to hit the physical limit, the inclusion of quantum effects is indispensable 

with small scale size of transistors [1, 2]. The launch of the Chinese quantum satellite Micius in 

2016, has led to a lot of excitement in both Physics community as well as the general public. A 

major accomplishment of Micius is long-range secure quantum communication. 

Qubits are already being used for creating secret keys, to encode classical information. This 

technique is known as quantum-key distribution (QKD). The record distance for QKD to date is 

400 Km at 6.5 kbit/s, which has been achieved by the group at the university of Geneva, led by 

Alberto Boaron [3]. In addition to quantum communication, quantum effects can lead to tremen

dous development in the field of quantum metrology with improved resolution, and sensing. These 

advances have also lead to physical challenges that need to be tackled, in order to realize the full 

potential of quantum technologies. 

Another important fundamental technology requirement for the success of quantum commu

nications, and network, are reliable single-photon detectors (SPD). The single photon technology 

connects the classical to the quantum world. Single-photon technology can be used for example 

in Bell state testing that can answer fundamental questions of non-local realism [4], and genera

tion of verifiable random numbers [5, 6]. Single-photon technologies operate at the fundamental 

limit of electro-magnetic signal strength, hence find applications in various sensors [7, 8]. There 

are several applications that rely on the single-photon technology, like quantum cryptography pro

tocols [9, 10, 11], quantum repeaters for use in quantum communication [12, 13], and quantum 

computation [14]. For example, in boson sampling the effect of SPD is clearly demonstrated [15]. 

Another example is quantum receivers that are important in all quantum network protocols as 
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they need to discriminate between non-orthogonal states at error rates below the standard quantum
 

limit (SQL). Reliable SPDs are vital to close the loop-holes that exist in the fundamental tests of 

quantum mechanics pertaining to non-locality [16]. 

The desired characteristics of reliable SPDs includes high detection efficiency, low dark counts, 

fast response time, and low time-jitter. In several applications of quantum computation, and the 

study of quantum nature of light, photon-number resolving detectors (PNRD) play a vital role. 

PNRD should be able to unambiguously tell the difference for example, between one, and two 

photons. Most of the current photon-number-resolving detectors either have low efficiency or are 

plagued with high dark count rates and low response time. Moreover, they have to be maintained 

at extremely low temperature to yield high efficiency. For single-shot measurements, high photon-

number detection efficiencies is required compared to ensemble based applications. PNRD can 

also be used to recover photon statistics, given low uncertainty in the positive-operator valued 

measure (POVM) elements. The applications for PNRD include quantum metrology, quantum 

imaging, quantum information, and foundations of quantum mechanics. The most popular type of 

PNRD are the Transition-Edge Sensors (TES), but these require advanced cryogenic equipment, 

which are not easily accessible [17, 18, 19]. 

In this thesis, I will present two theoretical models for photon detectors. Both of them are 

meant to operate at room temperatures. The schemes presented in this thesis will be ideal for 

applications in a variety of fields that require photon-statistics such as astronomy, microscopy, 

quantum cryptography, and optical quantum computing such as boson sampling. 

In the rest of this introduction, I will give a brief description of the theory necessary to help 

the reader understand the topics presented. First I will develop some key concepts in quantum 

optics including coherent light, single-mode squeezing, two-mode squeezing, non-linear process 

to squeeze light, and the respective photon statistics of light sources mentioned. Then I will talk 

about two-level atomic system and extend their theory to three-level atoms and discuss their use in 

the field of quantum technology. 
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In chapter 2, I will present a theoretical model for photon-number resolving detector at room
 

temperature, using two-mode squeezing device. Next, in chapter 3, another room temperature 

photon-number resolving detector using an atomic vapor will be presented. In chapter 4, I will 

present an application of PNRDs in one particular sensing method, namely, laser range finding and 

light detection and ranging (LIDAR). Increasing the range requires sensitive detectors, and more 

recently, single-photon detectors (SPDs) [20], and photon-number-resolving detectors (PNRDs) 

[21, 22] have been used for this purpose. We know that many proven quantum effects are not a 

result of using quantum states, but of using quantum detection of these states [23]. In this chapter 

I will discuss how using PNRDs with threshold detection can give quantum advantage, hence 

signal-to-noise ratio improvement. 

1.1 Quantum Optics 

In this section starting from the Maxwell’s equation, I will discuss the quantization of the field, 

the quadrature operators to define the field. Then I will review the coherent state of light, and the 

squeezed light, as well as their photon statistics [24]. 

The Maxwell’s equations to describe the light field in free space are, 

∂BV × E = − 
∂t 
, 

V × B = µ0t0 
∂E 
∂t 
, 

V · B = 0, 

V · E = 0, (1.1) 

where E, and B are the electric and magnetic fields respectively. The solution to the Maxwell’s
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equations satisfying the boundary conditions,
 

2ω2 

Ex(z, t) = q(t) sin(kz) (1.2)
V t0 � µ0t0 

� 2ω2 

By(z, t) = q(̇t) cos(kz) (1.3)
k V t0 

where ω is the frequency of the field, and k = ω/c, q(t) acts like the canonical position, and 

p = q̇(t) is the canonical momentum. Now, the classical Hamiltonian of this single-mode field is 

equivalent to that of a simple harmonic oscillator, H = 1
2 (p

2 + ω2q2), of unit mass, and the E, 

and B fields are the canonical position and momentum. Now, we replace the canonical variables 

q and p with a pair of non-commuting operators, q̂ and p̂ such that [q̂, p̂] = ifÎ . The Hamiltonian 

then becomes Ĥ = 1
2 (p̂

2 + ω2q̂2). Next, we rewrite q̂ and p̂ in terms of a pair of non-Hermitian 

annihilation (â), and creation (â†) operators defined as, 

1 
â = (ωq̂ + ip̂) (1.4)

2fω 

1 
â† = (ωq̂ − ip̂). (1.5)

2fω 

  
The annihilation and creation operators obey the commutation relation ˆ a† = 1.a, ̂ Using these 

results, we can write the quantized version of the field as 

Êx = E0(â + â †) sin(kz), 

B̂y = −iB0(â − â†) cos(kz), (1.6) 

where E0, and B0 represent the electric, and magnetic fields per photon. Also, from Eq. 1.6, we 

see that Ê and B̂ do not commute. Using this new set of operators, the Hamiltonian can now be 
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� �written as
 
1ˆ †ˆH = fω â a + . (1.7)
2 

The operator â†â is defined as the number operator n̂, which gives the photon number in the 

field. Lastly, we introduce the so-called “quadrature" operators X̂1, and X̂2 defined as, 

ˆ 1 †)X1 = (â + â (1.8)
2

X̂2 = 
1
(â − â†). (1.9)

2i

Finally, we are able to write the quantized electromagnetic field in terms of the quadratures in the 

following way 

Êx = 2t0[X̂1 cos(ωt) + X̂2 sin(ωt)) sin(kz]. (1.10) 

1.1.1 Coherent state 

The radiation emitted by a classically oscillating current distribution is represented by a coher

ent state |α). It is the state of light field generated by most lasers. The eigenstate of annihilation 

operator is a coherent state, 

â|α) = α|α). (1.11) 

The coherent state representation in the number state bases can be written as 

∞� αn 
|α|2/2|α) = e √ |n). (1.12) 

n!n=0 

Another way to describe coherent states is that they are the displaced form of harmonic oscillator 

ground state, 
†−α∗ˆˆ ˆ aDα|0) = |α), where Dα = e αâ . (1.13) 
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and D̂α is the displacement operator, which displaces the vacuum state by an amount α as depicted 

in Fig. 1.1. Also, the coherent light states are minimum uncertainty states, LX̂1LX̂2 = 
4
1 . 

Figure 1.1. Phase-space picture showing the different states of light. The circle at the origin 
represents quantum vacuum state. The displaced blue circle represents the displaced vacuum state 
a.k.a coherent light state. The angle θ represents the phase angle of the field. The pink ellipse at 
the origin is a squeezed vacuum state and the shifted pink ellipse represents the displaced squeezed 
vacuum, by amount |α|. 

1.1.2 Squeezed Light 

In the previous section we found that the coherent states minimize the uncertainty states and 

both the quadratures show equal uncertainties LX̂1 = LX̂2 = 1
2 . A squeezed state also minimizes 

the uncertainty product, but the quadratures exhibit unequal quantum fluctuations as shown in 

Fig. 1.1. In other words, the quantum fluctuations in one quadrature are reduced below their values 

seen in coherent state (LX̂1 < 1
2 or LX̂2 < 1

2 ). Next, I will discuss how squeezed light is 

generated, and define the unitary squeezing operator. The generation of squeezed light occurs via 

interaction between light field and medium. The light field interaction with the medium results in 

non-linear polarization response proportional to χ(i), ith order susceptibility. The Hamiltonian in 

the interaction picture can be written as 

ˆ = if(χ(2)α ∗ ˆ2 − χ(2)αˆHI a a †2), 

ˆ = if(α2χ(3)ˆ2 − α2χ(3)ˆHI a a †2), (1.14) 
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Figure 1.2. The schematic diagram of parametric-down conversion to produce squeezed light. 
(a) The top figure shows the degenerate-parametric down-conversion where the signal and idler 
photons are in the same modes. The bottom figure shows the non-degenerate-parametric down 
conversion, where the signal and idler photons are in different modes. (b) Energy and momentum 
conservation between the pump (p), signal (s) and idler (i) photons [4]. 

where, Eqns. 1.14 represent the degenerate parametric amplification process, and degenerate four-

wave mixing process respectively. The non-linear medium χ(2), χ(3), interacts with the pump light 

(pulsed or continuous-wave laser) of frequency ωp which decays into two photons of equal fre

quency ωp/2, as seen in Fig. 1.2(a). The squeeze operator obtained from the interaction Hamilto

nian can be defined as   
Ŝ(ξ) = exp

1
(ξ ∗ â2 − ξâ†2) , (1.15)

2

where ξ = reiθ, r is the squeezing parameter, and θ is the squeezing angle. The action of squeezing 

operator on the vacuum gives a squeezed state and the quantum fluctuations in the quadratures for 

θ = 0 are LX̂1
2 = 1

4 e
−2r, and LX̂2

2 = 1
4 e

2r. So far I have discussed single-mode squeezed light. 

