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Abstract

The aim of this thesis is to understand the fundamental limitations on secret key

distillation in various settings of quantum key distribution. We first consider quantum

steering, which is a resource for one-sided device-independent quantum key distribu-

tion. We introduce a conditional mutual information based quantifier for quantum

steering, which we call intrinsic steerability. Next, we consider quantum non-locality,

which is a resource for device-independent quantum key distribution. In this context,

we introduce a quantifier, intrinsic non-locality, which is a monotone in the resource

theory of Bell non-locality. Both these quantities are inspired by intrinsic information

and squashed entanglement and are based on conditional mutual information. The

idea behind these quantifiers is to suppress the correlations that can be explained by

a local hidden variable or by an inaccessible quantum system, thus quantifying the

remaining intrinsic correlations. We then prove various properties of these two mono-

tones, which includes the following: monotonicity under free operations, additivity

under tensor product of objects, convexity, and faithfulness, among others.

Next, we prove that intrinsic steerability is an upper bound on the secret-key-

agreement capacity of an assemblage, and intrinsic non-locality is an upper bound

on the secret-key-agreement capacity of a quantum probability distribution. Thus we

prove that these quantities are upper bounds on the achievable key rates in one-sided

device-independent and device-independent quantum key distribution protocols. We

also calculate these bounds for certain honest devices. The study of these upper

bounds is instrumental in understanding the limitations of protocols that can be

designed for various settings. These upper bounds inform us that, even if one considers

the best possible protocol, there is no possibility of exceeding the upper bounds on

key rates without a quantum repeater. The upper bounds introduced in this thesis are

vii



an important step for initiating this line of research in one-sided device-independent

and in device-independent quantum key distribution.
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Chapter 1
Introduction and Preliminaries

1.1. Introduction

Information theory is a beautiful mathematical theory that was initiated by

Claude Shannon in 1948 in his seminal paper “A Mathematical Theory of Commu-

nication” [1]. This paper has been instrumental in understanding the fundamental

limits of communication over noisy channels. The main contribution of this paper was

to show that, given a channel, the rate of classical information that can be reliably

transmitted between two parties over this channel in the asymptotic limit is given by

the channel capacity. This channel capacity is a function of the noise present in the

channel.

Shannon’s theory dealt primarily with classical channels and with bits as the

information units. However, it was realized that one can consider quantum objects

as information carriers as well. This change in the way we represent information led

to the emergence of quantum information theory. Researchers began to investigate

the fundamental limitations of quantum information.

A number of surprising results, such as superadditivity of communication capaci-

ties of channels and negativity of conditional entropy, among others, were discovered.

An important paper, relevant to this thesis, was that of Devatak and Winter [2],

in which they bounded the distillable secret key of a bipartite quantum state from

below.

Besides the communication tasks considered in quantum Shannon theory, consid-

eration of quantum objects as carriers of information also initiated a different way of

thinking about security. For the first time, it became possible to think of information-

theoretic security in cryptographic protocols.

Now, the behavior of these quantum objects is fundamentally different from that
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of classical carriers of information. Quantum bits, qubits, are inherently continuously

valued. However, the information that we effectively use is classical; therefore, the

information content or the accessible information of a qubit is equal to one bit. Also,

qubits cannot be copied. Another important aspect of qubits is that of purification of

quantum states. This statement is a reflection of the correlations that can be shared

between two or more quantum systems. It states that, given a mixed state, one can

embed the mixed state in a larger Hilbert space to obtain a pure state. These pure

states do not share correlations with any other system in the universe. There are

other statements regarding the uncertainty principle, teleportation, and super-dense

coding that make qubits fundamentally different from bits.

The statement of purification is of considerable importance in quantum key dis-

tribution. Suppose that Alice and Bob are connected by a channel and Alice sends

some information to Bob using this channel. Then, if the information sent is classi-

cal, an eavesdropper can tap the channel and copy the classical information that is

being transmitted. In this scenario, Bob and Eve have the same information, where

Eve is the eavesdropper. Now, suppose that instead of classical information, Alice

sends qubits to Bob. In this scenario, the Eavesdropper cannot copy the information.

Therefore, Eve cannot have the same information as Bob. However, it is possible that

Eve copies some information. This copying of information is introduced in the form

of information loss in the qubit that reaches Bob. To get an estimate of the loss of

the information, one can consider a purification of the state shared by Alice and Bob.

This gives an estimate of the total information held by the eavesdropper. This prin-

ciple here, where the information is conserved and cannot be copied, is instrumental

for security proofs in quantum key distribution. Quantum key distribution was first

introduced by [3], and the first security proof given in [4]. It was soon realized that

the Devetak-Winter [2] result can be leveraged in security proofs for quantum key dis-

2



tribution scenarios, thereby connecting quantum Shannon theory with quantum key

distribution protocols. The Devetak-Winter formula is interesting because it applies

to a large set of protocols, making it possible to obtain information-theoretic security

for these protocols.

Since its introduction, one major goal of researchers in quantum key distribution

has been to introduce better quantum key distribution protocols. Essentially, one

would want protocols that give higher key rates for expected noise models. One can

ask the following: is there a fundamental limit on key rates that can be extracted

from any possible protocol? The answer is affirmative and has been explored in a

number of papers [5, 6, 7, 8]. The results basically tell us about the fundamental

limitations on secret key rates that one can obtain from any possible protocol, and

that it is impossible to go higher than the aforementioned limits without a quantum

repeater.

There are two fundamental entropic quantities that have been useful as upper

bounds on key rates in quantum key distribution. The first one is conditional mutual

information, and the second one is relative entropy. In this thesis, we concentrate

on conditional mutual information. The quantities built from conditional mutual

information quantify the correlations shared exclusively between two parties who

want to share the key (i.e., those that cannot be shared with an external party) and

suppress the correlations shared by an external party, thus characterizing the intrinsic

information. This quantity was first used in [9] for characterizing secret correlations

in a joint probability distribution PXY Z , and it was also used to upper bound rates

in secret key distillation from this joint probability distribution. Next, conditional

mutual information was considered in the context of quantifying entanglement and

was used to define the squashed entanglement measure [10]. This was then proved to

be an upper bound on the distillable key of a bipartite state [11].

3



Table 1.1. Conditional mutual information based quantities and settings in
quantum key distribution.

Resource Tasks Measure

Joint probability
distributions

Private key distillation Intrinsic information [9]

Bipartite states Trusted QKD Squashed entanglement [10]

Steerable assemblages
One-sided

device-independent QKD
Intrinsic steerability [12]

Conditional
probability distributions

Device-independent QKD Intrinsic non-locality [13]

In this work, we use conditional mutual information for characterizing steerability

and non-locality. These quantities are then used as upper bounds in different settings

of quantum key distribution. We can summarize the contributions of this thesis in

Table 1.1.

We start this thesis by outlining the basic concepts in quantum information the-

ory, which are relevant for understanding this work. For in depth knowledge on

this subject, please consult [14, 15]. In Chapter 2, we introduce different types of

correlations present in quantum information, which can be resources for different set-

tings of quantum key distribution. In Chapter 3, we introduce different settings of

quantum key distribution. In Chapter 4, we outline the basics of intrinsic informa-

tion and squashed entanglement. We introduce intrinsic steerability in Chapter 5

and intrinsic non-locality in Chapter 6. We then prove upper bounds on one-sided

device-independent quantum key distribution and device-independent quantum key

distribution in Chapter 7. We finally outline future directions and a few open ques-

tions in Chapter 8. Chapter 5 is based on [12], and Chapters 6 and 7 are based on

[13].
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1.2. Quantum states

In this section, we outline the basic definitions and concepts of quantum infor-

mation that we use in this thesis. A Hilbert space is denoted by H, and vectors in

Hilbert space are denoted by a ket |ψ⟩. The formal definition of Hilbert space is given

as follows:

Definition 1 (Hilbert Space) A Hilbert space is an inner product vector space 1

over complex numbers C. The inner product maps a pair of vectors |ψ⟩ and |φ⟩ to an

element of C, and has the following properties:

• Positivity: ⟨ψ|ψ⟩ ≥ 0. The equality is satisfied if and only if |ψ⟩ = 0.

• Linearity: ⟨φ|λ1ψ1 + λ2ψ2⟩ = λ1 ⟨φ|ψ1⟩+λ2 ⟨φ|ψ2⟩, where λ1, λ2 ∈ C, and |ψ1,2⟩,

|φ⟩ are vectors in H.

• Skew symmetry: ⟨φ|ψ⟩ = ⟨ψ|φ⟩, where c̄ denotes complex conjugation of a com-

plex number c.

Pure quantum states |φ⟩ are vectors belonging to the Hilbert space H with norm

one, corresponding to the normalization condition ∥ψ∥2 = 1, where ∥ψ∥2 =
√

⟨ψ|ψ⟩.

Another term commonly encountered in quantum information is mixed states. As the

name suggests, mixed states are a mixture of pure quantum states. This decomposi-

tion of a mixed state into pure states need not be unique.

We represent a quantum state, pure or mixed, as a density operator, defined as

follows:

Definition 2 (Density operators) A density operator ρ acting on H is a positive

semidefinite, Hermitian operator with trace equal to one. This means ρ = ρ†, Tr [ρ] =

1, and ρ ≥ 0.

1Since we are dealing with finite-dimensional systems, we stick to the simpler definition.
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The inequality, ρ ≥ 0, is an operator inequality, which implies that ⟨ψ| ρ |ψ⟩ ≥ 0,

for all |ψ⟩ ∈ H. We define the set of density operators over H as S(H). We define

the set of positive semidefinite operators over H as P(H). In this thesis, we deal

with finite-dimensional systems. Therefore, we can represent density operators as

finite-dimensional Hermitian matrices.

One can also consider bipartite states shared between Alice and Bob. For this,

consider two Hilbert spaces HA and HB. We can consider a tensor product HA⊗HB

of these two vector spaces to define a larger Hilbert space HAB. The density operators

on HAB define the possible bipartite states shared between Alice and Bob.

Let ρAB be a bipartite state shared between Alice and Bob. One natural question

to ask is the following: how can one define local states of Alice and Bob? This can be

answered by taking the marginal of the state ρAB. That is, Alice’s local state ρA is

given in terms of the partial trace as TrB [ρAB]. In a similar way, Bob’s local state ρB

is given by TrA [ρAB]. With this, we can define reduced density operators as follows:

Definition 3 (Reduced density operators) Given a bipartite state ρAB ∈ S(HAB),

we can define its reduced density operator ρA ∈ S(HA) as

ρA = TrB [ρAB] =
∑
i

(IA ⊗ ⟨i|B)ρAB(IA ⊗ |i⟩B), (1.1)

where {|i⟩B} is an orthonormal basis for HB and IA is the identity operator on HA.

Let us now suppose that Alice has a mixed state ρA. Then, it is always possible

to enlarge the Hilbert space HA to HAB, and embed the state ρA in a pure state ψρAB,

such that ρA = TrB [ψρAB]. The pure state ψρAB is called a purification of the state ρA.

Example 4 Let ρA =
∑

i pi |i⟩⟨i|A. Consider a Hilbert space HB isomorphic to HA,

6



and let {|ei⟩B}i be an orthonormal basis on HB. Then a particular purification of ρA

is |ψρ⟩AB =
∑

i

√
pi |i⟩A |ei⟩B. It is easy to see that if we trace out the B system, we

obtain the marginal state ρA on the A system.

Now, notice that we defined the purification by considering an arbitrary orthonor-

mal basis {|ei⟩}i on HB. We know that a unitary transformation on {|ei⟩}i will define

a different orthonormal basis on HB. This hints towards the possibility that the pu-

rification of a state is not unique and that we can access all purifications of ρA by

an isometry acting on the purifying system. This statement is formalized in terms of

non-uniqueness of purification of states as follows:

Definition 5 (Non-uniqueness of purification) Consider two purifications |ψρ⟩AB

and |φρ⟩AB of the state ρA. Then, there exists an isometry VB on HB such that

|φρ⟩AB = (IA ⊗ VB) |ψρ⟩AB.

We can also prove that, to construct a purification of ρA, it suffices to consider a

purifying system B with dimHB = dimHA. 2

Two states commonly referred to in this thesis are the maximally entangled states

and maximally mixed states. The maximally entangled state Φd
AB is defined on the

Hilbert space HAB, with dim(HA) = dim(HB) = d as follows:

Definition 6 (Maximally entangled state) The maximally entangled state on HAB,

with dim(HA) = dim(HB) = d, is defined as

Φd
AB =

1

d

d∑
i,j=1

|ii⟩⟨jj|AB . (1.2)

2This is an important concept in quantum mechanics and captures the essence of why it is
possible to obtain information-theoretic security in quantum key distribution. We can always purify
the system that is held by the local parties and this gives us a tool to bound the information held
by an arbitrary Eavesdropper.
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Definition 7 (Maximally mixed state) The maximally mixed state on HA is de-

noted by πA and is defined as

πdA =
1

d

∑
i

|i⟩⟨i|A . (1.3)

The maximally entangled state Φd
AB purifies the maximally mixed state πdA.

1.3. Quantum operations

1.3.1. Evolution

The evolution of a quantum state ρR ∈ S(HR) to ρA ∈ S(HA) is described by a

quantum channel. Let us denote this evolution by a map NR→A acting on the space

of density operators. The mathematical constraints imposed on an evolution due to

physical considerations are as follows:

• First, we expect NR→A to be a linear map from S(HR) to S(HA). That is,

N (αρ+ βσ) = αN (ρ) + βN (σ), (1.4)

where α, β ∈ C, and ρ, σ ∈ S(HR).

• Second, we expect a quantum channel to transform a density operator to a

density operator. Therefore, we restrict NR→A to be a positive map. However,

we need more than the positivity condition. Suppose that we have a bipartite

state ρRB, and Alice’s local system is acted upon by NR→A. Then the overall

transformation of the state ρRB is given by σAB = (NR→A⊗ id)(ρRB). Now, we

expect σAB to be a density operator as well. Therefore, we need the linear map

NR→A to be a completely positive map, which is a strictly stronger condition

than a positive map. 3

3A simple example of a map that is positive but not completely positive is the transpose map.

8



• We also require NR→A to be trace preserving. This again is based on the

reasoning that a quantum channel should transform a density operator to a

density operator.

Succinctly, quantum channels can be defined as follows:

Definition 8 (Quantum channels) A linear map NR→A is a quantum channel if

it is

• Completely positive: for any ρRB ∈ S (HRB), (NR→A ⊗ id)(ρRB) ≥ 0, where id

is the identity map on S(HB).

• Trace preserving: for any ρA ∈ S(HA), Tr [NR→A(ρR)] = Tr [ρR].

Quantum channels are also referred to as CPTP maps, which stands for completely

positive trace-preserving maps.

1.3.2. Quantum measurements

Figure 1.1. In this figure, we depict a quantum measurement. The measurement
apparatus performs a measurement on quantum state ρ, with the measurement
described by a set of positive semidefinite operators, and outputs a classical
outcome a.

To obtain classical information about a quantum state, one performs a quantum

measurement. This measurement may correspond to information about properties

such as position, momentum, or spin of a quantum state. These properties are for-

mally known as observables. When we perform a quantum measurement on a quan-

9



Figure 1.2. In this figure, we depict a quantum instrument. A quantum instru-
ment takes in a quantum state as an input and gives out a classical outcome a
with probability p(a) and a quantum state Ea(ρA)/p(a).

tum state, the outcome a corresponds to a specific value of the observable, obtained

with probability p(a).

The most general way of formulating a measurement device is with a positive-

operator-valued measure (POVM). A POVM is defined as a set of positive semidefinite

operators {Ma}a∈A such that
∑

a∈AMa = IA, and a ∈ A corresponds to the measure-

ment outcome. The positive semi-definite operators Ma need not be orthogonal.

Now, consider a state ρA, and let an observer perform a POVM {Ma}a∈A. Then,

the outcome of the measurement takes a value in a ∈ A, and each of these outcomes

is associated with the positive semidefinite Ma. The probability of observing the

outcome a when ρA is measured with POVM {Ma}a is given by Pr(a) = Tr [Maρ].

This is known as the Born rule. The POVM does not provide any information about

the state after the measurement.

We can impose a further restriction of orthogonality on the POVM elements

{Ma}. That is, we can demand that the following orthogonality constraint hold

MaM
′
a = δaa′Ma. Such a measurement is called as Projective-Valued measure.

1.3.3. Quantum instruments

A quantum instrument is a quantum channel that takes as input a quantum state

ρ and as an output gives a classical variable corresponding to a measurement outcome

a ∈ A, and a post-measurement state ρa. It can be formally defined as

10



Definition 9 A quantum instrument N is described as

N (ρ) =
∑
a∈A

Ea(ρ) ⊗ |a⟩⟨a|A , (1.5)

where A is a random variable defined on the alphabet A, and the sum map
∑

a Ea is

trace preserving.

1.4. Entropy

Let us consider a random variable X, which takes value x ∈ {0, . . . , d}, where d

is some positive integer. Let the probability distribution over the random variable

X be given by pX(x). Suppose that we sample from this probability distribution.

The expected surprisal available with this stochastic process is called entropy. As an

example, consider the following probability distribution: {p(0) = 1, p(1) = 0}. The

surprisal that one has by sampling from this probability distribution is equal to zero.

One can quantify the amount of information associated with a random variable

by Shannon entropy, which is defined as follows:

Definition 10 (Shannon entropy) Given a random variable X with the probability

distribution p, the Shannon entropy of X is defined as

H(p) = −
∑
x

pX(x) log pX(x). (1.6)

Throughout this thesis, we use log for logarithm with base two. The Shannon

entropy is maximum for a uniformly distributed random variable, as the information

gain from sampling from this distribution is maximum.

Analogously, one can define the information content in a quantum state ρA by

von Neumann entropy.

11



Definition 11 (von Neumann entropy) The von Neumann entropy of a quantum

state ρA is defined as

H(A)ρ = −Tr [ρ log ρ] . (1.7)

The notation H(A)ρ indicates the entropy of system A in the state ρ.

Consider a density operator ρA with the spectral decomposition: ρA =
∑

i λi |i⟩⟨i|A,

where λi’s are eigenvalues of ρ, and {|i⟩A}i is an orthonormal basis. Then the von

Neumann entropy of ρ is given as

H(A)ρ = −
∑
i

λi log λi. (1.8)

Since ρ is a density matrix, we know that λi’s are real and positive. Also,
∑

i λi =

1 (this comes from the normalization condition). Therefore, we can associate λi

with probabilities and interpret (1.8) in terms of the information-theoretic Shannon

entropy.

The von Neumann entropy is a function of the eigenvalues of a quantum state. On

applying a unitary operation to the state, the eigenvalues are unchanged. Hence, the

von Neumann entropy of a quantum state is invariant under a unitary transformation.

The von Neumann entropy is maximum for a maximally mixed state and is equal to

zero for pure states. This is analogous to Shannon entropy, which is maximum for

the uniform distribution and zero for deterministic distributions.

Definition 12 (Conditional entropy) Given a quantum state ρAB, the conditional

entropy is defined as

H(A|B)ρ = H(AB)ρ −H(B)ρ, (1.9)

where H(B)ρ is the von Neumann entropy associated with the marginal state ρB.

If ρAB is a classical-quantum state ρAB =
∑
pB(b) |b⟩⟨b|B ⊗ ρbA, where {|b⟩B}b is
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an orthonormal basis of HB and ρbA ∈ S(HA), then

H(A|B)ρ =
∑
b

pB(b)H(A)ρb . (1.10)

The above rewriting of conditional entropy is possible only if the state ρAB is a

classical-quantum state.

An important inequality for entropies is

H(A)ρ ≥ H(A|B)ρ. (1.11)

This is referred to as “conditioning does not increase entropy.”

The conditional entropy H(Y |X) over random variables Y and X is always non-

negative. Surprisingly, for a quantum state ρAB, the quantum conditional entropy

H(A|B) is not necessarily positive [16]. For example, consider the conditional entropy

of the maximally entangled state Φ2
AB: H(A|B)Φ = −1.

1.4.1. Mutual information

Another important entropic quantity is mutual information, which is defined as

follows:

Definition 13 (Mutual information) Given two random variables X and Y with

joint probability distribution pXY (x, y), the mutual information is defined as

I(X;Y )p = H(X)p +H(Y )p −H(XY )p (1.12)

= H(X)p −H(X|Y )p. (1.13)

Intuitively, mutual information is a correlation measure. It quantifies the amount of

information that one has about X if one knows Y or vice versa. It is non-negative
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and symmetric under the exchange of X and Y .

We can also define the mutual information of a quantum state as follows:

Definition 14 Given a bipartite quantum state ρAB, its quantum mutual information

is defined as

I(A;B)ρ = H(A)ρ −H(A|B)ρ. (1.14)

The mutual information information is equal to zero for a product state ρAB =

ρA ⊗ ρB. For a maximally entangled state, H(A|B)Φd = − log d and I(A;B)Φd =

2 log d.

Mutual information follows a data processing inequality, which implies that a

local channel cannot increase the correlations between spatially separated parties:

Definition 15 (Data processing of mutual information) The data processing in-

equality states that

I(A;B)ρ ≥ I(A;B)σ, (1.15)

where σAB = (id ⊗N )(ρAB).

A similar statement can be made if N acts on the system A. Intuitively, the data

processing inequality states that a local evolution of a quantum system cannot increase

correlations across the bipartite system.

1.4.2. Conditional mutual information

Another entropic quantity of importance and central to this thesis is conditional

mutual information (CMI). For probability distributions, conditional mutual infor-

mation is defined as follows:

Definition 16 (Conditional mutual information) Consider three random vari-
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able X, Y, and Z. Then conditional mutual information is defined as

I(X;Y |Z)p = H(XZ)p +H(Y Z)p −H(XY Z)p −H(Z)p (1.16)

= H(X|Z)p −H(X|Y Z)p. (1.17)

Operationally, we can think of conditional mutual information as the amount of un-

certainty between X and Y given Z. For example, suppose that X and Y are in-

dependent uniform random variables, and Z = X. Then, the mutual information

I(X;Y ) = log d, while the conditional mutual information is I(X;Y |Z) = 0.

Unlike conditional entropy, conditioning can either increase or decrease the mu-

tual information between two variables. That means

I(X;Y |Z) � I(X;Y ), and I(X;Y |Z) � I(X;Y ). (1.18)

First, let us illustrate that conditioning can decrease the mutual information with

with the following example: X, Y , and Z form a Markov chain X → Y → Z. Then,

we obtain the following equalities by invoking the chain rule of mutual information:

I(X;Y Z) = I(X;Z) + I(X;Y |Z) (1.19)

= I(X;Y ) + I(X;Z|Y ). (1.20)

For a short Markov chain, the condition I(X;Z|Y ) = 0 holds, which implies that

I(X;Y |Z) ≤ I(X;Y ). Another example to showcase the above inequality is as fol-

lows: Let X be uniformly random and suppose that X = Y = Z. Then I(X;Y ) =

log d, and I(X;Y |Z) = 0, implying I(X;Y |Z) ≤ I(X;Y ).
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Now consider the following example: Let X and Y be two Bernoulli random

variables, and let Z = X⊕Y . I(X;Y ) = 0; however I(X;Y |Z) = 1. This shows that

conditioning can increase the mutual information. That is I(X;Y |Z) ≥ I(X;Y ).

Now, suppose that we process Z according to the stochastic map pZ|Z(z|z) = pZ|Z(z).

Then I(X;Y |Z) ≤ I(X;Y |Z). That is, a local map on the conditioning variable can

decrease the conditional mutual information.

Analogous to conditional mutual information, we can define quantum conditional

mutual information as follows:

Definition 17 (Quantum conditional mutual information) Let ρABC ∈ S(HABC)

Then the conditional mutual information is defined as

I(A;B|C) = H(AC)ρ +H(BC)ρ −H(ABC)ρ −H(C)ρ. (1.21)

Some important properties of conditional mutual information that we use in this

thesis are as follows:

• Chain rule: Mutual information can be expressed as

I(A;BC)ρ = I(A;B)ρ + I(A;C|B)ρ. (1.22)

• Non-Negativity of QCMI: Quantum conditional mutual information is non-

negative for all quantum states. For a state ρABC , the following inequality holds

I(A;B|C)ρ ≥ 0. (1.23)

This inequality is equivalent to strong subadditivity of quantum entropy [17].

• Let ρABC be a classical-quantum state such that ρABC =
∑

c p(c) |c⟩⟨c| ⊗ ρcAB,
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then

I(A;B|C)ρ =
∑
c

pC(c)I(A;B)ρc . (1.24)

1.4.3. Relative entropy

Relative entropy or Kullback-Leibler divergence is an entropic quantity that is

a quantifier of “distance” between probability distributions. It is a measure of how

far a given probability distribution is to another probability distribution. We define

relative entropy as follows:

Definition 18 (Relative entropy) Let p and q be probability distributions defined

on the alphabet X . Then the relative entropy of p and q is defined as follows:


D (p∥q) ≡

∑
x∈X

pX(x) log

[
pX(x)

qX(x)

]
if supp(p) ⊆ supp(q)

+ ∞ else

(1.25)

As is evident from the definition, relative entropy is not symmetric under the exchange

of p and q. Relative entropy also does not satisfy the triangle inequality. Hence,

relative entropy is not a metric.

We now define quantum relative entropy, which is a natural extension of classical

relative entropy as [18]. 4

Definition 19 Let ρ ∈ S(H) and σ ∈ P(H). Then the relative entropy of ρ and σ

4This is one particular way of defining a quantum counterpart of relative entropy. It is, in fact,
possible to define relative entropy in infinitely different ways such that for probability distributions
the formula collapses to the classical one. However, the standard definition we use is justified by its
operational meaning in quantum hypothesis testing [19].
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is defined as


D (ρ∥σ) ≡ Tr [ρ [log ρ− log σ]] if supp(ρ) ⊆ supp(σ)

+ ∞ else

(1.26)

As with the classical relative entropy, quantum relative entropy is not symmetric

under the exchange of ρ and σ and does not satisfy the triangle inequality. Therefore,

relative entropy is not a distance measure. Some important properties of relative

entropy that we invoke in this thesis are as follows:

• Monotonicity: Let ρ ∈ S(H) and σ ∈ P(H), and N be a quantum channel.

Then, the relative entropy of ρ and σ can only decrease or remain the same.

That is [20],

D(ρ∥σ) ≥ D(N (ρ)∥N (σ)). (1.27)

• Non-negativity: Let ρ ∈ S(H) and σ ∈ P(H) and Tr [σ] ≤ 1. Then the

relative entropy is non-negative. That is,

D (ρ∥σ) ≥ 0, (1.28)

with equality if and only if ρ = σ. This is also called as Klein’s inequality.

• Isometric invariance: Relative entropy is invariant under the action of uni-

taries. That is,

D (ρ∥σ) = D
(
UρU †∥UσU †) . (1.29)

1.5. Distance measures

Often in quantum information, we need to define a metric between two quantum

states. Two important metrics used in quantum information are the trace norm and
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fidelity.

To define trace distance, we need the definition of the Schatten 1-norm ∥M∥1 of

a linear bounded operator M . Schatten 1-norm, also known as trace norm, is defined

as follows:

Definition 20 (Trace Norm) The trace norm of a linear bounded operator M is

given as follows:

∥M∥1 = Tr [|M |] , (1.30)

where |M | =
√
M †M . Alternatively,

∥M∥1 =
∑
i

λi, (1.31)

where λi are the singular values of M or the eigenvalues of
√
M †M .

The trace norm has some desirable properties such as non-negativity, triangle in-

equality, and isometric invariance. That is, for a linear bounded operator M acting

on H

• Non-negativity: ∥M∥1 ≥ 0.

• Triangle inequality: ∥M + N∥1 ≤ ∥M∥1 + ∥N∥1, where N is a linear bounded

operator on H.

• Isometric invariance: ∥UMU †∥1 = ∥M∥1, where U is a unitary operator on H.

From trace norm, one can induce trace distance, which we define next.

1.5.1. Trace distance

The trace distance is an important metric used in quantum information to define

distance between two quantum states. Trace distance is defined as follows:
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Definition 21 Given any two positive semi-definite operators M and N , the trace

distance between them is defined as follows:

∥M −N∥1 = Tr [|M −N |] . (1.32)

Trace distance has some nice properties such as triangle inequality and monotonicity.

These properties are given as follows:

• Triangle inequality: Let ρ, σ, and τ be quantum states. Then, the trace

distance follows the inequality

∥ρ− σ∥1 ≤ ∥ρ− τ∥1 + ∥σ − τ∥1. (1.33)

• Monotonicity of trace distance: This property states that the action of

quantum channel on quantum states decreases the trace distance between quan-

tum states. That is,

∥N (ρ) −N (σ)∥1 ≤ ∥ρ− σ∥1. (1.34)

1.5.2. Fidelity

Let |ψ⟩ and |φ⟩ be two pure states. Then the fidelity between the pure states is

defined as the square of the overlap of two vectors. That is,

F (ψ, φ) = | ⟨ψ|φ⟩ |2. (1.35)

We see that the fidelity is equal to one if |ψ⟩ = |φ⟩, due to the normalization condition.

The fidelity is equal to zero if the states are orthogonal to each other.
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We extend the definition of fidelity to mixed states according to the approach of

Uhlmann [21], which is slightly complicated. Consider two mixed state ρ and σ. How

do we define the overlap between two mixed states? One possibility is to consider

the overlap of respective purifications of the mixed states. Let |φρ⟩RA and |ψσ⟩RA be

respective purifications of ρ and σ with R being the purifying system isomorphic to

A. Then one can define Uhlmann’s fidelity as the maximum overlap between their

respective purifications. That is

F (ρA, σA) = max
|φρ⟩RA,|φσ⟩RA

| ⟨ψρRA|ψ
σ
RA⟩ |2. (1.36)

We can use the unitary equivalence of purifications specified in Definition 5 to rewrite

the above definition of fidelity as

F (ρA, σA) = max
UR

| ⟨ψρRA|(UR ⊗ IA)ψσRA⟩ |2. (1.37)

Some important properties of fidelity are as follows:

• Isometric invariance: Fidelity is invariant under unitaries, which can be stated

as

F (ρ, σ) = F (UρU †, UσU †). (1.38)

• Monotonicity under quantum channels: This property can be expressed as the

following inequality:

F (ρ, σ) ≤ F (N (ρ),N (σ)). (1.39)

Definition 22 Fidelity between two states ρ and σ can be used to obtain an upper
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and a lower bound on the trace distance as follows [22]:

1 −
√
F (ρ, σ) ≤ 1

2
∥ρ− σ∥1 ≤

√
1 − F (ρ, σ). (1.40)
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Chapter 2
Correlations

In this chapter, we introduce various types of correlations relevant to quantum

technologies. In quantum information, correlations can exist in objects such as con-

ditional probability distributions, assemblages (we define this term below), and in

bipartite quantum states. Within each object, we can classify the correlations ob-

served as classical correlations, quantum correlations, or no-signaling correlations. In

the following sections, we define each of the aforementioned objects and later analyze

the various correlations that can be present within each object.

Correlation is a term, often used in statistics, to quantify how much information

is common between two or more random variables. Given two random variables X

and Y such that X = Y , we say that these random variables are perfectly correlated.

Once we know the value of X, we also know the value of Y . Given two correlated

random variables, knowing one of them gives some information about the other ran-

dom variable. We can lift the concept of correlations of random variables to objects

such as bipartite states and assemblages.

2.1. Bipartite states, assemblages, and distributions

In this section, we define various objects relevant in quantum information theory

and then explore the correlations in these objects. We first start with correlations in

bipartite states.

2.1.1. Correlations in bipartite quantum systems

The objects under consideration in this section are bipartite states ρAB ∈ S(HAB)

shared between Alice and Bob.

Consider ρAB = ρA ⊗ ρB, where ρA ∈ S(HA) and ρB ∈ S(HB) are some states of

systems A and B respectively. These states are called as product states. These can

be considered a generalization of product probability distributions corresponding to
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Figure 2.1. Product state.
Figure 2.2. Separable state

independent random variables. To prepare these states, Alice and Bob can perform

local classical-quantum channels NA→A ⊗MB→B on independent random variables.

Next, consider separable states defined as follows:

Definition 23 (Separable states) A state ρAB ∈ S(HA⊗HB) that can be expressed

as

ρAB =
∑
λ

pΛ(λ)ρλA ⊗ ρλB, (2.1)

with pΛ(λ) ≥ 0,
∑

λ pΛ(λ) = 1, and ρλA ∈ S(HA), and ρλB ∈ S(HB) is known as a

separable state.

Suppose that Alice and Bob share a local hidden variable Λ or are allowed to commu-

nicate classically. Alice performs a quantum instrument, communicates the classical

result to Bob, who applies a quantum instrument to his part of the state. This process

continues for a finite number of rounds to generate a separable state.

The set of separable states is denoted by SEP(A :B). By definition, the set of

separable states contains the set of product states.

A little reflection hints towards the existence of states that are not separable

states. Such states are called as entangled states. That is, the states that are not sep-

arable are called as entangled states. In a nutshell, entangled states have correlations

that cannot be explained by underlying classical shared randomness. This definition

can also be extended to multipartite states.

Non-classical correlations in entangled states have been exploited for various
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quantum technologies such as quantum key distribution [23], quantum metrology

[24], teleportation, among others. For this thesis, we are interested in the applica-

tion of quantum entanglement in quantum key distribution. For details on quantum

entanglement, please consult [25].

2.1.2. Correlation in assemblages

Suppose that Alice and Bob share a bipartite state ρAB. These states could have

been distributed by an external party not trusted by Alice and Bob. Suppose that they

have no information about the underlying state ρAB distributed between them. In

principle, Alice and Bob can perform quantum tomography on their unknown systems

to gain information about ρAB. Tomography involves performing measurements on

the underlying system to obtain a characterization of the state ρAB.

What happens if Alice does not trust the measurement being performed? In

this case, tomography is not possible. Instead, we consider the setting of one-sided

device-independence. This untrusted measurement is modelled as a black-box device.

The device takes a classical symbol x ∈ X as input, where X denotes a finite set

of quantum measurements, performs some operation on the unknown state ρA, and

gives a classical output a ∈ A, with A denoting a finite set of measurement outcomes.

Then the only way that Alice can interact with her unknown marginal state is through

classical inputs and classical outputs. Let us characterize the unknown measurement

performed by the device as {Λa
x}a. During each interaction with the device, Alice

obtains a, x and Bob obtains a correlated quantum state ρa,xB . The state ρa,xB is

defined as

ρa,xB =
TrA [(Λa

x ⊗ IB) (ρAB)]

Tr [Λa
x (ρA)]

, (2.2)

where {Λa
x} is an unknown POVM performed by the device, with Λa

x ≥ 0 for all

a ∈ A and
∑

a Λa
x = I. Alice and Bob have an assemblage

{
pĀ|X(a|x)ρa,xB

}
a,x

, where
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Figure 2.3. An assemblage
{
pĀ|X(a|x)ρ

a,x
B

}
a,x

shared between Alice and Bob.

Alice performs an untrusted measurement {Λax}a on her part of the state ρAB.

pĀ|X(a|x) = Tr [Λa
x (ρA)], and Ā is the random variable associated with the measure-

ment outputs. The objects under consideration in this formalism are assemblages,

defined as follows:

Definition 24 (Assemblages) An assemblage consists of the state of Bob’s subsys-

tem and the conditional probability of Alice’s outcome a (correlated with Bob’s state)

given the measurement choice x. This is specified as {pĀ|X(a|x), ρa,xB }a∈A,x∈X . The

sub-normalized state possessed by Bob is ρ̂a,xB := pĀ|X(a|x)ρa,xB .

Consider the following example of assemblages: Suppose that Alice and Bob,

unknown to them, share a maximally entangled state ΦAB. Alice has a device that

takes in input value x = 0 or x = 1, performs some measurement on the underlying

unknown state, and returns back the output values a = 0 or a = 1. Let us suppose

that if the device receives x = 0, then it performs a measurement in the σz basis, and

if the device receives x = 1, then it performs a corresponding measurement in the σx

basis. With this device, Alice and Bob have the following assemblage:

{
ρ̂a=0,x=0
B =

1

2
|0⟩⟨0|B, ρ̂a=1,x=0

B =
1

2
|1⟩⟨1|B,

ρ̂a=0,x=1
B =

1

2
|+⟩⟨+|B, ρ̂a=1,x=1

B =
1

2
|−⟩⟨−|B

}
. (2.3)
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We can understand these assemblages from two different perspectives. We can

first think of an external party distributing an object to Alice and Bob. Alice’s

measurement device is prepared by an external party and is not trusted or charac-

terized. Bob’s device is trusted or characterized. This perspective is often helpful

when we want to think of these objects in the context of quantum key distribution.

The second perspective does not involve an external party. We solely consider the

operations performed by Alice and Bob and the objects created by these operations.

This perspective is relevant when we consider these objects from a resource-theory

perspective. Both perspectives are crucial for understanding various properties of

assemblages.

We now discuss various types of assemblages: product assemblages, local-hidden-

state assemblages, steerable assemblages, quantum assemblages, and no-signaling as-

semblages.

Let the underlying state ρAB be a product state. The device performs an arbitrary

measurement {Λa
x}a. The assemblage obtained can be written as {ρ̂a,xB }a,x. Alice and

Bob can also prepare this assemblage by performing local operations in their lab.

In this assemblage, there is no correlation between Alice’s probability distribution

and the quantum state on Bob’s side. Such an assemblage is called as a product

assemblage.

Suppose that the underlying state ρAB is a separable state. The device performs

an arbitrary measurement {Λa
x}a. The assemblage obtained can be written as follows:

{∑
λ

pA|XΛ(a|x, λ)ρλB

}
a,x

(2.4)

To prepare this assemblage, Alice and Bob share some classical randomness λ

and then prepare the following assemblage ρa,xB =
∑

λ pA|X,Λ(a|x, λ)ρλB. All assem-
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blages having this form are called as local-hidden-state assemblages or unsteerable

assemblages.

