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Preface
The topics presented in this thesis span a number of fields in physics and computer

science. With each field comes a certain set of common misconceptions and “well-known”

results that are actually almost impossible to find or decipher from the literature. Because

of my many struggles trying to put together and comprehend all of these little pieces, I am

writing this thesis with the intention of providing a resource for those who are new to one

or more of these topics. I try my best to make this work as hierarchical as possible, so that

if the reader is in any way confused, he is always pointed to the right place to answer his

questions.

If you are unfamiliar with the mathematical formalisms that pervade the literature,

of course the preliminary sections of Chapter 1 and Chapter 4 are a good place to start.

However, if you have some experience, you should feel comfortable skipping these sections

with the understanding that any substantive discussions in these sections will be referenced

when they become relevant.

iii



Table of Contents
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER
1 LINEAR QUANTUM OPTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Historical Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Quantum vs. Classical State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Quantum States of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Linear Optical Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.4 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 BOSON SAMPLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1 Complexity of Matrix Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Exact Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Approximate Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 BOSON SAMPLING WITH OTHER STATES OF LIGHT . . . . . . . . . . . . . . . . . 40
3.1 Photon-Added Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Sampling Displaced Fock states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Sampling Photon-Added Coherent States . . . . . . . . . . . . . . . . . . . . 43

3.2 Photon-Added or -Subtracted Squeezed Vacuum . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1 PASSV Sampling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Complexity Concerns and Discussion. . . . . . . . . . . . . . . . . . . . . . . . . 59

4 SUPER-SENSITIVE METROLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Introduction to Quantum Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 MORDOR Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 General QuFTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX
A REUSE AND PERMISSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B DERIVATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

iv



Abstract
This thesis is intended in part to summarize and also to contribute to the newest

developments in passive linear optics that have resulted, directly or indirectly, from the

somewhat shocking discovery in 2010 that the BosonSampling problem is likely hard

for a classical computer to simulate. In doing so, I hope to provide a historic context for

the original result, as well as an outlook on the future of technology derived from these

newer developments. An emphasis is made in each section to provide a broader conceptual

framework for understanding the consequences of each result in light of the others. This

framework is intended to be comprehensible even without a deep understanding of the

topics themselves.

The first three chapters focus more closely on the BosonSampling result itself, seeking

to understand the computational complexity aspects of passive linear optical networks,

and what consequences this may have. Some effort is spent discussing a number of issues

inherent in the BosonSampling problem that limit the scope of its applicability, and that

are still active topics of research. Finally, we describe two other linear optical settings that

inherit the same complexity as BosonSampling.

The final chapters focus on how an intuitive understanding of BosonSampling has led

to developments in optical metrology and other closely related fields. These developments

suggest the exciting possibility that quantum sensors may be viable in the next few years

with only marginal improvements in technology. Lastly, some open problems are presented

which are intended to lay out a course for future research that would allow for a more

complete picture of the scalability of the architecture developed in these chapters.
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Chapter 1
Linear Quantum Optics
1.1 Historical Introduction

The origins of quantum optics parallel the birth of quantum theory itself, and may

be said to have begun with Einstein’s discovery of the photoelectric effect in 1905. Since

then, the understanding that nature has a kind of dual nature, where particles and waves

can exist in tandem, has increasingly pervaded popular culture. Numerous technological

applications of quantum optics – most notably, lasers – are now so integral to our society

that it would be difficult to imagine operating without them.

Yet, shockingly many aspects of the quantum nature of light still remain poorly un-

derstood. One such area, the connection of optics to quantum computing and complexity

theory, is indeed the entire motivation of this thesis. But before we delve into the intricacies

of this topic, it is helpful to understand what we do know, as this context helps inform why

there has been a great deal of recent research interest.

Although optical networks have been used for interferometry for many years, the latest

push in research is due at least in part to the advent of quantum computing. Although

previous quantum algorithms had shown impressive speedups over their classical counter-

parts, in 1994 Peter Shor demonstrated a useful quantum algorithm (integer factorization)

that gives an exponential speedup over the best classical algorithm available [76]. Because

common encryption algorithms such as RSA rely on the hardness of factoring large num-

bers [67], the field of quantum computing was suddenly taken very seriously (though the

older Simon’s algorithm has recently found new application in cryptography).

It had been known prior to 1994 that optical networks employing nonlinearities were

capable of universal quantum computation, but the possibility that efficient linear opti-

cal quantum networks could perform the same seemed far fetched. It had been shown

throughout the 1990s that linear interferometers could perform integer factorization, solve
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NP-complete problems and perform universal quantum computation, but not without an

exponential overhead in either the energy or spatial dimension of the system [14, 16, 13].

This changed in 2000, when Knill, LaFlamme, and Milburn (KLM) devised a scheme

which allows for universal quantum computing with only a polynomial overhead [49]. Sub-

sequent improvements on the KLM protocol have since been discovered [50], but still the

linear optical quantum computing (LOQC) architecture seems to be an unlikely candidate

for a truly scalable implementation of universal quantum computing. The difficulty lies

mostly in the challenge of providing ancillary resources, teleportation, error correction,

and maintaining a coherent optical quantum memory [51]. Some of these additional com-

ponents are referred to as “active” or “adaptive” components of an optical network, since

they require a certain interaction within the network based on measurements made during

the computation.

Passive linear optical networks are instead characterized by modes which use only beam

splitters and single-mode phase shifters. Although certainly still nontrivial to implement,

passive networks greatly reduce the complexity inherent when scaling the size of the net-

work. However, a number of these passive networks had been known to be efficiently

classically simulable, and thus incapable of showing any kind of interesting quantum ad-

vantage. For instance, it is known that a network of Gaussian-state inputs together with

Gaussian measurements are classically simulable [6]. It is also known that the probabil-

ity for measuring a particular basis state in an n-photon linear optical experiment can be

approximated efficiently [36].

It was a great surprise, then, when Arkhipov and Aaronson showed that a particular

sampling problem (BosonSampling) based on an n-photon passive linear optical net-

work could likely not be efficiently simulated by a classical computer [3]. The essence of

the complexity of this problem is in tying the output probabilities to the computation of

a matrix permanent, which is known to be exceptionally hard to calculate in the exact

case. Excepting the verification problem (discussed in Sec. 2.4), the primary criticism of
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BosonSampling is that simulating the output of such a system does not actually solve any

problem of interest. In a sense, BosonSampling mirrors the kind of quantum algorithms

that were discovered before the advent of Shor’s algorithm.

This thesis, which focuses on the developments of post-BosonSampling linear optics,

is generally split into two parts. The first is to describe other passive linear optical networks

which share the same complexity as BosonSampling, in hopes of better understanding

what aspects of the network make a hard sampling problem. The second is to describe

attempts to adapt the ideas of BosonSampling into a protocol that either directly solves

a problem of interest, or exploits some of the “resources” inherent in BosonSampling to

create useful quantum technologies.

1.2 Preliminaries

The following sections are designed to introduce the reader to the mathematical frame-

work that is used throughout the rest of this thesis. I will also explicitly define a consistent

notation that is used throughout, though most readers already experienced with the frame-

work will likely follow the notation already, as it is quite standard in the field.

Also, while I would love to discuss the formal treatment of “classical randomness” in this

thesis, it is not a necessary component for understanding the rest of this thesis. The theory

of density operators is pivotal to understanding most of the facets of quantum theory, and

I am somewhat shocked that for the work presented here, it happens to be unnecessary.

While the following section attempts to give some idea of how quantum theory results

in a more powerful model of computing than a classical one, a true comparison needs

to consider mixed states, purification, and the partial trace. The reader can find these

concepts in [63, 84], if interested. The resulting section here may be considered to be a

major simplification of both classical and quantum theory, but it is intended to be as such.

1.2.1 Quantum vs. Classical State Spaces

In this section, we give a short introduction to some general concepts that are meant

to give the reader a good understanding of the difference between a quantum theory, and

3



a classical one. Although there is much to be said on the topic, we will restrict ourselves

to what is necessary to understand the remainder of this thesis. A firm grasp of linear

algebra is the only mathematical prerequisite, though some concepts from probability and

information theory will certainly be permeated within. The ideas presented in this section

are mostly summaries of chosen topics from [63, 84], which are an excellent source for the

reader if they are interested in a more in-depth discussion.

A natural place to begin is what might be considered the axioms, or postulates, of

quantum theory. We take these postulates directly from [63], and expand on their relevance

to quantum theory and to the mathematical framework within this thesis.

Postulate 1: Associated to any isolated physical system is a complex vector space

with inner product (that is, a Hilbert space) known as the state space of the system.

The system is completely described by its state vector, which is a unit vector in the

system’s state space.

The first postulate provides the setting in which any quantum theory resides – a Hilbert

space. One of the consequences of quantum theory residing in a vector space is that,

for any space with dimension greater than one, there exists unit vectors that are linear

combinations, or superpositions, of its basis states. These superpositions of states are

themselves entirely valid states. Mathematics and physical intuition both seem to suggest

that the system which these states describe is simultaneously in more than one basis state

at the same time. We can see this effect directly once we define the other two postulates.

It is important to note that throughout this discussion, we take the existence of the

systems which underly these state spaces somewhat for granted. That is, what we refer

to as the classical and quantum descriptions of these state spaces are taken to compare

classical probability theory with what is consistent with quantum theory. We do not,

for example, compare the state spaces that are derived from a Hamiltonian in classical

mechanics directly with those of quantum mechanics. The claims we make in this section
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should be understood to be in this context. For an alternate formulation of quantum theory

involving more (but as the author argues, simpler) axioms, see Ref. [37].

Note that throughout this thesis, we will use the standard “bra-ket notation” or “Dirac

notation”, where |·〉 indicates a state vector. We use calligraphic capital letters, such as H,

to indicate a state space. If you are unfamiliar with this notation, please refer to Section

2.1 of [63].

Postulate 2: The evolution of a closed quantum system is described by a unitary

transformation. That is, the state |ψ〉 of the system at time t1 is related to the state

|ψ′〉 of the system at time t2 by a unitary operator U which depends only on the

times t1 and t2,

|ψ′〉 = U |ψ〉 . (1.1)

A unitary operator is a bounded linear operator that satisfies UU † = U †U = I,

where U † is the Hermitian adjoint of U . Because U † is also unitary, the condition that

UU † = U †U = I can be thought of as the time reversibility of quantum evolution. Uni-

tary operators perserve the inner product—denoted 〈·, ·〉—on H, so that for two vectors

x, y ∈ H, 〈x, y〉 = 〈Ux, Uy〉. The latter condition can be thought of as a unitary transfor-

mation being a kind of “rotation” of the vectors in Hilbert space.

It is important to stress that the evolution is necessarily unitary only if the system is

closed. Of course, we obviously care about how a system may evolve if it is not closed, and

we partially answer this with the third postulate (related to measurement). One answer

(though perhaps a bit unsatisfying) is to say that the open system is only a part of a larger

system that is closed – even if we have to consider the state space of the entire universe.

A more complete answer is that evolution of an open system can be described by a CPTP

map (completely positive and trace preserving), often referred to as a quantum channel.

We do not need the tools related to CPTP maps for the purposes of this thesis, but a

curious reader can refer to [84] for more information.
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Postulate 3: Quantum measurements are described by a collection {Mm} of mea-

surement operators. These are operators acting on the state space of the system

being measured. The index m refers to the measurement outcomes that may occur

in the experiment. If the state of the quantum system is |ψ〉 immediately before the

measurement then the probability that result m occurs is,

〈ψ|M †
mMm |ψ〉 , (1.2)

and the state of the system after the measurement is,

Mm |ψ〉√
〈ψ|M †

mMm |ψ〉
. (1.3)

The measurement operators satisfy the completeness equation,

∑
m

M †
mMm = I. (1.4)

Postulate 3 is crucial because it explains the way in which we interact with a quantum

system and the consequence of that interaction. It is at this point where the difference

between a quantum theory and classical one takes shape. First, note that measurement is

non-unitary, which is particularly evident in the fact that it is not time-reversible. While a

classical theory purports that the universe behaves independently of an observer, a quantum

theory is inextricably tied to the observer. It might seem at first that this is a more

restrictive condition than classical theory, but together with Postulates 1 and 2, we will see

that it allows for a much richer (albeit counterintuitive) context for computing.

Let us consider the example of a qubit – short for “quantum bit” – which is the

simplest non-trivial example of a state space. The Hilbert space H = C2 is spanned by a

two-dimensional basis B = {|0〉 , |1〉} where,

|0〉 =

 1

0

 |1〉 =

 0

1

 . (1.5)
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There are many physical systems that can be described by a qubit, but for the purposes

of this example, we will consider a two-level atom whose basis states represent the ground

state |0〉 and the excited state |1〉. Hence, any quantum state |ψ〉 in this system can be

written as |ψ〉 = α |0〉+β |1〉 for some α, β ∈ C satisfying |α|2 + |β|2 = 1 (since Postulate 1

requires that states correspond to unit vectors).

If we use the same two-level atom to describe a classical bit b, what possible states

can it correspond to? Classical theory requires that states, in principle, should always

be distinguishable from each other. We define distinguishability in the following sense:

two states |σ〉 , |τ〉 are distinguishable from one another if there exists a measurement

Mdis ∈ {Mm} such that 〈σ|M †
disMdis |σ〉 = 1 and 〈τ |M †

disMdis |τ〉 = 0 (or vice versa). In

other words, we must have a measurement that, given an input restricted to {|σ〉 , |τ〉},

always fails in one case and succeeds in the other. It is not hard to see that this reduces

to the case that 〈σ|τ〉 = 0; we say, in this case, that σ and τ are orthogonal states.

If we choose the classical bit b = 0 to correspond to the state |0〉, then the only

state orthogonal to b is necessarily |1〉, which thus must be our choice for the classical bit

b′ = 1. Of course, the choice that b corresponds to |0〉 was arbitrary; we could choose

any |b〉 = α |0〉 + β |1〉. However, for any such choice, there exists some Ub such that

we can represent |b〉 = Ub |0〉, and the corresponding orthogonal state |b′〉 = Ub |1〉, since

〈b′|b〉 = 〈1|U †bUb |0〉 = 〈1|0〉 = 0. In other words, the unitary Ub is only equivalent to a

change of basis on the Hilbert space, and a “clever selection” of the basis state does not

enable us to do anything more.

We can now see the tip of the iceberg suggesting that quantum computation might be

fundamentally more powerful than classical computation. The only single bit operations

we can possibly perform on a classical bit b is to apply the identity operator (do nothing),

or to flip the bit (in circuit terminology, a NOT gate). For a qubit, our valid set of

transformations is the entire set of 2 × 2 unitary operators, U(2) (if the reader is curious

about unitaries as a mathematical group, see [24]). A qubit, then, is clearly a generalization
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of a classical bit. This is itself not so convincing that a quantum computer might be more

powerful, since one could make an argument that a classical computer can be equipped

with randomization to do just as well. Of course there is not much one can do with a

single bit/qubit, and so we should consider the difference in composite systems. We will

see that entanglement is a resource in quantum systems that no classical system, even with

randomization, can possess.

If H is a Hilbert space of a single qubit, then we can consider an n-qubit system H′

defined by the tensor product of n copies of H, i.e.,

H′ = H⊗H⊗ ...⊗H︸ ︷︷ ︸
n

. (1.6)

The tensor product is multiplicative in dimension so that dim(H′) = 2n, hence a unitary

acting on a state vector inH′ resides in U(2n). Naturally, the corresponding classical system

has 2n states, one for each vector comprising an orthonormal basis of H′. Since we wish

to discuss properties of a composite quantum system that are unique, let us for simplicity

consider only a two-qubit system that we denote by H(2) = H1 ⊗H2 = H⊗H. The basis

vectors we will choose according to the standard basis, also known as the computational

basis, which are given by,

|00〉 =



1

0

0

0


|01〉 =



0

1

0

0


|10〉 =



0

0

1

0


|11〉 =



0

0

0

1


. (1.7)

In general, if a state such as |ψ〉 ∈ H1 ⊗H2 can be written in the form |ψ〉 = |σ〉 ⊗ |τ〉 for

some |σ〉 ∈ H1, |τ〉 ∈ H2, it is said to be a product state. For example, consider the joint

state of two qubits, each in a local state of |+〉 = 1√
2
(|0〉+ |1〉). In the computational basis
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of the joint system, the state |ψ〉 = |+〉 ⊗ |+〉 has the form,

|+〉 ⊗ |+〉 =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉) =
1

2
(|00〉+ |01〉+ |10〉+ |11〉). (1.8)

It is trivial to see that the basis vectors of H(2) are all product states, and hence any

representation of a classical bit is also product. The notion of this independence really

underlies the ideas of classical systems in the first place; while individual systems can be

correlated, the system never becomes more than “a sum of its parts.” Quantum systems,

on the other hand, exhibit something quite different. Consider the state,

|Φ+〉 =
1√
2

(|00〉+ |11〉), (1.9)

often referred to as the Bell state. This state (among many others) has the property that

it cannot be decomposed into a tensor product of two states. This statement has a short

proof, so we provide it here.

Proof: Suppose to the contrary that |Φ+〉 is a product state. Then there exist two

states |σ〉 = α |0〉 + β |1〉 and |τ〉 = γ |0〉 + δ |1〉 for some α, β, γ, δ ∈ C such that

|Φ+〉 = |σ〉 ⊗ |τ〉. Carrying out the tensor product,

|Φ+〉 = |σ〉 ⊗ |τ〉

= (α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉)

= αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 . (1.10)

By definition of |Φ+〉, the coefficients on |00〉 and |11〉 are non-zero, and this implies

that all of α, β, γ, δ should be non-zero. But since the coefficients on |01〉 and |10〉

are zero, we find that one of {α, δ} and one of {β, γ} must be zero. However, this is

a contradiction, and so |Φ+〉 cannot be a product state. �
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Pure states that are not product are called entangled states. These states exhibit a

special kind of correlation that do not fit into a classical picture. Not even the addition

of randomness allows classical theory to properly describe the behavior of these states. In

fact, Bell proposed in 1964 that one could devise an experiment using states of this form to

prove that no local hidden variable theory (or “local realism”) can adequately explain the

predictions of quantum mechanics [7] (only recently has this experiment been conducted

to the level of accuracy that enables no “loopholes” to explain away the discrepancy [38]).

The exploitation of entangled states is a necessary condition for every quantum algorithm

that beats its classical counterpart. Entanglement itself has been the subject of a great

deal of research; still, no universally accepted quantifying measure has been adopted by the

community as an adequate description for every case [41, 15] (however for pure bipartite

states, it seems resolved). Regardless, it is important that the reader understand that

entanglement is a major theme in this thesis (as it generally is whenever one discusses

quantum devices).

We conclude this section with a brief overview of what we have discussed. The three

postulates of quantum mechanics gave us the means to construct a state space where we

could compare the behavior of classical states to quantum states. We saw that quantum

theory generalizes classical theory, and produces a large set of states that have no efficient

classical description. This culminated in showing the existence of entangled states, which

can possess correlations that no classical theory can describe. Although the reader may

feel a little shortchanged on seeing explicit examples of quantum supremacy so far, there

will be no shortage of examples of devices and algorithms later that utilize entanglement to

beat the best known classical strategy. First, however, we must move on to the quantum

mechanics of light to fully explain the phenomena presented in this thesis.
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1.2.2 Quantum States of Light

In this section, our goal is to understand the specific quantum setting we will be using

throughout the thesis. While the previous section gave us a general set of rules for any

quantum system, we must first understand the behavior of the photon and the nature

of light before we can explain the system’s dynamics. In this section, we will discuss

various important quantum states of light and the mechanism by which they arise. We

then describe what we mean by an “optical network” and the kinds of operations that

we can perform on the system. The primary mathematical prerequisite for this section

is, as before, a solid understanding of linear algebra (though there are a few statements

that might require some knowledge of operator algebras). We try to avoid the language of

Hamiltonians whenever possible, because it is largely unnecessary for the work presented

later. The concepts in this section are largely inspired by and often relying on calculations

in [33], which the reader should refer to for more in-depth consideration.

Photons arise from the quantization of the electromagnetic field. For a single-mode

field, the quantization is similar to that of the one-dimensional quantum harmonic oscillator

of frequency ω. The energy levels of the quantum harmonic oscillator are discrete, with

equal separations between consecutive levels. Furthermore, the ground state of the quantum

harmonic oscillator has a non-vanishing energy (called the vacuum energy or zero-point

energy). This allows us to represent the eigenvectors of these states in a convenient form,

called the Fock basis. Namely, |n〉 is the eigenvector corresponding to the nth excitation

of the field. We say a field has n photons (of frequency ω) if its energy corresponds to the

nth such excitation; we call a quantum state in this form a Fock state. The energy level of

the nth excitation is formally,

En = ~ω(n+
1

2
). (1.11)

The ladder operator method is a useful tool for representing evolutions of the field.