Now I will briefly introduce the two-mode squeezed light. The states produced by non-degenerate 

parametric amplification are called two-mode squeezed vacuum states (TMSV) and are entangled. 

The interaction Hamiltonian is given as, 

= ıfχ(3)(α ∗ ˆ †ˆHI ab̂ − αâ b†) (1.16) 
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which represents the non-degenerate parametric down-conversion where the pump field (α) is con

verted into two photons in modes a, and b shown in Fig. 1.2(a). Another way to generate the TMSV 

is by using the process of four-wave mixing, which is also a χ(3) process. In this case, instead of 

three waves, there are four waves. Two pump fields are converted into two correlated fields, signal 

(s) and idler(i) such that ωp1 + ωp2 = ωs + ωi. 

1.2 Quantum Treatment of Atom-Field Interaction 

The density matrix of a quantum system can be defined as 

ρ̂ = Pψ|ψ)(ψ| (1.17) 
ψ 

The Hamiltonian for the atom-field consists of unperturbed Ĥ0, and interaction part ˆ = −eˆH1 xE(t), 

H0 = fωa|a)(a| + fωb|b)(b|
 

H1 = −(Pab|a)(b| + Pba|b)(a|)E(t). (1.18)
 

where Pab, Pba are the matrix elements of the electric dipole moment, and the field of the atom 

is given by E(t). Also, a and b refer to the two atom levels. We derive the equation of motion 

for the density matrix elements, and obtain the probability of the atom in levels a, and b using 

ρ̇̂ = −f 
i [H, ρ]. Also, we need to include the decay of atomic levels due to spontaneous emission. 

We can add the phenomenological decay term to the equation of motion for density matrix. The 

matrix elements of the spontaneous decay, Γ is (n|Γ|m) = γnδnm. Therefore the equation of 

motion becomes, 
i 1

ρ̇̂ = − [H, ρ] − {Γ, ρ}. (1.19)
f 2
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We can easily extend this to many level systems, then the ijth element of the density matrix is
 

ˆ̇ρij = − 
i 
f 

(Hikρkj − ρikHkj ) 
k 

− 
1 
2 

(Γikρkj + ρikΓkj ). (1.20) 
k 

The Hamiltonian for a two-level system can be extended to explain more complicated systems such 

as a laser, as well as a simplified picture of spontaneous emission [25]. 
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CHAPTER 2
 
ROOM-TEMPERATURE PHOTON-NUMBER-RESOLVED DETECTION
 

USING A TWO-MODE SQUEEZER 

2.1 Introduction 

Photon-number-resolving detectors (PNRD) are crucial to the field of quantum optics, and 

quantum information processing. PNRDs can be useful in two major classes of application: Single-

shot measurement of photon-number, and ensemble measurements for photon number statistics. 

Single-shot photon number measurement is useful in the field of linear optical quantum computing, 

quantum repeaters, entanglement swapping, and conditional state preparation [26, 27, 28, 29, 30]. 

Ensemble-measurement based PNRDs can be used in quantum interferometry for measuring pho

ton statistics, characterization of quantum light sources, and improving sensitivity and resolution. 

[31, 32, 33, 34, 35]. For example, a true single-photon source is important for quantum key dis

tribution. The ultimate security of the key can be compromised if the source emits more than one 

photon in the same quantum bit state. Hence, a photon-number resolving detector that can char

acterize the single-photon source accurately is vital for the success of quantum key distribution 

[36, 37]. Also, the reconstruction of photon-statistics of unknown light sources by ensemble mea

surements can be used to determine the nature of the light source (classical or non-classical), the 

and detection of weak thermal light and coherent light. Therefore, a desirable feature of a PNRDs 

is accurate detection of the number of photons. In this paper, we propose a room-temperature 

photon-number-resolving detector using a two-mode squeezing device that finds its application in 

the reconstruction of photon statistics of unknown light states, and characterization of non classical 

light resources. For example, source characterization for enhanced quantum key distribution, and 

detection of weak thermal light. 

This chapter previously appeared as Elisha S. Matekole, Deepti Vaidyanathan, Kenji W. Arai, Ryan T. Glasser, 
Hwang Lee, and Jonathan P. Dowling, "Room-temperature photon-number-resolved detection using a two-mode 
squeezer", Physical Review A 96, 053815, Published 7 November 2017. The copyright of this article is owned by 
American Physical Society. The author’s right to use the article in this dissertation is granted in “Transfer of Copy
right Agreement” shown in the appendix. 
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Commonly used photon detectors are the bucket or on-off detectors. These detectors can
 

only distinguish between zero or more photons. Photon-detectors typically include avalanche-

based photodiodes, such as the visible light photon counters [33, 38], two-dimensional arrays of 

avalanche photodiodes [39, 40], time-multiplexed detectors [41, 42, 43], photomultipliers [44], and 

weak avalanche-based PNRD [45]. Most of these detectors have a high dark-count rate at room 

temperature, and are not sensitive to photon number greater than one. Therefore, they cannot be 

used in applications that require photon statistics. For example, the time-multiplexed detectors, 

split the incident pulse of photons into several temporal modes, which can be detected with non

photon-number-resolving detectors. One way to do this is to store the incident light pulse in a fibre 

loop, an optical switch couples the light pulse to the loop. Another asymmetric coupler allows only 

one photon per pulse to leave the cavity. Then a SPD is used to detect the output, and reconstruct 

the number of photons in the pulse [46]. The issue with this technique is the long response time. 

Also there is an overlap between the residual photons from the previous pulse and the current pulse. 

This leads to an over estimation of the number of photons. Another type of PNRD is a transition 

edge sensor (TES), which is a superconducting microbolometer or a superconductor based ther

mometer. These detectors operate near the superconductor to metal transition temperature, such 

that during the transition a small change in the temperature there is a big increase in the resistance 

which can be used to measure the energy. These detectors are highly efficient but they operate at 

extremely low temperatures and have a slow response time depending on the thermal properties of 

the material [37, 17, 18, 19]. 

Another superconductor-based PNRD uses parallel superconducting-nanowires, which can re

solve finite number of photons at telecommunication wavelengths [47, 48]. Recently, atomic-

vapor-based photon-number-resolving detectors have also been proposed [49]. The merit of any 

PNRD is determined by detector efficiency, dark count rate, and response time. Most of the current 

photon-number-resolving detectors either have low efficiency or are plagued with high dark-count 

rates and low response time. Moreover, they have to be maintained at extremely low temperature 

11
 



� � 

to yield high efficiency.
 

A two-mode squeezed vacuum (TMSV), also known as the twin-beam state, is an entangled 

state containing strong correlations between the two beams. However, individually these modes 

are not squeezed and resemble a thermal state [50, 51, 52]. Here I will discuss the properties of 

two-mode squeezed vacuum briefly. As discussed in chapter one, the two-mode squeezed vacuum 

operator is given by 

Ŝ2(ξ) = exp(ξ ∗ âb̂ − ξâ†b̂†). (2.1) 

Also, the two-mode squeezing operator cannot be written as a product of two single-mode squeez

ing operators, therefore, the two-mode squeezed light is highly correlated. In other words the 

quantum noise of the two modes are not individually squeezed, but as a superposition of the two 

modes. The following representation of the field quadrature further illustrates this, 

1
X̂1 =

23/2 
(â + â † + b̂ + b̂†), 

†X̂2 = 
1

(â − â + b̂ − ̂b†). (2.2)
23/2i

The field quadratures obey the commutation relation X̂1, X̂2 = 
2 
i . Let us call the two field 

modes produced by the interaction of the coherent light state with the non-linear medium as a, and 

b. The transformation of the field operators by two-mode squeezing field can be derived by using 

Baker-Hausdorff lemma, 

Ŝ2(ξ)
†âŜ2(ξ) = â cosh r − e ıθb̂† sinh r, 

ˆ ıθ ˆS2(ξ)
†b̂Ŝ2(ξ) = b̂ cosh r − e a † sinh r. (2.3) 

Here the squeezing angle is represented by θ. When θ = 0, the fluctuations in the two-mode 

1 1 2rsqueezed quadratures are (ΔX̂1)2 = e−2r, and (ΔX̂2)2 = e . It is interesting that this is the 
4 4 

same expression as that of single-mode squeezed light. The Fock state representation of the TMSV 
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∞

1 |ξ)2 = (−1)n e ınθ(tanh r)n|n, n). (2.4)
cosh r 

n=0 

Readers interested in detailed derivations of this state are advised to refer to ref. [24]. The average 

number of photons in each of the two modes is n̂a = n̂b = sinh2 r, and both the modes follow 

super-poisson statistics. When we trace over one of the two modes, the field in the other mode is 

a thermally distributed state with average photon number of sinh2 r. As mentioned earlier their 

exists extremely strong correlations in the two modes. Therefore the intensity difference of these 

twin-modes is zero, and the variance of the intensity difference is also zero. 

(Δ(n̂a − n̂b)
2) = Δ(n̂a)

2 + Δ(n̂b)
2 − 2 cov(n̂a, n̂b), (2.5) 

where the covariance is calculated to be 1
4 sinh

2 2r. This indicates the presence of strong intermode 

correlations. When the covariance of two light modes is zero, it implies that there is no correlation 

between the modes. Due to the correlations and symmetry between the two modes, the average 

photon number in each mode is the same. Also, the covariance between the two modes describe 

the inter-mode correlations. TMSV is produced experimentally via non degenerate parametric 

downconversion or four-wave mixing [24, 53]. Recently TMSV light has proven to be extremely 

useful in quantum metrology [54, 55] and quantum information processing [56]. 

