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Abstract

This thesis presents work on the development of new techniques to study the problem of localization
in various models of disordered systems with the goal of being able to extend these model calcu-
lations to real materials where these various mechanisms of disorder can all be present. I consider
the Anderson Model with diagonal, off-diagonal disorder, multiple bands and superconductivity is
included at the level of a Bogoliubov - De Gennes mean field (superconductivity is considered by
adding the symmetries of the Bogoliubov - De Gennes Hamiltonian on top of the disordered lattice
Hamiltonian). The localization of electrons is studied with the transfer matrix method (TMM)
in order to compare mobility edge predictions with that of the newly developed Typical Medium
Dynamical Cluster Approximation (TMDCA) for systems with both off diagonal disorder and mul-
tiple bands. It is verified this method can accurately predict the localization transition in model
systems. A model of a disordered superconductor is considered with extended s-wave pairing, but in
this case the excitations are no longer electrons but Bogoliubov quasiparticles or bogolons. I study
the multifractal properties of the bogolon wavefunction and apply a multifractal analysis similar to
what has been applied to the Anderson model and verify the ability to capture the localization of

the bogolon quasiparticle excitations with comparison to the TMM.

vi



Chapter 1

Introduction

1.1 Ordered Systems: Metals and Insulators

This thesis is work related to the problem of localization which results in the inhibition of transport
in materials. A system is said to undergo a localization transition when the carriers of of some
physical quantity (charge, energy etc.) have become “stuck” somewhere in the material and are
unable to conduct over large distances in the material. This thesis will be focused on the question
of localization induced by disorder or localization in the Anderson sense. I will be focusing on
disordered systems, but before addressing the problem of disorder, I will review some aspects of the
theory of ordered systems.

The first aspect of ordered systems that will be necessary to understand is the so called tight
binding model in order to understand the model Hamiltonians that will be introduced. This is
reviewed below in Sec.1.1.1. Next, a mechanism of localization not related to disorder and known
as the Mott transition or Mott localization (emphasis to explicitly differentiate it from Anderson
localization) will be reviewed in Sec.1.1.2. As I will be later discussing disordered superconductors,

I will review ordered superconductors in Sec.1.1.3

1.1.1 Independent Electrons and the Tight Binding model

We first make the independent electron approximation which means we will be neglecting any
effects of electron-electron interaction and only consider a single electron. As a single electron
travels through a material, it will experience a potential V' (x) that varies as a function of position
which is produced by the positive ions that make up the lattice. We consider an ordered system and

so this potential must have the same translational symmetry of the lattice. Let 1 be a vector such



that displacing every point in the lattice by it leaves the lattice invariant. The potential the electron
experiences must then obey V(x + 1) = V(x). This has profound effect on the time independent

Schrodinger equation for the electron

H(x) [¢(z)) = E|ib(x)) (1.1)

where H(x) is the Hamiltonian that includes the potential (V(z)) and is an operator that acts on
the state vector |¢(x)) of the electron and returns its energy E. The result of the translational

symmetry has the effect on the wavefunction solutions, causing them to take the form

Yr(x) = eik'”cuk(az) (1.2)

i.e. the electrons form extended plane wave states multiplied by a function ug(x) that has the
periodicity of the lattice and this is known as Bloch’s theorem. Any metallic or delocalized state
can thus be expressed as a sum of Bloch waves.

We now consider the form of the Hamiltonian and assume the basis vectors to be states that are

localized to some atomic site i and so [i(x)) = |i) which is short hand for a vector

This is known as the tight binding model and can be written in second quantized notation as

H=—tY (clej+he) (1.4)

<1,7>

where ¢; destroys an electron on site ¢ and c;-r creates an electron on site ¢, and so it describes a

single electron hopping on a lattice with kinetic energy ¢. The restriction on the sum denoted by



< 1,7 > is to nearest neighbors which will always be followed in this thesis. This is summarized in

Fig.1.1

—1
SN
90 e

\/‘\/
1+ 1

Figure 1.1: Example of Eq. 1.4 on a one dimensional chain. The hopping from site ¢ to ¢ + 1 is
described by the term C;[_HCZ' as .

This can be diagonalized by Fourier transform to

HO = ZEkCLCk (15)
k

where € is known as the dispersion and gives the allowed electronic energies. For the case of a linear
chain, ex = cos(k). The range of allowed energies is referred to as a band. The above discussion was
considering only a single band, and for systems with multiple bands we introduce the band index n
to the dispersion €. If the Fermi energy (the largest available electronic energy and is the energy
of the electrons that participate in transport) falls within a gap between the allowed energies of the
bands n and n’ the material is said to be a band insulator. This is different from an insulator due

to disorder and due to electron-electron interaction which is described below in Sec.1.1.2.



1.1.2 Mott Transition

As already stated, this thesis will be focused on localization from disorder, but it is important to note
that localization can appear without disorder and the original argument was made by Mott[1]. We
imagine bringing together an array of Hydrogen atoms to form a lattice with some lattice spacing a.
From the above discussion of the tight binding model, we know that if the lattice spacing becomes
large enough then the wave functions will no longer overlap, no bands will form and the electrons
will be localized to their respective Hydrogen atomic orbitals. This makes it seem as if, from the
perspective of the tight binding model, that the transition from metal to insulator is continuous as
a function of lattice spacing a (or alternatively the density of ionized electrons n), but it is well
known that this is not the case (having been observed in transition metal oxides[3]) and so there
must be some mechanism of localization that is not related to disorder.

The resolution is that it is a failure of the independent electron approximation which neglects
the electron-electron interaction|2]. As an electron leaves an ionic site, leaving a positive charge
which will attract the electron and possibly form a bound state. However, this potential is not just

the coulomb potential —e?/r, but the screened potential
e
__e_)‘r (16)

due to the presence of the other electrons. For a given density of free electrons n, the screening

length takes the form

4me>n/3
PR 2 (1.7)
The ground state of Hydrogen has the well known radius
h2

and so if this length is longer than the screening length 1/ then the electron can not be bound and



can be free to wander. And so the condition for localization is
—<ag (1.9)

or

1
n- 3 <dag. (1.10)

Thus, there is a sudden transition from a metallic state to an insulating state for some density of
free charge carriers n which is not due to disorder and purely from taking the interaction of electrons
into account. This is referred to as Mott localization and is a distinctly different mechanism than
Anderson localization which will be the focus of this thesis. Therefore, any mention of localization

in this thesis should be implied to be in the Anderson sense unless stated otherwise.

1.1.3 Superconductivity

The body of literature on the theory and experiments related to superconductivity is incredibly
expansive, and so I will focus on the ascpects necessary to understand the application to disordered
systems that I will address in Sec.1.3.3.

According to Drude theory of electrons in metals, the resistivity of a metal at low temperature
should behave as |2]

p=po+al?+-- (1.11)

and so it is expected to continuously decrease to some constant pg which is given by the density
of impurities (which is independent of T, being related to the intrinsic properties of the material).
However, it was then discovered in 1911 from experiments on Mercury that around a temperature
of 4°K that the resistivity suddenly vanishes[9]. Therefore, in some materials there is some critical
temperature T, below which the electrons in a material can transport without loss of energy. It
was not until 1959 that a microscopic explanation for superconductivity was provided|10] and the
essential parts of the theory are realizing there can be an attractive interaction between electrons
which leads to the formation of so called cooper pairs.

Although the coulomb interaction is much weaker in a solid due to screening as mentioned in



Sec.1.1.2, it still remains repulsive. The attractive interaction comes from an electron in a Bloch state
Ynk(r) can excite a phonon mode with some momentum hq and losing fiq in turn. Additionally, a
second electron can then later gain that momentum and this leads to an effective retarded interaction
between electrons. To see that the interaction is attractive we imagine an electron moving through
a metal and the resulting deformation of the lattice as seen in Fig.1.2. From these arguments, we
can write down the term in the Hamiltonian that will capture this attractive interaction between
two electrons with wave vectors k; and ko that then interact and electron ks gives up momentum

hq which is later absorbed by electron ki as

Hy = _UZC;rcl—i-q,crlCLQ—q,agckl,Olckz,@ (1'12)

-y - oy
/ \ / \
1 \
\ I
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UFA/‘
/
' |
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Figure 1.2: As an electron moves through a lattice with Fermi velocity vg, it attracts the positive
large ions and this in turn leads to a build up of positive charge with respect to the rest of the
lattice and will attract a second electron.

It was then Cooper[11] that showed this attractive interaction (no matter how weak) leads to
any two electrons above the Fermi surface to form a bound state of zero total momentum: they
form a pair of (k,o) and (—k,o0) where o denotes the spin. The bound state is assumed to be a
singlet and so the two electrons have opposite spin, but it is worth noting that they can have the

same spin if the spin state formed is a triplet state.



And so within BCS theory, we can write the Hamiltonian for an ordered superconductor as
H:Ho—l-Hl (]_]_3)

where Hy is given by Eq. 1.5 and H; from above Eq. 1.12. From the above discussion of Cooper
pairs and spin, we drop all terms except terms that pair electrons such that k; = —ko and 07 = —o9

which leads to the Hamiltonian

H= Z ekcLUckJ — UZ CLTCT—k¢C—k’¢Ck’T (1.14)
ko Kk’

1.2 Experiments on Localization and Disorder in Materials

In this section, I review experiments on disordered systems to motivate the theoretical study of the
disorder induced metal-insulator transition. An appreciation of the importance of understanding
metal-insulator transitions came very soon after the theory of band insulators (discussed in Sec.1.1.1)
established a basic distinction between metals and insulators: whether the Fermi level falls in a gap
or not. It was then realized that insulators with a small band gap would lead to semiconducting
behavior, and 16 years later the transistor was invented which had obvious practical technological
impact. However, there was still much that complicates this simple picture: already mentioned
in Sec.1.1.2 was the effect of electron-electron interaction and the Mott transition. Experiments
determined that many transition-metal oxides with partially filled d-electron band could still be
insulators[13] despite band theory predicting otherwise. In Sec.1.2.1-1.2.2, experiments on non-

superconducting systems will be reviewed and Sec.1.2.3 will review disordered superconductors.

1.2.1 Weak Localization

The scaling theory of localization predicts that in two dimensions all metals should become in-
sulating in the limit 7" — 0. This behavior was verified in experiments of this Cu films at low
temperatures|18| (see Fig.1.3 for experiment and details) where the mean free path is of the order of

the film thickness. This effect is attributed to the quantum mechanical interference of electron wave-
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Figure 1.3: Resistivity (reported as resistance per square Rp) as a function of Temperature in a
thin Cu film with thickness 119Aand resistivity 6.8 x 106Qem. Film thickness was measured with
a quartz-crystal thickness monitor. Film resistance was measured via four-terminal measurements
with a conducting channel 0.235mm wide and probe separation of 4mm. The samples were prepared
at a pressure of 107Torr. The films were prepared with 99.999% Cu.

functions or coherent backscattering, and this is referred to as the weak localization effect. Coherent
back scattering will be discussed in detail in Sec.1.3.1, but it is a phase coherence that the electron
acquires in the backscattering direction and this constructive interference increases the probability
of the electron returning to any site: it is a localizing effect that enhances resistivity. Although
experiments showed the predicted T dependence, it was found that electron-electron interactions
will result in the same behavior. To resolve this dilemma, further experiments were performed
involving magnetic fields [19] demonstrating negative magnetoresistance such as Fig.1.4. The fact
that a negative magnetoresistance is demonstrated shows it is an effect of coherent backscattering

as an external field disrupts the phase coherence and increases the localization length. In contrast,



the effect of electron-electron interactions would show a positive magnetoresistance. As the effects
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Figure 1.4: Negative magnetoresistance as a function of applied field for a thin Cu film with a
sheet resistance of R = 8.6(2/(]. Shown are for both transverse (H_) and parallel (H)) fields. The
increase in a transverse field has the expected effect of increasing the localization length, lowering
the resistance. The effect is not pronounced for a parallel field, demonstrating it is not due to any
spin effects and is due to localization. Figure is from [19].

of spin-orbit interactions would also disrupt the phase coherence, it was also experimentally con-
firmed that this behavior was indeed due to some phase coherence in the sample by later studies
involving introducing spin-orbit coupling|20| which has the effects of disrupting the phase coherence

and “turning off” the localization|[148].



1.2.2 Anderson Transition in Doped Semiconductors

The weak localization effect described above in Sec.1.2.1 is often refered to as the precursor to
Anderson localization: as disorder increases the electrons are more strongly back scattered and it
was hypothesized that for sufficiently strong disorder the conductivity of a material can vanish,
inducing a metal-insulator transition. The most famous case is phosphorous doped silicon (Si:P)

were it was observed for uncompensated samples|152] and is described as an Anderson transition.

[ T T T T
Uncompensated
Si:P
400 |- .
1
=
It
G Compensated
= 200 | SiP.B
o 200
b
0 ] ] |
0 ! 2 3 4 5

n/n,

Figure 1.5: Conductivity of uncompensated and compensated Si:P as a function of carrier concen-
tration. Figure is from [152]. Demonstrating the existence of a critical concentration of impurities
n. at which the conductivity vanishes.

1.2.3 Superconductor to Insulator Transition

In Sec.1.1.3, I reviewed the basic theory of clean superconductors and disorder can have profound
impact on these properties such the critical temperature 7T, which will be a particular focus. Based
on the BCS theory described in Sec.1.1.3, at least in the weak disorder limit, 7, is presumed to be
unaffected by disorder and this is famously known as Anderson’s Theorem|22].

The question of how superconductivity is destroyed, just as how metallic behavior is destroyed,

10



is an active area of research. The complication from the systems discussed above is that now there
can be three phases that can interact in complicated and surprising ways: metal, insulator and

superconductor. For example, in Fig.1.6 is an example of two possible scenarios.

- a 74 b

&

I-MM-S x I-S  x

Figure 1.6: Two examples of a phase diagram of a superconducting system where x is some tuning
parameter (film thickness, disorder or magnetic field). The phases are metal (M), Insulator (I) and
Superconductor (S). The Insulator transition is denoted with a dashed line to indicate that the
insulating phase is only strictly defined for "= 0. Figure from [7].

An example of the first scenario is provided in Fig.1.7 and also demonstrates the predicted
suppression of T, from theory

An experiment on FeSe is provided in Fig.1.9. This is an example of a direct superconductor to
insulator transition without an intermediate metallic phase. In addition, it also demonstrates this
SIT can be invoked with a perpendicular magnetic field: when the superconductivity is destroyed
in a film, scaling theory predicts that it should be an insulator and that is what is observed.

It has been argued that the enhancement of superconductivity could be due to the presence of
disorder[192] such as in experiments related to Al films such as shown in Fig.1.10. This demon-
strates that the exact mechanism behind the influence of disorder and weak localization and T, in
superconductors is still not well understood: some materials can behave drastically different in the
presence of disorder. In addition, disordered thin Al films can also realize novel phases, such as a

disordered Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase|[15] (see Fig.1.11).

