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Abstra
t

This thesis presents work on the development of new te
hniques to study the problem of lo
alization

in various models of disordered systems with the goal of being able to extend these model 
al
u-

lations to real materials where these various me
hanisms of disorder 
an all be present. I 
onsider

the Anderson Model with diagonal, o�-diagonal disorder, multiple bands and super
ondu
tivity is

in
luded at the level of a Bogoliubov - De Gennes mean �eld (super
ondu
tivity is 
onsidered by

adding the symmetries of the Bogoliubov - De Gennes Hamiltonian on top of the disordered latti
e

Hamiltonian). The lo
alization of ele
trons is studied with the transfer matrix method (TMM)

in order to 
ompare mobility edge predi
tions with that of the newly developed Typi
al Medium

Dynami
al Cluster Approximation (TMDCA) for systems with both o� diagonal disorder and mul-

tiple bands. It is veri�ed this method 
an a

urately predi
t the lo
alization transition in model

systems. A model of a disordered super
ondu
tor is 
onsidered with extended s-wave pairing, but in

this 
ase the ex
itations are no longer ele
trons but Bogoliubov quasiparti
les or bogolons. I study

the multifra
tal properties of the bogolon wavefun
tion and apply a multifra
tal analysis similar to

what has been applied to the Anderson model and verify the ability to 
apture the lo
alization of

the bogolon quasiparti
le ex
itations with 
omparison to the TMM.

vi



Chapter 1

Introdu
tion

1.1 Ordered Systems: Metals and Insulators

This thesis is work related to the problem of lo
alization whi
h results in the inhibition of transport

in materials. A system is said to undergo a lo
alization transition when the 
arriers of of some

physi
al quantity (
harge, energy et
.) have be
ome �stu
k� somewhere in the material and are

unable to 
ondu
t over large distan
es in the material. This thesis will be fo
used on the question

of lo
alization indu
ed by disorder or lo
alization in the Anderson sense. I will be fo
using on

disordered systems, but before addressing the problem of disorder, I will review some aspe
ts of the

theory of ordered systems.

The �rst aspe
t of ordered systems that will be ne
essary to understand is the so 
alled tight

binding model in order to understand the model Hamiltonians that will be introdu
ed. This is

reviewed below in Se
.1.1.1. Next, a me
hanism of lo
alization not related to disorder and known

as the Mott transition or Mott lo
alization (emphasis to expli
itly di�erentiate it from Anderson

lo
alization) will be reviewed in Se
.1.1.2. As I will be later dis
ussing disordered super
ondu
tors,

I will review ordered super
ondu
tors in Se
.1.1.3

1.1.1 Independent Ele
trons and the Tight Binding model

We �rst make the independent ele
tron approximation whi
h means we will be negle
ting any

e�e
ts of ele
tron-ele
tron intera
tion and only 
onsider a single ele
tron. As a single ele
tron

travels through a material, it will experien
e a potential V (x) that varies as a fun
tion of position

whi
h is produ
ed by the positive ions that make up the latti
e. We 
onsider an ordered system and

so this potential must have the same translational symmetry of the latti
e. Let l be a ve
tor su
h

1



that displa
ing every point in the latti
e by it leaves the latti
e invariant. The potential the ele
tron

experien
es must then obey V (x + l) = V (x). This has profound e�e
t on the time independent

S
hrödinger equation for the ele
tron

H(x) |ψ(x)〉 = E |ψ(x)〉 (1.1)

where H(x) is the Hamiltonian that in
ludes the potential (V (x)) and is an operator that a
ts on

the state ve
tor |ψ(x)〉 of the ele
tron and returns its energy E. The result of the translational

symmetry has the e�e
t on the wavefun
tion solutions, 
ausing them to take the form

ψk(x) = eik·xuk(x) (1.2)

i.e. the ele
trons form extended plane wave states multiplied by a fun
tion uk(x) that has the

periodi
ity of the latti
e and this is known as Blo
h's theorem. Any metalli
 or delo
alized state


an thus be expressed as a sum of Blo
h waves.

We now 
onsider the form of the Hamiltonian and assume the basis ve
tors to be states that are

lo
alized to some atomi
 site i and so |ψ(x)〉 = |i〉 whi
h is short hand for a ve
tor

|i〉 =

























0

.

.