2.2 Photon-Number Resolving Scheme 

The setup used for the proposed scheme is shown in Fig. 2.1. An unknown N -photon state 

is incident on one port of the FWM and a coherent-light state with average photon number n̄α is 

incident on the second port. The average intensity-intensity correlations (Ĉ) and the noise in the 

intensity-intensity correlations ΔĈ are measured at the output to detect the input photon number. 
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Figure 2.1. The schematic diagram of a room-temperature number-resolving photon detector. The 
two-mode inputs to the four-wave mixer (FWM) are N -photon Fock states, and a coherent state 
of light |α), âin(âout) and b̂in(b̂out) represent the mode operators of input (output) light beams. 
The average intensity-intensity correlations and the noise in the intensity-intensity correlations are 
detected at the output. The losses due to imperfect squeezing and the inefficiency of the photon 
detectors, are modeled by adding fictitious beam splitters each of overall transmissivity η, where 
the vacuum modes are denoted by |0)1 and |0)2. 

The operators â and b̂ after interacting with the two-mode squeezer become 

â→ ˆ b†, ν aµ − ̂

b̂ → b̂µ − â†ν, (2.6) 

where µ = cosh(r), and ν = sinh(r). Intensities (N̂a) and (N̂b) and the intensity difference (M̂− 
ab) 

at the two output modes are 

(N̂a) = n̄s(n̄α + N) + N + n̄s, 

(N̂b) = n̄s(n̄α + N) + n̄α + n̄s, 

(M̂ab) = N − n̄α, (2.7)− 

where n̄s is the average number of photons in a single-mode squeezed vacuum and is fixed at the 

value of two in this calculation, corresponding to 10 dB of squeezing [57, 58]. 

The above equations show that correlations and symmetry between the two modes has been 

disturbed because of different input modes. In particular (M̂ab) is identically zero for pure TMSV. − 

We exploit this change in the correlations between the two beams to resolve the number of photons 
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Figure 2.2. (a) and (b) show the average intensity-intensity correlations (Ĉ) and the noise ΔC in 
the intensity-intensity correlations as a function of input photon number N incident on one port 
of a two-mode squeezing device with n̄s = 2 respectively: Both (Ĉ) and ΔC increase in steps as 
the input photon number changes in increments of one. When a single photon is incident, there is 
huge jump in (Ĉ) and ΔC. (Ĉ) and ΔC for vacuum as input in the second mode shows smaller 
step sizes than those with coherent-light inputs. Hence the coherent-light state provides a boost 
to the (Ĉ) and ΔC signals. Also this shows that even in the presence of coherent state amplitude 
fluctuation, we still see the steps in the signal and the noise. Therefore, for a slowly fluctuating 
coherent state, we expect to observe slowly fluctuating signal while still maintaining the steps, 
representing the input photon number. 

in the input by detecting the average intensity-intensity correlations at the output. The average 

intensity-intensity correlations signal is calculated from 

(Ĉ) = (N |a(α|bN̂aN̂b|α)b|N)a, (2.8) 
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and is given by
 

  
(Ĉ) = α2 + 1 (N + 1) sinh4(r) 

+ α2N(1 + sinh2(r))2   
+ α4 + α2(2N + 3) + (N + 1)2 sinh2(r) 

(1 + sinh2(r)). (2.9) 

Figure 2.3. The average intensity-intensity correlations signal as a function of n̄α, and n̄s. The 
signal attains the maximum value at n̄α = n̄s. 

The average intensity-intensity correlations and the standard deviation (noise) of the average 

intensity-intensity correlations as a function of the input photon state are plotted in Fig. 2.2, (see 

appendix for the expression of ΔC). From the figure we can see that there is a huge jump in 

both (Ĉ) and ΔC even when a single photon is incident on the FWM. What is interesting is the 

amplification of the noise in the intensity-intensity correlations when a single photon is detected. 

Hence, a large change in ΔC is an indicator of the presence of photon. 

In Fig. 2.2, we compare the amplitude of the signal for vacuum and coherent-light input respec

tively. The steps for the case of nonzero coherent-light input are greatly amplified compared to the 

vacuum, and hence this provides a boost to the intensity-intensity correlations signal. Thus the 

purpose of having coherent light as input to the second mode is to amplify the output signal, while 
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Figure 2.4. Plot comparing the step-size of the average intensity-intensity correlations signal, with 
the noise. 

still displaying the steps as the photon number changes. Our scheme does not require a very strong 

coherent light source, therefore the possibility of the coherent-light producing its own twin-beam 

state is ruled out. In order to have a well calibrated nonlinear gain, a feedback system to control 

the output measured coherent-state amplitude can be used. This will be equivalent to controlling 

the gain, while showing the jumps in the (Ĉ) or ΔC signals. Both (Ĉ) and ΔC display steps as 

the number of input photon is increased in steps of one. Therefore, it is possible to know the input 

photon number by counting the height of steps in (Ĉ) or ΔC. In Fig. 2.3 we show that the (Ĉ) 

signal is maximum when both n̄α, and n̄s are equal. Also, both the (Ĉ), and ΔC are comparable 

in magnitude for any choice of n̄α, and n̄s. Therefore, the step size of (Ĉ) signal can never exceed 

the noise, ΔC. Hence, the current set-up is not suitable for single shot experiment. In Fig. 2.4 we 

compare the noise, and the step-size. We can also use the covariance or the correlation in photon 

number fluctuations as a function of input photon number, shown in Fig. 2.5 as the signal. We 

Figure 2.5. Correlation in photon number fluctuations as function of input photon number.
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(2)also calculate the two-mode second-order intensity correlation function g12 (0) which is defined as 

(Ĉ)/((N̂a)(N̂b)) [59], and is calculated at zero time delay. This is another way of describing the 

(2)Figure 2.6. (a) Two-mode second-order intensity correlation function g12 (0) as a function of 
(2)number of input photons N for different n̄α, and n̄s = 2. When n̄α = 0, then g12 (0) has maximum 

(2)correlation for N=0. As N increases, g12 (0) decreases. When ¯  0, the correlations increase nα = 
(2)with N , but still less than that of TMSV. (b) g12 (0) as a function of coherent-light amplitude. As 

the strength of the coherent light is increased the curves for N = 0, and N = 1 approach the 
single-mode second-order intensity correlation function g1

(2)
(0) for a coherent state asymptotically. 

intermode correlations as well as photon bunching. We know that if g(2)(0) > 1, then the light 12 

(2)has bunching or represents super-Poisson state. For a two-mode squeezed vacuum light, g12 (0) = 

2 + 1/n̄s, where n̄s is the average photon number in a single-mode squeezed vacuum state. The 
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(2)
g12 (0) for |N)a ⊗ |α)b input is 

Nn̄α(n̄
2 + (1 + n̄s)2) + ((N + 1)2 + (2N + 3)n̄α + n̄2 )n̄s(1 + n̄s) + (1 + N + n̄α)n̄

2 
(2) s α s g12 (0) = . 

(n̄α(1 + n̄s) + (N + 1)n̄s)(N(1 + n̄s) + (1 + n̄α)n̄s) 
(2.10) 

(2)In Fig. 2.6.a we plot g12 (0) as a function of the coherent-state mean photon number n̄α. As 

the strength of input coherent light increases, the correlations between the two modes decreases 
(2)and g12 (0) approaches the single-mode second-order intensity correlation function g(2)(0)) of a 

coherent-light state, asymptotically. Also, we see that the presence of a single photon in the input 

mode is sufficient to reduce the correlations between the two beams. 

Figure 2.7. (a) Average intensity-intensity correlations signal as a function of input photon number, 
for different efficiencies represented by η and fixed n̄α = 25. The imperfect two-mode squeezing 
and correlator can be modeled by adding fictitious beam splitters of transmissivity defined as η = 
tT . Where t represents imperfect squeezing and T represents the efficiency for the photon detector. 
(b) Signal-to-noise ratio (SNR) as a function of η. 
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2.3 Effect of Loss 

Next, we address the issue of imperfect squeezing and inefficient detection of photons. Gener

ally, the devices used to produce two-mode squeezed light do not perform perfect squeezing and 

the TMSV is a mixed state. Also, the photon detectors used to detect the photons also have a 

limited efficiency leading to losses. We model these losses by introducing fictitious beam splitters 

of transmissivity η = tT , where t represents imperfect squeezing and T represents the efficiency 

of the photon detectors. Therefore the total loss is 1 − η. 

Fig. 2.7.a shows (Ĉ) in the presence of losses as a function of the input photon number N . We 

can see that as the efficiency increases the amplitude of the signal (Ĉ) increases. Also it is possible 

to attain the same amplitude of the intensity-intensity correlation signal even when the efficiency is 

low (η ∼ 0.5), by using a stronger coherent-light source to compensate. Hence, the use of coherent 

light acts as a boost that overcomes the effect of inefficiency in the squeezing and photon detection. 

Also, unbalanced detector inefficiencies and losses (η1 = η2) frequently give rise to adverse effects 

in experimental quantum optics schemes. However, in our scheme, having detectors of different 

efficiencies does not degrade the signal, nor the performance, of the PNRD. In Fig. 2.8 we plot 

the signal-to-noise ratio as a function of η1 and η2 and the average intensity-intensity correlations 

when the two detector efficiencies are different. 

Additionally, phase-sensitive detection and amplification schemes are difficult to implement 

experimentally, as care must be taken to control the (typically) optical phases of the involved 

beams. Our scheme avoids such difficulties, as the relative phases of the involved modes is not an 

issue due to the orthogonality of the Fock states. This is true for the thermal state as well, so we 

can use our scheme to detect weak thermal light. However, it is worth noting that this does not 

overrule the mode-matching with respect to to the wave-vectors between the different input modes 

to complete the non-linear process. The signal-to-noise ratio (SNR) is a measure of the system 
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Figure 2.8. (a) and (b) (Ĉ) and ΔĈ as a function of η1, and η2, plotted against the number of input 
photons for n̄α = 25. (c) SNR plotted against η1, and η2. 