Of course there are assemblages that are not a product or do not have a local-

hidden state model. They are of interest in quantum technologies, because they

share correlations that go beyond classical correlations. Such assemblages exhibit the

phenomenon of quantum steering and are known as steerable assemblages, defined as

follows:

Definition 25 (Steerable assemblages) Assemblages that cannot be written as

ρa,xB =
∑
λ

pA|X,Λ(a|x, λ)ρλB (2.5)

are called as steerable assemblages.

To obtain steerable assemblages, the underlying state ρAB shared by Alice and

Bob must be an entangled state. Sharing an entangled state is a sufficient condi-

tion but not a necessary one to obtain a steerable assemblage. In fact, there exists

an entangled state, which for any arbitrary measurement, yields a local-hidden-state

assemblage [26]. Quantum states which, upon measurement, yield a steerable assem-

blage are known as steerable states.

Another question of interest here is as follows: given an assemblage {ρ̂a,xB }a,x,

can we uniquely characterize the quantum state ρAB and the quantum measurement

{Λa
x}a from which we obtained the assemblage? The quantum state and quantum

measurement corresponding to a particular assemblage is called a quantum strategy.

This has led to another interesting area of literature that deals with the characteri-

zation of quantum states in a one-sided device-independent scenario [27, 28]. Certain

assemblages, such as the one considered in the example above, have a unique quan-

tum strategy. However, for most assemblages, we can construct a variety of quantum
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Figure 2.4. Hierarchy of assemblages.

strategies.

Consider a hypothetical scenario in which Alice wants to transmit information

to Bob. She encodes the information that she wants to transmit in the measurement

performed. Let us suppose that she wants to transmit x = 0 to Bob, and therefore she

keeps on performing the measurement x = 0. She thinks that the local state ρa,xB on

Bob’s side will transmit the desired information to Bob. The problem with the above

hypothetical protocol is that Bob will always have the averaged state
∑

a p(a|x)ρa,xB ,

since he does not know the measurement result a. Bob’s averaged state remains

invariant with respect to Alice’s measurement choices and is equal to Bob’s marginal

state. This can be mathematically stated as

∑
a

pĀ|X(a|x)ρa,xB =
∑
a

pĀ|X(a|x′)ρa,x
′

B = ρB ∀x, x′. (2.6)

This can be easily proved by observing that pĀ|X(a|x)ρa,xB = TrA [(Λx
a ⊗ IB) (ρAB)].

Then, ∑
a

pĀ|X(a|x)ρa,xB =
∑
a

TrA [(Λx
a ⊗ IB) (ρAB)] = ρB. (2.7)
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Figure 2.5. A quantum distribution

Equation (2.6) is known as the no-signaling principle and is a physical constraint on

all assemblages that arise from an underlying quantum state and a quantum mea-

surement. The no-signaling constraint can also be expressed equivalently in terms of

conditional mutual information as I(Ā;B|X)ρ̂ = 0 for all input probability distribu-

tions p(x).

In the above discussion, we assumed that the assemblage has an underlying quan-

tum strategy. Such assemblages are called as quantum assemblages. We also proved

that all quantum assemblages fulfill the no-signaling constraints. Now, let us start

with an assemblage that fulfills the no-signaling constraints. Such assemblages are

called as no-signaling assemblages. Is it always possible to find an underlying quan-

tum state and a POVM for a no-signaling assemblage? It is indeed possible to find

a quantum strategy for every bipartite no-signaling assemblage, as proven in [29].

However, for tripartite assemblages, it has been proven in [29] that there exist as-

semblages that are no-signaling, yet have no underlying quantum strategy. The set

of unsteerable assemblages is contained in the set of quantum assemblages, which in

turn is contained in the set of no-signaling assemblages. This is depicted in Figure 2.4.
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Figure 2.6. Hierarchy of distributions

2.1.3. Correlation in bipartite probability distributions

Suppose that Alice and Bob share a bipartite state ρAB. In this setting, both

Alice and Bob do not trust their measurement devices. Therefore, we can think of

Alice and Bob sharing a two-component black box, which takes in two inputs and

gives out two outputs. Alice’s component takes in an input letter x ∈ X and outputs

a ∈ A. Similarly, Bob’s component accepts an input letter y ∈ Y and outputs b ∈ B.

Suppose that X and Y are finite sets of quantum measurement choices and A and B

are finite sets of measurement outcomes. For simplicity, we consider X = Y = [s] and

A = B = [r], , where s and r are natural numbers and [n] = {0, . . . , n− 1}. The box

is characterized by the conditional probability distribution {p(a, b|x, y)}a,b∈[r],x,y∈[s].

Then the correlations in a conditional probability distribution {p(a, b|x, y)}a,b∈[r],x,y∈[s]

can be divided as follows according to the constraints that they satisfy:

• Local distributions: A local distribution has a local hidden variable (LHV)

description written as

p(a, b|x, y) =
∑
λ

pΛ(λ)p(a|x, λ)p(b|y, λ), (2.8)
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where Λ is a local hidden variable, pΛ(λ) is the probability that the realization

λ of the local hidden variable Λ occurs, p(a|x, λ) is the probability of obtaining

the outcome a given x and λ, and p(b|y, λ) is the probability of obtaining the

outcome b given y and λ. Let L denote the set of distributions that can be

written as in (2.8). A device characterized by local distributions is also known

as a local box.

• Quantum distributions: The set Q of quantum distributions corresponds to

the set of distributions that can be written as

p(a, b|x, y) = Tr([Λa
x ⊗ Λb

y]ρAB), (2.9)

where ρAB is a bipartite quantum state and {Λa
x}a and {Λb

y}b are POVMs char-

acterizing Alice’s and Bob’s measurements with Λa
x,Λ

b
y ≥ 0 for all a ∈ A and

b ∈ B and
∑

a Λa
x = I and

∑
b Λb

y = I.

• No-signaling distributions: The set NS corresponds to the set of distribu-

tions that fulfill the following no-signaling principle:

∑
a

p(a, b|x, y) =
∑
a

p(a, b|x′, y) = p(b|y), ∀x, x′ ∈ [s] and b ∈ [r], y ∈ [s].

(2.10)∑
b

p(a, b|x, y) =
∑
b

p(a, b|x, y′) = p(a|x), ∀y, y′ ∈ [s] and a ∈ [r], x ∈ [s].

(2.11)

The no-signaling constraints (2.10) and (2.11) can be expressed equivalently in
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terms of conditional mutual informations, namely

∀p(x, y) I(X; B̄|Y )p = 0 = I(Y ; Ā|X)p, (2.12)

with respect to the joint distribution p(a, b, x, y) = p(x, y)p(a, b|x, y), and where

p(x, y) ranges over probability distributions on X and Y .

It is well known that local correlations are strictly contained in the set of quantum

correlations, that is, L ⊂ Q. Since the correlations in Q fulfill the constraints in (2.10)

and (2.11), we have that Q ⊂ NS (see Definition 26). This is depicted in Figure 2.6.

For more details on correlations, please refer to [30].

Distributions p(a, b|x, y) that are not in L are known as non-local distributions.

Quantum states such that there exists at least one arbitrary measurement, which

results in a non-local distribution are called as non-local states.

An example of a correlation that belongs to the no-signaling correlations, but not

the quantum correlations, is a Popescu-Rohrlich (PR) box [31], which is defined as

follows:

Definition 26 (PR box) A PR box is a device corresponding to the following cor-

relation p(a, b|x, y):

p(0, 0|x, y) = p(1, 1|x, y) =
1

2
for (x, y) ̸= (1, 1),

p(0, 1|x, y) = p(1, 0|x, y) =
1

2
for (x, y) = (1, 1), (2.13)

while p(a, b|x, y) = 0 for all other quadruples. This correlation is no-signaling between

Alice and Bob, as defined in (2.10) and (2.11).
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2.2. Resource-theoretic framework for correlations

Over the past few years, quantum resource theories have been developed to study

various phenomena in quantum information; see [32] for a review. A number of

quantum resources, including coherence [33, 34], entanglement [25], asymmetric dis-

tinguishibility [35], non-locality [36], steering [37], among others, have been explored

from this perspective.

In a resource theory perspective, we define three main ingredients that are inti-

mately related. In the resource theory approach, one defines the set of free objects.

These are generally objects that are not useful for a particular task or are easy to

create. Here, we consider three different resource theories: resource theory of entan-

glement, resource theory of steering, and resource theory of non-locality. For these

resource theories, the free objects are classical correlations shared between Alice and

Bob. This includes separable states, local hidden assemblages, and local hidden vari-

able distributions.

The second ingredient of resource theories is the set of restricted free operations 1.

These operations leave the set of free states invariant. Free operations can be thought

of as operations that do not create the resource, and hence can be implemented freely

by Alice and Bob. 2

The free objects and free operations are intimately related. One could first fix

the free resource, hence fixing the set of free operations. One can then choose the

restricted set of free operations as a set of operations that leave the set of free objects

invariant. Alternatively, one could first consider physical constraints that define the

free operations, and then define the free objects based on these constraints. In the

1We use “restricted” since this need not be the full set of operations under which the set of free
states is invariant.

2Fixing the set of free objects fixes the set of free operations but not the set of restricted free
operations. Often, the mathematical structure of the free operations is not known, and considering
the set of free restricted operations is particularly useful.
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Table 2.1. Free and resource objects in resource theories.

Objects Free objects Resource objects

Bipartite states ρAB Separable states Entangled states

Assemblages ρ̂a,xB Local assemblages Steerable assemblages

Distributions p(a, b|x, y) Local distributions Non-local distributions

resource theories considered here, we take the former approach. 3

The third ingredient is the resource object. One can think of these objects as

resources that allow us to perform interesting tasks that might not be possible with

the free objects. For the purpose of this thesis, resourceful objects include entangled

states, steerable assemblages, and quantum non-local distributions; see Table 2.1.

These resourceful objects are vital for quantum key distribution [3, 23], one-sided

device-independent quantum key distribution [38], and device-independent quantum

key distribution [39], respectively.

The next important question to consider in resource theories is the quantification

of the amount of resource held in different objects. How do we quantify a resource?

One way to quantify a resource is to employ a pseudo-distance measure between the

resource object and the set of free objects. A higher distance to the set of free objects

corresponds to higher resource content of the object. One obvious way to construct

a resource quantifier r(ρ) of the resource object ρ is as follows:

r(ρ) = min
σ∈F

d(ρ, σ), (2.14)

where ρ is a resource, σ is a free resource, d is a distance measure such as trace

distance, and F is the set of free objects. For a pseudo-distance measure, relative

3This in contrast to the viewpoint taken in [32], where the free operations are the starting point.
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entropy has been used in the literature.

Another way to quantify a resource is with robustness. This quantifies the amount

of noise that the resource object can tolerate before turning it into a free object.

One can also take a more general approach to defining a quantifier in a resource

theory. Consider a function f : ρ→ R. This function takes in the resource object and

outputs a positive real number associated to it. We demand that, to be a quantifier,

the function needs to have the following properties:

• Faithfulness : A resource quantifier f(ρ) = 0, if and only if ρ ∈ F. That is, the

measure should be equal to zero if the object is a free resource. We also demand

that if the function evaluates to zero, then the object should be a free object.

This constraint is known as faithfulness of the quantifier. 4

• Monotonicity : The quantifier should be monotonically decreasing under the

action of free operations. This means that if one starts with an object ρ, and

applies a free operation to this object to obtain σ = N (ρ), where N is a free

operation, then f(ρ) ≥ f(σ). This is in line with the intuition of free operations,

which is that the free operations should not increase the amount of resource.

If a function follows the above two properties, then the function is a quantifier for

resourcefulness in the object. We can also make the following demands for a quantifier:

• Convexity: Given ρ =
∑

i piρ
i, then f(ρ) ≤

∑
i pif(ρi), for pi ≥ 0, and

∑
i pi =

1.

• Continuity: If ρ, γ are objects satisfying ∥ρ − γ∥1 ≤ ε, then |f(ρ) − f(γ)| ≤

g1(ε) + g2(ε log d),

4This condition is sometimes relaxed just to demand that the resource quantifier should evaluate
to zero for a free object. The converse statement need not be true. For example, log negativity, an
entanglement quantifier, evaluates to zero for some entangled states.
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Table 2.2. Resource theory framework for correlations

Resource theory Free objects Free operations Resource

Entanglement Separable states
Separable operations

LOCC
Entangled states

Steering
Unsteerable
assemblages

1W-LOCC
Steerable

assemblages

Non-locality Local distributions WPICC
Non-local

distributions

where g1(ε), g2(ε log d) → 0, as ε → 0, and d is the dimension of the resource object.

For continuous variable systems, we expect d to be replaced by finite mean energy of

the object. The above properties are nice to have for a quantifier but not mandatory.

In the following sections, we will discuss the resource-theoretic framework for

entanglement, steering, and non-locality. The discussions in the next three sections

can be summarized by Table 2.2.

2.2.1. Resource theory of entanglement

Quantum entanglement is an important phenomenon in quantum information

theory and has been vital for the development of quantum technologies. It is a

uniquely quantum phenomenon, and therefore it makes sense to understand it from

a resource theory perspective.

Let us begin with the following question: what are the operations that Alice and

Bob can implement that leave the set of separable states invariant? An example of

these operations is local operations and classical communication (LOCC) [40]. As

the name suggests, LOCC consists of Alice and Bob performing local operations and

communicating classically. LOCC operations can be mathematically hard to describe

since the number of rounds of communication between Alice and Bob can be large.

A particular way to define finite-round r-LOCC between two parties is as r-rounds
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of recursive one-way LOCC (LOCC1) defined as

• Alice performs a local operation consisting of a quantum instrument on her side

which can be given as E(·) =
∑

i Ei(·)⊗|i⟩⟨i|, such that
∑

i Ei is trace preserving.

• Alice communicates the classical register to Bob, and Bob applies a CPTP map

Fi. This whole operation can be mathematically described as LOCC1(·) =∑
i Ei ⊗Fi(·).

We also define LOCC1 with classical communication from Bob to Alice in a similar

way. Then, an LOCC operation is composed of rounds of LOCC1 from Alice to Bob

and then LOCC1 from Bob to Alice.

Now one can ask the following question: are there correlations beyond LOCC

that leave the set of separable states invariant? This larger set of operations, which

contains the set of LOCC operations, is known as the set of separable operations,

defined as follows:

Definition 27 (Separable operations) Separable operations on S(HA ⊗ HB) are

CPTP maps with product Kraus operators mathematically formulated as

Λ(ρ) =
∑
i

(Ei ⊗ Fi)ρ(Ei ⊗ Fi)
†, (2.15)

with
∑

iE
†
iEi ⊗ F †

i Fi = I.

It was first shown in [41] that there exist maps in the set of separable operators

that cannot be written as a finite-round LOCC.

It is now instructive to think of entanglement from a resource-theoretic perspec-

tive. We start by fixing the free states as the separable states. The set of operations,

which leave set of free states invariant are the separability-preserving operations,
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which contain the LOCC operations. Since LOCC is physically easier to implement

than the set of separable operations, we consider the restricted set of operations as

LOCC operations. The set of entangled states are the resource states.

Some important entangled states include Werner states and isotropic states, de-

fined as follows:

Definition 28 (Werner state [42]) Let A and B be quantum systems, each of di-

mension d. A Werner state is defined for p ∈ [0, 1] as

W
(p,d)
AB ≡ (1 − p)

2

d (d+ 1)
Π+
AB + p

2

d (d− 1)
Π−
AB, (2.16)

where Π±
AB ≡ (IAB ± FAB) /2 are the respective projections onto the symmetric and

antisymmetric subspaces of A and B.

Definition 29 (Isotropic state [43]) An isotropic state ρ
(t,d)
AB is U ⊗ Ū-invariant

for an arbitrary unitary U , where dim(HA) = d = dim(HB). Such a state can be

written in the following form for t ∈ [0, 1]:

ρ
(t,d)
AB = tΦd

AB + (1 − t)
IAB − Φd

AB

d2 − 1
, (2.17)

where Φd
AB denotes a maximally entangled state of Schmidt rank d.

There are a number of quantifiers for entangled states such as relative entropy of

entanglement [44], squashed entanglement [10], entanglement robustness [45], entan-

glement of formation [40], log negativity [46, 47], among others. In this thesis, we

only concentrate on relative entropy of entanglement and squashed entanglement.

Relative entropy of entanglement is defined as follows:
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Definition 30 (Relative entropy of entanglement) Let ρAB be a bipartite state.

Then the relative entropy of entanglement of ρAB is given as

ER(ρAB) = inf
σAB∈SEP(A:B)

D(ρAB∥σAB), (2.18)

where SEP(A : B) is the set of separable states across the partition A : B.

Squashed entanglement was defined in [10]. We will recall the definition and

intuition behind the measure in Chapter 4.

Can we calculate the amount of entanglement in a state? It turns out that entan-

glement cost, entanglement of formation, relative entropy of entanglement, squashed

entanglement are NP-hard/NP-complete, and hence cannot be computed in polyno-

mial time [48]. This problem is related to the separability problem [49, 50].

Of the entanglement measures stated above, log-negativity can be calculated eas-

ily. But this in no way contradicts the hardness of the separability problem due to the

fact that it is not a faithful measure. It can be equal to zero even for some entangled

states. It is a useful upper bound on distillable entanglement. 5

2.2.2. Resource theory of steering

Quantum steering was first introduced by Schrödinger in 1935 [51] in order to

formalize an argument made by Einstein, Podolsky, and Rosen in [52]. It refers to

the following scenario: Alice and Bob share a bipartite quantum state. Alice mea-

sures her system, which can have the effect of steering the reduced state on Bob’s

system, depending on the measurement that she performs. She thus can influence

Bob’s subsystem without having access to it. However, Bob does not have any knowl-

edge about the influence, nor can he detect it unless Alice communicates the mea-

5It is not known if log negativity is an upper bound on distillable key, which is different from
distillable entanglement.
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surement that she performed and the outcome of the measurement. For example,

consider a maximally entangled state shared by Alice and Bob. Alice can measure

her system in either the Pauli σZ basis or the Pauli σX basis. If she measures in

the Pauli σZ basis, the resulting state of Bob’s subsystem is represented as the en-

semble
{

(1
2
, |1⟩⟨1|), (1

2
, |0⟩⟨0|)

}
. Alternatively, if she measures in the Pauli σX basis,

the state of Bob’s subsystem is represented as the ensemble
{

(1
2
, |+⟩⟨+|), (1

2
, |−⟩⟨−|)

}
.

The notion of steering was formalized in [26], which defines it in the context of an

entanglement certification task, with Alice having access to an untrusted device and

Bob to a trusted quantum system.

Let us consider an entangled state ρAB. Suppose that Alice performs a POVM

{Λa
x}a on the state ρAB. Then, it is not necessary that the resulting assemblage

is a steerable assemblage. To put it concisely, entanglement is a necessary but not

sufficient criterion for the observation of steering. An example of this phenomenon is

a two-qubit Werner states ψp = (1 − p)πAB + pφ−
AB, where φ− is the singlet state. A

Werner state is entangled if and only if p ≥ 1
3
, and steerable if p ≥ 1

2
. That is, for

1
3
≤ p ≤ 1

2
, the state is entangled but not steerable. This example demonstrates that

exhibiting steering is more difficult than having entanglement.

The resource theory of steering was formalized in [37], and we give a basic overview

below. The resource objects are steerable assemblages, and the free objects are local-

hidden-state assemblages. The set of free operations consists of one-way classical

communication from Bob to Alice and local operations (1W-LOCC) that leave the

set of free assemblages invariant. The set of 1W-LOCC also contains operations

in which Bob is also allowed to perform a quantum instrument on his system and

communicate the classical outcome prior to the measurement choice by Alice [37,

Definition 1] (thus, he can influence the input to her black box).

Before defining 1W-LOCC operations, let us introduce some notation. The sub-

41



normalized state possessed by Bob is ρ̂a,xB := pĀ|X(a|x)ρa,xB . Taking pX(x) as a proba-

bility distribution over measurement choices of Alice, we can then embed the assem-

blage {ρ̂a,xB }a,x in a classical-quantum state as follows: ρXĀB :=
∑

a,x pX(x) |x⟩⟨x|X ⊗

|a⟩⟨a|Ā ⊗ ρ̂a,xB ,where {|x⟩X}x and {|a⟩Ā}a are orthonormal bases.

We now define 1W-LOCC operations. Starting with a given assemblage {ρ̂a,xB }a,x,

it is possible for Bob to perform a quantum instrument on his system, specified as

the following measurement channel acting on an input state σB:

MB→B′Y (σB) :=
∑
y

Ky(σB) ⊗ |y⟩⟨y|Y , (2.19)

where

Ky(σB) :=
∑
t

Ky,tσBK
†
y,t. (2.20)

The sum map
∑

y Ky is trace preserving, i.e.,

∑
y,t

K†
y,tKy,t = IB, (2.21)

and each Ky,t is a Kraus operator, taking a vector in HB to a vector in HB′ . Bob

can then communicate the classical result y to Alice, who chooses the input x to her

black box according to a classical channel pX|Y (x|y). The state after these operations

is

ρXĀB′Y :=
∑
a,x,y

pX|Y (x|y) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗Ky(ρ̂
a,x
B ) ⊗ |y⟩⟨y|Y . (2.22)

A pictorial representation of 1W-LOCC operations is given in Figure 2.7.

It is quite simple to see that if we allow Alice to communicate classically with

Bob, then she can easily send (a, x) to Bob. With this information, Bob can prepare

the state ρa,xB . Hence, if Alice and Bob are allowed to perform an LOCC operation,
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Figure 2.7. This figure represents a 1W-LOCC operation acting on an assem-
blage. Bob is allowed to send classical information y to Alice, who chooses the
input x to her black box according to pX|Y .

they can create a steerable assemblage. Therefore, LOCC is not a free operation in

the resource theory of steering.

The 1W-LOCC that we have considered above allows for classical communication

from Bob to Alice. This communication can take place prior to Alice giving the input

to her device or can take place after Alice gives the input. The former scenario is a bit

more complicated to handle and can be experimentally hard to implement. We thus

consider a simpler, restricted class of free operations in which Bob cannot influence

Alice’s input to her black box.

In considering this restricted class, we are motivated by practical, relativistic

constraints that can potentially limit the performance of Alice and Bob’s quantum

devices in any quantum steering protocol. Typically, in any such protocol, Alice,

Bob, and the source of their systems are spatially separated, and furthermore, their

quantum devices typically have a finite coherence time. If Alice were to wait to

receive a signal from Bob before taking any action on her system, the performance

of her device could potentially get much worse than it would be if she were simply

instead to input to her system as soon as she receives it from the source. This
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perspective motivates a restricted class of 1W-LOCC operations in which any classical

communication from Bob reaches Alice only after she has received the output Ā from

her black box. We refer to these free operations as restricted 1W-LOCC.

Definition 31 (Restricted 1W-LOCC) Let {ρ̂a,xB } be an assemblage, and let{
pX|Xf

, pĀ|ĀXXfZ , {Kz}
}

denote a restricted 1W-LOCC operation that results in an

assemblage
{
ρ̂a,xf
}

ρ̂a,xf =
∑
a,x,z

pX|Xf
(x|xf )pĀF |ĀXXfZ(af |a, x, xf , z)Kz(ρ

a,x
B ). (2.23)

The only difference between restricted 1W-LOCC and 1W-LOCC is that Alice’s

inputs are no longer dependent on classical information that Bob sends.

There is another possibility that can be considered: Alice classically communi-

cates to Bob before giving the input to her device. This will not lead to the creation of

a steerable assemblage. This kind of operation can be recast in terms of 1W-LOCC.

Therefore, we need not consider it separately [37].

A number of quantifiers for quantum steering have been introduced in the lit-

erature. This includes the following: steerable weight [53], robustness [54], relative

entropy of steering [37, 55] and intrinsic steerability, among others. Of relevance to

this thesis are relative entropy of steering and intrinsic steerability. We will define

intrinsic steerability in Chapter 5 and relative entropy of steering in Chapter 7.

2.2.3. Resource theory of Bell non-locality

Bell non-locality, formalized in [56], reflects a fundamental difference between

classical and quantum correlations. Studied and introduced as a foundational concept

in quantum mechanics, it has proven to be an important resource in quantum key

distribution. A detailed review of Bell non-locality can be found in [30].
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Entanglement is a necessary but not sufficient criteria for observation of non-

locality. As an example consider the two-qubit Werner states. These states are Bell

non-local for p ≥ 1√
2
, steerable for p ≥ 1

2
, and entangled for p ≥ 1

3
. We thus observe

that Bell non-locality is a stronger form of correlations than entanglement or steering.

The resource theory of Bell non-locality was formalized in [36], and we provide an

overview here. The resource objects are the Bell non-local distributions p(a, b|x, y).

Having fixed the resource, now let us consider the free operations. It is intuitive

to see that if classical communication is allowed between Alice and Bob, then they

can generate any possible probability distribution. This rules out LOCC or 1W-

LOCC as possible sets of free operations. We now consider operations that do not

involve communication between Alice and Bob after they have obtained a, x, y, and

b. One such class of operations is local operations and shared randomness. This

class includes the set of operations in which Alice and Bob are allowed to process

information locally, without any communication.

Physically, local operations and shared randomness [57, 58] refers to an opera-

tion in which Alice and Bob share unlimited free randomness and can perform local

operations on

• the inputs given by Alice and Bob to their respective components,

• the outputs of the two components to give the final outputs to Alice and Bob.

The local operations and shared randomness act on the initial correlation pi(a, b|x, y)

corresponding to the device, in order to yield a final, modified correlation pf (a, b|x, y).

These operations can be parametrized as follows [59]:

pf (af , bf |xf , yf ) :=
∑
a,b,x,y

O(L)(af , bf |a, b, x, y, xf , yf )pi(a, b|x, y)I(L)(x, y|xf , yf ).

(2.24)
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Here, I(L) corresponds to a local correlation for a local device that takes in the inputs

xf and yf from Alice and Bob, uses shared randomness, and performs local operations

to yield new inputs x and y for the main device characterized by pi. This can be

written as

I(L)(x, y|xf , yf ) =
∑
λ2

pΛ2(λ2)IA(x|xf , λ2)IB(y|yf , λ2), (2.25)

where pΛ2(λ2) corresponds to the probability distribution of the shared classical vari-

able Λ2, IA(x|xf , λ2) corresponds to the probability of obtaining x given xf and λ2,

and IB(y|yf , λ2) corresponds to the probability of obtaining y given yf and λ2.

Once the initial device pi generates the outputs a and b, it can be post-processed

by a local device that is characterized by the local correlation O(L). This can be

written as

O(L)(af , bf |a, b, x, y, xf , yf ) =
∑
λ1

pΛ1(λ1)OA(af |a, x, xf , λ1)OB(bf |b, y, yf , λ1).

(2.26)

This device takes in a, b, x, y, xf , yf and gives the final outputs af , bf by using shared

randomness and performing local operations on the inputs. Here, pΛ1(λ) is a proba-

bility distribution over the classical shared random variable λ1, OA(af |a, x, xf , λ1) is a

conditional probability distribution for obtaining af given x, xf , λ1, a, and OB(bf |b, y

, yf , λ1) is a conditional probability distribution for obtaining bf given y, yf , λ1, b. See

Figure 2.8 for a pictorial representation of the most general transformation of local

operations and shared randomness on a correlation pi(a, b|x, y).

In the resource theory of Bell non-locality [36, 59], the resources are non-local

distributions p(a, b|x, y). Local operations and shared randomness are one possible

set of free operations in this resource theory [36]. It can be shown from the definition
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Figure 2.8. This figure depicts how local operations and shared randomness
can act on an initial correlation pi(a, b|x, y) to produce a final correlation
pf (af , bf |xf , yf ).

of a local distribution that the action of the local operations and shared randomness

transforms a local distribution to a distribution in L. Furthermore, a quantum dis-

tribution remains in the set Q when acted upon by these free operations. To see this,

replace the local boxes O(L) and I(L) in (2.24) by separable states shared between

Alice and Bob with the local states encoding the probability distributions required in

(2.25) and (2.26) and the measurements as projective measurements.

Another class of operations that keeps the set of local correlations invariant is

called as wirings and prior-to-input classical communication. In this class, Alice

and Bob are allowed to communicate before the inputs are given to their respective

devices. For details, please see [59].

A number of quantifiers have been introduced for quantifying non-locality of a

probability distribution. Some of these include the following: relative entropy of non-

locality [60], intrinsic non-locality [13], and squashed non-locality [61]. We will give

detailed definitions for these quantifiers in Chapter 6.
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Chapter 3
Quantum Key Distribution

In this chapter, we review the basics of quantum key distribution. For in-depth

details, please consult [62, 63, 64]. The main goal of quantum key distribution is to

establish secure keys between Alice and Bob. By secure keys, we mean that Alice

and Bob share a string of random variables that are not known to any Eavesdropper.

We will give a mathematically precise definition later. The security of the estab-

lished key relies on quantum correlations shared between two distant parties: Alice

and Bob. It relies on quantum phenomena such as the monogamous nature of quan-

tum correlations, the uncertainty principle, and the no-cloning theorem. With these

properties, we bypass the need for relying on computational hardness, which is a

fundamental requirement for classical cryptography. Instead, we obtain information-

theoretic security, which relies on physical principles. The strength of quantum key

distribution relies on the fact that the security is guaranteed irrespective of progress

in computation: classical or quantum. Any public classical information collected by

the eavesdropper during the protocol cannot be used to break the security of the

established key with computational developments in the future. This is in contrast

to computational security, where computational advances can threaten the security

of keys established retroactively.

Every quantum key distribution protocol has the following three assumptions:

• Quantum mechanics or the no-signaling principle is correct.

• Alice and Bob’s devices are not communicating with the eavesdropper or pub-

licly leaking information.

• There exists a classical authenticated channel between Alice and Bob.

The existence of an authenticated channel is required because Alice and Bob need to
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confirm that they are communicating with each other and not with an eavesdropper

impersonating as Alice or Bob. Without this assumption, quantum key distribution

is susceptible to a man-in-the-middle attack.

Now, to establish a classical authenticated channel, Alice and Bob can use public

key cryptography, which relies on computational security. Here we encounter a co-

nundrum: If the security of quantum key distribution is contingent on the security of

the public key authentication, which relies on computational hardness, are the keys

generated from a quantum key distribution protocol secure? If the secret keys used

for authentication are secure during the run of a quantum key distribution protocol,

then the keys generated from a QKD protocol are also secure. Once the protocol for

generating the key ends, the keys used for authentication can be released publicly

and will not affect the security of the generated keys. That is, the key used for au-

thentication, which relies on computational hardness, need only be secure for a short

period. For more discussion on the aforementioned assumptions, please see [65].

A generic quantum key distribution protocol includes the following steps:

• Alice and Bob share an unknown bipartite state ρAB.

• Alice and Bob perform measurements on their systems to obtain measurement

outcomes. These outcomes will have some correlations depending on the state

shared between Alice and Bob.

• Using their data of measurement outcomes and choices, Alice and Bob quantify

the amount of information that the Eavesdropper has about the outcomes. One

particular way to proceed with the above analysis is to consider the set S of

states compatible with the observed correlations. Define a set S̄ that consists

of a purification ψρABE of ρAB jointly held by Alice, Bob, and the Eavesdropper.

An optimization over this set is used to quantify the amount of information
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Table 3.1. Different types of quantum key distribution based on trust assump-
tions on measurement devices.

Setting
Measurement on

Alice’s side
Measurement on

Bob’s side
Resource

Trusted QKD Trusted Trusted Entanglement

1S-DI-QKD Untrusted Trusted Steering

DI-QKD Untrusted Untrusted Bell non-locality

that an Eavesdropper has about the measurement outcomes.

• Alice and Bob perform local operations and authenticated classical communi-

cation, which involves error correction and privacy amplification, to obtain the

final key. The eavesdropper can passively copy any classical communication

exchanges between Alice and Bob.

Quantifying the amount of information that Eve has about the measurement

outcomes is the bottleneck for most of the security proofs. The reason is that the set of

states compatible with the observed measurement outcomes can be large. To quantify

Eve’s information, techniques need to be developed that can optimize over such large

sets of compatible states. For progress in this area, please consult [66, 39, 67].

In QKD protocols, measurement devices play a crucial part. They are instrumen-

tal in obtaining information about unknown quantum states. Therefore, one needs

to understand how much we can trust the measurement devices. This trust assump-

tion has led to different settings in quantum key distribution. In the first one, Alice

and Bob trust their measurement settings. This means that they know the POVM

implemented by their device. This corresponds to trusted quantum key distribution.

In the second scenario, Bob knows the POVMs implemented by his device; however,
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Figure 3.1. Trusted QKD

Alice does not know the POVMs implemented by her device. This is the setting of

one-sided device-independent quantum key distribution (1S-DI-QKD). In the third

scenario, both Alice and Bob do not trust the POVMs implemented by their device.

We refer to this as device-independent quantum key distribution (DI-QKD).

3.1. Trusted quantum key distribution

Trusted quantum key distribution is the well-studied setting of quantum key

distribution. Primarily, in this setting, we consider two types of protocols: prepare-

and-measure (PM) and entanglement-based (EB) protocols. As the name suggests,

in a prepare-and-measure protocol, Alice prepares a state and sends it to Bob, who

measures the received state. In an entanglement-based protocol, an untrusted source

prepares a bipartite state and sends one share each to Alice and Bob. Alice and

Bob measure their shares of the state to obtain classical variables, from which they

extract a key. Although PM protocols and EB protocols are seemingly different on

the surface, one can show that for every PM protocol there exists an EB protocol and

vice versa [68]. This equivalence is extremely useful because PM protocols are easier

to implement and EB protocols are slightly easier to analyze.

Most prepare-and-measure protocols consist of the following steps:

• The following transmission round is performed n times:
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– Alice needs to encode the bit values 0 and 1. She encodes the bits in the

state ψ0,1
i , where i ∈ {1, . . . ,m} reflects the encoding basis, and ψ0

i and ψ1
i

are the states used to encode 0 and 1, respectively. For the sth transmission

round, Alice stores the values of the encoding basis in random variable Xs
1

and the encoded bits in Xs
2 .

– Alice sends the states through an insecure quantum channel, which can

be controlled by an eavesdropper. This implies that Alice and Bob do not

know the state that is received by Bob.

– Bob then measures the received state in some basis ψj and stores the values

of the measuring basis for the sth round in Y s
1 and the bit values in Y s

2 .

• At the end of n transmission rounds, Alice has X1 = X1
1X

2
1 . . . X

n
1 . Similarly,

we can define X2, Y1, and Y2.

• Alice and Bob then perform a sifting process. Alice announces the basis X1

in which she prepared the state and Bob announces the basis Y1 in which he

measured the state. They only keep Xk
2 and Y k

2 for which the measurement basis

is the same, that is, Xk
1 = Y k

1 . This gives the raw key, X̃2 and Ỹ2, on which

they perform error correction and privacy amplification. These protocols involve

local operations and public communication. The classical communication takes

place over a classical authenticated channel.

The security proof for most PM protocols relies on using correlations observed in X2

and Y2, along with the knowledge of X1 and Y1, to determine the channel imple-

mented by the eavesdropper. This step can be hard because the number of channels

compatible with Alice and Bob’s observations can be large.

As discussed above, a slightly easier approach to security proofs is to define a

corresponding entanglement-based protocol. In entanglement-based protocols, Alice
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prepares a bipartite state ρAA′ and sends the system A′ over an insecure quantum

channel NA′→B that can be controlled by an eavesdropper. As a consequence, Alice

and Bob share the state ρAB = NA′→B(ρAA′). Alice and Bob measure this state

in a random basis to obtain the measurement outcomes. To establish the security

of this protocol, Alice and Bob determine the states ρAB that are compatible with

their measurement outcomes. Because we assume that all information leaked from

the channel is collected by Eve, the state held by Eve is a purification ψρABE of

a compatible state ρAB. Even the set of joint states held by Alice, Bob, and the

eavesdropper can be extremely large and therefore optimizing over this set is hard.

Several techniques have been developed in [69, 39, 4] to solve this problem for various

protocols.

The first quantum key distribution protocol was introduced in the seminal work

of [3] with a security proof provided in [4]. Following that, there have been several

other prepare-and-measure protocols introduced, such as the six-state protocol [70]

and the B92 protocol [71]. Ekert [23] also introduced a protocol that uses bipartite

entanglement to obtain secure keys and relies on the violation of a Bell inequality to

detect the presence of an Eavesdropper.

3.1.1. Resource in QKD

To obtain a non-zero secret key rate in a QKD protocol, the underlying channel

implemented by an eavesdropper should not be entanglement breaking. An entanglement-

breaking channel is defined as follows [72]:

Definition 32 (Entanglement-breaking channels) A channel N is an entangle-

ment breaking channel if its Choi matrix ΦN
AB is separable.

One can easily understand this requirement in the context of EB protocols. To

extract a secret key in these protocols, the shared state must be an entangled state.
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If the shared state is separable, then Alice and Bob cannot generate a secure key from

this state via a quantum key distribution protocol. As seen here, entanglement in

the bipartite state ρAB is a necessary condition, but it is not known to be a sufficient

condition for obtaining a secure key. The sufficient condition has been extensively

studied in [73, 74, 75].

In quantum key distribution, we assume that an eavesdropper controls the channel

connecting Alice and Bob. This means that a priori Alice and Bob do not know the

channel. They might assume a certain model for the channel that is later verified

during the protocol using their measurement statistics. Also, any noise, that in

part, can be due to physical constraints such as fiber losses, is attributed to the

eavesdropper. If the noise added by the physical process is greater than a certain

threshold, then the bipartite state is no longer entangled. Hence, no secure key can

be extracted from it.