.

1

.

.

.

0

























. (1.3)

This is known as the tight binding model and 
an be written in se
ond quantized notation as

H = −t
∑

<i,j>

(c†i cj + h.c.) (1.4)

where ci destroys an ele
tron on site i and c†i 
reates an ele
tron on site i, and so it des
ribes a

single ele
tron hopping on a latti
e with kineti
 energy t. The restri
tion on the sum denoted by

2



< i, j > is to nearest neighbors whi
h will always be followed in this thesis. This is summarized in

Fig.1.1

i i + 1

−t

e
−

Figure 1.1: Example of Eq. 1.4 on a one dimensional 
hain. The hopping from site i to i + 1 is

des
ribed by the term c†i+1ci as .

This 
an be diagonalized by Fourier transform to

H0 =
∑

k

ǫkc
†
kck (1.5)

where ǫk is known as the dispersion and gives the allowed ele
troni
 energies. For the 
ase of a linear


hain, ǫk = cos(k). The range of allowed energies is referred to as a band. The above dis
ussion was


onsidering only a single band, and for systems with multiple bands we introdu
e the band index n

to the dispersion ǫnk. If the Fermi energy (the largest available ele
troni
 energy and is the energy

of the ele
trons that parti
ipate in transport) falls within a gap between the allowed energies of the

bands n and n′ the material is said to be a band insulator. This is di�erent from an insulator due

to disorder and due to ele
tron-ele
tron intera
tion whi
h is des
ribed below in Se
.1.1.2.

3



1.1.2 Mott Transition

As already stated, this thesis will be fo
used on lo
alization from disorder, but it is important to note

that lo
alization 
an appear without disorder and the original argument was made by Mott[1℄. We

imagine bringing together an array of Hydrogen atoms to form a latti
e with some latti
e spa
ing a.

From the above dis
ussion of the tight binding model, we know that if the latti
e spa
ing be
omes

large enough then the wave fun
tions will no longer overlap, no bands will form and the ele
trons

will be lo
alized to their respe
tive Hydrogen atomi
 orbitals. This makes it seem as if, from the

perspe
tive of the tight binding model, that the transition from metal to insulator is 
ontinuous as

a fun
tion of latti
e spa
ing a (or alternatively the density of ionized ele
trons n), but it is well

known that this is not the 
ase (having been observed in transition metal oxides[3℄) and so there

must be some me
hanism of lo
alization that is not related to disorder.

The resolution is that it is a failure of the independent ele
tron approximation whi
h negle
ts

the ele
tron-ele
tron intera
tion[2℄. As an ele
tron leaves an ioni
 site, leaving a positive 
harge

whi
h will attra
t the ele
tron and possibly form a bound state. However, this potential is not just

the 
oulomb potential −e2/r, but the s
reened potential

−e
2

r
e−λr

(1.6)

due to the presen
e of the other ele
trons. For a given density of free ele
trons n, the s
reening

length takes the form

λ2 ≈ 4me2n1/3

~2
(1.7)

The ground state of Hydrogen has the well known radius

aH =
~
2

me2
(1.8)

and so if this length is longer than the s
reening length 1/λ then the ele
tron 
an not be bound and

4




an be free to wander. And so the 
ondition for lo
alization is

1

λ
< aH (1.9)

or

n−
1

3 < 4aH . (1.10)

Thus, there is a sudden transition from a metalli
 state to an insulating state for some density of

free 
harge 
arriers n whi
h is not due to disorder and purely from taking the intera
tion of ele
trons

into a

ount. This is referred to as Mott lo
alization and is a distin
tly di�erent me
hanism than

Anderson lo
alization whi
h will be the fo
us of this thesis. Therefore, any mention of lo
alization

in this thesis should be implied to be in the Anderson sense unless stated otherwise.

1.1.3 Super
ondu
tivity

The body of literature on the theory and experiments related to super
ondu
tivity is in
redibly

expansive, and so I will fo
us on the as
pe
ts ne
essary to understand the appli
ation to disordered

systems that I will address in Se
.1.3.3.

A

ording to Drude theory of ele
trons in metals, the resistivity of a metal at low temperature

should behave as [2℄

ρ = ρ0 + aT 2 + · · · (1.11)

and so it is expe
ted to 
ontinuously de
rease to some 
onstant ρ0 whi
h is given by the density

of impurities (whi
h is independent of T , being related to the intrinsi
 properties of the material).