Figure 2.9. The effect of dark counts on the room-temperature number-resolving photon detector. 
The input number state is approximated with thermal state. The losses due to imperfect squeezing 
and the dark counts at the output, are modeled by adding fictitious beam splitters each of overall 
transmissivity η, where the thermal modes are denoted by ρth1 and ρth2. 
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performance. It is defined as,
 

SNR = (Ĉ)/ΔC. (2.11) 

In Fig. 2.7.b we plot the signal-to-noise ratio as a function of the transmissivity (see appendix 

for the expression of SNR). The SNR decreases as the transmissivity decreases, however this can 

be compensated for by increasing the strength of the coherent-light state. We also address the ef-

Figure 2.10. Plot comparing the average intensity-intensity correlations as a function of number 
of input photons N for a Fock state input, and a thermal state input. For a thermal input state, N 
is actually N thermal, which we have chosen to be an integer increasing in increments of one. This 
helps in making an easier comparison between the two input states. The average number of photons 
in the coherent state is n̄α = 25. From the plot we can see that (Ĉ) does not vary much for the two 
different input states. Hence, we can conclude that the thermal state is a good approximation for 
input Fock state in the calculation for dark counts. 

fect of stray thermal photons on our detection scheme. The thermal photons at room temperature 

are completely uncorrelated between detectors, and the average number of photons at optical fre

quencies is very small (∼ 10−40) [24]. Again the average number of stray thermal photons at room 

temperature is of the order of 10−3, which does not effect the detector efficiency. 

We mix the stray thermal photons with the output at the two beam splitters as shown in Fig. 2.9. 

In order to make the dark count calculation easier, we approximate the Fock states with a thermal 

state enabling us to use Wigner functions [60]. We compare the average intensity-intensity corre

lations between the input Fock state and the thermal state input in Fig. 2.10. We find that the the 

two signals do not differ much, hence the the thermal state is a good approximation for the Fock 
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state as input, and we expect the effect of dark counts on an actual number state |N) to be simi

lar. In Fig. 2.11 we show the effect of stray thermal photons on the intensity-intensity correlations 

signal and the signal-to-noise ratio. The average number of thermal photons NDark at the room 

temperature i.e. 300K, have been calculated at the wavelength of 9.7µm. 

Figure 2.11. (a) Average intensity-intensity correlations signal as a function of input photon num
ber, for different efficiencies represented by η and fixed n̄α = 25. Again, the N used in this plot is 
the N thermal. (b) Signal-to-noise ratio in the presence of dark counts against detector efficiency. 

2.4 Conclusion 

In summary we propose a room-temperature photon-number-resolving detector using a two-

mode squeezer. The N -photon number state is fed into a two-mode squeezing device, along with a 

coherent-light input which amplifies the output signal. The output intensity-intensity correlations 

signal reports jumps with the changing photon number. Even in the presence of losses, the output 

signal is strong due to the amplification provided by the coherent light. Hence, we have a high 

efficiency photon-number-resolving detector. Since the scheme is robust against low detector effi

ciency, the intensity-intensity correlation measurement can be carried out at room temperature for 

optical photons. 

Additionally since the photon-number states to be counted are boosted (amplified) in the squeezer, 

dark counts will have negligible effect, particularly at room temperature. Also, this particular setup 

is robust against any phase fluctuations due to the presence of Fock states which are insensitive to 

phase. Hence, phase matching is not required, making our technique easier to implement in the 

lab. Also, the synchronization of the different light pulses will depend mainly on the coherent state. 
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Most experiments use a continuous-wave coherent light which will give a steady background sig

nal, and is easy to synchronize due to a narrower line width. Moreover, if the temporal profile of the 

input Fock state is known, it is easy to produce coherent light with the same temporal profile. Also 

our scheme is robust against coherent state amplitude fluctuation, as we still see the steps in the 

signal and the noise. Therefore, for a slowly fluctuating coherent state, we expect to observe slowly 

fluctuating signal but still maintaining the steps, representing the input photon number. Since, both 

(Ĉ), and ΔC are comparable in magnitude, the step-size never exceeds the noise, ΔC. Therefore, 

the current set-up is not suitable for a single-shot experiment. Our results can be applied to a wide 

range of squeezers and each would need to be addressed separately in any experiment. Similarly, 

the time required for ensemble measurements would depend on the different experiments. 

Our scheme is not a general photon-number-resolving detector because it does not implement 

the POVM |N)(N | in the |N) basis. Therefore for thermal light, squeezed light, and coherent light, 

it will give a distribution around the mean. However, for many applications in quantum technology 

such as quantum key distribution [61], the photon state is known to be in a Fock state, which is 

unknown. For such applications our scheme will be ideal. Nevertheless, because of the coherent 

light boosting, this device should be useful for detecting weak thermal light, squeezed light, and 

coherent light states that has application for example in quantum LIDAR [23]. In future work, we 

plan to explore our setup for a multi-frequency mode. 
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CHAPTER 3
 
LIMITS TO ATOM-VAPOR BASED PHOTON- NUMBER-RESOLVING
 

DETECTORS 

3.1 Introduction 

The state-of-the-art photon-detectors mentioned in chapter two rely on getting a detectable sig

nal by converting incident photons to photoelectrons. An alternative approach to resolve photon 

numbers at room-temperature was proposed by James and Kwiat [62]. This scheme is based on co

herently controlled absorption of light and projective quantum-state measurements. The incident 

single photon is converted to many photons by resonance fluorescence. Around the same time, 

another proposal to count photons was proposed by Imamoglu in [63], which combines the tech

niques of ion-trap quantum-state measurements [64] and electromagnetically induced transparency 

(EIT) [65, 66]. Following along the same lines, Clausen et al. proposed a scheme to detect photons 

based on EIT and resonance fluorescence [67]. However, in the case of trapped ions, typically the 

system needs to be laser cooled by applying two counter-propagating light beams along the cavity 

axis. This step is necessary to prepare the system for optical pumping. Also, once the first cycle 

of detection is completed, a laser re-pumper is required to cool the system for the next detection 

cycle. 

In this paper we revisit the atom-vapor based photon detectors at room-temperature as proposed 

in reference [62]. A three-level Λ scheme is considered. The detector is prepared using optical 

pumping to transfer all the atoms in the ground state. The atomic population transfer is achieved 

by using Stimulated Raman Adiabatic Passage (STIRAP), and the number of photons are detected 

using a read-out laser, which induces fluorescence. 

This chapter previously appeared as Elisha S. Matekole, Hwang Lee, Jonathan P. Dowling, "Limits to Atom Vapor 
Based Room-Temperature Photon Number Resolving Detection", Phys. Rev. A 98, 033829, Published 28 September 
2018. The copyright of this article is owned by American Physical Society. The author’s right to use the article in this 
dissertation is granted in “Transfer of Copyright Agreement” shown in the appendix. 
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Figure 3.1. Schematic diagram of an atom-based photon detector for 133Cs atom. The polarizing 
beam splitter (PBS) determines the polarizations of the optical field. The applied magnetic field 
direction defines the quantization axis. 

3.2 Experimental Set-Up 

The schematic diagram of the proposed photon detector is shown in Fig. 3.1. We consider an 

atomic vapor of 133Cs, whose hyperfine structure is shown in Fig. 3.2a. 

The radiation to be detected is incident on the cell containing the atoms in the vapor along 

with a coupling laser. The photons in the incident radiation excite the atoms to a metastable state 

|2) as shown in Fig. 3.2b. Collisions between atoms, and atom-wall collisions can degrade the 

atom coherence time. Coating the walls of the vapor cell by paraffin coating reduces the effect of 

atom-wall collisions [68, 69]. Filling the vapor cell with inert buffer gas reduces the atomic mean 

free path, hence reduces the probability of wall collisions as well as Cs-Cs collisions [70]. If the 

number of atoms is large enough, the probability that each photon is absorbed by one atom is close 

to unity. This allows for the use of lower control laser power in the current scheme. Next the atoms 

in the metastable state are excited using a readout laser that couples only level |2) F = 4, and 

level |4) F = 5 as shown in Fig. 3.2. This implies that only the photons generated by the |2)−|4) 

transition are counted using photon detection imaging. Hence, resolving the original number of 

incident photons, by counting the number of fluorescing atoms. 

3.3 Optical Pumping 

Optical pumping is required for the initialization of the photon detector by transferring all 

atomic population from |2) into the ground state |1) as shown in Fig. 3.3a. Initially we assume 

that, both levels |1), and |2) have equal atomic population. Complete optical pumping is important 
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Figure 3.2. (a) Energy level diagram of 133Cs showing the hyperfine structure and the D1, and 
D2 transition [71]. (b) The three level lambda (Λ) system showing the relevant energy levels for 
the detector. First an ensemble of atoms is prepared in level |1) via optical pumping. Then the 
atoms in level |1) are excited to level |2) by absorption of photons in the probe field with the 
help of coupling laser between levels |1) and |3). Finally the atoms in level |2) are detected via 
fluorescence between levels |2) and |4). 

as any atoms not transferred from |2) to |1) would lead to spurious detection at the fluorescence 

stage. The interaction Hamiltonian of a single three-level atom for the optical pumping technique 

is given as, 

f 
Ĥint = [Ωe iΔt|3)(2| + |2)(3|Ωe −iΔt] (3.1)

2 

where levels |2) and |3) are coupled by a classical laser with Rabi frequency Ω, and Δ represents 

detuning. We obtain the equations of motion in the rotating-wave frame, using the master equation, 

ρ2̇2 = 
Ω 
2i
(ρ23 − ρ ∗ 

23) + Γ32ρ33, (3.2) 

ρ3̇3 = − 
Ω 
2i
(ρ23 − ρ ∗ 

23) − 2Γ32ρ33, (3.3) 

ρ2̇3 = −γ32ρ23 + 
iΩ 
2 
(ρ33 − ρ22), (3.4) 
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Figure 3.3. (a) Initialization of the photon-number detector by pumping all the atomic population 
from level |2) to level |1). Levels |2) and |3) are coupled by a classical laser. The atoms from 
level |2) get transferred to level |1) via level |3). (b) Population evolution of levels |1) and |2) as a 
function of time for a three-level 133Cs atom. Initially both levels |1) and |2) contain equal number 
of atoms. When the laser field is applied between levels |3) and |2), atoms from |2) get excited to 
|3) and spontaneously decay to level |1), with a decay rate Γ32. We have considered zero detuning. 

where ρij are the matrix elements of the density operator, Γij is the spontaneous decay rate from 

level |i) to |j), and γij represents the coherence decay rates. Also, we have assumed the detuning 