As an example, suppose that an optical fiber with transmissivity η connects Alice

and Bob. We attribute the fiber losses to an eavesdropper. We assume that the eaves-

dropper is collecting all information being leaked from the fiber. This fundamentally

limits the distance at which a secret key can be distilled. This intuition is formal-

ized for various channels in [6, 7, 8]. The attribution of all losses in the channel to

an eavesdropper is a powerful assumption. However, to obtain information-theoretic

security, this assumption is necessary.

Now, if we inspect the workings of the security proof of BB84, B91, and the

six-state protocol, we see that there is an underlying assumption that Alice’s en-

coding and Bob’s measurement devices are fully characterized. If we consider the

entanglement-based counterpart, Alice and Bob’s measurements are fully character-

ized. One can also consider an extreme scenario in which Alice and Bob do not

characterize their measurement devices. We do not know the POVMs corresponding
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Figure 3.2. Device-independent quantum key distribution

to the measurement devices. Can we extract secret keys from an unknown bipartite

state without trusting the measurement performed on these states? Fortunately, we

can still exploit the correlations present in quantum mechanics without trusting mea-

surement devices and quantum states. In this context, we study device-independent

quantum key distribution, which we explain in the next section.

3.2. Device-independent quantum key distribution

3.2.1. Model

Consider a scenario in which Alice and Bob receive a device manufactured by

some malicious untrusted party. This box can contain an entangled state, a separable

state, or be described by a no-signaling correlation; however, Alice and Bob do not

know the contents of the box. They can access this device with classical inputs

x, y ∈ {0, 1, . . . ,m}. Once Alice and Bob choose the classical inputs, the device

performs some arbitrary action and gives Alice and Bob some classical output a, b ∈

{0, 1, . . . ,m}. So the only way that Alice and Bob can interact with their devices is

through classical inputs and classical outputs. We can thus characterize these devices

with a conditional probability distribution PĀB̄|XY , where Ā, B̄ are random variables

associated with Alice and Bob’s respective outcomes, and X, Y are random variables
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associated with Alice and Bob’s respective inputs. This device is called a black box

because we do not know the inner workings of the box. The question now becomes the

following: can Alice and Bob still do something useful with the generated correlations

without knowing about the inner working of the device?

Interestingly, with the following assumptions and minimal trust on their devices,

Alice and Bob can still construct protocols to extract secret keys from the conditional

probability distribution PAB|XY :

• There is no extraneous/unwanted communication from Alice and Bob’s device.

• There is a trusted random number generator to produce classical variables.

• They have trusted classical devices (e.g., memories and computing devices) to

store and process the classical data generated by their quantum devices.

• They are connected by authenticated classical public channels.

The first assumption is required to make sure that the device is not leaking out

classical data. Without this, the device can communicate the classical data to Eve,

and there can be no secure key. The second assumption is required because Alice and

Bob’s measurement choices should not be known in advance to the eavesdropper or

the device manufacturer. If the choices are known in advance, then the manufacturer

can rig the devices. The fourth assumption is required because Alice and Bob need

to be sure that they are communicating with each other.

A basic device-independent protocol consists of the following steps:

• The following round is performed n times.

– Alice and Bob give inputs Xi and Yi to the device.

– The device gives outputs Āi and B̄i.
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At the end of these rounds, Alice has X = X1X2 . . . Xn and Ā = Ā1Ā2 . . . Ān.

Bob has Y = Y1Y2 . . . Yn and B̄ = B̄1B̄2 . . . B̄n.

• Alice and Bob announce their measurement settings. For m random rounds,

Alice and Bob share their outputs Āj and B̄j, j ∈ {1, . . . ,m}. They use this

information to bound the value by which the outputs Āj, Xj, Yj, and B̄j violate

a Bell inequality. They discard the data collected in these m rounds. The

rounds in which Alice and Bob’s measurement settings do not match are also

subsequently discarded. The remaining outcomes form a raw key.

• If the Bell inequality violation is sufficiently strong, they proceed with local op-

erations and public communication, which includes error correction and privacy

amplification.

3.2.2. Resource in DI-QKD

Suppose that that an untrusted device is defined by a local correlation PĀB̄|XY =∑
λ pΛ(λ)pĀ|X,ΛpB̄|Y,Λ. The eavesdropper can copy the classical information λ, and

when Alice and Bob reveal their measurement choices, induce a classical channel

from X,Λ, Y to obtain the outcomes Ā and B̄. Thus, we see that no secret key can

be extracted from a local correlation in a device-independent QKD protocol.

To check for non-local distributions, we check for violations of Bell inequalities.

The first Bell inequality was formulated by John Bell in his seminal paper “On the

Einstein Podolsky Rosen paradox” [56]. This inequality was generalized in [76] to

make it realizable with experiments. Ever since its formulation, several other Bell

inequalities have been explored. These include Mermin inequalities [77] and tilted

CHSH inequalities [78], among others.

A crucial part of the aforementioned protocol is a Bell inequality test, which is

defined as follows:
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Definition 33 (Bell inequality) Let p(a, b|x, y) ∈ L, where L is described in (2.8).

Then there exists an inequality

∑
a,b,x,y

s(a, b, x, y)p(a, b|x, y) ≤ S, (3.1)

satisfied for all p ∈ L and not satisfied for some p ∈ Q, where Q is described in (2.9).

Here S > 0, and s(a, b, x, y) ∈ R.

The objective of a Bell inequality test is to quantify Eve’s information in a device-

independent way. This proves to be a challenging task, especially because here, we

need to optimize over a set of states as well as measurements that are compatible with

the observed measurement statistics. Most DI-QKD protocols rely on the CHSH Bell

inequality. This is because the two-input two-output setting of the CHSH inequality

allows us to invoke Jordan’s lemma, which enables us to assume a dimension bound on

Alice and Bob’s underlying state. Establishing security proofs for DI-QKD protocols

with other Bell inequalities is still an open line of research.

In a device-independent scenario, one can consider different models of an eaves-

dropper. Besides the assumptions that we made above, we can also assume that Alice,

Bob, and Eve’s systems are governed by quantum mechanics. This implies that the

conditional probability distribution describing the black box has an underlying quan-

tum strategy. The two-component box is assumed to have an underlying quantum

state ρAB, and Eve has the purification of this state ψρABE. Such an eavesdropper is

known as a quantum eavesdropper and has a quantum extension of the distribution,

defined as follows:

Definition 34 (Quantum extension) Let p(a, b|x, y) ∈ Q. A distribution in the

set Q arises from an underlying state ρAB and POVMs characterized by {Λa
x}a and
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{
Λb
y

}
b
. Now, consider a quantum state ρABE such that TrE (ρABE) = ρAB. Then, a

quantum extension of p(ab|xy) is defined as

p(a, b|x, y)ρa,b,x,yE = TrAB
[
(Λa

x ⊗ Λb
y ⊗ IE)ρABE

]
. (3.2)

Lower bounds on secret key rates for protocols with a quantum eavesdropper have

been considered in [39, 66].

If the distribution describing their device is no-signaling, then we can also as-

sume that the eavesdropper is no-signaling. We can further model a no-signaling

eavesdropper in two ways. In the first one, we can model the eavesdropper as a

no-signaling quantum eavesdropper. A no-signaling quantum eavesdropper has a no-

signaling quantum extension of the probability distribution p(a, b|x, y), defined as

follows:

Definition 35 (No-signaling quantum extension) The assemblage ρ̂a,b,x,yE = p(a, b|x, y)

ρa,b,x,yE is a no-signaling quantum extension of p(a, b|x, y) if the following no-signaling

conditions are satisfied:

∑
a

p(a, b|x, y)ρa,b,x,yE =
∑
a

p(a, b|x′, y)ρa,b,x
′,y

E ∀x, x′ ∈ X . (3.3)

∑
b

p(a, b|x, y)ρa,b,x,yE =
∑
b

p(a, b|x, y′)ρa,b,x,y
′

E ∀y, y′ ∈ Y . (3.4)

In the second model, one assumes that the eavesdropper has a no-signaling extension,

defined as follows:

Definition 36 (No-signaling extension) The conditional probability distribution

p(a, b, c|x, y, z) is a no-signaling extension of p(a, b|x, y) if the following no-signaling
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condition holds

∑
c

p(a, b, c|x, y, z) =
∑
c′

p(a, b, c|x, y, z) ∀z, z′. (3.5)

The security of various DI-QKD protocols has been proven for different models of the

eavesdropper [79, 80, 81].

Although DI-QKD is the holy grail of quantum key distribution, its practical

implementation is extremely challenging. To implement DI-QKD, it is imperative to

perform a loophole-free Bell test, which was only recently demonstrated in [82, 83, 84].

Recall that in trusted quantum key distribution, we attributed only the noise in the

transmission channel to the eavesdropper. With DI-QKD protocols, we attribute

even the noise in the measurement device to the eavesdropper. This makes DI-QKD

protocols extremely sensitive to noise.

Above we have mentioned two scenarios: one in which Alice and Bob trust their

measurement settings, and in the other, they do not trust their measurement set-

tings. One can also consider several in-between scenarios. There are three dif-

ferent models of QKD that have been considered: semi-device-independent quan-

tum key distribution [85], one-sided device-independent quantum key distribution

[67, 38], and measurement device-independent quantum key distribution [86, 87].

With semi-device-independent QKD, the dimensions of the quantum systems and

measurements are trusted and known. In one-sided device-independent QKD, we do

not trust the preparation phase and measurement devices with either Alice or Bob.

In measurement-device-independent QKD, we trust the preparation phase but do not

trust the measurement devices.

In the next section, we investigate one-sided device-independent quantum key

distribution.
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Figure 3.3. One-sided device-independent quantum key distribution

3.3. One-sided device-independent QKD

3.3.1. Model in 1S-DI-QKD

One attractive alternative to DI-QKD is 1S-DI-QKD introduced in [67, 38]. Con-

sider a scenario in which, say, a bank and a user want to share a secret key. The

bank, since they have a lot of money, invest in equipment that is resistant to noise,

and has highly calibrated preparation and measurement devices. However, the user

cannot afford to keep the highly calibrated instruments due to high maintenance costs

and, therefore, cannot trust the equipment. The user’s equipment effectively behaves

like a black box and can only be accessed via a classical input and a classical out-

put. Quantum key distribution protocols in which one of the parties does not trust

its measurement equipment are technically known as one-sided device-independent

protocols. The aforementioned scenario is reminiscent of the one we discussed in

quantum steering, in which one of the parties is characterized by a conditional prob-

ability distribution, and the other party is characterized by a correlated quantum

state.

The only difference between DI-QKD and one-sided device-independent QKD

comes from the treatment of the variable Y . In DI-QKD, we assume that we do

not have the characterization of Y ; however, in 1S-DI-QKD, we know the measure-
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ment/action being carried out by the device when the user inputs Y .

The first 1S-DI-QKD was introduced in [67], where they proved that the prepare-

and-measure BB84 protocol could be made one-sided device-independent on Bobs

side, albeit with lower key rates. The proof requires a memoryless assumption, as

discussed in [88]. In [38], it was shown that to obtain secure key rates in this setting,

Alice and Bob’s assemblage needs to violate a steering inequality, establishing a con-

nection with quantum steering. It is, in fact, simple to prove that if an assemblage

has a local-hidden-state model, then a 1S-DI-QKD protocol cannot extract a secret

key from the assemblage.

3.3.2. Resource required

The resource required in 1S-DI-QKD is steerable assemblages, which can be wit-

nessed by a steering inequality. A steering inequality is the counterpart of a Bell

inequality in quantum steering. It is a witness for steerable assemblages and has the

following form:

Definition 37 (Steering inequality) A steering inequality is given as follows:

β = Tr

[∑
b,y

Λb
yρ̂
b,y

]
≤ βLHS, (3.6)

where
{

Λb
y

}
b,y

are the POVM elements and ρ̂b,y is the assemblage, βLHS is the maximal

value of β that can be obtained by any local-hidden-state assemblage.

3.4. Attacks by eavesdropper

Often the first attempt to obtain secure key rates for a quantum key distribution

protocol is in the asymptotic regime, in which the number n of transmission rounds

tends to infinity. Let l denote the length of the secure key that can be extracted in n

rounds. Then, the rate of the protocol is given by limn→∞
l
n
. Of course, this is not a
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realistic assumption; however, it can be insightful for determining the key rates that

one can expect from a particular protocol.

Security is also first generally proved under an independent and identically dis-

tribution (i.i.d.) assumption or collective attack assumption. Under this assumption,

Eve’s actions, which appear as a noisy quantum channel N to Alice and Bob in PM

protocols, remain the same for each transmission round. She is allowed to make ar-

bitrary collective measurements on her collected quantum systems at the end of the

protocol. In the entanglement-based scenario, we assume that the quantum state,

probability distribution, or the assemblage considered remains the same for each

transmission round.

Collective attacks are not the most general attacks that can be carried out by

an eavesdropper. For general attacks, the channel implemented by an eavesdropper

in a particular transmission round can depend on the information collected in the

previous rounds. In this context, techniques such as de Finetti reductions [89] and the

post-selection technique [90] can be employed for trusted quantum key distribution.

To obtain security under these general attacks, we only need to prove security for

collective attacks and then invoke the above techniques. The techniques, with a

reduction in the key rates, give a secure key for arbitrary attacks. In DI-QKD,

de Finetti reductions [91] and entropy accumulation [66] can be employed to deal

with general attacks. However, the use of these techniques is not as straightforward

as in the trusted setting. For general attacks, the secure key rate tends to rates

obtained in collective attacks, for a large number of transmission rounds.

3.5. Lower bound on asymptotic key rates and collective attacks

In this section, we discuss techniques for obtaining lower bounds on key rates for

a QKD protocol. For this, we first discuss lower bounds on the rates of secret key

distillation protocols.
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Let Alice and Bob share n copies of an arbitrary state ρAB. The collective joint

state on Alice, Bob, and Eve’s systems is given by the purification ρABE of the shared

state ρAB. Alice and Bob can perform local operations and public communication

protocols on ρ⊗nABE to obtain an ε-secure key ωKAKBE where KA and KB are classical

registers, such that

1

2
∥Φ̄KAKB

⊗ σE − ωKAKBE∥1 ≤ ε, (3.7)

where Φ̄KAKB
= 1

|d|
∑d

i=1 |ii⟩⟨ii|KAKB
is the ideal key and ωKAKBE is the joint state

at the end of the protocol. Such a protocol is called an (n,R, ε) protocol, where

R = log2 d
n

. A rate R is achievable if for all ε ∈ (0, 1], δ > 0, and sufficiently large

n, there exists an (n,R − δ, ε) protocol. Then the maximum achievable rate is the

distillable key of the state ρ⊗nABE.

Since distillable key involves an optimization over all possible LOCC protocols,

it can be hard to calculate in general. Therefore, we obtain lower bounds and upper

bounds on the rate and, in this way, narrow down the region of possible values of

the distillable key. One such well known lower bound is the Devatak-Winter bound

introduced in [2]. This is a lower bound on the one-way distillable key of the state

and hence is also a lower bound on the distillable key. Here, one-way distillable key

means that classical communication is allowed only in one direction, either from Alice

to Bob or Bob to Alice. The Devatak-Winter formula states that the key rate R is

bounded from below as follows:

R ≥ I(X;Y )ρ − χ(Y ;E)ρ, (3.8)

where I(X;Y ) is the mutual information between X and Y , and χ(Y ;E) is the

Holevo information between Y and the eavesdropper’s system. The state ρXY E =
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∑
x,y |x⟩⟨x|X ⊗ |y⟩⟨y|Y ⊗ TrAB [(Λx

a ⊗ Λy
b) ρABE], where {Λa

x}a and
{

Λb
y

}
b

are POVMs

characterizing Alice and Bob’s measurement operators. For protocols with commu-

nication from Alice to Bob, we can replace Y in the Holevo information term with

X.

The distillable key of a state is closely related to key rates in quantum key dis-

tribution. The missing link is that in a quantum key distribution protocol, Alice and

Bob cannot make any assumption on the form of the state ωKAKBE because they do

not know the underlying bipartite state ρAB. However, Alice and Bob do have certain

observations from their measurement outcomes, which they can use to characterize

the set of states compatible with the outcomes. To take this into account, we need

to perform an optimization over the set of states in the Holevo-information term in

the Devatak-Winter formula as follows:

R ≥ I(X;Y ) − max
ρY E

χ(Y ;E). (3.9)

This optimization makes it challenging to calculate lower bounds. In several protocols,

we cannot perform this optimization and have to come up with novel ways of obtaining

upper bounds on the Holevo information.

3.5.1. Honest devices

A QKD protocol is designed such that, for any noisy channel, it yields a secret

key with high probability or it aborts. The key rates that one would obtain from

these protocols are calculated over expected noise models. It is important to point

out here that the protocol will be secure for any noise model. But to calculate key

rates, we assume a specific noise model. Ideally, we would want a protocol to give a

high key rate for the expected noise models. Some common forms of noise models are

the depolarizing channel, thermal channel, pure-loss channel, erasure channel, among
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others.

In the DI-QKD literature, one often encounters the term honest device. An honest

device means that the noise in the device behaves as expected. A DI-QKD protocol

will be secure for all noise models, but we calculate the key rates for the honest

devices.
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Chapter 4
Intrinsic Information and Squashed Entanglement

In this chapter, we introduce information-theoretic quantities based on condi-

tional mutual information, which are relevant in the context of secret key distillation.

We first formalize the definition of distillable key for both classical and quantum corre-

lations. Then we motivate the use of conditional mutual information-based measures

for quantifying secret correlations in a joint probability distribution or a bipartite

quantum state. We revisit the definitions of intrinsic information, introduced by Ueli

Maurer in [9] and its improvements as introduced in [92] and [93]. We recall the

definition of squashed entanglement [10], an entanglement measure inspired by in-

trinsic information. With these definitions established, we explore the connection of

squashed entanglement with key rates in quantum key distribution.

4.1. Secret key distillation protocols

In secret key distillation protocols, the goal is to establish a secret key bit string

shared between Alice and Bob. An eavesdropper should have little or no knowledge

about this bit string. The security of secret bit strings can be established under

various assumptions. One common assumption is that of computational complexity,

which is currently employed in most cryptographic protocols. Under the computa-

tional complexity setting, security is based on the hardness of certain mathematical

problems. The security proofs in quantum key distribution do not rely on computa-

tional assumptions but rather on certain physical assumptions. Keys established with

security based on physical assumptions have information-theoretic security.

In secret key distillation protocols, we often use the term LOPC, which stands for

local operations and public communication. This kind of operation is a concatenation

of the following one-way LOPC operations, described as follows:

• Alice performs the following quantum instrument: (ΛA→AĀ ⊗ idBE) (ρABE) =

67



∑
a (Ea ⊗ idBE) (ρABE)⊗ |a⟩⟨a|Ā, where the sum map

∑
a Ea is trace preserving.

• Alice sends a over an authenticated public channel. Eve can copy all the classical

information exchanged between Alice and Bob over the authenticated channel.

Then the state at the end of protocol is ρAĀBB̄EĒ =
∑

a(Ea ⊗ idBE)(ρABE) ⊗

|aaa⟩⟨aaa|ĀB̄Ē.

We can replace Alice with Bob in the above one-way LOPC operations.

We can now define an LOPC operation Λ as a concatenation of n rounds of

one-way LOPC operations {Λ}n∈N. An example of an LOPC operation is as follows:

Λ : ρ⊗nABE → ρKAKBEAnBnEn where ρKAKBEAnBnEn is final state of this LOPC protocol.

An ideal secret key can be defined as follows

Φ̄KAKBE = Φ̄KAKB
⊗ ρE, (4.1)

with ρE an arbitrary state of the eavesdropper’s systemE and Φ̄KAKB
=
∑

i
1
d
|ii⟩⟨ii|KAKB

.

4.1.1. Classical secret key distillation protocol

Consider three parties Alice, Bob, and an eavesdropper, with access to i.i.d. ran-

dom variables. Let Ā be a random variable with Alice, B̄ a random variable with

Bob, and Z a random variable with Eve. All three parties know the joint probability

distribution PĀB̄Z associated with these three random variables (this is a physical

assumption in this setting). Suppose that Alice and Bob want to extract a secret key,

unknown to Eve, from PĀB̄Z by using an LOPC operation. The secret key rate, for

this setting, is the maximum rate at which Alice and Bob can extract a secret key

from n independent instances of the probability distribution. This rate is denoted as

KD(Ā; B̄|Z). For a precise definition, please see [9].
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Figure 4.1. Short Markov chain

4.1.2. Quantum secret key distillation protocol

A similar definition of secret key distillation protocols can be formulated for quan-

tum states. Instead of access to i.i.d. random variables, Alice, Bob, and Eve have

access to n copies of a tripartite quantum state ρABE. This state is also known to

the three parties (physical assumption in this setting). Alice and Bob can perform an

LOPC operation ΛAnBn→KAKB
to extract a state ρKAKBE = ΛAnBnEn→KAKBE(ρAnBnEn),

such that

1

2
∥ρKAKBE − Φ̄KAKB

⊗ ρE∥1 ≤ ε, (4.2)

where ε > 0, and Φ̄KAKB
= 1

d

∑d
k=1 |kk⟩⟨kk|KAKB

. The aforementioned protocol is

an (n,R, ε) secret key distillation protocol with the rate R = log2 d
n

. A rate R of

secret key distillation is achievable for ρABE if there exists an (n,R− δ, ε) secret key

distillation protocol for all ε ∈ (0, 1), δ > 0, and sufficiently large n. The distillable

key KD(A;B|E)ρ of a state ρABE is equal to the supremum of all achievable rates.

4.2. Entanglement measures, secrecy measures, and conditional mutual
information

Suppose that we are given a joint probability distribution PĀB̄Z or a tripartite

state ρABE. Can we find the distillable key of these objects? Finding this quantity is

not easy, and so we resort to finding tight upper bounds and lower bounds. Mutual

information-based quantities are useful in the context of obtaining upper bounds on

KD(Ā; B̄|Z)p and KD(A;B|E)ρ.
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The intuition behind using conditional mutual information-based quantities for

quantification of secrecy can be traced back to the following property of conditional

mutual information:

The conditional mutual information I(X;Y |Z) of a short Markov chain,

X → Z → Y , is equal to zero.

The correlations existing between X and Y can be quantified by I(X;Y ). However,

X and Y might have some common correlations with random variable Z. Therefore,

one needs to ‘squash’ these common correlations to measure the intrinsic correlations,

shared just by X and Y (which can form the basis of a secret key).

Apart from the quantification of secret key rate in triples, conditional mutual

information is also useful in quantifying the entanglement of a state. For this, first

recall that a separable state can be written as ρAB =
∑

λ pΛ(λ)ρλA ⊗ ρλB. Now for

this state, the conditional mutual information is equal to zero, i.e., I(A;B|Λ)ρ = 0.

Now, consider any bipartite state σAB, and for this state, let us define the following

function: infσABΛ
I(A;B|Λ)σABΛ

, where σABΛ =
∑

λ pΛ(λ) |λ⟩⟨λ|Λ ⊗ σλAB, such that

TrΛ [σABΛ] = σAB. For every separable state, we can find a decomposition such that

infΛ I(A;B|Λ)ρABΛ
= 0. This gives us an intuition that the CMI of quantum states

can be helpful in quantifying entanglement of a quantum state [94, 95].

4.2.1. Intrinsic information

In this section, we define intrinsic information, which was first introduced in [9].

In the last section, we discussed that given a triple X, Y , and Z, the CMI

I(X;Y |Z) can be used as a measure for secret correlations. However, recall that

the conditional mutual information is not monotone with respect to local operations

on the conditioning variable. This needs to be taken into account when we define

a measure for secret correlations. That is, we should allow for all classical channels
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PZ′|Z to be performed on Z. With this, we define intrinsic information as follows [9]:

Definition 38 (Intrinsic information) Given three discrete random variables X,

Y , and Z, the intrinsic information between X and Y given Z is defined as

I(X;Y ↓ Z) = inf
PZ̄|Z

I(X;Y |Z̄), (4.3)

where the infimum is over all possible classical channels from Z to Z̄.

For the secret key distillation protocol, the eavesdropper is allowed to perform any

operation on his random variable Z. Now, we know that the conditional mutual

information is not monotone with respect to local operations on the conditioning

system, as discussed in Section 1.4.2.. To take this into account, we define the intrinsic

information with an infimum over all the local operations, PZ̄|Z , that the eavesdropper

can perform. The range of Z̄, in principle, can be extremely large. It was, however,

shown in [96] that it suffices to take the range of Z̄ to be equal to that of Z. Therefore,

we can replace the infimum in the definition with a minimization. In [9], it was

proved that KD(X;Y |Z)P ≤ I(X;Y ↓ Z)P . That is, the distillable key of the

probability distribution PXY Z is bounded from above by the intrinsic information

of the distribution.

4.2.2. Reduced intrinsic information

How tight is intrinsic information as an upper bound on the secret key rate? Are

there any probability distributions with non-zero intrinsic information but with no

distillable key? These questions were explored in [92]. In this work, Renner and Wolf

considered a particular probability distribution and proved for the first time a gap

between its intrinsic information and asymptotic secret key distillation. In this work,
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they also introduced a quantity known as reduced intrinsic information, defined as

follows:

Definition 39 (Reduced intrinsic information) Given are three discrete random

variables X, Y , and Z. The intrinsic information between X and Y given Z is defined

as follows:

I(X;Y ↓↓ Z) = inf
PU|XY Z

(I(X;Y ∥UZ) +H(U)), (4.4)

where the infimum is over all possible classical channels from ZXY to U .

Two important properties of reduced intrinsic information are as follows:

• I(X;Y ↓↓ Z) ≤ I(X;Y ↓ Z)

• KD(X;Y |Z) ≤ I(X;Y ↓↓ Z).

Subsequently, in [93], an improved upper bound on secret key distillation capacity

was introduced. This new, improved upper bound is defined as follows:

Definition 40 Given are three discrete random variables X, Y , and Z. Then the

improved reduced intrinsic information between X and Y given Z is defined as

I(X;Y ∥Z) = inf
J
I(X;Y ↓ J) + I(XY ; J |Z), (4.5)

where the infimum is over any arbitrary correlated random variable J .

This improved bound is less than reduced intrinsic information and is also an upper

bound on the distillable key.

4.2.3. Squashed entanglement

As explained above, conditional mutual information is also useful in quantifying

entanglement in a quantum state. We already saw some evidence of this in Section 4.2.
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in the form of CMI being equal to zero for separable states. This intuition was

formalized in [10] as follows:

Definition 41 (Squashed entanglement) The squashed entanglement of the state

ρAB is defined as

Esq(A : B)ρ = inf
ρABE

1

2
I(A;B|E), (4.6)

where the infimum is over all extensions ρABE of ρAB such that ρAB = TrE [ρABE].

The connection between entanglement measures and conditional mutual informa-

tion has also been explored in [94, 95].

Squashed entanglement can be thought of as quantifying quantum correlations

in ρAB that are inaccessible to any other quantum system (hence the conditioning on

the extension system). Once we know the bipartite state ρAB, one can construct its

purification ψρABE′ . Now, any extension ρABE of ρAB can be reached by acting with

a local operation ΛE′→E on the purifying system. Therefore, we have the following

equivalence [10]:

inf
ρABE

I(A;B|E)ρ = inf
ΛE′→E

I(A;B|E)Λ(ψρ) (4.7)

This has a remarkable resemblance to the definition of intrinsic information. However,

unlike intrinsic information for which we can replace the infimum with a minimum,

such a result is not known for squashed entanglement. This suggests that the quantity

is inherently uncomputable. As a consequence, it is not currently known whether

squashed entanglement is computable. By uncomputable, we mean that we do not

even know if this quantity can be computed at all. This is because there is no

dimension bound on the extension system. Therefore, any algorithm that tries to

calculate this quantity would not be able to determine at what point to stop. However,

this does not imply that the squashed entanglement is useless. We can always make a
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particular choice of the extension system and thus obtain an upper bound on squashed

entanglement.

Squashed entanglement has several nice properties, including faithfulness [97, 98],

continuity [97], additivity on product states and super-additivity in general [10], and

monotonicity under LOCC [10]. These properties, as discussed in Section 2.2.1., en-

sure that squashed entanglement is a monotone in the resource theory of entanglement

and is a quantifier of entanglement in a bipartite state.

Now, we pose a different question: Is this measure useful in the context of any pro-

tocols involving entanglement? This question was positively answered in [11], which

proved that squashed entanglement is an upper bound on distillable entanglement of

the state [10], and is an upper bound on the distillable key [11].

In quantum key distribution, we introduce particular protocols to generate secret

keys. These protocols outline the particulars of measurement choices, error correc-

tion, and privacy amplification codes. To test the effectiveness of the protocol, we

calculate key rates obtained from these protocols for expected noise models. This is

important since we want protocols to give high key rates for expected noise models.

However, how do we know if this protocol is the best that one can have? It might be

possible that with different measurement choices, error correction codes, or privacy

amplification, one might be able to construct a better protocol. To understand these

limitations, we rely on upper bounds on the key rates that can be generated from

expected noise models. One such upper bound is given by the squashed entanglement

of the state. The state for which the squashed entanglement is calculated is given

by the noise model that we have for the unknown channel/device. We then compare

the asymptotic key rates that we obtain from particular protocols to the calculated

upper bounds.

Apart from squashed entanglement, relative entropy has also been proven to be
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an upper bound on the distillable key [5]. In certain cases, it is a tighter upper bound

than squashed entanglement; in other cases the converse is true [99].

4.3. CMI based measures for steering and non-locality

In the sections above, we discussed the use of intrinsic information to upper bound

the secret key rate generated from a joint probability distribution. We also discussed

the upper bounds on the distillable key of quantum states in terms of squashed

entanglement. The latter is useful in the trusted setting of quantum key distribution.

Now consider the setting of 1S-DI-QKD. We know that for 1S-DI-QKD, we require

the underlying state to be a steerable state. We also know that there are entangled

states which are not steerable and that squashed entanglement is a faithful measure.

Therefore, we can deduce that squashed entanglement will not be a tight upper bound

on the distillable secret key in the 1S-DI-QKD setting. A similar argument can

be made for device-independent quantum key distribution. Therefore, we need to

introduce different functions of assemblages and probability distributions to obtain

better upper bounds for these settings. These functions should, at the very least,

evaluate to zero for unsteerable assemblages and Bell local distributions. Now recall

that an unsteerable assemblage is defined as follows:

ρ̂a,xB =
∑
λ

pĀ|X(a|x, λ)ρλB. (4.8)

Associated to this assemblage, let us define the following state:

ρĀXBΛ =
∑
a,x,λ

pΛ(λ)pĀ|X,Λ(a|x, λ) |a, x, λ⟩⟨a, x, λ|ĀXΛ ⊗ ρλB. (4.9)

For this state I(A;B|XΛ)ρ = 0. This statement again relies on the property of CMI

evaluating to zero for Markov chains.
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Now, recall that a local distribution is defined as follows:

p(a, b|x, y) =
∑
λ

p(λ)p(a|x, λ)p(b|y, λ). (4.10)

Let us embed this distribution in the following state:

σĀB̄XY Λ =
∑

a,x,y,b,λ

p(λ)p(x)p(a|x, λ)p(b|y, λ) |a, b, x, y, λ⟩⟨a, b, x, y, λ|ĀB̄XY Λ . (4.11)

For a local distribution, I(Ā; B̄|XY Λ)σ = 0.

This indicates the possibility of constructing CMI based measures for quantum

steering and non-locality. In Chapter 5, we propose an information-theoretic quanti-

fier for steering called intrinsic steerability, which uses conditional mutual information

to measure the deviation of a given assemblage from one having a local hidden-state

model. In Chapter 6, we introduce intrinsic non-locality as a quantifier for Bell non-

locality, and we prove that it satisfies certain desirable properties such as faithfulness,

convexity, and monotonicity under local operations and shared randomness. In Chap-

ter 7, we prove that intrinsic steerability is an upper bound on the distillable key of

an assemblage, and that intrinsic non-locality is an upper bound on the distillable

key of a probability distribution.
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Chapter 5
Intrinsic Steerability

In previous chapters, we discussed the role of conditional mutual information

for quantifying secret correlations in noisy distributions and quantum correlations

in bipartite quantum states. In this chapter, we introduce intrinsic steerability and

restricted intrinsic steerability, which are measures of quantum correlations in an

assemblage. We define intrinsic steerability and restricted intrinsic steerability in

Section 5.1.. We then discuss the proofs of various properties of intrinsic steerability

in Section 5.3. and restricted intrinsic steerability in Section 5.4.. We conclude with

open questions regarding these quantities in Section 5.5.. The results in this chapter

are based on [12]. As seen in Section 4.3., the definitions of steering quantifiers

are inspired by the approach of [94, 95] to quantifying non-Markovianity in Bayesian

networks, which in turn bears resemblance to squashed entanglement [10] and intrinsic

information [9]. To see this, consider that correlations in any unsteerable assemblage

can be explained by a hidden variable, which implies that such an assemblage has

a Markov-chain structure. Assemblages with this structure have zero conditional

mutual information when conditioning on the shared variable [100]. So our primary

idea is to take a non-signaling extension of an assemblage, remove the correlations

that can be explained by a shared variable (by conditioning), and then quantify the

remaining intrinsic correlations.

We will eventually establish a connection between the quantifiers introduced in

this chapter to 1S-DI-QKD. To this end, it is instructive to think of the conditioning

system as being held by an eavesdropper. This is only necessary when we understand

an assemblage as a resource in 1S-DI-QKD.

We recall here the definitions of an assemblage as discussed in Section 2.1.. An

assemblage consists of the state of Bob’s subsystem and the conditional probability of
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Figure 5.1. Markov chain structure in an unsteerable assemblage

Alice’s outcome a (correlated with Bob’s state) given the measurement choice x. This

is specified as {pĀ|X(a|x), ρa,xB }a∈A,x∈X . The sub-normalized state possessed by Bob

is ρ̂a,xB := pĀ|X(a|x)ρa,xB . Taking pX(x) as a probability distribution over measurement

choices, we can then embed the assemblage {ρ̂a,xB }a,x in a classical-quantum state as

follows:

ρXĀB :=
∑
a,x

pX(x) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗ ρ̂a,xB , (5.1)

where {|x⟩X}x and {|a⟩Ā}a are orthonormal bases.

5.1. Definitions of intrinsic steerability and restricted intrinsic steerabil-
ity

As discussed in Section 2.2.2., the free operations allowed in the context of quan-

tum steering are 1W-LOCC operations. We require this definition when defining

intrinsic steerability. The intrinsic steerability of an assemblage is defined as follows:

Definition 42 (Intrinsic Steerability) Let {ρ̂a,xB }a,x denote an assemblage, and let

ρXĀB′Y be a state resulting from a 1W-LOCC operation. Consider a non-signaling
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extension ρXĀB′EY of ρXĀB′Y of the following form:

ρXĀB′EY :=
∑
x,a,y

pX|Y (x|y) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗ ρ̂a,x,yB′E ⊗ |y⟩⟨y|Y , (5.2)

where ρ̂a,x,yB′E satisfies TrE(ρ̂a,x,yB′E ) = Ky(ρ̂
a,x
B ) and the following no-signaling constraints:

∑
a

ρ̂a,x,yB′E =
∑
a

ρ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y . (5.3)

We define the intrinsic steerability of a given assemblage as follows:

S(Ā;B)ρ̂ := sup
{pX|Y ,{Ky}y}

inf
ρXĀB′EY

I(XĀ;B′|EY )ρ, (5.4)

where the supremum is with respect to all quantum instruments, consisting of trace

non-increasing maps {Ky}y such that the sum map
∑

y Ky is trace preserving, and all

classical channels pX|Y leading to Alice’s input choice x. The infimum is with respect

to all non-signaling extensions of ρXĀB′Y . Using the no-signaling constraints, which

imply that I(X;B′|EY )ρ = 0, we can write

S(Ā;B)ρ̂ := sup
{pX|Y ,{Ky}y}

inf
ρXĀB′EY

I(Ā;B′|EXY )ρ. (5.5)

Definition 42 might seem rather complicated with the number of systems involved

and the number of objects involved in the optimizations. While undesirable, we note

that other steering quantifiers, such as the relative entropy of steering [37, 12], feature

similar complications, and this seems unavoidable, having to do with the structure of

assemblages and 1W-LOCC operations.

The idea behind the definition of intrinsic steerability is to measure the corre-

lations between Alice and Bob’s systems after conditioning on all systems that an
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eavesdropper could have. The worst possible scenario is that the eavesdropper pos-

sesses an arbitrary non-signaling extension of Ky(ρ̂
a,x
B ). Here, we allow Alice and

Bob first to pick a particular 1W-LOCC strategy to maximize their correlations, and

Eve reacts to this strategy by choosing the extensions, to minimize their correlations.

There could be another definition in which we first allow Eve to choose an extension.

Then, Alice and Bob carry out a 1W-LOCC operation. However, this would mean a

less powerful eavesdropper.