First, we define two operators, â† and â, called the creation operator and annihilation

operator, respectively. These operators are formally defined with respect to the position
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and momentum quadrature operators of the electromagnetic field, but here we define them

in terms of their action on the eigenstate |n〉,

â |n〉 =
√
n |n− 1〉 (1.12)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (1.13)

Together, these operators form the number operator n̂ = â†â, which has the convenient

property that n̂ |n〉 = n |n〉. Note that the operators â and â† are neither Hermitian nor

unitary, while n̂ is Hermitian but not unitary. For any state |ψ〉 which is a superposition

of Fock states, the mean number of photons can be computed by evaluating the quantity,

n̄ψ = 〈ψ| n̂ |ψ〉 . (1.14)

The uncertainty ∆n of a state is thus,

∆n =
√
〈n̂2〉 − 〈n̂〉2. (1.15)

A surprising result that occurs when evaluating the expectation of the electric field

operator for a Fock state is that, because Fock states have a uniform phase distribution,

the expectation causes the magnitude of the field to vanish. This is suggestive of the idea

that classical macroscopic systems cannot be explained by a simple scaling of the Fock

states to large photon numbers. It is also suggestive of the idea that number and phase are

complementary variables and so obey an uncertainty relation,

∆n∆ϕ ≥ 1. (1.16)

We will leave out a full discussion of quantum phase since there is much to say before

arriving at a satisfying level of understanding, but the reader can consult [33]. Instead, we
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will simply take the above uncertainty relation somewhat for granted, and investigate the

implications thereof.

Consider the set of eigenstates of the annihilation operator, i.e., the set of states satis-

fying,

â |α〉 = α |α〉 . (1.17)

with α ∈ C. We can solve for the coefficients of |α〉 by expanding in terms of the Fock

basis and noting that the coefficients must satisfy a recurrence relation. Formally,

|α〉 =
∞∑
n=0

Cn |n〉 together with â |α〉 = α |α〉 ⇒

Cn
√
n = αCn−1 ⇒

Cn =
αn√
n!
C0 ⇒

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 . (1.18)

where C0 is a normalization constant that can be easily computed from the requirement

that 〈α|α〉 = 1,

1 =
[
C∗0

∞∑
n=0

(α∗)n√
n!
〈n|
][
C0

∞∑
n=0

αn√
n!
|n〉
]

1 = |C0|2
∞∑
n=0

|α|2n
n!

⇒ (1.19)

|C0| = exp(−|α|2/2) ⇒ (1.20)

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (1.21)

where the sum in Eq. (1.19) easily results from the expansion of the exponential function.

We call the state |α〉 a coherent state. Note that α = 0 corresponds to the vacuum state,

which is an eigenstate of the annihilation operator with eigenvalue zero. The average

photon number n̄ = 〈α|n̂|α〉 (see Eq. (1.15)) of the coherent state is n̄ = |α|2, with an

uncertainty ∆n̄ =
√
n̄ (the distribution is Poissonian). This gives the coherent state a
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very nice representation in terms of the complex number α = |α|eiϕ which defines it—the

magnitude |α| determines the photon number, while ϕ = arg(α) determines the phase.

Coherent states have a number of properties that make them the most “classical”

quantum states of light in the sense that they behave more like a classical electromagnetic

field (less so in the sense of the previous section where we discuss the notion of a classical

state space). Namely, [33] succinctly summarizes,

The coherent states |α〉 are quantum states very close to classical states because (i)

the expectation value of the electric field has the form of the classical expression, (ii)

the fluctuations in the electric field variables are the same as for a vacuum, (iii) the

fluctuations in the fractional uncertainty for the photon number decrease with the

increasing average photon number, and (iv) the states become well localized in phase

with increasing average photon number.

While we will not concern ourselves with the first two items, the latter two have im-

portant consequences for some of the results in this thesis. First, item (iii) refers to the

fractional uncertainty in the average number of photons,

∆n̄

n̄
=

√
n̄

n̄
=

1√
n̄
. (1.22)

Item (iv) relates to the expression of the uncertainty relation in Eq. (1.16), where since

∆n̄ =
√
n̄,

∆ϕ ≥ 1√
n̄
. (1.23)

The inequality in Eq. (1.23) is actually saturated for all coherent states |α〉. In fact, an

alternate way of defining the coherent state is in terms of minimizing an uncertainty product

(not the one in Eq. (1.16); see [33]) such that both are equal in amplitude. There is another

family of minimum uncertainty states, called squeezed states, where the products are not

equal between quadratures (plotting the uncertainty in phase space generates an ellipse,

hence the term “squeezed”). We will discuss these states shortly.
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Our final comment on coherent states is that they can be generated by an operator

acting on the vacuum. The displacement operator D̂(α) is defined by,

D̂(α) = eαâ
†−α∗â, (1.24)

so that,

|α〉 = D̂(α) |0〉 . (1.25)

For a derivation, see [33]. It is easy to see from the definition of D̂(α) that,

D̂†(α) = D(−α), (1.26)

which implies that D̂(α) is a unitary operator. The commutation relations of D̂(α) with the

annihilation operator (which can be Hermitian-conjugated to produce that of the creation

operator) can be shown to be,

[
a†, D̂(α)

]
= α∗D̂(α). (1.27)

We now consider another kind of state, the squeezed state |ξ〉, which exemplifies some

very non-classical behavior. First, we define the squeezing operator in a way that looks

very similar to the displacement operator,

Ŝ(ξ) = exp
[1

2
(ξâ2 − ξâ†2)

]
. (1.28)

It has the same property that,

Ŝ†(ξ) = Ŝ(−ξ), (1.29)
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and is also unitary. When acting on the vacuum, it generates a squeezed vacuum state [33],

|ξ〉 = Ŝ(ξ) |0〉 =
1√

cosh r

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ(tanh r)m |2m〉 . (1.30)

for ξ = reiθ ∈ C. It is particularly notable that the amplitude of every odd-numbered

Fock state is zero, so that |ξ〉 always consists of an even number of photons. Analogous to

the coherent state, it is apparent from the form of Eq. (1.30) that the “intensity” of the

squeezing is given by the magnitude of the squeezing parameter r = |ξ|, and possesses a

phase determined by θ. Indeed, the average photon number for |ξ〉 is,

〈n̂〉ξ = sinh2 r. (1.31)

We conclude this section with a few notes about the states we have discussed. A well-

known quasi-probability distribution, know as the Wigner distribution function [83], is often

used to characterize quantum states of light. Coherent states and squeezed vacuum states

(among a few others) have the property that their Wigner distributions have a Gaussian

form, granting them the title of Gaussian states. Due to some of the “nice” properties of

these states, they have been studied in some depth. Ref. [3] gives a synopsis of what is

known about simulating these and other states in optical networks.

There are, of course, many other quantum states of light to be discussed in the broader

context of quantum optics. The ones presented in this section are, as usual, restricted to

those which will be relevant later in this thesis. More on other states, such as thermal

states, two-mode squeezed states, and Schroedinger cat states, can be found in [33].

1.2.3 Linear Optical Networks

The previous section dealt with different states of light in a single mode. In this section,

we wish to look at how the evolution of a composite state on multiple modes takes place.

Although it is possible to treat composite photonic systems in the same vein as the first

section of this chapter (that is, by considering the tensor product H1 ⊗ H2), it is very
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difficult to physically implement these kinds of general transformations. One approach is

to use a beam splitter to combine two spatial modes, and though the resulting space of

transformations by comparison is much smaller, this approach is much easier to realize. We

thus refer to a “linear optical network” as a collection of modes and beamsplitter operations

between them. Before we proceed, note that the creation and annihilation operators on

different modes commute. That is,

[âi, â
†
j] = δij , (1.32)

[â†i , â
†
j] = 0, (1.33)

where the index refers to a mode labeling.

The action of the beam splitter can be viewed in terms of a transformation on the

annihilation operators âi in mode i. Consider, for example, the labellings in Figure 1.1,

where modes 1 and 2 are incident on a beam splitter B̂. The operators â3 and â4 for the

output modes are given by,  â3

â4

 = B̂

 â1

â2

 , (1.34)

where B̂ is a 2× 2 unitary matrix. This matrix is often written in the general form,

B̂ =
1√
2

 t′ r

r′ t

 , (1.35)

where the relations,

|r| = |r′|, |t| = |t′|, |r|2 + |t|2 = 1, r∗t′ + r′t∗ = 0, and r∗t+ r′t′∗ = 0, (1.36)
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are required due to energy conservation [33]. For example, a 50:50 beam splitter has the

form,

B̂50:50 =
1√
2

 1 i

i 1

 . (1.37)

Figure 1.1: Two modes â1 and â2 are incident on a beam splitter B̂. After the action of
B̂, the two modes propagate away in modes â3 and â4.

The set of unique beam splitter transformations on two modes is the group SU(2). But

how do we generalize the notion of a beam splitter to more than two modes? One very

straightforward approach for n modes is to consider the group generated by a concatenation

of beam splitters between any two arbitrary modes. It turns out that (conveniently) any

network consisting of only two-mode beam splitter operations can be represented by a single

unitary matrix in SU(n). The converse is also true, so that SU(n) completely characterizes

an n-mode network of beam splitters [66]. We can write the action of a general n-mode

unitary on the creation operators as,

Û â†i Û
† →

∑
j

Ui,j â
†
j. (1.38)

We will see in the next chapter how matrix permanents can be used to more easily describe

the evolution of Fock states under these general unitaries.

A property of these transformations is that they preserve the photon number (or average

photon number, in the case of an indeterministic number of photons). For this reason,

beam splitter operations are often called passive linear optics in the respect that they do
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not inject or remove any photons from the network. Throughout this thesis, we will almost

exclusively be concerned with these kinds of systems because of the relative ease by which

they can be physically implemented when the number of photons is small (the same often

cannot be said about active optical systems).

1.2.4 Complexity Theory

We now turn to what may seem at first a disconnected topic, since the roots of com-

plexity theory lie in the realm of computer science rather than physics. On the other

hand, the notion of complexity can be restated in a very physical way, where we wish to

determine what the “logical” similarities between two physical systems may be. We saw

earlier in Sec. 1.2.1 that a quantum state space and a classical state space are certainly not

equivalent. Still, one may wonder if they are at least “close” in the sense that a slightly

larger classical system could be prepared and evolved such that the classical system simu-

lated the quantum one. The goal of this section is to introduce some of the formal ideas

of complexity theory so that we have some understanding of what can be said, and how

this relates to quantum optics. The only prerequisites to understanding this section are

elementary algebra and set theory. The ideas presented in this section have more rigorous

meanings in the domain of formal language theory, but these are largely unnecessary for a

reasonable understanding of the topic.

The first concept we would like to discuss is that of a decision problem. Informally, a

decision problem is a question which, depending upon a particular input, always has a “yes

or no” answer. A simple example of a decision problem is Primes, which asks, “Given an

integer n > 1, decide if n is a prime number or not.” The input to a decision problem—in

this example, the integer n—is called an instance of the problem. A YES -instance to the

problem is an instance of the problem in which the answer is yes (e.g., the integer n = 5),

and a NO-instance where the answer is no (e.g., n = 6).

There are other kinds of problems than decision problems; for instance (no pun in-

tended), a functional problem is one in which the answer is allowed to be a more compli-
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cated than a simple yes or no (e.g., “for an integer n, compute the largest prime factor of

n”). For our purposes, sampling problems will be of particular interest. In these kinds of

problems, the output of the problem is a sample from an instance of a probability distri-

bution (often within some specified error tolerance of the statistical distance to the true

distribution). Also relevant is a counting problem, which searches through a particular

space of possible solutions to a relation and returns the number of correct solutions.

In order to characterize the difficulty of solving different kinds of problems, we place

them into sets which we call complexity classes. These classes must be defined relative to

some system or device that is capable of solving the system, so that a well-defined notion

of “difficulty” can be assessed. Generally, these classes group problems according to the

number of steps, the physical space, or the time required on such a device to solve the

problem. The devices normally referred to in these classes are called Turing machines,

to which there is a rich history including (but not limited to) code-breaking in World

War 2. In the interest of brevity, we forgo rigorous definitions and interesting anecdotes;

instead, we give some informal definitions that should provide the reader with a sufficient

understanding.

Let x be the input size to a problem Z, i.e., the number of bits needed to represent a

problem instance. We will say that a classical computer is a device that is capable of solving

the problem Z with some finite number of bits in a finite time, where we assume each step

in the computation (i.e., a change in the computer’s internal state) takes a constant time.

For simplicity, we will refer to the number of bits as the “size” of the computer. We say

that a classical computer is deterministic if each step of the computer’s calculation occurs

with definite probability. We say a computer is probabilistic if the computer may rely on

some randomness to arrive at a solution. We will use the same definition for a quantum

computer, only replacing the role of the probabilistic bit with a qubit. Finally, we will say

that a computer can solve a problem efficiently if it can do so when the computation time

is bounded by a polynomial function of x.
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We now define several classical complexity classes of decision problems:

P: A decision problem Z is in the complexity class P if it can be solved efficiently by

a deterministic classical computer.

The class P is meant to capture “easy” problems for a computer. That is, even for a large

input size x, the length of the calculation does not increase more than polynomially in x.

BPP: A decision problem Z is in the complexity class BPP if it can be solved

efficiently by a probabilistic classical computer, with a success probability of at least

2/3.

The class BPP is meant to capture easy problems for a computer that relies on some kind

of randomness to solve a problem. It is trivial to see that P ⊆ BPP. It is believed by

the majority of the complexity community that P = BPP, but no formal proof yet exists

to show this. Also, although a success probability of 2/3 might seem somewhat arbitrary,

there are known methods to boost the probability of success arbitrarily close to 1 without

violating the efficiency condition; changing the success probability to any constant above

1/2 is equivalent. Importantly, BPP is the class of problems that is understood to be

realistically scalable for a classical computer to solve (of course, one can always consider

solving problems from harder complexity classes when the input size is small).

NP: A decision problem Z is in the complexity class NP if, for YES-instances of the

problem, there is a polynomial-size witness string w which a deterministic classical

computer can use to efficiently verify the solution.

The class NP in some sense classifies “provable problems.” Like a mathematical theorem,

though it may be initially hard to prove, once one has access to the proof (in analogy with

the witness string w), it can be verified easily. It is easy to see that P ⊆ NP since, if a

problem is in P, a verifier can simply ignore the witness string and prove it efficiently by

himself.
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co-NP: A decision problem Z is in the complexity class co-NP if, for NO-instances

of the problem, there is a polynomial-size witness string w which a deterministic

classical computer can use to efficiently verify the solution.

The class co-NP is much like NP, classifying what might be thought of as efficiently

“falsifiable problems.”

Complexity theory can be described as the study of complexity classes, their relations

to one another, and the problems which reside inside them. In order to say something

constructive about complexity classes, we need some way of identifying and comparing the

kinds of problems they have. The first comparison tool we will discuss is that of polynomial

reducibility. There are multiple (often non-equivalent) ways to define reducibility. We will

say that a problem Z is polynomial reducible to a problem Y (denoted Z ≤ Y ) if an

instance of Z can be efficiently transformed into an instance of Y such that the solution to

both instances is the same. The following example gives a simple illustration of this idea.

Example (polynomial reducibility): Let Even be the decision problem defined

as, “Given an integer n, decide if n is even.” Let Zero be the decision problem

defined as, “Given an integer m, decide if the last digit of m is zero.” Suppose we

had a machine that could solve Zero. Could we use that machine in some way to

efficiently evaluate the solution to Even as well? Indeed, we can – simply check

Zero(5n). We must be sure that, given the input n, we can efficiently calculate 5n

to input to the machine; the standard multiplication algorithm works for this. Thus

Even ≤ Zero.

Polynomial reductions are important for complexity theory because they tell us that

some problems have structural similarities. We can exploit this relation to help classify

many problems and classes. Let C be a complexity class. A problem Z is said to be hard

for C (denoted C-hard) if, for every problem Y ∈ C, Y ≤ Z. This is a useful idea since

it suggests that Z is at least as hard as any problem in C. This also allows us to establish
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that certain problems characterize the hardness of a class very well. We say a problem Z

is C-complete if Z ∈ C and Z is C-hard.

We would like to note a bit of a caveat when dealing with problems in complexity

classes. Namely, a complexity class is a kind of worse-case classification for a problem.

This is because classes are generally defined in terms of arbitrary instances of a problem.

Hence, if there is even a tiny subset of instances to a problem that that are hard to solve, the

problem will be classified according to these instances. There is another notion of average-

case complexity, but we will not discuss this further in this thesis (mostly because it seems

that the exceptional cases for matrix permanents are ones which are easy to compute,

rather than hard).

We now have a simple recipe for proving inequalities between many complexity classes,

based on complete problems. This follows because most of the complexity classes we define

are in terms of computers being able to solve (or verify) some problem efficiently. For

instance, if we want to prove the relation NP ⊂ P, we need only show that a single

NP-complete problem resides in P.

Incidentally, the conjecture P
?
= NP is arguably the most important problem in com-

puter science. It is one of the famous Millennial Prize problems, for which a solution grants

the discoverer a US $1,000,000 prize. There is a heap of evidence suggesting that P 6= NP,

and for this reason it is almost universally thought by the complexity community that this

is the case. It is so motivated that some results rely on a dichotomy – either a particular

result is true, or else P = NP – to suggest that the result is likely true. We will later

see that this is the same kind of reasoning behind believing that BosonSampling is a

classical intractable problem. In order to do so, we must introduce a new tool, the oracle

machine.

A complexity class C relative to an oracle O (denoted CO) is defined as the class of

problems that are solvable in C with access to a “black box” that can provide a solution

to a problem in O with only a single step of the computer. The oracle O can be either a
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problem, or an entire complexity class. They are important in understanding the definition

of the polynomial hierarchy and why we expect that BosonSampling 6⊂ BPP.

The polynomial hierarchy (denoted PH) is defined as the union of a recursive chain of

complexity classes defined in the following way [79]:

Initialize P = ΠP
0 = ΣP

0 = ∆P
0 . Define:

ΠP
i+1 = co-NPΣPi (1.39)

ΣP
i+1 = NPΣPi (1.40)

∆P
i+1 = PΣPi (1.41)

PH =
∞⋃
i=0

ΣP
i ∪ ΠP

i ∪∆P
i . (1.42)

A more intuitive graphical representation of PH can be found in Figure 1.2. The polyno-

mial hierarchy is defined with the idea in mind that each “level” of the hierarchy is expected

to be a strict containment. Formally, if for some k, the equality ΣP
k+1 = ΣP

k holds, then the

equality must hold for all i ≥ k. This “collapses” the polynomial hierarchy to the kth level,

so that PH is a union of only finitely many classes. Note that if P = NP, the polynomial

hierarchy completely collapses and PH = P. Hence, the expectation that P 6= NP in some

sense generalizes the notion that a collapse of PH should not occur. This is the dichotomy

that suggests BosonSampling should be a hard problem; if there is an efficient classical

algorithm for estimating BosonSampling, then PH will collapse (to the third level). We

discuss this in more detail in Sec. 2.2 and 2.3.

We now introduce one final complexity class, which will be helpful for discussing the

capabilities of quantum computers in general.

BQP: A decision problem Z is in the complexity class BQP if it can be solved

efficiently by a quantum computer, with a success probability of at least 2/3.
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Figure 1.2: The polynomial hierarchy PH. Complexity classes higher in the figure denote
more difficult classes, and lines indicate containment. PH is the union of all such classes.

BQP is the quantum generalization of BPP. A quantum computing architecture is said to

be universal if it is capable of computing problems in BQP. Although there are a number of

potential architectures for implementing universal quantum computing, we will often refer

to linear optical quantum computing (LOQC) as a specific example. The LOQC model

exemplifies the gap between the realities of current technology and the requirements for

building a fully universal, fault-tolerant quantum computer [49]. Even with improvements

to the original protocol, a large scale demonstration of LOQC is likely decades away [50].

This thesis presents the case that, alternatively, it may be possible to utilize passive linear

optics to perform some task in a complexity class that is outside of BPP, without the need

for full universal quantum computing.
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Chapter 2
Boson Sampling

In this chapter, we will review the seminal result due to Arkhipov and Aaronson (re-

ferred to henceforth as AA) [3], which defines BosonSampling and shows a dichotomy—

either the polynomial hierarchy collapses, or BosonSampling is a hard problem to sim-

ulate classically. To begin, we will informally define the BosonSampling problem so

that the discussions throughout are more motivated. In the first section, we will review

the underlying mathematical details that are necessary for understanding the root of the

complexity in BosonSampling. In the following sections, we formally define Boson-

Sampling and summarize the main results of Ref. [3], and finally discuss some important

obstacles in utilizing BosonSampling experiments to implement a truly post-classical

computation.

Definition (BosonSampling, informal): Let m be the number of modes in a linear

optical network, whose input consists of n single photon Fock states (without loss

of generality, in the first n modes) and m − n vacuum states. Let Û ∈ SU(m)

be a random unitary matrix acting on all m modes. Let P (Û) be the probability

distribution corresponding to the joint measurements of all m modes in the Fock

basis. Sample from P (Û) to within some error ε of the total variation distance.

Figure 2.1 shows the architecture of the BosonSampling model. For the case that an

instance of BosonSampling has the input photons in other modes, one can consider a

relabelling of the indices and a permutation of the rows of Û such that all input photons

are in the first n modes,

|ψin〉 = â†1 . . . â
†
n |01, . . . , 0m〉

= |11, . . . , 1n, 0n+1, . . . , 0m〉 . (2.1)
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Figure 2.1: An optical network implementation of BosonSampling.

The permutation preserves the randomness of Û as well as the probability distribution

P (Û), modulo that permutation. We can then succintly write the output of the device in

Fig. 2.1 as,

|ψout〉 = Û
[
â†1 . . . â

†
n

]
|01, . . . , 0m〉 . (2.2)

Note, however, that the desired output of the BosonSampling problem stated above is a

sample from a distribution, not a computation of the output distribution itself.