11
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Figure 1.7: Superconducting-Insulating transition in Nb,Sij_, demonstrating an intermediate
metallic phase between insulating and superconducting phase (a). At low temperature and 19.3% Nb
doping, the material is superconducting (vanishing resistivity) and goes from finite values (metallic)
to exponentially increasing (insulating). Also notable is the suppression of T, in accordance with
theory [8](b). Figure from [7]

1.3 Theory of Disordered Systems

There are multiple ways that disorder can be present in materials. In Fig.1.12, an example of
substitutional disorder and off-diagonal disorder is given. There exist other forms of disorder such as
structural disorder which deviates from the lattice structure (found in amorphous semiconductors),
but that is not a focus of this work. For a perfectly ordered lattice, the Schrodinger equation
admits plane wave solutions with the periodicity of the lattice and the electron energies form bands
of allowed and forbidden energies, as discussed above. The details of the band structure are given
by the symmetries of the lattice (for example, the lattice in Fig.1.12 would have the symmetries
of a square 2d lattice). A material can be classified as a metal or insulator as to whether or not
there are available states for electrons that can participate in transport: the impact on conductivity

(whether or not the material is a metal or insulator) is determined solely by translational symmetry

12
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Figure 1.8: SIT in a thin film of FeSe. Shown is the sheet resistance as a function of 71" for various
film thickness: a — [ is decreasing in film thickness from 1300nm to 1lnm. The inset shows the
sheet resistance a film of thickness 30nm (which is close to film f with 29nm) and each curve shows
increasing perpendicular magnetic field from 07" — 147. Data from [4].

and any other symmetries of the lattice.

There is another way the transport properties of a material can be impacted and that is by
spatial localization of electrons. Rather than from band theory as described above, a material can
be an insulator if the electrons able to carry current become physically confined to a region of the
lattice and one way this may happen is by disorder. For example, the red impurity sites in Fig.1.12
may be very large potential wells and so electrons will be more likely to be bound to them, and so the
strength of disorder could be considered the concentration of impurities which is something that can
be tuned in the lab. Naturally, being able to control the conductivity of a material has significant

technological applications and effect of disorder on materials has been well studied experimentally.

13



10#
Bi a

L T

103

e

LT T

1 02 E lﬂ“-.l T
.,

""""

T [ T

A e etm it ity

R, kQ

10 J :

10-!

T T TTITITH---=T-

10-2 b1 I

Figure 1.9: SIT in thin Bi films that also demonstrates the suppression of ¢ from increasing disorder.

[5]
1.3.1 Anderson Localization Theory

To be explicit, we will be considering the Anderson model which is given by the Hamiltonian

H=—-t Z (c;-[cj +h.c)+ Z Vic;fcz- (1.15)
<t,7> i

which is just the tight binding Hamiltonian given in Eq. 1.4 with the addition of an onsite potential

V; that pulled from some probability distribution P(V;) which models the addition of disorder.
The Anderson Transition is a metal-insulator transition in a non-interacting disordered electron
gas at T—0. It was first hypothesized by Anderson[147] and is due to the coherent back scattering
of time reversed electronic states for strong disorder. The coherent backscattering effect leads to
a decrease in the classical diffusion constant and is most effective in systems with time reversal

invariance. To see this we consider the forward scattered path (solid black) and the back scattered

14
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Figure 1.10: Superconducting transition temperature 7, as a function of mono layer film thickness
in an epitaxial Al film. In this experiment, the thickest film of 30ML corresponds to a film thickness
of 72A  which is much less than the superconducting coherence length of & ~ 300A, making them
effectively 2D superconductors. Inset shows that indeed as the film thickness is decreased the
material is becoming two dimensional and the effects of weak localization are increasing. However,
as the 7T, saturates but the sheet resistance continues to increase one can not purely attribute this
behavior to weak localization. Figure from [193].

path (dotted path) in Fig.1.13). We consider the return probability for an electron starting from

position 0 to return in some time ¢
2

Py(t) = (1.16)

Z Ai(t)

i€S

where A;(t) is the probability amplitude that an electron following an i’th scattering path to return
in time . The reason for the sum is the fact we must sum over all possible paths. We now

split all these paths into two subsets: on set will denote the forward scattered paths (S/) and the

15
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Figure 1.11: Tunneling conductance G for a superconducting Al film at 100mK in a parallel mag-
netic field. The discrepancy with theory is attributed to a disordered FFLO phase which is con-
tributing states in the predicted gap from BCS theory (a). Also shown is the application of a parallel
magnetic field also deviates from predicted theory (b). Figure from [15].

corresponding time reversed back scattered paths (S%). we now have

2
Py(t) = Z A;(t) + Z Ai(t) (1.17)
iest Sl
2
= > Al + Al (1.18)
ieSf

where Azf (t) (A%(t)) denotes probability amplitude for forward (back) scattering. The modulus is

expanded and the cross (interference) terms can be separated out

2
Py(t) = Z ‘A{(t) + A%(t)| + | Interference terms for Z . (1.19)
ieSf i#jess

From cancellation of constructive and destructive interference, the interference terms vanish and we

16



Figure 1.12: A cartoon of disorder realized on a lattice. The left region of the lattice is perfectly
ordered. One type of disorder is adding red “impurities” with different onsite potentials in random
places of the lattice, so called diagonal disorder. Another is changing the coupling strength between
atoms denoted by the size of the rectangles that describes the ability of the electrons to hop around
the lattice, so called off-diagonal disorder.

now invoke time reversal invariance so Alf (t) = Ab(t) = A;(t) and arrive at

Pyt) =4 A1) (1.20)

i€STf

which is twice the classical return probability which is obtained from Eq.1.16 by ignoring any cross
terms and so Py(t) = Y ,cq|Ai(t)]? = 23 ,c9r |Ai(1)|*. This reduction of the classical diffusion
constant is refered to as the weak localization effect and is from the phase coherence of the paths f
and b as mentioned in Sec.1.2.1. For sufficiently strong disorder (which increases the back scattering),
this weak localization can lead to states that would be extended classically (as is energy Fs in
Fig.1.14) to be localized in space with a characteristic length scale A called the localization length
(Fig.1.15).

To appreciate the effect of the time reversal invariance, we now consider the addition of a

magnetic field. A magnetic field introduces a magnetic flux ®; to the probability amplitude

2w d,;

Al (t) = As(t)e (1.21)
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where @ is a flux quantum ®¢ = hc/e and the effect of time reversal is

2w d,;

Ab(t) = Ai(t)e” o .

(1.22)

Therefore, the return probability in the presence of a magnetic field (analog of Eq.1.20) is

Pot) =4 |Ai(t)[ cos® (%) (1.23)

i€Sf

which is less than Eq.1.20 and demonstrates the negative magnetoresistance effect.

Figure 1.13: Coherence between a forward scattered path and its time reversed path. Figure from
[20].

1.3.2 Scaling Theory

The basic concept of scaling is that the results are independent of any local details of the phys-
ical model. The transition only depends on symmetries of the lattice and dimensionality it will

not depend on the form of the distribution P(V;), strength of couplings ¢;; etc. that appear in
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Figure 1.14: A potential in space created by some realization of disordered potentials. A state with
E; would be localized in the region of the lowest potential well (but could possibly tunnel as well).
A state with Fs would always be extended classically, but quantum interference effects can allow
this state to be localized.

the Hamiltonian Eq. 1.15. This behavior is encapsulated by the so called renormalization group
originally proposed by Kenneth Wilson. Any theory is parametrized by some set {g;} of coupling
constants and the basic idea of the renormalization group is to consider how these coupling con-
stants will change as a function of coarse graining or equivalently changes in length scale (system

size) of the problem. For the case of only a single (for simplicity) coupling constant g we write the

B function as
_ _d9
~ dlogh

B(g) (1.24)

where b corresponds to some length scale of the problem: either the system size or some coarse
graining that rescales the system by a length scale b. The S-function is defined in this way as we
are interested in how the system behaves in relation to a change in length scale and its effect on
the relevant coupling constants. Any point where 5(g) = 0 we call a fixed point and it corresponds
to a point where the system is scale invariant (any coarse graining of the system has no effect) and
thus experiences a transition. This can also be interpreted from the perspective of fractals which
have a self similar structure, meaning the fractal will have the same structure under any dilation of
the structure.

We now apply the above to the Anderson model. We consider a d dimensional metal with linear
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Z0

Figure 1.15: A localized state of position zy that decays exponentially with a characteristic local-
ization length A.

size L that has conductance G(L) and then with the S-function considered by|47]

()_dlogg_éd_g
g ~slogL  gdL

(1.25)

where ¢ is the dimensionless conductance defined as g = hG(L)/e?.

This function is used as it
was discovered that the only single relevant coupling constant for the Anderson transition is the
conductivity[79]. From Ohm’s law, we know for a metal that G(L) oc L~2 and an insulator with

have a small conductance G(L) o< e~ %/¢. This leads to the following asymptotic behavior

d—2  metallic (large g)
B(g) ~ (1.26)
logg insulating (small g)

and thus the renormalization flows in Fig.1.16. It is worth noting that although the above expression
might imply a fixed point in the limit ¢ — oo for the case d = 2, but a more careful treatment of

the perturbation series leads to the higher order correction
ﬂ(g)zd—2—§+--- (1.27)

and so the next term beyond order d — 2 is negative and so, although this leads to rather special be-
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havior that is referred to as marginal for d = 2, there is no localization transition in two dimensions.
The above scaling arguments are incredibly powerful, implying that even the smallest amount of

disorder will always lead to localization in dimensions less than three.

A

B(g) d=3

gc

Figure 1.16: Renormalization flows for Anderson transition. The existence of the fixed point gc in
only d = 3 shows that the metal insulator transition exists only in three dimensions and all states
are exponentially localized in d =1 and d = 2.

1.3.3 Model for Dirty Superconductors

As overviewed in Sec.1.2.3, disordered superconductors have received much experimental attention
and display a wide range of interesting behaviors. Specifically mentioned was the enhancement of
the the critical temperature of superconductivity with disorder and one proposal is that this is due

to multifractility of the wavefunction|[171]| and other theoretical studies[43] have proposed it. This
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motivates the simulation of models of disordered superconductors and the multifractal study that
will appear in Chapter 4.
The analog of the BCS Hamiltonian for disordered systems (without translational invariance

and so k is no longer a good quantum number) is

H = Z (C}ch +h.c.) — UZ nitni, + Z 1iTi (1.28)
<ij>o i i

where n;, = c;-rci and U is the strength of the attractive Hubbard interaction and p; = p+ v; is an

on-site chemical potential where v; is the disorder potential. We consider only box disorder. We

introduce a MF pairing field for each site to decouple the interaction in the paring channel as
—Uct el e e N
Ucncucwcﬁ — Aicipey + h.c. (1.29)

The Hamiltonian in Eq. 1.28 can then be put into 2N x 2N matrix form and can be solved by
diagonalization and determining the fields A; self consistently. This leads to the Bogoliubov - De
Gennes (bdg) Hamiltonian
tij —n+V; A
Hyqg =

A, ~lij+p =V

where A; is a diagonal sub-matrix. Diagonalization of the bdg Hamiltonian leads to the bogolon

12 = |u;|? + |v;|? for a site i. Alternatively, the pairing matrix A;

wavefunction with amplitudes [1);
need not be determined self-consistently or be diagonal in which case it may take a more exotic

form which will be considered in Chapter 4.

1.4 Thesis Structure

Chapter 2 will review the numerical methods that are implemented to study disordered systems.
Chapter 3 will describe the work I did on off-diagonal disordered systems which validated mobility

edge predictions of Typical Medium Dynamical Cluster Approximation (TMDCA) against TMM
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calculations. Similiarly, Chapter 4 will present the work I did on the validation the multiband
disordered systems, demonstrating the ability to extend TMDCA to real materials (that exibit both
off-diagonal disorder and multiple bands in practice). Finally, Chapter 5 will show how established
methods of multifractal analysis can be applied to study localization in a model of a disordered

gapless superconductor.
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Chapter 2

Numerical Methods for Disordered
Systems

In this chapter, I give an overview of the various numerical methods of studying disordered systems.

2.1 Transfer Matrix Method

The Schrodinger equation Hy = FEi for the Hamiltonian in Eq.1.15 is written in an iterative
fashion|150]

tn,n—l—lwn-l-l = (E - Hn)wn - tn,n—lwn—l (21)

where 1, denotes the wavefunction for slice n of the quasi-1D system of width M and length L
(see Fig.2.1) and t,, ,, is a matrix that describes the coupling between layers n and m. This can be

written in terms of the transfer matrix

as

¢n+1 ¢n
wn %—1

It is well known[98] how the matrix product

N
™ = HT (2.4)
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n+1

M

Figure 2.1: The wavefunction 1, for slice n a quasi-1D system with width M and length L.

is related to the decay of the wavefunction for a localized state

Y ~ exp(—v|z — 0]). (2.5)

And so the algorithm proceeds as follows:

1) Generate Transfer Matrix

2) Multiply

3) Orthogonalize every 2-5 steps with a QR decomposition

4) Accumulate the Matrix norms b, which are the diagonal elements of the R matrix
5) Update the localization length 7, = v,—1 + logb,

The slowest decaying 7, is then the v in Eq.2.5 or the inverse of the localization length A. The
Kramer-MacKinnon scaling parameter[149] can then be calculated as A = \/M. A localized state
has a well defined A for a particular disorder strength, therefore as M is increased A will decrease

for localized states. For an extended state, the localization length will be larger than M and so A
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must increase as a function of M. At the critical disorder strength W,, A will be scale invariant and
this is how the transition can be found. In addition, the correlation length & exponent v defined by

the assumption the the correlation length decays as

1

&~ W — W,J»

(2.6)
can be determined from the scaling ansatz

A= f(M/g) (2.7)

i.e. all the data points should fall on the curve f. This is accomplished by Taylor expanding f and

least squares fitting is used to fit W, v and the Taylor coefficients.

2.2 Quantum Cluster Methods

2.2.1 Dynamical Cluster Approximation (DCA)

All mean field treatments of disordered systems fail to capture Anderson localization. For instance,
while the Coherent Potential Approximation (CPA)[32] can provide accurate results for densities of
states, it does not capture any mobility edge behavior. Even systematic corrections to the CPA by
the Dynamical Cluster Approximation (DCA)|72||73] fail to capture localization|74|. This can be

understood from Fig.2.2

2.2.2 Typical Medium Dynamical Cluster Approximation (TMDCA)

We saw above that a theory relying on defining the effective medium via linear averages will fail to
describe localization. Therefore, one must consider the typical value of the hybridization as this can
become zero (and hence localize the electron) even if there are some sites with large hybridization. As
the typical hybridization is determined by the typical density of states, it is reasonable to assume
the typical density of states will function as the order parameter for the localization transition.

This is the argument for typical medium theory[100] where the bath is not determined by average
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Figure 2.2: Considering the average hybridization of an electron on a site with the neighboring sites,
a linear average will always result in a finite hybridization and so the electron can always escape to
other lattice sites which will produce a metallic solution.

quantities, but rather typical quantities which are approximated by geometric averages. This is also
motivated by considering the distribution of the local density of states as in Fig.2.4. Unfortunately,
using the true typical value could only be used if the distribution were known a prior: which a
simulation would not have access to. However, because the distribution is log-normal the geometric

average of the density of states provides a good approximation to the typical value or

py(w) = 1989 % pyyp(w). (2.8)

The next step would then to develop, just like with the extension of the CPA, a Typical Medium
Dynamical Cluster Approximation (TMDCA) where the usual Dynamical Cluster Approximation
(DCA) embedding is replaced by a typical one (approximated by the geometric mean) as seen in

Fig.2.3.
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Effective Medium

Figure 2.3: Picture of DCA embedding for a cluster of 16 sites with linear cluster length L..
Electrons on cluster hybridize with the effective medium. For TMDCA the typical hybridization is
used instead for reasons described in the text. Figure is taken from [12].