Δ = 0. We plot the time evolution of the population in levels |1), and |2) in Fig. 3.3b. The time 

taken for all the population to be transferred in |1) is of the order of 0.35µs. Once all the the atoms 

are pumped to level |1), we are ready for the next step of detecting photons. 
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3.4 STIRAP 

3.4.1 Classical STIRAP 

Stimulated Raman Adiabatic Passage (STIRAP) was originally used in population transfer be

tween rotational or vibrational energy levels, to study the dynamics of small molecules [72]. Peter 

Zoller used STIRAP to manipulate population distribution over quantum states, sparking an in

terest in the quantum optics community to investigate STIRAP in detail [73]. In quantum optics 

STIRAP is used in the creation of general quantum state manipulation. In quantum information, 

STIRAP can employed in the construction of qubit states by controlled superposition of two states 

with high fidelity [74, 75, 76]. STIRAP is a process that involves a near perfect transfer of pop

ulation from one state to another via an intermediate state. The key terms that define STIRAP 

are coherent, two pulses coupling a three level atomic system, with an adiabatic interaction. The 

success of STIRAP depends on coherent radiation fields. The time required for the coherent pulses 

to induce population transfer should be shorter than coherence time. It is the time-period during 

which the effects of decoherence induced by the environment can be neglected. The Rabi fre

quency is proportional to the coupling strength of the two levels. There are two kinds of detuning 

in the three-level system i.e. one-photon detuning Δ, and two-photon detuning δ. Again, detuning 

is the mismatch in the energy difference between the Bohr transition frequencies of the two lev

els and the incident field. The second step of the atom-based photo-detection is STIRAP, which 

is used to transfer population between two atomic levels via an intermediate state [77]. Here we 

consider a two-photon Raman excitation to level |2). The probe field (containing the photons to 

be detected) along with a strong coupling laser field is introduced in the cell containing the atoms. 

The interaction Hamiltonian for a single three-level atom describing the STIRAP process is, 

Ĥint = 
f 
[Ωp(t)σ̂31e 

iΔt + Ωs(t)σ̂32e 
iΔt + h.c], (3.5)

2 
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σ̂ij = |i)(j| is the atomic projection operator (i,j=1,2,3). Ωp and Ωs represents the Rabi frequency 

of the photon and coupling lasers respectively, Δ represents the detuning of the lasers from the 

transition frequencies ω31 and ω32. 

Figure 3.4. The photons in the incident pulse are absorbed by atoms in level |1), which are excited 
to level |2) with the assistance of coupling laser. Γ31 and Γ32 are the spontaneous decay rates from 
level |3) to levels |1) and |2) respectively. The detuning between |3) and the incident fields is given 
by Δ. 

We consider the well-known counter-intuitive pulse sequence in this analysis. First the Stokes 

pulse is on, such that all the population is in level |1) at some initial time (ti). Then the probe pulse 

is on, driving the transition from level |1) to |2) via |3) at final time (tf ). The time-dependence of 

the Rabi frequency is controlled by suitably delayed laser pulses given as 

(t+τ )2 

Ωs(t) = Ωs(0)e 
− 

2T 2 , 

(t−τ )2 

2T 2Ωp(t) = Ωp(0)e 
− , (3.6) 

where Ωp(0), and Ωs(0) represent the maximum amplitude of the Rabi frequency of the probe and 

coupling lasers. T represents the time duration of the two pulses, and τ represents the time delay. 

The pulse sequence is extremely important in the success of STIRAP. A counterintuitive pulse 

sequence is not sensitive when Δ = 0. When the pulse sequence is intuitive i.e. the probe pulse 

precedes the Stokes pulse, there first exist Rabi oscillations between levels |1) and |3), followed 

by Rabi oscillations between |2) and |3) when S-pulse is on. Now this ordering of pulses is 

sensitive to detuning. In addition to this, if the two pulses overlap, there exists, Rabi oscillations 
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independent of Δ, and the population evolution from 0 to 1, depending on detuning and the pulse 

area. However, a counter-intuitive pulse sequence is robust against pulse area, the value of Δ, 

pulse shape etc.,this makes STIRAP a robust technique, which is desirable especially in quantum 

information processing. Using the master equation, we obtain the following equations of motion 

for the given interaction Hamiltonian; 

iΩp(t)
ρ̇11(t) = (ρ13

∗ (t) − ρ13(t)) + Γ31ρ33(t),
2 

γ31 i 
ρ̇13(t) = (iΔ − )ρ13(t) + Ωp(t)(ρ33(t) − ρ11(t)),

2 2 
i − Ωs(t)ρ12(t),
2 
iΩs(t)

ρ̇22(t) = − (ρ32(t) − ρ ∗ (t)) + Γ32ρ33,322 
γ32 i 

ρ̇32(t) = −(iΔ+ )ρ32(t) − Ωs(t)(ρ33(t) − ρ22(t)),
2 2 

i 
+ Ωp(t)ρ12(t),

2 
i i γ21

ρ̇12(t) = Ωp(t)ρ32(t) − Ωs(t)ρ13(t) − ρ12(t), (3.7)
2 2 2 

where Γ31(32) are the spontaneous emission rates out of state |3) to level |1)(|2)). The coherence 

decay rates are given by γ31, γ32, and γ21 [78]. The Doppler shift can cause detuning from the crit

ical two-photon resonance in STIRAP. For a particle with velocity vk, along the laser propagation 

direction the shift in the detuning Δ is Δeff = Δ + kvk.The effective detuning from two-photon 

resonance then becomes δeff = (Δp + kvk) − (Δs + kvk) . In our scheme, the two STIRAP beams 

are at the two photon resonance Δp = Δs, the Doppler broadening of the two-photon resonance is 

essentially cancelled when the two lasers beams co-propagate. Also, the Zeeman splitting for the 

hyperfine state F = 1 for a magnetic field of 1G is 0.7 MHz. This gives δk (|kp − ks|) = 14.6 × 10−3 

, such that δk 
kp 

∼ 10−9, hence the Doppler shift is negligible [79, 77, 80]. 

Assuming perfect optical pumping as discussed in section 2.1, the initial conditions for the 

above set of differential equations are ρ11(0) = 1, ρ22(0) = ρ33(0) = 0. 
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Figure 3.5. (a) The pulse shapes for the incident and coupling lasers. The counterintuitive pulse 
sequence is used. (b) The population evolutions of states |1), |2), and |3) for the counterintuitive 
pulse sequence, with Δ=0.5 GHz, Γ31 =Γ32=28 MHz, γ31 = γ32 = 2Γ31, γ21 = 0.001γ31. The 
time width of the two pulses is T=30 ns. The population is transformed from level |1) to |2) with 
negligible population in |3). In order to have perfect transfer of a population from level |1) to |2), 
we need very high intensity lasers. 

In Fig. 3.5, we consider incident photon and coupling laser pulses of time width 30 ns each. 

The values of the Rabi frequencies are very large for the transfer of all the atoms from level |1) to 

|2). However, we need only those atoms that absorb the incident photons to be transferred to level 

|2). Therefore, we can considerably reduce the Rabi frequencies of the two pulses, and as shown 

in Fig. 3.6, get a small probability of transfer of a single atom to level |2). This probability is 

enhanced when an ensemble of atoms is considered. For example, consider the population transfer 

in Fig. 3.6, which is of the order of 10−10, this increases to 1% chance of transferring an atom from 

|1) to |2) in the presence of 108 atoms or approaches unity in for an ensemble of 1010 atoms or 

more. 

3.4.2 Quantized STIRAP 

In the quantized picture of the two-photon Raman excitation we consider both the incident 

photon and the coupling fields to be quantized. The fully quantized interaction Hamiltonian for a 
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Figure 3.6. The population evolution in level |2) for photon and Raman pulses, with a time period 
of 30 ns. We have set Γ31 = Γ32=28 MHz, γ31 = γ32 = 2Γ31, γ21 = 0.001γ31. 

single atom in the rotating wave frame is given as, 

Ĥint,Q = f[g13âpσ31e iΔt + g23âsσ32e 
iΔt] + h.c. (3.8) 

where g13(23) represents the atom-field coupling constant between levels |1)(|2)) and |3). The  
atom-field coupling constants are given as gij = dij ωij /2ftoV . The eigenstates of the Hamilto

nian can be written as |1) = |1A, np, ns, l), |3) = |3A, np −1, ns, l), and |2) = |2A, np −1, ns +1, l), 

the subscript A refers to the corresponding atomic level. The number of photons in the incident 

photon pulse and the coupling laser are given by np and ns, respectively, and l represents the photon 

number found in the readout laser, which we will discuss in section 2.5 . 
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Figure 3.7. The population evolution in level |2) for photon and Raman pulses of time period 
T=30 ns. The number of photons required to complete the population transfer from |1) to |2) in 
the photon field are 5 × 109, and those in the Raman pulse are 1010 . 

The equation of motions for the fully quantized interaction Hamiltonian are given as, 

ρ̇11(t) = ig13(ρ13(t) − ρ ∗ √ 
np13(t)) + Γ31ρ33(t), 

√γ13
ρ̇13(t) = (iΔ − )ρ13(t) + i ns + 1g23ρ12(t),

2 
√ − i npg13(ρ33(t) − ρ11(t)), 

√ 
ρ̇22(t) = −ig23 ns + 1(ρ32(t) − ρ ∗ (t)) + Γ32ρ33(t),32

γ23 √ 
ρ̇32(t) = −(iΔ+ )ρ32(t) − i npg13ρ12(t),

2 
√ 

+ i ns + 1g23(ρ33(t) − ρ22(t)). (3.9) 

In Fig. 3.7 we plot the population evolution of levels |1), and |2), for a counter-intuitive pulse 

sequence of incident photon fields and the coupling laser. Here, we find that the probability of 

the atom being excited to level |2) is unity if both the incident and coupling fields contain a large 

number of photons. This implies that we cannot use this technique for a single or few photon 

detection. 