Since we would like to say something about the power of quantum computing, we would

like to check that the circuit described in Figure 2.1 can be implemented efficiently, so that

we verify BosonSampling ∈ BQP. The input to the BosonSampling problem is an

m × n matrix A, which has m · n many elements. Clearly, then, the number of modes m,

photons n, and hence the number of photodetectors required to implement an instance of

BosonSampling is efficient in the input size. The only question that remains is whether

the matrix A can be implemented with a polynomial number of optical elements. Indeed,

Reck et al. showed that any n×n unitary can be decomposed into a series of at most O(n2)

beam splitters [66], making such a construction efficient. Thus, BosonSampling ∈ BQP.

2.1 Complexity of Matrix Permanents

In this section, our primary discussion relates to the complexity of matrix permanents

and their connection to BosonSampling. First, we show how the output amplitudes of

evolved Fock states in a linear optical network can be computed via matrix permanents

(equivalent to propagating the field operators in Section 1.2.2), shown by Scheel in 2004
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[71]. We then discuss permanent complexity, with regard to both exact computation and

approximation.

Let us begin by first defining the permanent of a matrix M .

Definition (Permanent): Let M be an n× n matrix with complex entries mi,j ∈ C.

The permanent of M is defined by,

perm(M) =
∑
σ∈Sn

n∏
i=1

mi,σ(i). (2.3)

where Sn is the symmetric group on n elements.

Note that the permanent of a matrix is very similar to the determinant, with the exception

that sgn(σ) is missing from formula. Put simply, the permanent is equal to the determinant

“with all + signs”. One can easily see that computing a permanent from the definition

alone will not be efficient, since the group Sn contains n! elements. We leave a discussion

of complexity for later, once we have discussed its connection to linear optics.

Let us consider the evolution of an n-mode Fock state through an n-mode unitary Û

(where the ijth entry is denoted by uij), with a total of K photons in the input modes.

Let k denote the n-tuple corresponding to the input configuration, i.e. k = (k1, . . . , kn).

Namely,

|ψin〉 = |k〉 = |k1, . . . , kn〉 = (â†1)k1 . . . (â†n)kn |0, . . . , 0〉 (2.4)

|ψout〉 = Û |ψin〉 =
∑
s∈S

γs |s〉 , (2.5)

where S denotes the set of all n-tuple configurations of K = k1 + · · · + kn photons, and

s = (s1, . . . , sn) denotes a particular configuration. The cardinality of S is given by,

|S| =
(
n+K − 1

K

)
, (2.6)
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which is the number of ways to configure K indistinguishable objects into n distinguishable

bins, also called the number of “stars and bars” (i.e. the number of ways to configure n |’s

and K ?’s in a lineup).

We now wish to determine γs. Let the ith row vector of Û be denoted ui. Define the

row vector ui,s to be the row vector consisting of sj copies of the jth element of ui. For

example, if u1 = (u11 u12 u13) and s = (2, 1, 1) then u1,s = (u11 u11 u12 u13). We then

define the matrix Ûk,s to be the matrix consisting of ki copies of the row vector ui,s. For

example, if k = (1, 0, 3) and s is as before, then,

Ûk,s =



u1,s

u3,s

u3,s

u3,s


=



u11 u11 u12 u13

u31 u31 u32 u33

u31 u31 u32 u33

u31 u31 u32 u33


. (2.7)

We claim that, for the input configuration k and output configuration s, the amplitude

of the state |s〉 is equal to the permanent of Ûk,s,

γs = perm(Ûk,s). (2.8)

A proof of this fact can be found in [71]. Note that in the case that the input and output

states consist of only single photon Fock states, Ûk,s is simply a submatrix of Û .

Now that we have made the connection of matrix permanents to state amplitudes, we

wish to turn our attention to the computational complexity of computing permanents in

general. This is relevant to our attempt at simulating BosonSampling because, from the

state amplitudes, we can immediately infer the probability distribution P (Û). If we cannot

easily compute these amplitudes, then we must seek another way of trying to produce

P (Û).
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A common way to compute the determinant that works analogously for the permanent

is the method of Laplace decomposition; one can write the entire permanent of M as

a sum of permanents of sub-matrices multiplied by elements of one row or column of M .

Specifically, if M ′
i,j is the submatrix of M generated by deleting the ith row and jth column

of M , then for any i ∈ {1, . . . , n},

perm(M) =
n∑
j=1

mi,j · perm(M ′
i,j). (2.9)

Using the Laplace decomposition, we trade computing the permanent of one n× n matrix

to computing n permanents of (n − 1) × (n − 1) matrices. It is easy to see that such a

decomposition is in general inefficient to compute, because each step reducing the matrix

size has a cost of the size of the matrix. We would need at least n! steps to compute in

this way.

A reader familiar with linear algebra may recall another way of computing determinants—

the method of Gaussian elimination. This technique involves using elementary row oper-

ations to reduce M to row-echelon form, at which point the diagonal is the only non-zero

term. This method is indeed much more efficient—it can be solved with only O(n3) number

of steps. However, Gaussian elimination relies on the multiplicative property of determi-

nants that is not shared by permanents, and hence one cannot use this technique here.

Interestingly, if one replaced the bosonic Fock states in the statement of BosonSampling

with fermionic Fock states (unsurprisingly, this problem is called FermionSampling),

the state amplitudes γs correspond to a determinant of the submatrix Ûk,s. It is not so

surprising, then, that it can be shown FermionSampling ∈ P [1].

In hopes of more easily classifying the permanent problem, one might consider a simpli-

fication; suppose the entries of the matrix M take on only binary values, mij ∈ {0, 1}. Does

perm(M) now admit an efficient classical algorithm? The answer is somewhat nuanced.

To get to the bottom of this question, we first define a new complexity class.
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#P: Let Z ∈ NP. The functional problem Z ′ is in the complexity class #P if, for

an instance of Z, Z ′ outputs the number of satisfying assignments of that instance.

Let us clarify some of the language used in this definition. Many NP problems take

the form of a satisfiability clause—for example, 3SAT (an NP-complete problem) asks

if a particular kind of boolean string has an assignment of variables such that the string

evaluates to TRUE (called a satisfying assignment). The corresponding #P problem would

then be, how many satisfying assignments does an instance of 3SAT have? It is trivial to

see that NP ⊂ #P, since if you can count the number of assignments of an NP problem,

then you know whether it has no satisfying assignments (a NO-instance) or at least one

satisfying assignment (a YES-instance).

It was proven by Valiant in 1979 (in the same paper in which #P was defined) that

the permanent of a matrix with only binary entries is in fact #P-complete [81]. This is a

somewhat shocking result, especially when combined with a later development of Toda in

1991 [80]. His theorem (later earning him the Godel prize in 1998) shows that PH ⊂ P#P,

which has the shocking implication that a classical computer with access to an oracle for

finding binary permanents would contain the entire polynomial hierarchy. This should

give the reader a sense of how difficult #P problems are expected to be, and thus how

surprisingly hard even a simple case of computing permanents may be (it should be noted

that there is an efficient way of transforming an integer matrix of a corresponding matrix

with only {0,1} entries that has the same permanent).

The result changes quite dramatically when one considers an approximation of perm(M).

It was shown in Ref. [44] that an efficient approximation algorithm exists for matrices with

non-negative real entries. Since the BosonSampling problem involves the permanent of

complex-valued entries, a natural question is whether this result could be extended to such

matrices. In fact, this question is addressed in the same paper, where it is stated that if

such an approximation algorithm did exist for matrices with even a single negative entry, it
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could be used to compute the exact permanent of binary matrices, thereby implying BPP

= #P, an even stronger statement than P = NP.

The existence of an efficient approximation algorithm for non-negative entries has an

interesting implication for “classical” BosonSampling. If the matrix Û represents a clas-

sical probability distribution (which must have strictly non-negative entries, corresponding

to probability amplitudes rather than state amplitudes), then the output can be efficiently

approximated. This is again evidence that quantum systems are fundamentally different

from classical systems, and gives a glimpse at what kind of advantage post-classical com-

puters might provide.

Are we able to conclude then, from the hardness of calculating permanents, that the

BosonSampling problem is classically intractable? There are two subtle points to con-

sider. The first is that our goal is to approximate the probability distribution P (Û), and

that the probability of a measurement finding the state |s〉 is equal to |γs|2, not γs directly.

It may be that the former is fundamentally easier to compute than the latter, and thus

there may be a way to produce this approximation without computing permanents at all.

Indeed, the ability to compute state amplitudes or probabilities is a sufficient condition to

efficiently approximate P (Û), it is not a necessary condition.

Another consideration is a kind of converse of the previous one; would finding P (Û)

allow one to compute γs? From the definition of BosonSampling, the reader might

have guessed that our intention was always to implement the network itself (which can be

done efficiently using the network of Figure 2.1). Does this mean that we could reverse-

engineer this as a method for approximating |γs|2 or even γs directly? Is BosonSampling

a permanent-finding machine? These questions can be restated in some form as complexity

theoretic questions. We can see that BosonSampling ∈ #P, but is BosonSampling

#P-complete? Or does there exist a smaller class C such that BosonSampling ∈ C but

C ( #P? We will answer most of these questions throughout the following sections; we

first need some additional tools at our disposal, which are introduced where appropriate.
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2.2 Exact Case

We now give a formal statement of the definition of BosonSampling, which is taken

directly from Ref. [3]:

Definition (BosonSampling, formal):

The input to the problem will be an m × n column-orthonormal matrix A ∈ Um,n.

Given A, together with a basis state S ∈ Φm,n—that is, a list S = (s1, ..., sm) of

nonnegative integers, satisfying s1 + · · · + sm = n—let AS be the n × n matrix

obtained by taking si copies of the ith row of A, for all i ∈ [m]. Let DA be the

probability distribution over Φm,n defined as follows:

Pr[S]DA =
|perm(As)|2
s1! . . . sm!

(2.10)

The goal of BosonSampling is to sample either exactly or approximately from DA,

given A as input.

Throughout this thesis, we generally refer to the matrix A as Û , but for this section we

keep the notation consistent with the above definition from Ref. [3] for clarity. We also

require the definition of a BosonSampling oracle, again from Ref. [3]:

Definition (BosonSampling oracle):

Let O be an oracle that takes as input a string r ∈ {0, 1}poly(n), an m × n matrix

A ∈ Um,n, and an error bound ε > 0 encoded as 01/ε. Also, let DO(A, ε) be the

distribution over inputs O if A and ε are fixed but r is uniformly random. We call O

an exact BosonSampling oracle if DO(A, ε) = DA for all A ∈ Um,n. Also, we call

O an approximate BosonSampling oracle if ‖DO(A, ε)−DA‖ ≤ ε for all A ∈ Um,n
and ε > 0.

Note that the norm in the above definition is the total variation distance between two

probability distributions P and Q over a finite set X defined by ‖P−Q‖ = 1
2

∑
x∈X |P (x)−
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Q(x)|. In this section, we will concern ourselves with the problem of being able to exactly

sample from the distribution DA, referred to as exact BosonSampling. Our goal is not

to prove the results of AA, but to give general insight into the problem. We separate this

section from the approximate case because the two problems seem to admit very different

complexities; the exact proof is straightforward, while the approximate case requires a

deeper analysis. Because BosonSampling has so many intricate properties, much can be

learned from both.

We will first state the result from Ref. [3] (summarized):

Theorem (Exact BosonSampling): The exact BosonSampling problem is not

efficiently solvable by a classical computer, unless P#P = BPPNP and the poly-

nomial hierarchy collapses to the third level. More generally, let O be an exact

BosonSampling oracle. Then P#P ⊆ BPPNPO .

Before we talk about proving this theorem, let us review why P#P = BPPNP collapses

the polynomial hierarchy. In the previous section, we saw Toda’s theorem which states

PH ⊆ P#P [80]. Looking back at Figure 1.2, we can see that NPNP is the third level of

the polynomial hierarchy. Since BPPNP ⊆ NPNP as a result of BPP ⊆ NP, this would

mean that together with Toda’s theorem,

PH ⊆ P#P ⊆ NPNP ⊆ PH. (2.11)

Thus PH = NPNP, which by definition is a collapse of the polynomial hierarchy to the

third level.

The theorem above is proven in two ways by AA. The first is by showing that ap-

proximating |γs|2 to within a multiplicative constant is #P-hard, and furthermore that an

efficient classical BosonSampling simulator would allow one to compute precisely that

in the class BPPNP. Thus, P#P ⊆ BPPNPO = BPPNP since NPBPP = NP. The

details of this proof can of course be found in Ref. [3], which are mostly mathematical in
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form. Instead of discussing them in detail, we would rather like to give our attention to the

second proof method, which comprises most of this remaining section. This second method

is not only much simpler, but utilizes the powerful complexity tool of postselection, and

deals more closely with linear optics and quantum computing as a whole.

First, we would like to discuss the role of postselection. We will do so informally

here, as a full description is lengthy but does not add much to the reader’s intuition. A

complexity class C with postselection (generally denoted by PostC) allows one to draw

on a particular subset of data, which (though only polynomial in size) could have taken

an exponential amount of time to generate. A very straightforward example of the power

of postselection comes from the class PostBPP, which is easily seen to contain NP. A

PostBPP machine can simply guess the answer to an NP problem, and then check to see

if it is true. The machine then postselects only on accurate guesses. Clearly, this is not

an efficient approach for a classical computer, since it may take an exponential number of

guesses before a correct one is chosen.

Earlier, we briefly mentioned the LOQC model and the fact that linear optics with

adaptive measurements was universal for quantum computation, BQP. Along the way,

KLM also showed that the capabilities of a postselected linear optical computer, Post-

BosonP, was also equivalent to postselected universal quantum computing PostBQP.

Together with some other previously known results, AA shows the following chain (with

their particular contribution indicated), assuming that an exact BosonSampling oracle

O is classically efficient:

PP = PostBQP = PostBosonP
AA

⊆ PostBPPO ⊆ BPPNPO . (2.12)

The reader can consult [3] for the definitions of these other classes, where the containment

shown above follows almost immediately. Importantly, the containment PP ⊆ BPPNPO

is also known to collapse the polynomial hierarchy via Toda’s theorem.
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2.3 Approximate Case

Having discussed the proofs of the previous section regarding exact BosonSampling,

one may wonder why we bother discussing the approximate result. The reason is two-fold.

First, as we saw in Section 2.1, there exist efficient algorithms for approximating certain

kinds of permanents, whereas the exact permanent problem remains #P-complete. It

would be poor form to base our belief that BosonSampling is classically intractable on

the results of the exact case alone, since this may be a kind of mathematical artifact or

singularity resulting from demanding an exact algorithm. This is especially true because,

two, any physical implementation of a BosonSampling device would only produce an

approximation of the sampling distribution DA since one could never hope to implement

the matrix A with infinite, error-free precision.

As a disclaimer for this section, note that the result of AA for the approximate

case is not a proof. Of course, the earlier result was in some sense not a proof that

BosonSampling /∈ BPP, but rather a dichotomy theorem suggesting that it is far

more likely that BosonSampling /∈ BPP than the alternative. Here, however, the

dichotomy theorem relies on two (strong) conjectures about permanents—the permanent

anti-concentration conjecture (PACC) and permanent of Gaussians conjecture (PGC). Pro-

vided these hold, then we have a proof of a similar form as the exact case.

We now state the relevant definition and result from Ref. [3]:

Problem (|GPE|2±): Given as input a matrix X ∈ N (0, 1)n×nC of i.i.d. Gaussians,

together with error bounds ε, δ > 0, estimate |perm(X)|2 to within additive error

±ε · n!, with probability at least 1− δ over X, in poly(n, 1/ε, 1/δ) time.

Theorem (Approximate BosonSampling): Let DA be the probability distribution

sampled by a boson computer A. Suppose there exists a classical algorithm C that

takes as input a description of A as well as an error bound ε, and that samples from

a probability distribution D′A such that ‖D′A −DA‖ ≤ ε in poly(|A|, 1/ε) time. Then
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the |GPE|2± problem is solvable in BPPNP. Indeed, if we treat C as a black box,

then |GPE|2± ∈ BPPNPC .

Again, we will not explicitly prove the statement, but discuss a general proof strategy.

The method here is quite clever. Essentially, one can hide a Gaussian permanent that they

want to compute randomly inside of A as a submatrix without dramatically changing the

sampling probabilities. Of course, one might guess that the size of the hidden submatrix

must be relatively small compared to A. Hence, there is a price one must pay in terms of

the size of the matrix. That is, to be sure that an instance of BosonSampling is truly

post-classical, then we need n ≤ m1/6, and the matrix A should be chosen randomly (what

is precisely meant by “random” we will discuss momentarily).

The requirement n ≤ m1/6 is a restriction coming from the Haar-Unitary Hiding The-

orem, but AA believe that a better analysis can show the restriction to be looser, likely

up to m = O(n2) [3]. This is distinct from another issue where m must be bounded from

below by m = Ω(n2) to ensure that the probability of detecting more than a single photon

in a single output port is negligible. The scaling responsible for this second condition is a

result of the bosonic birthday paradox, which gets its name from the famously counterintu-

itive answer to the question: how many people need to be in a room such that there is a

50% probability of at least two of them sharing the same birthday (assuming birthdays are

uniformly distributed)? While generally one might guess this occurs around 100 people,

or perhaps as low as 50, few expect the answer to be as low as 23. The analogy here is

simple— there are m possible “birthday” output modes for each of the n input photons,

and we wish to avoid any two photons exiting through the same mode.

A vital assumption for these theorems is that the matrix A is chosen randomly. How-

ever, the question of how to choose a random unitary matrix is not immediately obvious.

One way to generate a random matrix is by considering a general factored form of a unitary

U(n) in terms of n(n − 1)/2 rotations on a two dimensional subspace. There is a natural

mapping of these rotations onto the Reck decomposition of beam splitters [66, 21], which
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individually can be generated by choosing two variables η ∈ [0, 1], τ ∈ [0, 2π) uniformly at

random, corresponding to the transmissivity of the beam splitter and an additional phase.

One should be careful to check that this is truly a volume invariant way to randomly choose

over U(n) in the sense that each unitary matrix should have equal measure over the set. As

there is a unique such measure over U(n)—the Haar measure [8]—one can establish that

indeed this approach is Haar-random.

Importantly, the restrictions on the number of modes, total number of photons, and

randomness do not necessarily mean that sampling is easy otherwise. It only implies that

the proofs from Ref. [3] do not apply. It may be that a more general case of BosonSam-

pling remains hard even for m = O(n), for example, or specific sets of unitaries. Still,

until the result is strengthened, experimental implementations of BosonSampling are

likely to maintain these assumptions.

2.4 Verification

In this section, we discuss a major obstacle toward BosonSampling being imple-

mented as a post-classical computational problem. The motivation of the BosonSam-

pling problem is to show that a quantum computer is capable of performing a task that is

intractable for a classical computer. The trouble here is that the output of a quantum de-

vice that implements BosonSampling is a probability distribution based on the unknown

permanents of submatrices of Û . Because there is no known classical way to simulate

BosonSampling, then how can we be sure that the device’s output is correctly sampling

from Û? For example, suppose an optical interferometer does not properly synchronize

the input photons from two different modes to arrive at a beam splitter simultaneously.

Because the photons are temporally mismatched, no interference would occur at the beam

splitter, and this would change the output distribution of the device. If we instead had a

result showing that BosonSampling could solve NP problems, for example, this would

be easy (to be clear, it is not expected that NP ⊆ BQP). We could simply check whether
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the solution given by the machine is a satisfying assignment or not. Is there, then, a way

to classically verify that the output of a BosonSampling device is accurate?

Shortly after the BosonSampling problem was introduced, it was suspected that the

output distribution would be so diffuse relative to the entire state space that one could not

distinguish the output (in a polynomial number of runs) from even the uniform distribution

[35]. It was shown in a followup by AA [1] that these arguments were incomplete, by

producing an efficient algorithm to distinguish between the two. Still, this illustrates an

important point; we can hope to compare the output distribution to some other distribution

in hopes of disproving some hypothesis about what the machine may be doing. This may

be an entirely reasonable way to verify if one can narrow down the types of error to a

specific type. Of course, more must be known about the kind of distribution that an errant

model might produce (e.g. for photons of differing spectral structure, see Ref. [68]).

Could there be an algorithm for verifying BosonSampling under arbitrary assump-

tions? It seems unlikely by the nature of the problem, and in fact is impossible for any

fixed polynomial sized circuit. That is, for any k, one can efficiently create a distribution

which is indistinguishable from BosonSampling, when limited to nk classical operations

[1]. Still, recent advancements have shown ways to verify BosonSampling in some very

general and practical settings which experimentalists (at least in the realm of quantum

optics) find most problematic. One such example is given in Ref. [75], where a protocol is

developed for distinguishing a BosonSampling distribution from one where the photons

are in some way distinguishable (and hence do not exhibit bosonic interference). So while

verification does remain an open problem, it seems that the practical loopholes are rapidly

shrinking to the point that only pathological errors might produce a distribution that is

effectively unverifiable.
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Chapter 3
Boson Sampling With Other States
of Light

In this chapter, we will discuss other linear optical implementations of BosonSam-

pling. First, we consider the states that differ from Fock states by a displacement

operation—namely, displaced Fock states and photon-added coherent states. It is easy to

show that the sampling problem associated with displaced single-photon Fock states and a

displaced photon number detection scheme is in the same complexity class as boson sam-

pling for all values of displacement. On the other hand, we show that the sampling problem

associated with single-photon-added coherent states admits a transition from BosonSam-

pling-complexity in the small α regime to a trivial-to-simulate case for the large α regime.

This may indicate a complexity phase transition that has been seen in other problems

thought to be outside of P [30].