2.3 Multifractal Analysis

We want to analyze the multifractal properties of some local variable x;. In the case of the Anderson
Model, it is the wave function amplitude z; = |¢;|2. To do so, we coarse grain this variable by a

box length scale £ < L and define the coarse grained quantity

By = D @ (2.9)
)

ieb(l

and the associated singularity strength

log p
log A

a =

(2.10)

were \ represents the coarse graining A = /L and the tilde denotes that it is defined for a fixed value
of A (in the limit of infinite system size or A — 0, & becomes the “true” multifractal exponent «).
This comes from the assumption that the “mass” in different boxes grows with different exponents

i.e. py(p ~ (¢/L)* where each o corresponds to a fractal dimension f(«) that gives how the number
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fIpi(E=0)]

Figure 2.4: Distribution of the density of states for small v = 3¢ disorder and large v = 18t disorder.
In the small disorder regime, the distribution is gaussian and largely independent of system size.
Past the transition, in the localized regime the distribution is log-normal and it can be seen that as
the system size is increased that the typical value is approaching zero. This motivates the usage of
the typical value as an order parameter for the transition. Figure is taken from [31].

of boxes for that a scales, N(a) ~ (£/L)~F(®). See Fig. 2.5.

In general, the g-th moments of o are

&, = M (2.11)

T (ki) log A
and the procedure to perform the finite size scaling of these moments and fit the critical parameters

will be described in Sec.5.2.3 .

a | @ @3 @ | fla) =4
a | f(a) =B
| Lag | f(a3)=C
%% @ Bl f(a) =D |

Figure 2.5: Schematic picture of o — f(«) pairs. A system of characteristic length L is divided into
boxes of length £. The largest fractal dimension would correspond to A as it covers the most boxes.
Figure taken form [41]
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It has been established that at the critical point the eigenstates of the 3D Anderson model
exhibit multifractality [158]. Although interesting, the multifractal analysis depends on knowing the
critical point a-priori as the multifractal exponents are defined only at the critical point. However,
it has been shown that a very similar analysis can be made on the distributions of these multifractal
exponents for finite A(see Fig.2.6) which allows for a finite size analysis[167| similar to that described
in Sec.5.2.2 for A. This provides another way of determining the critical disorder strength, but with

additional information of the spatial variation of the wavefunction.

Figure 2.6: Evolution of the distribution of wave function intensities for Anderson Model for A =
¢/L = 0.1. Here a = log ju;/ log A where py = >, |1;]* where the sum denotes a sum over points
¢ in box k. The crossing of the typical value in the W — « plane that indicates the critical disorder
strength and shows this quantity can be used to determine the critical parameters. Figure taken
from [167]
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Chapter 3

TMDCA Study of Off-diagonal Disorder

Previous work on TMDCA had been restricted to purely diagonal or local disorder|105]. The work
in this chapter ! will show how even non-local disorder correlations can be correctly accounted for
within the TMDCA by comparisons with the Kernel Polynomial Method for the density of states
and the TMM for the trajectory of the mobility edge. My contribution to this result was primarily
the TMM data in Fig. 3.7 and Fig. 3.8 which shows the evolution of the mobility edge. I developed
a large scale perfectly parallel code over energy and disorder strength and calculated the Kramer-
MacKinnon scaling parameter for the system lengths and widths described in the captions (see
Sec.5.2.2 for description of TMM). I found the critical point by finite size scaling analysis of the

Kramer-MacKinnon scaling parameter as described in Sech.2.2.

! This chapter includes previously published work published by American Physical Society and appears in [37] and
is reproduced here under term 3 of Author’s rights of the APS Transfer of Copyright Agreement to “The right to use
all or part of the Article, including the APS-prepared version without revision or modification ... for educational or
research purposes.”
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3.1 Introduction

Disorder which is inevitably present in most materials can dramatically affect their properties [101,
102]. It can lead to changes in their electronic structure and transport. One of the most interesting
effects of disorder is the spatial confinement of charge carriers due to coherent backscattering off
random impurities which is known as Anderson localization [103, 47|. Despite progress over the
last decades, the subject of Anderson localization remains an active area of research. The lack of
quantitative analytical results has meant that numerical investigations [104, 49, 50, 51, 52, 53, 54]
have provided a significant role in understanding the Anderson transition [55, 98, 57].

The simplest model used to study the effects of disorder in materials is a single band tight
binding model with a random on-site disorder potential [58]. Such a model is justified when the
disorder is introduced by substitutional impurities, as in a binary alloy. The substitution of host
atoms by impurities only leads to changes of the local potential on the substitutional site and, on
average, does not affect the neighbors [58, 59]. In this situation, the disorder appears only in the
diagonal terms of the Hamiltonian and hence is referred to as diagonal disorder. However, when
the bandwidth of the dopant is very different from the one of the pure host, such substitution
results not only in the change of the local potential but may also affect the neighboring sites [58].
Consequently, a simple model to capture such effects should include both random local potentials
and random hopping amplitudes which depend on the occupancy of the sites. The dependence of the
hopping amplitude on the disorder configuration is usually referred to as off-diagonal disorder. It is
apparent that a proper theoretical description of realistic disordered materials [58, 60, 62, 61, 63|
(for e.g. many substitutionally disordered alloys and disordered ferromagnets) requires the inclusion
of both diagonal and off-diagonal randomness. While the role of the diagonal disorder has been
extensively studied over the last several decades [64], the effect of off-diagonal disorder is not well
studied, although the effect is expected to be different. It has been shown [65, 61| that off-diagonal
randomness can lead to the delocalization of the states near the band-center. Also recently, there
has been a growing interest in the effect of the off-diagonal randomness in graphene systems, where
studies show that different types of disorder can induce different localization behavior. [67, 68, 66|

The coherent potential approximation (CPA) is a widely used single site mean field theory for
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systems with strictly diagonal disorder |59]. Blackman, Esterling and Berk (BEB) [69] have extended
the CPA to systems with off-diagonal disorder. However, being single-site approximations, the CPA
and the BEB theories neglect all disorder induced non-local correlations.

There have been a number of attempts to develop systematic nonlocal extensions to the CPA.
These include cluster extensions such as the molecular coherent potential approximation (MCPA) [70,
71], the dynamical cluster approximation (DCA) |72, 73, 74|, etc. Self-consistent mean field studies
of off-diagonal disorder have been conducted by a number of authors [75, 76, 77, 71|. However,
all these studies have been performed at the local single-site BEB level. To include the effects
of off-diagonal disorder, Gonis [70] extended the Molecular CPA, which uses a self-consistently
embedded finite size cluster to capture non-local corrections to the CPA. However, he criticized
the MCPA for violating translational invariance and other critical properties of a valid quantum
cluster theory |58, 105]. In order to take into account such non-local effects on off-diagonal disorder
models while maintaining translational invariance, we extend the BEB formalism using the DCA
scheme [72, 73, 74].

While the CPA, DCA, and BEB have shown to be successful self-consistent mean-field theo-
ries for the quantitative description of the density of states and electronic structure of disordered
systems, they can not properly address the physics of Anderson localization. These mean field ap-
proaches describe the effective medium using the average density of states which is not critical at the
transition |79, 105, 55, 80]. Thus, theories which rely on such averaged quantities will fail to properly
characterize Anderson localization. As noted by Anderson, the probability distribution of the local
density of states must be considered, focusing on the most probable or the typical value [103, 81].
Close to the Anderson transition, the distribution is found to have very long tails characteristic of
a log-normal distribution[53, 82, 106]. In fact, the distribution is log-normal up to ten orders of
magnitude [84| and so the typical value |85, 107, 106, 87| is the geometrical mean. Based on this
idea, Dobrosavljevi¢ et. al. [100] formulated a single site typical medium theory (TMT) for the
Anderson localization. This approximation gives a qualitative description of the Anderson local-
ization in three dimensions. However, it fails to properly describe the trajectory of the mobility

edge (which separates the extended and localized states) as it neglects non-local corrections and
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so does not include the effects of coherent backscattering [89]. It also underestimates considerably
the critical strength of the disorder at which the localization happens. In addition, TMT is only
formulated for diagonal disorder.

Recently, by employing the DCA within the typical medium analysis, we developed a system-
atic Typical Medium Dynamical Cluster Approximation (TMDCA) formalism. [105] The TMDCA
provides an accurate description of the Anderson localization transition for modest cluster sizes in
three-dimensional models with diagonal disorder while recovering the TMT for a one-site cluster. In
this work, we generalize our recently proposed TMDCA scheme to address the question of electron
localization in systems with both diagonal and off-diagonal disorder.

In this paper, to go beyond the local single-site CPA-like level of the BEB formalism, we em-
ploy the DCA [72, 73, 74] scheme which systematically incorporates non-local spatial correlation
effects. We first present an extension of the DCA for systems with both diagonal and off-diagonal
disorder. Comparing our single site and finite cluster results, we demonstrate the effect of non-local
correlations on the density of states and the self-energy.

Up to now, there exist no typical medium formalism for systems with off-diagonal disorder. So
far, the typical medium analysis has been applied to systems with only diagonal disorder [100, 105].
In this paper, we develop a typical medium dynamical cluster approximation formalism capable of
characterizing the localization transition in systems with both diagonal and off-diagonal disorder.
We perform a systematic study of the effects of non-local correlations and off-diagonal randomness
on the density of states and electron localization. By comparing single site and finite cluster results
for the typical density of states and the extracted mobility edges, we demonstrate the necessity
of including the non-local multi-sites effects for proper and quantitative characterization of the
localization transition. The results of our calculations are compared with the ones obtained with
other numerical methods for finite size lattices, including exact diagonalization, kernel polynomial,
and transfer matrix methods.

The paper is organized as follows: following the Introduction in Sec. 5.1 we present the model
and describe the details of the formalism we used in Sec. 4.2. In Sec. 3.3.1 we present our results

of the average density of states for both diagonal and off-diagonal disorder cases. In Sec. 3.3.1
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we consider the effects of diagonal and off-diagonal disorder on the typical density of states, from
which we extract the mobility edges and construct a complete phase diagram in the disorder-energy

parameter space. We summarize and discuss future directions in Sec. 5.4.

3.2 Formalism

3.2.1 Dynamical cluster approximation for off-diagonal disorder

The simplest model widely used to study disordered systems is the single band tight binding Hamil-

tonian

H=-— Z tij(clcj + h.c.) + vai, (31)

<i,j>
where disorder is modeled by a local potential v; which is a random variable with probability
distribution function P(v;). We will focus on the binary disorder case, where some host A atoms

are substituted with B impurities with a probability distribution function of the form
P(v;) = cad(v; — Va) + cpd(v; — V), (3.2)

where cg = 1 — c4. For the diagonal disorder case when the bandwidth of the pure host A is about
the same that the bandwidth of the B system, such substitution results ounly in a change of the
local potential v; at the replaced site ¢. This corresponds to changes in the diagonal elements of
the Hamiltonian. In this case it is assumed that substitution of impurity atoms on average has no
effect on hopping amplitudes to the neighboring atoms.

For systems with off-diagonal disorder, the randomness is introduced not only locally in the

random diagonal potential v;, but also through the hopping amplitudes. To model this, BEB [69]
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introduced the disorder configuration dependent hopping amplitude of electrons ¢;; as
ty; = t%A,if 1€A, jeA
thP,if i€B, jeB
5P, if i€A jeB

tBA i ieB, jeA, (3.3)

iy o

where ¢;; depends on the type of ion occupying sites i and j. For off-diagonal disorder BEB [69]
showed the scalar CPA equation becomes a 2 X 2 matrix equation, with corresponding AA, AB,
BA, and BB matrix elements. In momentum space, if there is only near-neighbor hopping between

all ions, the bare dispersion can be written as (the under-bar denotes matrices)

tAA 2c/.AB
g = €k (3.4)
(BA BB
where in three dimensions e, = —2t(cos(k,) + cos(k,) + cos(k)) with 4¢ = 1 which sets our unit of

energy, and t44, tBB 4B and tB4 are unitless prefactors.

The BEB approach is local by construction, hence all non-local disorder induced correlations are
neglected. [69] In order to take into account non-local physics, we extend the BEB formalism to a
finite cluster using the DCA scheme. Here in the following, we present the algorithm and details of
our non-local DCA extension of the BEB formalism for off-diagonal disorder. Just as in the DCA
scheme, [74] the first Brillouin zone is divided into N, = L? (D is the dimension and L is the linear
cluster size) coarse-grained cells with centers K surrounded by points k within the cell so that an
arbitrary k = K + k.

For a given DCA K-dependent effective medium hybridization A(K,w) matrix we use an un-

derline to denote a 2 x 2 matrix in momentum space)
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A (K, w) AAB(K,w)
AK,w) = (3.5)
ABAK,w) ABB(K,w)
we solve the cluster problem, usually in real space. For this we stochastically sample random
configurations of the disorder potential V and calculate the corresponding cluster Green’s function
by inverting N, x N, matrix, i.e.,
1

Gij = (wH — F — A, — V)_ (36)

)

where V is a diagonal matrix for the disorder site potential. The primes stand for the configuration

dependent Fourier transform (FT) components of the hybridization and hopping, respectively. Le.,

FT(AANK,w)), if ic A, jecA
FT(ABB(K,w)),if i€eB, je€B
FT(AAB(K,w)), if ic A, jeB

FT(APA(K,w)), if i€B, jcA

and .
FTEAK)), if icA j€A
. FT(ePB(K)), if i€ B, je€B
FT(AB(K)), if icA j€B
FT(EPAK)), if i€B, jcA
with
tAA tAB
(K) = N ens (3.7¢)
tBA 7jBB
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where A}, and Z;j are N.x N, real-space matrices (where N, is the cluster size), and e.g., FT(A44(K,w)) =
Yok AA(K, w)eE (ri=73) . The hopping can be long ranged, but since they are coarse-grained quan-
tities are effectively limited to the cluster. Physically, Aéj represents the hybridization between sites
¢ and j which is configuration dependent. For example, the AA component of the hybridization
corresponds to both A species occupying site ¢ and j, while the AB component means that site ¢
is occupied by an A atom and site j by a B atom. The interpretation of the hopping matrix is the
same as for the hybridization function.

In the next step, we perform averaging over the disorder ((...)) and in doing so we re-expand
the Green function (Eq. 3.6) into a 2V, x 2N, matrix

(GAW),  (GAPW),

Gow)y = v . (3.8)
(@GP, (AP w),

ij ij

This may be done by assigning the components according to the occupancy of the sites ¢ and j

(G?A)ij = (Gc),’j if iEA, jGA
(GEB); = (G if i€eB, je€B
(G4BY); = (Gu)ij if i€A, jeEB

(GEYi; = (Ge)ij if i€eB, jeA (3.9)

with the other components being zero. Because only one of the four matrix elements is finite for
each disorder configuration (each site can be occupied by either A or B atom), only the sum of the
elements in Eq. 3.8 is normalized as a conventional Green function.

Having formed the disorder average cluster Green function matrix, we then Fourier transform
each component to K-space (which also imposes translational symmetry) and construct the K-

dependent disorder averaged cluster Green function matrix in momentum space
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GI(K,w) GIP(K,w)
G.(K,w) = . (3.10)
GPA(K,w) GPP(K,w)
Once the cluster problem is solved, we calculate the coarse-grained lattice Green function matrix

as

_ G (K’W) G (Kv )
GKw = TP K.w) TP (K.w)
B e_k%(K))‘l’ (3.11)

here we use an overbar to denote the cluster coarse-grained quantities. It is important to note that
each component of the Green function matrix above does not have the normalization of a conven-
tional, i.e., scalar, Green function. Ounly the sum of the matrix components has the conventional
normalization, so that G(K,w) ~ 1/w, with the total coarse grained lattice Green function being

obtained as

AA

(Kw) = GAKw)+G"

Ql

(K, w)

+ G (Kw) + G (K w). (3.12)

Next, to construct the new DCA effective medium A(K,w), we impose the BEB DCA (2 x 2)
matrix self-consistency condition, requiring the disorder averaged cluster and the coarse-grained

lattice Green functions to be equal

G.(K,w) =G(K,w). (3.13)
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This is equivalent to a system of three coupled scalar equations

(KW = GMKwW),

G

G (Kw) = GMP(Kw).