To simplify the rather complicated definition of intrinsic steerability, we are mo-

tivated to find alternate definitions. One such quantifier is restricted intrinsic steer-

ability, defined as follows:

Definition 43 (Restricted Intrinsic Steerability) Let {ρ̂a,xB }a,x denote an assem-

blage, and let ρXĀB denote a corresponding classical–quantum state. Consider a non-

signaling extension ρXĀBE of ρXĀB of the following form:

ρXĀB′E :=
∑
a,x

pX(x) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗ ρ̂a,xBE, (5.6)

where ρ̂a,xBE satisfies TrE(ρ̂a,xBE) = ρ̂a,xB and the following no-signaling constraints:

∑
a

ρ̂a,xBE =
∑
a

ρ̂a,x
′

BE ∀x, x′ ∈ X . (5.7)

We define the restricted intrinsic steerability of {ρ̂a,xB }a,x as follows:

SR(Ā;B)ρ̂ := sup
pX

inf
ρXĀBE

I(XĀ;B|E)ρ, (5.8)

where the supremum is with respect to all probability distributions pX and the infi-

mum is with respect to all non-signaling extensions of ρXĀB. Using the no-signaling
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constraints, which imply that I(X;B|E)ρ = 0, it follows that

SR(Ā;B)ρ̂ := sup
pX

inf
ρXĀBE

I(Ā;B|EX)ρ. (5.9)

This definition is simpler because Eve’s choice of extension is no longer dependent

on the local operations performed by Alice and Bob on their initial assemblage. In-

stead, in this definition, Eve has an extension of the initial assemblage. There is also

no supremum over the Kraus operators {Ky}y in the definition of restricted intrinsic

steerability. The drawback of this quantifier is that it is not known to be a monotone

under 1W-LOCC operations. It is, however, a monotone under restricted 1W-LOCC

operations.

By inspecting definitions, we can conclude that intrinsic steerability is never

smaller than restricted intrinsic steerability: S(Ā;B)ρ̂ ≥ SR(Ā;B)ρ̂. This follows

because the restricted intrinsic steerability involves a supremization over particular

1W-LOCC strategies that are included in the supremization in the definition of the

intrinsic steerability.

By invoking strong subadditivity of quantum entropy [17] and an upper bound in

terms of the dimensions, we conclude that 0 ≤ S(Ā;B)ρ̂ ≤ log2 |Ā|. Similarly, using

known bounds on conditional mutual information, the expression in (5.9), and the

fact that taking an infimum over classical extensions E does not decrease SR(Ā;B)ρ̂,

we find that 0 ≤ SR(Ā;B)ρ̂ ≤ min{log2 |Ā|, log2 |B|}.

One can also consider different constraints on an assemblage and its extensions.

In the definition of intrinsic steerability and restricted intrinsic steerability, the eaves-

dropper has a non-signaling extension. This makes the eavesdropper compatible with

the no-signaling theory. However, it is also possible to define a quantum extension

system, which makes the eavesdropper compatible with quantum theory.

81



Given a bipartite no-signaling assemblage ρ̂a,xB . From [29], it is possible to con-

struct a quantum strategy for this assemblage. That is, we can always find a set of

bipartite states and POVMs that give rise to a bipartite assemblage. Let a particular

strategy be a quantum state ρAB and a POVM {Λa
x}a. A particular quantum exten-

sion of the assemblage can be defined in terms of a particular quantum strategy as

follows:

ρ̂a,xBE = TrA [(Λa
x ⊗ IBE)ρABE)] . (5.10)

It is possible to define a quantifier similar to intrinsic steerability in Definition 42, and

restricted intrinsic steerability in Definition 43. However, for bipartite assemblages,

these new definitions collapse to the original one by invoking the result in [29]. This

is because the set of bipartite no-signaling extensions is equal to the set of bipartite

quantum extensions. However, this difference would be crucial if one were to define

intrinsic steerability over multipartite assemblages.

5.2. Examples

We now calculate the intrinsic steerability of an assemblage considered in Sec-

tion 2.1.2.. Consider the following assemblage resulting from Pauli σZ or σX measure-

ments on one share of a maximally entangled state |Φ⟩AB := (|00⟩AB + |11⟩AB)/
√

2,

consisting of the following four subnormalized states: ρ̂a=0,x=0
B = 1

2
|0⟩⟨0|B, ρ̂a=1,x=0

B =

1
2
|1⟩⟨1|B, ρ̂a=0,x=1

B = 1
2
|+⟩⟨+|B, ρ̂a=1,x=1

B = 1
2
|−⟩⟨−|B. The non-signaling constraint

imposes a constraint that any non-signaling extension of the above assemblage has

the form ρ̂a,xB ⊗ωE for all a, x ∈ {0, 1} and for some state ωE (see proof of Example 44

below). Thus, in this sense this assemblage is unextendible, similar to maximally

entangled states, and features a certain kind of monogamy against non-signaling ad-

versaries. As a consequence, we find that this assemblage has exactly one bit of

intrinsic steerability.
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Example 44 Consider a maximally entangled state

|Φ⟩AB :=
1√
2

(|00⟩AB + |11⟩AB). (5.11)

Let measurement x = 0 be Pauli σZ on system A, with outcomes a = 0 and a = 1.

Let measurement x = 1 be Pauli σX on system A, with outcomes a = 0 and a = 1.

This leads to the following assemblage:


ρ̂a=0,x=0
B = 1

2
|0⟩⟨0|B, ρ̂a=1,x=0

B = 1
2
|1⟩⟨1|B,

ρ̂a=0,x=1
B = 1

2
|+⟩⟨+|B, ρ̂a=1,x=1

B = 1
2
|−⟩⟨−|B

 , (5.12)

which has one bit of intrinsic steerability and restricted intrinsic steerability:

S(Ā;B)ρ̂ = SR(Ā;B)ρ̂ = 1. (5.13)

Proof. Arbitrary extensions of each of the above subnormalized states are as follows:

ρ̂a=0,x=0
BE =

1

2
|0⟩⟨0|B ⊗ ω00

E , ρ̂a=1,x=0
BE =

1

2
|1⟩⟨1|B ⊗ ω10

E ,

ρ̂a=0,x=1
BE =

1

2
|+⟩⟨+|B ⊗ ω01

E , ρ̂a=1,x=1
BE =

1

2
|−⟩⟨−|B ⊗ ω11

E , (5.14)

where ωijE ≥ 0 and Tr(ωijE ) = 1 for all i, j ∈ {0, 1}. The no-signaling constraint is as

follows:

ρ̂a=0,x=0
BE + ρ̂a=1,x=0

BE = ρ̂a=0,x=1
BE + ρ̂a=1,x=1

BE . (5.15)
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Writing out the left-hand side of (5.15) in matrix form, we find that

1

2
|0⟩⟨0|B ⊗ ω00

E +
1

2
|1⟩⟨1|B ⊗ ω10

E =
1

2


ω00
E 0

0 ω10
E

 . (5.16)

Writing out the right-hand side of (5.15) in matrix form, we find that

1

2
|+⟩⟨+|B ⊗ ω01

E +
1

2
|−⟩⟨−|B ⊗ ω11

E

=
1

4
[|0⟩⟨0|B + |1⟩⟨0|B + |0⟩⟨1|B + |1⟩⟨1|B] ⊗ ω01

E

+
1

4
[|0⟩⟨0|B − |1⟩⟨0|B − |0⟩⟨1|B + |1⟩⟨1|B] ⊗ ω11

E (5.17)

=
1

2
|0⟩⟨0|B ⊗

(
ω01
E + ω11

E

2

)
+

1

2
|1⟩⟨0|B ⊗

(
ω01
E − ω11

E

2

)
+

1

2
|0⟩⟨1|B ⊗

(
ω01
E − ω11

E

2

)
+

1

2
|1⟩⟨1|B ⊗

(
ω01
E + ω11

E

2

)
(5.18)

=
1

2


ω01
E +ω11

E

2

ω01
E −ω11

E

2

ω01
E −ω11

E

2

ω01
E +ω11

E

2

 . (5.19)

So equating them, we find that the following equation (no-signaling constraint)

should be satisfied 
ω00
E 0

0 ω10
E

 =


ω01
E +ω11

E

2

ω01
E −ω11

E

2

ω01
E −ω11

E

2

ω01
E +ω11

E

2

 . (5.20)

This implies that ω01
E = ω11

E , which in turn implies that ω10
E = ω01

E = ω11
E = ω00

E . Thus,

the only possible extension allowed in order to satisfy the no-signaling constraint is a
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product extension independent of a and x, meaning one of the following form:

ρ̂a=0,x=0
BE =

1

2
|0⟩⟨0|B ⊗ ωE, ρ̂a=1,x=0

BE =
1

2
|1⟩⟨1|B ⊗ ωE,

ρ̂a=0,x=1
BE =

1

2
|+⟩⟨+|B ⊗ ωE, ρ̂a=1,x=1

BE =
1

2
|−⟩⟨−|B ⊗ ωE, (5.21)

where ωE ≥ 0 and Tr(ωE) = 1. We can then evaluate the restricted intrinsic steer-

ability in terms of the following classical–quantum state:


1
2
|0⟩⟨0|X ⊗ |0⟩⟨0|Ā ⊗ 1

2
|0⟩⟨0|B + 1

2
|0⟩⟨0|X ⊗ |1⟩⟨1|Ā ⊗ 1

2
|1⟩⟨1|B

+1
2
|1⟩⟨1|X ⊗ |0⟩⟨0|Ā ⊗ 1

2
|+⟩⟨+|B + 1

2
|1⟩⟨1|X ⊗ |1⟩⟨1|Ā ⊗ 1

2
|−⟩⟨−|B

⊗ ωE. (5.22)

The conditional mutual information of this state is as follows:

I(XĀ;B|E) = I(XĀ;B) = H(B) −H(B|XĀ) = H(B) = 1, (5.23)

so that this assemblage has one bit of restricted intrinsic steerability. The first equality

follows because the system E is product regardless of the extension, due to the above

analysis with the no-signaling constraint. The second equality follows by expanding

the mutual information. The third equality follows because the state of the B system

is pure when conditioned on systems XĀ. The final equality follows because the

reduced state on the B system is maximally mixed. Also, it is clear that this is

the maximum value of the restricted intrinsic steerability, given that it is always

bounded from above by log dim(HB) or log dim(HĀ). By considering the upper bound

log dim(HĀ) for intrinsic steerability, we see that this assemblage achieves the upper

bound on intrinsic steerability and thus has one bit of intrinsic steerability.

We generalize this to an assemblage resulting from an arbitrary pure bipartite
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state being measured in the Schmidt basis and the basis Fourier conjugate to this one.

We find that this assemblage has the same kind of monogamy against non-signaling

adversaries and that it has restricted intrinsic steerability equal to the entropy of

entanglement [101] of the state being measured.

Example 45 Consider a pure bipartite state |ϕ⟩AB in its Schmidt basis:

|ϕ⟩AB :=
d−1∑
j=0

αj|j⟩A ⊗ |j⟩B, (5.24)

where |αj| ̸= 0 for all j ∈ {0, . . . , d − 1}. Let measurement x = 0 be a measurement

{|j⟩⟨j|A}j in the Schmidt basis on system A, with outcomes a = j ∈ {0, . . . , d − 1}.

Let measurement x = 1 be a measurement {|̃j⟩⟨j̃|A}j in the Fourier conjugate basis,

where

|̃j⟩A :=
1√
d

∑
k

e2πijk/d|k⟩A, (5.25)

on system A, with outcomes a = j ∈ {0, . . . , d − 1}. This leads to the following

assemblage:

{{
ρ̂a=j,x=0
B = |αj|2 |j⟩⟨j|B

}
j
,

{
ρ̂a=j,x=1
B =

1

d
Z†(j)|ψ⟩⟨ψ|BZ(j)

}
j

}
, (5.26)

where |ψ⟩B :=
∑

j αj|j⟩B. This assemblage has H({|αj|2}j) = H(A)ϕ bits of restricted

intrinsic steerability. Note that this is equal to the entropy of entanglement of the state

|ϕ⟩AB. If the state |ϕ⟩AB is maximally entangled so that αj = 1/
√
d, then the resulting

assemblage has log2(d) bits of intrinsic steerability.

Proof. It is clear that the post-measurement state for Bob ρ̂a=j,x=0
B is as above. For

86



the other case, consider that

⟨j̃|A ⊗ IB|ϕ⟩AB =
1√
d

d−1∑
k=0

e−2πijk/d⟨k|A
d−1∑
l=0

αl|l⟩A ⊗ |l⟩B (5.27)

=
1√
d

d−1∑
k,l=0

αke
−2πijk/d⟨k|l⟩A ⊗ |l⟩B (5.28)

=
1√
d

d−1∑
k=0

αke
−2πijk/d|k⟩B. (5.29)

Now defining the unitary operator Z(j) by Z(j)|k⟩ = e2πijk/d|k⟩ for j, k ∈ {0, . . . , d−

1}, we can write

⟨j̃|A ⊗ IB|ϕ⟩AB =
1√
d
Z†(j)|ψ⟩B, (5.30)

confirming the post-measurement subnormalized states ρ̂a=j,x=1
B . Arbitrary extensions

of each of the above subnormalized states are as follows:

ρ̂a=j,x=0
BE = |αj|2 |j⟩⟨j|B ⊗ ωjE, (5.31)

ρ̂a=j,x=1
BE =

1

d
Z†(j)|ψ⟩⟨ψ|BZ(j) ⊗ τ jE, (5.32)

where ωjE, τ
j
E ≥ 0 and Tr(ωjE) = Tr(τ jE) = 1 for all j ∈ {0, . . . , d−1}. The no-signaling

constraint is as follows:
d−1∑
j=0

ρ̂a=j,x=0
BE =

d−1∑
j=0

ρ̂a=j,x=1
BE , (5.33)

which is the same as

d−1∑
k=0

|k⟩⟨k|B ⊗ |αk|2 ωkE

=
d−1∑
j=0

1

d
Z†(j)|ψ⟩⟨ψ|BZ(j) ⊗ τ jE (5.34)
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=
d−1∑

j,k,k′=0

1

d
αkα

∗
k′e

−2πij(k−k′)/d|k⟩⟨k′|B ⊗ τ jE (5.35)

=
d−1∑
k,k′=0

|k⟩⟨k′|B ⊗ 1

d
αkα

∗
k′

d−1∑
j=0

e−2πij(k−k′)/dτ jE. (5.36)

Set k′ = 0. For k ∈ {0, 1, . . . , d − 1}, we get the following constraints from the

no-signaling condition:

ω0
E =

1

d

d−1∑
j=0

τ jE, (5.37)

d−1∑
j=0

e−2πijk/dτ jE = 0. (5.38)

We can conclude that τ jE is independent of j, so that τ jE = ω0
E for all j ∈ {0, . . . , d−1}.

To see this, let us solve the above equations, thinking of ω0
E as fixed and τ jE as free

for all j ∈ {0, . . . , d− 1}. Consider that

d−1∑
j=0

e−2πijk/d = 0 ∀k ∈ {1, . . . , d− 1}. (5.39)

Then we can see that τ 0E = τ 1E = . . . = τ d−1
E = ω0

E is one of the solutions of the

equations in (5.37)–(5.38). Since the equations are linearly independent, it is a unique

solution. Now considering the other blocks in (5.34) (i.e., for k = k′ = 1, . . . , d− 1),

we find that ω1
E = . . . = ωd−1

E = ω0
E. Thus, the only possible extension allowed in

order to satisfy the no-signaling constraint is a product extension independent of a

and x, meaning one of the following form:

ρ̂a=j,x=0
BE = |αj|2 |j⟩⟨j|B ⊗ ωE, (5.40)

ρ̂a=j,x=1
BE =

1

d
Z†(j)|ψ⟩⟨ψ|BZ(j) ⊗ ωE, (5.41)
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where ωE ≥ 0 and Tr(ωE) = 1. We can then evaluate the restricted intrinsic steer-

ability in terms of the following classical–quantum state:

[
p|0⟩⟨0|X ⊗

∑
j

|j⟩⟨j|Ā ⊗ |αj|2 |j⟩⟨j|B + (1 − p) |1⟩⟨1|X⊗

∑
j

|j⟩⟨j|Ā ⊗ 1

d
Z†(j)|ψ⟩⟨ψ|BZ(j)

]
⊗ ωE, (5.42)

where (p, 1 − p) is a probability distribution for the input x. The conditional mutual

information of this state is as follows:

I(XĀ;B|E) = I(XĀ;B) = H(B) −H(B|XĀ) (5.43)

= H(B) = H({|αj|2}), (5.44)

so that this assemblage has H({|αj|2}) bits of restricted intrinsic steerability. The

first step follows because the system E is product regardless of the extension, due

to the above analysis with the no-signaling constraint. The second step follows by

expanding the mutual information. The third step follows because the state of the B

system is pure when conditioned on systems XĀ. The final step follows because the

reduced state on the B system is
∑

j |αj|
2 |j⟩⟨j|B, which can be seen from

TrXĀ

(
p|0⟩⟨0|X ⊗

∑
j

|j⟩⟨j|Ā ⊗ |αj|2 |j⟩⟨j|B + (1 − p) |1⟩⟨1|X⊗

∑
j

|j⟩⟨j|Ā ⊗ 1

d
Z†(j)|ψ⟩⟨ψ|BZ(j)

)

= p
∑
j

|αj|2 |j⟩⟨j|B + (1 − p)
∑
j

1

d
Z†(j)|ψ⟩⟨ψ|BZ(j) (5.45)
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= p
∑
j

|αj|2 |j⟩⟨j|B + (1 − p)
∑
j

|αj|2 |j⟩⟨j|B (5.46)

=
∑
j

|αj|2 |j⟩⟨j|B. (5.47)

This state is independent of the input probability distribution, so that the maximum

is achieved for any choice of p ∈ (0, 1).

If the state |ϕ⟩AB is maximally entangled, then H({|αj|2}) = log2(d). Given the

upper bound log(dim(HĀ)) = log2(d) on intrinsic steerability, we see that the upper

bound is achieved in this case.

5.3. Properties of intrinsic steerability

In this section, we prove that intrinsic steerability is a steering monotone.

Theorem 46 The intrinsic steerability S(Ā;B)ρ̂ is a convex steering monotone. That

is, it does not increase on average under deterministic 1W-LOCC, it vanishes for an

assemblage having a local-hidden-state model, and it is convex.

Proof. The proof of the theorem follows from Proposition 47, Proposition 48, and

Proposition 50.

Proposition 47 Intrinsic steerability vanishes for assemblages having a LHS model.

Proof. To prove this, consider a particular non-signaling extension for an assemblage

with a local-hidden-state model as follows:

∑
x,a,λ,y

pX|Y (x|y) |x⟩⟨x|X ⊗ pĀ|XΛ(a|x, λ) |a⟩⟨a|Ā⊗

∑
t

Ky,tρ̂
λ
BK

†
y,t ⊗ pΛ(λ) |λ⟩⟨λ|E ⊗ |y⟩⟨y|Y . (5.48)

For this non-signaling extension, conditioned on the values λ and y, systems XĀ and

B′ are in a product state, so that the conditional mutual information I(XĀ;B′|EY )
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vanishes. Since the argument holds for all quantum instruments {Ky}y and channels

pX|Y , then S(Ā;B)ρ = 0.

We now prove that intrinsic steerability is a monotone under 1W-LOCC opera-

tions. This condition is essential from a resource-theoretic perspective: a quantifier

of the resource should not increase under free operations.

Proposition 48 (1W-LOCC monotone) Let {ρ̂a,xB }a,x be an assemblage, and sup-

pose that

{
ρ̂
af ,xf
Bf ,z

:=
∑
a,x

p(af |xf , x, a, z)p(x|xf , z)Kz(ρ̂
a,x
B )/p(z)

}
af ,xf

, (5.49)

is an assemblage that arises from it by the action of a general 1W-LOCC operation,

where

p(z) := Tr

(
Kz

(∑
a

ρ̂a,xB

))
= Tr(Kz(ρB)). (5.50)

Then, ∑
z

p(z)S(Āf ;Bf )ρ̂z ≤ S(Ā;B)ρ̂. (5.51)

Proof. First, we give a proof sketch for the monotonicity of intrinsic steerability

on average under deterministic 1W-LOCC: S(Ā;B)ρ̂ ≥
∑

z pZ(z)S(Āf ;Bf )ρ̂z , where

ρ̂z := {ρ̂af ,xfBf ,z
}af ,xf is the assemblage resulting from a 1W-LOCC operation on the

initial assemblage {ρ̂a,xB }a,x and is given as follows [37]:

ρ̂
af ,xf
Bf ,z

:=
∑
a,x

p(af |a, x, xf , z)p(x|xf , z)Kz(ρ̂
a,x
B ). (5.52)

In the above, p(af |a, x, xf , z) and p(x|xf , z) are local classical channels that Alice

uses, respectively, to pick the output af of the final assemblage and the input x to

her initial assemblage. The set {Kz}z of completely positive maps is such that the sum
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map
∑

z Kz is trace preserving and thus corresponds to a quantum instrument acting

on Bob’s system. The definition of the intrinsic steerability involves a supremum

over measurements of the system Bf of the final assemblage and classical channels for

the input Xf to the final assemblage. Using data processing and when given Z, we

can say that system Āf was obtained by processing systems XXf Ā. Then, the two

successive measurements on Bob’s system can be thought of as a single measurement.

Since the intrinsic steerability involves a supremum over all possible measurements,

the result follows.

We now give a detailed proof. To see this, consider that, in accordance with the

definition of S(Āf ;Bf )ρ̂z , the assemblages {ρ̂af ,xfBf ,z
}af ,xf can be further preprocessed

by a z-dependent 1W-LOCC {pXf |Y Z=z, {L
(z)
y }y}, resulting in the following state:

σzXf ĀfB
′
fY

:=
∑
af ,xf ,y

p(xf |yz)[xf ] ⊗ [af ] ⊗ L(z)
y (ρ̂

af ,xf
Bf ,z

) ⊗ [y]. (5.53)

Notation 49 In the above and in what follows, we employ a shorthand [x] ≡ |x⟩⟨x|X

or [a] ≡ |a⟩⟨a|Ā, etc.

The state in (5.53) is extended by the following one:

σzXfXĀf ĀB
′
fY

:=
∑

af ,a,x,xf ,y

p(xf |yz)[xf ] ⊗ p(x|xf , z)[x]⊗

p(af |xf , x, a, z)[af ] ⊗ [a] ⊗ L(z)
y (ρ̂a,xB )

p(z)
⊗ [y], (5.54)

which in turn are elements of the following classical–quantum state:

σXfXĀf ĀB
′
fY Z

:=
∑
z

σzXfXĀf ĀB
′
fY

⊗ p(z)[z]. (5.55)
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An arbitrary non-signaling extension of the state in (5.53), according to that needed

in the definition of S(Āf ;Bf )ρ̂z , is as follows:

σzXf ĀfB
′
fEY

:=
∑
af ,xf ,y

p(xf |yz)[xf ] ⊗ [af ] ⊗ τ̂
af ,xf ,y,z

B′
fE

⊗ [y], (5.56)

where τ̂
af ,xf ,y,z

B′
fE

satisfies

TrE(τ̂
af ,xf ,y,z

B′
fE

) = L(z)
y (ρ̂

af ,xf
Bf ,z

), (5.57)∑
af

τ̂
af ,xf ,y,z

B′
fE

=
∑
af

τ̂
af ,x

′
f ,y,z

B′
fE

∀xf , x′f ∈ Xf , y ∈ Y , z ∈ Z. (5.58)

A particular non-signaling extension of the state in (5.53), according to that needed

in the definition of S(Āf ;Bf )ρ̂z , is as follows:

ζzXf ĀfB
′
fEY

:=
∑
af ,xf ,y

p(xf |yz)[xf ] ⊗ [af ]

⊗
∑
a,x

p(af |xf , x, a, z)p(x|xf , z)ω̂a,x,y,zB′
fE

⊗ [y], (5.59)

where ω̂a,x,y,zB′
fE

satisfies

TrE(ω̂a,x,y,zB′
fE

) =
L(z)
y (Kz(ρ̂

a,x
B ))

p(z)
, (5.60)∑

a

ω̂a,x,y,zB′
fE

=
∑
a

ω̂a,x,y,zB′
fE

∀x, x′ ∈ X , y ∈ Y , z ∈ Z. (5.61)

The operator ω̂a,x,y,zB′
fE

will serve as an arbitrary non-signaling extension needed in the
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definition of S(Ā;B)ρ̂. Let ζXf ĀfB
′
fEY Z

denote the following state:

ζXf ĀfB
′
fEY Z

:=
∑
z

ζzXf ĀfB
′
fEY

⊗ p(z)[z]. (5.62)

This in turn is a marginal of the following state:

ζXfXĀf ĀB
′
fEY Z

:=
∑

af ,a,xf ,x,y

p(xf |yz)[xf ] ⊗ p(x|xf , z)[x]⊗

p(af |xf , x, a, z)[af ] ⊗ [a] ⊗ ω̂a,x,y,zB′
fE

⊗ [y] ⊗ p(z)[z]. (5.63)

Consider that

∑
z

p(z) inf
ext. in (5.56)

I(Xf Āf ;B′
f |EY )σz

≤
∑
z

p(z)I(Xf Āf ;B′
f |EY )ζz (5.64)

= I(Xf Āf ;B′
f |EY Z)ζ (5.65)

≤ I(XfXĀ;B′
f |EY Z)ζ (5.66)

= I(XĀ;B′
f |EY Z)ζ + I(Xf ;B′

f |EY ZXĀ)ζ (5.67)

= I(XĀ;B′
f |EY Z)ζ . (5.68)

The first inequality follows because the extension state ζz
Xf ĀfB

′
fEY

is a particular kind

of non-signaling extension required in the definition of S(Āf ;Bf )ρ̂z . The first equality

follows because system Z is classical and thus can be incorporated as a conditioning

system in the conditional mutual information. The second inequality follows from

local data processing for the conditional mutual information: given Z, the system

Āf arises from local processing of systems XfXĀ. The second equality follows from

the chain rule for conditional mutual information. The final equality follows from
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the fact that systems B′
fE are independent of Xf when given the classical systems

Y ZXĀ (one can inspect the state in (5.63) to see this explicitly). Since the above

chain of inequalities holds for any non-signaling extension of the form in (5.59), we

can conclude that

∑
z

p(z) inf
ext. in (5.56)

I(Xf Āf ;B′
f |EY )σz ≤ inf

ext. in (5.59)
I(XĀ;B′

f |EY Z)ζ . (5.69)

Now we can take the supremum of both sides with respect to 1W-LOCC operations

{pXf |Y Z=z, {L
(z)
y }y}z and we find that

sup
{pXf |Y Z=z ,{L

(z)
y }y}z

∑
z

p(z) inf
ext. in (5.56)

I(Xf Āf ;B′
f |EY )σz

≤ sup
{pXf |Y Z=z ,{L

(z)
y }y}z

inf
ext. in (5.59)

I(XĀ;B′
f |EY Z)ζ . (5.70)

Since the 1W-LOCC operation {pXf |Y Z=z, {L
(z)
y }y}z is a particular 1W-LOCC oper-

ation that can be performed on the original assemblage {ρ̂a,xB }a,x, we find that

sup
{pXf |Y Z=z ,{L

(z)
y }y}z

inf
ext. in (5.59)

I(XĀ;B′
f |EY Z)ζ ≤ S(Ā;B)ρ̂. (5.71)

Since each z-dependent 1W-LOCC operation {pXf |Y Z=z, {L
(z)
y }y} depends only on a

particular value of z, we can then exchange the supremum and the sum over z in

(5.70) to conclude that

sup
{pXf |Y Z=z ,{L

(z)
y }y}z

∑
z

p(z) inf
ext. in (5.56)

I(Xf Āf ;B′
f |EY )σz

=
∑
z

p(z) sup
{pXf |Y Z=z ,{L

(z)
y }y}

inf
ext. in (5.56)

I(Xf Āf ;B′
f |EY )σz (5.72)
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=
∑
z

p(z)S(Āf ;Bf )ρ̂z . (5.73)

This concludes the proof.

We now prove that the intrinsic steerability is convex. The physical interpretation

of this statement is that steering cannot increase when mixing two assemblages.

Proposition 50 (Convexity) Let {ρ̂a,xB }a,x and {σ̂a,xB }a,x be assemblages, and let

λ ∈ [0, 1]. Let {τ̂a,xB }a,x be a mixture of the two assemblages, defined as

τ̂a,xB := λρ̂a,xB + (1 − λ)σ̂a,xB . (5.74)

Then

S(Ā;B)τ̂ ≤ λS(Ā;B)ρ̂ + (1 − λ)S(Ā;B)σ̂. (5.75)

Proof. We first give a proof sketch for the convexity of intrinsic steerability. Let

λ ∈ [0, 1]. Let {ρ̂a,xB }a,x and {σ̂a,xB }a,x be two assemblages, and consider an assemblage

{τ̂a,xB := λρ̂a,xB + (1−λ)σ̂a,xB }a,x. Convexity of the intrinsic steerability is the following

statement: S(Ā;B)τ̂ ≤ λS(Ā;B)ρ̂ + (1−λ)S(Ā;B)σ̂. A proof for convexity is similar

to known proofs for the convexity of squashed entanglement [10]. To prove convexity,

first consider arbitrary non-signaling extensions of {ρ̂a,xB }a,x and {σ̂a,xB }a,x. Embedding

these in a larger classical–quantum state with a label chosen according to λ gives

a particular non-signaling extension of τ̂ . Convexity then follows from a property

of conditional mutual information and because the intrinsic steerability involves an

infimum over all non-signaling extensions.

We now give a detailed proof. Let {pX|Y , {Ky}y} denote an arbitrary 1W-LOCC
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operation, which leads to the following classical–quantum state:

τXĀB′Y :=
∑
a,x,y

pX|Y (x|y) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗Ky(τ̂
a,x
B ) ⊗ |y⟩⟨y|Y . (5.76)

An arbitrary non-signaling extension of this state, is as follows:

τXĀB′Y E :=
∑
a,x,y

pX|Y (x|y) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗ τ̂a,x,yB′E ⊗ |y⟩⟨y|Y , (5.77)

where

TrE(τ̂a,x,yB′E ) = Ky(τ̂
a,x
B ), (5.78)∑

a

τ̂a,x,yB′E =
∑
a

τ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y . (5.79)

Let ρ̂a,x,yB′E and σ̂a,x,yB′E be arbitrary non-signaling extensions of Ky(ρ̂
a,x
B ) and Ky(σ̂

a,x
B ),

satisfying

TrE(ρ̂a,x,yB′E ) = Ky(ρ̂
a,x
B ), (5.80)∑

a

ρ̂a,x,yB′E =
∑
a

ρ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y , (5.81)

TrE(σ̂a,x,yB′E ) = Ky(σ̂
a,x
B ), (5.82)∑

a

σ̂a,x,yB′E =
∑
a

σ̂a,x
′,y

B′E ∀x, x′ ∈ X , y ∈ Y . (5.83)

These lead to the following states:

ρXĀB′Y E :=
∑
a,x,y

pX|Y (x|y) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗ ρ̂a,x,yB′E ⊗ |y⟩⟨y|Y , (5.84)

σXĀB′Y E :=
∑
a,x,y

pX|Y (x|y) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā ⊗ σ̂a,x,yB′E ⊗ |y⟩⟨y|Y . (5.85)
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A particular non-signaling extension τ ′
XĀB′Y EE′ of τĀB′XY , given by

τ ′XĀB′Y EE′ :=
∑
a,x,y

pX|Y (x|y) |x⟩⟨x|X ⊗ |a⟩⟨a|Ā⊗

(λρ̂a,x,yB′E ⊗ |0⟩⟨0|E′ + (1 − λ)σ̂a,x,yB′E ⊗ |1⟩⟨1|E′) ⊗ |y⟩⟨y|Y . (5.86)

Then consider that

inf
ext. in (5.77)

I(XĀ;B′|EY )τ ≤ I(XĀ;B′|EY E ′)τ ′ (5.87)

= λI(XĀ;B′|EY )ρ + (1 − λ)I(XĀ;B′|EY )σ. (5.88)

Since the inequality above holds for all general non-signaling extensions of the form

in (5.84) and (5.85), we conclude that

inf
ext. in (5.77)

I(XĀ;B′|EY )τ

≤ λ inf
ext. in (5.84)

I(XĀ;B′|EY )ρ + (1 − λ) inf
ext. in (5.85)

I(XĀ;B′|EY )σ. (5.89)

Now taking a supremum over all 1W-LOCC operations, we find that

S(Ā;B)τ̂

= sup
{pX|Y ,{Ky}y}

inf
ext. in (5.77)

I(XĀ;B′|EY )τ (5.90)

≤ sup
{pX|Y ,{Ky}y}

(
λ inf

ext. in (5.84)
I(XĀ;B′|EY )ρ + (1 − λ) inf

ext. in (5.85)
I(XĀ;B′|EY )σ

)
(5.91)

≤ λ sup
{pX|Y ,{Ky}y}

inf
ext. in (5.84)

I(XĀ;B′|EY )ρ
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+ (1 − λ) sup
{pX|Y ,{Ky}y}

inf
ext. in (5.85)

I(XĀ;B′|EY )σ (5.92)

= λS(Ā;B)ρ̂ + (1 − λ)S(Ā;B)σ̂. (5.93)

This concludes the proof.

We now consider a superadditivity property of assemblages, which holds for in-

trinsic steerability. Suppose that Alice has two quantum systems A1 and A2 and

suppose that Bob has two quantum systems B1 and B2. Alice could perform a local

measurement on A1 chosen according to x1 and with output a1. Similarly, Alice could

perform a local measurement on A2 chosen according to x2 and with output a2. This

process realizes a joint assemblage {ρ̂a1,a2,x1,x2B1B2
}a1,a2,x1,x2 obeying certain no-signaling

constraints, but it also realizes some local assemblages as well. One would expect

that the steering available in the joint assemblage should never be smaller than the

sum of the steering available in the local assemblages, and this is what the following

proposition addresses:

Proposition 51 (Superadditivity) Let {ρ̂a1,a2,x1,x2B1B2
}a1,a2,x1,x2 be an assemblage for

which the following additional no-signaling constraints hold

∑
a2

ρ̂a1,a2,x1,x2B1B2
=
∑
a2

ρ̂
a1,a2,x1,x′2
B1B2

:= θ̂a1,x1B1B2
∀x2, x′2,

∑
a1

ρ̂a1,a2,x1,x2B1B2
=
∑
a1

ρ̂
a1,a2,x′1,x2
B1B2

:= κ̂a2,x2B1B2
∀x1, x′1,

Let {TrB2(θ̂
a1,x1
B1B2

)}a1,x1 and {TrB1(κ̂
a2,x2
B1B2

)}a2,x2 be reduced, local assemblages arising

from the joint assemblage {ρ̂a1,a2,x1,x2B1B2
}a1,a2,x1,x2. Then intrinsic steerability is super-

additive in the following sense:

S(Ā1Ā2;B1B2)ρ̂ ≥ S(Ā1;B1)θ̂ + S(Ā2;B2)κ̂. (5.94)
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Proof. The core idea behind our proof of Proposition 51 is to exploit the chain rule

for conditional mutual information. First, pick a 1W-LOCC strategy where Alice’s

inputs X1 and X2 depend only on measurement outcomes Y1 and Y2 of B1 and B2,

respectively. The chain rule and non-negativity of conditional mutual information

imply that

I(X1X2Ā1Ā2;B1B2|EY1Y2)ρ ≥ I(X1Ā1;B1|EY1Y2)ρ + I(X2Ā2;B2|EB1Y1Y2)ρ,

(5.95)

where system E denotes a non-signaling extension system. The idea is then to take

EY2 as a non-signaling extension for X1Ā1B1Y1, systems EB1Y1 as a non-signaling

extension for X2Ā2B2Y2, and work from there.

For the proof, suppose that we apply to the assemblage {ρ̂a1,a2,x1,x2B1B2
}a1,a2,x1,x2 a

general 1W-LOCC operation {pX1X2|Y , {Ky}y}, resulting in the following classical–

quantum state:

ρĀ1X1Ā2X2Y B′
1B

′
2

:=
∑

a1,x1,a2,x2,y

pX1X2|Y (x1, x2|y)[a1]⊗[x1]⊗[a2]⊗[x2]⊗[y]⊗Ky(ρ̂
a1,x1,a2,x2
B1B2

).

(5.96)

Let ρ̂a1,x1,a2,x2,yB′
1B

′
2E

be a non-signaling extension of Ky(ρ
a1,x1,a2,x2
B1B2

) and consider the

following extension of the above state:

ρĀ1X1Ā2X2Y B′
1B

′
2

:=
∑

a1,x1,a2,x2,y

pX1X2|Y (x1, x2|y)[a1]⊗ [x1]⊗ [a2]⊗ [x2]⊗ [y]⊗ ρ̂a1,x1,a2,x2,yB′
1B

′
2E

.