Since, we want only those atoms to be transferred to level |2) that absorb the incident photons, 

we do not need a perfect population transfer from |1) to |2). In Fig 3.8. we consider the case of 
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Figure 3.8. The population evolution for single-photon pulse and Raman pulse with 50 pho
tons; both pulses have a time period of 30 ns. The value of the atom-field coupling, is given as, 
g13 =4040.83 Hz, g23 =4040.771 Hz. The decay rates Γ31 = Γ32 =28 MHz, γ31 = γ32 = 2Γ31, γ21 = 
0.001γ31. 

a single incident photon and a coupling field with only 50 photons. Both the fields an have equal 

time duration of 30 ns. We find that the probability of transferring the single atom from |1) to |2) 

is only 10−10. This number can be enhanced when we consider an ensemble containing 108 − 1010 

atoms. 

Before wrapping up this section on STIRAP, I want to briefly mention another variant on STI

RAP known as fractional STIRAP [81]. When the population transfer is partial and there exists 

coherent superposition of the wave-fucntion between the initial and final states via the intermediate 

states in the presence of both P, and S fields, the process is known as fractional STIRAP. It can be 

used in the production of two-qubit quantum states. Another application of STIRAP is in quan

tum algorithms [82]. Here, the authors showed that fractional STIRAP can be used to implement 

Grover’s algorithm adiabatically and achieve the same Grover’s speed up. 

STIRAP is a promising technique that can be harnessed for applications in quantum informa

tion processing. It is resilient to some type of decoherence. However, there are still challenges 

in the process. One big challenge is producing high fidelity quantum gates with an efficiency of 
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Figure 3.9. The population evolution for single photon pulse, and Raman pulse with 5 photons,
 
both pulses have a time period of 1000 s. The value of the atom-field coupling, is given as,
 
g13 =4040.83 Hz, g23 =4040.771 Hz. The decay rates Γ31 = Γ32 =28 MHz, γ31 = γ32 = 2Γ31, γ21 =
 
0.001γ31.
 
∼ 95%. STIRAP can have applications in gate operation and entanglement generation, given the
 

error can be reduced within fault tolerance threshold [75]. 

Figure 3.10. The read out laser couples only levels |2) and |4) such that only the atoms excited to 
level |2) are detected. The number of photons are counted by counting the atoms in |2), via the 
cycling transition between |4) and |2). 

Another way to achieve complete population transfer from |1) to |2) for the case of single or 

few photon incident field is to increase the time duration of the incident and coupling pulses. We 

would like to point out that, there exists a hitherto hidden energy-time uncertainty in the STIRAP 

process. If we increase the time-period of pulses then we need less energy to drive the transitions 

as shown in Fig. 3.9. If we consider a pulse of time period 1000s, then the distance the pulse is 

distributed is 3 × 108 Km. This distance is even greater than the distance between the Earth and 
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the Moon which is 384400 Km! Hence it is not feasible to have pulses of such large duration. 

3.5 Resonance Fluorescence 

The phenomenon of resonance fluorescence has been studied for a long time. Resonance flu

orescence can be described as an interaction between an atom and a strong field [25]. The plane-

wave interact at near resonance, leading to inelastic scattering of the incident field. At low excita

tion energy the atom absorbs a photon at a certain frequency, and because of conservation of energy 

re-emits it at the same frequency. The spectrum of resonance fluorescence can be described into 

two limits i.e. weak driving field, and strong driving field. We can describe resonance fluorescence 

using the two-level atom equations. The metastable state |2) is chosen so that it can undergo a cy

cling transition with another atomic state |4). The number of atoms excited to level |2) are detected 

by employing cycling transition between |2) and |4), i.e., atoms in level |2) will get excited to |4) 

via the readout laser, and will spontaneously decay back only to level |2). The number of pho

tons emitted will be proportional to the number of atoms in level |2), hence resolving the photon 

number in the incident radiation. The time taken for detecting a single photon using this method 

can be obtained by solving the equation of motion for the density matrices in steady state, and 

the readout laser time is given by tro = (Γ2 + 2Ω2 . The quantized version of resonance 42 r)/Γ42Ωr 
2 

√ 
fluorescence yields the same steady state result, except that the Rabi frequency is Ωr = 2gr l, 

where gr represents the coupling constant and l is the number of photons in the readout laser. The 

numerical value of tro is 0.052 µs for 133Cs atoms. 

3.6 Conclusion 

In this paper we have investigated the atom-based PNRDs in detail. We have analyzed both 

the classical and quantum models for STIRAP. We considered the case of single atom and found 

that sufficiently strong probe and coupling lasers are required to transfer a single atom from the 

ground state to the metastable state with probability one. Therefore, an extremely weak probe 

pulse consisting of one or few photons cannot suffice to excite the population in the ground state to 

the metastable state. In other words the probability to excite a single atom to the metastable state is 
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extremely small. However, this probability can be enhanced if we consider an ensemble of atoms
 

since we need only those atoms excited that absorb the incident photons, to be able to resolve 

photon-number at the read-out stage. This enables the use of low-intensity laser pulses. Also, 

there exists a trade off between the magnitude of Rabi frequencies of the probe and coupling lasers 

and the pulse duration. If the pulse duration increases then the magnitude of the Rabi frequencies 

decreases, and vice-versa. Large duration pulses imply photon wave packet spread out over large 

distances, which is not a desirable feature. Another source of having false photon detections (dark 

counts) can be due to imperfect optical pumping, i.e. if some atoms still remain in the metastable 

state at the initialization stage. Hence based on our analysis, if we can have an ensemble of atoms 

at the STIRAP stage, and implement complete optical pumping, the above technique can be used 

to resolve photon number at room temperature. 
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CHAPTER 4
 
THRESHOLDED QUANTUM LIDAR – EXPLOITING
 

PHOTON-NUMBER-RESOLVING DETECTION
 

4.1 Introduction
 

Electromagnetic radiation is regularly used for measuring and sensing the physical world. One 

particular sensing method, namely, laser range-finding and Light Detection and Ranging (LIDAR) 

is under continuous development. Light Detection and Radiation (LIDAR) is a technique used 

for metrology (distance measurement), and remote sensing. LIDAR is an optical based RADAR 

for applications that require high resolution. LIDAR is a sensing technique that projects a signal 

onto an object and then analyzes the reflected/scattered signal (eg. time of flight) to determine 

the distance from the target. LIDAR is increasingly used in the field of 3D vision [83, 84, 85], 

dimensional control, and airborne surveillance [86], long-range target recognition. Such applica

tions allow lower laser power and high resolution. This has been accomplished using single-photon 

LIDAR for measuring time-of-flight long range target recognition [7, 87]. 

Increasing the range requires sensitive detectors, and more recently, single-photon detectors 

(SPDs) [88, 89, 90, 91],and photon-number-resolving detectors (PNRDs) [92, 93] have been used 

for this purpose. 

It is an ongoing question what quantum optics can contribute to applications like LIDAR. It 

has been proven that loss, such as in rangefinders and LIDARs, eliminates most quantum effects 

[94, 95]. Thus, it is ineffective to use quantum states of light for those applications, rather than clas

sical light such as coherent states [23]. However, many proven quantum effects are not a result of 

using quantum states, but of using quantum detection of these states. For example, Bell-inequality 

violations are commonly attributed to the use of entangled states [96]. However, all-optical demon

strations have been done with Gaussian states, such as spontaneous parametric down-conversion 

This chapter previously appeared as L. Cohen, Elisha S. Matekole, Y. Sher, D. Istrati, H. S. Eisenberg, J. P. 
Dowling, "Thresholded Quantum LIDAR — Exploiting Photon-Number-Resolving Detection", Phys. Rev. Lett. 123, 
203601, (2019). The copyright of this article is owned by American Physical Society. The author’s right to use the 
article in this dissertation is granted in “Transfer of Copyright Agreement” shown in the appendix. 
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Figure 4.1. Illustration of the rangefinder system. A laser pulse is sent to a remote target and 
a small portion is reflected back into the device. After spatial and spectral filtering, the light is 
detected by a PNRD. Then, the photon number is thresholded by thresholding the voltage height. 
A one-bit comparator stops the timer when a voltage peak, caused by the detection of a bunch of 
photons, exceeds the voltage threshold. 

[97]. It is well known that Bell’s inequalities are satisfied when both the state and the detection 

are Gaussian [98]. Thus, in all-optical demonstrations, Bell-inequality violations are caused by 

the non-Gaussian single-photon detection [97]. Having said that, even though rangefinders and 

LIDARs are operated with coherent states, quantum detection strategies such as parity [23], and 

photon thresholding (filtering out low photon-numbers) [92] might still give a quantum advantage. 

In this paper, we rigorously derive the SNR improvement of threshold detection over intensity 

detection. 

One form of laser range-finding is illustrated in Fig. 4.1. By sending short pulses of light, and 

recording their return time, one can measure the range to a target using the speed of light. The 

range-finding information can be extended to three-dimensional imaging by adding spatial resolu

tion to the detection. Spatial resolution can be obtained by a gated camera [99], raster scanning [90] 

or blocking masks [89, 93]. The last method also provides compressed data acquisition, where the 

number of required measurements is far less than the number of image pixels, and reconstructing 

the signal from this measurement. 

In daylight range-finding, the classical noise from solar radiation dominates the quantum noise, 

the latter of which is due to the photon-number fluctuations of the coherent source. Solar radiation 

is a blackbody radiation, and thus, single-mode sunlight has thermal photon-statistics: 
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pth(n) = 
n̄th 
n 

(4.1)
(n̄th + 1)n+1 

fω/kB T −where pth(n) is the probability to measure n-photons within the coherence time, and n̄th = (e

1)−1 is the average photon number, f and kB are the Dirac and Boltzmann constants and ω is the 

light frequency. The laser is a coherent light source and thus has a Poisson photon distribution: 

n̄n 
−n̄p p

pp(n) = e , (4.2) 
n! 

where n̄p is the average photon number. Since the solar flux is continuous, identifying the signal is 

equivalent to distinguishing a mixture of coherent and thermal light from thermal light alone. The  nmixture has mixed photon-statistics [100], p(n) = m=0 pp(m)pth(n − m) which can be written 

as 
n n̄p −n̄p 
x n̄p

p(n) = e x Γ , n + 1 , (4.3) 
n! x 

−y n  ∞where x = n̄th/(n̄th + 1), and Γ(y, n+1) = n!e m=0(y
m/m!) =

y t
ne−tdt is the incomplete 

gamma function. 