P(Kw) = GPP(K,w), and

—AB

Note @BA(K,w) = G (K,w) automatically if t48 = B4,

(3.14a)
(3.14b)

(3.14c)

We then close our self-consistency loop by updating the corresponding hybridization functions

for each components as

A Ew) = AN K w)

ABB(K,w) = ABB(K,w)

+oe(amw-a
AP (K,w) = AJP(Kw)
+ (G W -

APAK.w) = AMB(E.w)

(3.15)

where ‘0’ and ‘n’ denote old and new respectively, and ¢ is a linear mixing parameter 0 < & < 1.

We then iterate the above steps until convergence is reached.

There are two limiting cases of the above formalism which we carefully checked numerically. In

the limit of N, = 1, we should recover the original BEB result. Here the cluster Green function

loses its K dependence, so that
G4 (w) 0
0 GPP(w)

% Ek: (Gc(w)_l +AW) — a(k))

-1
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which is the BEB self-consistency condition. Here we used that €(K) = 0 for N. = 1. The second
limiting case is when there is only diagonal disorder so that 44 = ¢B8 = t4B = 1. In this case the

above formalism reduces to the original DCA scheme. We have verified numerically both limits.

3.2.2 Typical medium theory with off-diagonal disorder

To address the issue of electron localization, we recently developed the typical medium dynamical
cluster approximation (TMDCA) and applied it to the three-dimensional Anderson model. [105] In
Ref. [105] we confirmed that the typical density of states vanishes for states which are localized and
it is finite for extended states. In the following we generalize our TMDCA analysis to systems with
off-diagonal disorder to address the question of localization and the mobility edge in such models.

First, we would like to emphasize that the crucial difference between TMDCA [105] and the
standard DCA |74] procedure is the way the disorder averaged cluster Green function is calculated.
In the TMDCA analysis instead of using the algebraically averaged cluster Green function in the

self-consistency loop, we calculate the typical (geometrically) averaged cluster density of states

1
A Sinpw) [z ImGe(K W)
Pim (K, w) = eNe =i , (3.17)
” N i(—7 ImGii(w))
with the geometric averaging being performed over the local density of states p;;(w) = —% Im G (w)
only. Using this pf, (K, w) the cluster averaged typical Green function is constructed via a Hilbert

transform

/d ’ptyp (v ). (3.18)

In the presence of off-diagonal disorder, following BEB, the typical density of states becomes a

2 X 2 matrix, which we define as

1

™

T (- I G ()
pinfw) = (g SE mpsten)x | T

——Im G (K, w) >< —z M GEP (K, w)
2 (— L Im Gy (w))

&N (-2 T Gi(w))
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Here the scalar prefactor depicts the local typical (geometrically averaged) density of states, while

the matrix elements are linearly averaged over the disorder. Also notice that the cluster Green

GAA| GBB and GAB

function (G.)i; and its components are defined in the same way as in Eqgs.

(3.6-3.9).
In the next step, we construct the cluster average Green function G.(K,w) by performing Hilbert

transform for each component

fd /Pt ( fd /Pt (KW)
Go(K,w) = . (3.20)
fdwlw [ dw ’M

Once the disorder averaged cluster Green function G.(K,w) is obtained from Eq. 3.20, the self-
consistency steps are the same as in the procedure for the off-diagonal disorder DCA described in
the previous section: we calculate the coarse-grained lattice Green function using Eq. 3.11 which is
then used to update the hybridization function with the effective medium via Eq. 3.15.

The above set of equations provide us with the generalization of the TMDCA scheme for both
diagonal and off-diagonal disorder which we test numerically in the following sections. Also notice
that for N, = 1 with only diagonal disorder (t44 = tBB = tAB = tB4) the above procedure reduces
to the local TMT scheme. In this case, the diagonal elements of the matrix in Eq. 3.19 will contribute
¢4 and cp, respectively, with the off-diagonal elements being zero (for N. = 1 the off-diagonal terms
vanish because a given site can only be either A or B). Hence, the typical density reduces to the
local scalar prefactor only, which has exactly the same form as in the local TMT scheme.

Another limit of the proposed ansatz for the typical density of states of Eq. 3.19 is obtained
at small disorder. In this case, the TMDCA reduces to the DCA for off-diagonal disorder, as
the geometrically averaged local prefactor term numerically cancels with the contribution from the
linearly averaged local term in the denominator of Eq. 3.19.

Finally, we also want to mention that the developed cluster TMDCA fulfills all the essential
requirements expected of a “successful” cluster theory [58] including causality and translational

invariance.
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We note that in our formalism, instead of doing the very expensive enumeration of the disorder
configurations which scales as 2V¢, we instead do a stochastic sampling of the disorder configurations
which greatly reduces the computational cost enabling us to study larger systems. Larger system
sizes need fewer realizations. Since the convergence criterion is achieved when the TDOS(w = 0)
does not fluctuate anymore with iteration number, within the error bars, our computational cost
does not even scale as N.. For a typical N, = 64 size cluster, about 500 disorder realizations are

needed to get reliable data and this number decreases with increasing cluster size.

3.3 Results and Discussion

To illustrate the generalized DCA and TMDCA algorithms described above, we present our results
for the effects of diagonal and off-diagonal disorder in a generalized Anderson Hamiltonian (Eq. 3.1)
for a three dimensional system with binary disorder distribution (V4 = —Vp) and random hopping
(tAA £ ¢BB 4AB — BA)

with other parameters as specified. The results are presented and discussed

in Subsections 3.3.1 and 3.3.1.

3.3.1 DCA results for diagonal and off-diagonal disorder

The effect of off-diagonal disorder on the average density of states (DOS) calculated within the
DCA for cubic cluster (N, = 43) is presented in Fig. 3.1. The DOS we present in our results is a

local density of states calculated as

Ne
Z (Im@AA(K,w) + Im@AB(K,w)
K—

A

(K, w) + ImEBB(K,w)). (3.21)

DOS(w) = -

1
TN,

[y

+ ImG”
Notice that our DCA procedure for N, = 1 reduce to the original CPA-like BEB. For a fixed
concentration ¢4 = 0.5, we examine the effects of off-diagonal disorder at two fixed values of
the diagonal disorder potential V4 = 0.4 (below the split-band limit) and V4 = 0.9 (above the
split-band limit). The off-diagonal randomness is modeled by changes in the hopping amplitudes

tA4 BB with t4B = 0.5(t44 + tBB). For a diagonal disorder case (top panel of Fig. 3.1) with
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Figure 3.1: (Color online). The effect of off-diagonal disorder on the average density of states
calculated in the DCA scheme with N, = 43. Our DCA results for N, = 1 corresponds to a single
site CPA BEB scheme. We consider two values of local disorder potential below (V4 = 0.4) and
above (V4 = 0.9) the band-split limit, and examine the effect of changing the off-diagonal hopping
strength (which amounts to a change in the non-local potential). We start with the diagonal disorder
case t44 = tBB = 4B — 1.0 and then consider two off-diagonal disorder cases: t44 = 1.5,t88 = 0.5
and t44 = 1.8,tBB = 0.2, respectively. We fix t48 = tB4 = 0.5(t44 + tBB) and ¢4 = 0.5. For
this parameter range of off-diagonal disorder, we do not observe a significant difference between the
CPA (N. = 1) and the DCA (N, = 43) results indicating that non-local inter-site correlations are
weak.

tA4 = BB = tAB — tBA we have two subbands contributing equally to the total DOS. While as

shown in the middle and bottom panels, the change in the strength of the off-diagonal disorder
leads to dramatic changes in the DOS. An increase of the AA hoping results in the broadening of
the AA subband with the development of a resonance peak at the BB subband. For this parameter
range both the DCA (N, = 64 ) and CPA (N, = 1) provide about the same results indicating that
disorder-induced non-local correlations are negligible.

In Fig. 3.2 we show the average density of states calculated for fixed off-diagonal-disorder param-

eters and different diagonal disorder potentials V4. We again compare the local CPA (V. = 1) and
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the DCA (N, = 43) results. To benchmark our off-diagonal extension of the DCA, we also compare

08 CPA: Nc=1
FVa=03  [A |- pca:nes?
06 .\ — ED

Figure 3.2: (Color online). The effect on the average density of states of an increasing diagonal
disorder potential V4 for a fixed off-diagonal disorder calculated with our modified DCA scheme
with t44 = 1.5, tBB = 0.5, t4B = 0.5(t44 + tBB), and c4 = 0.5. Results are obtained for N, = 1
(corresponding to the CPA) and N, = 43 cluster sizes. We also compare our DCA average DOS
with the DOS obtained using exact diagonalization (ED) for a 123 cubic lattice cluster with 48
disorder realizations. For ED results, we used a n = 0.01 broadening in frequency.

our results with those obtained from exact diagonalization. For small Vy, there is no difference
between the CPA (N, = 1) and the DCA (N, = 43) results. As local potential V4 is increased,
noticeable differences start to develop. We can see that for larger V4 a gap starts to open and is
more dramatic in the CPA scheme. While in the DCA (N, = 43) this gap is partially filled due to
the incorporation of non-local inter-site correlations which are missing in the CPA. Furthermore,
the DOS obtained from the DCA procedure provides finer structures which are in basic agreement
with the DOS calculated with exact diagonalization for a cluster of size 12 x 12 x 12. The agreement
we get with ED results is a good indication of the the accuracy of our extension of the DCA to
off-diagonal disorder. The additional structures observed in the DOS for N, > 1, which are absent

in the CPA, are believed to be related to the local order in the environment of each site. [58, 74]
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Notice that while the DCA accounts for non-local backscattering effects which lead to the Anderson
localization, the average local DOS does not capture the transition, as it is not an order parameter
for the Anderson localization.

To further illustrate the important effect of the non-local contributions from the cluster, we
also show in Fig. 3.3 the imaginary part of the self-energy Im¥(K,w) for N. = 1 (dash line) and
for (N, = 43) (solid lines) at different values of cluster momenta K = (0,0,0), (=,0,0), (m,,0)

and (7/2,7/2,m/2) for small V4 = 0.1 (top) and larger V4 = 0.6 (bottom) disorder potentials. At

V,=0.1
0 0
ImZ,  (Kw) ] Ll ImZg(Kw) [ | ImZ,(K,w)
0.2 |
] -01 oal |
04 . :
r 1 -0.2 -
0.6 = 021 a
0.8 - 03 1
L. M T okl . 1.
-2 1 0 1 2 2 -1 0 1 2 -2 -1 0 1 2
(03] w w
V,=06
0 0 Mz, (K,w)
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02} 1 odl | o4l .
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Figure 3.3: (Color online). The imaginary part of the self-energy vs frequency w for N. = 1 (red
dash-line) and N, = 43 (solid lines) at various K momenta points: (0,0,0), (r,0,0), (7,,0),
and (7/2,7/2,7/2), for V4 = 0.1 (top) and V4 = 0.6 (bottom) diagonal disorder potential with
tA4 = 1.5, tBB = 0.5, t48 = 0.5(t4 + tBP), and ¢4 = 0.5. For small disorder V4 = 0.1, the
self-energy for N, = 1 is essentially the same as that of the various K points of the N, = 43 cluster,
indicating that non-local effects are negligible for such small disorder. For a larger value of the
disorder V4 = 0.6, the single site and the finite cluster data differ significantly, which illustrates that
at larger disorder, the momentum dependence of the self-energy increases and becomes important.

small disorder V4 = 0.1, there is a little momentum dependence for the N, = 43 self-energy and
different K momenta curves practically fall on top of each other. The results for the N, = 1 and
N. = 43 are essentially the same, which indicates that for small disorder the CPA still presents a

good approximation for the self-energy. On the hand, for larger disorder V4 = 0.6 the N, = 1 and
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N. = 43 results differ significantly, with the N. = 43 self-energy having a noticeable momentum
dependence, indicating that non-local correlations become more pronounced for larger disorder

values.

3.3.2 Typical medium finite cluster analysis of diagonal and off-diagonal
disorder

Typical medium analysis of diagonal disorder

To characterize the Anderson localization transition, we now explore the typical density of states
(TDOS) calculated within our extension of the TMDCA presented in Sec. 3.2.2. In the typical
medium analysis, the TDOS serves as the order parameter for the Anderson localization transition.
In particular, the TDOS is finite for extended states and zero for states which are localized.

First we consider the behavior of the TDOS and compare it with the average DOS for diagonal
disorder. In Fig. 3.4 we show our results for N, = 1 (left panel) and N. > 1 (right panel). To
demonstrate a systematic convergence of the TDOS with increasing cluster size N, we present our
data of the TDOS for N, = 1,43, 63. Notice that N, = 1 results for TDOS correspond to the single-
site TMT of Dobrosavljevi¢ et al., [100] and for average DOS they correspond to the ordinary CPA.
As expected, |100, 105] for small disorder (V4 = 0.15) there is not much difference between the DCA
(N. = 43) and the TMDCA (N, = 43) or between the CPA and TMT for N, = 1 results. However,
there are subtle differences between the results for finite N, = 4% and single site N, = 1 clusters due
to incorporation of spatial correlations. As the disorder strength Vy is increased (V4 = 0.6), the
typical density of states (TDOS) becomes smaller than the average DOS and is broader for the larger
cluster. Moreover, the finite cluster introduce features in the DOS which are missing in the local
N, = 1 data. Regions where the TDOS is zero while the average DOS is finite indicate Anderson
localized states, separated by the mobility edge (marked by arrows). For N, > 1 these localized
regions are wider which indicates that the localization edge is driven to higher frequencies. This
is a consequence of the tendency of non-local corrections to suppress localization. For even larger
disorder V4 = 1, a gap opens in both the TDOS and the average DOS leading to the formation

of four localization edges, but again the region of extended states is larger for the finite cluster,
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Figure 3.4: (Color online). Diagonal disorder case: The average density of states (dash-dotted
line) calculated within the DCA for N. = 1 (left panel) and N, = 43 (right panel) and the typical
density of states shown as shaded regions for N, = 1 (left panel) and N. = 43 (right panel)
and dash-line for N, = 63 (right panel) are calculated within the TMDCA for diagonal disorder
tAA — BB — AB — BA _ 1,c4 = 0.5, and various values of the local potential V4 = —Vpz. The
TDOS is presented for several cluster sizes N, = 1, N, = 43 and N, = 6 in order to show its
systematic convergence with N.. The average DOS converges for cluster sizes beyond N, = 43. The
TDOS is finite for the extended states and zero when the states are localized. The mobility edges
extracted from the vanishing of the TDOS are marked by the arrows (we show arrows for N, = 43
only). The extended states region with a finite TDOS is always narrower for N, = 1 as compared
to the results of N, > 1 clusters, indicating that a single site TMT tends to overemphasize the
localized states.
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indicating that local TMT (N, = 1) tends to underestimate the extended states region.