However, it was then dis
overed in 1911 from experiments on Mer
ury that around a temperature

of 4◦K that the resistivity suddenly vanishes[9℄. Therefore, in some materials there is some 
riti
al

temperature Tc below whi
h the ele
trons in a material 
an transport without loss of energy. It

was not until 1959 that a mi
ros
opi
 explanation for super
ondu
tivity was provided[10℄ and the

essential parts of the theory are realizing there 
an be an attra
tive intera
tion between ele
trons

whi
h leads to the formation of so 
alled 
ooper pairs.

Although the 
oulomb intera
tion is mu
h weaker in a solid due to s
reening as mentioned in

5



Se
.1.1.2, it still remains repulsive. The attra
tive intera
tion 
omes from an ele
tron in a Blo
h state

ψnk(r) 
an ex
ite a phonon mode with some momentum ~q and losing ~q in turn. Additionally, a

se
ond ele
tron 
an then later gain that momentum and this leads to an e�e
tive retarded intera
tion

between ele
trons. To see that the intera
tion is attra
tive we imagine an ele
tron moving through

a metal and the resulting deformation of the latti
e as seen in Fig.1.2. From these arguments, we


an write down the term in the Hamiltonian that will 
apture this attra
tive intera
tion between

two ele
trons with wave ve
tors k1 and k2 that then intera
t and ele
tron k2 gives up momentum

~q whi
h is later absorbed by ele
tron k1 as

H1 = −U
∑

c†k1+q,σ1
c†k2−q,σ2

ck1,σ1
ck2,σ2

(1.12)

vF

Figure 1.2: As an ele
tron moves through a latti
e with Fermi velo
ity vF , it attra
ts the positive
large ions and this in turn leads to a build up of positive 
harge with respe
t to the rest of the

latti
e and will attra
t a se
ond ele
tron.

It was then Cooper[11℄ that showed this attra
tive intera
tion (no matter how weak) leads to

any two ele
trons above the Fermi surfa
e to form a bound state of zero total momentum: they

form a pair of (k, σ) and (−k, σ) where σ denotes the spin. The bound state is assumed to be a

singlet and so the two ele
trons have opposite spin, but it is worth noting that they 
an have the

same spin if the spin state formed is a triplet state.

6



And so within BCS theory, we 
an write the Hamiltonian for an ordered super
ondu
tor as

H = H0 +H1 (1.13)

where H0 is given by Eq. 1.5 and H1 from above Eq. 1.12. From the above dis
ussion of Cooper

pairs and spin, we drop all terms ex
ept terms that pair ele
trons su
h that k1 = −k2 and σ1 = −σ2
whi
h leads to the Hamiltonian

H =
∑

kσ

ǫkc
†
kσckσ − U

∑

kk′

c†k↑c
†
−k↓c−k′↓ck′↑ (1.14)

1.2 Experiments on Lo
alization and Disorder in Materials

In this se
tion, I review experiments on disordered systems to motivate the theoreti
al study of the

disorder indu
ed metal-insulator transition. An appre
iation of the importan
e of understanding

metal-insulator transitions 
ame very soon after the theory of band insulators (dis
ussed in Se
.1.1.1)

established a basi
 distin
tion between metals and insulators: whether the Fermi level falls in a gap

or not. It was then realized that insulators with a small band gap would lead to semi
ondu
ting

behavior, and 16 years later the transistor was invented whi
h had obvious pra
ti
al te
hnologi
al

impa
t. However, there was still mu
h that 
ompli
ates this simple pi
ture: already mentioned

in Se
.1.1.2 was the e�e
t of ele
tron-ele
tron intera
tion and the Mott transition. Experiments

determined that many transition-metal oxides with partially �lled d-ele
tron band 
ould still be

insulators[13℄ despite band theory predi
ting otherwise. In Se
.1.2.1-1.2.2, experiments on non-

super
ondu
ting systems will be reviewed and Se
.1.2.3 will review disordered super
ondu
tors.