(5.97)

A particular “product” 1W-LOCC operation has the form {pX1|Y1pX2|Y2 , {Ly1⊗My2}y1,y2}

and results in the following state:

ωĀ1X1Ā2X2Y1Y2B′
1B

′
2

:=
∑

a1,x1,a2,x2,y

pX1|Y1(x1|y1)pX2|Y2(x2|y2)[a1]⊗ [x1]⊗ [a2]⊗ [x2]⊗ [y1]
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⊗ [y2] ⊗ (Ly1 ⊗My2) ρ̂
a1,x1,a2,x2
B1B2

. (5.98)

Let ω̂a1,x1,a2,x2,y1,y2B′
1B

′
2E

be a non-signaling extension of (Ly1 ⊗My2) (ρ̂a1,x1,a2,x2B1B2
), and define

the following state:

ωĀ1X1Ā2X2Y1Y2B′
1B

′
2E

:=
∑

a1,x1,a2,x2,y

pX1|Y1(x1|y1)pX2|Y2(x2|y2)[a1]

⊗ [x1] ⊗ [a2] ⊗ [x2] ⊗ [y1] ⊗ [y2] ⊗ ω̂a1,x1,a2,x2,y1,y2B′
1B

′
2E

. (5.99)

Let θ̂a1,x1,y1B′
1F

be a non-signaling extension of Ly1(θ̂
a1,x1
B1

) and let κ̂a2,x2,y2B′
2G

be a non-

signaling extension of My2(κ̂
a2,x2
B2

), leading to the following classical–quantum states:

θX1Ā1B′
1FY1

:=
∑
x1,a1

pX1|Y1(x1|y1)[x1] ⊗ [a1] ⊗ θ̂a1,x1,y1B′
1F

⊗ [y1], (5.100)

κX2Ā2B′
2GY2

:=
∑
x2,a2

pX2|Y2(x2|y2)[x2] ⊗ [a2] ⊗ κ̂a2,x2,y2B′
2G

⊗ [y2]. (5.101)

Consider that

I(Ā1X1Ā2X2;B
′
1B

′
2|EY1Y2)ω

= I(Ā1X1Ā2X2;B
′
1|EY1Y2)ω + I(Ā1X1Ā2X2;B

′
2|EB′

1Y1Y2)ω (5.102)

= I(Ā1X1;B
′
1|EY1Y2)ω + I(Ā2X2;B

′
1|EY1Y2Ā1X1)ω

+ (Ā2X2;B
′
2|EB′

1Y1Y2)ω + I(Ā1X1;B
′
2|EB′

1Y1Y2Ā2X2)ω (5.103)

≥ I(Ā1X1;B
′
1|EY1Y2)ω + I(Ā2X2;B

′
2|EB′

1Y1Y2)ω (5.104)

≥ inf
ext. in (5.100)

I(Ā1X1;B
′
1|FY1)θ + inf

ext. in (5.101)
I(Ā2X2;B

′
2|GY2)κ. (5.105)

The first two equalities follow from the chain rule for conditional mutual informa-
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tion. The first inequality follows by dropping two of the terms and from the fact

that the conditional mutual information is non-negative. To see the last inequal-

ity, consider that the state
∑

a2,x2,y2
ω̂a1,x1,a2,x2,y1,y2B′

1E
⊗ [y2] is a particular non-signaling

extension of Ly1(θ̂
a1,x1
B1

) and the state
∑

a1,x1,y1
ω̂a1,x1,a2,x2,y1,y2B′

1B
′
2E

⊗[y1] is a particular non-

signaling extension of My2(κ̂
a2,x2
B2

), such that an infimization over arbitrary respective

non-signaling extensions θ̂a1,x1,y1B′
1F

and κ̂a2,x2,y2B′
2G

can never lead to higher values of the

conditional mutual informations. Since we have shown the inequality above for an

arbitrary non-signaling extension ω̂a1,x1,a2,x2,y1,y2B′
1B

′
2E

, we can conclude that

inf
ext. in (5.99)

I(Ā1X1Ā2X2;B
′
1B

′
2|EY1Y2)ω

≥ inf
ext. in (5.100)

I(Ā1X1;B
′
1|FY1)θ + inf

ext. in (5.101)
I(Ā2X2;B

′
2|GY2)κ, (5.106)

which in turn implies that

sup
{pX1|Y1pX2|Y2 ,{Ly1⊗My2}y1,y2}

inf
ext. in (5.99)

I(Ā1X1Ā2X2;B
′
1B

′
2|EY1Y2)ω

≥ inf
ext. in (5.100)

I(Ā1X1;B
′
1|FY1)θ + inf

ext. in (5.101)
I(Ā2X2;B

′
2|GY2)κ. (5.107)

The reduced 1W-LOCC operations {pX1|Y1 , {Ly1}y1} and {pX2|Y2 , {My2}y2} are arbi-

trary, and so we can conclude that

sup
{pX1|Y1pX2|Y2 ,{Ly1⊗My2}y1,y2}

inf
ext. in (5.99)

I(Ā1X1Ā2X2;B
′
1B

′
2|EY1Y2)ω

≥ sup
{pX1|Y1 ,{Ly1}y1}

inf
ext. in (5.100)

I(Ā1X1;B
′
1|FY1)θ

+ sup
{pX2|Y2 ,{My2}y2}

inf
ext. in (5.101)

I(Ā2X2;B
′
2|GY2)κ (5.108)

= S(Ā1;B1)θ̂ + S(Ā2;B2)κ̂. (5.109)
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Finally, since the 1W-LOCC operation {pX1|Y1pX2|Y2 , {Ly1 ⊗My2}y1,y2} has a particu-

lar product form, we could never achieve a lower value of the quantity on the LHS by

allowing for an arbitrary 1W-LOCC operation, implying the desired superadditivity:

S(Ā1Ā2;B1B2)ρ̂ ≥ S(Ā1;B1)θ̂ + S(Ā2;B2)κ̂. (5.110)

This concludes the proof.

5.4. Properties of restricted instrinsic steerability

We prove that the restricted intrinsic steerability is a steering monotone with

respect to restricted 1W-LOCC and that it is convex.

Theorem 52 The restricted intrinsic steerability SR(Ā;B)ρ̂ is a convex steering mono-

tone with respect to restricted 1W-LOCC. That is, it does not increase under re-

stricted deterministic 1W-LOCC, it vanishes for assemblages having a local-hidden-

state model, and it is convex.

Proof. The proof follows from Proposition 53, 54, and 55.

Proposition 53 Restricted intrinsic steerability vanishes for assemblages having an

LHS model.

Proof. To prove this, consider the following non-signaling, classical extension of an

unsteerable assemblage:

ρXĀBE :=
∑
a,x

pX(x) |x⟩⟨x|X ⊗ pĀ|XΛ(a|x, λ) |a⟩⟨a|Ā ⊗ ρ̂λB ⊗ pΛ(λ) |λ⟩⟨λ|E . (5.111)

Then,

I(XĀ;B|E)ρ =
∑
λ

pΛ(λ)I(XĀ;B)ρλ , (5.112)
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where

ρλXĀB =
∑
a,x

pX(x) |x⟩⟨x|X ⊗ pĀ|XΛ(a|x, λ) |a⟩⟨a|Ā ⊗ ρλB, (5.113)

and we have used the fact that the conditional mutual information can be written as

a convex combination of mutual informations for a classical conditioning system. By

inspection, we see that systems XĀ and B are independent when given the shared

variable Λ = λ. By choosing system E to contain the shared random variable Λ, the

result is that the systems form a Markov chain XĀ−E −B, so that the conditional

mutual information I(XĀ;B|E)ρ is equal to zero. Since this argument holds for any

probability distribution pX , we conclude that SR(Ā;B)ρ̂ = 0.

We now prove that restricted intrinsic steerability is a 1W-LOCC monotone.

Proposition 54 (Restricted 1W-LOCC monotone) Let {ρ̂a,xB }a,x be an assem-

blage, and let {pX|Xf
, pĀf |ĀXXfZ , {Kz}z} denote a restricted 1W-LOCC operation that

results in an assemblage {σ̂af ,xfB′ }af ,xf , defined as

σ̂
af ,xf
B′ :=

∑
a,x,z

pX|Xf
(x|xf )pĀf |ĀXXfZ(af |a, x, xf , z)Kz(ρ̂

a,x
B ). (5.114)

Then

SR(Ā;B)ρ̂ ≥ SR(Āf ;B′)σ̂. (5.115)

Proof. Taking a distribution pXf
over the black-box inputs of the final assemblage,

we can embed the state of the final assemblage into the following classical–quantum

state:

σXf ĀfB′ :=
∑
xf ,af

pXf
(xf )[xf ] ⊗ [af ] ⊗ σ̂

af ,xf
B′ , (5.116)

which is a marginal of the following state:
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σXfXĀf ĀZB′ :=
∑

xf ,af ,a,x,z

pXf
(xf )[xf ]⊗pX|Xf

(x|xf )[x]⊗pĀf |ĀXXfZ(af |a, x, xf , z)[af ]⊗

[a] ⊗ [z] ⊗Kz(ρ̂
a,x
B ). (5.117)

An arbitrary non-signaling extension of the state in (5.116) is as follows:

σXf ĀfB′E :=
∑
xf ,af

pXf
(xf )[xf ] ⊗ [af ] ⊗ σ̂

af ,xf
B′E , (5.118)

where

TrE(σ̂
af ,xf
B′E ) = σ̂

af ,xf
B′ , (5.119)∑

af

σ̂
af ,xf
B′E =

∑
af

σ̂
af ,xf
B′E ∀xf , x′f ∈ Xf . (5.120)

A particular non-signaling extension of the state in (5.116) is as follows:

ωXf ĀfB′EZ :=
∑
xf ,af

pXf
(xf )[xf ]⊗

[af ] ⊗
∑

xf ,af ,a,x,z

pX|Xf
(x|xf )pĀf |ĀXXfZ(af |a, x, xf , z)Kz(ρ̂

a,x
BE) ⊗ [z], (5.121)

where

TrE(ρ̂a,xBE) = ρ̂a,xB , (5.122)∑
a

ρ̂a,xBE =
∑
a

ρ̂a,x
′

BE ∀x, x′ ∈ X . (5.123)

The state ωXf ĀfB′E is a marginal of the following state:

ωXfXĀf ĀB′EZ :=
∑

xf ,af ,a,x,z

pXf
(xf )[xf ]pX|Xf

(x|xf )[x]pĀf |ĀXXfZ(af |a, x, xf , z)[af ]
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⊗ [a] ⊗Kz(ρ̂
a,x
BE) ⊗ [z]. (5.124)

Let ρXĀBE be the following state:

ρXĀBE :=
∑
xf ,a,x

pXf
(xf )[xf ] ⊗ pX|Xf

(x|xf )[x] ⊗ [a] ⊗ ρ̂a,xBE. (5.125)

Consider that

inf
ext. in (5.118)

I(Xf Āf ;B′|E)σ ≤ I(Xf Āf ;B′|EZ)ω (5.126)

≤ I(Xf ĀfXĀ;B′|EZ)ω (5.127)

= I(XĀ;B′|EZ)ω + I(Xf ;B′|EZXĀ)ω

+ I(Āf ;B′|EZXfXĀ)ω (5.128)

= I(XĀ;B′|EZ)ω (5.129)

≤ I(XĀ;B′Z|E)ω (5.130)

≤ I(XĀ;B|E)ρ. (5.131)

The first inequality follows because the non-signaling extension in (5.121) is a partic-

ular kind of non-signaling extension. The second inequality follows from data process-

ing. The first equality follows from the chain rule for conditional mutual information.

The second equality follows from various Markov-chain structures when inspecting

(5.124): Xf is independent of B′E when given ZXĀ, and Āf is independent of B′E

when given ZXfXĀ, so that I(Xf ;B′|EZXĀ)ω = I(Āf ;B′|EZXfXĀ)ω = 0. The

third inequality follows by applying the chain rule for and non-negativity of condi-

tional mutual information. The last inequality follows again from data processing.

Since the inequality holds for all non-signaling extensions of the form in (5.125), we
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can conclude that

inf
ext. in (5.118)

I(Xf Āf ;B′|E)σ ≤ inf
ext. in (5.125)

I(XĀ;B|E)ρ (5.132)

≤ sup
pX

inf
ext. in (5.125)

I(XĀ;B|E)ρ. (5.133)

Since the inequality above holds for an arbitrary choice of pXf
, we can finally conclude

that

sup
pXf

inf
ext. in (5.118)

I(Xf Āf ;B′|E)σ ≤ sup
pX

inf
ext. in (5.125)

I(XĀ;B|E)ρ, (5.134)

which is equivalent to the statement of the proposition.

The proof of convexity of the restricted intrinsic steerability is along the same

lines as that for intrinsic steerability, given already in the proof of Proposition 50.

We summarize the result as the following proposition:

Proposition 55 (Convexity) Let {ρ̂a,xB }a,x and {σ̂a,xB }a,x be assemblages, and let

λ ∈ [0, 1]. Let {τ̂a,xB }a,x be a mixture of the two assemblages, defined as

τ̂a,xB := λρ̂a,xB + (1 − λ)σ̂a,xB . (5.135)

Then

SR(Ā;B)τ̂ ≤ λSR(Ā;B)ρ̂ + (1 − λ)SR(Ā;B)σ̂. (5.136)

Proposition 56 (Superadditivity and Additivity) Let {ρ̂a1,a2,x1,x2B1B2
}a1,a2,x1,x2 be an

assemblage for which the following additional no-signaling constraints hold

∑
a2

ρ̂a1,a2,x1,x2B1B2
=
∑
a2

ρ̂
a1,a2,x1,x′2
B1B2

:= θ̂a1,x1B1B2
∀x2, x′2, (5.137)
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∑
a1

ρ̂a1,a2,x1,x2B1B2
=
∑
a1

ρ̂
a1,a2,x′1,x2
B1B2

:= κ̂a2,x2B1B2
∀x1, x′1, (5.138)

Let {TrB2(θ̂
a1,x1
B1B2

)}a1,x1 and {TrB1(κ̂
a2,x2
B1B2

)}a2,x2 be reduced assemblages arising from

the joint assemblage {ρ̂a1,a2,x1,x2B1B2
}a1,a2,x1,x2. Then the restricted intrinsic steerability is

superadditive in the following sense:

SR(Ā1Ā2;B1B2)ρ̂ ≥ SR(Ā1;B1)θ̂ + SR(Ā2;B2)κ̂. (5.139)

If the assemblage {ρ̂a1,a2,x1,x2B1B2
}a1,a2,x1,x2 has a tensor-product form, so that ρ̂a1,a2,x1,x2B1B2

=

θ̂a1,x1B1
⊗κ̂a2,x2B2

for assemblages {θ̂a1,x1B1
}a1,x1 and {κ̂a2,x2B2

}a2,x2, then the restricted intrinsic

steerability is additive:

SR(Ā1Ā2;B1B2)ρ̂ = SR(Ā1;B1)θ̂ + SR(Ā2;B2)κ̂. (5.140)

Proof. The superadditivity of restricted intrinsic steerability is similar to the proof

above for intrinsic steerability. Thus, to prove the additivity of intrinsic steerability

with respect to product assemblages, it is sufficient to prove the following subaddi-

tivity inequality:

SR(Ā1Ā2;B1B2)ρ̂ ≤ SR(Ā1;B1)θ̂ + SR(Ā2;B2)κ̂. (5.141)

Our proof of the above inequality has some similarities to the proof of the additiv-

ity of the squashed entanglement of a channel [102] (there are, however, some key

differences). Let θ̂a1,x1B1E1
and κ̂a2,x2B2E2

be non-signaling extensions of θ̂a1,x1B1
and κ̂a2,x2B2

, re-

spectively, and suppose that |θ̂a1,x1⟩B1E1F1 and |κ̂a2,x2⟩B2E2F2 purify θ̂a1,x1B1E1
and κ̂a2,x2B2E2

,
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respectively. Consider the following states:

ρX1X2Ā1Ā2B1B2E :=
∑

x1,x2,a1,a2

pX1X2(x1, x2)[x1] ⊗ [x2] ⊗ [a1] ⊗ [a2] ⊗ ρ̂a1,a2,x1,x2B1B2E
,

(5.142)

ωX1X2Ā1Ā2B1B2E1E2F1F2
:=

∑
x1,x2,a1,a2

pX1X2(x1, x2)[x1] ⊗ [x2] ⊗ [a1] ⊗ [a2] ⊗ θ̂a1,x1B1E1F1

⊗ κ̂a2,x2B2E2F2
, (5.143)

where pX1X2(x1, x2) is some probability distribution and TrE(ρ̂a1,a2,x1,x2B1B2E
) = θ̂a1,x1B1

⊗

κ̂a2,x2B2
. Consider that

inf
ρĀ1Ā2X1X2B1B2E

I(Ā1Ā2X1X2;B1B2|E)ρ

≤ I(Ā1Ā2X1X2;B1B2|E1E2)ω (5.144)

= H(B1B2|E1E2)ω −H(B1B2|E1E2Ā1X1Ā2X2)ω (5.145)

= H(B1B2|E1E2)ω +H(B1B2|F1F2Ā1X1Ā2X2)ω (5.146)

≤ H(B1|E1)ω +H(B2|E2)ω +H(B1|F1Ā1X1)ω +H(B2|F2Ā2X2)ω (5.147)

= H(B1|E1)ω +H(B2|E2)ω −H(B1|E1Ā1X1)ω −H(B2|E2Ā2X2)ω (5.148)

= I(X1Ā1;B1|E1)ω + I(X2Ā2;B2|E2)ω. (5.149)

The first inequality follows because ωX1X2Ā1Ā2B1B2E1E2
is a particular non-signaling

extension whereas ρX1X2Ā1Ā2B1B2E is an arbitrary non-signaling extension. The first

equality follows from the chain rule for conditional mutual information. Conditioned

on Ā1Ā2X1X2, the state on B1E1B2E2F1F2 is pure, and so the second equality follows

from the duality of conditional entropy. The first inequality is a consequence of the

strong subadditivity of quantum entropy [17]. The third equality follows again from
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the duality of conditional entropy as well as the no-signaling condition. To see this

for the entropy H(B1|F1Ā1X1)ω, consider that this entropy is evaluated with respect

to the following reduced state:

TrX2Ā2B2E2F2

( ∑
x1,x2,a1,a2

pX1X2(x1, x2)[x1] ⊗ [x2] ⊗ [a1] ⊗ [a2] ⊗ θ̂a1,x1B1E1F1
⊗ κ̂a2,x2B2E2F2

)

=
∑

x1,x2,a1,a2

pX1X2(x1, x2)[x1] ⊗ [a1] ⊗ θ̂a1,x1B1E1F1
⊗ TrB2E2F2{κ̂

a2,x2
B2E2F2

} (5.150)

=
∑
x1,a1

pX1(x1)[x1] ⊗ [a1] ⊗ θ̂a1,x1B1E1F1
⊗ TrB2

(∑
x2

pX2|X1(x2|x1)
∑
a2

κ̂a2,x2B2

)
(5.151)

=
∑
x1,a1

pX1(x1)[x1] ⊗ [a1] ⊗ θ̂a1,x1B1E1F1
⊗ TrB2

(∑
x2

pX2|X1(x2|x1)κB2

)
(5.152)

=
∑
x1,a1

pX1(x1)[x1] ⊗ [a1] ⊗ θ̂a1,x1B1E1F1
⊗ TrB2(κB2) (5.153)

=
∑
x1,a1

pX1(x1)[x1] ⊗ [a1] ⊗ θ̂a1,x1B1E1F1
. (5.154)

In the above, the third equality is the critical one in which we have used the no-

signaling constraint for the assemblage {κ̂a2,x2B2
}a2,x2 , allowing for the effective removal

of correlation between X1 and X2. Thus, the above analysis allows for seeing that the

remaining state on B1E1F1 conditioned on Ā1 and X1 is independent of any of the

second system. For the last equality, we employ the definition of conditional mutual

information. Since the above development holds for all non-signaling extensions of

the form in (5.143), we find that

inf
ρĀ1Ā2X1X2B1B2E

I(Ā1Ā2X1X2;B1B2|E1)ρ

≤ inf
ωĀ1X1B1E1

I(Ā1X1;B1|E1)ω + inf
ωĀ2X2B2E2

I(Ā2X2;B2|E2)ω (5.155)

≤ sup
pX1

inf
ωĀ1X1B1E1

I(Ā1X1;B1|E1)ω + sup
pX2

inf
ωĀ2X2B2E2

I(Ā2X2;B2|E2)ω. (5.156)
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Since the above inequality holds for an arbitrary probability distribution pX1X2 ,

we conclude that

sup
pX1X2

inf
ρĀ1Ā2X1X2B1B2E

I(Ā1Ā2X1X2;B1B2|E)ρ

≤ sup
pX1

inf
ωĀ1X1B1E1

I(Ā1X1;B1|E1)ω + sup
pX2

inf
ωĀ2X2B2E2

I(Ā2X2;B2|E2)ω, (5.157)

which is equivalent to (5.141).

Monogamy of entanglement is a fundamental property of entanglement quantum

states and is a statement regarding the extendibility of a quantum state. As an

example, the maximally entangled state ΦAB is not extendible and hence the systems

A and B cannot be entangled with any other extension C. Monogamy of entanglement

is reflected by entanglement measures such as squashed entanglement in the form of

the following inequality:

E(A;BC)ρ ≥ E(A;B)ρ + E(A;C)ρ, (5.158)

where E is the entanglement measure.

Monogamy of steering has also been explored in [103, 104]. We prove here that the

restricted intrinsic steerability is monogamous in the following sense: for a tripartite

state ρABC , Alice and Charlie perform measurements on their systems and steer Bob’s

system. We see that their ability to steer Bob’s system is restricted.

Proposition 57 (Monogamy) Let {ρ̂a,c,x1,x2B } be an assemblage with classical in-

puts x1 and x2 for Alice and Charlie, respectively, and classical outputs a and c for

Alice and Charlie, respectively, and obeying the following additional no-signaling con-
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straints:

∑
c

ρ̂a,c,x1,x2B =
∑
c

ρ̂
a,c,x1,x′2
B := θ̂a,x1B ∀x2, x′2, (5.159)

∑
a

ρ̂a,c,x1,x2B =
∑
a

ρ̂
a,c,x′1,x2
B := κ̂c,x2B ∀x1, x′1, (5.160)

such that the reduced assemblages are {θ̂a,x1B }a,x1 and {κ̂c,x2B }c,x2. Then the following

monogamy inequality holds

SR(ĀC̄;B)ρ̂ ≥ SR(Ā;B)θ̂ + SR(C̄;B)κ̂. (5.161)

Proof. This proof follows from an application of the chain rule for conditional mutual

information, much like the proof of monogamy for the squashed entanglement [105].

First, consider the following classical–quantum state:

ρX1X2ĀC̄BE :=
∑

x1,x2,a,c

pX1(x1)pX2(x2)[x1] ⊗ [x2] ⊗ [a] ⊗ [c] ⊗ ρ̂a,c,x1,x2BE , (5.162)

where ρ̂a,c,x1,x2BE is a non-signaling extension of ρ̂a,c,x1,x2B . Let

θX1ĀBF :=
∑
x1,a

pX1(x1)[x1] ⊗ [a] ⊗ θ̂a,x1BF , (5.163)

κX2C̄BG :=
∑
x2,a

pX2(x2)[x2] ⊗ [c] ⊗ κ̂c,x2BG , (5.164)

where θ̂a,x1BF is a non-signaling extension of θ̂a,x1B and κ̂c,x2BG is a non-signaling extension

of κ̂c,x2B . Then we have from the chain rule for conditional mutual information that

I(X1X2ĀC̄;B|E)ρ
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= I(X1Ā;B|E)ρ + I(X2C̄;B|EĀX1)ρ (5.165)

≥ inf
θX1ĀBF

I(X1Ā;B|E)θ + inf
κX2C̄BG

I(X2C̄;B|G)κ. (5.166)

Since the above inequality holds for all non-signaling extensions ρX1X2ĀC̄BE, we con-

clude that

inf
ρX1X2ĀC̄BE

I(X1X2ĀC̄;B|E)ρ ≥ inf
θX1ĀBF

I(X1Ā;B|E)θ + inf
κX2C̄BG

I(X2C̄;B|G)κ.

(5.167)

Optimizing the left-hand side with respect to product distributions, we find that

sup
pX1

,pX2

inf
ρX1X2ĀC̄BE

I(X1X2ĀC̄;B|E)ρ ≥ inf
θX1ĀBF

I(X1Ā;B|E)θ+ inf
κX2C̄BG

I(X2C̄;B|G)κ.

(5.168)

The development holds for any choice of distributions pX1 and pX2 , and so we conclude

that

sup
pX1

,pX2

inf
ρX1X2ĀC̄BE

I(X1X2ĀC̄;B|E)ρ

≥ sup
pX1

inf
θX1ĀBF

I(X1Ā;B|E)θ + sup
pX2

inf
κX2C̄BG

I(X2C̄;B|G)κ (5.169)

= SR(Ā;B)θ̂ + SR(C̄;B)κ̂. (5.170)

Finally optimizing the left-hand side with respect to all input distributions pX1X2 , we

conclude (5.161).

Here we establish the faithfulness of restricted intrinsic steerability.

Theorem 58 (Faithfulness of restricted intrinsic steerability) For every assem-
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blage ρ̂a,xB , the restricted intrinsic steerability SR(A;B)ρ̂ = 0, if and only if it is an

LHS assemblage. Quantitatively, if SR(Ā;B)ρ̂ ≤ ε, where 0 < ε
1
16 |X | 12 < 1, there

exists an LHS assemblage σĀXB such that

sup
pX(x)

∥ρĀXB − σĀXB∥1 ≤ |X |
(
ε1/4 +

ε1/16|X |1/2

1 − ε1/16|X |1/2
+ 4|X |e−

ε−1/4

3

)
. (5.171)

Proof. The forward direction (“if”) follows from Proposition 53. We now give a

proof for the reverse direction (“only if”) of the theorem.

Let us first construct a proof strategy for a uniform probability distribution

pX(x) = 1
|X | , and then we generalize it to a proof for an arbitrary distribution pX(x).

This proof shares some ideas from the proof for faithfulness of squashed entangle-

ment [97].

Invoking Theorem 5.1 of [106], we know that there exists a recovery channel

RXE→ĀXE such that

∥ρĀXBE −RXE→ĀXE(ρBE ⊗ ρX)∥1 ≤
√
I(Ā;B|EX)ρ ln 2 =: t,

(5.172)

∥ρĀXBE −RX2E→Ā2X2E◦TrĀ1X1
(ρĀ1X1BE ⊗ ρX2)∥1 ≤ t, (5.173)

where systems Ā1 and Ā2 are isomorphic to system Ā, and systems X1 and X2

are isomorphic to X. In the above, we have invoked the no-signaling condition

I(X;BE)ρ = 0, which implies that ρBE and ρX are product as written. Now, let

us apply this recovery channel again. We then have that

∥RX3E→Ā3X3E ◦ TrX2Ā2
(ρĀ2X2BE ⊗ ρX3)−

⃝3
i=2RXiE→ĀiXiE ◦ TrAi−1Xi−1

(ρĀ1X1BE ⊗ ρX2 ⊗ ρX3)
∥∥
1
≤ t. (5.174)
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which follows from the monotonicity of trace distance with respect to RX3E→Ā3X3E ◦

TrX2Ā2
. Then, combining the above equation with (5.172) via the triangle inequality,

we obtain

∥∥ρĀXBE −⃝3
i=2RXiE→ĀiXiE ◦ TrAi−1Xi−1

(ρĀ1X1BE ⊗ ρX2 ⊗ ρX3)
∥∥
1
≤ 2t. (5.175)

For j ∈ {4, . . . , n}, again apply the channels RXE→ĀjXjE ◦TrĀj−1Xj−1
, along with the

monotonicity of trace norm under quantum channels, combining the equations via

the triangle inequality, to obtain the following inequality:

∥∥ρĀXB − TrE{⃝j
i=2RXiE→ĀiXiE ◦ TrAi−1Xi−1

(
ρĀ1X1BE ⊗ ρ⊗jX

)
}
∥∥
1
≤ nt. (5.176)

The recovery channel RXiE→ĀiXiE can be taken as [107]

RXE→ĀXE (·) = ρ
1
2
+iω

ĀXE
ρ
− 1

2
−iω

XE (·) ρ−
1
2
+iω

XE ρ
1
2
−iω

ĀXE
, (5.177)

=
∑
x

|x⟩⟨x|X ⊗ (ρxĀE)
1
2
+iωρ

− 1
2
+iω

E (·) ρ−
1
2
+iω

E (ρxĀE)
1
2
−iω, (5.178)

for some ω ∈ R. Let σĀnXnBE denote the following state:

σĀnXnBE = (RXnE→ĀnXnE ◦ . . . ◦ RX1E→Ā1X1E) (σBE ⊗ σ⊗n
X ) (5.179)

=
∑
an,xn

pXn(xn)qĀn|Xn(an|xn) |xn⟩⟨xn|Xn ⊗ |an⟩⟨an|Ān ⊗ σa
n,xn

BE . (5.180)

σĀnXnB = TrE(σĀnXnBE) (5.181)

=
∑
an,xn

pXn(xn)qĀn|Xn(an|xn) |xn⟩⟨xn|Xn ⊗ |an⟩⟨an|Ān ⊗ σa
n,xn

B . (5.182)

σĀiXiB = TrA[n]\{i}X[n]\{i}(σĀnXnB) (5.183)

=
∑
an,xn

pXn(xn)qĀn|Xn(an|xn) |xi⟩⟨xi|Xi
⊗ |ai⟩⟨ai|Āi

⊗ σa
n,xn

B , (5.184)
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where A[n]\{i} = A1A2 . . . Ai−1Ai+1 . . . An and similarly X [n]\{i} = X1X2 . . . Xi−1Xi+1

. . . Xn. Furthermore, qĀn|Xn(an|xn) is a probability distribution for an given xn after

the application of the recovery channels RXiE→ĀiXiE. From (5.176), we obtain for all

i ∈ {1, 2, . . . , n} that ∥∥ρĀXB − σĀiXiB

∥∥
1
≤ nt. (5.185)

The application of the recovery channels generates the data (x1, a1), (x2, a2), . . . ,

(xn, an). The xi correspond to the measurement choices, and the ai correspond to

the measurement outcomes. This data is called the “cheat sheet” and acts like a

hidden-variable λ. The formulation of the cheat sheet is similar to the construction

of a local hidden-variable model in [108].

We now devise an algorithm to generate ã from x̃ by using the cheat sheet. The

generated state σÃX̃B is a local hidden state, with the cheat sheet as the hidden

variable. We then prove that σÃX̃B is close to the original state ρĀXB.

Alice receives x̃. She searches for all the values of i for which xi = x̃, and generates

i uniformly at random

pI|X̃Xn(i|x̃xn) =
1

N(x̃|xn)
δxix̃, (5.186)

where δxix̃ is the Kronecker delta function and where N(x̃|xn) is the number of times

that the letter x̃ appears in the sequence xn. Then, she outputs ã with probability

pÃ|AnI(ã|a
ni) = δã,ai . (5.187)

Therefore,

pÃ|X̃XnAn(ã|x̃xnan) =
n∑
i=1

pÃ|AnIXnX̃(ã|anixnx̃)pI|X̃XnAn(i|x̃xnan) (5.188)
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=
n∑
i=1

pÃ|AnI(ã|a
ni)pI|X̃Xn(i|x̃xn). (5.189)

=
n∑
i=1

1

N(x̃|xn)
δx̃xiδãai . (5.190)

If x̃ does not belong to the sequence xn, then she generates ã randomly. This se-

quence of actions can be expressed in terms of the following conditional probability

distribution:

pÃ|X̃XnAn(ã|x̃, xn, an) :=


1
|A| , if N(x̃|xn) = 0∑n

i=1
1

N(x̃|xn)δx̃,xiδai,ã else.

(5.191)

It is easy to check that
∑

ã pÃ|X̃XnAn(ã|x̃, xn, an) = 1.

We now use the notion of robust typicality [109] for the analysis.

Definition 59 (Robust typicality [109]) Let xn be a sequence of elements drawn

from a finite alphabet X , and let p(x) be a probability distribution on X . Let N(x|xn)

be the empirical distribution of xn. Then the δ-robustly typical set TX
n

δ for δ > 0 is

defined as

TX
n

δ :=

{
∀x ∈ X ,

∣∣∣∣ 1nN(x|xn) − pX(x)

∣∣∣∣ ≤ δp(x)

}
. (5.192)

The following result holds for 0 < δ < 1:

Property 60 The probability of a sequence xn to be in the robustly typical set is

bounded from below as

Pr
{
Xn ∈ TX

n

δ

}
≥ 1 − 2|X | exp−nδ2µX

3 , (5.193)
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where

µX := min
x∈X ,pX(x)>0

pX(x). (5.194)

The state generated after the application of the algorithm in (5.191) is as follows:

σÃX̃B =
∑
x̃,ã

pX̃(x̃) |x̃⟩⟨x̃|X̃ ⊗
∑
xn,an

pÃ|X̃XnAn(ã|x̃, xn, an)pXn(xn)qĀn|Xn(an|xn)

|ã⟩⟨ã|Ã ⊗ σa
n,xn

B . (5.195)

Then, define the following sets:

• S1(x̃): set of sequences xn such that x̃ ∈ xn and xn ∈ TX
n

δ ,

• S2(x̃): set of sequences xn such that x̃ ̸∈ xn and xn ∈ TX
n

δ ,

• S3: set of sequences xn such that xn ̸∈ TX
n

δ .

So we can write the state σÃX̃B as

σÃX̃B =
∑
x̃,ã

pX̃(x̃) |x̃⟩⟨x̃|X̃ ⊗
( ∑
xn∈S1(x̃),an

p(ã|x̃, xn, an) |ã⟩⟨ã| ⊗ q(an, xn)σa
n,xn

B +

∑
xn∈S2(x̃),an

p(ã|x̃, xn, an) |ã⟩⟨ã| ⊗ q(an, xn)σa
n,xn

B +

∑
xn∈S3,an

p(ã|x̃, xn, an) |ã⟩⟨ã| ⊗ q(an, xn)σa
n,xn

B

)
, (5.196)

σÃX̃B = σ
(1)

ÃX̃B
+ σ

(2)

ÃX̃B
+ σ

(3)

ÃX̃B
. (5.197)

From the triangle inequality, we obtain the following:

∥ρĀX̄B − σÃX̃B∥1 ≤
∥∥∥ρĀX̄B − σ

(1)

ÃX̃B

∥∥∥
1

+
∥∥∥σ(2)

ÃX̃B

∥∥∥
1

+
∥∥∥σ(3)

ÃX̃B

∥∥∥
1
, (5.198)
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where

∥∥∥ρĀXB − σ
(1)

ÃX̃B

∥∥∥
1
≤

∥∥∥∥∥ρĀX̄B − 1

n

n∑
i=1

σĀiXiB

∥∥∥∥∥
1

+

∥∥∥∥∥ 1

n

n∑
i=1

σĀiXiB − σ
(1)

ÃX̃B

∥∥∥∥∥
1

(5.199)

≤ nt+

∥∥∥∥∥ 1

n

n∑
i=1

σĀiXiB − σ
(1)

ÃX̃B

∥∥∥∥∥
1

. (5.200)

Let us analyze each term individually, beginning with

∥∥∥σ(3)

ÃX̃B

∥∥∥
1

=

∥∥∥∥∥∑
x̃,ã

pX̃(x̃) |x̃⟩⟨x̃|X̃ ⊗
∑

xn∈S3,an

p(ã|x̃, xn, an) |ã⟩⟨ã| ⊗ q(an, xn)σa
n,xn

B

∥∥∥∥∥
1

(5.201)

≤
∑
x̃,ã

p(x̃)
∑

xn∈S3,an

p(xn)q(an|xn)p(ã|x̃, xn, an)
∥∥∥|x̃⟩⟨x̃| ⊗ |ã⟩⟨ã| ⊗ σa

n,xn

B

∥∥∥
1

(5.202)

=
∑
x̃

p(x̃)
∑
xn∈S3

p(xn)
∑
an

q(an|xn)
∑
ã

p(ã|x̃, xn, an) ≤ ε1, (5.203)

where ε1 = 2|X | exp−nδ2µX
3 . The first inequality follows from convexity of trace dis-

tance, and the second inequality follows from the definition of S3 and (5.193).

Let us now consider S2(x̃), that is, the set of sequences xn such that x̃ ̸∈ xn

and xn ∈ TX
n

δ . From Definition 59, we know that for the robustly-typical set, the

following condition holds

xn : ∀x ∈ X ,
∣∣∣∣ 1nN(x|xn) − pX(x)

∣∣∣∣ ≤ δpX(x). (5.204)

For a robustly-typical sequence to have an empirical distribution N(x|xn) = 0, it is

required that δ ≥ 1. So, we restrict δ ∈ (0, 1). Thus, by the fact that pX(x) > 0 for
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all x ∈ X , it is impossible for N(x̃|xn) = 0 and xn ∈ TX
n

δ . That is,

∥∥∥σ(2)

ÃX̃B

∥∥∥
1

= 0. (5.205)

Consider that

σ
(1)

X̃ÃB

=
∑
x̃

p(x̃)[x̃]X̃ ⊗
∑

an,xn∈S1(x̃),ã

n∑
i=1

1

N(x̃|xn)
δai,ãδx̃,xi [ã]Ã ⊗ pXn(xn)qAn|Xn(an|xn)σa

n,xn

B ,

(5.206)

=
∑
x̃

p(x̃)[x̃]X̃ ⊗
∑
ã

[ã]Ã ⊗ 1

n

n∑
i=1

∑
x[n]\{i},x̃∈S1(x̃),a[n]\{i}

pX̃(x̃)

N(x̃|xn)/n
pX[n]\{i}(x[n]\{i}|x̃)

q(ã|x[n]\{i},x̃)q(a[n]\{i}|x[n]\{i},x̃ã)σa
[n]\{i},x[n]\{i},x̃,ã
B , (5.207)

where x[n]\{i},x̃ refers to a sequence xn with xi = x̃.

We now want to give an upper bound on the second term in (5.200):

∥∥∥∥∥ 1

n

n∑
i=1

σĀiXiB − σ
(1)

ĀXB

∥∥∥∥∥
1

, (5.208)

where

σĀiXiB =
∑
an,xn

pXn(xn)qĀn|Xn(an|xn) |xi⟩⟨xi|Xi
⊗ |ai⟩⟨ai|Āi

⊗ σa
n,xn

B . (5.209)

Let us define the following sets:

• S1(xi): set of sequences xn such that xi ∈ xn and xn ∈ TX
n

δ ,

• S2(xi): set of sequences xn such that xi ̸∈ xn and xn ∈ TX
n

δ ,
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• S3: set of sequences xn such that xn ̸∈ TX
n

δ .