To further benchmark our results for the diagonal disorder, we show in Fig. 3.5 a comparison

of the average and typical DOS calculated with the DCA and the TMDCA (N, = 43) as compared

with the kernel polynomial method (KPM). [109, 108, 92, 93| In the KPM

analysis, instead of

0.6F — — bos = =]
[ca=01] "— D38 kem
%) \/ =0. 4 — - TDOS
O 04} 0.625 TDOS, KPM
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Figure 3.5: (Color online). Diagonal disorder case. Comparison of the average and typical DOS cal-
culated with the DCA/TMDCA and Kernel polynomial methods (KPM) [108] for diagonal disorder
with 44 = ¢BB — tAB — ¢BA — 1 at various values of local potential V4 and concentrations c4 for
cluster size N. = 6. The kernel polynomial method used 2048 moments on a 483 cubic lattice, and
200 independent realizations generated with 32 sites randomly sampled from each realization.

diagonalizing the Hamiltonian directly, the local DOS is expressed in term of an infinite series of
Chebyshev polynomials. In practice, the truncated series leads to Gibbs oscillations. The KPM
damps these oscillations by a modification of the expansion coefficients. Following previous studies
on the Anderson model, the Jackson kernel is used. [109] The details of the implementation are
well discussed in Ref. [109]. The parameters used in the KPM calculations are listed in the caption
of Fig. 3.5. As it is evident from the plots, our TMDCA results reproduced those from the KPM
nicely showing that our formalism offers a systematic way of studying the Anderson localization

transition in binary alloy systems. Such good agreement indicates a successful benchmarking of the
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TMDCA method. [105]

Typical medium analysis of off-diagonal disorder

Next, we explore the effects of the off-diagonal disorder. In Fig. 3.6, we compare the typical TDOS
from the TMDCA and average DOS from the DCA for several values of the diagonal disorder
strength V4 at fixed off-diagonal disorder amplitudes t44 = 1.5, tB8 = 0.5, t48 = 1.0. To show the
effect of a finite cluster with respect to incorporation of non-local correlations, we present data for
the single site N, = 1 and finite clusters N, = 4% and 5. The TMT (N, = 1) again underestimates
the extended states regime by having a narrower TDOS as compared to the N, > 1. We also see
that the mobility edge defined by the vanishing of the TDOS (marked by arrows for N, = 43)
systematically converges with increasing cluster size N.. For small disorder V4, both the DOS and
the TDOS are practically the same. However, as V4 increases, significant differences start to emerge.
Increasing V4 leads to the gradual opening of the gap which is more pronounced in the N, = 1 case
and for smaller disorder V4 = 0.6 is partially filled for the N, > 1 clusters. As compared to the
diagonal disorder case (cf. Fig. 3.4), the average DOS and TDOS become asymmetric with respect
to zero frequency due to the off-diagonal randomness.

In Fig. 3.7 and Fig. 3.8 we present the disorder-energy phase diagram for both diagonal (Fig. 3.7)
and off-diagonal (Fig. 3.8) disorder calculated using the single TMT (N, = 1) and the non-local
TMDCA (N, > 1). To check the accuracy of the mobility edge trajectories extracted from our
typical medium analysis, we compare our data with the results obtained with the transfer matrix
method (TMM). The TMM [149, 150, 98] is a well established numerical method for calculating
the correlation length and determining the mobility edge of the disorder Anderson model. Its
main advantage is in its capability of capturing the effects from rather large system sizes. Thus,
TMM provides good data for a finite size scaling analysis to capture the critical points and the
corresponding exponents. In our calculations, the transmission of states down a three-dimensional
bar of widths M = [6,12] and length L = 2x10*M are studied by adding the products of the transfer
matrices with random initial states. The multiplication of transfer matrices is numerically unstable.

To avoid this instability, we orthogonalized the transfer matrix product every five multiplications
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Figure 3.6: (Color online). Off-diagonal disorder case. The left panel displays results for N, = 1
and the right panel for N. > 1. The average density of states (dash-dotted line) and the typical
density of states (shaded regions) for N. = 1 (left panel), N, = 43 (right panel) and blue dash
lines for N, = 53 (left panel) for various values of the local potential V4 with off-diagonal disorder
parameters: t44 = 1.5, tBB = 0.5, t48 = 0.5(t44 +¢BB) and ¢4 = 0.5. As in Fig. 3.4, we show the
TDOS for several cluster sizes N, = 1, 43, and = 62 in order to show its systematic convergence with
increasing cluster size N,.. The average DOS converges for cluster sizes beyond N, = 43. The TDOS
is finite for the extended states and zero for localized states. The mobility edges are extracted as
described in Fig. 3.4.

using a Lapack QR decomposition. [50] The localization edge is obtained by calculating the Kramer-
MacKinnon scaling parameter Ajs. [149] This is a dimensionless quantity which should be invariant
at the critical point, that is, Ajs scales as a constant for M — oo. [150] Thus, we determine the
boundary of the localization transition vis-a-vis the critical disorder strength |96] by performing a

linear fit to Aps v. M data: localized states will have a negative slope and visa versa for extended
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Figure 3.7: (Color online). Disorder-energy phase diagram for the diagonal disorder case. Parame-
ters used are: t44 = tBB = ¢tAB — 1.0, and c4 = 0.5. We compare the mobility edges obtained from
the TMT N, = 1 (black dash line), TMDCA with N, = 43 (green dot-dashed line) and N, = 6 (red
solid line), and the transfer-matrix method (TMM) (blue dotted line). The single site N. = 1 results
strongly underestimate the extended states region when compare with TMDCA results for N, > 1.
The mobility edges obtained from the finite cluster TMDCA (N, > 1) show good agreement with
those obtained from the TMM, in contrast to single site TMT. See the text for parameters and
details of the TMM implementation.

states. The transfer-matrix method finite size effects are larger for weak disorder where the states
decay slowly with distance and so have large values of Ay; that carry a large variance in the data.
Notice that the CPA and the DCA do not suffer such finite size effect limitation for small disorder
and are in fact exact in this limit.

The mobility edges shown in Fig. 3.7 and Fig. 3.8 were extracted from the TDOS, with bound-
aries being defined by zero TDOS. As can be seen in Fig. 3.7 and Fig. 3.8, while the single-site TMT
does not change much under the effect of off-diagonal disorder, the TMDCA results are significantly
modified. The bands for a larger cluster become highly asymmetric with significant widening of
the A subband. The local N. = 1 boundaries are narrower than those obtained for N, > 1 in-
dicating that the TMT strongly underestimates the extended states regime in both diagonal and
off-diagonal disorder. On the other hand, comparing the mobility edge boundaries for NV, > 1 with

those obtained using TMM, we find very good agreement. This again confirms the validity of our
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Figure 3.8: (Color online). Disorder-energy phase diagram for the off-diagonal disorder case. Pa-
rameters used are t44 = 1.5, tBB = 0.5, tA8 = 1.0, and ¢4 = 0.5. The mobility edges obtained from
the TMT N, = 1 (black dashed line), TMDCA N, = 33 (green dot-dashed line), N, = 43 (purple
double-dot-dashed line) and N, = 53 (red solid line), and the transfer-matrix method (TMM) (blue
dotted line). The single site N, = 1 strongly underestimates the extended states region especially
for higher values of V4. The mobility edges obtained from the finite cluster TMDCA (N, > 1) con-
verge gradually with increasing N, and show good agreement with those obtained from the TMM,
in contrast to single site TMT. See the text for parameters and details of the TMM implementation.

generalized TMDCA.

Next, we consider the effect of off-diagonal disorder for various concentrations c4. In Fig. 3.9,
we show the typical and average DOS for several values of ¢4 calculated with the TMDCA and
the DCA, respectively. As expected, when ¢4 — 0, we obtain a pure B subband contribution (the
top panel). Upon gradual increase of the ¢4 concentration, the number of states in the A sub-band
grows until B-subband becomes a minority for ¢4 > 0.5 and completely disappears at ¢4 — 1 (the
bottom panel). Again, we see that a finite cluster N. = 5% provides a more accurate description
(with finite details in DOS and broader regions of extended states in TDOS) in both average DOS
and TDOS. The associated contour plots for the evolution of the TDOS in the concentration range
0 <cgq <1 are shown in Fig. 3.10.

The essence of these plots is to show the overall evolution of the typical DOS for a fixed local
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Figure 3.9: (Color online). The average DOS (dot-dashed lines) and the typical DOS (shaded
regions) for various values of the concentration c4 with off-diagonal disorder parameters t44 = 1.1,
tBB = 0.9 and t4% = 1.0, at fixed local potential V4 = 1.0 for N, = 1 (left panel) and N, = 5
(right panel).

potential and off-diagonal disorder parameters as a function of the concentration c4. In the limit
of c4 — 0, only the B-subband centered around w = —Vj survives, and for ¢4 — 1, only the
A-subband centered around w = Vj is present. For intermediate concentrations, we clearly have
contributions to the total typical density of states from both species, as expected.

Finally, we would like to comment on the possible further development of the presented scheme.
After certain generalizations our current implementation of the typical medium dynamical cluster

approximation for off-diagonal disorder can serve as the natural formalism for multiband (multior-
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Figure 3.10: (Color online). The evolution of the typical density of states for N, = 1 (left panel)
and N, = 5% (right panel) with the change in the concentration 0 < c4 < 1 at fixed diagonal and
off-diagonal disorder parameters: t44 = 1.1, t8 = 0.9, t4% = 1.0 and V4 = 1.0

bital) systems. [60]| Such an extension is crucial for studying disorder and localization effects in real

materials. Further development towards this direction will be the subject of future publications.

3.4 Conclusion

A proper theoretical description of disordered materials requires the inclusion of both diagonal and
off-diagonal randomness. In this paper, we have extended the BEB single site CPA scheme to
a finite cluster DCA that incorporates the effect of non-local disorder. Applying the generalized
DCA scheme to a single band tight binding Hamiltonian with configuration-dependent hopping
amplitudes, we have considered the effects of non-local disorder and the interplay of diagonal and
off-diagonal disorder on the average density of states. By comparing our results with those from
exact numerical methods, we have established the accuracy of our method. We found that non-local
multi-site effects lead to the development of finite structures in the density of states and the partial
filling of the gap at larger disorder. Utilizing the self-energy, we show as a function of increasing
disorder strengths, the importance of a finite cluster in characterizing the Anderson localization
transition. For small disorder the single site and finite cluster results are essentially the same,
indicating that the CPA is a good approximation in the small disorder regime. However, for a
larger disorder we observe a significant momentum dependence in the self-energy resulting from the

non-local correlations which are incorporated in the DCA.
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Electron localization for off-diagonal disorder models had not been studied from the the typical
medium perspective. The typical medium formalism did not exist for such disordered systems. In
this paper, we generalized the TMDCA to systems with both diagonal and off-diagonal disorder.
Our developed method can quantitatively and qualitatively be used to study the effects of disorder
on the electron localization, effectively for systems with both diagonal and off-diagonal randomness.

We demonstrate that within the TMDCA, the typical DOS vanishes for localized states, and is
finite for states which are extended. Employing the typical DOS as an order parameter for Anderson
localization, we have constructed the disorder-energy phase diagram for systems with both diagonal
and off-diagonal disorder. We have also demonstrated the inability of the single site CPA and the
TMT methods to accurately capture the localization and disorder effects in both the average and the
typical DOS, respectively. We note that the single site TM'T while being able to capture the behavior
for the diagonal and off-diagonal disorder, strongly underestimates the extended regions. Also the
TMT is less sensitive to the off-diagonal randomness with the mobility edges being only slightly
modified as compared to the diagonal case. In contrast, the finite cluster TMDCA results are able
to capture the considerable changes, with a pronounced asymmetry of the extended state region, in
the disorder-energy phase diagram under the effect of the off-diagonal disorder as compared to the
diagonal case. Most importantly, the TMDCA results are found to be in a quantitative agreement
with exact numerical results. Comparing our results with kernel polynomial, exact diagonalization,
and transfer-matrix methods we find a remarkably good agreement with our extended DCA and
TMDCA. To the best of our knowledge, this is the first numerically accurate investigation of the
Anderson localization in systems with off-diagonal disorder within the framework of the typical
medium analysis. We believe that the extended TMDCA scheme presents a powerful tool for
treating both diagonal and off-diagonal disorder on equal footing, and can be easily extended to

study localization in multi-band systems.
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Chapter 4

TMDCA Study of Multi-band Systems

Prior to this work, TMDCA calculations had been restriced to model calculations that involve only
a single band. As real materials exhibit multiple bands, it is important to establish that TMDCA
can capture the Anderson transition in a multiband system which is the result that will be presented

L' The density of states and predictions of the mobility edge are compared with

in this chapter
the kernel polynomial method and the TMM for the model two-band system as seen in Fig.4.1.
Also, the method is then applied to the real material K;Fes_,Sep and found to not be an Anderson
insulator.

My contribution to this work was primarily in the figures which show the mobility edge com-
parisons with the TMM (Fig.4.6 and Fig.4.7). I extended my parallel TMM code to the multiband

system described in this chapter below and performed finite size scaling analysis of the of the

Kramer-MacKinnon scaling parameter as a function of disorder as seen in Fig.4.2.

! This chapter includes previously published work published by American Physical Society and appears in [38] and
is reproduced here under term 3 of Author’s rights of the APS Transfer of Copyright Agreement to “The right to use
all or part of the Article, including the APS-prepared version without revision or modification ...for educational or
research purposes.”
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Figure 4.1: Simple two band model where each unit cell contains two orbitals with couplings as
defined in [38].
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Figure 4.2: Krammer-Macinnon scaling parameter. The crossing denotes the critical disorder
strength as the scaling parameter is invariant as a function of system size.
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4.1 Introduction

The role of disorder (randomness) in materials has been at the forefront of current research [101,
102, 110] due to the new and improved functionalities that can be achieved in materials by carefully
controlling the concentration of impurities in the host. At half-filling and in the absence of any
spontaneous symmetry breaking field, disorder can induce a transition in a non-degenerate electronic
three-dimensional system from a metal to an insulator (MIT) [103, 111|. This phenomenon, which
occurs due to the multiple scattering of charge carriers off random impurities, is known as Anderson
localization [103].

The most commonly used mean-field theory to study disordered systems is the coherent potential
approximation (CPA) [112, 113, 114], which maps the original disordered lattice to an impurity
embedded in an effective medium. The CPA successfully describes some one-particle properties,
such as the average density of states (ADOS) in substitutional disordered alloys [112, 113, 114].
However, being a single-site approximation, the CPA by construction neglects all disorder-induced
nonlocal correlations involving multiple scattering processes. To remedy this, cluster extensions of
the CPA such as the dynamical cluster approximation (DCA) [115, 116, 117] and the molecular
CPA [118] have been developed, where nonlocal effects are incorporated. Unfortunately, all of
these methods fail to capture the Anderson localization transition since the ADOS utilized in these
approaches is neither critical at the transition or distinguish the extended and the localized states.

In order to describe the Anderson transition in such effective medium theories, a proper order
parameter has to be used. As noted by Anderson, the probability distribution of the local density
of states (LDOS) must be considered, and the most probable or typical value would characterize
it [103, 119]. It was found that the geometric mean of the LDOS is a good approximation of its
typical value (TDOS) and it is critical at the transition [120, 106, 107], which makes it an appropriate
order parameter to describe Anderson localization. Based on this idea, Dobrosavljevic et al.. [100]
formulated a single-site typical medium theory (TMT) for Anderson localization which gives a
qualitative description of the transition in three dimensions. In contrast to the CPA, the TMT uses
the geometrical averaging over the disorder configuration in the self consistency loop. And thus,

the typical not the average DOS is used as the order parameter. However, due to the single-site
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nature of the TMT it neglects nonlocal correlations such as the effect of coherent back scattering.
Thus, the TMT underestimates the critical disorder strength of the Anderson localization transition
and fails to capture the reentrant behavior of the mobility edge (which separates the extended and
localized states) for uniform box disorder.