In the second model, we show that an analogous procedure implements the same prob-

lem, using photon-added or -subtracted squeezed vacuum states (with arbitrary squeezing),

where sampling at the output is performed via parity measurements. The equivalence is

exact and independent of the squeezing parameter, and hence provides an entire class of

new quantum states of light in the same complexity class as boson sampling. This model

can even be viewed as a generalization of BosonSampling, since in the limit as ξ → 0,

the architecture reduces to that of BosonSampling.

3.1 Photon-Added Coherent States

1Here, we wish to investigate whether there are quantum states of light—other than

Fock states—which when evolved through a linear-optical circuit and sampled using a suit-

1This section previously appeared as: K. P. Seshadreesan, J. P. Olson, K. R. Motes, P. P. Rohde, and J.
P. Dowling. Boson sampling with displaced single-photon Fock states versus single-photon-added coherent
states: The quantum-classical divide and computational-complexity transitions in linear optics. Phys. Rev.
A, 91:022334, 2015. It is reprinted by permission of APS.

40



able detection strategy, also implement likely classically hard problems similar to Boson-

Sampling. This section summaries the results of Ref. [74].

Other recent results have shown that, in the case of Gaussian states (most generally

displaced, squeezed, thermal states), sampling in the photon number basis can be just

as hard as BosonSampling [55]. To further elaborate, while the sampling of thermal

states can be simulated efficiently by a classical algorithm [64], it has been shown that

the sampling of squeezed vacuum states is likely hard to efficiently simulate classically at

least in some special cases [45, 55]. Among non-Gaussian inputs (other than Fock states),

generalized cat states—which are arbitrary superpositions of coherent states—with photon

number detection have been shown to likely implement computationally hard sampling

problems similar to BosonSampling [69].

Here, we study the linear optics-based sampling problems associated with the quantum

states of light that differ from Fock states by the displacement operater. Namely, these are

displaced Fock states and photon-added coherent states, together with a displaced photon

number detection. Recall that the displacement operator (see Sec. 1.2.2) can be written

as,

D̂(α) = exp
(
αâ† − α∗â

)
, (3.1)

where α is a complex amplitude that quantifies displacement in phase space, and â† is

the photon creation operator for a single mode. The displaced single-photon Fock state

(DSPFS) is the state D̂(α)â†|0〉, while the single-photon-added coherent state (SPACS)

has the reverse order of operators, â†D̂(α)|0〉 (note that the latter state is not normalized).

Although these input states are in practice more difficult to prepare than the single-photon

Fock state, the associated sampling problems allow us to demonstrate a transition in the

computational complexity of linear optics. It is easy to show that the DSPFS sampling

problem (which we will refer to here as DisplacedSampling) is in the same complexity

class as BosonSampling for any displacement α. However, the SPACS, differing only

in the ordering of the operators, presents an interesting case—we show that the sampling
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problem with SPACS is just as hard as BosonSampling when the input coherent ampli-

tudes are sufficiently small (subject to a bound that we derive explicitly), but transitions

into a problem that is easy to simulate classically in the limit of large input coherent

amplitudes.

3.1.1 Sampling Displaced Fock states

Consider the DSPFS in place of the single-photon Fock states in Eq. (2.1) as inputs to

a linear-optical interferometer. That is, consider an overall input state of the form,

|ψin〉DSPFS =

(
n∏
i=1

D̂i

(
α(i)
)
â†i

)
|01, . . . , 0m〉 , (3.2)

where D̂i

(
α(i)
)

is the displacement operator of the ith mode, and α(i) is the complex

coherent amplitude for the displacement. A unitary operation Û then transforms the state

into |ψout〉DSPFS,

= Û

(
n∏
i=1

D̂i

(
α(i)
)
â†i

)
Û †Û |01, . . . , 0m〉 ,

= Û

(
n∏
i=1

D̂i

(
α(i)
))

Û †Û

(
n∏
k=1

â†k

)
Û † |01, . . . , 0m〉

=
n∏
i=1

(
ÛD̂i

(
α(i)
)
Û †
) n∏
k=1

(
Û â†kÛ

†
)
|01, . . . , 0m〉

=

(
m∏
j=1

D̂j

(
β(j)
))(∑

S

γS(b̂†1)s1(b̂†2)s2 . . . (b̂†m)sm

)
|01, . . . , 0m〉 , (3.3)

where β(j) =
∑

i Ui,jα
(i) is the new displacement amplitude in the jth mode, b̂†k is the

photon-creation operator of the kth mode, and sk is the number of photons in the kth

mode, associated with configuration S at the output such that
∑m

k=1 sk = n for each S.

In deriving Eq. (3.3), we have used the following: Û †Û = I, Û |01, . . . , 0m〉 = |01, . . . , 0m〉,

Eq. (2.5), and the fact that the action of a unitary on a tensor product of coherent states

results in another tensor product of coherent states as shown in Appendix A of [69]. The
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final expression is nothing but a displaced version of the usual BosonSampling output

state as given in Eq. (2.2).

For any unitary operator Û , the new complex displacement amplitudes β(j) can be ef-

ficiently computed. Since D̂(−α)D̂(α) = I, a counter-displacement with amplitudes −β(j)

could be applied to the m output modes. The displacement operation could be performed

using unbalanced homodyning [4, 85]. Upon such a displacement operation, the sampling

problem associated with the output state reduces to the BosonSampling output, which

can subsequently be accessed using coincidence photon number detection (CPND). Thus,

DisplacedSampling with our modified measurement scheme at the output comprising of

an inverse displacement followed by CPND has an identical output distribution to Boson-

Sampling, and hence clearly falls into the same complexity class. While this observation

may appear trivial—since a product of displacement operators commutes through a linear-

optical network to yield another product of displacement operators—it demonstrates that

an entire class of quantum states of light yield a problem of equal complexity to Boson-

Sampling, with a suitable adaptation of the measurement scheme.

3.1.2 Sampling Photon-Added Coherent States

Now consider an input state comprising SPACS instead of the DSPFS. These states

differ from the DSPFS only in the ordering of the operators. However, since the displace-

ment operator of Eq. (3.1) does not commute with the photon creation operator â†, the

SPACS and the DSPFS are distinctly different states. We will refer to the sampling problem

described below as PACSampling.

A k-photon-added coherent state may be written as,

|α, k〉 = Nk(â†)k|α〉, (3.4)
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where α is the complex coherent amplitude and the normalization is,

Nk =
1√

k!Lk(−|α|2)
, (3.5)

Lk being the Laguerre polynomial of order k. Such states were first discussed by Agarwal

& Tara [2]. The SPACS we consider here thus corresponds to |α, 1〉 of Eq. (3.4).

Consider a scheme where a single photon (e.g. prepared via heralded spontaneous

parametric down-conversion) is mixed with a coherent state on a highly reflective beam

splitter (Figure 3.1). When a single-photon detector placed in the transmitted mode detects

vacuum, we know that the incident photon has been emitted into the other output port,

and thus a SPACS has been heralded [19, 20, 89, 90].

The SPACSs have been studied extensively in the context of demonstrating the quantum-

classical transition, since they allow for a seamless interpolation between the highly non-

classical Fock state |1〉 (α → 0) and a highly classical coherent state |α〉 (|α| � 1) [89].

The Wigner function of a SPACS can be expressed as [2],

W (z) =
2(|2z − α|2 − 1)

π(1 + |α|2)
e−2|z−α|2 , (3.6)

where z = x+ iy is the phase-space complex variable, and α the coherent amplitude in the

Figure 3.1: When a coherent state and a single photon state are mixed on a highly reflective
beamsplitter, and no photon is detected in the transmitted mode, a SPACS is heralded in
the transmitted mode.
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state. Figure 3.2 shows the Wigner functions of a SPACS and a coherent state. The former

attains negative values at points close to the origin in phase space, which is a demonstration

of the nonclassical nature of the state. Figure 3.3 shows a 2-d slice of the Wigner function

of a SPACS across the major axis, as a function of the coherent amplitude |α|. It can be

seen that the Wigner function loses its negativity as α increases and tends towards being

a Gaussian state.

Figure 3.2: Wigner function of (left) a SPACS, (right) a coherent state, with amplitude
|α|2 = 0.01. The former is seen to take negative values close to the phase-space origin,
while that of the latter is strictly positive everywhere. W (0) is at the center of the plane.
Sampling W (0) would distinguish between a coherent state and a SPACS.
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Figure 3.3: 2-d slices of the Wigner function of SPACS across its major axis, as a function
of the coherent amplitude |α|. We see that the negativity vanishes, and the shape tends
towards being a Gaussian for increasing values of |α|.

The SPACS-based input that we consider to a linear-optical sampling device can be

written as,

|ψin〉SPACS = N
n∏
i=1

â†iD̂i

(
α(i)
)
|01, . . . , 0m〉 ,

N =
n∏
j=1

1√
1 + |α(j)|2

. (3.7)

where α(i) represents the complex coherent amplitude in the ith mode and N is the overall

normalization factor. That is, the input to the first nmodes are SPACS, while the remaining

m − n modes are initiated in the vacuum state. A unitary operation Û then transforms

the state into,

|ψout〉SPACS = Û |ψin〉SPACS

= N Û
(

n∏
i=1

â†iD̂i

(
α(i)
))

Û †Û |01, . . . , 0m〉 . (3.8)
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This state can be alternatively written as,

= N Û
{

n∏
i=1

(
D̂i

(
α(i)
)
â†i + α(i)∗D̂i

(
α(i)
))}

Û † |01, . . . , 0m〉 , (3.9)

where we have used the commutation relation between the displacement operator and the

photon-creation operator, namely,

[
a†, D̂(α)

]
= α∗D̂(α). (3.10)

We can further simplify the state as,

= N Û
n∏

i′=1

D̂i′

(
α(i′)

)
Û †Û

n∏
i=1

(
â†i + α(i)∗

)
Û † |01, . . . , 0m〉 ,

= N
n∏

i′=1

(
ÛD̂i′

(
α(i′)

)
Û †
) n∏
i=1

(
Û â†i Û

† + α(i)∗
)
|01, . . . , 0m〉

= N
m∏
j=1

D̂j

(
β(j)
) n∏
i=1

(
Û â†i Û

† + α(i)∗
)
|01, . . . , 0m〉 , (3.11)

where β(j) =
∑

i′ Ui′,jα
(i′) is the new displacement amplitude in the jth mode. Similar

to the case of DSPFS sampling, we can now apply a counter-displacement operation of

amplitude
∏m

j=1 D̂j

(
−β(j)

)
(again, this can be computed efficiently), so that the output

state reduces to,

N
n∏
i=1

(
Û â†i Û

† + α(i)∗
)
|01, . . . , 0m〉 . (3.12)

Let us denote the state
∏n

i=1

(
Û â†i Û

†
)
|01, . . . , 0m〉, which corresponds to the usual

BosonSampling evolution as |AA〉 (in dedication to Arkhipov and Aaronson). Further,

for simplicity, let us choose all the input coherent amplitudes to be equal to α. Then, the
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output state in Eq. (3.12) can be written as,

N ′
(
n−1∑
i=0

α∗n−i
(
ÛÂ(i)Û †

)
|01, . . . , 0m〉+ |AA〉

)
, (3.13)

where Â(i) is defined for i ∈ {0, 1, · · · , n} as,

Â(i) ≡


1

i!(n− i)!
∑
σ∈Sn

i∏
k=1

â†σ(k), if i ≥ 1

id, if i = 0,

(3.14)

Sn being the symmetric group of degree n, id being the identity operator, and N ′ =

1/(
√

1 + |α|2)n. Now, if we perform photon number detection at the output, the set of

all possible outcomes includes total photon numbers (from across all the m output modes)

ranging from zero to n. Detection events consisting of a total photon number of n would

correspond to sampling of the |AA〉 term from the superposition. The probability of de-

tecting a total of i photons at the output can be written as,

Pi = N ′2
(
n

i

)(
|α|2
)n−i

. (3.15)

This is because there are
(
n
i

)
terms in Â(i), each with a weight of N ′2 (|α|2)

n−i
.

We now ask the following question: how should |α| scale in terms of n—the total

number of SPACS in the input (representative of the size of the sampling problem) so that

the post-selection probability of detecting n photons at the output of the interferometer

scales inverse polynomially in n. This is a relevant question to ask, because such a scaling

would guarantee the sufficiency of a polynomial number of measurements in order to sample

the desired AA term in the output. For simplicity, let us consider poly(n) = nk, where

k ∈ Z+ (the set of positive integers). Solving for |α| that satisfies the above scaling

48



requirement in the limit of a large n, we have,

1

(1 + |α|2)n
≥ 1

poly(n)

⇒ 1 + |α|2 ≤ (poly(n))1/n

≤ 1 + ε(n), (3.16)

where the third inequality is due to the fact that for all k ∈ Z+,

lim
n→∞

(nk)1/n = lim
n→∞

e
k
n

logn

= lim
n→∞

e
k
n = e0+ = 1 + ε(n). (3.17)

From Eq. (3.16), we have,

|α|2 ≤ ε(n), (3.18)

and the large-n expansion,

e
k
n

logn = 1 +
k

n
log n+O

( 1

n2

)
, (3.19)

tells us that ε(n) ≥ (k/n) log n. The chain of inequalities,

ε(n) ≥ k log n

n
≥ 1

n
(3.20)

thus implies |α|2 ≤ 1/n is a sufficient condition on |α| to ensure that the post-selection

probability of the AA term scales inverse polynomially in n. For |α|2 = 1/n, in the limit

of large n, we find that the probability of the term |AA〉 being detected at the output is,

Pn = lim
n→∞

1

(1 + 1
n
)n

=
1

e
≈ 36%. (3.21)
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Further, the probability Pn converges to one when |α|2 = 1/n2; i.e., the considered sam-

pling problem with SPACS inputs reduces to BosonSampling without the need for post-

selection. This result is consistent with the original result that BosonSampling is robust

against small amounts of noise.

On the other hand, we could also ask the question: how should |α| scale, so that the

photon number sampling almost always gives the m-mode vacuum. For |α|2 = n2, we find

that the probability of the m-mode vacuum term being detected at the output is,

P0 = lim
n→∞

(n2)
n

(1 + n2)n

= lim
n→∞

1

(1 + 1
n2 )n

= 1. (3.22)

That is, the considered sampling problem with SPACS inputs becomes classically simulable

when |α|2 scales as n2, or larger, in the sense that it always results in the detection of the

m-mode vacuum at the output.

Therefore, we see that the computational complexity of sampling the SPACS goes

from being just as hard as BosonSampling for coherent amplitudes |α|2 ≤ 1/n, to being

classically simulable when |α|2 ≥ n2, where n is the total number of SPACS inputs.

As discussed in Sec. 3.1.2, the SPACS is known to exhibit a quantum-classical transition

in terms of the negativity of its Wigner function when the coherent amplitude is changed

from small to large values. The results presented in this work indicate that PACSampling,

linear optics and a displaced CPND similarly demonstrates a transition in computational

complexity. The complexity goes from being likely hard to simulate classically for small

coherent amplitudes (similar to BosonSampling), to being easy to simulate classically

for large coherent amplitudes. This result is also consistent with a conjecture presented in

Ref. [28] that computational complexity relates to the negativity of the Wigner function.

To summarize, a central open question is what class of quantum states of light yield

linear-optical sampling problems that are likely hard to simulate efficiently on a classical
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computer. Here we have partially elucidated this question by considering two closely related

classes of quantum states. We studied the linear-optical sampling of the DSPFS and the

SPACS for a displaced CPND. We showed that while DisplacedSampling remains likely

hard to simulate efficiently for all values of the displacement, PACSampling transitions

from being likely hard to simulate efficiently for sufficiently small input coherent amplitudes

to being efficiently simulable in the limit of large coherent amplitudes.

3.2 Photon-Added or -Subtracted Squeezed Vacuum

2Here we will demonstrate that, in general, linear optical sampling using photon-added

or -subtracted squeezed vacuum (PASSV) states and parity measurements yields a com-

putational problem of equal complexity to BosonSampling in all parameter regimes (we

will call this problem PASSVSampling). Importantly, because the mapping is exact, the

robustness result for approximate sampling also holds. Note that experimental implemen-

tation of PASSVSampling is not the focus of our result, as doing so is more difficult than

BosonSampling. Our goal is to provide clarity on the theory of classifying the sampling

complexity of quantum states. In particular, we wish to demonstrate that Fock states are

not unique—on the contrary, there are a plethora of other quantum states of light which

yield sampling problems with similar complexity to BosonSampling. Nevertheless, we

believe it is still important to show that such a device is physically realizable.

3.2.1 PASSV Sampling Model

In order to show that the complexity of BosonSampling also extends to PASSVSam-

pling, we prove that it implements the same logical problem, i.e. that the output of the

device corresponds to the same matrix permanent sampling problem as in BosonSam-

pling. The advantage of this method is that it allows us to avoid the very lengthy analysis

comprising the original complexity proof, yet we can still apply all of the same results.

However, one must be careful to show equivalence throughout the entire problem.

2This section previously appeared as: J. P. Olson, K. P. Seshadreesan, K. R. Motes, P. P. Rohde,
and J. P. Dowling. Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same
complexity class as boson sampling. Phys. Rev. A, 91:022317, 2015. It is reprinted by permission of APS.
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Both models employ a similar general setup; m optical input modes are fed into a

passive, linear interferometer and the resulting output is measured in each mode, with the

joint distribution of the measurement constituting one sample. However, the details differ

in each step (which we will classify by input, evolution, output, and measurement).

To carefully guide the reader, we will first provide the details of each step of both models

head-to-head, discussing the relevant differences. We will then proceed to show that the two

models implement the same sampling problem, and thus exhibit the same computational

complexity. For consistency and simplicity, we will consider the case of photon-added states

throughout the comparison.

Input: The BosonSampling model begins by preparing the first n modes of a passive

linear optical interferometer with single photons and the remaining m− n modes with

vacuum states, where m = Ω(n2) (i.e. m is asymptotically bounded below by some positive

constant times n2). As conjectured by AA, this requirement ensures that the probability

of more than one photon arriving at a given output mode is small (sometimes referred to

as the ‘bosonic birthday paradox’). A stronger requirement of m = Ω(n6) will suffice if one

does not wish to adopt this additional conjecture. The input state is thus,

|ψ〉AA
in = |11, . . . , 1n, 0n+1, . . . , 0m〉

= â†1 . . . â
†
n |01, . . . , 0m〉 , (3.23)

where, as usual, subscripts denote mode number and â†i is the photonic creation operator

on the ith mode.

In contrast, for PASSV boson sampling we prepare the first n modes of a similar

interferometer with PASSV states and the remaining m− n modes with squeezed vacuum

(SV) states. We let the squeezing parameter ξ be arbitrary, but ensure each mode has the
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same amount of squeezing. In the case of photon-added states, the input state is thus,

|ψ〉SV
in = â†1Ŝ1(ξ) . . . â†nŜn(ξ)Ŝn+1(ξ) . . . Ŝm(ξ) |01, . . . , 0m〉

= â†1 . . . â
†
n |ξ1, . . . , ξm〉 , (3.24)

where we have abbreviated Ŝi(ξ) |0i〉 = |ξi〉 and again the subscript indicates mode number

(not separate variables). The state in Eq. (3.24) is not normalized, but this can be corrected

by considering the state N |ψ〉SV
in where,

N =
[√

1 + sinh2(ξ)
]−n

. (3.25)

Since the normalization does not affect our result, we leave it out of subsequent equations

for simplicity. Recall from Sec. 1.2.2,

Ŝ(ξ) = exp

[
1

2
(ξ∗â2 − ξâ†2)

]
, (3.26)

is the squeezing operator and â† and â are the photon creation and annihilation operators

respectively. In the Fock basis, if ξ = reiθ, then Ŝ(ξ) |0〉 = |ξ〉 has the representation [33],

|ξ〉 =
1√

cosh(r)

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm(r) |2m〉 , (3.27)

and thus the SV state contains only even photon-number terms. From the action of

the creation or annihilation operator, a PASSV state then contains only odd photon-

number terms. In the limit of vanishing squeezing, the SV state approaches the vacuum

state, limξ→0 |ξ〉 = |0〉, and the photon-added SV state approaches the single-photon state,

limξ→0 â
† |ξ〉 = |1〉. Thus, we see that in the limit of vanishing squeezing, the input state

for PASSVSampling reduces to BosonSampling.
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Photon-added SV states may be prepared (similar to the PACS state) by mixing a SV

state (obtained from a degenerate parametric down-converter) with a single-photon state

on a low reflectivity beamsplitter and post-selecting upon detecting the vacuum state in

the reflected mode. Successful post-selection heralds the preparation of the photon-added

SV state in the other mode. Thus, the preparation scheme is non-deterministic, but may be

performed offline via trial-and-error in advance, enabling efficient state preparation. The

preparation scheme is shown in Figure 3.4. Photon-subtracted SV states may be prepared

similarly by sending in a squeezed state and a vacuum state to the inputs and post-selecting

on one photon in the reflected mode.

Figure 3.4: Preparation of a photon-added SV state. A SV state is mixed with a single-
photon state on a low reflectivity beamsplitter. The reflected mode is detected, and upon
measuring the vacuum state we herald the preparation of the photon-added SV state in
the other mode. The process is highly non-deterministic, but can be performed offline in
advance.