4.2 Quantum SNR versus Classical SNR 

Typically, in quantum sensing technologies, it is the shot-noise limit (SNL) that is beaten [101, 

102]. While sub-SNL sensitivity can be obtained when the classical noise is negligible, it is a much 

harder task when the classical noise is dominant [103, 104]. Nevertheless we show that even in 

this regime, the SNR of quantum detection schemes can still surpass the SNR of classical detection 

schemes. 

Let us compare the classical intensity and our quantum-thresholding detection. Here the signal 

is regarded as the detection output with the coherent light, and the noise with the thermal light 

alone. As standard intensity detection is sensitive only to the average number of detected photons, 

the average photon number of the thermal light alone is the noise and the sum of the average 
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photon-number of the two light sources is the signal. Thus, the classical SNR is
 

n̄p + n̄th
SNRc = . (4.4) 

n̄th 

Threshold detection has a binary outcome; it is zero — if the detected photon number is below 

the threshold photon number, and one — if the detected photon number is above the threshold 

photon number. The signal of threshold detection is proportional to the probability of successfully 

exceeding the threshold when coherent light also hits the detector. The noise is proportional to the 

probability of exceeding the threshold when only thermal light hits the detector. These probabilities 

are calculated by summing all the photon-number statistics above N , the threshold photon-number. 

∞ ∞ N −1Thus, the noise is ν pth(n) = νxN , and the signal ν p(n) = ν 1 − p(n) ,n=N n=N n=0 

where ν is the number of experimental repetitions. After substituting p(n), reordering the sums 

N−mand summing over n, we are left with, ν 1 − N−1 1 − x pp(m) . Using the formula of the m=0 

incomplete gamma function and dividing by the noise, we get that the SNR for threshold detection 

is: 

x

n̄pΓ( ,N) 
(N−1)! e
 

n̄p −n̄p NΓ(n̄p,N)1 −
 −
 x
x 
(N−1)! 

(4.5)
SNRq = . 
xN 

n

Notice that the noise exponentially decays with the threshold number. This decay eventually gives 

the SNR improvement that we will see in the following. 

We wish to get some insights into the expression of Eq. 4.5. First, we differentiate the SNR 

with respect to n̄p, 
Γ( n̄

x 
p , N) ¯p∂ 1
 −n̄p NSNRq = − 1 > 0,
e
 x
x 

∂n̄p (N − 1)!
x
 

which means that the SNR is a monotonically increasing function of the coherent mean-photon 

number regardless of the threshold and averaged thermal photon-number. This dependence is 

expected, since increasing the signal intensity should increase the SNR. 
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Figure 4.2. The ratio of the quantum and classical SNR for fixed thermal average photon-number 
of one. Thresholds of N = 2, 3, 4, 5 are plotted where a thicker line corresponds to a higher 
threshold. The dashed black line at one represents the limit, above which the quantum scheme gets 
a better SNR. 

Next, we check the threshold dependence on photon number. The difference [SNRq(N + 1) − 

SNRq(N)] can be written as [ ∞ p(n + 1) − ∞ p(n)x]/xN +1, where the first summation is n=N n=N 

transformed as n → n + 1. Now the two summations can be regrouped into one, and its argument 

is (1 − x)pp(n + 1). Thus, the SNR obeys 

∞
1 − x 

[SNRq(N + 1) − SNRq(N)] = pp(n + 1) > 0 , (4.6)
N +1x

n=N 

i.e, taking larger photon-number thresholds increases the SNR for any intensity of the coherent 

and thermal light. In order to demonstrate the advantage of our quantum scheme, Fig. 4.2 shows 

the ratio of the quantum and classical SNR for a fixed averaged-thermal photon number of one. 

Different threshold photon numbers are plotted with different line widths. 

4.3 Discussion 

For many average signal and threshold photon numbers, the ratio of SNR is above one, which 

means that the quantum SNR exceeds the classical SNR. This improvement is a result of the 

difference between the signal and noise photon distribution. The thermal distribution is dominant 

near the low photon numbers, whereas the Poisson distribution is more dominant near the mean 

43
 



0 5 10 15 20

Threshold photon-number (N)

0

5

10

15

20

25

S
ig
n
al

av
er
ag
e
p
h
o
to
n
-n
u
m
b
er

(n̄
p
)

n̄th = 1

0 2 4 6 8 10

Noise average photon-number (n̄th)

0

2

4

6

8

10

S
ig
n
a
l
av
er
a
ge

p
h
ot
o
n
-n
u
m
b
er

(n̄
p
)

N = 2

N = 3

N = 4

N = 5

(a) (b) 

Figure 4.3. (a) The coherent light (signal) intensity that achieve the best improvement with respect 
to the classical detection scheme for fixed thermal average photon-number of one. (b) Parameter-
space representation of the quantum improvement. The line denotes the limit of quantum improve
ment, where below the line the threshold detection gives higher SNR than the classical detection, 
for particular threshold number, N . The area under the line increases for larger threshold numbers,
 
showing the improvement achieved by taking larger threshold.
 

photon number (see Fig. B1 in appendix B). By using threshold detection we exclude low photon
 

numbers where the noise is dominant.
 

As shown in Eq. 4.6, the quantum SNR increases when a larger photon number threshold 

is used. Thus, the ratio of the two SNRs increases with the threshold, since the classical SNR 

is independent of the threshold. However, taking threshold much larger than the average photon 

number will cause substantial decrease in the successful threshold detection. Any practical applica

tion should choose the threshold photon number in accordance with this trade-off; higher threshold 

means higher SNR but lower successful threshold detection, lower threshold means higher success

ful threshold detection but lower SNR. For a practical rangefinder or LIDAR, threshold detection 

success should be every couple of trials. Thus, in the regime of a few detected signal photons, the 

best improvement is around four. 

In Fig. 4.2, for every threshold there is an averaged signal-photon number where the improvement 

is maximal. In Fig. 4.3a, this maximum mean photon number is plotted as a function of the thresh

old. The improvement is maximal where the threshold is around the mean photon number. This 

observation can be understood by the fact that the coherent light has a more localized distribution 
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than the thermal light, i.e. the variance of Poisson distribution equals the mean and that of thermal
 

distribution equals the mean square. Thus, if the threshold is well-above the mean photon number 

of the signal, the detection loses most of the signal, and if it is well below the mean photon number, 

it is contaminated with noise without gaining signal. 

As seen in Fig. 4.2, the quantum SNR does not always exceed the classical SNR. Figure 4.3b is 

a parameter-space plot, showing the parameters under which quantum detection is superior. Below 

the line (the darker area) threshold detection presents better SNR. As expected from Eq. 4.6, the 

area, where quantum detection outperforms the classical detection, grows as the threshold number 

is increased. We note that the curved point of each graph holds N ≈ n̄th. This fact may help to set 

the threshold as in most applications the noise intensity is approximately known or can be easily 

measured. 

In the same manner, it seems from the right bottom side of Fig. 4.3b that threshold detection 

always gives better results where the noise is high and the signal is low. Thus, in high-noise low-

signal regime, threshold detection is definitely preferable. 

We note that the average photon numbers (n̄p, n̄th) are the measured averages, i.e. we already 

account for the loss of the detector. Other effects of the PNRD were considered, based on our 

PNRD model [105], and those effects changed the results slightly. In particular, nonlinear loss has 

low effect on the results, because we limited our signal to a few photons where the nonlinear loss 

is negligible (see Fig. B2 in appendix B). 

While Eq. 4.5 and Fig. 4.2 show the average results for the quantum SNR and SNR ratio 

(i.e. infinite ensemble of measurement samplings), most applications may sample the signal only 

a few times. We simulate multi-target range-finding to show the improvement with a finite number 

of samplings. In the simulation, the time is divided to 50 time-bins, where the thermal noise is 

fixed with n̄th = 1. Each time-bin contains thermally distributed noise photons. Four targets are 

simulated by adding photons with a Poisson distribution of 0.5 , 1 , 3 and 10 mean photon numbers 

at times of 10, 20, 30 and 40, respectively. The simulation runs 100 and 10,000 times, where the 
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Figure 4.4. The simulation results comparing intensity detection and thresholding detection for 
100 (a) and 10,000 (b) repetitions. The intensity detection is plotted with solid black line, two-
photon thresholding with red dotted line, and five-photon thresholding with blue dashed line. The 
three graphs are slightly shifted, for visual purposes. The signal height is normalized such that 
the noise average is one. The inset shows the same comparison only for the time bins with the 
coherent photons. The intensity detection is plotted with black boxes, two-photon thresholding
 
with red asterisks, and five-photon thresholding with blue circles.
 

former is equivalent to less-than-a-second operation of a typical rangefinder.
 

The simulation results are shown in Fig. 4.4. Naturally, the effect of low sampling is larger 

fluctuations, which can be seen in Fig. 4.4a, especially for five-photon thresholding where the 

detection rate is low. The weak target with n̄p = 0.5 is detected well with two-photon thresholding 

but not detected at all with five-photon thresholding. This effect is again due to the detection 

rate. When the number of simulation repetitions is increased, the ratio of the SNR approaches the 

values of Fig. 4.2. For the target with n̄p = 10, the output of five-photon thresholding is 31.7 and 

of intensity is 11.1. As the noise is normalized to one, the ratio of the SNR is just 31.7 = 2.86,
11.1 

which is exactly the result of Fig. 4.2. For the weak target with n̄p = 0.5, the output of two-photon 

thresholding is 1.58, of five-photon thresholding is 1.77 and of intensity is 1.51, which gives SNR 

ratio of 1.04 and 1.17 where 1.05 and 1.10 are deduced from Fig. 4.2. 