Recently, a cluster extension of TMT was developed, named the typical medium dynamical clus-
ter approximation (TMDCA) [105], which predicts accurate critical disorder strengths and captures
the reentrant behavior of the mobility edge. The TMDCA was also extended to include off-diagonal
in addition to diagonal disorder. [121]. However, like the TMT, the previous TMDCA implemen-
tations have only been developed for single-band systems, and in real materials, there are usually
more than one band close to the Fermi level. Sen performed CPA calculation on two-band semicon-
ducting binary alloys [122], and the electronic structure of disordered systems with multiple bands
has also been studied numerically in finite systems [123, 124]|. But a good effective medium theory
to study Anderson localization transition in multiband systems is still needed to understand the
localization phenomenon in real systems such as diluted doped semi-conductors, disordered systems
with strong spin-orbital coupling, etc.

In this paper, we extend the TMDCA to multiple band disordered systems with both intra-
band and inter-band hopping, and study the effect of intra-band disorder potential on electron
localization. We perform calculations for both single-site and finite size clusters, and compare the
results with those from numerically exact methods, including transfer matrix method (TMM) and
kernel polynomial method (KPM). We show that finite sized clusters are necessary to include the
nonlocal effects and produce more accurate results. Since these results show that the method is
accurate and systematic, we then apply it to study the iron selenide superconductor K, Fes_,Ses
with Fe vacancies, as an example to show that this method can be used to study localization effects
in real materials. In addition, as an effective medium theory, our method is also able to treat
interactions [125], unlike the TMM and KPM.

The paper is organized as follows. We present the model and describe the details of the formalism
in Sec. 4.2. In Sec. 4.3.1, we present our results of the ADOS and TDOS for a two-band disordered

system with various parameters, and use the vanishing of the TDOS to: determine the critical
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disorder strength, extract the mobility edge and construct a complete phase diagram in the disorder-
energy parameter space for different inter-band hopping. In Sec. 4.3.2, we discuss simulations of
K Fea_,Ses with Fe vacancies. We summarize and discuss future directions in Sec. 5.4. In Appendix

4.4, we provide justification for the use of our order parameter ansatz.

4.2 Formalism

4.2.1 Dynamical cluster approximation for multiband disordered systems

We consider the multiband Anderson model of non-interacting electrons with nearest neighbor

hopping and random on-site potentials. The Hamiltonian is given by

Uy
oo TS b
<13> a,f=1

N I
£33 (V7 = pdag)ng?

i=1 a,f=1

(4.1)

The first term provides a realistic multiband description of the host valence bands. The labels 4, j
are site indices and «, 8 are band indices. The operators cj.a(cm) create (annihilate) a quasiparticle
on site ¢ and band «. The second part denotes the disorder, which is modeled by a local potential
Viaﬁ that is randomly distributed according to some specified probability distribution P(Via’B ),

B

where nf‘ = cjacig, w is the chemical potential, and t%ﬁ are the hopping matrix elements. Here

we consider binary disorder, where the random on-site potentials Viaﬁ obey independent binary

probability distribution functions with the form
PV) = 2d(V? = ViP) + (1 = 2)s (V7 = V5P (4.2)

In our model, there are [, band indices so that both the hopping and disorder potential are I X I
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matrices. The random potential is

V*iaa . ‘/iaﬁ
Vi= , (4.3)
B
|5 Vz o
while the hopping matrix is
B
t%a S t%’
ti = , (4.4)
B BB
tij‘l - tij

where underbar denotes I, x [, matrix, t*® and t%% are intra-band hoppings, while t*? and t°*
are inter-band hoppings. Similar definitions apply to the disorder potentials. If we restrict the
matrix elements to be real, Hermiticity requires both matrices to be symmetric, i.e., t*? = t5* and
Ve = v

To solve the Hamiltonian of Eq. 4.1, we first generalize the standard DCA to a multiband
system. Within DCA the original lattice model is mapped onto a cluster of size N, = L? with
periodic boundary condition embedded in an effective medium. The first Brillouin zone is divided
in N, coarse grained cells [116], whose center is labeled by K, surrounded by points labeled by k
within the cell. Therefore, all the k-points are expressed as k = K + k. The effective medium is
characterized by the hybridization function A(K,w). The generalization of the DCA to a multiband
system entails representing all the quantities in momentum space as [ X [ matrices.

The DCA self-consistency loop starts with an initial guess for the hybridization matrix A(K,w),
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which is given by
A (K,w) --- A%(K,w)

APY K w) - APB(K, W)

For the disordered system, we must solve the cluster problem in real space. In that regard, for
each disorder configuration described by the disorder potential V' we calculate the corresponding

cluster Green function which is now an [, N, X [, N. matrix

1
Qc(v) _ <w]1 . E(aﬁ) _ A/(aﬁ) B Vaﬁ) ) (4.6)

Here, I is identity matrix and A;j is the Fourier transform (FT) of the hybridization, i.e.,
NG = DA (K eapliK - (i — 1)), (47)
K

We then stochastically sample random configurations of the disorder potential V and average

over disorder ((---)) to get the [N, x [N, disorder averaged cluster Green function in real space

(Geow, V))y - (G, V)

)

(6w

ij

<G?°‘(w, V)>,

]
We then Fourier transform to K space and also impose translational symmetry to construct the

K-dependent disorder averaged cluster Green function G.(K,w), which is a I, x [, matrix for each
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K component

G?Q(K7W) e GgB(K,W)

G?Q(Kvw) GEB(K,W)
After the cluster problem is solved, we can calculate the coarse grained lattice Green function matrix

G(K,w) --- GQB(K,w)

Ql

(K,w) = : . . (4.10)

@BQ(K,w) EBB(K,OJ)

_ % S (Gulw) ™ + AR w) — 2 +EEK))
k

where the overbar denotes cluster coarse-graining, and €(K) is the cluster coarse-graining Fourier

transform of the kinetic energy

[l

(K) = Eo +

==

> e (4.11)

E

where E A is a local energy, which is used to shift the bands. The diagonal components of Eq. 4.10

have the same normalization than a conventional, i.e., scalar, Green function.

The DCA self-consistency condition requires the disorder averaged cluster Green function equal

the coarse grained lattice Green function

G.(K,w) = G(K,w). (4.12)

Then, we close our self-consistency loop by updating the hybridization function matrix using
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linear mixing

Ay (K, w) = Ay(K,w) + £[G;HEK,w) — GHEK,w)], (4.13)

where the subscript “0” and “n” denote old and new respectively, and £ is a linear mixing factor

0 < £ < 1. The procedure above is repeated until the hybridization function matrix converges to

the desirable accuracy A, (K,w) = A, (K, w).

We can see that when the inter-band hopping, t*?, and disorder potential, V%, vanish all the
Iy X I, matrices become diagonal, and the formalism reduces to single band DCA for I, independent

bands.

4.2.2 Typical medium theory for multiband disordered systems

To study localization in multiband systems, we generalize the recently developed TMDCA [105]
where the TDOS is used as the order parameter of the Anderson localization transition, so the
electron localization is captured by the vanishing of the TDOS. We will use this TMDCA formalism
to address the question of localization and mobility edge evolution in the multiband model.

Unlike the standard DCA, where the Green function is averaged over disorder algebraically,
the TMDCA calculates the typical (geometrically) averaged cluster density of states in the self-

consistency loop as

" K,w)
typ K = ﬁ Zi<10g pu(w)> /)(77 414
Pe ( ,OJ) e <ﬁZZ p“(w) , ( )

which is constructed as a product of the geometric average of the local density of states, p; =
—%I mGy;(w), and the linear average of the normalized momentum resolved density of states p(K,w) =
—%I mG.(K,w). The cluster-averaged typical Green function is constructed via the Hilbert trans-

formation

typ
G (K /d p (K w). (4.15)

Generalization of the TMDCA to the multiband case is not straightforward since the off-diagonal

LDOS pgﬁ(w) = —%Ggﬁ(w) is not positive definite. We construct the I, X [, matrix for the typical
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density of states as

e Dt @) (o) N R R @) )
. (wEa) ’ R AT]

Pryp (K w) =

e Si(le @) [ pretw) N\ S Sl @) [ e
e S0k @)l I 7@

(4.16)

The diagonal part takes the same form as the single-band TMDCA ansatz, and the off-diagonal

part takes a similar form but involves the absolute value of the off-diagonal ‘local’ density of states.

We construct the typical cluster Green function through a Hilbert transformation

fd /pt (Kw) fd /pt (Kw)
Giyp (K w) = ) (4.17)
fd /pfyp(Kw) fdw/ptyp(Kw)

which plays the same role as G.(K,w) in the DCA loop. Once M is calculated from Eq. 4.17,
the self-consistency steps are the same as those in the multiband DCA described in the previous
section: we calculate the coarse grained lattice Green function using Eq. 4.10, and use it to update
the hybridization function matrix of the effective medium via Eq. 4.13.

The proposed ansatz Eq. 4.16 has the following properties. When the inter-band hopping t*?
and disorder potential V*? vanish, it reduces to single-band TMDCA for I, independent bands,
since all the off-diagonal elements of the Green functions vanish. When disorder is weak, all the
V@ are small so the distribution of the LDOS becomes Gaussian with equal linear and geometric

average so it reduces to DCA for a multiband disordered system.

tot

When convergence is achieved, we use the total TDOS pi7,

(w) to determine the mobility edge
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which is calculated as the trace of the local TDOS matrix

Plgp(w) =Tt

Nizptyp(KaW)] = Z pfyi(w). (4.18)
¢ K Va=p4

This construction of the order parameter may not seem very physical as the typical value of the
LDOS should serve as the order parameter [103, 119], and the LDOS for the multiband system
is the sum of the [, bands in the local site basis pl® = Za:ﬁ p?ﬁ (w). Therefore, the real order
parameter should be the typical value of pi® defined as the geometric average of the total LDOS,
exp(NiC >, log p§°t> which is invariant under local unitary transformations and is not equal to the
pi% defined in Eq. 4.18.

However, Eq. 4.18 should also be a correct order parameter as long as it vanishes simultaneously

with the typical value of pl°

(2

, and we show this in Appendix 4.4. By considering the distribution of
the LDOS in each band, Appendix 4.4 shows that when localized states mix with extended states
the system is still extended, which is consistent with Mott’s insight about the mobility edge [126].
Intuitively, this makes sense as when all the distributions of p{* are critical then the typical values
must behave as |V — V,|% near the transition, and so their sum must as well. If one is not critical
(on the metallic side) then Eq. 4.18 will not vanish as |V — V,|%, as expected.

To test our multiband typical medium dynamical cluster approximation formulation, we apply
it to the specific case of a two band model, unless otherwise stated in Sec. 5.3. Throughout the

discussion of our results below, we denote a as a and (5 as b.

4.3 Results

4.3.1 Two band model

As a specific example, we test the generalized DCA and TMDCA algorithms for a three-dimensional

system with two degenerate bands (ab) described by Eq. 4.1. In this case, both the hopping and
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disorder potential are 2 x 2 matrices in the band basis given by

taa tab
lij =t= , (4.19)
7jba tbb
and
b
V;aa "/ia
Vi= , (4.20)
V*Zba V*ibb
respectively. The intra-band hopping is set as t% = t% = 1, with finite inter-band hopping t®.

Here, the hopping matrix is defined as dimensionless so that the bare dispersion can be written as
e = teg with e = —2t[cos(k,) + cos(ky) + cos(k.)] in three dimensions. We choose 4t = 1 to set
the units of energy. We consider the two bands orthogonal to each other, where the local inter-band
disorder Viaﬁ vanishes and the randomness comes from the local intra-band disorder potential V,**
that follow independent binary probability distribution functions with equal strength, V@ = V.
Since the two bands are degenerate and the disorder strength for each band is also identical, the
calculated average DOS will be the same for each band, so we only plot the quantities for one of
the bands in the following results, as it is enough to characterize the properties of the system.

In our formalism, in order to disorder average instead of performing the very expensive enu-
meration of all disorder configurations, which scales as 22V¢, we perform a stochastic sampling of
configurations which greatly reduces the computational cost [127]. This is so we can study larger
systems. For a typical N, = 64 calculation, 500 disorder configurations are enough to produce
reliable results and this number decreases with increasing cluster size.

We first compare the ADOS and TDOS at various disorder strengths V¢ (V") with a fixed
inter-band hopping t® = 0.3, for different cluster sizes N, in Fig. 4.3. Our TMDCA scheme for
N, =1 corresponds to the analog of the TMT for two-band systems, and the ADOS is calculated
with the two-band DCA. To show the effects of non-local correlations introduced by finite clusters,
we present data for both N, = 1 and N, > 1. We can clearly see that the TDOS, which can be
viewed as the the order parameter of the Anderson localization transition, gets suppressed as the

disorder increases . By comparing the width of the extended state region, where the TDOS is finite,

68



we can see that single site TMT overestimates localization.
From Fig. 4.3, we see that the results of TMDCA for N, = 64 and N, = 216 are almost on

top of each other, showing a quick convergence with the increase of cluster size. To see this more
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Figure 4.3: Evolution of the ADOS and TDOS at different disorder strengths Ve%(V%) for N, =1
(left panel) and N, > 1 (right panel) for fixed t** = 0.3. For small disorder, the ADOS and TDOS
are almost identical. The TDOS is suppressed as the disorder increases. The extended states region
with finite TDOS for N. = 1 is narrower than the results of N. > 1 which indicates that the
single-site TMT overemphasizes localization.
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clearly, we plot in Fig. 4.4 the TDOS at the band center for two different disorder strengths and
various cluster sizes. We see that the results for both cases converge quickly with cluster size.
Faster convergence (around N. = 38) is reached for the case further away from the critical region
(Vae = Vb — 0.6) than for the one closer (V = V% = 0.7) where convergence is reached around
N, = 98. This is expected due to the critical slowing down close to the transition. To further study
the convergence, we also plot in Fig. 4.5 the TDOS at the band center as a function of disorder
strength (V9 = V) for several N.. The critical disorder strength is defined by the vanishing of
the TDOS(w = 0). The results show a systematic increase of the critical disorder strength as N,
increases, and the convergence is reached at N, = 98 with the critical value of 0.74.

To study the effect of inter-band hopping t*, we calculate the disorder-energy phase diagram
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Figure 4.4: Evolution of the TDOS at the band center (w = 0) with increasing cluster size for
two different sets of parameters with ¢ = t? = 1.0, t% = 0.3, V% = 0.0, V% = V% = 0.6,0.7.
The former has faster convergence (around N, = 38) than the latter (around N. = 98), due to the
critical slowing down closer to the transition region.
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Figure 4.5: The TDOS at the band center (w = 0) vs. V% = V® with increasing cluster size, for
to = ¢ = 1.0, t% = 0.3, V® = 0.0. For N, = 1, the critical disorder strength is 0.65 and as N,
increases, it increases and converges to 0.74 for N, = 98.