Evolution: In both models, the input state is fed into a passive linear optical inter-

ferometer consisting of beamsplitters and phaseshifters, which in general transforms the

creation operators according to the linear map,

Û â†i Û
† →

∑
j

Ui,j â
†
j, (3.28)

where Û is an m×m matrix. For BosonSampling, ÛAA is chosen to be a Haar-random,

unitary matrix.
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Unlike the Fock state model, for PASSV boson sampling we consider an interferometer

consisting of real beamsplitters which implements an orthogonal matrix (also chosen to be

Haar-random). Thus, for Fock state boson sampling ÛAA ∈ SU(m), whereas for PASSV

boson sampling ÛSV ∈ SO(m). Reck et al. showed that for both cases, any m×m unitary

or orthogonal matrix can be implemented with at most O(m2) optical elements, and an

efficient algorithm for finding the decomposition exists [66].

It is important to discuss the complexity of choosing an orthogonal matrix instead of a

unitary because one should be concerned with the possibility of choosing a subset of matri-

ces from SU(m), whose permanent is efficiently simulable by a classical computer. If this

were the case, the result would not be interesting, since the novelty of BosonSampling is

that it simulates a system which is classically intractable. We will later prove (in Sec. 3.2.2)

this is not the case and that, in fact, the associated complexities are equivalent.

Output: The output state for the Fock state model after passing through the inter-

ferometer is thus,

|ψ〉AA
out = ÛAA |ψ〉AA

in

= ÛAA

[
â†1 . . . â

†
n |01, . . . , 0m〉

]
=

[
ÛAA(â†1 . . . â

†
n)Û †AA

]
ÛAA |01, . . . , 0m〉

=
[
ÛAA(â†1 . . . â

†
n)Û †AA

]
|01, . . . , 0m〉 , (3.29)

where the last equality holds because ÛAA |0〉 = |0〉, i.e. ÛAA represents passive optics

elements and hence cannot generate new photons. Since the unitary transforms the creation

operators according to Eq. (3.28), the output of the interferometer can also be represented

as,

|ψ〉AA
out =

∑
S

γS |S1, . . . , Sm〉 , (3.30)

where S is an output configuration of the n photons with Si photons in the ith mode, and γS

is the corresponding amplitude. Note that γS ∝ Per(US), where US is an n× n sub-matrix
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Figure 3.5: (left) The BosonSampling model. We feed an m-mode linear optics interfer-
ometer with n single photons and m− n vacuum states. Following evolution, the state is
sampled via coincidence number-resolved photodetection. (right) The PASSVSampling
model. We prepare n PASSV states and m− n SV states. Following evolution we perform
coincidence parity measurement.

of ÛAA given as a function of the configuration S. The number of distinct configurations is

|S| =
(
n+m− 1

n

)
, (3.31)

which can be easily verified to be the number of ways to configure n indistinguishable

photons into m distinct modes. This expression grows superexponentially with n from the

earlier requirement that m = Ω(n2).

For PASSVSampling, we can use the same technique as in Eq. (3.29), such that the

output state is,

|ψ〉SV
out = ÛSV |ψ〉SV

in

=
[
ÛSV(â†1 . . . â

†
n)Û †SV

]
ÛSV |ξ1, . . . , ξm〉 . (3.32)

It was shown by Jiang et al. [45] that for a pure product state input to a linear optical

network, the output is entangled unless the input is either a tensor product of coherent

states or a tensor product of squeezed states (with the same squeezing), provided that the

56



network does not mix the squeezed and anti-squeezed quadratures. The latter condition is

equivalent to the network comprising real beamsplitters. This condition is satisfied since

ÛSV ∈ SO(m) and thus,

|ψ〉SV
out =

[
ÛSV(â†1 . . . â

†
n)Û †SV

]
|ξ′1, . . . , ξ′m〉 . (3.33)

The leading operator corresponds to a configuration of n creation operators as in Eq. (3.29).

The output for a photon-added SV state input is therefore of the form,

|ψ〉SV
out =

∑
S

γ′S

[
(â†1)S1 . . . (â†m)Sm

]
|ξ′1, . . . , ξ′m〉 , (3.34)

where,

γ′S =
γS√

S1! . . . Sm!
=

Per(US)√
S1! . . . Sm!

, (3.35)

but in the binary regime γ′S = γS. Recall from Eq. (3.27) that squeezed states represented

in the Fock basis have only even photon-number terms. Thus, for a configuration S where

mode i does not have a creation/annihilation operator acting on it, mode i is a superposition

of only even photon number states, whereas if S applies a creation/annihilation operator

to mode i it contains only odd photon-number terms.

For photon-subtracted SV states the output is of the same form, replacing â†i with âi,

but γS will now relate to Û †SV instead of ÛSV , which is also Haar-random, and thus has

the same sampling complexity. We exclude the case of the photon-subtracted states when

ξ = 0 since â |0〉 = 0.

Measurement: The last step is to measure the output distribution. For Boson-

Sampling, this may be implemented via number-resolved photodetection. However, since

m = Ω(n2), Si = {0, 1} ∀ i in Eq. (3.30), on/off (or ‘bucket’) detectors are sufficient to re-

cover the configuration S. Repeating the sampling procedure multiple times yields partial
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information of the joint photon-number distribution PS = |γS|2, which was shown by AA

to be a computationally difficult sampling problem.

For PASSVSampling, we perform a parity measurement capable of distinguishing

only between odd and even photon-number. Such measurements are characterised by the

measurement operators,

Π̂+ = |0〉 〈0|+ |2〉 〈2|+ |4〉 〈4|+ . . . (3.36)

Π̂− = |1〉 〈1|+ |3〉 〈3|+ |5〉 〈5|+ . . .

Most simply, one could implement this measurement using photon-number-resolving de-

tectors. Measuring an even photon-number at output mode i then implies that there

was no creation/annihilation operator associated with that mode, whereas measuring an

odd photon-number implies that there was. This measurement thus perfectly recovers the

configuration S, and hence continued sampling yields the desired distribution. Since the

squeezing parameter ξ has no effect on the parity of the state, the sampling amplitudes are

completely independent of the squeezing.

More formally, in BosonSampling we are sampling from a set of strings,

si = {s(1)
i , . . . , s

(m)
i } (3.37)

where s
(j)
i is the sampled photon-number in the jth mode associated with string i, of which

there are an exponential number. In the limit of large m, s
(j)
i ∈ {0, 1}. On the other

hand, with PASSVSampling we are sampling from the same set of strings, with the same

probability distribution, where now s
(j)
i ∈ {−1, 1}. This proves that PASSVSampling

implements the same logical sampling problem as BosonSampling, independent of the

squeezing parameter.

58



3.2.2 Complexity Concerns and Discussion

We previously mentioned, while discussing the evolution of the input state, whether

choosing an orthogonal matrix has any implications for the complexity of PASSVSam-

pling. Since we have now shown that the PASSVSampling model samples permanents

of submatrices in the same way as BosonSampling, this is the only barrier to completing

our proof that the two models are in the same complexity class.

The first consideration is whether or not a Haar-random matrix in SO(m) might have

an efficiently computable exact or approximate permanent. The exact permanent case is

known to be #P-complete even for binary entries, Ui,j ∈ {0, 1} [81]. There is also a known

algorithm for efficiently approximating a permanent if the matrix has entries consisting of

only non-negative real numbers. In the same work, it is shown that for a matrix with even a

single negative entry, an efficient approximation algorithm would allow one to compute an

exact {0, 1}-permanent efficiently [44]. Although having to compute a difficult permanent

is a necessary but not sufficient condition for computational hardness, since SO(m) is

considered to be universal for linear optics [9], there is no such complexity gap between

unitary and orthogonal matrices.

More concretely, it has been shown that SU(m) ⊂ SO(2m) [31], i.e. for a 2m-mode

interferometer, the set of all orthogonal transformations includes all unitary m-mode trans-

formations as a subgroup. Thus, the complexity of sampling the output from a Boson-

Sampling device implementing an arbitrary matrix from SO(2m) is at least as hard as

sampling matrices from SU(m), and for only a linear cost in the number of modes. Since

trivially SO(2m) ⊂ SO(2m+ 1), the same complexity extends to an odd number of modes

as well. Note that this also carries the implication that BosonSampling itself remains

hard under orthogonal transformations.

We can now conclude that PASSVSampling is in the same complexity class as

BosonSampling. Suppose that A is some complexity class containing BosonSam-

pling (that is closed under polynomial reductions). Since the output of PASSVSam-
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pling is completely independent of the squeezing parameter ξ, we may assume without

loss of generality that ξ = 0. In this limit, however, |ξi〉 = |0i〉 and thus, by construc-

tion, any instance of PASSVSampling reduces to an instance of BosonSampling since

SO(m) ⊂ SU(m). Thus, the class A also contains PASSVSampling. Conversely, sup-

pose B is some complexity class containing PASSVSampling. Again choosing ξ = 0, the

inclusion SU(m) ⊂ SO(2m) similarly implies B also contains BosonSampling.

Our result can be distilled to a relatively simple idea which is most evident in light

of Eq. (3.29), where the ket acts as a ‘background’ signal whose form is invariant under

the evolution of ÛSV . Since the leading operator in Eq. (3.33) takes exactly the same form

as Eq. (3.29), we would like the ket to also be independent of the choice of ÛSV under

some measurement, while still being distinguishable from a state which has an added or

subtracted photon. It may be possible to use the same technique to characterize other

states which implement a logically equivalent classically intractable sampling problem. A

desirable goal would be to prove an even more experimentally friendly set of states and

measurements that implements the same problem.

One criticism of PASSVSampling is that the use of photon-number resolving detec-

tors to implement the parity measurement is experimentally harder than on/off detection.

Whilst this is true, one does not need to distinguish between arbitrarily large even and

odd photon-number Fock states. For any given ξ and error rate, one can truncate the

maximum number of necessarily distinguishable Fock states. Indeed, PASSVSampling

can be regarded as a generalization of BosonSampling, since in the limit of small squeez-

ing (ξ → 0), the SV reduces to a vacuum state and an on/off detector suffices. For large

squeezing, additional experimental hurdles may arise in reducing squeezing parameter error

and in the increased sensitivity of squeezed states to noise. We do not address these issues

here. Rather, despite PASSV states being more difficult to experimentally prepare, our

goal is to theoretically demonstrate the non-uniqueness of Fock states for computationally

hard sampling problems.
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After having spent some effort showing that orthogonal matrices are sufficiently com-

plex for PASSVSampling, a natural question is whether or not choosing a unitary matrix

could change the complexity of the sampling problem. Because Eq. (3.33) no longer holds,

we cannot establish a straightforward relationship between the output probabilities and

submatrix permanents. Conventional wisdom seems to suggest that the problem would

not become easier. In the limit of zero squeezing, we know there is no complexity divide

because PASSVSampling reduces to BosonSampling. Thus, if a complexity divide did

exist, then we would expect a complexity phase transition at ξ = 0. It may be possible

to construct a more complicated measurement scheme which produces the same sampling

probabilities.

We have shown a direct mapping between BosonSampling and PASSVSampling.

An open question in the field is ‘what characterizes quantum states of light that yield hard

sampling problems with linear optics?’ This result, in conjunction with previous results

on photon-added coherent states and generalized cat states, demonstrates that there exists

a large class of non-Fock states, which yield sampling problems of equal computational

complexity.

Importantly, unlike PACSampling, PASSVSampling operates in all parameter

regimes. Thus there are no bounds on the amount of squeezing and no approximations

are made.

Whilst PASSVSampling may be experimentally more challenging than BosonSam-

pling, this result certainly confirms that there is nothing unique about the computational

complexity of Fock states. In fact, there is a plethora of other quantum states exhibiting

similar sampling complexity, and computational complexity appears to be a ubiquitous

property of sampling quantum states of light.

We hope that future research will enable us to fully characterize what it is that makes

a quantum optical system computationally hard, and what classes of states are required

for computational complexity.
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Chapter 4
Super-Sensitive Metrology

So far, we have talked a great deal about complexity theory results relating to Boson-

Sampling. We would now like to turn our attention to the physical intuition that we

can gain from these results. It is clear that Fock states evolved by passive, multimode

interferometers have surprisingly powerful (or at least non-classical) properties. While the

development of quantum computing is certainly a major investment by the quantum infor-

mation community, there may be other benefits to applying the lessons we have learned up

to this point. Our goal in this chapter is to develop a quantum metrology protocol that is

based on the same architecture as BosonSampling. To help the reader understand the

important features of this protocol and some of the more subtle points, we first give a brief

background on quantum metrology. We then introduce a promising protocol that shows

how single photons with only passive unitary evolution can very nearly approach the best

sensitivity possible allowable with quantum mechanics. A generalization of this protocol

follows, showing what single photon metrology can hope to achieve in the future.

4.1 Introduction to Quantum Metrology

Metrology is by definition the science of measurement. In physics, making measure-

ments of various quantities plays an integral role in discovering the properties of phenomena,

and is necessary to confirm the physical laws that theorists may postulate. Moreover, pre-

cision measurement is now hugely important in a wide variety of industrial applications

and military technologies. It is no surprise that the development of quantum mechanics

would have serious implications for measurement theory. Although uncertainty principles

give us certain limitations on what can be known about physical systems, the field of

quantum metrology has shown us that quantum mechanics also allows enhancements in

measurement that classical measurement theory could never produce. In this section, we

will discuss how quantum optics can enhance the precision of interferometric measurements,

and the ultimate limitations thereof.
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The discovery that light has an intrinsic phase has enabled interferometric methods

for making the measurement of many systems practical. Moreover, a number of famous

discoveries—from the Michelson-Morley experiment to the recent discovery of gravity waves

by the LIGO collaboration—would not have taken place without the use of interferometry.

While there are other ways to make measurements based on the interference of light, phase

estimation has been enormously successful at discovering the properties of materials which

interact closely with light (e.g. the index of refraction of glass).

The underlying concept of phase estimation has a simple and elegant description. We

know that (in the classical electromagnetic picture) the intrinsic phase of light propagates

proportional to the frequency of the light. When two electromagnetic waves of differing

phase interfere, the difference between the phases can be inferred from the frequency of the

resultant wave. This fact is exploited to make inferences of the properties of e.g. a material

by preparing a system with a known phase difference, and then perturbing the system by

inserting the material. If one knows how the material interacts with light, then the phase

that is accumulated by the interaction is a witness for the properties of that material. We

can take the same approach with quantum states of light, provided that we understand

how the phase in different modes affects the evolution of the state.

To explain this in terms of the optical networks we have discussed so far in this thesis,

we begin by giving an example of perhaps the simplest such device, the Mach-Zehnder

interferometer (MZI), shown in Figure 4.1. If both the beamsplitters B̂ are 50:50 (see

Sec. 1.2.2), the action of the entire network can be described by the matrix,

Û = B̂Φ̂B̂ =
1

2

 1 i

i 1


 1 0

0 eiϕ


 1 i

i 1

 =
1

2

 1− eiϕ i(1 + eiϕ)

i(1 + eiϕ) −(1− eiϕ)

 , (4.1)

where Φ̂ is understood to be the action of the unknown phase shift ϕ on the second mode.

Consider the case where only a single photon is input into the first mode, |ψin〉 = |1, 0〉.

If we measure in the Fock basis, the output statistics can be easily computed by taking
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Figure 4.1: Architecture of the Mach-Zehnder Interferometer. Two input modes are first
interfered on a beamsplitter. One mode experiences an additional unknown phase shift ϕ
before the two modes are interfered on a second beamsplitter. The output state is then
measured on detectors in both modes.

the squared norm of the {1, 1} and {1, 2} entries (i.e. the squared norm of a trivial 1 × 1

matrix permanent) so that we find,

P [|1, 0〉] =
1

2
(1− cos(ϕ)) P [|0, 1〉]] =

1

2
(1 + cos(ϕ)). (4.2)

If we made infinitely many measurements on the output (assuming the system had no

noise due to error), we would be able to ascertain the value of ϕ by this relationship,

and thereby make some prediction about the properties of the material that generated

the phase ϕ. Realistically, of course, we cannot make infinitely many measurements to

establish the output statistics with perfect precision. The key question then becomes:

given m measurements of the output, what is our best guess for ϕ, and how accurate is

this guess?

It is natural to assume that the sample distribution is the best estimate of the true

distribution, and therefore the underlying estimate of the variable is simply a known func-

tion of the sample statistics. The more difficult question is how we determine the precision,

or uncertainty, of our estimate. Our uncertainty about the probability distribution must

propagate somehow into uncertainty about the unknown variable. To do this, we employ
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the standard error propagation formula defined by,

∆ϕ =

√
〈Ô2〉 − 〈Ô〉2
√
n · |d〈Ô〉

dϕ
|
, (4.3)

where Ô is some observable that allows us to estimate ϕ, and n is the number of repeated

independent measurements. If we choose Ô = |10〉 〈10|, which is the projection operator

corresponding to observing the output |10〉, then since 〈Ô〉 = 1
2
(1 − cos(ϕ)) and Ô2 = Ô,

we can substitute this into Eq. (4.3) to give,

∆ϕ =

√
〈Ô〉 − 〈Ô〉2
√
n · |d〈Ô〉

dϕ
|

(4.4)

=

√
1
2
(1− cos(ϕ))− 1

4
(1− cos(ϕ))2

√
n · 1

2
sin(ϕ)

(4.5)

=

√
1− cos2(ϕ)√
n · sin(ϕ)

(4.6)

=
1√
n
. (4.7)

It is shown in Ref. [33] that, for a coherent state input into one mode |ψin〉 = |α, 0〉,

〈Ô〉 = â†1â1 − â†2â2, and 50:50 beamsplitters, the uncertainty ∆ϕα is,

∆ϕα =
1√
n̄
. (4.8)

We do not prove, but it can be shown that in both cases, this is the lowest achievable

uncertainty. The theory describing these lower bounds can be described with the quantum

Fisher information and is given by the quantum Cramér-Rao bound. For more on this

topic, a reader should consult Ref. [10]. It is with some regret that I cannot include this,

but I do not believe I could give the subject sufficient justice in a short review, and a longer

analysis would be ill-suited for a thesis whose emphasis is primarily complexity theory.
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The coincidental form of Eq. (4.7) and Eq. (4.8) is perhaps suggestive that 1/
√
n

may be the lower limit in uncertainty for any state with an average of n photons. In

fact, this is not the case, as we will shortly prove. Instead, the property that these two

states share is that they are rather classical systems. In the case of a single photon, the

statistics could have simply been described by repeated measurements of a probabilistic

classical particle. Meanwhile, coherent states are arguably engineered to give a classical

description. This bound is often referred to as the shotnoise limit, as it represents the noise

due to uncertainty when only single photon “shots” are employed. The term is often used

to refer to the sensitivity of “the best classical scheme” for measuring a system, though

what is exactly meant by this is often debatable depending on the system in question; we

urge the reader to excercise caution when it is used in the literature.

Consider the case where |ψin〉 = |1, 1〉 and Ô = |1, 1〉 〈1, 1|. We can easily find the

probability of the outcome by applying the permanent method (described in Sec. 2.1) to

Eq. (4.1). Namely, the probability P [|1, 1〉] = |γ|2 where,

γ = perm(Û) = perm

[
1

2

 1− eiϕ i(1 + eiϕ)

i(1 + eiϕ) −(1− eiϕ)

] (4.9)

= −1

2
(1 + e2iϕ). (4.10)

One can use permanents to obtain the probability of the outputs |2, 0〉 and |0, 2〉 as well,

though a symmetry argument can be employed instead. Since the probability of all out-

comes should sum to 1, and since the probability of outcomes |2, 0〉 and |0, 2〉 should be

the same (by inspection of the matrix), we see that,

P [|1, 1〉] =
1

2
(1 + cos(2ϕ)) P [|2, 0〉] =

1

4
(1− cos(2ϕ)) P [|0, 2〉] =

1

4
(1− cos(2ϕ)). (4.11)

We can now begin to see non-classical effects in the output of the interferometer. Note

that for ϕ = π
4
, only the |2, 0〉 and |0, 2〉 outputs can be observed, since P [|1, 1〉] = 0. If
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photons were classical particles, this outcome could never be observered since the paths of

the two particles would have to be independent of each other, since they are non-interacting.

Similarly, this could not be simulated by two runs of an experiment where only a single

photon entered the interferometer at a particular time. This “bunching” of photons at

the output of the interferometer was first observed by three physicists in 1987, and is now

referred to as the Hong-Ou-Mandel effect [40].

If we compute the uncertainty of ∆ϕ for Ô = |1, 1〉 〈1, 1| using Eq. (4.3), we arrive at,

∆ϕ = 1
2
√
n
. We must be careful to interpret this result, however, if we compare it to the

result in Eq. (4.7). In order to achieve this uncertainty, we have used two photons instead

of one. To be fair, we should instead consider the case where we are restricted to using

at most n photons, rather than considering n independent runs of the experiment. If we

make this correction, we can make only n/2 runs of the experiment, so that the uncertainty

becomes,

∆ϕ =
1

2
√
n/2

=
1√
2n
. (4.12)

This is still, however, an improvement in the sensitivity by a factor of
√

2. It can be shown

that for 2 photon experiments, this is optimal. In fact, for an MZI, it can be shown that

[23],

∆ϕ ≤ 1

N
√
µ

(4.13)

for an N photon input and µ independent runs of the experiment. This ultimate quantum

limit, called the Heisenberg limit, has been computed for a number of different systems to

show the lowest uncertainty one can achieve with quantum mechanics. The lowerbound

for the MZI is achieved by using the input state |ψ〉 = 1√
2
(|N, 0〉 + |0, N〉), referred to

as the N -photon NOON state. This state, however, cannot be prepared efficiently using

only passive linear optics. In fact, the only known ways to construct this state require

technology that is similar to the requirements for building universal quantum computers.