Then,

σĀiXiB =
∑

an,xn∈S1(xi)

pXn(xn)qĀn|Xn(an|xn) |xi⟩⟨xi|Xi
⊗ |ai⟩⟨ai|Āi

⊗ σa
n,xn

B

+
∑

an,xn∈S2(xi)

pXn(xn)qĀn|Xn(an|xn) |xi⟩⟨xi|Xi
⊗ |ai⟩⟨ai|Āi

⊗ σa
n,xn

B

+
∑

an,xn∈S3

pXn(xn)qĀn|Xn(an|xn) |xi⟩⟨xi|Xi
⊗ |ai⟩⟨ai|Āi

⊗ σa
n,xn

B (5.210)

= σ
(1)

ĀiXiB
+ σ

(2)

ĀiXiB
+ σ

(3)

ĀiXiB
. (5.211)

Then, using the convexity of trace distance with (5.208) and typicality arguments

similar to (5.203) and (5.205), we find that

∥∥∥∥∥ 1

n

n∑
i=1

σĀiXiB − σ
(1)

ĀXB

∥∥∥∥∥
1

≤ 1

n

n∑
i=1

∥∥∥σĀiXiB − σ
(1),i

ĀXB

∥∥∥
1

(5.212)

≤ 1

n

n∑
i=1

∥∥∥σ(1)

ĀiXiB
− σ

(1),i

ĀXB

∥∥∥
1

+ ε1, (5.213)

where

σ
(1)

ĀiXiB
=
∑
xi

pXi
(xi) [xi]Xi

⊗
∑
ai

[ai]Āi

⊗
∑

x[n]\{i},xi∈S1(xi),a[n]\{i}

p(x[n]\{i}|xi)q(ã|x[n]\{i}, xi)q(a[n]\{i}|x[n]\{i}, xi, ã)σa
[n]\{i}x[n]\{i},xi,ai
B .

(5.214)

and

σ
(1),i

ĀXB
=
∑
x̃

p(x̃)[x̃]X̃ ⊗
∑
ã

[ã]Ã ⊗
∑

x[n]\{i},x̃∈S1(x̃),a[n]\{i}

pX̃(x̃)

N(x̃|xn)/n
pX[n]\{i}
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(x[n]\{i}|x̃)q(ã|x[n]\{i},x̃) q(a[n]\{i}|x[n]\{i},x̃ã)σa
[n]\{i},x[n]\{i},x̃,ã
B . (5.215)

Invoking (5.204), we find that

1

n

n∑
i=1

∥∥∥σ(1)

ĀiXiB
− σ

(1),i

ĀXB

∥∥∥
1
≤ δ

1 − δ
, (5.216)

where δ ∈ (0, 1). After combining (5.203), (5.205), (5.213), and (5.216), we obtain

∥ρĀXB − σÃX̃B∥1 ≤ nt+
δ

1 − δ
+ 2ε1. (5.217)

Minimizing over all possible no-signaling extensions, as required by the definition, we

find that

∥ρĀXB − σÃX̃B∥1 ≤ n inf
ρĀXBE

t+
δ

1 − δ
+ 2ε1. (5.218)

Since ρĀXB and σĀXB are classical-quantum states with pX(x) = 1
|X | , we obtain

∑
x

∥∥ρxĀB − σx
ÃB

∥∥
1
≤ |X |

(
n inf
ρĀXBE

t+
δ

1 − δ
+ 2ε1

)
. (5.219)

This implies that the following inequality holds for all x ∈ X :

∥∥ρxĀB − σx
ÃB

∥∥
1
≤ |X |

(
n inf
ρĀXBE

t+
δ

1 − δ
+ 2ε1

)
. (5.220)

This means that we can average the above to get a bound for any arbitrary distribu-

tion p(x) on x. Therefore, we can now relax the assumption of a uniform probability

distribution, in order to obtain the following bound for an arbitrary probability dis-
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tribution:

sup
pX(x)

∥ρĀBX − σÃBX∥1 ≤ |X |

(
n sup
pX(x)

inf
ρĀXBE

t+
δ

1 − δ
+ 2ε1

)
, (5.221)

which implies that

sup
pX(x)

∥ρĀBX − σÃBX∥1 ≤ |X |
(
n
√
SR(Ā;B)ρ̂ ln 2 +

δ

1 − δ
+ 2ε1

)
. (5.222)

Given SR(Ā;B)ρ̂ ≤ ε (as required by the condition of faithfulness), choose n =

(1/ε)1/4, δ = ε1/16|X |1/2 (recall that we require δ ∈ (0, 1)). We know by the Chernoff

bound [109] that ε1 = 2|X |e−
1

3|X| δ
2n. Substituting these values, we find that

∥ρĀBX − σÃBX∥1 ≤ |X |
(
ε1/4 +

ε1/16|X |1/2

1 − ε1/16|X |1/2
+ 4|X |e−

ε−1/4

3

)
. (5.223)

This concludes the proof.

5.5. Open questions

In this section, we state two open questions regarding the properties of intrinsic

steerability and outline the proof attempts by the author. Besides the open questions

listed below, the calculation of intrinsic steerability for various assemblages is an in-

teresting open question. These calculations could provide insights for other quantum

information phenomena as in [110].

5.5.1. Continuity of restricted intrinsic steerability

Suppose that we are given two assemblages ρ̂a,x and σ̂a,x such that the following

holds:

1

2
∥ρ̂a,xB − σ̂a,xB ∥1 ≤ ε. (5.224)
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We want to prove the following:

|SR(A;B)ρ̂ − SR(A;B)σ̂|
?

≤ g1(ε) + g2 (ε log d) (5.225)

where g1(ε), g2(ε log d) → 0 as ε→ 0 and d is equal to the min [dimHĀ, dim(HB)] .

Proof attempt: Let us choose a particular no-signaling extension ρ̂a,xBE of ρ̂a,xB .

Then can we construct a no-signaling extension σ̂a,xBE of σ̂a,xB such that

1

2
∥ρ̂a,xBE − σ̂a,xBE∥1

?

≤ ε1, (5.226)

where ε1 → 0 as ε→ 0? If such a construction is possible, then by continuity of CMI,

we have

|I(Ā;B|XE)ρ̂ − I(Ā;B|XE)σ̂| ≤ f(ε1), (5.227)

where f(ε1) = 2ε1 log d + 2g(ε1). Here, g(ε) = (ε + 1) log(ε+ 1) − ε log ε. Because

the above inequality holds for any extension of the assemblage ρ̂a,xB , we obtain the

continuity of restricted intrinsic steerability:

|SR(Ā;B)ρ̂ − SR(Ā;B)σ̂| ≤ f(ε). (5.228)

The bottleneck of the proof is the statement (5.226). We cannot directly invoke

Uhlmann’s theorem to prove this statement.

A similar statement can be conjectured for continuity of intrinsic steerability.

5.5.2. Squashed entanglement not less than intrinsic steerability

We suspect that squashed entanglement of a quantum state will be greater than

the intrinsic steerability of any assemblage obtained from this state. Consider a

bipartite state ρAB and consider ρ̂a,xB as an arbitrary assemblage obtained from ρAB.
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Then, we conjecture the following:

Esq(A;B)ρ
?

≥ SR(Ā;B)ρ̂. (5.229)

Consider a particular extension ρABE of ρAB. Let ρĀBX be a classical-quantum state

associated with the assemblage ρ̂a,xB . Let ρĀBXE be a non-signaling extension of ρĀBX

obtained from ρAB. Then,

I(A;B|E)ρ ≥ I(Ā;B|EX)ρ (5.230)

I(A;B|E)ρ ≥ SR(Ā;B)ρ̂ (5.231)

inf
ρABE

I(A;B|E)ρ ≥ SR(Ā;B)ρ̂ (5.232)

The first inequality follows from monotonicity of CMI under local operations and the

chain rule. The second inequality follows because the non-signaling extension ρĀBXE

in (5.230) is a particular kind of non-signaling extension. The third inequality follows

because ρABE is a particular extension of ρAB. However, the definition of squashed

entanglement contains a factor of half for normalization and that cannot be taken

into account by the aforementioned steps.

125



Chapter 6
Intrinsic Non-Locality

In this chapter, we introduce intrinsic non-locality and quantum intrinsic non-

locality as quantifiers of non-local distributions based on conditional mutual infor-

mation. We prove that they fulfill several desirable properties, such as monotonicity

under local operations and shared randomness, convexity, faithfulness, superadditiv-

ity, and additivity with respect to tensor products.

6.1. Definitions of quantifiers

6.1.1. Definition of intrinsic non-locality

To calculate the amount of non-locality present in the distribution p(a, b|x, y),

we introduce a function N : p(a, b|x, y) → R≥0, which we call intrinsic non-locality.

Consider a distribution p(a, b|x, y) ∈ NS. Now embed the distribution p(a, b|x, y)

into a classical state as

ρĀB̄XY :=
∑
a,b,x,y

p(x, y)p(a, b|x, y) [a b x y]ĀB̄XY , (6.1)

where p(x, y) is a probability distribution for the measurement choices x and y. Con-

sider a no-signaling extension ρĀB̄XY E of ρĀB̄XY :

ρĀB̄XY E :=
∑
a,b,x,y

p(x, y) [a b x y]ĀB̄XY ⊗ p(a, b|x, y)ρa,b,x,yE , (6.2)

such that TrE(ρĀB̄XY E) = ρĀB̄XY , and the following no-signaling constraints hold:

∑
a

p(a, b|x, y)ρa,b,x,yE =
∑
a

p(a, b|x′, y)ρa,b,x
′,y

E ∀x, x′ ∈ X . (6.3)
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It is then easy to see that given the value in system Y , the state of systems X and

systems B̄E is product. This is equivalent to the following constraint on conditional

mutual information:

I(B̄E;X|Y )ρ = 0 ∀p(x, y). (6.4)

Similarly, the following no-signaling constraints hold

∑
b

p(a, b|x, y)ρa,b,x,yE =
∑
b

p(a, b|x, y′)ρa,b,x,y
′

E ∀y, y′ ∈ Y . (6.5)

It is easy to see that given the value in systems X, the state of systems Y and

ĀE is product. This is equivalent to the following constraint on conditional mutual

information

I(ĀE;Y |X)ρ = 0 ∀p(x, y). (6.6)

Finally, we obtain

∑
a,b

p(a, b|x, y)ρa,b,x,yE =
∑
a,b

p(a, b|x′, y)ρa,b,x
′,y

E (6.7)

=
∑
a,b

p(a, b|x′, y′)ρa,b,x
′,y′

E ∀x, x′ ∈ X , y, y′ ∈ Y . (6.8)

The first equality follows from (6.3), and the second equality follows from (6.5). This

implies that the state of Eve’s system is independent of the measurement choices,

i.e., I(XY ;E)ρ = 0 for all p(x, y). We can then quantify the amount of non-local

distributions in the distribution p(a, b|x, y) as infρĀB̄XY E
I(Ā; B̄|XY E), where the

infimum is with respect to no-signaling extensions ρĀB̄XY E of the above form. Since

Alice and Bob want to maximize the non-local distributions of the two black boxes,

we maximize over input probability distributions p(x, y), leading us to the following

definition:
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Definition 61 (Intrinsic non-locality) The intrinsic non-locality of a distribution

p(a, b|x, y) ∈ NS is defined as

N(Ā; B̄)p = sup
p(x,y)

inf
ρĀB̄XY E

I(Ā; B̄|XY E)ρ, (6.9)

where ρĀB̄XY E is a no-signaling extension of the state ρĀB̄XY , i.e., subject to the

constraints in (6.3) and (6.5).

In the next chapter 7, we obtain an upper bound on the distillable key of a

distribution. With that in mind, we can also think of the extension system as a

system with an eavesdropper.

6.1.2. Definition of quantum intrinsic non-locality

We now introduce a function NQ : p(a, b|x, y) → R≥0, which we call quantum

intrinsic non-locality, with p(a, b|x, y) ∈ Q. As stated in Section 2.1.3., a distribution

in the set Q arises from some underlying state ρAB and POVMs of Alice and Bob

characterized by {Λa
x}a and

{
Λb
y

}
b
, respectively.1 Now, consider a quantum state

ρABE such that TrE (ρABE) = ρAB. We call ρABE an extension of the state ρAB.

Then, one possible extension of the classical-classical state ρĀB̄XY as defined in (6.1)

is

ρĀB̄XY E =
∑
a,b,x,y

p(x, y) TrAB
[(

Λa
x ⊗ Λb

y ⊗ IE
)
ρABE

]
[a b x y]ĀB̄XY , (6.10)

=
∑
a,b,x,y

p(x, y)p(a, b|x, y) [a b x y]ĀB̄XY ⊗ ρa,b,x,yE , (6.11)

where p(a, b|x, y)ρa,b,x,yE := TrAB
[(

Λa
x ⊗ Λb

y ⊗ IE
)
ρABE

]
. By definition, this extension

is also a no-signaling extension and is subjected to the constraints in (6.3) and (6.5).

1For certain quantum distributions, it is possible to pinpoint the underlying quantum state and
POVMs up to certain isometries. See [111, 112] in this context.
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We call extensions of the form in (6.10) as quantum extensions.

For p ∈ Q, the set of no-signaling extensions of p is strictly larger than the set

of quantum extensions. For example, in the CHSH game, a distribution p(a, b|x, y)

reaching the Tsirelson bound only admits a trivial quantum extension, i.e., with

constant ρa,b,x,yE independent of a, b, x, and y. However, the no-signaling extensions

of such a distribution are not extremal, as can be seen by writing p(a, b|x, y) as a

convex combination of a PR box (with necessarily constant ρa,b,x,yE as an extension)

and a local box (where ρa,b,x,yE contains the local hidden variable).

Therefore, to consider the setting in which there is an underlying quantum model,

we define quantum intrinsic non-locality as follows:

Definition 62 (Quantum intrinsic non-locality) The quantum intrinsic non-locality

of a distribution p(a, b|x, y) ∈ Q is defined as

NQ(Ā; B̄)p = sup
p(x,y)

inf
ρĀB̄XY E

I(Ā; B̄|XY E)ρ, (6.12)

where ρĀB̄XY E is a quantum extension of the state ρĀB̄XY , that is, subject to the

constraints in (6.10).

Proposition 63 If p(a, b|x, y) ∈ Q, then

N(Ā; B̄)p ≤ NQ(Ā; B̄)p. (6.13)

Proof. This follows from the observation that a quantum extension σĀB̄XY E of ρĀB̄XY

is a particular kind of no-signaling extension.

In general, we expect the calculation of intrinsic non-locality to be hard. This

again can be traced back to the problem of finding the appropriate extension system,

since we do not know any bound on the dimension of the extension system.
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6.1.3. Intrinsic non-locality of a PR box

In this section, we calculate the intrinsic non-locality of a PR box.

Proposition 64 The intrinsic non-locality of a PR box is equal to 1, i.e., N(Ā; B̄)p =

1, where p is the distribution defined in (2.13).

Proof. Consider the state

ρĀB̄XY :=
∑
a,b,x,y

p(x, y)p(a, b|x, y) [a b x y]ĀB̄XY , (6.14)

where p(x, y) is an arbitrary probability distribution. Consider a no-signaling exten-

sion of the state

ρĀB̄XY E :=
∑
a,b,x,y

p(x, y)p(a, b|x, y) [a b x y]ĀB̄XY ⊗ ρa,b,x,yE . (6.15)

The no-signaling constraints are

∑
a,b,y

p(a, b|x, y) [b x y]B̄XY ⊗ ρx,y,a,bE =
∑
a,b,y

p(a, b|x′, y) [b x′ y]B̄XY ⊗ ρx
′,y,a,b
E , (6.16)

∑
b,a,x

p(a, b|x, y) [a x y]ĀXY ⊗ ρx,y,a,bE =
∑
b,a,x

p(a, b|x, y′) [a x y′]ĀXY ⊗ ρx,y
′,a,b

E . (6.17)
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From (2.13), and the no-signaling constraint in (6.16), we arrive at the following

constraints on the possible states of Eve’s system:



ρ0000E 0 0 0

0 ρ0011E 0 0

0 0 ρ0100E 0

0 0 0 ρ0111E


=



ρ1000E 0 0 0

0 ρ1011E 0 0

0 0 ρ1110E 0

0 0 0 ρ1101E


. (6.18)

In the matrices given above, the rows and columns are indexed by (y, b). The first

matrix on the left corresponds to x = 0, and the second one on the right corresponds

to x = 1. The constraints in (6.18) can also be written as

1) ρ0000E = ρ1000E , 2) ρ0011E = ρ1011E ,

3) ρ0100E = ρ1110E , 4) ρ0111E = ρ1101E . (6.19)

Similarly, from (2.13), and the no-signaling constraint in (6.17), we arrive at the

following constraints on the possible states of Eve’s system:



ρ0000E 0 0 0

0 ρ0011E 0 0

0 0 ρ1000E 0

0 0 0 ρ1011E


=



ρ0100E 0 0 0

0 ρ0111E 0 0

0 0 ρ1101E 0

0 0 0 ρ1110E


. (6.20)

131



In the above block matrices, the rows and columns are indexed by (x, a). The first

matrix on the left corresponds to y = 0, and the second one on the right corresponds

to y = 1. The constraints in (6.20) can also be written as

5) ρ0000E = ρ0100E , 6) ρ0011E = ρ0111E ,

7) ρ1000E = ρ1101E , 8) ρ0111E = ρ1101E . (6.21)

By following 1 → 7 → 4 → 6 → 2 → 8 → 3 → 5 → 1 in the above, we obtain

ρx,y,a,bE = ρx
′,y′,a′,b′

E ∀x, x′, y, y′ ∈ [s] and a, a′, b, b′ ∈ [r]. This implies that ρĀB̄XY has

a trivial tensor-product no-signaling extension. Hence,

I(Ā; B̄|XY E)ρ = I(Ā; B̄|XY )ρ =
∑
x,y

p(x, y)I(Ā; B̄)ρx,y (6.22)

=
∑
x,y

p(x, y)
(
H(Ā)ρx,y −H(Ā|B̄)ρx,y

)
(6.23)

= 1. (6.24)

It is easy to check that given realizations of X, Y , the entropies H(Ā|B̄)ρx,y = 0 and

H(Ā)ρx,y = 1.

6.2. Properties of intrinsic non-locality and quantum intrinsic non-locality

In this section, we prove that intrinsic non-locality and quantum intrinsic non-

locality are faithful, monotone with respect to local operations and shared random-

ness, superadditive, and additive with respect to tensor products of distributions.

These are the properties that are desirable for a measure of Bell non-locality to pos-

sess, as discussed in Section 2.2.3.. We also prove that quantum intrinsic non-locality

of a distribution is never larger than the restricted intrinsic steerability of an associ-

ated assemblage.
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6.2.1. Monotonicity under free operations

We expect any quantifier of non-locality to be monotone with respect to local

operations and shared randomness. That is, a free operation should not increase the

amount of non-locality in the device. We state this in the following proposition:

Proposition 65 (Monotonicity of intrinsic non-locality) Let pi(a, b|x, y) be a

distribution, and let pf (af , bf |xf , yf ) be a distribution that results from the action of

local operations and shared randomness on pi(a, b|x, y), so that we can write the final

probability distribution as follows:

pf (af , bf |xf , yf ) :=
∑
a,b,x,y

O(L)(af , bf |a, b, x, y, xf , yf ) pi(a, b|x, y) I(L)(x, y|xf , yf ),

(6.25)

where I(L)(x, y|xf , yf ) and O(L)(af , bf |a, b, x, y, xf , yf ) are local boxes as described in

(2.25) and (2.26). Then,

N(Ā; B̄)pi ≥ N(Āf ; B̄f )pf . (6.26)

Proof. First, we embed pf (af , bf |xf , yf ) in a quantum state:

ρĀf B̄fXfYf =
∑

xf ,yf ,af ,bf

p(xf , yf ) pf (af , bf |xf , yf ) [xf yf af bf ]XfYf Āf B̄f
, (6.27)

where p(xf , yf ) is an arbitrary probability distribution for xf , yf . Then invoking

(2.24), (2.25), and (2.26), we obtain

ρĀf B̄fXfYf =
∑

xf ,yf ,af ,bf

p(xf , yf )
∑
a,b,x,y

∑
λ2

pΛ2(λ2)OA(af |a, xf , x, λ2)OB(bf |b, y, yf , λ2)×

pi(a, b|x, y)
∑
λ1

pΛ1(λ1) IA(x|xf , λ1) IB(y|yf , λ1) [xf yf af bf ]XfYf Āf B̄f
. (6.28)
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An arbitrary extension of the state in (6.27) is given by

ρĀf B̄fXfYfE =
∑

xf ,yf ,af ,bf

p(xf , yf ) pf (af , bf |xf , yf ) [xf yf af bf ]XfYf Āf B̄f
⊗ ρ

af ,bf ,xf ,yf
E .

(6.29)

A particular extension of the state in (6.27) is given by

ζĀf B̄fXfYfEΛ1Λ2
=

∑
xf ,yf ,af ,bf

p(xf , yf )
∑
a,b,x,y

∑
λ2

pΛ2(λ2)OA(af |a, xf , x, λ2)×

OB(bf |b, y, yf , λ2) pi(a, b|x, y)×∑
λ1

pΛ1(λ1)IA(x|xf , λ1) IB(y|yf , λ1) [xf yf af bf ]Āf B̄fXfYf
⊗ τa,b,x,yE ⊗ [λ1λ2]Λ1Λ2

.

(6.30)

This in turn is a marginal of the following state:

ζĀf B̄fXfYfEΛ1Λ2XY ĀB̄ =
∑

xf ,yf ,af ,bf

p(xf , yf )
∑
a,b,x,y

∑
λ2

pΛ2(λ2)OA(af |a, xf , x, λ2)

OB(bf |b, y, yf , λ2)×pi(a, b|x, y)
∑
λ1

pΛ1(λ1) IA(x|xf , λ1) IB(y|yf , λ1) [xf yf af bf ]XfYf Āf B̄f

⊗ τa,b,x,yE ⊗ [λ1λ2]Λ1Λ2
⊗ [x y a b]XY ĀB̄. (6.31)

Consider that

inf
ext. in (6.29)

I(Āf ; B̄f |XfYfE)ρ ≤ I(Āf ; B̄f |XfYfEΛ1Λ2)ζ (6.32)

≤ I(ĀXfXΛ2; B̄YfY Λ2|XfYfEΛ1Λ2)ζ (6.33)

= I(ĀX; B̄Y |XfYfEΛ1Λ2)ζ (6.34)

= I(ĀX; B̄Y |XfYfEΛ1)ζ (6.35)
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= I(Ā; B̄|XYXfYfEΛ1)ζ + I(X; B̄|XfYfEΛ1Y )ζ

+ I(Y ; Ā|XfYfEΛ1X)ζ + I(X;Y |XfYfΛ1E)ζ .

(6.36)

The first inequality follows from considering a particular extension in (6.30). The

second inequality follows from data processing of conditional mutual information.

The second equality follows because ζĀB̄XY XfYfEΛ1Λ2
= ζĀB̄XY XfYfEΛ1

⊗ ζλ2 . The last

equality follows from the chain rule for conditional mutual information. Now, let us

consider each term in (6.36). By inspection,

ζĀB̄XY XfYfEΛ1
=
∑
xf ,yf

p(xf , yf )
∑

a,b,x,y,λ

p(λ1)pi(a, b|x, y)p(x, y|xf , yf , λ1)

[xf yf λ1 x y a b]XfYfΛ1XY ĀB̄ ⊗ τa,b,x,yE . (6.37)

Upon re-arranging, we obtain

ζĀB̄XY XfYfEΛ1
=
∑
x,y

p(x, y)
∑

xf ,yf ,λ1

p(xf , yf , λ1|x, y) [x y xf yf λ1]XYXfYfΛ1
⊗

∑
a,b

pi(a, b|x, y)τa,b,x,yE ⊗ [a b]ĀB̄. (6.38)

So, given X, Y , the states ζx,y
ĀB̄E

and ζx,yXfYfΛ1
are in tensor product. Therefore

I(Ā; B̄|XYXfYfEΛ1)ζ = I(Ā; B̄|XY E)ζ , (6.39)

where ζĀB̄XY E is a no-signaling extension of ρĀB̄XY . Now consider that

ζXXfY Yf B̄EΛ1
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=
∑

x,y,xf ,yf ,λ1

p(x, y, xf , yf , λ1) [x xf y yf λ1]XXfY YfΛ1
⊗
∑
b

p(b|y) τ b,yE ⊗ [b]B̄ . (6.40)

=
∑
y

p(y) [y]Y ⊗
∑

x,xf ,yf ,λ1

p(xf , yf , x, λ1|y) [x xf y yf λ1]XXfY YfΛ1
⊗
∑
b

p(b|y) τ b,yE ⊗ [b]B̄ .

(6.41)

Then, by inspection

I(X; B̄|XfYfEΛ1Y )ζ = 0. (6.42)

Similarly, I(Y ; Ā|YfXfEΛ1X)ζ = 0.

Now, consider the term I(X;Y |XfYfEΛ1)ζ , with

ζXYXfYfEΛ1 :=
∑
xf ,yf

p(xf , yf )
∑
x,y,λ1

p(x|xf , λ1) p(y|yf , λ1)[x y xf yf λ1]XYXfYfΛ1 ⊗ ρE.

(6.43)

Here, X and Y are independent givenXf , Yf , and Λ1. Therefore, I(X;Y |XfYfEΛ1)ζ =

0. Combining the above equations, we obtain

inf
ext. in (6.29)

I(Āf ; B̄f |XfYfE)ρ ≤ I(Ā; B̄|XY E)ζ . (6.44)

Since (6.44) is true for an arbitrary no-signaling extension of ρĀB̄XY , the above

inequality holds after taking the infimum over all possible no-signaling extensions

ζĀB̄XY E.

Finally, we can take the supremum over all the measurement choices, and we find

that

N(Āf ; B̄f )pf ≤ N(Ā; B̄)pi . (6.45)

This concludes the proof.

Proposition 66 (Monotonicity) Let pi(a, b|x, y) ∈ Q, and let pf (af , bf |xf , yf ) re-
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sult from the action of local operations and shared randomness on pi(a, b|x, y). We

can write the final probability distribution as follows:

pf (af , bf |xf , yf ) :=
∑
a,b,x,y

O(L)(af , bf |a, b, x, y, xf , yf ) pi(a, b|x, y) I(L)(x, y|xf , yf ),

(6.46)

where I(L)(x, y|xf , yf ) and O(L)(af , bf |a, b, x, y, xf , yf ) are local boxes as described in

(2.25) and (2.26). Then,

NQ(Ā; B̄)pi ≥ NQ(Āf ; B̄f )pf . (6.47)

Proof. First, we embed pf (af , bf |xf , yf ) in a quantum state:

ρĀf B̄fXfYf =
∑

xf ,yf ,af ,bf

p(xf , yf ) pf (af , bf |xf , yf ) [xf yf af bf ]XfYf Āf B̄f
, (6.48)

where p(xf , yf ) is an arbitrary probability distribution for xf , yf . The set of quantum

distributions Q is closed under the action of local operations and shared randomness,

implying that pf (af , bf |xf , yf ) ∈ Q. Since pf (af , bf |xf , yf ) is also a quantum distri-

bution, we know that there exists an underlying state σAB and POVMs
{

Λ
af
xf

}
af

and{
Λ
bf
yf

}
bf

, such that

pf (af , bf |xf , yf ) = Tr
[(

Λ
af
xf ⊗ Λ

bf
yf

)
σAB

]
. (6.49)

An arbitrary quantum extension of the state in (6.48) is given by

σĀf B̄fXfYfE =
∑

xf ,yf ,af ,bf

p(xf , yf ) pf (af , bf |xf , yf ) [xf yf af bf ]XfYf Āf B̄f
⊗ σ

af ,bf ,xf ,yf
E ,

(6.50)
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where

σ
af ,bf ,xf ,yf
E =

1

pf (af , bf |xf , yf )
TrAB

[(
Λ
af
xf ⊗ Λ

bf
yf ⊗ IE

)
σABE

]
, (6.51)

and σABE is an extension of σAB. Now, we know that

pf (af , bf |xf , yf ) :=
∑
a,b,x,y

O(L)(af , bf |a, b, x, y, xf , yf ) pi(a, b|x, y) I(L)(x, y|xf , yf ),

(6.52)

and that the distributions I(L)(x, y|xfyf ) and O(L)(af , bf |a, b, x, y, xf , yf ) are local

distributions. Therefore, there exist separable states ρXY and ρAFBF
, along with the

POVMs which result in the distributions I(L) and O(L). That is,

I(L)(x, y|xf , yf ) = Tr
[(

Λx
xf

⊗ Λy
yf

)
ρXY

]
, (6.53)

O(L)(af , bf |a, b, x, y, xf , yf ) = Tr
[(

Λ
af
a,xf ,x ⊗ Λ

bf
b,bf ,y

)
ρAFBF

]
(6.54)

Furthermore, we know that the distribution pi(a, b|x, y) is a quantum distribution.

Therefore, it has an underlying state ρAB and POVMs characterized by {Λa
x}a and{

Λb
y

}
b
. Then

p(af , bf |xf , yf ) =∑
a,b,x,y

Tr
[(

Λ
af
a,xf ,x ⊗ Λ

bf
b,bf ,y

⊗ Λa
x ⊗ Λb

y ⊗ Λx
xf

⊗ Λy
yf

)
(ρAFBF

⊗ ρAB ⊗ ρXY )
]
. (6.55)

Since ρXY is a separable state, we can write it as ρXY =
∑

λ1
p(λ1)ρ

λ1
X ⊗ ρλ1Y . Let

ρXY Λ1 =
∑

λ1
p(λ1)ρ

λ1
X ⊗ ρλ1Y ⊗ [λ1]Λ1

be a particular extension of ρXY . Similarly, let

ρAFBFΛ2 be an extension of ρAFBF
and ρABE an extension of ρAB.
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A particular quantum extension of the state in (6.48) is given by

ρĀf B̄fXfYfEΛ1Λ2

=
∑

xf ,yf ,af ,bf

p(xf , yf )pf (af , bf |xf , yf ) [xf , yf , af , bf ]XfYfAfBf
⊗ ρa,b,x,yE ⊗ [λ1λ2]Λ1Λ2

,

(6.56)

where

ρa,b,x,yE =
1

p(a, b|x, y)
TrAB

[(
Λa
x ⊗ Λb

y ⊗ IE
)
ρABE

]
. (6.57)

Then it follows that

ρĀf B̄fXfYfEΛ1Λ2
=

∑
xf ,yf ,af ,bf

p(xf , yf )
∑
a,b,x,y

∑
λ2

pΛ2(λ2)OA(af |a, xf , x, λ2)×

OB(bf |b, y, yf , λ2) pi(a, b|x, y)×∑
λ1

pΛ1(λ1)IA(x|xf , λ1) IB(y|yf , λ1) [xf yf af bf ]Āf B̄fXfYf
⊗ ρa,b,x,yE ⊗ [λ1λ2]Λ1Λ2

.

(6.58)

This in turn is a marginal of the following state:

ρĀf B̄fXfYfEΛ1Λ2XY ĀB̄ =
∑

xf ,yf ,af ,bf

p(xf , yf )
∑
a,b,x,y

∑
λ2

pΛ2(λ2)OA(af |a, xf , x, λ2)

OB(bf |b, y, yf , λ2)×pi(a, b|x, y)
∑
λ1

pΛ1(λ1) IA(x|xf , λ1) IB(y|yf , λ1) [xf yf af bf ]XfYf Āf B̄f

⊗ ρa,b,x,yE ⊗ [λ1λ2]Λ1Λ2
⊗ [x y a b]XY ĀB̄. (6.59)

Then, following arguments similar to those given in Proposition 65, we obtainNQ(Āf ; B̄f )pf ≤

NQ(Ā; B̄)pi .
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6.2.2. Convexity

In this section, we prove that intrinsic non-locality and quantum intrinsic non-

locality are convex. This statement physically means that Bell non-locality cannot

increase when mixing two distributions.

Proposition 67 (Convexity of intrinsic non-locality) Let p(a, b|x, y) and

q(a, b|x, y) be two distributions, and let λ ∈ [0, 1]. Let t(a, b|x, y) be a mixture of the

two distributions, defined as t(a, b|x, y) = λp(a, b|x, y) + (1 − λ) q(a, b|x, y). Then

N(Ā; B̄)t ≤ λN(Ā; B̄)p + (1 − λ)N(Ā; B̄)q. (6.60)

Proof. First, we embed the distribution t(a, b|x, y) in the following classical-classical

state τĀB̄XY :

τĀB̄XY :=
∑
x,y,a,b

p(x, y) t(a, b|x, y)[x y a b]XY ĀB̄, (6.61)

where p(x, y) is an arbitrary probability distribution. Similarly, embed p(a, b|x, y) in

ρĀB̄XY and q(a, b|x, y) in γĀB̄XY :

ρĀB̄XY :=
∑
x,y,a,b

p(x, y) p(a, b|x, y) [x y a b]XY ĀB̄ , (6.62)

γĀB̄XY :=
∑
x,y,a,b

p(x, y) q(a, b|x, y) [x y a b]XY ĀB̄ . (6.63)

Next, consider an arbitrary no-signaling extension of τĀB̄XY :

τĀB̄XY E :=
∑
x,y,a,b

p(x, y) t(a, b|x, y) [x y a b]XY ĀB̄ ⊗ τa,b,x,yE . (6.64)
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Similarly, consider an arbitrary no-signaling extension of ρĀB̄XY and γĀB̄XY :

ρĀB̄XY E =
∑
x,y,a,b

p(x, y) p(a, b|x, y) [x y a b]XY ĀB̄ ⊗ ρa,b,x,yE , (6.65)

γĀB̄XY E =
∑
x,y,a,b

p(x, y) q(a, b|x, y) [x y a b]XY ĀB̄ ⊗ γa,b,x,yE . (6.66)

Now, consider the following particular no-signaling extension of τĀB̄XY :

ζĀB̄XY EE′ :=∑
x,y,a,b

p(x, y) [x y]XY⊗
(
λ p(a, b|x, y)ρa,b,x,yE ⊗ [0]E′ + (1 − λ) q(a, b|x, y)γa,b,x,yE ⊗ [1]E′

)
.

(6.67)

Then,

inf
ext. in (6.64)

I(Ā; B̄|XY E)τ ≤ I(Ā; B̄|XY EE ′)ζ (6.68)

= λI(Ā; B̄|XY E)ρ + (1 − λ)I(Ā; B̄|XY E)γ. (6.69)

The first inequality follows from choosing a particular no-signaling extension. The

equality follows from properties of conditional mutual information. Since this holds

for all non-signaling extensions of the form in (6.65) and (6.66), we conclude that

inf
ext. in (6.64)

I(Ā; B̄|XY E)ζ

≤ λ inf
ext. in (6.65)

I(Ā; B̄|XY E)ρ + (1 − λ) inf
ext. in (6.66)

I(Ā; B̄|XY E)γ. (6.70)
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Taking the supremum over all measurement choices, we find that

sup
p(x,y)

inf
ext. in (6.64)

I(Ā; B̄|XY E)ζ ≤ λ sup
p(x,y)

inf
ext. in (6.65)

I(Ā; B̄|XY E)ρ+

(1 − λ) sup
p(x,y)

inf
ext. in (6.66)

I(Ā; B̄|XY E)γ. (6.71)

This completes the proof.

In this proposition, we prove the convexity of quantum intrinsic non-locality.

The proof is similar to Proposition 67, with the difference being in the choice of the

extension system.

Proposition 68 (Convexity of quantum intrinsic non-locality) Let p(a, b|x, y)

and q(a, b|x, y) be distributions in Q, and let λ ∈ [0, 1]. Let t(a, b|x, y) be a mixture

of the distributions, defined as t(a, b|x, y) = λp(a, b|x, y) + (1 − λ) q(a, b|x, y). Then

NQ(Ā; B̄)t ≤ λNQ(Ā; B̄)p + (1 − λ)NQ(Ā; B̄)q. (6.72)

Proof. Since Q is a convex set [113], we know that t(a, b|x, y) ∈ Q. First, we embed

the distribution t(a, b|x, y) in the following quantum state τĀB̄XY :

τĀB̄XY :=
∑
x,y,a,b

p(x, y) t(a, b|x, y)[x y a b]XY ĀB̄, (6.73)

where p(x, y) is an arbitrary probability distribution. Similarly, embed p(a, b|x, y) in

ρĀB̄XY and q(a, b|x, y) in γĀB̄XY :

ρĀB̄XY :=
∑
x,y,a,b

p(x, y) p(a, b|x, y) [x y a b]XY ĀB̄ , (6.74)

γĀB̄XY :=
∑
x,y,a,b

p(x, y) q(a, b|x, y) [x y a b]XY ĀB̄ . (6.75)
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Next, consider an arbitrary quantum extension of τĀB̄XY :

τĀB̄XY E :=
∑
x,y,a,b

p(x, y) t(a, b|x, y) [x y a b]XY ĀB̄ ⊗ τa,b,x,yE . (6.76)

Similarly, consider an arbitrary quantum extension of ρĀB̄XY and γĀB̄XY :

ρĀB̄XY E =
∑
x,y,a,b

p(x, y) p(a, b|x, y) [x y a b]XY ĀB̄ ⊗ ρa,b,x,yE , (6.77)

γĀB̄XY E =
∑
x,y,a,b

p(x, y) q(a, b|x, y) [x y a b]XY ĀB̄ ⊗ γa,b,x,yE . (6.78)

Let ρAB be a quantum state that, along with the POVMs characterized by Λa
x and Λb

y,

yield the distribution p(a, b|x, y). Let ρABE be an extension of ρAB. Similarly, let γAB

be a quantum state that, along with the POVMs characterized by Ma
x and M b

y , yield

the distribution q(a, b|x, y). Let γABE be an extension of γAB. Then, a particular

quantum state that realizes the distribution t(a, b|x, y) is the following:

τABA′B′ = λρAB ⊗ |00⟩⟨00|A′B′ + (1 − λ)γAB ⊗ |11⟩⟨11|A′B′ , (6.79)

t(a, b|x, y) = Tr
[(

Λa
x ⊗ Λb

y ⊗ (|00⟩⟨00|A′B′) +Ma
x ⊗M b

y ⊗ (|11⟩⟨11|A′B′)
)

(τABA′B′)
]
,

(6.80)

where it is understood that Alice is measuring σZ on her system A′ and Bob is

measuring σZ on B′, in addition to the other measurements on their systems A and

B. Now, consider the following extension of τABA′B′ :

τABA′B′EE′ = λρABE ⊗ |000⟩⟨000|A′B′E′ + (1 − λ)γABE ⊗ |111⟩⟨111|A′B′E′ . (6.81)
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Furthermore, consider the following particular quantum extension of τĀB̄XY :

ζĀB̄XY EE′ :=∑
x,y,a,b

p(x, y) [x y]XY⊗
(
λ p(a, b|x, y)ρa,b,x,yE ⊗ [0]E′ + (1 − λ) q(a, b|x, y)γa,b,x,yE ⊗ [1]E′

)
.