70



for the case with vanishing t*® and finite t** = 0.3 in Fig. 4.6. The mobility edge is determined

aa ,bb ab aa ,bb ab
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Figure 4.6: Disorder-energy phase diagram for vanishing t* (left panel) and finite t* = 0.3 (right
panel). We compare the mobility edge obtained from the TMT (N, = 1), TMDCA (N, = 64 and
216) and TMM. Parameters for the TMM data are given in the text (the TMM data for ¢ = 0.0
is reproduced from [121]). A finite t* increases the critical disorder strength, indicating that ¢
results in a delocalizing effect. The single site TMT overestimates the localized region.

by the energy where the TDOS vanishes. By comparing the left and right panels, we can see
that introducing a finite t*® makes the system more difficult to localize, causing an upward shift
of the mobility edge. The single site TMT overestimates the localized region compared to finite
cluster results. We also compare our results with those from the TMM |98, 149, 150| to check the
accuracy of the mobility edge calculated from TMDCA. For the TMM, the Schrodinger equation is
written in terms of wavefunction amplitudes for adjacent layers in a quasi-one dimensional system,
and the correlation (localization) length is computed by accumulating the Lyapunov exponents of
successive transfer matrix multiplications that describe the propagation through the system. All
TMM data is for a 3d system of length L = 10° and the Kramer-MacKinnon scaling parameter
A(V, M) is computed for a given disorder strength V' and “bar” width M. The transfer matrix is
a 2Ml, x 2M]I, matrix. The system widths used were M = [4 — 12]. The critical point is found

by identifying the crossing of the A(M)vs.V curves for different system sizes. The transfer matrix
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product is reorthogonalized after every five multiplications.
To see the effect of inter-band hopping more directly, we now consider increasing ¢t while
keeping the disorder strength fixed (V% = V% = 0.71), and study the evolution of the mobility

tab

edge (Fig. 4.7). The localized region around the band center starts to shrink as is increased,

leading to a small dome-like shape with the top located at t*® = 0.2. This shows that increasing

t% delocalizes the system which is reasonable since increasing t® effectively increases the bare
bandwidth.
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Figure 4.7: Evolution of the mobility edge as t%° increases, while V% and V' are fixed. The results
are calculated for N, = 64. A dome-like shape shows up around the band center, signaling the
closing of the TDOS gap. Parameters for the TMM data are given in the text.

To further benchmark our algorithms, we plot the ADOS and TDOS calculated with two-band
DCA and TMDCA together with those calculated by the KPM [108, 109, 128, 129] (Fig. 4.8). In
the KPM analysis, the LDOS is expanded by a series of Chebyshev polynomials, so that the ADOS
and TDOS can be evaluated. The details for the implementation of KPM are well discussed in
Ref. [109] and the parameters used in the KPM calculations are listed in the caption of Fig. 4.8.
The Jackson kernel is used in the calculations [109]. As shown in the plots, the results from the

generalized DCA and TMDCA match nicely with those calculated from the KPM.
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The excellent agreement of the TMDCA results with those from more conventional numerical

methods, like KPM and TMM, suggest that the method may be used for the accurate study of real

materials.
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Figure 4.8: Comparison of ADOS and TDOS calculated with DCA, TMDCA and KPM with fixed
disorder strength V% = V% = 0.8 and various values of inter-band hopping t®. The KPM uses
2048 moments on a cubic lattice of size 483 and 200 independent realizations generated with 32
sites randomly sampled from each realization.

4.3.2 Application to K ,Fe,_,Se,

Next, we demonstrate the method with a case study of Fe vacancies in the Fe-based superconductor
K;Fea_,Ses, which has been studied intensely because of its peculiar electronic and structural
properties. Early on it was found that there is a strong /5 x v/5 ordering of Fe vacancies [130].
Later it was discovered that this material also contains a second phase[131, 132]. It is commonly
speculated that the second phase is the one that hosts the superconducting state and the phase
with the /5 x v/5 vacancy ordering is an antiferromagnetic (AFM) insulator. Recent measurements
of the local chemical composition [133, 134] have determined that the second phase also contains a

large concentration of Fe vacancies (up to 12.5%). However, these Fe vacancies are not well ordered
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since no strong reconstruction of the Fermi surface [135, 136, 137| was observed by angle-resolved
photoelectron spectroscopy (ARPES) experiments [138, 139].

Interestingly, with such a disordered structure, this material hosts a relatively high supercon-
ducting transition temperature of 31 K at ambient pressure [140]. It was the first Fe-based super-
conductor that was shown from ARPES [138, 139] to have a Fermi surface with electron pockets only
and no hole pockets, apparently disfavoring the widely discussed ST pairing symmetry [141] in the
Fe-based superconductors. K;Fea_,Ses is also the only Fe-based superconductor whose parent com-
pound (with perfectly ordered Fe vacancy) is an AFM insulator [142] rather than a AFM bad metal.
Furthermore from neutron scattering [130], it has been observed that the anti-ferromagnetism has
a novel block type structure with a record high Neel temperature of Ty = 559K and magnetic
moment of 3.31up/Fe. Such a special magnetic structure is obviously not driven from the nesting
of the simple Fermi surface, but requires the interplay between local moments and itinerant carriers
present in the normal state [143, 144].

Given that Fe vacancies are about the strongest possible type of disorder that can exist in
Fe-based superconductors and given that the Fe-based superconductors are quasi two-dimensional
materials, it is natural to speculate how close the second phase is to an Anderson insulator. If it
is indeed close, this would have interesting implications for the strong correlation physics and the
non-conventional superconductivity in these compounds.

To investigate the possibility of Anderson localization in the second phase of K Fey_,Ses we will
employ TMDCA on a realistic first principles model. To this end we use Density Functional Theory
(DFT) in combination with the projected Wannier function technique [145] to extract the low energy
effective Hamiltonian of the Fe-d degrees of freedom. Specifically we applied the WIEN2K [146]
implementation of the full potential linearized augmented plane wave method in the local density
approximation. The k-point mesh was taken to be 10 x 10 x 10 and the basis set size was determined
by RKmax—7. The lattice parameters of the primitive unit cell (c.f. Fig. 4.9(b)) are taken from
Ref. [130]. The subsequent Wannier transformation was defined by projecting the Fe-d characters on
the low energy bands within the interval |-3,2| eV. For numerical convenience, we use the conventional

unit cell shown in Fig. 4.9(a) which contains 4 Fe atoms. Since there are 5 d orbitals per Fe atom,
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we are dealing with a 20-band problem. To simulate the effect of Fe vacancies we add a local binary

disorder with strength V' and Fe vacancy concentration c,:

P(Vi) = ¢ad(Vi = V) + (1 — ca)3(V). (4.21)

We set the disorder strength to be V' = 20eV, much larger than the Fe-d bandwidth, such that
it effectively removes the corresponding Fe-d orbitals from the low energy Hilbert space. This
will capture the most dominant effect of the Fe vacancies. The Fe concentration is taken to be

¢q = 12.5%, which is the maximum value found in the experiments.

(a) conventional unit cell (b) primitive unit cell

Figure 4.9: Crystal structure of KFegSes.

Fig. 4.10 presents the ADOS and TDOS, obtained from our multiband TMDCA for which we
considered two cluster sizes N. = 1 and N, = 2v/2 x 2v/2 x 2 = 16. Consistent with the model
calculations presented in the previous sections, we find that the TMT (N, = 1) tends to overestimate
the localization effects compared to TMDCA results (N. = 16). While the TMT shows localized
states within [0.6,1.1] eV, the TMDCA for N, = 16 finds localized states in the much smaller energy

region [1.0,1.1] eV instead. Apparently a concentration of ¢, = 12.5% is still too small to cause
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any significant localization effects despite the strong impurity potentials of the Fe vacancies and the
material being quasi-two dimensional. To determine the chemical potential we consider two fillings.
The first filling of 6.0 electrons per Fe corresponds to the reported KoFerSeg phase [134]. Since
strong electron doping has been found in ARPES experiments [138, 139], we also consider a filling
of 6.5 electrons per Fe. The latter would correspond to the extreme case of no vacancies. Clearly
for both fillings the chemical potential remains energetically very far from the mobility edge, and

thus far from Anderson insulating.
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Figure 4.10: The average and typical density of states of KFeoSes with 12.5% Fe vacancy concentra-
tion calculated by multiband DCA and TMDCA with cluster size N, = 1 and N, = 16, compared
with the average density of states of the clean (no vacancy) KFesSes.

4.4 Conclusion

We extend the single-band TMDCA to multiband systems and study electron localization for a
two-band model with various hopping and disorder parameters. We benchmark our method by
comparing our results with those from other numerical methods (TMM and KPM) and find good

agreement. We find that the inter-band hopping leads to a delocalization effect, since it gradually
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closes the w = 0 disorder induced gap on the TDOS. A direct application of our extended TMDCA
could be done for disordered systems with strong spin-orbital coupling. Combined with electronic
structure calculations, our method can be used to study the electron localization phenomenon in real
materials. To show this, we apply this approach to the iron selenide superconductors K;Fes_,Ses
with Fe vacancies. By calculating the TDOS around the chemical potential, we conclude that the
insulating behavior of its normal state is unlikely due to Anderson localization. This method also
has the ability to include interactions [125|, and future work will involve real material calculations
that fully treat both disorder and interactions.
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The order parameter defined in Eq. 4.18

We know the system is localized if the distribution of the total LDOS is critical, having a probability
distribution p(p?® + pfb) which is highly skewed with a typical value close to zero. So if we can
show that this is true if and only if both p$* and pi-’b are critical, then the critical behavior is basis

independent and we can choose any particular basis and use the order parameter defined by Eq. 4.18

7



to study the localization transition.
To show this is true, we consider two probability distribution functions p;(z1) and p2(x2). The

probability distribution function for X = x1 + x9 is
X
P(X) =/ p1(z)p2(X — z)dz, (4.22)
0
and we want to show P(X) is critical if and only if both p;(z1) and pa(x2) are critical.

4.4.1 Sufficiency

If both p;(x) and ps(x) are critical, then both p;(x) and ps(x) are dominated by the region 0 < x < ¢
where § — 07, The contribution to the integral in P(X) mainly comes from the region 0 < z < §
and 0 < X —x < 0 which is max(X —6,0) < z < min(d, X'). Since J is infinitesimal, we can assume
X >4, and then we have X — § < z < §. To maximize P(X), we want this region to be as big as
possible, so we want 6 — (X — ) = 25 — X to be as big as possible which means X must be smaller

than 26 — 0. Thus, P(X) is also critical with the typical value around 26 which is infinitesimal.

4.4.2 Necessity

We now consider the case where one of the distributions is not critical. Without loss of generality,

we assume po(x) is not critical and is peaked at some finite value xp. We calculate

o 4
P(zg) — P(6) = /0 p1(x)p2(zo — x)dr — /0 p1(x)pa (6 — x)dx
(4.23)

o 0
= / p1(z)[p2(xo — ) — p2(d — x)]dx + / p1(x)pe(xo — z)dz.
0 P

The first term is positive since pa(x) is peaked around zy and § < zp. The second term is positive
obviously, so P(zg) > P(J). Therefore, P(X) is not critical.

In this way we argue that P(X) is critical if and only if both pi(z1) and pa(z2) are critical. In
other words, when the localized states hybridize with extended states, only extended states remain
which is exactly Mott’s insight about the mobility edge [126]. The generalization to the multiple

band case is trivial.
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Chapter 5

Multifractal Study of Quasiparticle
Localization in Disordered
Superconductors

In addition to off-diagonal disorder and multiple bands, materials can also be superconducting. This
adds much complication to the interpretation of localization in the Anderson sense as one can not
only consider localization of the charge carriers (resulting in a standard metal to insulator transition
as has so far been considered in this thesis), but of any quasiparticle excitations and it is an open
question if the “traditional” methods of numerical analysis of disordered systems can be applied
to capture such a localization transition. The purpose of this work was to apply the multifractal
analysis that has been applied to the Anderson model to a model of a disordered superconductor to
establish it can also capture the localization of bogolons (the excitations of this Hamiltonian), and
the application of TMDCA to such a model is considered for future work.

My contribution to this work that was made in collaboration with K.-M. Tam, Yi Zhang, and M.
Jarrell that has been submitted to Physical Review B was to first determine the critical parameters
(the critical disorder strength W, and correlation exponent v) with a TMM code for a superconductor
with extended s-wave pairing. The reason for this choice of pairing was to avoid the problem of not
being able to “target” the lowest energy excitations with the TMM in the presence of a gap in the
spectrum which a more conventional pairing realization would have . I then implemented a large
scale diagonalization code in order to compute the bogolon wave function |1;|? = |u;|? + |v;|?> and
applied multifractal finite size scaling to also compute the critical parameters and find agreement
with TMM), establishing the ability of the method to capture localization of excitations in disordered

superconductors.
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5.1 Introduction

Anderson localization involves the localization of single-particle electronic states in a disordered
metal|147]. Although this has proved to be a challenging and complex problem|148|, the basic
interpretation of the transition is clear: it is a transition from a metallic phase where electrons
are able to diffuse and transport over long distances to an insulating phase where this is pre-
vented. Anderson localization occurs in normal electronic systems (most famously doped|152| and
amorphous|153| semiconductors). The conducting electronic states are separated from the insulat-
ing states by a mobility edge in energy and disorder strength. Many features of the localization
transition have been studied and much attention has been paid to two in particular: the multi-
fractality of critical wave functions at the transition and the role played by the symmetries of the
Hamiltonian [154, 155, 156, 158|.

The Anderson transition was first and most studied for Hamiltonians of the three Wigner-
Dyson[156] symmetry classes. The identification of additional symmetry classes (bringing the full
number to ten[154]) has lead to the study of the effects of Anderson localization beyond the original
three symmetry classes and the additional rich phenomenall59|. In this paper, we consider the
question of quasiparticle localization in the Bogoliubov de Gennes class for three dimensions with
time reversal and spin rotation symmetry (class CI) which we use to model a dirty superconductor
with a finite density of states at the Fermi level. The excitations of this class are Bogoliubov
quasiparticles[160] (also referred to as bogolons in this paper) with no definite charge as they are
a superposition of electron and hole excitations [161], so this is different from the case of the
Anderson model where the excitations have a well defined charge. In this case, the localization
transition is interpreted as localization of bogolons that occurs within the superconducting phase.
The two phases are refereed to as a “thermal metal” where the bogolons are extended and a “thermal
insulator” where they are localized|162]. As mentioned above, the quasiparticles do not transport
charge and so there is no Weidemann-Franz law between the thermal and electric transport, but
there is still thermal transport and so on the localized side of the transition the system will be
thermally insulating and on the extended side it will be thermally metallic [162].

The idea of multifractality was introduced by Mandlebrot[164, 165] and describes spatial struc-
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tures that have a complicated distribution and require an infinite number of critical exponents to
describe the scaling of their moments. The multifractal nature of the wavefunction at criticality
was realized for Anderson transitions [166, 158| and is now recognized as a defining characteristic.
A proposed generalization of the multifractal analysis can be used to calculate the critical parame-
ters of the Anderson transition[168, 167, 169] which has even been applied to calculations of doped
semiconductors|170].