We believe a very relevant question, then, is whether sensitivity beating the shotnoise limit
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can be achieved with only passive linear optics. This will be the topic of the remaining

sections of this chapter.

4.2 MORDOR Interferometer

1In this section, we discuss a BosonSampling-like (similar in terms of architecture,

not computational complexity) optical network that can be used for metrology. This scheme

was originally presented in Ref. [60], and is repeated here with additional discussion and

clarifications. We have seen earlier in this thesis that such passive linear optical devices

can generate a superexponentially large amount of number-path entanglement. We show

that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-

photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of

significantly beating the shotnoise limit. This result implies a potential pathway forward

to practical quantum metrology with readily available technology.

Ever since the early work of Yurke & Yuen it has been understood that quantum

number-path entanglement is a resource for super-sensitive quantum metrology, allowing

for sensors that beat the shotnoise limit [87, 86]. Such devices would then have appli-

cations to super-sensitive gyroscopy [22], gravimetry [88], optical coherence tomography

[61], ellipsometry [47], magnetometry [46], protein concentration measurements [17], and

microscopy [70, 43]. This line of work culminated in the analysis of the bosonic NOON

state ((|N, 0〉+ |0, N〉)/
√

2, where N is the total number of photons, which was shown to

be optimal for local phase estimation with a fixed, finite number of photons, and in fact

allows one to hit the Heisenberg limit and the Quantum Cramér-Rao Bound [39, 53, 25, 23].

Let us consider the NOON state, where for this state in a two-mode interferometer

we have the condition of all N particles in the first mode (and none in the second mode)

superimposed with all N particles in the second mode (and none in the first mode). While

such a state is known to be optimal for sensing, its generation is also known to be highly

1This section previously appeared as: K. R. Motes, J. P. Olson, E. Rabeaux, J. P. Dowling, S. J. Olson,
and P. P. Rohde. Linear optical quantum metrology with single photons – Exploiting spontaneously
generated entanglement to beat the shot-noise limit. Phys. Rev. Lett., 114:170802, 2015. It is reprinted
by permission of APS.
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problematic and resource intensive. There are two routes to preparing high-NOON states:

the first is to deploy very strong optical nonlinearities [32, 48], and the second is to prepare

them using measurement and feed-forward [52, 82, 12]. In many ways then NOON-state

generators have had much in common with all-optical quantum computers and therefore

are just as difficult to build [50]. In addition to the complicated state preparation, typically

a complicated measurement scheme, such as parity measurement at each output port, also

had to be deployed [54].

Recently two independent lines of research, the study of quantum random walks with

multi-photon walkers in passive linear-optical interferometers [58, 27, 29], as well as the

quantum complexity analysis of BosonSampling devices [3, 28], has led to a somewhat

startling yet inescapable conclusion—passive, multi-mode, linear-optical interferometers,

fed with only uncorrelated single photon inputs in each mode (Figure 4.2), produce quan-

tum mechanical states of the photon field with path-number entanglement that grows

exponentially fast in the two resources of mode and photon-number. What is remarkable is

that this large degree of number-path entanglement is not generated by strong optical non-

linearities, nor by complicated measurement and feed-forward schemes, but by the natural

evolution of the single photons in the passive linear optical device. Whilst such devices are

often described to have ‘non-interacting’ photons in them, there is a type of photon-photon

interaction generated by the demand of bosonic state symmetrization, which gives rise to

the superexponentially large number-path entanglement via multiple applications of the

Hong-Ou-Mandel effect [29]. It is known that linear optical evolution of single photons, fol-

lowed by projective measurements, can give rise to ‘effective’ strong optical nonlinearities,

and we conjecture that there is indeed a hidden Kerr-like nonlinearity at work also in these

interferometers [51]. Like BosonSampling [3], and unlike universal quantum computing

schemes such as that by Knill, Laflamme, and Milburn [49], this protocol is deterministic

and does not require any ancillary photons.
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The advantage of such a setup for quantum metrology is that resources for generating

and detecting single photons have become quite standardized and relatively straightforward

to implement in the lab [57, 78, 11, 18, 65, 59, 77]. The community then is moving

towards single photons, linear interferometers, and single-photon detectors all on a single,

integrated, photonic chip, which then facilitates a roadmap for scaling up devices to large

numbers of modes and photons. If all of this work could be put to use for quantum

metrology, then a road to scalable metrology with number states would be at hand.

It then becomes a natural question to ask—since number-path entanglement is known

to be a resource for quantum metrology—can a passive, multi-mode interferometer, fed only

with easy-to-generate uncorrelated single photons in each mode, followed by uncorrelated

single-photon measurements at each output, be constructed to exploit this number-path

entanglement for super-sensitive (sub-shotnoise) operation? The answer is indeed yes, as

we shall now show.

Recall from the previous section that the phase-sensitivity, ∆ϕ, of a metrology device

can be defined in terms of the standard error propagation formula as,

∆ϕ =

√
〈Ô2〉 − 〈Ô〉2∣∣∣∂〈Ô〉∂ϕ

∣∣∣ , (4.14)

where 〈Ô〉 is the expectation of the observable being measured and ϕ is the unknown

phase we seek to estimate. We have dropped the dependence on the number of identical

measurements found in Sec. 4.3 for simplicity, and will do so for the remainder of this

section.

The photons evolve through a unitary network according to Ua†iU
† =

∑
j Uija

†
j. In our

protocol, we construct the n-mode interferometer Û to be,

Û = V̂ · Φ̂ · Θ̂ · V̂ †, (4.15)
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which we will call the “MORDOR” architecture in reference to the authors of Ref. [60]. V̂

is the n-mode quantum Fourier transform matrix, with matrix elements given by,

V
(n)
j,k =

1√
n

exp

[−2ijkπ

n

]
. (4.16)

Φ̂ and Θ̂ are both diagonal matrices with linearly increasing phases along the diagonal

represented by,

Φj,k = δj,k exp
[
i(j − 1)ϕ

]
Θj,k = δj,k exp

[
i(j − 1)θ

]
, (4.17)

where ϕ is the unknown phase one would like to measure and θ is the control phase. Θ̂ is

introduced as a reference, which can calibrate the device by tuning θ appropriately. To see

this tuning we combine Φ̂ and Θ̂ into a single diagonal matrix with a gradient given by,

Φj,k ·Θj,k = δj,k exp

[
i(j − 1)(ϕ+ θ)

]
. (4.18)

The control phase θ can shift this gradient to the optimal measurement regime, which can

be found by minimizing ∆ϕ with respect to n and ϕ. Since this is a shift according to a

known phase, we can for simplicity assume (and without loss of generality) that ϕ is in the

optimal regime for measurements and θ = 0. Thus, Θ̂ = Î and is left out of our analysis

for simplicity.

In order to understand how such a linearly increasing array of unknown phase shifts

may be arranged in a practical device, it is useful to consider a specific example. Let

us suppose that we are to use MORDOR as an optical magnetometer. We consider an

interferometric magnetometer of the type discussed in Ref. [73] where each of the sensing

modes of MORDOR contains a gas cell of Rubidium prepared in a state of electromag-

netically induced transparency whereby a photon passing through the cell at the point of
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zero absorption in the electromagnetically induced transparency spectrum acquires a phase

shift that is proportional to the product of an applied uniform (but unknown) magnetic

field and the length of the cell. We assume that the field is uniform across MORDOR, as

would be the case if the entire interferometer was constructed on an all optical chip and

the field gradient across the chip were negligible. Since we are carrying out local phase

measurements (not global) we are not interested in the magnitude of the magnetic field

but wish to know if the field changes and if so by how much. (Often we are interested

in if the field is oscillating and with what frequency.) Neglecting other sources of noise

then in an ordinary Mach-Zehnder interferometer this limit would be set by the photon

shotnoise limit. To construct MORDOR with the linear cascade of phase shifters, as shown

in Figure 4.2, we simply increase the length of the cell by integer amounts in each mode.

The first cell has length L, the second length 2L, and so forth. This will then give us the

linearly increasing configuration of unknown phase shifts required for MORDOR to beat

the shotnoise limit.

One might question why one would employ a phase gradient rather than just a single

phase. In fact, the case of a single phase is treated in the next section. The original

motivation to use a linear phase shift was to maximize the exploitation of multi-mode

entanglement across the entire network. We will see that, when resources are reasonably

limited, the case of a single phase shift is actually more powerful. We conjecture that

this is because, in the limit of small ϕ, splitting the signal among many modes weakens

the maximum relative phase between two modes. For more discussion on this topic, see

Sec. 4.3.

The interferometer may always be constructed efficiently following the protocol of Reck

et al. [66], who showed that an n× n linear optics interferometer may be constructed from

O(n2) linear optical elements (beamsplitters and phase-shifters), and the algorithm for de-

termining the circuit has runtime polynomial in n. Thus, an experimental implementation

of our protocol may always be efficiently realized.
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The input state to the device is |1〉⊗n, i.e. single photons inputed in each mode. If

ϕ = 0 then Φ̂ = Î and thus Û = V̂ · Î · V̂ † = Î. In this instance, the output state is exactly

equal to the input state, |1〉⊗n. Thus, if we define P as the coincidence probability of

measuring one photon in each mode at the output, then P = 1 when ϕ = 0. When ϕ 6= 0,

in general P < 1. Thus, intuitively, we anticipate that P (ϕ) will act as a witness for ϕ.

In the protocol, assuming a lossless device, no measurement events are discarded. Upon

repeating the protocol many times, let x be the number of measurement outcomes with

exactly one photon per mode, and y be the number of measurement outcomes without ex-

actly one photon per mode. Then P is calculated as P = x/(x+y). Thus, all measurement

outcomes contribute to the signal and none are discarded. Note that, due to preservation

of photon-number and the fact that we are considering the anti-bunched outcome, P (ϕ)

may be experimentally determined using non-number-resolving detectors if the device is

lossless. If the device is assumed to be lossy, then number-resolving detectors would be

necessary to distinguish between an error outcome and one in which more than one photon

exits the same mode. The circuit for the architecture is shown in Figure 4.2.
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Û
(7

)

V̂
(8

)

V̂
†

(9
)

�̂
(10)

A
ck

n
o
w

le
d
g
m

e
n
ts

T
h
is

research
w

as
con

d
u
cted

b
y

th
e

A
u
stra

lian
R

e-
search

C
ou

n
cil

C
en

tre
of

E
x
cellen

ce
for

E
n
g
in

eered
Q

u
an

tu
m

S
y
stem

s
(P

ro
ject

n
u
m

b
er

C
E

11
000

10
13

).

Peter P. Rohde1, ⇤

1Centre for Engineered Quantum Systems, Department of Physics and Astronomy,
Macquarie University, Sydney NSW 2113, Australia

(Dated: November 11, 2014)

1 (1)

. . . (2)

' (3)

2' (4)

(n � 1)' (5)

QFT (6)

QFT† (7)
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Figure 4.2: Architecture of the MORDOR interferometer for metrology using single-photon
states. The input state comprises n single photons, |1〉⊗n. The state evolves via the passive
linear optics unitary Û = V̂ · Φ̂ · Θ̂ · V̂ †, where V̂ is the quantum Fourier transform, Φ̂ is an
unknown, linear phase gradient, and Θ̂ is a reference phase gradient used for calibration. At
the output we perform a coincidence photodetection projecting on exactly one photon per
output mode, measuring the observable Ô = (|1〉 〈1|)⊗n, which, over many measurements,
yields the probability distribution P (ϕ) that acts as a witness for the unknown phase ϕ.
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The state at the output of the device is a highly path-entangled superposition of
(

2n−1
n

)
terms, which grows exponentially with n. This corresponds to the number of ways to

add n non-negative integers whose sum is n, or equivalently, the number of ways to put

n indistinguishable balls into n distinguishable boxes. We conjecture that this exponen-

tial path-entanglement yields improved phase-sensitivity as the paths query the phases a

exponential number of times.

The observable being measured is the projection onto the state with exactly one pho-

ton per output mode, Ô = (|1〉 〈1|)⊗n. Thus, 〈Ô〉 = 〈Ô2〉 = P . And, the phase-sensitivity

estimator reduces to,

∆ϕ =

√
P − P 2∣∣∣∂P∂ϕ ∣∣∣ . (4.19)

Following the result of Ref. [71] (see Sec. 2.1), P is related to the permanent of Û as,

P =
∣∣perm(U)

∣∣2. (4.20)

Here the permanent of the full n× n matrix is computed, since exactly one photon is going

into and out of every mode.

We will now examine the structure of this permanent. The matrix form for the n-mode

unitary Û (n) is given by,

U
(n)
j,k =

1− einϕ

n
(
e

2iπ(j−k)
n − eiϕ

) , (4.21)

as derived in Appendix B. Taking the permanent of this matrix is challenging as calculating

permanents are in general #P-hard. However, based on calculating perm(Û (n)) for small

n, we observe the empirical pattern,

perm(Û (n)) =
1

nn−1

n−1∏
j=1

[
jeinϕ + n− j

]
, (4.22)
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as conjectured in Appendix B. This analytic pattern we observe is not a proof of the

permanent, but an empirical pattern—a conjecture—that has been verified by brute force

to be correct up to n = 25. Although we don’t have a proof beyond that point, n = 25 is

well beyond what will be experimentally viable in the near future, and thus the pattern we

observe is sufficient for experimentally enabling super-sensitive metrology with technology

available in the foreseeable future.

Following as a corollary to the previous conjecture, the coincidence probability of mea-

suring one photon in each mode is,

P =
∣∣∣perm(Û (n))

∣∣∣2
=

1

n2n−2

n−1∏
j=1

[
an(j)cos(nϕ) + bn(j)

]
, (4.23)

as shown in Appendix B, where

an(j) = 2j(n− j),

bn(j) = n2 − 2jn+ 2j2. (4.24)

The dependence of P on n and ϕ is shown in Figure 4.3.

It then follows that,

∣∣∣∣∂P∂ϕ
∣∣∣∣ = nP

∣∣sin(nϕ)
∣∣ n−1∑
j=1

∣∣∣∣ an(j)

an(j)cos(nϕ) + bn(j)

∣∣∣∣ , (4.25)

as shown in Appendix B.
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Figure 4.3: Coincidence photodetection probability P against the unknown phase ϕ and
the number of photons and modes n. As n increases, the dependence of P on ϕ increases,
resulting in improved phase-sensitivity.

Finally, we wish to establish the scaling of ∆ϕ. With a small ϕ approximation

(sin(ϕ) ≈ ϕ, cos(ϕ) ≈ 1− 1
2
ϕ2) we find,

∆ϕ =

√
3

2n(n+ 1)(n− 1)
(4.26)

=
1

2
√(

n+1
3

) ,
as shown in Appendix B. Thus, the phase sensitivity scales as ∆ϕ = O(1/n3/2) as shown

in Figure 4.4.

We would like to compare the performance of MORDOR to an equivalent multimode

interferometer baseline for which we will construct the shotnoise limit (SNL) and Heisenberg

limit (HL). This is a subtle comparison, due to the linearly increasing unknown phase-shifts,

{0, ϕ, . . . , (n− 1)ϕ}, that MORDOR requires to operate. The mathematical relation is

shown in Figure 4.4, where we have written the sensitivity in terms of the number of

photons, n. There is disagreement on how such resources should be counted. The method

originally referred to in Ref. [60], called Ordinal Resource Counting (ORC), is one such
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Figure 4.4: Phase-sensitivity ∆ϕ against the number of photons n (red circles). The
shotnoise limit (black squares) and Heisenberg limit (orange triangles) are shown for com-
parison. MORDOR exhibits phase-sensitivity significantly better than the shotnoise limit,
and only slightly worse than the Heisenberg limit.

way to count resources; this method is not the one used to generate Figure 4.4. A more

detailed discussion on this point can be found in Appendix B.

While computing the sensitivity (using the standard error propagation formula of

Eq. (4.14)) provides clear evidence that our scheme does indeed beat the SNL, it would

be instructive to carry out a calculation of the quantum Fisher information and thereby

provide the quantum Cramér-Rao bound, which would be a true measure of the best per-

formance of this scheme possible, according to the laws of quantum theory. However, due

to the need to compute the permanent of large matrices with complex entries, this calcu-

lation currently remains intractable. It is my hope that such an investigation is done for

a future work. In general, analytic solutions to matrix permanents are not possible. In

this instance, the analytic result is facilitated by the specific structure of the MORDOR

unitary. Other inhomogeneous phase gradients may yield analytic results, as is the case

with the single phase shifter of the next section.

In Appendix B we discuss the efficiency of MORDOR and in Appendix B we analyze

dephasing, which is a source of decoherence, and find that MORDOR is far more robust

against dephasing than the NOON state is.
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We have now shown that a passive linear optics network fed with single-photon Fock

states may implement quantum metrology with phase-sensitivity that beats the shotnoise

limit. Unlike other schemes that employ exotic states such as NOON states, which are

notoriously difficult to prepare, single-photon states may be readily prepared in the labo-

ratory using present-day technology. This new approach to metrology via easy-to-prepare

single-photon states and disjoint photodetection provides a road towards improved quan-

tum metrology with frugal physical resources. In the next section, we will consider an

optimization over interferometers sharing the same properties as MORDOR by introduc-

ing the Quantum Fourier Transform Interferometer (QuFTI).

4.3 General QuFTI

In very general terms, one can consider the architecture of MORDOR in the previous

section as a particular choice of four components of an interferometer—input, unitary evo-

lution, phase evolution, and measurement. The most compelling aspect of the architecture

of MORDOR is the fact that this choice comprises a device which has potential scalability

in the near future. Specifically, single photon sources, bucket photodetectors, and pas-

sive optical elements may soon all be implementable on an integrated photonic chip. The

natural question arises, however, whether the MORDOR architecture optimizes the phase

sensitivity for a device with these properties. In this section, we first discuss what degrees

of freedom we have to make changes to the interferometer without sacrificing any of the

desirable properties. We then provide compelling evidence that the architecture of Figure

4.8 achieves the best phase sensitivity under these constraints.

Although NOON states and other exotic quantum states (such as squeezed vacuum)

are known to perform well for quantum metrology, one pays a very high price to prepare

these states. Furthermore, many of these states are known to be very sensitive to common

sources of noise. Thus, in keeping with the spirit of MORDOR, we wish to consider

interferometers which can take advantage of the emergence of commercially available, high

fidelity, high efficiency single photon sources and non-number-resolving detectors. Hence,
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for this manuscript, we fix the condition that the input state consists of n single photon

sources, together with bucket photodetection at the output. This leaves us two components

to optimize over—unitary evolution, and phase evolution (see Figure 4.5). Somewhat

surprisingly, we show that the optimal architecture is not only easier to implement than

MORDOR, but also easier to interpret analytically.

Figure 4.5: A generalized architecture for the QuFTI. We consider optimizations over V̂ ∈
SU(n) and phase strategies Φ̂, together with single photon inputs and photodetection in
each mode. The MORDOR architecture can be restored when V̂ is the n-mode QFT and
fi(ϕ) = (i− 1)ϕ.

We begin our investigation of different phase strategies by fixing the unitary evolution

to be the n-mode optical quantum Fourier transform (QFT), i.e., the normalized, unitary

discrete Fourier transform. We will return to the topic of unitary evolution later. The

n-mode QFT again takes the form,

V
(n)
jk =

1√
n
ω(j−1)(k−1)
n (4.27)

where ωn = e2πi/n is a primitive nth root of unity. Because the interferometer is always of

some fixed size of n modes, we may drop superscript or subscript labels when there is no

ambiguity. We will refer to a device fixed with the QFT as a generalized QuFTI. Consider

a general phase strategy Φ̂ that applies a phase fj ·ϕ to mode j. Then Φ̂ can be represented
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by a diagonal matrix Φ with entries,

Φjk = δjke
i·fj ·ϕ, (4.28)

We further assume that,
n∑
j=1

fj = 1 where 0 ≤ fj < 1. (4.29)

This assumption is made to ensure that differing phase strategies are fair when compared

to one another. Furthermore, it is not restrictive since any general phase strategy can be

normalized or reparameterized to fit this assumption. We discuss this in more detail at the

end of this section.

Recall that our goal is to optimize the phase sensitivity of a QuFTI with respect to all

possible phase strategies. Using Eq. (4.29), we can apply the results of Giovannetti, Lloyd,

and Maccone in Ref. [34] in a relatively straightforward way to determine the shotnoise and

Heisenberg limited phase sensitivities of more general schemes with fixed phase strategies.

In this setting, V̂ and V̂ † are each replaced by some unitary map. It is not difficult to

see with this analysis (though we give a full proof in Appendix B) that the optimal phase

strategy in this more general setting is when,

fj = δj1, (4.30)

However, because the setting is very general, we cannot guarantee that this is also the

optimal phase strategy when considering more specific implementations of optical networks.

We wish to show that, in this case, the same is true for the QuFTI architecture, i.e. when

V̂ is the n-mode optical QFT.

In order to help understand the dynamics of differing phase strategies, we consider a

range of functions representing trial strategies (Table 4.1). For each phase strategy, we

numerically compute P = |perm(Û)|2 = |perm(V̂ ΦV̂ †)|2, and plot the resulting phase sen-
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sitivity in Figure 4.6. From this figure, it is apparent that there is no improvement in phase

sensitivity by distributing the phase throughout the modes, and restricting ϕ to one mode

is most effective.

Table 4.1: Functions representing trial phase strategies. Note that many of strategies are
not normalized to satisfy Eq. (4.29), but can easily be made so by dividing each by

∑n
j=1 fj.