We propose to implement the threshold detector with PNRDs. There may be other implemen

tation methods, such as N -photon-ionization processes. Additionally, other detection protocols 

using PNRDs may give higher gain of the localized photon distribution, and thus, better SNR im

provement. Examples include exact photon-number detection (i.e. projecting on a specific Fock 
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state) [106] and a range of photon-number detection. These protocols require knowledge about 

the signal intensity and are suited to applications with known signal intensity. Threshold detection 

does not require knowledge about the signal intensity, and thus is suited to applications like range-

finding and LIDAR, where the signal intensity is a priory unknown. The next-gen LIDAR tech

nology is focusing on autonomous driving with real-time discernment of signals. In other words, 

the next-generation LIDAR would have to distinguish between different signals in extremely fast 

response time and high efficiency [107]. 

4.4 Conclusion 

We have shown that PNRDs can provide better SNR by thresholding the photon number instead 

of directly detecting intensity. Additionally, we have theoretically tested our results for imperfect 

PNRDs, including nonlinear loss. This leads to a slightly lower SNR. The method seems to always 

improve the SNR in the high-noise low-signal regime. The method has been implemented in 

rangefinders and LIDARs, but can also be used for any application with low-signal detection in the 

presence of thermal noise. 
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APPENDIX A
 
ROOM-TEMPERATURE PHOTON-NUMBER-RESOLVED DETECTION
 

USING A TWO-MODE SQUEEZER
 

The expressions for the variance in intensity-intensity correlation signal ΔC2 = (Ĉ2) − ( Ĉ)2 and 

signal- to-noise ratio are given by the following equations, 
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APPENDIX B
 
THRESHOLDED QUANTUM LIDAR
 

B.1 Photon Distribution
 

In order to show the difference in the photon number distribution, figure B.1 shows the thermal 

and Poisson statistics for average photon number of two. As mentioned in the main text, the 

thermal distribution is dominant near the low photon numbers, i.e. most of the time, a low photon 

number will be detected. On the other hand, Poisson distribution is dominant near the mean photon 

number, i.e. most of the time, a photon number around the average will be detected. 

B.2 Imperfect Detector 

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Photon number

0
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Figure B.1. Thermal (left) and Poisson (right) photon-number distributions. 

In the main text, we showed the results of the SNR improvement assuming the detector has no 

distortion effects for example dark counts, except of non-unity detection efficiency. Here Fig. B.2 

shows the results after including these effects of the detector. 

In order to use practical numbers, a specific detector (silicon photomultiplier of Hamamatsu 

Photonics, model No. S10362-11-100U) [108, 109] has been chosen as the PNRD. We use our 

detector model to calculate the photon statistics after the distortion effects[105] (see caption of 

Fig. B.2). The parameters for the detector effects are chosen based on parameters from previous 

experiments[100]. 
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Figure B.2. The ratio of the quantum and classical SNR for fixed thermal average photon-number 
of one and after including the effects of the PNRD. Thresholds of N = 2, 3, 4, 5 are plotted where 
a thicker line corresponds to a higher threshold. The dashed black line at one represents the limit, 
above which the quantum scheme gets a better SNR. The dark count parameter is 1.4 × 10−5, the 
cross-talk parameter is 0.048, and the number of detector elements is 100 (see Ref. [100, 105] for 
more information). 

Qualitatively, the results in Fig. B.2 look the same as Fig. 2 of the main text. Quantitatively, one 

can notice a slight reduction in the SNR ratio. This is mainly caused by the increase of the average 

photon number of the thermal light from one to 1.15, due to the effects of the PNRD. In particular, 

the finite number of detector elements, which in principle causes lower detection efficiency for 

higher photon number (usually called nonlinear loss) has a small effect on the results. It is due to 

the relatively low photon number compared to the number of elements, which is about an order of 

magnitude less, while nonlinear loss is noticeable where the photon number is above 20 percent of 

the element number [110]. 

B.3 Simulation Parameters 

The simulations (see Fig. 4 in the main text) were run with dimensionless parameters. Rein

corporating the units can be done as follows: 

The frequency, temperature and average thermal photon number are connected via the Planck 

formula: n̄ = (efω/kB T − 1)−1 [111]. To get an average thermal photon number of one, one should 

take the temperature of the sun (5770 Kelvin) and IR laser light source with frequency of 542 THz. 

The time bin of the chosen PNRD is around 1 nanosecond (ns). Therefore, the times of flight 
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in the simulation are 10 ns, 20 ns, 30 ns and 40 ns. The range is related to the time of flight by 

R = ct/2, where R is the range, c is the speed of light, and t is the time of flight. Thus, the target 

ranges in the simulation are 1.5 m, 3.0 m, 4.5 m, and 6.0 m. 
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[30] C. Śliwa and K. Banaszek, “Conditional preparation of maximal polarization entanglement,” 
Phys. Rev. A, vol. 67, p. 030101, Mar 2003. 

[31] A. J. Shields, “Semiconductor quantum light sources,” Nature Photonics, vol. 1, pp. 215– 
223, 2007. 

[32] D. Lincoln, “A large statistics study of the performance and yields of generation-6 vlpcs 
(histe-vi),” Nucl.Instrum.Meth. A, vol. 453, pp. 177–181, 2000. 

[33] E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, “Direct observation 
of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett., vol. 92, 
p. 113602, Mar 2004. 

[34] C. F. Wildfeuer, A. J. Pearlman, J. Chen, J. Fan, A. Migdall, and J. P. Dowling, “Resolution 
and sensitivity of a fabry-perot interferometer with a photon-number-resolving detector,” 
Phys. Rev. A, vol. 80, p. 043822, Oct 2009. 

[35] B. Kühn and W. Vogel, “Unbalanced homodyne correlation measurements,” Phys. Rev. Lett., 
vol. 116, p. 163603, Apr 2016. 

[36] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum 
cryptography,” Phys. Rev. Lett., vol. 85, pp. 1330–1333, Aug 2000. 

[37] S. W. N. Aaron J. Miller and J. M. Martin, “Demonstration of a low-noise near-infrared 
photon counter with multiphoton discrimination,” Nature Photon., vol. 83, p. 791, 2003. 

[38] E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-
number detection for quantum information processing,” IEEE Journal of Selected Topics in 
Quantum Electronics, vol. 9, pp. 1502–1511, Nov 2003. 

[39] K. Yamamoto, K. Yamamura, K. Sato, T. Ota, H. Suzuki, and S. Ohsuka, “Development of 
multi-pixel photon counter (mppc),” IEEE Nucl. Sci. Symp. Conf. Record, vol. 2, pp. 1094– 
1097, 2006. 

[40] L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits 
of resolution,” Phys. Rev. A, vol. 75, p. 062325, Jun 2007. 

58
 



´ [41] D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted 
detection with photon number resolution,” Opt. Lett., vol. 28, pp. 2387–2389, Dec 2003. 

[42] M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using 
time-multiplexed single-photon detectors,” Phys. Rev. A, vol. 68, p. 043814, Oct 2003. 

[43] D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of 
nonclassical photon statistics,” Phys. Rev. Lett., vol. 97, p. 043602, Jul 2006. 

[44] G. Zambra, M. Bondani, A. S. Spinelli, F. Paleari, and A. Andreoni Rev. Sci. Instrum., 
vol. 75, pp. 2762–2765, 2004. 

[45] B. E. Kardynal, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon
number-resolving detector,” Nature Photonics, vol. 2, p. 425, 2008. 

[46] K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett., vol. 28, 
pp. 52–54, Jan 2003. 

[47] A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Se
leznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, 
and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommu
nication wavelengths,” Nature Photonics, vol. 2, pp. 302–306, 2008. 

[48] F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, 
“Physics and application of photon number resolving detectors based on superconducting 
parallel nanowires,” New J. Phys., vol. 11, p. 045022, 2009. 

[49] Z. Zhou, U. Vogl, R. T. Glasser, Z. Qin, Y. Fang, J. Jing, and W. Zhang, “Characterizing 
micro-macro transitions with an atomic-vapor-based linear optical amplifier,” 2016. 

[50] S. M. Barnett and P. L. Knight, “Thermofield analysis of squeezing and statistical mixtures 
in quantum optics,” J. Opt. Soc. Am. B, vol. 2, pp. 467–479, 1985. 

[51] B. Yurke and M. Potasek, “Obtainment of thermal noise from a pure quantum state,” Phys. 
Rev. A, vol. 36, pp. 3464–3466, Oct 1987. 

[52] S. M. Barnett and P. L. Knight, “Comment on “obtainment of thermal noise from a pure 
quantum state”,” Phys. Rev. A, vol. 38, pp. 1657–1658, Aug 1988. 

[53] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of 
squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett., vol. 55, 
pp. 2409–2412, Nov 1985. 

[54] P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, and J. P. 
Dowling, “Quantum metrology with two-mode squeezed vacuum: Parity detection beats the 
heisenberg limit,” Phys. Rev. Lett., vol. 104, p. 103602, Mar 2010. 

59
 



[55] Z. Huang, K. R. Motes, P. M. Anisimov, J. P. Dowling, and D. W. Berry, “Adaptive phase 
estimation with two-mode squeezed vacuum and parity measurement,” Phys. Rev. A, vol. 95, 
p. 053837, May 2017. 

[56] P. T. Cochrane, G. J. Milburn, and W. J. Munro, “Teleportation using coupled oscillator 
states,” Phys. Rev. A, vol. 62, p. 062307, Nov 2000. 

[57] V. H. Tobias Eberle and R. Schnabel, “Stable control of 10 db two-mode squeezed vacuum 
states of light,” Optic Express, vol. 21, pp. 11546–11553, 2013. 

[58] A. I. Lvovsky, Squeezed Light, ch. 5, pp. 121–163. John Wiley Sons, Ltd, 2015. 

[59] D. F. Walls and G. J. Milburn, Quantum Optics. Springer-Verlag, 2008. 

[60] B. T. Gard, Advances in Quantum Metrology: Continuous Variables in Phase Space. PhD 
thesis, Louisiana State University, 2016. 

[61] S. Khatri and N. Lütkenhaus, “Numerical evidence for bound secrecy from two-way post-
processing in quantum key distribution,” Phys. Rev. A, vol. 95, p. 042320, Apr 2017. 

[62] D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with 
photon number resolution,” Phys. Rev. Lett., vol. 89, p. 183601, Oct 2002. 
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