In this paper, we apply the generalized multifractal finite size scaling (MFSS) [168, 167] analysis
to a simple model of a dirty superconductor. The model Hamiltonian and methods of extracting
critical parameters which include transfer matrix method and multifractal analysis are described
in Sec.5.2. We will demonstrate that the multifractal analysis can be used to extract the critical
disorder strength by showing agreement with transfer matrix method calculations and confirms
that this transition falls outside the Wigner-Dyson symmetry class. Also, we will argue that the
multifractal character of the wavefunctions can possibly explain some experimental findings on dirty
superconductors, such as the increase in 7, with disorder. These results are presented in Sec.5.3

and discussed in Sec.5.3.1. We conclude in Sec. 5.4

5.2 Model and Methods

5.2.1 Model of Dirty Superconductor

We study our model of a dirty superconductor within the mean field Bogoliubov-de Gennes approx-

imation, and so the Hamiltonian is given by

H=>[ti; Y (c i+ He)+ Aijlcl el + He), (5.1)
2 o=ml

The annihilation operator for site ¢ with spin o is given by ¢;,, and similarly for the creation
operators. We only consider spin one-half fermions in this study, so o =1 or |. ¢; ; and A; ; are the
hopping and pairing between site ¢ and j respectively.

Previous studies of dirty superconductors predominately focused on the pairing with conven-

tional s-wave symmetry with on-site pairing which has a spectral gap at the band center. With-
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out disorder, the spectral function is given by E(k) = /A(k)% 4 €(k)?, and for a cubic lattice
e(k) = =2t ,_, . cos(k;). For the case of conventional s-wave pairing, we have A(k) = A a
constant. Since we do not expect for gap formation to be required for multifractal behavior of the
wavefunction, we instead focus on a gapless superconductor. A simple choice is one with extended
s-wave pairing with the same nodal structure as that of the bare dispersion e(k) [163], in which
A(K) = 80 Y, . cos(ky).

Random disorder is introduced via two independent terms, one for the on-site local potential
and the other for the on-site pairing. Following the convention in Ref. [163], the total Hamiltonian
may be written as

H = Ho + Hgys, (5.2)

Hy= " [% > (el yejo + He) + %(CZ,TC}, L+ He)], (5.3)

Sige V2 o=t
Hyis = Z[EZ Z (cg’gcz-,o + H.c) + Ai(CzT7TCZT,¢ + H.c.)]. (5.4)
@ o=l

The disorder in onsite potential and onsite pairing is assumed to be uniformly distributed from
—W to W, and so P(e;) = P(A;) = 1/2W VY — W < €,A; < W. The Hamiltonian possesses
time reversal symmetry, spin rotation symmetry and particle-hole symmetry which dictates that
eigenstates always come in pairs with energy E and —F. These symmetries put the Hamiltonian

into the CI class [154].

5.2.2 Transfer Matrix Method

We first locate the critical point of the model and its localization length exponent using the transfer
matrix method. The three dimensional system has a width and height equal to M for each slice of

a N-slice cuboid, forming a “bar” of length N. The Hamiltonian can be decomposed into the form

H=) Hi+)» (Hjw+Hec), (5.5)
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where H; describes the Hamiltonian for slice 7 and H; ;11 is the coupling terms between the ¢ and

i + 1 slices. The Schrodinger equation can be written in the form

Hn,n—l—lcn—i-l = (E - Hn)cn - Hn,n—lcn—l (56)

where ¢; is the M? components wavefunction of the slice i. We introduce the transfer matrix

H! (E — H;) ~H;} Hiy;

T — 1,041 1,541 ) (5 7)
1T -
1 0
and Eq.5.6 can be interpreted as the iteration of
Ci+1 C;
Tl=mx| "] (5.8)
C; Ci—1

The goal of the transfer matrix method is to calculate the localization length, Ap/(E), from the

product of NV transfer matricies

w=]]z- (5.9)

The Lyapunov exponents of the matrix 7 is given by the logarithm of its eigenvalues. The small-
est exponent corresponds to the slowest exponential decay of the wavefunction and thus can be
identified as corresponding to the localization length, Ay/(E). The localization length is computed
by repeated multiplication of T;, but since the multiplication of matrices is numerically unstable
periodic reorthogonalization is needed in the numerical implementation[150]. We use a QR decom-
position for reorthogonalization implemented by LAPACK|151], and so at the s reorthogonalization
step the matrix (corresponding to some intermediate L’th multiplication in calculating Eq.5.9) the
matrix is decomposed

7L = QR (5.10)
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where R is an upper triangular matrix and the Lyapunov exponents v, are calculated as
Vs = Vs—1 + log bs (5.11)

where b, are the 2M? diagonal elements of R for the s renormalization step. The multiplication of
transfer matrices is then continued with the ¢ matrix. The slowest decaying exponent (7,) is used
to compute the localization length \j;(E) = 1/, for a given width M and energy E.

The localization length is then used to calculate the the Kramer-Mackinnon|[149] scaling param-

eter Apr(F) = Ay (E)/M which is expected to scale as

Moy =2 <%) , (5.12)

where £ o« |[W — W,.|™". The scaling function f is Taylor expanded about the critical point W,
and the critical parameters W, and v enter as fitting parameters and so can be determined by a

least-squares minimization.

5.2.3 Multifractal Analysis

We consider the multifractal properties of the bogolon wave-function |t);|> = |u;|? + |v;|? for a three
dimensional simple cubic lattice of linear size L. The method is based on the study of Anderson
models in Wigner-Dyson class. [168, 167, 169] This cubic wavefunction is partitioned into boxes
of linear size £. We introduce the quantity A = ¢/L and so we have N, = A~% as the number of
boxes where d is the dimensionality of the system. In this paper, we shall only consider d = 3. We

introduce the “coarse grained” box measure

e = > il (5.13)

i€b(l)

where b(¢) indexes the NN, boxes for a given box size £. We introduce for convenience[167| the

quantity

—
o

o]

=

Q
Il

14
log A (5.14)



to work with instead of directly with the box measures given in Eq.5.13. Multifractility implies that

the number of boxes that correspond to a given « (we denote as N(a)) must scale as
N(a) ~ A~F@) (5.15)

where f(a) is some fractal dimension that depends on a. For the case where |¢|? are distributed
uniformly in space, one would expect there to be only a singular « and from the definition of A
above f(a) = d. However, for finite A a narrow distribution peaked around f(a) = d would be
expected and so the above Eq.5.15 is only defined in the limit A — 0. The fact that there exists an
a dependent spectrum f(a) characterizes a system as being multifractal[157].

We will want to consider the g-dependent moments of the distribution of « or a(q). We first
introduce the generalized inverse participation ratios for the coarse grained distributions P(/,Lb(g))

as
Ny

Ry=> (me)’ (5.16)

b(¢)
and assume (similarly to Eq.5.15) that the moments of the distribution of each box measure scale

by the ¢ dependent exponents 7(q) or
(R,) ~ \T@ (5.17)

where (- --) denotes an ensemble average. It can be shown[157] that f(«) and 7(q) can be related

by a Legendre transform

fla) = —=7(q) + g, (5.18)
where
a(q) = d:l(;)- (5.19)

Carrying out the differentiation in Eq.5.19 and using the definition of 7(¢) in Eq.5.17 leads to the

expression

alq) = lim ——— (5.20)
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where

Ny
Sg =Y i 1og . (5.21)
k

As defined above, the multifractal exponents are only strictly defined in the limit of infinite
system size (A — 0 as mentioned above) and at the critical point. However, they can be defined for

fixed A which we denote with a tilde as

- (Sq)

O = G n R (5.22)

The error in &y, 04, is then estimated from standard propagation of uncertainty

SNCHR R )

where the covariance term o y(g,) is kept to account for correlations as R, and S, are computed

from the same data set.
The quantity &, scales according to standard one parameter scaling for fixed A in a relevant (p)

and an irrelevant (n) scaling variable or [168, 167]
Go(W, L) = G(pL M L), (5.23)
We expand the scaling function to first order in the irrelevant operator n
ag(W, L) = GO (pLY?) 4 nL=WlaW (pL/7), (5.24)

where the sub-leading term is characterized by 7,y, and G, The function G(*) (where s = 0,1

from above) is expanded as a Taylor series

GOLY") = agpt LM (5.25)
k=0
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The scaling fields p and n are likewise expanded in terms of w = (W — W,)/W, as

Mp
p(w) = w + Z bw™ (5.26)
m=2
and
Mn
n(w) =1+ Z ™. (5.27)
m=1

The critical parameters (W,, ) and the irrelevant scaling exponent y are determined by fitting the
data for a4(W, L) to Eq.5.24. In addition, we have ng+nq +m,+m, Taylor expansion parameters.
The correlation length is £ = [p(w)|™" and so the scaled &, (W, L) data (which we denote as ag°™)

collapses onto two branches

Aot — G((IO)(ZE(L/g)l/V) (5.28)

q =

5.3 Results

We employ the transfer matrix method to find the critical disorder strength by performing a finite
size scaling analysis as shown in Fig.5.1. We will compare this result with that predicted by
multifractal analysis of the bogolon wavefunction. The fitting is performed using the SciPy package
which acts as a wrapper to MINPACK to perform the least squares minimization [178, 179]. The
fitting range used in Fig.5.1 is determined by performing multiple fits and choosing the one that
approximately provides the minimum for the sum of squares. This range is then used for 100
bootstrapped resamples of the data to estimate the error bars. Note however that there can still be
error in choosing the fitting range so the error bars are most likely under-estimated. The calculation
was performed for E = 0 as were are interested in only the lowest energy excitations which will also
be the focus in the following multifractal analysis.

For the multifractal analysis of the bogolon wavefunctions, we use the JADAMALU package
which implements a Jacobi-Davidson method with preconditioning|176, 177| to diagonalize the
Hamiltonian. In contrast to that of the conventional Anderson model, the disorder terms for the
present model appear in the off-diagonal elements. This poses as a challenge for attaining conver-

gence by the iterative algorithm, both in term of the memory storage and floating point operation.
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Figure 5.1: Kramer-Mackinnon scaling parameter as a function of disorder strength calculated with
the transfer matrix method for a bar of length NV = 20000, F = 0 and a QR reorthogonalization
is performed after every 5 multiplications. Note the crossing indicating a critical disorder strength
around W = 3.2. When the finite size scaling is performed as described in 5.2.2 the data collapses
as is shown in the inset. A bootstrap re-sampling is performed to generate 100 data sets to estimate
the fitting parameters yielding W, = 3.212 + 0.008 and a critical exponent of v = 1.01 £ 0.05.

Therefore the accessible system sizes are limited in comparison to that of the models with diagonal
disorder terms. [168, 167] We keep only one state from each realization with the closest eigenvalue
(and associated eigenvector) to zero. This is to prevent correlations in wavefunctions that come
from the same realization of disorder. The wave function can then be coarse grained (as described
in Sec.5.2.3) and the distribution of « is plotted in in Fig.5.2.

We can then calculate &, for ¢ = 0 (given by Eq.5.22 which we denote as @) and is plotted in
Fig.5.3 as a function of system size and disorder strength which is expected to show the characteristic
finite size behavior and exhibit a crossing at the critical disorder strength[167]|[168]. We also carry

out multifractal finite size scaling for fixed A and we assume our data y; (with uncertainty o;) is
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uncorrelated (as we only consider fixed A so each point is from it’s own realization) and thus the x?

statistic for our model fits f; is

=) M (5.29)

i i

The order of expansion in ng, n1, m, and m, is determined by choosing the fit that keeps the X2
statistic small, keeps the order of expansion small and provides a “good” collapse of the data into
two branches. Error bars in fitting parameters are determined by generating new values of (S;) and
(Rg) for each corresponding L and W by pulling from a Gaussian distribution with mean (S;) and
variance o (g y/v/N —1 where N is the number of samples of S, and this is likewise done for (R,).
This allows for a new calculation of ay. The result from this procedure yields We = 3.208 £ 0.007

and v = 0.97 = 0.06 in agreement with the above transfer matrix study.

Figure 5.2: Distribution of the quantity « (defined in Eq.5.14) for a finite value of A = 1/8 for
various system sizes and two disorder strengths. The behavior of the distributions as a function of
L motivates the application of the multifractal analysis in the Ref. [167] as when the transition is
approached (~ 3.2) the distributions become more scale invariant (not depending on system size).
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Figure 5.3: The multifractal exponent ag as a function of disorder strength W that exhibits scaling
behavior around the critical disorder strength W = 3.2. The inset shows the data collapse into after
performing the finite size scaling and plotting the scaling function for both branches of ap in Eq.
5.28. The critical parameters used are W, = 3.21, v = 1.09, y = 15.94. The orders of expansion
used for GO GW p, and n are ng = 2,n; = 2,m, = 1 and m,, = 0 respectively. The resulting
x% = 22. The fit was chosen by keeping the order of expansion low and taking the smallest x? for
which the data collapse close to the fitting function ay.

5.3.1 Discussion

It has been established by the work of Ref.[163] that the exponent v is much different than the
Anderson model. We confirm this with our multifractal analysis, establishing that this falls outside
the Wigner-Dyson (WD) symmetry class.

The motivation for studying models of disordered superconductors is the rich variety of unusual
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properties they can exibit such as an enhanced single particle energy gap that persists even after
superconductivity is destroyed [189]. Specific to this paper, the motivation for studying the mul-
tifractal character of the eigenstates is the proposal that multifractility can lead to enhancements
of the critical temperature at which superconductivity is destroyed (7;)[172, 171] which is observed
in thin superconducting films that are weakly disordered, namely Al[193][192] wich is still not well
understood. An explanation for the enhancement of 7T, due to multifractility is that multifractility
implies a broad distribution of exponents for the spatial correlations at the transition (given by
f(a)). This can be understood by the fact that there are regions of the system that have exponents
that will decay off more slowly than if there were only a single one, implying stronger correlations
among bogolon wavefunction [¢;]2. It is known that the regions of large |¢;|? for the lowest excita-
tions will correspond to regions of large local pairing amplitude A;[174] [175], and so A; will also
realize multifractal correlations. The result of the longer range correlations would lead to stronger
pairing correlations, resulting in an increase in 7T,. Given the present calculations are done with
a fixed distribution of A;, we cannot address quantitatively the relation between the T, and the
disorder.

Furthermore, it is known that the presence of bogolon excitations is what dissipates momentum
and disrupts the flow of super current, destroying superconductivity[191]. Therefore, a state in
which the excitations are localized would help to “protect” superconductivity at finite temperatures
and increase T.. As the localization effect would be very strong in a quasi-2D system, when a
superconducting film is made more thin the bogolons must become localized. The reason it is not
observed for all thin films (it is more typical for T, to decrease) is that if the disorder is strong this
effect will not be observed because strong disorder is already destroying the superconductivity as it
destroys the long range phase coherence[194].

Finally, we note that the multifractal analysis used here could be applied to models of conven-
tional s-wave superconductivity with disorder which has been well studied [183, 182, 184, 173, 185,
186, 187, 188]. This is important because the transfer matrix method cannot be used to locate
the localization transition if the pairing must be solved self-consistently as this creates a correla-

tion between layers [190]. However, as all that is needed is the wavefunction for this method, the
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multifractal finite size scaling analysis could be applied.

5.4 Conclusion

We conclude that the multifractal analysis that works for the Anderson model can also be used
for models of disordered superconductors to find the localization transition of the quasi particle
excitations. In addition, it also confirms that the thermal metal to thermal insulator is indeed in a
separate universality class from the Anderson model. [163]

Future work would include addressing the question of the relation between multifractility of
critical wavefunctions and the impact on 7, more directly by finding the transition temperature for
a model of a conventional s-wave superconductor by solving the pairing field A; self consistently
for a given attraction interaction strength U. [175] The multifractal spectrum f(a) could then be
compared as a function of interaction strength and 7. to quantitatively address the role played by
multifractal eigenstates and coupling strength on the critical temperature. Also, the question of
whether this method can detect the superconductor to insulator transition [183] would be of interest
as this model could not be studied with transfer matrix due to the self consistency requirement on

the pairing.
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