Constant f conj = 1
n

Sub-linear f subj =
√
j

Linear f linj = j

Quadratic f quadj = j2

Exponential f expj = 2j

Delta f δj = δj1

Figure 4.6: The scaling of different phase strategies for the QuFTI suggests that widening
the “phase gap” between modes improves the phase sensitivity. The shot-noise limit used
for comparison here is defined to be 1/

√
n, which is the best possible classical scheme for

n photons and any number of modes ≥ 2. Any point below 1 indicates a sub-shot-noise
phase sensitiivity.
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In order to more firmly establish this, we consider two more cases:

f onej =


(1− 1

n
)ϕ j = 1

(1/n)ϕ j = 2

0 j > 2

(4.31)

fhalfj =


(1/2)ϕ j = 1

(1/2)ϕ j = 2

0 j > 2

(4.32)

It stands to reason that if there is any advantage to be gained by distributing ϕ into two

modes instead of one, it would be achieved by one of these two strategies—i.e. a strategy

that either balances the two modes, or weighs one more heavily. It is easy to see from

Figure 4.7 that this is clearly not the case, and both are outperformed by having ϕ in a

single mode. Finally, we remark that if the phase sensitivity is strictly lower by distributing

ϕ into two modes, then the same is surely true for a phase strategy where ϕ is distrbuted

into three or more modes. We thus conclude that the optimal phase strategy for a QuFTI

is as given in Figure 4.8.

Figure 4.7: Phase Sensitivity in One vs. Two Modes
Restricting ϕ to one mode is strictly better than mixing ϕ in two modes.
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Figure 4.8: Ideal QuFTI

The ideal phase strategy for a QuFTI when V̂ is an n-mode QFT. All of the unknown
phase ϕ is put into a single mode (here, depicted as the first mode, though any mode is

sufficient).

With this in mind, we would like to compare the architecture described in MORDOR

to the optimal QuFTI strategy described above. However, we have already made this

comparison, since MORDOR possesses the linear phase strategy fj = (j − 1), whose nor-

malized strategy is plotted against the ideal strategy in Figure 4.6. This may seem at first

contradictory to the results in MORDOR, which show that for all n, the phase sensitivity

of MORDOR beats the shotnoise limit. This is because the shotnoise limit as defined in

MORDOR is the best possible classical sensitivity given the linear phase strategy. Thus,

one may summarize the results of MORDOR in the following way: if one were restricted

to using a linear phase gradient to approximate an unknown ϕ, then there exists a passive

optical quantum strategy which is much more efficient than any classical strategy. This is

unfortuantely a rather restrictive condition.

In many applications, the experimental device, including the distribution of ϕ, is con-

trollable. As our goal is to produce an efficient, scalable device that is useful in a more

general setting, we are more interested in comparing the sensitivity of a QuFTI to the best

(classical or quantum) strategy available. As we have ample evidence to conclude that the

ideal QuFTI is as shown in Figure 4.8, we wish to characterize the phase sensitivity of this

device analytically. The operator Φ̂
(n)
δ describing the single mode phase strategy f δ is given
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by the diagonal matrix,

Φ̂
(n)
δ ≡ Φj,k = δj,ke

iϕδj,1 . (4.33)

This implies that the matrix describing the entire inteferometer is given by,

Û ≡ V̂ Φ̂V̂ † =
1

n

[
eiϕ + δj,kn− 1

]
, (4.34)

an explicit derivation of which can be found in Appendix B. Because of the simpler form

of Φ̂, an analytic derivation of perm(Û) is also possible—a result that was only postulated

in Ref. [60]. We show in Appendix B that,

perm(Û) =
1

nn

n∑
k=0

Dn,k[e
iϕ + n− 1]k[eiϕ − 1]n−k, (4.35)

where

Dn,k =
n!

k!

n−k∑
j=0

(−1)j

j!
, (4.36)

is referred to as the rencontres numbers, which enumerate all permutations in Sn with k

fixed points. We subsequently derive in Appendix B that the phase sensitivity ∆ϕ when

ϕ� nϕ is given by,

∆ϕ =
1

2
√

2
√

n−1
n

. (4.37)

We now compare this in Figure 4.9 directly to the ‘usual’ shotnoise (1/
√
n) and Heisenberg

(1/n) limit as defined in Ref. [34], which characterizes the maximally achievable phase

sensitivity for classical and quantum strategies satisfying Eq. 4.29 (see Appendix B). One

can easily see that for 2 ≤ n < 7, the QuFTI provides sub-shotnoise sensitivity, but is

limited to 1/
√

8 in the asymptotic limit.

We now address the role of Eq. (4.29) and the relevance of considering a normalized

phase strategy. Recall that the error propagation formula for some observable Ô as a
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function of ϕ is given by,

∆ϕ =

√
〈O2〉 − 〈O〉2∣∣∂〈O〉

∂ϕ

∣∣ . (4.38)

Suppose we consider a reparameterization of ϕ defined by τ = kϕ for some positive integer

k. If one compares the phase sensitivity ∆τ to that of ∆ϕ, one can see that

Figure 4.9: Phase Sensitivity of Ideal QuFTI

∆ϕ =

√
〈O2〉 − 〈O〉2
k
∣∣∂〈O〉
∂τ

∣∣ ⇒ ∆ϕ =
1

k
∆τ, (4.39)

which may tempt one to think that perhaps the sensitivity of measuring with respect to

ϕ is better than that of τ . This is indicative of the fact that, by replacing ϕ with kϕ in

an experiment (e.g. in the case of measuring the index of refraction of glass, by putting k

copies of a glass slab into your interferometer) has a real effect on the output of the device.

In terms of the sensitivity, however, this only compresses the coordinates by a factor of k,

so that the uncertainty with respect to ϕ is equally compressed. A fact that is sometimes

overlooked is that this also scales the shotnoise and Heisenberg limit by an equal factor, so

any comparison between the sensitivity and either limit is maintained.

Thus, in order to remove the illusion of arbitrarily high phase sensitivity, we wish to

consider the phase ϕ to be a limited resource possessed by the experimenter. The constraint
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of Eq. (4.29) then can be interpreted as allowing the experimenter the freedom to distribute

fractions of ϕ among the modes of his choosing. This allows each strategy to be compared

directly to the usual notion of shotnoise and Heisenberg limit without scaling the limit for

every strategy.

We remark that Eq. (4.29) is not reflective of every possible experimental setup. For

example, it may be the case that an experimenter is able to have an arbitrary number of

modes access ϕ at no cost, in which case the classical and quantum limits may not aptly

describe the ideal architecture under this constraint.

Earlier, we discussed optimization over the phase strategies in a generalized QuFTI.

However, we can also consider the choice of unitary evolution as an additional degree of

freedom in the device. That is, we wish to maximize the phase sensitivity with respect to

an arbitrary V̂ ∈ SU(n), which characterizes the set of all passive unitary transformations

on n modes, any of which can be efficiently implemented with at most O(n2) passive optical

elements [66].

Ideally, we would like to consider optimizing over the phase strategy Φ̂ and the unitary

V̂ simultaneously, so that every possible case is considered. However, we believe this is

unnecessarily rigorous. In Ref. [34], it is noted that the lowerbound is attained by “an

equally weighted superposition of the eigenvectors relative to the maximum and minimum

eigenvalues of the global generator h.” Since we show in Appendix B that the maximum

difference in eigenvalue is only achievable with the strategy f δ, we will fix this strategy

and consider optimizing only over V̂ . It is perhaps suggestive already that the optimal

V̂ should be the QFT (or any other unitary matrix satisfying |Vij| = 1
n
), since it is the

relative maximum in SU(n) for producing a superposition of states which have the largest

amplitude corresponding to these eigenvalues.

If V̂=QFT is not optimal, then it is either a relative maximum, or there will exist a

V̂ ′ in a neighborhood of V̂ such that the phase sensitivity of V̂ ′ supersedes that of V̂ . In

order to suggest both assertions could not be correct, we computed the phase sensitivity of
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10,000 random unitaries in SU(n) (for each n), and plotted the best phase sensitivity (i.e.

minimum ∆ϕ) of this set against the phase sensitivity of the QFT (see Figure 4.10). For

all 2 ≤ n ≤ 7, the sensitivity of the QFT exceeds that of every random unitary, providing

solid evidence that it is indeed the optimal unitary for the f δ strategy. We further remark

that it is not trivially optimal—Figure 4.10 also shows the phase sensitivity of the average

case, which does not attain sub-shotnoise sensitivity for any n.

Figure 4.10: QFT is Optimal for Delta Strategy
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Chapter 5
Conclusion

I would like to leave the reader with an impression of what I believe the results in this

thesis suggest about the future of quantum technologies. We have seen examples of powerful

theoretical models which provide clear advantages over their classical counterparts. But

with these advancements often come major engineering challenges that need to be overcome.

Whether it be implementing fault-tolerant LOQC or generating high-NOON states, there

seems to be no obvious short-term solution that would enable these mechanisms to be

realistically scalable. It seems that the full potential of quantum mechanics eludes us for

the time being.

On the other hand, new developments suggest that in the mean time we may be able

to exploit some of the more accessible properties of quantum theory. In this thesis, we have

seen how optical multi-mode networks are a natural environment for generating entangle-

ment. In the setting of BosonSampling, we saw that there is a fundamental connection

between the evolution of bosonic Fock states and matrix permanents. This connection

spans a colossal gap between the complexity of what we believe classical computers can do

and what it seems that Nature does automatically. We have seen in DisplacedSampling

and PASSVSampling that this complexity persists in more general systems than Fock

states alone, widening the potential applicability of these devices. At the same time, the

entanglement generated from a multimode network can be utilized by a similar device—the

QuFTI—to make more precise measurements than could be made classically. Results from

other groups seem to tell the same story; for example, a BosonSampling-like network

can be used to simulate certain systems in quantum chemistry [42].

Before scalable quantum computing becomes a reality, there would appear to be enor-

mous potential for an intermediate regime of quantum processing, where novel schemes

based on particular quantum systems exhibit properties that classical devices cannot imi-
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tate. Yet at present, it seems that this potential remains relatively untapped. My hope is

that this thesis provides a stepping stone to devising a truly practical post-classical device,

and enables and inspires the reader to become involved in achieving this goal. I will now

outline some future projects that I believe may hold to the key to doing so.

In this thesis, we discussed an application to quantum metrology—a field with far-

reaching applications in many other areas. Because of the inherent experimental overhead

in constructing quantum devices, it seems unlikely that the metrological devices discussed

in this thesis would find direct application in many industrial settings. However, the

results suggest that there may exist particular systems that could greatly benefit from the

application of quantum devices—perhaps those where the number of photons probing a

system is very limited. If reliable ways to create more exotic quantum states of light become

available, it may be that derivatives of the schemes discussed in this section might show

improved scaling. For example, initial investigation suggests that Fock states of photon

number |n〉 may be used in place of single photons in the QuFTI to improve sensitivity

closer to the Heisenberg limit.

Most public-key cryptosystems rely on the intractability of computing particular quan-

tities; most famously, RSA requires an eavesdropper to factor large semiprime integers. The

hardness of BosonSampling and computing matrix permanents may imply that it pos-

sible to construct a quantum cryptosystem based on far stronger complexity assumptions,

such as the unlikely collapse of the polynomial hierarchy or BPP 6= #P. If possible, such

a system may only need to rely on relatively simple optical elements and photon sources.

Interest has been growing rapidly on the topic of quantum machine learning. Many

machine learning tasks can be mapped to graph-theoretic problems, of which matrix per-

manents have some natural connections. Namely, permanents of binary matrices can be

thought of as counting the number of perfect matchings in a graph, or counting the number

of vertex cycle covers of a graph (where the matrix in question represents the adjacency
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matrix of the graph). It may be possible that a network similar to BosonSampling could

map to a useful training algorithm for certain learning environments.

Finally, the mathematics of linear optics is certainly not unique to the quantum world.

Bosonic systems can be found in many other subfields of physics, from particle physics to

condensed matter. Quantum optics itself is a very rich field, and certainly not restricted

to optical networks. It may be that considering BosonSampling or the QuFTI in other

environments within optics may allow one to take advantage of other effects that expand

the scope of the problem, or reduce the experimental overhead for implementing these

schemes.
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M. Kamp. Bright single photon source based on self-aligned quantum dot–cavity
systems. Opt. Express, 22(7):8136–8142, Apr 2014.

[57] J. C. F. Matthews, A. Politi, D. Bonneau, and J. L. O’Brien. Heralding two-photon
and four-photon path entanglement on a chip. Phys. Rev. Lett., 107:163602, 2011.

[58] K. Mayer, M. C. Tichy, F. Mintert, T. Konrad, and A. Buchleitner. Counting statistics
of many-particle quantum walks. Phys. Rev. A, 83:062307, 2011.

[59] K. R. Motes, J. P. Dowling, and P. P. Rohde. Spontaneous parametric down-conversion
photon sources are scalable in the asymptotic limit for boson sampling. Phys. Rev. A,
88(6):063822, 2013.

[60] K. R. Motes, J. P. Olson, E. Rabeaux, J. P. Dowling, S. J. Olson, and P. P. Rohde.
Linear optical quantum metrology with single photons – exploiting spontaneously
generated entanglement to beat the shot-noise limit. Phys. Rev. Lett., 114:170802,
2015.

[61] M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich. Demonstration
of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett.,
91:083601, 2003.

94



[62] L. A. Ngahi, O. Alibart, L. Labont, V. D’Auria, and S. Tanzilli. Ultra-fast heralded
single photon source based on telecom technology. Laser & Photonics Reviews, 9:L1–
L5, 2015.

[63] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information.
Cambridge University Press, Cambridge, 2000.

[64] S. Rahimi-Keshari, A. P. Lund, and T. C. Ralph. What can quantum optics say about
complexity theory? arXiv:1408.3712v1, 2014.

[65] T. C. Ralph. Quantum computation: Boson sampling on a chip. Nature Phot.,
7(7):514, 2013.

[66] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental realization of
any discrete unitary operator. Phys. Rev. Lett., 73:58, 1994.

[67] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Comm. of the ACM, 21(2):120126, 1978.

[68] P. P. Rohde. Boson-sampling with photons of arbitrary spectral structure. Phys. Rev.
A, 91:012307, 2015.

[69] P. P. Rohde, K. R. Motes, P. A. Knott, J. Fitzsimons, W. J. Munro, and J. P. Dowling.
Evidence for the conjecture that sampling generalized cat states with linear optics is
hard. Phys. Rev. A, 91:012342, Jan 2015.

[70] L. A. Rozema, J. D. Bateman, D. H. Mahler, R. Okamoto, A. Feizpour, A. Hayat,
and A. M. Steinberg. Scalable spatial superresolution using entangled photons. Phys.
Rev. Lett., 112:223602, 2014.

[71] S. Scheel. Permanents in linear optical networks. 2004. quant-ph/0508189.

[72] M. O. Scully and J. P. Dowling. Quantum-noise limits to matter-wave interferometry.
Phys. Rev. A, 48(4):3186, 1993.

[73] M. O. Scully and M. Fleischhauer. High-sensitivity magnetometer based on index-
enhanced media. Phys. Rev. Lett., 69(9):1360, 1992.

[74] K. P. Seshadreesan, J. P. Olson, K. R. Motes, P. P. Rohde, and J. P. Dowling. Boson
sampling with displaced single-photon Fock states versus single-photon-added coher-
ent states: The quantum-classical divide and computational-complexity transitions in
linear optics. Phys. Rev. A, 91:022334, 2015.

[75] V. S. Shchesnovich. Universality of generalized bunching and efficient assessment of
boson sampling. Phys. Rev. Lett., 2016.

[76] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput., 26(5):14841509, 1997.

95



[77] N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giaco-
mini, G. Milani, R. Ramponi, and P. Mataloni. Experimental validation of photonic
boson sampling. Nature Phot., 8:615, 2014.

[78] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X. Jin, M. Barbieri,
A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith,
P. G. R. Smith, and I. A. Walmsley. Boson sampling on a photonic chip. Science,
339(6121):798–801, 2013.

[79] L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comp. Sci., 3:1–22, 1976.

[80] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

[81] L. G. Valiant. The complexity of computing the permanent. Theor. Comp. Sci., 8:189,
1979.

[82] N. M. VanMeter, P. Lougovski, D. B. Uskov, K. Kieling, J. Eisert, and J. P. Dowling.
General linear-optical quantum state generation scheme: Applications to maximally
path-entangled states. Phys. Rev. A, 76:063808, 2007.

[83] E. P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev.,
40:749, 1932.

[84] M. M. Wilde. Quantum information theory. Cambridge University Press, 2013.

[85] C. F. Wildfeuer, A. P. Lund, and J. P. Dowling. Strong violations of Bell-type in-
equalities for path-entangled number states. Phys. Rev. A, 76:052101, Nov 2007.

[86] H. P. Yuen. Generation, detection, and application of high-intensity photon-number-
eigenstate fields. Phys. Rev. Lett., 56:2176, 1986.

[87] B. Yurke. Input states for enhancement of fermion interferometer sensitivity. Phys.
Rev. Lett, 56:1515, 1986.

[88] U. Yurtsever, D. Strekalov, and J.P. Dowling. Interferometry with entangled atoms.
Euro. Phys. J. D, 22:365, 2003.

[89] A. Zavatta, S. Viciani, and M. Bellini. Quantum-to-classical transition with single-
photon-added coherent states of light. Science, 306(5696):660–662, 2004.

[90] A. Zavatta, S. Viciani, and M. Bellini. Single-photon excitation of a coherent state:
Catching the elementary step of stimulated light emission. Phys. Rev. A, 72:023820,
Aug 2005.

96



Appendix A
Reuse and Permissions

http://journals.aps.org/copyrightFAQ.html

As the author of an APS-published article, may I include my article or a portion of my

article in my thesis or dissertation?

Yes, the author has the right to use the article or a portion of the article in a thesis or

dissertation without requesting permission from APS, provided the bibliographic citation

and the APS copyright credit line are given on the appropriate pages.

97

http://journals.aps.org/copyrightFAQ.html


Appendix B
Derivations

Proof of U
(n)
j,k

Beginning from Eq. (B.1) and setting Θ̂ = Î,

U
(n)
j,k = (V̂ Φ̂V̂ †)j,k

=
n∑

l,m=1

Vj,lΦl,mV
†
m,k

=
n∑

l,m=1

e−2ijlπ/n

√
n︸ ︷︷ ︸

Vj,l

δl,me
i(l−1)ϕ︸ ︷︷ ︸

Φl,m

e2imkπ/n

√
n︸ ︷︷ ︸

V †m,k

=
1

n

n∑
l=1

e
−2ijlπ
n ei(l−1)ϕe

2ilkπ
n

=
1

n

n∑
l=1

e
2il(k−j)π

n
+i(l−1)ϕ

= e
2i(k−j)π

n
1

n

n−1∑
l=0

(e
2i(k−j)π

n
+iϕ)l.

From the geometric series, it follows,

U
(n)
j,k =

1

n(e
2i(j−k)π

n )

1− einϕ(
1− e 2i(k−j)π

n
+iϕ
) ,

=
1− einϕ

n
(
e

2iπ(j−k)
n − eiϕ

) (B.1)

which is what we set out to prove. which is Eq. (4.21) that we set out to prove, where the

last line follows from the geometric series.

Conjecture for the Analytic Form of Per(Û (n))

Our goal is to find the analytic form for Per(Û (n)) where U
(n)
j,k is as in Eq. (B.1). We

can perform a brute force calculation to obtain the analytic form for small n. Doing so up

to n = 6 yields: One can see the pattern that emerges is of the form:
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n Per(Û (n))
1 1
2 eiφ cos(φ)
3 1

9

(
2 + e3iφ

) (
1 + 2e3iφ

)
4 1

32

(
1 + e4iφ

) (
3 + e4iφ

) (
1 + 3e4iφ

)
5 1

625

(
4 + e5iφ

) (
3 + 2e5iφ

) (
2 + 3e5iφ

) (
1 + 4e5iφ

)
6 1

648

(
1 + e6iφ

) (
2 + e6iφ

) (
5 + e6iφ

) (
1 + 2e6iφ

) (
1 + 5e6iφ

)
Per(Û (n)) =

1

nn−1

n−1∏
j=1

[
jeinϕ + n− j

]
, (B.2)

which is Eq. (4.22) that we set out to show. This equation has been verified analytically

up to n = 16 and up to n = 25 numerically..

Calculation of P

Assuming our conjecture in Eq. (4.22) holds, we can compute the coincidence proba-

bility of measuring one photon in each mode at the output,

P =
∣∣Perm(U (n))

∣∣2
=

∣∣∣∣∣ 1

nn−1

n−1∏
j=1

(
jeinϕ + n− j

)∣∣∣∣∣
2

=
1

n2n−2

n−1∏
j=1

∣∣∣ (jeinϕ + n− j
) ∣∣∣2

=
1

n2n−2

n−1∏
j=1

∣∣∣jcos(nϕ) + ijsin(nϕ) + n− j
∣∣∣2

=
1

n2n−2

n−1∏
j=1

∣∣∣ jcos(nϕ) + (n− j)︸ ︷︷ ︸
Re

+i jsin(nϕ)︸ ︷︷ ︸
Im

∣∣∣2.
(B.3)
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Invoking the property that |z|2 = Re(z)2 + Im(z)2, where z ∈ C,

P =
1

n2n−2

n−1∏
j=1

[(
jcos(nϕ) + (n− j)

)2
+ j2sin2(nϕ)

]
=

1

n2n−2

n−1∏
j=1

[
j2cos2(nϕ) + j2sin2(nϕ)︸ ︷︷ ︸

=j2

+ 2j(n− j)cos(nϕ) + (n− j)2
]

=
1

n2n−2

n−1∏
j=1

[
j2 + 2j(n− j)cos(nϕ) + (n− j)2

]
=

1

n2n−2

n−1∏
j=1

[
2j(n− j)︸ ︷︷ ︸

an(j)

cos(nϕ) + n2 − 2jn+ 2j2︸ ︷︷ ︸
bn(j)

]

=
1

n2n−2

n−1∏
j=1

[
an(j)cos(nϕ) + bn(j)

]
,

(B.4)

which is Eq. (4.23) that we set out to show.