(6.82)

Then following similar arguments given in the proof of Proposition 67, we obtain

NQ(Ā; B̄)t ≤ λNQ(Ā; B̄)p + (1 − λ)NQ(Ā; B̄)q, (6.83)

concluding the proof.

6.2.3. Superadditivity and additivity

In this section, we prove that the quantifiers are supperadditive and additive

under independent distributions.

Proposition 69 (Superadditivity and additivity of intrinsic non-locality) Let

p(a1, a2, b1, b2|x1, x2, y1, y2) be a distribution for which the following no-signaling con-

straints hold:

∑
a1

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
a1

p(a1, a2, b1, b2|x′1, x2, y1, y2)

∀x′1, x1, x2, y1, y2 ∈ [s], a2, b1, b2 ∈ [r],∑
a2

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
a2

p(a1, a2, b1, b2|x1, x′2, y1, y2)

∀x′2, x2, x1, y1, y2 ∈ [s], a1, b1, b2 ∈ [r],∑
b1

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
b1

p(a1, a2, b1, b2|x1, x2, y′1, y2)

∀y′1, y1, x1, x2, y2 ∈ [s], a1, a2, b2 ∈ [r],
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∑
b2

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
b2

p(a1, a2, b1, b2|x1, x2, y1, y′2)

∀y′2, y2, x2, y1, x1 ∈ [s], a1, a2, b1 ∈ [r].

Let t(a1, b1|x1, y1) and r(a2, b2|x2, y2) be distributions corresponding to the marginals

of p(a1, a2, b1, b2|x1, x2, y1, y2). Then the intrinsic non-locality is super-additive, in the

sense that

N(Ā1Ā2; B̄1B̄2)p ≥ N(Ā1; B̄1)t +N(Ā2; B̄2)r. (6.84)

If p(a1, b1, a2, b2|x1, x2, y1, y2) = t(a1, b1|x1, y1)r(a2, b2|x2, y2), then the intrinsic non-

locality is additive in the following sense:

N(Ā1Ā2; B̄1B̄2)p = N(Ā1; B̄1)t +N(Ā2; B̄2)r. (6.85)

Proof. Consider the classical-classical state ρĀ1Ā2B̄1B̄2X1Y1X2Y2 with the following

arbitrary no-signaling extension:

ρĀ1Ā2B̄1B̄2X1X2Y1Y2E =
∑

x1,x2,y1,y2,a1,a2,b1,b2

p(x1, y1, x2, y2) p(a1, b1, a2, b2|x1, x2, y1, y2)

[a1 b1 x1 y1 a2 b2 x2 y2]Ā1B̄1X1Y1Ā2B̄2X2Y2
⊗ ρa1,b1,x1,y1,a2,b2,x2,y2E , (6.86)

where p(x1, x2, y1, y2) is an arbitrary probability distribution. From the chain rule of

mutual information and non-negativity of conditional mutual information, we obtain

I(Ā1Ā2; B̄1B̄2|X1X2Y1Y2E)ρ

= I(Ā1Ā2; B̄1|X1Y1X2Y2E) + I(Ā1Ā2; B̄2|EX1Y1X2Y2B̄1) (6.87)
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= I(Ā1; B̄1|X1Y1X2Y2E)ρ + I(Ā2; B̄1|EX1Y1X2Y2Ā1)ρ

+ I(Ā1; B̄2|X1Y1X2Y2EB̄1) + I(Ā2; B̄2|X1Y1X2Y2EĀ1B̄1) (6.88)

≥ I(Ā1; B̄1|X1Y1X2Y2E)ρ + I(Ā2; B̄2|X1Y1X2Y2EĀ1B̄1)ρ. (6.89)

From the no-signaling constraints in the statement of the proposition and (6.86), we

obtain

ρĀ1B̄1X1X2Y1Y2E =
∑

a1,b1,x1,x2,y1,y2

p(x1, x2, y1, y2) [a1 b1 x1 y1 x2 y2]Ā1B̄2X1Y1X2Y2

⊗ p(a1, b1|x1, y1) ρx1,y1,a1,b1E . (6.90)

We first embed t(a1, b1|x1, y1) in τĀ1B̄1X1Y1E, and r(a2, b2|x2, y2) in γĀ2B̄2X2Y2E and

consider the following arbitrary no-signaling extensions:

τĀ1B̄1X1Y1E :=
∑
x1,y1

p(x1, y1) ⊗
∑
a1,b1

[x1 y1 a1 b1]X1Y1Ā1B̄1
⊗ t(a1, b1|x1, y1)τa1,b1,x1,y1E ,

(6.91)

γĀ2B̄2X2Y2E :=
∑
x2,y2

p(x2, y2) ⊗
∑
a2,b2

[x2 y2 a2 b2]X2Y2Ā2B̄2
⊗ r(a2, b2|x2, y2)γa2,b2,x2,y2E .

(6.92)

Since ρĀ1B̄1X1Y1X2Y2E is a particular no-signaling extension of τĀ1B̄1X1Y1 and

ρĀ1B̄1Ā2B̄2X1Y1X2Y2E is a particular no-signaling extension of γĀ2B̄2X2Y2 , we obtain the

following inequality:

I(Ā1Ā2; B̄1B̄2|X1X2Y1Y2E)ρ

≥ I(Ā1; B̄1|X1Y1X2Y2E)ρ + I(Ā2; B̄2|X1Y1X2Y2EĀ1B̄1)ρ (6.93)
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≥ inf
ext. in (6.91)

I(Ā1; B̄1|X1Y1E)τ + inf
ext. in (6.92)

I(Ā2; B̄2|X2Y2EĀ1B̄1)γ. (6.94)

Since (6.94) holds for an arbitrary no-signaling extension of ρ, we obtain

inf
ext. in (6.86)

I(Ā1Ā2; B̄1B̄2|X1X2Y1Y2E)ρ ≥

inf
ext. in (6.91)

I(Ā1; B̄1|X1Y1E)τ + inf
ext. in (6.92)

I(Ā2; B̄2|X2Y2EĀ1B̄1)γ (6.95)

Since the above equation holds for arbitrary probability distributions, we can take a

supremum over all probability distributions to obtain

sup
p(x1,y1)p(x2,y2)

inf
ρĀ1Ā2B̄1B̄2X1X2Y1Y2E

I(Ā1Ā2; B̄1B̄2|X1X2Y1Y2E)ρ ≥

sup
p(x1,y1)

inf
τĀ1B̄1X1Y1E

I(Ā1; B̄1|X1Y1E)τ + sup
p(x2,y2)

inf
γĀ2B̄2X2Y2E

I(Ā2; B̄2|X2Y2E)γ. (6.96)

Since we have considered a supremum over product probability distributions for the

measurement choices on the LHS, we can relax this to consider the supremum over all

probability distributions p(x1, y1, x2, y2) of the measurement choices. This concludes

the proof of (6.84).

Now we give a proof for additivity of intrinsic non-locality with respect to product

probability distributions. Since intrinsic non-locality is super-additive, it is sufficient

to prove the following sub-additivity property for product probability distributions:

N(Ā1Ā2; B̄1B̄2)p ≤ N(Ā1; B̄1)t +N(Ā2; B̄2)r. (6.97)

Consider the following states
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ρĀ1Ā2B̄1B̄2X1X2Y1Y2 =
∑

a1,b1,x1,y1,a2,b2,x2,y2

p(x1, x2, y1, y2) t(a1, b1|x1, y1) r(a2, b2|x2, y2)

[a1 b1 a2 b2 x1 x2 y1 y2]Ā1B̄1Ā2B̄2X1Y1X2Y2
. (6.98)

Consider an arbitrary extension of the state ρĀ1Ā2B̄1B̄2X1X2Y1Y2

ρĀ1Ā2B̄1B̄2X1X2Y1Y2E :=
∑

a1,b1,x1,y1,a2,b2,x2,y2

p(x1, x2, y1, y2) t(a1, b1|x1, y1) r(a2, b2|x2, y2)

[a1 b1 x1 y1 a2 b2 x2 y2] ⊗ ρa1,b1,x1,y1,a2,b2,x2,y2E . (6.99)

Now, consider a particular extension of the state ρĀ1Ā2B̄1B̄2X1X2Y1Y2 :

ζĀ1Ā2B̄1B̄2X1X2Y1Y2E1E2
:=

∑
a1,b1,x1,y1,a2,b2,x2,y2

p(x1, x2, y1, y2) t(a1, b1|x1, y1) r(a2, b2|x2, y2)

[a1b1a2b2x1x2y1y2]Ā1B̄1X1Y1Ā2B̄2X2Y2
⊗ ρa1,b1,x1,y1E1

⊗ ρa2,b2,x2,y2E2
. (6.100)

Then, we have the following set of inequalities:

inf
ext. in (6.99)

I(Ā1Ā2; B̄1B̄2|X1Y1X2Y2E)ρ

≤ I(Ā1Ā2; B̄1B̄2|X1Y1X2Y2E1E2)ζ (6.101)

= I(Ā1; B̄1|X1Y1X2Y2E1E2)ζ + I(Ā2; B̄1|E1E2X1Y1X2Y2Ā1)ζ

+ I(Ā1; B̄2|X1Y1X2Y2E1E2B̄1)ζ + I(Ā2; B̄2|X1Y1X2Y2E1E2Ā1B̄1)ζ

(6.102)

= I(Ā1; B̄1|X1Y1X2Y2E1E2)ζ + I(Ā2; B̄2|X1Y1X2Y2E1E2Ā1B̄1)ζ . (6.103)

The first inequality follows from a particular choice of an extension. The first equality
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follows from the chain rule. For the second equality, observe the following:

I(Ā2; B̄1|E1E2X1Y1X2Y2Ā1)ζ

= H(Ā2|E1E2X1Y1X2Y2Ā1)ζ −H(Ā2|E1E2X1Y1X2Y2Ā1B̄1)ζ (6.104)

=
∑

x1x2y1y2

p(x1, x2, y1, y2)
[
H(Ā2|Ā1E1E2)ζx1x2y1y2 −H(Ā2|Ā1E1E2B̄1)ζx1x2y1y2

]
,

(6.105)

where

ζx1,x2,y1,y2
Ā1Ā2E1E2

=
∑
a1

t(a1|x1) [a1]Ā1
⊗ ρa1,x1E1

⊗
∑
a2

r(a2|x2) [a2]Ā2
⊗ ρa2,x2E2

, (6.106)

ζx1,x2,y1,y2
Ā1Ā2B̄1E1E2

=
∑
a1,b1

t(a1, b1|x1, y1) [a1b1]Ā1B̄1
⊗ ρa1,x1,b1,y1E1

⊗
∑
a2

r(a2|x2) [a2]Ā2
⊗ ρa2,x2E2

.

(6.107)

Then, from (6.106) and (6.107), it follows that

H(Ā2|Ā1E1E2)ζx1x2y2y2 = H(Ā2|E2)ζx1x2y2y2 , (6.108)

H(Ā2|Ā1E1E2B̄1)ζx1x2y2y2 = H(Ā2|E2)ζx1x2y2y2 . (6.109)

This is equivalent to I(Ā2; B̄1|E1E2X1Y1X2Y2Ā1)ζ = 0.

Similarly, I(Ā1; B̄2|E1E2X1Y1X2Y2B̄1)ζ = 0. Then by inspection of (6.100), and

from the no-signaling constraints, it follows that

inf
ext. in (6.99)

I(Ā1Ā2; B̄1B̄2|X1Y1X2Y2E)ρ ≤ I(Ā1; B̄1|X1Y1E1)ζ + I(Ā2; B̄2|X2Y2E2)ζ .

(6.110)

Since the above statement holds for an arbitrary no-signaling extension of the form

149



in (6.99), it follows that

inf
ext. in (6.99)

I(Ā1Ā2; B̄1B̄2|X1Y1X2Y2E)ρ

≤ inf
ext. in (6.100)

I(Ā1; B̄1|X1Y1E1)ζ + inf
ext. in (6.100)

I(Ā2; B̄2|X2Y2E2)ζ . (6.111)

Since the above inequality holds for an arbitrary probability distribution p(x1, x2, y1, y2),

we find that

sup
p(x1,x2,y1,y2)

inf
ext. in (6.99)

I(Ā1Ā2; B̄1B̄2|X1Y1X2Y2E)ρ

≤ sup
p(x1,y1)

inf
ext. in (6.100)

I(Ā1; B̄1|X1Y1E1)ζ + sup
p(x2,y2)

inf
ext. in (6.100)

I(Ā2; B̄2|X2Y2E2)ζ .

(6.112)

This concludes the proof.

Proposition 70 (Superadditivity and additivity of quantum intrinsic non-locality)

Let p(a1, a2, b1, b2|x1, x2, y1, y2) be a quantum distribution that arises from a four-party

state ρA1A2B1B2, and POVMs characterized by Λa1
x1
,Λa2

x2
,Λb1

y1
, and Λb2

y2
. Then the fol-

lowing no-signaling constraints hold:

∑
a1

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
a1

p(a1, a2, b1, b2|x′1, x2, y1, y2)

∀x′1, x1, x2, y1, y2 ∈ [s], a2, b1, b2 ∈ [r]∑
a2

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
a2

p(a1, a2, b1, b2|x1, x′2, y1, y2)

∀x′2, x2, x1, y1, y2 ∈ [s], a1, b1, b2 ∈ [r]∑
b1

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
b1

p(a1, a2, b1, b2|x1, x2, y′1, y2)
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∀y′1, y1, x1, x2, y2 ∈ [s], a1, a2, b2 ∈ [r]∑
b2

p(a1, a2, b1, b2|x1, x2, y1, y2) =
∑
b2

p(a1, a2, b1, b2|x1, x2, y1, y′2)

∀y′2, y2, x2, y1, x1 ∈ [s], a1, a2, b1 ∈ [r].

Let t(a1, b1|x1, y1) and r(a2, b2|x2, y2) be quantum distributions corresponding to the

marginals of p(a1, a2, b1, b2|x1, x2, y1, y2). Then the quantum intrinsic non-locality is

super-additive, in the sense that

NQ(Ā1Ā2; B̄1B̄2)p ≥ NQ(Ā1; B̄1)t +NQ(Ā2; B̄2)r. (6.113)

If p(a1, b1, a2, b2|x1, x2, y1, y2) = t(a1, b1|x1, y1)r(a2, b2|x2, y2), then the quantum in-

trinsic non-locality is additive in the following sense:

NQ(Ā1Ā2; B̄1B̄2)p = NQ(Ā1; B̄1)t +NQ(Ā2; B̄2)r. (6.114)

Proof. The proof follows by using similar techniques as in the proof of Proposition 69,

and by taking appropriate quantum extensions.

6.2.4. Quantum intrinsic non-locality and intrinsic steerability

Let ρAB be a quantum state, and let pĀ|Xρ
a,x
B be an assemblage that arises from the

quantum state ρAB and some measurement {Λx
a}.2 We then prove that the intrinsic

steerability of the assemblage pĀ|Xρ
a,x
B is never smaller than the quantum intrinsic

non-locality of all the bipartite distributions that can arise from this assemblage.

Proposition 71 Let p(a, b|x, y) be a quantum distribution that is obtained by per-

forming a POVM
{

Λb
y

}
b
on the assemblage {pĀ|X(a|x)ρa,xB }a,x. Then the quantum

2From [29], it can be seen that given a bipartite assemblage, we can always find an underlying
quantum state and measurements.
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intrinsic non-locality of the distribution p does not exceed the restricted intrinsic steer-

ability of the assemblage ρ̂. That is,

NQ(Ā; B̄)p ≤ SR(Ā;B)ρ̂, (6.115)

where we recall that ρ̂ is a shorthand to denote the assemblage.

Proof. Let p(a, b|x, y) be a quantum distribution that arises from the assemblage

pĀ|X(a|x)ρa,xB . That is,

p(a, b|x, y) = Tr
[
Λb
y

(
pĀ|X(a|x)ρa,xB

)]
. (6.116)

Let pĀ|X(a|x)ρa,xBE be a particular no-signaling extension of pĀ|X(a|x)ρa,xB . Then one

possible no-signaling extension of p(a, b|x, y) is

p(a, b|x, y)ρa,x,b,yE = TrB
[
Λb
y

(
pĀ|X(a|x)ρa,xBE

)]
. (6.117)

From [29], it follows that the above is also a quantum extension.

Let p(x, y) be an arbitrary probability distribution. Let p(a, b|x, y) be a distri-

bution embedded in a classical-classical state ρĀB̄XY with the following particular

no-signaling extension:

ρĀB̄XY E :=
∑
a,b,x,y

p(x, y)p(a, b|x, y) [a b x y]ĀB̄XY ⊗ ρa,b,x,yE , (6.118)

and an arbitrary quantum extension:

σĀB̄XY E :=
∑
a,b,x,y

p(x, y)p(a, b|x, y) [a b x y]ĀB̄XY ⊗ σa,b,x,yE . (6.119)
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Similarly, let ρĀXB be a state into which the assemblage pĀ|X(a|x)ρa,xB is embedded,

and let ρĀXBE be a particular extension, where

ρĀBXE =
∑
a,x

p(x)pĀ|X(a|x)[a x]ĀX ⊗ ρa,xBE. (6.120)

Let

ρĀBXY E =
∑
a,x

p(x, y)pĀ|X(a|x)[a x]ĀX ⊗ ρa,xBE. (6.121)

Then,

I(Ā;B|XE)ρ = I(Ā;BY |XE)ρ. (6.122)

This follows from chain rule of conditional mutual information and inspection of

(6.121). Observe that Bob can perform a local operation and transform the state

ρĀBXY E to ρĀB̄XY E. Then, from the data-processing inequality, we find that

I(Ā;B|XE)ρ ≥ I(Ā; B̄Y |XE)ρ. (6.123)

This means that for every no-signaling extension ρĀBXE of the state ρĀBX that en-

codes the assemblage ρĀ|X(a|x)ρa,x, we can find a quantum extension ρĀB̄XY E of

ρĀB̄XY that encodes the distribution p(a, b|x, y) derived from the assemblage pĀ|X(a|x)

ρa,x, such that (6.123) is true. Therefore, we obtain the following:

inf
ext in (6.120)

I(Ā;B|XE)ρ ≥ inf
ext. in (6.118)

I(Ā; B̄Y |XE)ρ (6.124)

≥ inf
ext in (6.119)

I(Ā; B̄Y |XE)σ. (6.125)
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This in turn implies that

SR(Ā;B)ρ̂ ≥ NQ(Ā; B̄)p, (6.126)

concluding the proof.

6.2.5. Faithfulness

Proposition 72 Intrinsic non-locality and quantum intrinsic non-locality vanish for

distributions having a local hidden-variable model; i.e., if p(a, b|x, y) ∈ L, then N(Ā; B̄)p =

0 and NQ(Ā; B̄)p = 0.

Proof. Given p(a, b|x, y) ∈ L, then we can write it as

p(a, b|x, y) =
∑
λ

p(λ) p(a|x, λ) p(b|y, λ). (6.127)

Embed this in a classical-classical state with p(x, y) an arbitrary probability distri-

bution over x, y:

ρĀB̄XY =
∑
a,b,x,y

p(x, y)
∑
λ

p(λ) p(a|x, λ) p(b|y, λ) [a b x y]ĀB̄XY . (6.128)

Then, consider the following quantum extension

ρĀB̄XY E :=
∑
a,b,x,y

p(x, y) [a b x y]ĀB̄XY ⊗
∑
λ

p(λ) p(a|x, λ) p(b|y, λ) [λ]E. (6.129)

Then, by inspection, Ā and B̄ are independent given XY E. This implies that

infρĀB̄XY E
I(Ā; B̄|XY E)ρ = 0. Since this equality holds for an arbitrary probabil-

ity distribution p(x, y), we can then conclude that NQ(Ā; B̄)p = 0. Then, by (6.13)

we conclude that N(Ā; B̄)p = 0.

154



We now state below in Theorem 73 that N(Ā; B̄)p = 0 and NQ(Ā; B̄)p = 0 implies

that p ∈ L.

Theorem 73 (Faithfulness of intrinsic non-locality) For every no-signaling or

quantum distribution p(a, b|x, y), the intrinsic non-locality N(Ā; B̄)p = 0, if and only

if it has a local hidden variable description. Quantitatively, if N(Ā; B̄)p ≤ ε, where

0 < ε1/16d1/2 < 1, for d = |X | · |Y|, then there exists a probability distribution

l(a, b|x, y) having a local hidden-variable description, such that

sup
pXY (x,y)

∥ρĀXB̄Y − γĀXB̄Y ∥1 ≤ d

(
ε1/4 +

ε1/16d1/2

1 − ε1/16d1/2
+ 4de−

ε−1/4

3

)
, (6.130)

where ρĀXB̄Y correponds to the classical-classical state pXY (x, y)p(a, b|x, y) and γĀXB̄Y

is the classical-classical state corresponding to pXY (x, y)l(a, b|x, y).

Proof. The proof closely follows the proof for faithfulness of restricted intrinsic

steerability, given in the proof of Theorem 58. We first construct a strategy for

pXY (x, y) = 1
|X | .

1
|Y| and then generalize it to an arbitrary distribution. Invoking [106],

we know that there exists a recovery channel RXE→ĀXE such that

∥ρĀXB̄Y E −RXE→ĀXE(ρB̄Y E ⊗ ρX)∥1 ≤
√
I(Ā; B̄Y |XE)ρ ln 2 = t. (6.131)

Since I(B̄E;X|Y )ρ = 0 from (6.4), and pXY (x, y) = 1
X .

1
Y , we can write ρB̄XY E =

ρB̄Y E⊗ρX . Following an argument similar to (5.173)–(5.176), we obtain the following

inequality:

∥ρĀB̄XY − ωAiXiBY ∥ ≤ nt, (6.132)

where

ωĀnXnB̄Y E = ⃝n
i=1RXiE→ĀiXiE

(
ρB̄Y E ⊗ ρ⊗nX

)
, (6.133)
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ωĀiXiBY = TrEĀn/iXn/i (ωĀnXnB̄Y E) . (6.134)

Since the distributions pX(x) and pY (y) are independent, we have

I(Xn;Y )p = 0. (6.135)

From the no-signaling constraints, we have

I(XnY ;E)ρ = 0. (6.136)

This implies that

I(XnE;Y )ρ = I(Xn;Y )ρ + I(E;Y |Xn)ρ = 0. (6.137)

Since the systems ĀnXnE of ωĀnXnB̄Y E are obtained from the application of the

recovery channel on systems XnE of the state ρXnY EB̄, we can use quantum data

processing for mutual information to obtain the following inequality:

I(AnXn;Y )ω = 0. (6.138)

This implies that

ωĀnXnB̄Y =
∑

xn,an,y,b

p(xn) q(an|xn) p(y) q(b|anxny) [xn an b y]XnĀnB̄Y . (6.139)

Alice’s strategy is exactly the same as before, and the following state is obtained after

the application of the algorithm in (5.191):

156



γÃX̃B̄Y :=
∑
x̃,ã,b,y

pX(x̃) |x̃⟩⟨x̃|X̃ ⊗
∑
xn,an,

pÃ|X̃XnAn(ã|x̃, xn, an)pXn(xn)

qAn|Xn(an|xn)p(y)q(b|anxny)[ã b y]ÃB̄Y . (6.140)

Note that this state is a local-hidden-variable state. This construction of the local-

hidden-variable state shares some similarities with [108]. By following the arguments

given for the proof of faithfulness of intrinsic steerability, we obtain

∥ρĀXB̄Y − γÃX̃B̄Y ∥1 ≤ nt+
δ

1 − δ
+ 2ε1. (6.141)

This implies

∥ρĀXB̄Y − γÃX̃B̄Y ∥1 ≤ n inf
ρĀXB̄Y E

t+
δ

1 − δ
+ 2ε1. (6.142)

This implies

∑
a,b

|p(a, b|x, y) − l(a, b|x, y)| ≤ |X ||Y|
(

inf
ρĀXB̄Y E

t+
δ

1 − δ
+ 2ε1

)
∀x ∈ X , y ∈ Y .

(6.143)

Now, using triangle inequality, we obtain the following for any arbitrary distribution

p(x, y):

∥ρĀXB̄Y − γÃX̃B̄Y ∥1 ≤ |X ||Y|
(

inf
ρĀXB̄Y E

t+
δ

1 − δ
+ 2ε1

)
. (6.144)

This implies

sup
pXY (x,y)

∥ρĀXB̄Y − γÃX̃B̄Y ∥1 ≤ |X ||Y|
(√

N(Ā; B̄)p ln 2 +
δ

1 − δ
+ 2ε1

)
. (6.145)

Given N(Ā; B̄)p ≤ ε (as required by the condition of faithfulness), choose n =

(1/ε)1/4, δ = ε1/16|X |1/2|Y|1/2. This proof holds only if δ ∈ (0, 1). We know by

the Chernoff bound [109] that ε1 = 2|X ||Y|e−
1

3|X|·|Y| δ
2n. Substituting these values, we
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obtain

∥ρĀXB̄Y − γÃX̃B̄Y ∥1 ≤ |X | · |Y|
(
ε1/4 +

ε1/16|X |1/2 · |Y|1/2

1 + ε1/16|X |1/2 · |Y|1/2
+ 4|X | · |Y|e−

ε−1/4

3

)
.

(6.146)

This concludes the proof.

Corollary 74 (Faithfulness of quantum intrinsic non-locality) For every quan-

tum distribution p(a, b|x, y), the quantum intrinsic non-locality NQ(Ā; B̄)p = 0, if and

only if it has a local hidden variable description. Quantitatively, if NQ(Ā; B̄)p ≤ ε,

where 0 < ε1/16d1/2 < 1, for d = |X | · |Y|, there exists a probability distribution

l(a, b|x, y) having a local hidden-variable description, such that

sup
pXY (x,y)

∥ρĀXB̄Y − γĀXB̄Y ∥1 ≤ d

(
ε1/4 +

ε1/16d1/2

1 − ε1/16d1/2
+ 4de−

ε−1/4

3

)
, (6.147)

where ρĀXB̄Y correponds to the classical-classical state pXY (x, y)p(a, b|x, y) and γĀXB̄Y

is the classical-classical state corresponding to pXY (x, y)l(a, b|x, y).

Proof. The if-part of the proof follows from Proposition 72. The only-if part follows

from Proposition 63 and Theorem 73.

6.3. Open questions

• Continuity of intrinsic non-locality : Currently, it is not known if intrinsic non-

locality is continuous along the lines discussed in Section 5.5.. Suppose that we

have two probability distributions p(a, b|x, y) and q(a, b|x, y), such that their

classical-classical states ρĀB̄XY and σĀB̄XY are ε close in trace norm, i.e.,

1

2
∥ρĀB̄XY − σĀB̄XY ∥1 ≤ ε, (6.148)
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where ε > 0. Then, for any no-signaling quantum extension ρĀB̄XY E of ρĀB̄XY ,

can we find a no-signaling quantum extension σĀB̄XY E of σĀB̄XY , such that

1

2
∥ρĀB̄XY E − σĀB̄XY E∥1

?

≤ f(ε), (6.149)

where f(ε) is a function of ε such that f(ε) → 0 as ε → 0? If so, then we can

prove the continuity of quantum intrinsic non-locality.

• Definitions for multipartite non-locality : Multipartite non-locality deals with

non-local correlations observed in n distant parties. One can define non-locality

in a multipartite scenario in a variety of different ways, as discussed in [114].

An interesting question, from the point of view of information theory, is the

quantification of multipartite non-locality. We expect that conditional mutual

information will be useful in characterizing multipartite non-locality as well.

For multipartite systems, the definition of conditional mutual information is a

bit complex. There are at least two possible ways of defining CMI for multipar-

tite scenarios, as discussed in [115, 116]. We could use both of these definitions.

Another difficulty in defining CMI for multipartite scenarios will arise in defining

various constraints on the no-signaling quantum eavesdropper. Although the

definition seems complicated as of now, it possibly will be relevant in obtaining

upper bounds for key rates in device-independent conference key distillation

protocols [117].
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Chapter 7
Upper Bounds

In Chapter 4, we discussed the need to obtain upper bounds on the distillable

key of joint distributions and bipartite probability distributions. In this context, we

discussed two results: intrinsic information, which is an upper bound on distillation

key from joint probability distributions [9], and squashed entanglement, which is an

upper bound on distillable key from bipartite states [11]. In this chapter, we introduce

upper bounds on secret key agreement capacities of assemblages ρ̂a,xB and conditional

probability distributions p(a, b|x, y). To this end, we use quantities introduced in

Chapters 5 and 6, along with their properties. These upper bounds are then shown

to be upper bounds on key rates in DI-QKD and 1S-DI-QKD.

In general, in the device-independent literature or the one-sided device indepen-

dent literature, several prior works have devised lower bounds on the key rates for

particular protocols. To test the efficacy of these protocols, one calculates the rates

that would be obtained for an honest device [39, 66, 67]. These protocols then give

lower bounds on the secret key rates that can be extracted from an honest device.

However, one can always ask if these lower bounds are “good enough.” Can some

other protocol perform better, hence giving better key rates for the honest device?

In this context, it becomes imperative to introduce tight upper bounds.

For this, we can use the upper bounds on the secret key agreement capacities

from assemblages and probability distributions. We calculate these bounds for honest

devices, which are then compared to the lower bounds on the rates calculated for

protocols for these honest devices. Ideally, we want the gap between the lower bounds

and upper bounds to be small.

We can formulate the above question in a different manner.

Suppose that the correlations generated from a device are characterized by a
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distribution p(a, b|x, y) or an assemblage ρ̂a,xB . We then pose the following question:

Given a device characterized by p(a, b|x, y) or an assemblage ρ̂a,xB , what

is a non-trivial upper bound on the secret key rate that can be extracted

from this device by using any possible protocol?

We calculate the upper bounds for an i.i.d. device, which means that in each round of

the protocol, the device considered is characterized by the distribution p(a, b|x, y) or

an assemblage ρ̂a,xB . The inputs of the device in a particular round can be correlated

with the input of the device in other rounds. The assumption that the device is

characterized by an i.i.d. correlation is not a drawback since we are interested in

determining upper bounds on secret key rates here. For general attacks, the key rates

tend to those of collective attacks for sufficiently large n.

7.1. Upper bounds based on CMI

7.1.1. Upper bounds on secret-key-agreement capacity of conditional prob-
ability distributions

In device-independent quantum key distribution, we assume the presence of an

eavesdropper who obtains all of the classical data communicated between Alice and

Bob during the protocol. Furthermore, the system held by the eavesdropper can have

joint correlations with the systems held by Alice and Bob. Let Alice and Bob share a

quantum correlation p(a, b|x, y) as defined in (2.9). Let the correlation shared between

Alice, Bob, and Eve be defined by an extension p(a, b|x, y)ρa,b,x,yE . If p(a, b|x, y)ρa,b,x,yE

has an underlying quantum strategy as described in (6.10), then we call the eaves-

dropper a quantum Eve. If p(a, b|x, y)ρa,b,x,yE only fulfills the constraints given in (6.3)

and (6.5), then we call the eavesdropper a no-signaling Eve.

• No-signaling eavesdropper

We first define the secret-key-agreement capacity of a conditional probability

distribution. Let n ∈ Z+, R ≥ 0, and ε ∈ [0, 1]. Let p(a, b|x, y) be a correlation of
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Figure 7.1. A generic device-independent quantum key distribution protocol.

the device shared between Alice and Bob. We define an (n,R, ε) device-independent

secret-key-agreement protocol as follows:

• Alice and Bob select the inputs xn and yn to their devices according to pXnY n(xn,

yn). The device is used n times, and the distribution pXnY n(xn, yn) is indepen-

dent of Eve. Alice inputs xi and obtains the output ai. Bob inputs yi and

obtains the output bi, where i ∈ {1, . . . , n}. The input and output distributions

are embedded in the state σĀnB̄nXnY n , where

σĀnB̄nXnY n :=
∑

xn,yn,an,bn

pXnY n(xn, yn)pn(an, bn|xn, yn)[anbnxnyn]ĀnB̄nXnY n ,

(7.1)

and pn(an, bn|xn, yn) is the i.i.d. extension of p(a, b|x, y). The joint state held

by Alice, Bob, and Eve is a no-signaling extension σĀnB̄nXnY nE of σĀnB̄nXnY n .

• Alice and Bob perform local operations and public communication, with CA de-

noting the classical register communicated from Alice to Bob, C̄A is a classical

register held by Eve that is a copy of CA , the classical register CB is commu-

nicated from Bob to Alice, and C̄B is a classical register held by Eve that is a
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copy of CB. This protocol yields a state ωKAKBEC̄AC̄BXnY n that satisfies

1

2

∥∥ωKAKBEXnY nC̄AC̄B
− ΦKAKB

⊗ ωEXnY nC̄AC̄B

∥∥
1
≤ ε, (7.2)

for all no-signaling extensions, where

ΦKAKB
=

1

2nR

2nR∑
k=1

|kk⟩⟨kk|KAKB
. (7.3)

A rate R is achievable for a device characterized by p if there exists an (n,R−δ, ε)

device-independent protocol for all ε ∈ (0, 1), δ > 0, and sufficiently large n. The

device-independent secret key agreement capacity DI(p) of the device characterized

by p is defined as the supremum of all achievable rates.

We now prove that the secret-key-agreement capacity of a conditional distribution

is bounded from above by the intrinsic non-locality.

Theorem 75 The intrinsic non-locality N(Ā; B̄)p is an upper bound on the device-

independent secret-key-agreement capacity of a device characterized by p and sharing

no-signaling correlations with an eavesdropper:

DI(p) ≤ N(Ā; B̄)p. (7.4)

Proof. For an arbitrary (n,R, ε) protocol, consider that

nR = I(KA;KB|EXnY nC̄AC̄B)Φ̄⊗ω (7.5)

≤ I(KA;KB|EXnY nC̄AC̄B)ω + ε′ (7.6)

≤ I(MACBCA;MBCBCA|EXnY nC̄AC̄B)τ + ε′ (7.7)

= I(MACA;MBCB|EXnY nC̄AC̄B)τ + ε′ (7.8)
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≤ I(MACA;MBCB|EXnY n)τ + ε′ (7.9)

≤ I(Ān; B̄n|EXnY n)σ + ε′, (7.10)

where

ε′ = nRε+ 2 [(1 + ε) log(1 + ε)) − ε log ε] . (7.11)

In the above equations, σXnĀnB̄nY n is the classical-classical state obtained from the

device after Alice and Bob enter in the measurement inputs. Alice, Bob, and Eve

hold a no-signaling extension σXnĀnB̄nY nE. Alice performs a local operation LA to

obtain MA and CA. She communicates CA to Bob, and Eve also obtains a copy C̄A of

the classical communication. Similarly, Bob performs a local operation LB to obtain

MB and CB. He communicates CB to Alice, and Eve also obtains a copy C̄B of the

classical communication. Alice then performs a local operation DA on MA, CB, and

CA to obtain KA, while Bob performs a local operation DB on MB, CA, and CB to

obtain KB. For a pictorial representation of the above description, refer to Figure 7.1.

The first inequality follows from the uniform continuity of conditional mutual

information [118, Proposition 1]. The second inequality follows from data processing.

The second equality and third inequality follow from the chain rule of conditional

mutual information, as well as the fact that C̄A is a classical copy of CA and C̄B is a

classical copy of CB. The last inequality follows from data processing for conditional

mutual information. Since the above inequality holds for an arbitrary no-signaling

extension of σĀnB̄nXnY n , we find that

nR ≤ inf
σĀnB̄nXnY nE

I(Ān; B̄n|XnY nE)σ + ε′. (7.12)

164



This implies that

nR ≤ N(Ān; B̄n)p + ε′. (7.13)

By the assumption that the device is i.i.d., we can invoke the additivity of intrinsic

non-locality from Proposition 69 to obtain

(1 − ε)R ≤ N(Ā; B̄)p + 2 [(1 + ε) log(1 + ε)) − ε log ε] /n. (7.14)

Taking the limit as n→ ∞ and ε→ 0 then leads to DI(p) ≤ N(Ā; B̄)p.

• Quantum eavesdropper

Now, let us consider a class of device-independent protocols in which the eaves-

dropper is restricted by quantum mechanics. These models have previously been

studied in [39, 66]. The general form of a device-independent protocol with a quan-

tum eavesdropper remains the same except that we now consider a quantum extension

(6.10) of the state in (7.1). We then arrive at the following theorem:

Theorem 76 The quantum intrinsic non-locality NQ(Ā; B̄)p is an upper bound on

the device-independent secret-key-agreement capacity of a device characterized by p

and sharing quantum correlations with an eavesdropper:

DI(p) ≤ NQ(Ā; B̄)p. (7.15)

Proof. The proof of the theorem is similar to that of Theorem 75.

We should explicitly point out that the general form for protocols that we consider

allows both Alice and Bob to exchange public classical information. Therefore, the

upper bounds via intrinsic non-locality and quantum intrinsic non-locality hold for

two-way error correction as well. It has been observed in device-dependent QKD that
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two-way error-correcting protocols surpass the threshold of one-way error correction

protocols [119, 120, 75]. This question has only recently been explored in DI-QKD in

[121]. Therefore, it is possible that the upper bound via the intrinsic non-locality will

not be tight for the existing DI-QKD protocols [39, 66], which consider only one-way

error correction.

Another point to make is that in the protocols we consider, Alice and Bob an-

nounce their measurement choices. That is, X and Y are known to Eve. The secret

key is extracted from Ā and B̄. There are certain protocols in the device-independent

literature where the outputs Ā and B̄ are broadcast and the local randomness vari-

ables X and Y are the basis of the key [122] (note that [123] introduced this concept

in the device-dependent QKD literature). For such DI-QKD protocols, our upper

bounds do not hold.

• Other works

Bounds on device-independent QKD protocols based on certain states were also

previously discussed in [124].

There is yet another way to model a no-signaling adversary in the device-independent

secret distillation protocols, which has been considered in [79]. This model is set in

“box world,” in which each player including the eavesdropper has a set of possi-

ble inputs and outputs. Therefore, it becomes natural to model the joint system

with a conditional probability distribution PABE|XY Z . In [61], the authors introduced

squashed non-locality to provide an upper bound on key rates of device-independent

protocols with the aforementioned model of the eavesdropper. This is in contrast

to the model that we consider where the eavesdropper is a quantum no-signaling

adversary but is not equipped with a set of measurement choices.
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7.1.2. Upper bounds on secret-key-agreement capacity of assemblages.

In this section, we consider upper bounds on secret-key agreement capacity of

assemblages.

Let n ∈ Z+, R ≥ 0, and ε ∈ [0, 1]. We define an (n,R, ε) one-sided device-

independent secret-key-agreement protocol for an assemblage ρ̂ := {pA|X(a|x)ρa,xB }a,x

as follows:

• Alice gives input xn to get an output an. The assemblage shared by Alice and

Bob is then

ρĀnXnBn :=
∑
xn,an

pXn(xn)pAn|Xn(an|xn) [xn, an]XnAn ⊗ ρa
n,xn

Bn , (7.16)

where {pAn|Xn(an|xn)ρa
n,xn

Bn }an,xn is an i.i.d. extension of the assemblage

{pA|X(a|x)ρa,xB }a,x. Alice, Bob, and Eve hold a no-signaling extension of the

above assemblage:

ρĀnXnBnE :=
∑
xn,an

pXn(xn)pAn|Xn(an|xn) [xn, an]XnAn ⊗ ρa
n,xn

BnE . (7.17)

• Bob inputs yi and obtains the output bi, where i ∈ {1, . . . , n}. Let the mea-

surement corresponding to yn be a set {Y n
bn}bn of measurement operators, such

that
∑

bn(Y n
bn)†Y n

bn = I. The state shared between Alice, Bob and Eve is then

σĀnXnB̄nY nE:

σĀnXnY nB̄nE :=
∑
xn,an

pXn(xn)pĀn|Xn(an|xn) [xn, an]XnĀn ⊗
∑
ynbn

pY n(yn)[yn]Y n⊗

(Ybnρ
an,xn

BnE (Ybn)†). (7.18)
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• Alice and Bob perform local operations and public communication, with CA

being the classical register communicated from Alice to Bob, C̄A is a classical

register held by Eve that is a copy of CA, the classical register CB is commu-

nicated from Bob to Alice, and C̄B is a classical register held by Eve that is a

copy of CB. This protocol yields a state ωKAKBEC̄AC̄BXnY n that satisfies

1

2

∥∥ωKAKBEXnY nC̄AC̄B
− ΦKAKB

⊗ ωEXnY nC̄AC̄B

∥∥
1
≤ ε, (7.19)

for all no-signaling extensions, where

ΦKAKB
=

1

2nR

2nR∑
k=1

|kk⟩⟨kk|KAKB
. (7.20)

A rate R is achievable for a device characterized by ρ̂ if there exists an (n,R−δ, ε)

one-sided device-independent protocol for all ε ∈ (0, 1), δ > 0, and sufficiently large

n. The one-sided device-independent capacity SDI(ρ̂) of the device characterized by

ρ̂ is defined as the supremum of all achievable rates for ρ̂.

Theorem 77 The restricted intrinsic steerability SR(Ā; B̄)ρ̂ is an upper bound on

the one-sided device-independent secret-key-agreement capacity SDI(ρ̂) of a device

characterized by ρ̂:

SDI(ρ̂) ≤ SR(Ā;B)ρ̂. (7.21)

Proof. For obtaining the upper bound in the one-sided device-independent setting,

we continue from (7.10) as follows:

nR ≤ I(Ān; B̄nY n|EXn)σ − I(Ān;Y n|EXn)σ + ε′ (7.22)

≤ I(Ān; B̄nY n|EXn)σ + ε′ (7.23)
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≤ I(Ān;Bn|EXn)ρ + ε′, (7.24)

The first inequality follows from the chain rule of conditional mutual information.

The last inequality follows from data processing. Since the above inequality holds for

an arbitrary no-signaling extension of ρĀnXnBn , we obtain

nR ≤ inf
ρĀnXnBnE

I(Ān;Bn|XnE)ρ + ε′. (7.25)

This implies that

nR ≤ SR(Ān;Bn)ρ̂ + ε′. (7.26)

Since we assume an i.i.d. device, we find by applying the additivity of restricted

intrinsic steerability (Proposition 56) that

(1 − ε)R ≤ SR(Ā;B)ρ̂ + 2 [(1 + ε) log(1 + ε)) − ε log ε] /n. (7.27)

Taking the limit as n→ ∞ and ε→ 0 then leads to the desired inequality SDI(ρ̂) ≤

SR(Ā;B)ρ̂.

In the following proposition, KD(ρAB) refers to the distillable key of the state

ρAB. For the exact definition, please refer to Definition 8 of [5].

Proposition 78 Let ρAB be a bipartite state, ρ̂a,xB an assemblage resulting from the

action of a POVM on Alice’s system, and p(a, b|x, y) a quantum correlation result-

ing from the action of an additional POVM on Bob’s system. Then, the device-

independent secret-key-agreement capacity of the quantum correlation p does not ex-

ceed the one-sided device-independent secret-key-agreement capacity of ρ̂, which in
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turn does not exceed the distillable key of the state ρAB:

DI(p) ≤ SDI(ρ̂) ≤ K(ρAB). (7.28)

Proof. The proof is a consequence of the following observation: the DI secret key

distillation protocol is a special case of the SDI secret key distillation protocol with

the measurements on Bob’s side corresponding to i.i.d. measurements. Similarly,

the SDI secret-key-agreement protocol is a special case of a secret-key-agreement

protocol acting on the state ρAB with the local operations on Alice’s side consisting

of i.i.d. measurements.

7.1.3. Examples

In this section, we showcase the upper bounds for specific examples. We consider a

characterization of honest devices and calculate upper bounds on intrinsic steerability

and intrinsic non-locality for these devices. Then, we consider specific protocols,

calculate the lower bounds on secret-key rates that one would obtain from these

devices, and compare them with the upper bounds obtained above.

• Device-independent protocol

We now consider a device that is characterized by the correlation p, which has

the following quantum strategy: Alice and Bob share a two-qubit isotropic state

ωpAB = (1 − p)ΦAB + pπA ⊗ πB, where ΦAB = 1
2

∑1
i,j=0 |ii⟩⟨jj|, and π denotes the

maximally mixed state. This state arises from sending one share of ΦAB through a

depolarizing channel. Alice’s measurement choices x0, x1, and x2 correspond to σz,

σz+σx√
2

, and σz−σx√
2

, respectively. Bob’s measurement choices y1 and y2 correspond to

σz and σx, respectively. The correlation resulting from this setup is then p(a, b|x, y),

with x taking values from {x0, x1, x2}, the variable y taking values from {y1, y2}, and

a, b ∈ {0, 1} being the measurement results. A specific device-independent protocol
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was studied in [39], which was then used to obtain a lower bound on the key rate

from the above specified correlation. In this protocol, the rounds in which Alice

and Bob input x0 and y1, respectively, correspond to σz measurements. Since the

measurements are performed in the same basis, the measurement outcomes of these

rounds form the basis of the raw key. The rounds in which Alice and Bob choose from

{x1, x2} and {y1, y2} are used for checking the violation of the CHSH inequality. This

choice of testing rounds and raw key rounds needs to be random. Also, the testing

rounds are just a fraction of the total number of rounds.

The secret-key rate in a device-independent protocol is bounded from above as

follows (Theorem 76):

R ≤ sup
p(x,y)

inf
ρĀB̄XY E

∑
x,y

pXY (x, y)I(Ā; B̄|E)ρx,y , (7.29)

where

ρx,y
ĀB̄E

=
∑
a,b

p(a, b|x, y) |ab⟩⟨ab|ĀB̄ ⊗ ρa,b,x,yE . (7.30)

The idea is now to consider some quantum extension of the probability distribution

obtained from the black box, and then bound the quantum intrinsic non-locality from

above.

The technique presented below is similar to the technique used in [125] to obtain

upper bounds on the squashed entanglement of a depolarizing channel. An isotropic

state is Bell local if p ≥ 1 − 1√
2

[126]. This implies that the quantum intrinsic

non-locality of a correlation derived from ωpAB is equal to zero for p ≥ 1− 1√
2

(Propo-

sition 72). For ϵ ≤ p ≤ 1− 1√
2
, we can write the probability distribution qωp(a, b|x, y)

obtained from ωpAB as a convex combination of probability distributions obtained from
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ωϵ and ω1−1/
√
2. That is, for some 0 ≤ α ≤ 1, we have

qωp(a, b|x, y) = (1 − α(ϵ))qωϵ(a, b|x, y) + α(ϵ)qω1−1/
√
2(a, b|x, y). (7.31)

By simple algebra, we obtain

α(ϵ) =
p− ϵ

1 − 1√
2
− ϵ

. (7.32)

Equation (7.31) can be written as

qωp(a, b|x, y) = (1 − α(ϵ))qωϵ(a, b|x, y) + α(ϵ)
∑
λ

p(λ)qω1−1/
√
2(a, |x, λ)qω1/

√
2(b, |y, λ).

(7.33)

Then, from convexity of quantum intrinsic non-locality (Proposition 68), we obtain

NQ(Ā; B̄)qωp ≤ (1 − α(ϵ))NQ(Ā; B̄)qωϵ . (7.34)

Since the above equation is true for all α, we find that

NQ(Ā; B̄)qωp ≤ min
0≤ϵ≤p

(1 − α(ϵ))NQ(Ā; B̄)qωϵ . (7.35)

This implies that

NQ(Ā; B̄)qωp ≤ min
0≤ϵ≤p

(1 − α(ϵ)) sup
p(x,y)

inf
ρĀB̄XY E(ϵ)

∑
x,y

p(x, y)I(Ā; B̄|E)ρx,y
ĀB̄E

(ϵ), (7.36)

where qϵω is encoded in ρĀB̄XY (ϵ) with ρĀB̄XY E(ϵ) as the quantum extension. Let us
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Figure 7.2. In this figure, we plot the upper bound in (7.38) and the lower
bound from [39] for the device-independent protocol described in Section 7.1.3..
The relative entropy of entanglement of a qubit-qubit isotropic state is given in
[44]. For further explanation of this plot, see the next section.

choose a trivial extension of the state ρx,y
ĀB̄

(ϵ). It is easy to see that

I(Ā; B̄)ρ0,1
ĀB̄

(ϵ) ≥ I(Ā; B̄)ρx,y
ĀB̄

(ϵ) ∀x ∈ X , y ∈ Y . (7.37)

Therefore,

R ≤ min
0≤ϵ≤p

(1 − α(ϵ))I(Ā; B̄)ρ0,1
ĀB̄

(ϵ) = min
0≤ϵ≤p

(1 − α(ϵ))

(
2 − ϵ

2
log2(2 − ϵ) +

ϵ

2
log2 ϵ

)
.

(7.38)

We plot this upper bound in Figure 7.2, and we interpret it and explain the relative

entropy of entanglement bound in the next subsection.

The lower bound used in Figure 7.2 was obtained in [39]. The proof of the

lower bound begins by first invoking the Devetak-Winter formula [2], as discussed
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in Chapter 3. Then, they introduced novel techniques to obtain an upper bound on

the Holevo information term in the Devatak-Winter formula in terms of the CHSH

violation. They also proved that the lower bound is tight for one-way classical com-

munication protocols.

• One-sided device-independent protocol

Let us now consider an assemblage ρ̂(p) that is generated from an isotropic state,

with x0 = σz and x1 = σx. Then

ρXĀB(p) =
1

4
(|0⟩⟨0|X ⊗ [|0⟩⟨0|Ā ⊗ ((1 − p) |0⟩⟨0|B + pπB)])

+
1

4
(|0⟩⟨0|X ⊗ [|1⟩⟨1|Ā ⊗ ((1 − p) |1⟩⟨1|B + pπB)])

+
1

4
(|1⟩⟨1|X ⊗ [|0⟩⟨0|Ā ⊗ ((1 − p) |+⟩⟨+|B + pπB)])

+
1

4
(|1⟩⟨1|X ⊗ [|1⟩⟨1|Ā ⊗ ((1 − p) |−⟩⟨−|B + pπB)]) .

(7.39)

If p ≥ 1/2, it is known that ρXĀB is unsteerable [26], and therefore intrinsic steerability

is equal to zero for p ≥ 1
2

([12, Proposition 7]). For ϵ ≤ p ≤ 1
2
, we can write the state

ρXĀB(p) as a convex combination of states ρXĀB(ϵ) and ρXĀB(1
2
). That is, for some

0 ≤ α ≤ 1

ρXĀB(p) = (1 − α)ρXĀB(ϵ) + αρXĀB
(
1
2

)
. (7.40)

Then, by simple algebra we obtain

α(ϵ) =
p− ϵ
1
2
− ϵ

. (7.41)

From convexity of restricted intrinsic steerability (Proposition 55), we obtain

S(Ā;B)ρ̂(p) ≤ S(Ā;B)ρ̂(ϵ). (7.42)
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Following the same argument as before, we obtain

SR(Ā;B)ρ̂(p) ≤ min
0≤ϵ≤p

(1 − α(ϵ)) sup
pX(x)

inf
ρĀBXE(ϵ)

∑
pX(x)

pX(x)I(Ā;B|E)ρĀBE(ϵ). (7.43)

Let us now choose a trivial extension of the assemblage. It is easy to see that

I(Ā;B)ρ0(ϵ) = I(Ā;B)ρ1(ϵ) (7.44)

= 1 +
(
ϵ
2

)
log
(
ϵ
2

)
+
(
1 − ϵ

2

)
log
(
1 − ϵ

2

)
. (7.45)

We therefore obtain

SR(Ā;B)ρ = min
0≤ϵ≤p

(1 − α(ϵ))
(
1 +

(
ϵ
2

)
log
(
ϵ
2

)
+
(
1 − ϵ

2

)
log
(
1 − ϵ

2

))
. (7.46)

We plot this bound in Figure 7.3.

Due to the fact that squashed entanglement is an upper bound on the rate at

which secret key can be distilled from an isotropic state [11, 127], as well as the

above protocols being particular protocols for secret key distillation, squashed entan-

glement is also an upper bound on the rate at which secret key can be distilled in

one-sided device-independent and device-independent protocols. However, the upper

bound on squashed entanglement of an isotropic state that we obtain after choosing

the extension as given in [125] is greater than the bound obtained on restricted in-

trinsic steerability of the assemblage considered above. Therefore, we do not plot the

squashed-entanglement bounds in Figures 7.2 or 7.3. For the same reason given above,

the relative entropy of entanglement is also an upper bound on the rate at which secret

key can be distilled in one-sided device-independent and device-independent proto-

cols [5]. The relative entropy of entanglement of qubit-qubit isotropic states has been

175



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

p

Upper bound
Lower bound
Relative entropy of entanglement

Figure 7.3. In this figure, we plot the upper bound in (7.46) and the lower
bound from [38] for the one-sided device-independent protocol described in Sec-
tion 7.1.3.. The relative entropy of entanglement of a qubit-qubit isotropic state
is given in [44].
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calculated in [44], which we plot in the above figures. This bound performs better

than intrinsic non-locality and intrinsic steerability in certain regimes. This suggests

that it might be worthwhile to explore if relative entropy of steering [37, 55] and

relative entropy of non-locality [60] would be useful as upper bounds for one-sided

device-independent and device-independent quantum key distribution, respectively.

Another possible reason for this is that intrinsic non-locality is not a function of the

particular Bell inequality being invoked in the protocol.

The bounds that we obtain do not closely match the lower bounds obtained from

prior literature. One reason for this discrepancy can be traced back to the following

question: is a violation of Bell inequality or steering inequality sufficient for security in

DI-QKD and 1S-DI-QKD? Since our measure is faithful, it is equal to zero if and only

if there is no violation of steering inequality or Bell inequality. However, the lower

bounds hit zero at a lower value of p than expected from the faithfulness condition.

Another possible reason for the discrepancy has been discussed in Section 7.1.3.,

pertaining to two-way error correction that is allowed in the protocols considered

above. Another point to note here is that the aforementioned protocol relies on the

violation of the CHSH inequality, while the bounds that we have are for protocols

that violate other inequalities as well.

7.1.4. Open questions

We know from Chapter 4 that modifications to intrinsic information along the

lines of [92] and [93] give better upper bounds on the secret-key-agreement capacity

of a joint probability distribution. One important area of investigation here is to

explore if such modifications of squashed entanglement, intrinsic steerability, and

intrinsic non-locality give better upper bounds for different settings of QKD.

177



7.2. Relative entropy bounds

In this section, we explore the connection between measures based on relative

entropy and secret-key-agreement capacity. In this direction, a remarkable result

was proven in [25], which shows that the relative entropy of entanglement is an

upper bound on the distillable key of a bipartite state ρAB. This then points to the

following direction: can relative entropy of steering and Bell non-locality be proven to

be upper bounds on the distillable key from assemblages and conditional probability

distributions, respectively? This question has still not been resolved.

We then discuss techniques introduced in [5], which make it possible to establish a

connection between relative entropy of entanglement with upper bounds on the distil-

lable key of bipartite states. We also discuss the difficulties encountered with proving

relative entropy of steering and nonlocality as upper bounds on secret-key-agreement

capacity of assemblages and conditional probability distributions, respectively.

7.2.1. Relative entropy of entanglement and secret key distillation

Two major conceptual insights of [5] were instrumental in proving relative entropy

of entanglement as an upper bound on the distillable key of bipartite states. The

first one was the introduction of private states. The second one was showing the

equivalence between distillation of ρAB and distillation of secret keys from ψρABE,

where ψρABE is a purification of ρAB.

Due to the monogamy of entanglement, we know that the maximally entangled

state is in tensor product with any other party. If Alice and Bob measure this state

in the same basis, then they obtain a secure key. That is,

• Alice and Bob share a maximally entangled state ΦAB. This implies that the

quantum system of any eavesdropper is in a tensor product with ΦAB.

• Alice and Bob perform measurements on their respective systems. If they per-
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form measurements in the same basis, then they obtain the following ideal secret

key:

ρĀB̄E =
1

d

d∑
i=1

|ii⟩⟨ii|ĀB̄ ⊗ ρE. (7.47)

Is the maximally entangled state (up to local isometries) the only state from which

we can extract an ideal secret key? One of the main insights of [5] was to answer this

question with the introduction of private states, defined as follows:

ρABA′B′ = U t
AA′BB′(ΦAB ⊗ ρA′B′)U t†

AA′BB′ , (7.48)

where ρA′B′ is an arbitrary bipartite state and U t
AA′BB′ =

∑d−1
i,j=0 |ij⟩⟨ij|AB ⊗ U i,j

A′B′ ,

with each U ij
A′B′ a unitary operator. An ideal secret key can be extracted from an

arbitrary state σAA′BB′ if and only if it can be expressed as a private state; see

Theorem 2 of [5]. This shows that the unit of secrecy is a private state instead of

a maximally entangled state. A maximally entangled state is thus a specific private

state.

Now, in a secret key distillation protocol, we have three parties: Alice, Bob, and

Eve. These three parties share a purification ψρABE of the state ρAB, which is the state

shared between Alice and Bob. Alice and Bob perform an LOPC operation to distill

out a secret key, as discussed in Section 4.1.. The distillable key of ρAB is denoted by

KD(ψρABE).

A possible key distillation protocol is as follows: first, distill out a private state

from ρAB using LOCC operations and then perform measurements on the private state

to distill a secret key. This is possible since we know that a private state contains a

secret key that can be accessed by measurements on the A and B systems. Let us

denote the optimal rate of private-state distillation from ρAB as CD(ρAB). For the
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exact definition, see [5]. It is then simple to see CD(ρAB) ≤ KD(ψρABE).

Another insight of [5] was to prove that CD(ρAB) = KD(ψρABE) . To this end,

they proved that given an LOPC protocol, which extracts a secret key from a pure

state ψρABE, one can define a coherent version of this LOPC protocol. The coherent

version of the LOPC protocol acts on a pure state ψABE and gives ψAA′BB′E, such

that tracing out the A′ and B′ systems gives an ideal secret key. Tracing out Eve’s

system in ψAA′′BB′E gives the private state ρAA′BB′ . Thus to every LOPC protocol,

which gives an ideal key, they defined a coherent LOPC protocol. The removal of

Eve’s system from the coherent LOPC protocol defines an LOCC protocol with the

output as a private state. This equivalence then proved that CD(ρAB) = KD(ψρABE).

Therefore, to obtain upper bounds on the distillable key of ρAB, one can upper bound

the rate of private-state distillation instead. This upper bound is obtained in terms

of the relative entropy of entanglement.

The definition of relative entropy of entanglement (REE) does not make any

explicit reference to an eavesdropper system. This is in contrast to squashed entan-

glement, where one can think of the conditioning system as an eavesdropper’s system.

The lack of reference to an eavesdropper’s system in REE was the main bottleneck in

proving upper bounds on distillable key in terms of relative entropy of entanglement.

This was resolved in [5] via the introduction of private states and the coherent version

of LOPC protocols.

7.2.2. Open question: relative entropy of Bell non-locality and secret key
distillation

In Section 2.2., we discussed a method of defining monotones in resource theories

based on relative entropy. Using that formalism, we can define relative entropy of

non-locality [60] as follows:

Definition 79 (Relative entropy of non-locality) The relative entropy of Bell
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non-locality of the conditional probability distribution p(a, b|x, y) is defined as

RL(p(a, b|x, y)) = sup
pXY (x,y)

inf
q(a,b|x,y)∈L

D (p(x, y)p(a, b|x, y)∥p(x, y)q(a, b|x, y)) . (7.49)

We would like to address the following question: Is relative entropy of Bell non-

locality an upper bound on the distillable key of a probability distribution? That is,

RL(p(a, b|x, y))
?

≥ KD(p(a, b|x, y)). (7.50)

As far as the author is aware, this is still an unresolved question. In this context,

first we need to identify the unit of privacy in quantum distributions. This unit of

privacy should satisfy two main criteria:

• For some x and y, p(a = i, b = i|x, y) = 1
d
, where i ∈ {0, . . . d− 1}.

• This probability distribution should be in tensor product with any quantum

extension of the eavesdropper.

Next, let Alice and Bob share a device characterized by a quantum distribution

q(a, b|x, y), with the eavesdropper holding any quantum extension. Then, the distill-

able key via an LOPC operation is KD(q(a, b|x, y)). Let the distillation of p(a, b|x, y)

from q(a, b|x, y), with a local operation and shared randomness operation, be de-

noted by CD(q(a, b|x, y)). Then, is CD(q(a, b|x, y))
?
= KD(q(a, b|x, y))? Addressing

these two questions will be helpful in proving that the relative entropy of non-locality

is an upper bound on distillable key.

7.2.3. Open question: relative entropy of steering and secret key distil-
lation from assemblages

We can define restricted relative entropy of steering 1 [55] as follows:

1Relative entropy of steering, which is a monotone under 1W-LOCC, has been introduced in
[37, 55].
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Definition 80 (Restricted relative entropy of steering) Let {ρ̂a,xB }a,x be an as-

semblage. Then the restricted relative entropy of steering is given by

RR
S (A;B)ρ̂ := sup

pX

inf
{σ̂a,x

B }a,x∈LHS
D(ρXAB∥σXAB), (7.51)

where

ρXAB :=
∑
x,a

pX(x)|x⟩⟨x|X ⊗ |a⟩⟨a|A ⊗ ρ̂a,xB , (7.52)

σXAB :=
∑
x,a

pX(x)|x⟩⟨x|X ⊗ |a⟩⟨a|A ⊗ σ̂a,xB . (7.53)

We would now like to address the following question: Is the restricted relative

entropy of steering an upper bound on the distillable key of an assemblage? That is

RR
S (Ā;B)ρ̂

?

≥ KD(ρ̂a,xB ). (7.54)

The bottleneck is again the lack of reference to an explicit Eavesdropper system
in the definition of restricted relative entropy of steering.
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Chapter 8
Future Directions and Open Questions

In this thesis, we discussed conditional mutual information quantifiers for quan-

tum steering and non-locality, which have been inspired by intrinsic information [9]

and squashed entanglement [10]. Subsequently, we proved various properties of the

quantifiers, such as faithfulness, convexity, monotonicity under the free operations,

superadditivity, and additivity under tensor products. We then used these properties

to prove that restricted intrinsic steerability and quantum intrinsic non-locality are

upper bounds on secret-key rates in device-independent secret-key-agreement proto-

cols. Then, we showcased these bounds for particular examples. We also discussed

various open questions regarding the properties of these quantities and upper bounds

on secret-key rates in device-independent secret-key-agreement protocols. Now, we

discuss various future directions.

We discussed in Chapter 3, the close connection between various correlations and

different settings in QKD. Several works, such as [128, 129, 130], have explored other

correlations in quantum mechanics besides entanglement, steering, and non-locality.

This introduction of various other resources has expanded the toolkit available for

quantum key distribution theorists. A unified framework to describe these correlations

was introduced in [131]. We first give an overview of this unification. Motivated by

this development, we describe various possible settings in quantum key distribution.

8.1. Possible settings for quantum key distribution

In this formalism, we consider channels N that accept two inputs and give two

outputs. Alice’s input is denoted by X and output by A. Bob’s input is denoted

by Y and output by B. These two-input, two-output channels can be described as

N : S(HX ⊗HY ) → S(HA⊗HB), with one input-output pair associated with Alice’s

lab and the other input-output pair associated with Bob’s lab. The inputs can be
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either a classical random variable, a quantum state, or a trivial input. By a trivial

input, we mean that the channel’s output is independent of the input. We also impose

a no-signaling constraint on the channel, which implies that the input on Alice’s side

cannot influence Bob’s output and vice versa. That is,

NXY→B (ρ⊗ σ) = Tr [ρ]NY→B (σ) , (8.1)

where ρ and σ are any inputs to the channel, and NXY→B = TrA [NXY→BA] is the

reduced channel. A similar no-signaling condition can be imposed on NXY→A. As an

example, suppose that Alice and Bob receive an unknown bipartite state. Then, we

can map the generation of this bipartite state to a channel with trivial inputs and

two quantum outputs. The output state is independent of the inputs of the channel.

Bipartite quantum channels have been studied in [132, 133] and in the references

therein. Various information-theoretic upper bounds on the entanglement and secret-

key-agreement capacities of a bipartite channel were considered in [134, 135, 136] .

To connect this framework with quantum key distribution, we can think of the

aforementioned channel as describing a device that Alice and Bob have in their lab-

oratories. The inputs and outputs describe the interaction that Alice and Bob have

with this device. For example, trivial inputs imply that the output of the device is

independent of the input. If the channel has quantum outputs, this means that the

quantum state shared between Alice and Bob is not characterized. If the channel has

classical outputs, then we can assume that the measurement devices with Alice and

Bob are untrusted.

The trivial inputs are denoted by t, classical input and output by c, and quantum

input and output by q. To describe the channel we use df − gh, where dh are inputs

to the channel, gh are the outputs of the channel, d, h ∈ {t, c, q}, and g, f ∈ {c, q}.
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Let us now consider different resources in this model. First, we start with two

trivial inputs and two quantum outputs: a tt− qq channel. Since the channel is not

trusted, the output of the channel, which is a bipartite state, is also not trusted. This

corresponds to the setting of trusted quantum key distribution, in which Alice and

Bob receive an uncharacterized state from a source. Once Alice and Bob have the

untrusted state, they can perform trusted measurements on this state to obtain secret

keys.

Next, we consider a ct − cq channel, which means that Alice inputs a classical

input and obtains a classical output. Also, Bob obtains a quantum output. This cor-

responds to the setting of a steering assemblage, in which Alice’s device is untrusted,

Bob’s system is untrusted, and Bob’s measurement device is trusted. This resource

is relevant for one-sided device-independent quantum key distribution.

Next, we consider a cc − cc channel, which means that Alice and Bob’s inputs,

as well as outputs, are classical. We can relate this to the scenario in which Alice

and Bob’s preparation, as well measurement device, is untrusted. This corresponds

precisely to the scenario of device-independent quantum key distribution with the

resource being a Bell non-local box.

Now let us consider another resource wherein Alice and Bob input quantum states

to an untrusted channel and obtain classical outputs. The channel is described by

qq − cc channel. This channel corresponds to the scenario in which Alice and Bob

trust the state preparation; however, they do not trust the measurement procedure.

This corresponds to the scenario of measurement device-independent quantum key

distribution, which has been studied in [86, 87].

Next, we consider the following scenario: Alice inputs a quantum state while

Bob’s input is trivial. Alice’s output is classical, and Bob’s output is quantum. This

setting corresponds to a qt− cq channel, in which Alice’s state preparation is trusted,
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but her measurement device is not trusted. On Bob’s side, the state preparation is

untrusted because it is an output of an untrusted channel, while Bob’s measurement

devices are trusted. The resource in this scenario is called a teleportage, introduced

in [128]. As far as the author is aware, such a setting of quantum key distribution

has not yet been considered in the literature, thus remaining unexplored.

The next setting that one can consider is as follows: Alice’s input and output are

classical. Bob’s input is quantum, and his output is classical. The channel is described

as a cq − cc channel. This corresponds to the setting in which Alice does not trust

her preparation and measurement device, while Bob does not trust his measurement

device. This is in contrast to a one-sided device-independent protocol in which Bob

trusts the measurement but not the preparation. As far as the author is aware, such

a setting of quantum key distribution has not yet been considered in the literature.

We summarize the contents of this section in Table 8.1.

8.2. Measurement-device-independent QKD

In this section, we first introduce the basic components of a measurement-device-

independent quantum key distribution protocol, as discussed in [86, 87]. We then

introduce a conditional mutual information-based function, which could be an upper

bound on the key rate that can be extracted in this setting.

• Alice and Bob prepare the states ρAA′ and ρBB′ . They send the A′ and B′

systems to a third party Charlie over untrusted quantum channels N1 and N2.

• Charlie performs a quantum instrument ΠA′B′→EC1C2 , where C1 and C2 are the

classical outputs, and E is a quantum output.

• Charlie publicly communicates the classical outputs C1 and C2 to Alice and

Bob. He keeps the system E with himself.

• Alice and Bob receive the classical outputs and perform local quantum channels
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Table 8.1. Various settings in quantum key distribution. In this table,
✓ implies that the device is trusted and ✗ implies that the device is un-
trusted.

Object
Alice’s

preparation

device

Alice’s

measurement

device

Bob’s

preparation

device

Bob’s

measurement

device

Setting

Quantum state

tt− qq
N/A ✓ N/A ✓

Trusted

QKD [3]

Assemblage

ct− cq
✗ ✗ N/A ✓

1S-DI-QKD

[67]
Non-local box

cc− cc
✗ ✗ ✗ ✗

DI-QKD

[23]

Distributed

measurement

qq − cc
✓ ✗ ✓ ✗

MDI-QKD

[86, 87]

Teleportage

qt− cq
✓ ✗ N/A ✓

Unexplored

setting

MDI steering

assemblage

cq − cc
✗ ✗ ✓ ✗

Unexplored

setting

and measurements on their systems to obtain the classical bits Ā and B̄.

• These steps are repeated n times. At the end of these n rounds, Alice has Ān

and Bob has B̄n.

• Alice and Bob then perform error correction and privacy amplification using

public authenticated channels to extract a secret key. The state at the end of

the protocol is σKAKBEnC1C2E′ , where E ′ captures all the classical information

that Eve gathers because of Alice and Bob’s public communication.

• For an (n,R, ε) protocol, the following inequality holds

1

2
∥σKAKBEC1C2E′ − ΦKAKB

⊗ σEC1C2E′∥1 ≤ ε, (8.2)
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Figure 8.1. Pictorial representation of a measurement-device-independent pro-
tocol.

where ε ≥ 0, and Φ̄KAKB
= 1

d

∑d−1
j=0 |jj⟩⟨jj|KAKB

.

A rate R is achievable for (N1,N2,Π) if there exists an (n,R−δ, ε) measurement-

device-independent protocol for all ε ∈ (0, 1), δ > 0, and sufficiently large n. The

measurement-device-independent secret-key-agreement capacity of MDI(N1,N2,Π)

is defined as the supremum of all achievable rates. For a pictorial depiction of this

protocol, see Figure 8.1.

In this setting, we trust the state preparation part. That is, we suppose that we

have a characterization of ρAA′ and ρBB′ . We also suppose that Alice and Bob’s labo-

ratory, where they prepare the states ρAA′ and ρBB′ , are completely shielded from any

side-channel attacks and do not leak out any information to the eavesdropper. Char-

lie can be completely untrusted and hence can be an eavesdropper. Therefore, the

quantum instrument implemented by Charlie is completely untrusted. This protocol

is resilient towards any side-channel attacks on the measurement devices.

8.2.1. CMI-based measure for MDI-QKD

We want to quantify the correlations generated between the systems A′ and B′,

which are not shared with C1, C2, and E. Now, recall that ρAA′ is in tensor product

with ρBB′ . To ensure that there are some correlations existing between the systems
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ρAA′ and ρBB′ , the channels N1 and N2 should not be entanglement breaking. The

measurement Π should also generate entanglement between systems A and B. The

measure we introduce here is a function of the channel that connects Alice-Charlie

and Bob-Charlie, and the measurement Π, which is employed by Charlie. We now

introduce the quantifier for distributed measurement, MDI(N1,N2,Π), as follows:

MDI(N1,N2,Π) =
1

2
sup

ρAA′ ,ρBB′
inf

SE→E′
I(A;B|C1C2E

′)ρ, (8.3)

where

ρABEC1C2 = SE→E1 (idAB ⊗ ΠA′B′→C1C2E) (id ⊗N1 ⊗ id ⊗N2) (ρAA′ ⊗ ρBB′) , (8.4)

and SE→E′ is a quantum channel implement by Charlie.

To make MDI(N1,N2,Π) independent of the states that Alice and Bob input

to the unknown channels, we take the supremum over ρAA′ and ρBB′ . That is, we

suppose that Alice and Bob input a state that maximizes the possible correlations

given the channels N1, N2, and the instrument Π. We also have an infimum over

quantum channels that can be performed by the eavesdropper or Charlie. This is

required because CMI is not monotone under the actions of a local channel on the

conditioning system. The factor of 1/2 is required due to the normalization condition.

An MDI-QKD protocol should give a secure key irrespective of the channels

N1,N2, or the measurement Π implemented by an eavesdropper. In most MDI-

QKD protocols, Charlie implements a Bell measurement. While, in reality, it is hard

to implement a Bell measurement perfectly, any noise due to the implementation

is attributed to the eavesdropper/Charlie. This is precisely the reason to call this

protocol measurement device-independent. The channels from Alice-Charlie or Bob-
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Charlie are also untrusted, and all the noise is attributed to the eavesdropper. Again,

one wants to check to the efficacy of the protocols. In this context, having upper

bounds will be useful. One can calculate the upper bounds for a particular model of

N1 and N2, and the instrument Π that we think Charlie would implement. We can

calculate this bound for expected noise models and compare these to the bounds that

we obtain from a particular protocol.

Proving that this quantity is an upper bound for collective attacks is an open

question and currently under consideration.
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Tamás Vértesi. Postquantum steering. Physical Review Letters, 115:190403,
November 2015.

[30] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and
Stephanie Wehner. Bell nonlocality. Reviews of Modern Physics, 86(2):419–
478, April 2014. arXiv:1303.2849.

[31] Daniel Rorhlich and Sandu Popescu. Quantum nonlocality as an axiom. Foun-
dations of Physics, 24(3):379–385, March 1994. arXiv:quant-ph/9508009.

[32] Eric Chitambar and Gilad Gour. Quantum resource theories. Reviews of Modern
Phsyics, 91:025001, April 2019.

[33] Andreas Winter and Dong Yang. Operational resource theory of coherence.
Physical Review Letters, 116:120404, 2016.

[34] Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. Colloquium:
Quantum coherence as a resource. Reviews of Modern Phsyics, 89:041003, Oc-
tober 2017.

[35] Xin Wang and Mark M. Wilde. Resource theory of asymmetric distinguishabil-
ity. Physical Review Research, 1:033170, December 2019.

[36] Julio I. de Vicente. On nonlocality as a resource theory and nonlocality mea-
sures. Journal of Physics A: Mathematical and Theoretical, 47:424017, October
2014. arXiv:1401.6941.

[37] Rodrigo Gallego and Leandro Aolita. Resource theory of steering. Physical
Review X, 5(4):041008, October 2015. arXiv:1409.5804.

193



[38] Cyril Branciard, Eric G. Cavalcanti, Stephen P. Walborn, Valerio Scarani, and
Howard M. Wiseman. One-sided device-independent quantum key distribu-
tion: Security, feasibility, and the connection with steering. Physical Review A,
85:010301, January 2012. arXiv:1109.1435.
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[135] Siddhartha Das, Stefan Bäuml, and Mark M. Wilde. Entanglement and secret-
key-agreement capacities of bipartite quantum interactions and read-only mem-
ory devices. Physical Review A, 101:012344, January 2020.
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