Calculation of
∣∣∣∂P∂ϕ ∣∣∣

From Eq. (B.4), exploiting the logarithm product rule,

ln(P ) = ln

(
1

n2n−2

)
︸ ︷︷ ︸

C

+ln

(
n−1∏
j=1

[
an(j)cos(nϕ) + bn(j)

])

= C +
n−1∑
j=1

ln
[
an(j)cos(nϕ) + bn(j)

]
, (B.5)

where C is a constant. Now the derivative becomes,

1

P

∂P

∂ϕ
= −

n−1∑
j=1

nan(j)sin(nϕ)

an(j)cos(nϕ) + bn(j)

∂P

∂ϕ
= −nP sin(nϕ)

n−1∑
j=1

an(j)

an(j)cos(nϕ) + bn(j)
.

(B.6)
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Thus, ∣∣∣∣∂P∂ϕ
∣∣∣∣ = nP

∣∣sin(nϕ)
∣∣ n−1∑
j=1

∣∣∣∣ an(j)

an(j)cos(nϕ) + bn(j)

∣∣∣∣ , (B.7)

which is Eq. (4.25) that we set out to show.

Calculation of ∆ϕ in the small angle approx.

We wish to compute ∆ϕ in the limit that nϕ� 1. Then P in the small angle regime

of Eq. (4.23) becomes,

P ≈ 1

n2n−2

n−1∏
j=1

[
an(j)

(
1− 1

2
(nϕ)2

)
+ bn(j)

]

=
1

n2n−2

n−1∏
j=1

[
n2 − (nj − j2)n2ϕ2

]

=
n−1∏
j=1

[
1− (nj − j2)ϕ2

]
, (B.8)

where cos(nϕ) is expanded to the first nonconstant term in its Taylor series. This product

has the form of a binomial expansion. Dropping terms above order ϕ2, P reduces to,

P ≈ 1− ϕ2

n−1∑
j=1

[
nj − j2

]
= 1− ϕ2

[1

6
(n− 1)n(n+ 1)

]
= 1− k(n)ϕ2, (B.9)

where k(n) = 1
6
n(n − 1)(n + 1) ≥ 0 ∀ n ≥ 1. From Eq. (B.9) we can easily compute P 2

and
∣∣∂P
∂ϕ

∣∣ to be,

P 2 ≈ 1− 2k(n)ϕ2 (B.10)∣∣∣∣∂P∂ϕ
∣∣∣∣ = 2k(n)|ϕ|, (B.11)
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where we have again dropped terms above order ϕ2. Using Eq. (4.19) the phase sensitivity

∆ϕ in the small angle regime is,

∆ϕ =

√
P − P 2∣∣∣∂P∂ϕ ∣∣∣

=

√(
1− k(n)ϕ2

)
−
(

1− 2k(n)ϕ2
)

2k(n)|ϕ|

=

√
k(n)ϕ2

2k(n)|ϕ|
=

1

2
√
k(n)

=

√
3

2(n− 1)n(n+ 1)
, (B.12)

which is Eq. (4.26) that we set out to show.

Discussion of Ordinal Resource Counting (ORC)

We would like to compare the performance of MORDOR to an equivalent multimode

interferometer baseline for which we will construct the shotnoise limit (SNL) and Heisenberg

limit (HL). This is a subtle comparison, due to the linearly increasing unknown phase-shifts,

{0, ϕ, . . . , (n− 1)ϕ}, that MORDOR requires to operate. There is a long and muddled

history of increasing the interrogation time (or here length) of the probe particles with

the unknown phase-shift followed by an incorrect reckoning of the true resources. Here

we shall discuss a protocol described in Ref. [60] called Ordinal Resource Counting (ORC)

whereby all resources, such as number of ‘calls’ to the phase-shifter ϕ, are converted to the

‘currency’ of the resource that is most precious to us, namely photon-number.

First we must construct a multimode interferometer with n photon inputs that provides

the baseline if the photons remain uncorrelated and the number-path entanglement remains

minimal. Such a comparator is shown in Figure B.1, and consists of n, two-mode Mach-

Zehnder Interferometers (MZI) in a vertical cascade, fed with single-photon inputs, with

the same linearly increasing unknown phase-shift sequence as MORDOR. Since the MZIs
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are disconnected, the number-path entanglement remains constant and minimal, and of

the form (|1, 0〉+ |0, 1〉)/
√

2 inside each MZI.

Figure B.1: n instances of two-mode Mach-Zehnder interferometers, with a linearly increas-
ing phase gradient. This system has the same configuration of phases as MORDOR, but
the photons are not allowed to interfere, and thus has minimal number-path entanglement.

Now to convert the linearly increasing interrogation lengths of the unknown phase-

shifts, we note that a single photon interrogating a phase-shift of say 2ϕ is equivalent to

a single photon interrogating a single phase-shift ϕ twice, which is in turn equivalent to

two uncorrelated photons entering the same port of the MZI containing a single phase-shift

of ϕ. In this way we may convert ‘number of interrogations of the phase-shifter’ into the

currency of ‘number of photons’ to carry out a fair reckoning of the resources. Following

this logic we are led to Figure B.2 showing a cascade of MZIs where the linearly increasing

phase-shifters are replaced with a single phase-shifter of ϕ and the single photons at the

MZI inputs are replaced with a linearly increasing number of photons. Then the ‘number

of interrogations of the phase-shifter’ becomes n(n−1)/2, but there is an additional photon
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that is part of the MORDOR resources so our total number of resources becomes,

N ≡ 1 +
n(n− 1)

2
. (B.13)

Figure B.2: Noting that a single photon interrogating a phase-shift of nϕ is equivalent to n
independent interrogations of ϕ, Figure B.1 can be represented in terms of the resource of
photons as shown here. Here |1〉⊗j means that j independent (i.e distinguishable) photons
have been prepared.

Next we note that this cascade of n MZIs in Figure B.2 may be replaced with a

single MZI, shown in Figure B.3, where the input is now an ordinal grouped ranking

of the uncorrelated photons following the same pattern as in Figure B.2. Hence in the

configuration in Figure B.3 we have a single MZI with vacuum entering the lower port, a

stream of N uncorrelated photons entering the upper port, and a single phase-shifter ϕ

between the beamsplitters. It is well-known that for this configuration the sensitivity of
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this system scales as the SNL [72, 22], namely,

∆ϕSNL =
1√
N

=
1√

1 + n(n−1)
2

. (B.14)

This then provides the scaling used in Ref. [60] to construct the SNL for comparison to

MORDOR.

Figure B.3: Grouping all the independent interferometers in Figure B.2 together and in-
cluding the extra photon from MORDOR, we obtain a single MZI with 1 + n(n− 1)/2
independent photons as input. This configuration achieves the shotnoise limit, and thus
provides a benchmark for comparing MORDOR against the shotnoise and Heisenberg lim-
its, with photons as the resource being counted.

Finally, if instead we were to maximally path-number entangle these resources into a

NOON state of the form (|N, 0〉+ |0, N〉)/
√

2 (just to the right of the first beam splitter

but before the phase-shifter) the sensitivity then becomes Heisenberg limited,

∆ϕHL =
1

N
=

1

1 + n(n−1)
2

, (B.15)

which is a sensitivity known to saturate the Quantum Cramér-Rao Bound (CRB) for sen-

sitivity in local phase estimation with N photons [53, 25]. As the CRB is the best one may

do, according to the laws of quantum mechanics, then in this case the HL is optimal. As

discussed, the performance of MORDOR falls between the SNL and the HL, but with the

feature of not having to do anything resource intensive such as preparing a high-NOON

state.

In Ref. [60], it was stated that this provided the fairest comparison of sensitivity per-

formance of MORDOR with such ambiguities such as how to handle ‘number of calls to
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the phase-shifter’ removed by replacing such a notion with ‘number of photons’ inputted

into the interferometer. While it may be the case that ORC correctly computes the HL,

it appears upon further analysis that this may not be the case for the SNL. For example,

suppose for n = 2 (i.e. an MZI) that ϕ is replaced by 2ϕ in the interferometer, and we wish

to compute the phase sensitivity ∆ϕ. ORC predicts that an equivalent number of resources

for MORDOR should be N = 3, and so the SNL corresponds to a phase sensitivity of 1/
√

3.

On the other hand, for a single experimental run of the MZI with only a single photon,

one can see that the phase sensitivity corresponds to 1/
√

2. Once we take into account

an additional experimental run (since we still have a second photon), we see that ∆ϕ =

1/(
√

2·
√

2) = 1/
√

4, which suggests that N = 4 is the correct equivalence. The SNL plotted

within this thesis (relative to the MORDOR architecture) is derived from the classical limit

calculation in Ref. [34], i.e. the SNL scales as 1/
√
N whereN =

∑n−1
i=0 i

2 = 1
6
n(n−1)(2n−1).

Efficiency

In the presence of inefficient photon sources and photo-detectors the success probability

of the protocol will drop exponentially with the number of photons. Specifically, if ηs and ηd

are the source and detection efficiencies respectively, the success probability of the protocol

is η = (ηsηd)
n. Current cutting edge transition edge detectors operate at 98% efficiency,

with negligible dark count [26]. SPDC sources are the standard photon-source technology

but they are non-deterministic. However, there are techniques that can greatly improve

the heralding efficiency up to 42% at 2.1 MHz [62]. Also, other source technologies, such as

quantum dot sources are becoming viable with efficiencies also up to 42% [56]. For n = 10,

which is already well beyond current experiments, this yields η = (0.98∗0.42)10 ≈ 0.00014,

which is about 300 successful experimental runs per second when operating with 2.1 MHz

sources.

Dephasing

A form of decoherence to consider is dephasing. Dephasing in our work may be modelled

with the result of Bardhan et al. [5], whereby dephasing occurs on each mode separately.
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Figure B.4: Dephasing for ϕ = 0.01. The shaded region represents the phase sensitivity
for MORDOR where 0 ≤ χ ≤ 0.01.

When considering our example of a magnetometer, dephasing would occur in the magnetic

field cells where atomic fluctuations may occur that differ between cells. In the rest of the

interferometer, dephasing can be made very close to zero, particularly on an all optical

chip.

To model dephasing we investigate a random phase shift ∆χ added to each mode

separately. ∆χ is a Gaussian random variable of zero mean but nonzero second order

moment. The phase shift in the jth mode then becomes,

e±ijϕ → e±ij(ϕ+∆χ)

= e±ijϕe±ij∆χ

= e±ijϕ
(

1± ij∆χ− 1

2
j∆χ2 ± . . .

)
. (B.16)

Using 〈∆χ〉 = 0, 〈∆χ2〉 6= 0, and that ∆χ� φ we simplify this to be,

e±ijϕ → e±ijϕ
(

1− 1

2
j∆χ2 ± . . .

)
≈ e±ijϕe−

1
2
j2∆χ2

. (B.17)
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Figure B.5: The effect of dephasing on the NOON state and MORDOR where ϕ = 0.01, χ =
0.005. The NOON state is plotted with respect to N for fair resource counting.

The signal P in Eq. 10 from our work then changes in the presence of dephasing. The

dependence that P has on the unknown phase ϕ does not depend on the mode number j.

Then the term that depends on ϕ becomes,

cos(nφ) =
1

2

(
einϕ + e−inϕ

)
→ 1

2

(
einφ + e−inφ

)
e−

1
2
n2∆χ2

= cos(nφ)e−
1
2
n2∆χ2

(B.18)

Using this substitution P becomes,

P =
∣∣∣Per(Û (n))

∣∣∣2
=

1

n2n−2

n−1∏
j=1

[
an(j)cos(nφ)e−

1
2
n2∆χ2

+ bn(j)
]
. (B.19)
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The factor e−
1
2
n2∆χ2

can be absorbed into an(j) so that the derivation of |∂P
∂φ
| in Eq. (4.25)

is identical. Using this result we numerically plot the phase sensitivity with dephasing in

Figure B.4.

In order to meaningfully analyze the dephased sensitivity, we would like to compare

with other well known metrological schemes. In Figure B.5, we compare MORDOR to the

NOON state (with N input photons for a fair resource comparison) and see that MORDOR

is far more robust against dephasing.

Entries of Uij

Consider a linear optical network similar to the MORDOR protocol, except where the

original phase gradient Φ̂ has been replaced by a single unknown phase shift ϕ in the

uppermost arm, together with no phase shift in the other arms. We denote this operator

by X̂(n), whose matrix form is given by,

[X̂(n)]j,k ≡ Xj,k = δj,k(e
iϕ)δj,1 , (B.20)

i.e., X̂(n) is the identity operator În with only the (1, 1) entry replaced by eiϕ. Analogous

to the MORDOR protocol, we also choose the control phase Θ̂(n) to be of the same form,

[Θ̂(n)]j,k ≡ Xj,k = δj,k(e
−iθ)δj,1 , (B.21)

though for simplicity of the proof we may assume θ = 0 and thus Θ̂(n) = În. We drop the

superscript n on most operators when it is clear from context that all operators have the

same index.
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We now compute the matrix entries of the entire network, Û (n) = V̂ X̂V̂ †.

U
(n)
j,k = (V̂ X̂V̂ †)j,k

=
n∑

l,m=1

Vj,lXl,mV
†
m,k

=
n∑

l,m=1

1√
n
ω(j−1)(l−1)
n︸ ︷︷ ︸
Vj,l

δl,me
iϕδl,1︸ ︷︷ ︸

Xl,m

1√
n
ω(m−1)(1−k)
n︸ ︷︷ ︸
V †m,k

=
1

n

[
eiϕ +

n∑
l=2

ω(j−1)(l−1)
n ω(l−1)(1−k)

n

]
=

1

n

[
eiϕ +

n∑
l=2

(ω(j−k)
n )(l−1)

]
=

1

n

[
eiϕ +

n−1∑
l=1

(ω(j−k)
n )l

]
. (B.22)

=



1

n

[
eiϕ + n− 1] j = k

1

n

[
eiϕ − 1

]
j 6= k

=
1

n

[
eiϕ + (δj,k)n− 1

]
. (B.23)

For j = k, it is easy to see the sum in Eq. (B.22) should be n− 1 since each term is simply

1l = 1. For j 6= k, the result follows from the fact that the sum of all nth roots of unity is

zero, i.e.,

0 =
n∑
l=1

ωln. (B.24)

The proof for the above follows directly from the geometric series, and it easy to see that

it extends to a sum over ω
(j−k)
n as well.
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Permanent of U

The permanent of Û (n) is, by definition,

perm(Û) =
∑
σ∈Sn

n∏
j=1

1

n

[
eiϕ + (δj,σ(j))n− 1

]
=

1

nn

∑
σ∈Sn

n∏
j=1

[
eiϕ + (δj,σ(j))n− 1

]
. (B.25)

Suppose σk is some permutation with k fixed points, recalling that a fixed point of a

permutation is a value j ∈ {1, .., n} such that σ(j) = j (also referred to as a partial

derangement). Then the product
∏n

j=1 in Eq. (B.25) corresponding to σk is,

n∏
j=1

[
eiϕ + (δj,σk(j))n− 1

]
= [eiϕ + n− 1]k[eiϕ − 1]n−k (B.26)

The sum in Eq. (B.25) can thus be rewritten in terms of a sum over the number of fixed

points in a permutation, whose coefficient Dn,k enumerates all permutations in Sn with k

fixed points. The quantity Dn,k is referred to as the rencontres numbers, where,

Dn,k =
n!

k!

n−k∑
j=0

(−1)j

j!
. (B.27)

The permanent is thus,

perm(Û) =
1

nn

n∑
k=0

Dn,k[e
iϕ + n− 1]k[eiϕ − 1]n−k. (B.28)

Calculation of ∆ϕ

We are mostly interested in the behavior of perm(Û) for small ϕ, where the phase

sensitivity is optimal. To simplify the remaining calculations, we focus our attention on
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the Taylor expansion of Fn[ϕ] = perm(Û (n)) up to second order,

Fn[ϕ] ≈ Fn[0] + F ′n[0]ϕ+
1

2
F ′′n [0]ϕ2. (B.29)

We can find Fn[0] easily by noting that, because of the product with [eiϕ − 1]n−k the only

non-zero term in Eq. (B.28) corresponds to k = n,

Fn[0] =
1

nn
Dn,n[1 + n− 1]n =

1

nn
· 1 · [n]n = 1. (B.30)

Similarly, the only non-zero terms in F ′n[0] must be derivatives of either k = n or k = n−1.

Since Dn,n−1 = 0, we need only concern ourselves with the derivative of the k = n term.

Applying the chain rule,

F ′n[0] =

[
1

nn
Dn,n[eiϕ + n− 1]n

]′
ϕ=0

=

[
1

nn
Dn,nn[eiϕ + n− 1]n−1ieiϕ

]
ϕ=0

(B.31)

=

[
1

nn
· 1 · n[1 + n− 1]n−1 · i

]
=
nn

nn
· i

= i. (B.32)

Evaluating F ′′n [0] is only marginally more difficult. The k = n term can be evaluated by

straightforward application of the product rule to Eq. (B.31). Also, although the second

derivative of the k = n− 2 term may be non-zero and contains a product, it is only so for

the second derivative of [eiϕ − 1]2—the other terms originating from the product rule are
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zero. Hence, F ′′n [0] has only three non-zero terms,

F ′′n [0] =

[
1

nn
Dn,nn[eiϕ + n− 1]n−1ieiϕ

]′
ϕ=0

+

[
1

nn
Dn,n−2[eiϕ + n− 1]n−2[eiϕ − 1]2

]′′
ϕ=0

=

[
1

nn
Dn,nn(n− 1)[eiϕ + n− 1]n−2(ieiϕ)2

]
ϕ=0

+[
1

nn
Dn,nn[eiϕ + n− 1]n−1(ieiϕ)2

]
ϕ=0

+[
1

nn
Dn,n−22[eiϕ + n− 1]n−2(ieiϕ)2

]
ϕ=0

= −
[

1

nn
(n− 1)nn−1

]
−
[

1

nn
nn

]
−[

1

nn
2Dn,n−2n

n−2

]

= −
[n− 1

n
+ 1 +

2Dn,n−2

n2

]
= −

[n− 1

n
+ 1 +

n(n− 1)

n2

]
= −

[2n− 2

n
+ 1
]

= −3n− 2

n
(B.33)

Thus, Eq. (B.29) becomes the simple expression,

perm(Û (n)) ≈ 1 + iϕ− (
3n− 2

2n
)ϕ2 (B.34)
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Recall that the probability P of observing n photons each exit individual ports is P =

|perm(Û (n))|2. For small ϕ, then,

P =
∣∣∣1 + iϕ− (

3n− 2

2n
)ϕ2
∣∣∣2

=
(

1 + iϕ− (
3n− 2

2n
)ϕ2
)(

1− iϕ− (
3n− 2

2n
)ϕ2
)

= 1 + iϕ− iϕ− 2(
3n− 2

2n
)ϕ2 − i2ϕ2 +O(ϕ4)

= 1− 2n− 2

n
ϕ2 +O(ϕ4). (B.35)

Finally, ∆ϕ becomes,

∆ϕ =

√
P − P 2

|∂P
∂ϕ
|

=

√
1− 2n−2

n
ϕ2 − 1 + 4n−4

n
ϕ2

4n−4
n
ϕ

=

√
2n−2
n
ϕ2

2 · 2n−2
n
ϕ

∆ϕ =
1

2
√

2 ·
√

n−1
n

. (B.36)

Tha ratio between ∆ϕ and the shotnoise-limited phase sensitivity for n photons is then,

∆ϕ√
n

=

√
8(n− 1)

n
(B.37)

which is greater than one (i.e. gives an advantage over shotnoise) for 2 ≤ n ≤ 6.

Optimum Phase Strategy

Here, we wish to show that the phase strategy f δ represents the best possible strategy

in the setting discussed in Ref. [34], which we now briefly summarize. In this setting,

N parallel probes are prepared in a state |Ψ〉, where each probe is acted on by a unitary

114



transformation Uϕ ≡ exp(−iϕH). The parallel strategy is thus described by U⊗Nϕ generated

by h =
∑N

j=1Hj, where Hj is a Hermitian operator acting on the jth probe.

In our scenario, we note that a single mode optical phase shift on the jth mode has

the form exp(−ifjϕâ†j âj) (where â†, â are the creation and annihilation operators), so that

Hj = fj â
†
j âj. It is easy to see that the maximum eigenvalue for any Hj is the case that

all n photons probe the jth mode, which produces the eigenvalue fj · n. Trivially, the

minimum eigenvalue is 0 when no photons probe the mode. Thus, for the f δ strategy, it is

straightforward that h has maximum eigenvalue n and minimum eigenvalue 0. However,

recall that every strategy must satisfy the constraint,

n∑
j=1

fj = 1 where 0 ≤ fj < 1, (B.38)

so that for every strategy other than f δ, n photons cannot fully and simultaneously probe

more than one mode, meaning that there is no input state that achieves the maximum

eigenvalue for every mode in h.
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