1.2.1 Weak Lo
alization

The s
aling theory of lo
alization predi
ts that in two dimensions all metals should be
ome in-

sulating in the limit T → 0. This behavior was veri�ed in experiments of this Cu �lms at low

temperatures[18℄ (see Fig.1.3 for experiment and details) where the mean free path is of the order of

the �lm thi
kness. This e�e
t is attributed to the quantum me
hani
al interferen
e of ele
tron wave-

7



Figure 1.3: Resistivity (reported as resistan
e per square R�) as a fun
tion of Temperature in a

thin Cu �lm with thi
kness 119Åand resistivity 6.8× 10−6Ωcm. Film thi
kness was measured with

a quartz-
rystal thi
kness monitor. Film resistan
e was measured via four-terminal measurements

with a 
ondu
ting 
hannel 0.235mm wide and probe separation of 4mm. The samples were prepared

at a pressure of 10−6
Torr. The �lms were prepared with 99.999% Cu.

fun
tions or 
oherent ba
ks
attering, and this is referred to as the weak lo
alization e�e
t. Coherent

ba
k s
attering will be dis
ussed in detail in Se
.1.3.1, but it is a phase 
oheren
e that the ele
tron

a
quires in the ba
ks
attering dire
tion and this 
onstru
tive interferen
e in
reases the probability

of the ele
tron returning to any site: it is a lo
alizing e�e
t that enhan
es resistivity. Although

experiments showed the predi
ted T dependen
e, it was found that ele
tron-ele
tron intera
tions

will result in the same behavior. To resolve this dilemma, further experiments were performed

involving magneti
 �elds [19℄ demonstrating negative magnetoresistan
e su
h as Fig.1.4. The fa
t

that a negative magnetoresistan
e is demonstrated shows it is an e�e
t of 
oherent ba
ks
attering

as an external �eld disrupts the phase 
oheren
e and in
reases the lo
alization length. In 
ontrast,

8



the e�e
t of ele
tron-ele
tron intera
tions would show a positive magnetoresistan
e. As the e�e
ts

Figure 1.4: Negative magnetoresistan
e as a fun
tion of applied �eld for a thin Cu �lm with a

sheet resistan
e of R = 8.6Ω/�. Shown are for both transverse (H⊥) and parallel (H‖) �elds. The

in
rease in a transverse �eld has the expe
ted e�e
t of in
reasing the lo
alization length, lowering

the resistan
e. The e�e
t is not pronoun
ed for a parallel �eld, demonstrating it is not due to any

spin e�e
ts and is due to lo
alization. Figure is from [19℄.

of spin-orbit intera
tions would also disrupt the phase 
oheren
e, it was also experimentally 
on-

�rmed that this behavior was indeed due to some phase 
oheren
e in the sample by later studies

involving introdu
ing spin-orbit 
oupling[20℄ whi
h has the e�e
ts of disrupting the phase 
oheren
e

and �turning o�� the lo
alization[148℄.

9



1.2.2 Anderson Transition in Doped Semi
ondu
tors

The weak lo
alization e�e
t des
ribed above in Se
.1.2.1 is often refered to as the pre
ursor to

Anderson lo
alization: as disorder in
reases the ele
trons are more strongly ba
k s
attered and it

was hypothesized that for su�
iently strong disorder the 
ondu
tivity of a material 
an vanish,

indu
ing a metal-insulator transition. The most famous 
ase is phosphorous doped sili
on (Si:P)

were it was observed for un
ompensated samples[152℄ and is des
ribed as an Anderson transition.

Figure 1.5: Condu
tivity of un
ompensated and 
ompensated Si:P as a fun
tion of 
arrier 
on
en-

tration. Figure is from [152℄. Demonstrating the existen
e of a 
riti
al 
on
entration of impurities

nc at whi
h the 
ondu
tivity vanishes.

1.2.3 Super
ondu
tor to Insulator Transition

In Se
.1.1.3, I reviewed the basi
 theory of 
lean super
ondu
tors and disorder 
an have profound

impa
t on these properties su
h the 
riti
al temperature Tc whi
h will be a parti
ular fo
us. Based

on the BCS theory des
ribed in Se
.1.1.3, at least in the weak disorder limit, Tc is presumed to be

una�e
ted by disorder and this is famously known as Anderson's Theorem[22℄.

The question of how super
ondu
tivity is destroyed, just as how metalli
 behavior is destroyed,

10



is an a
tive area of resear
h. The 
ompli
ation from the systems dis
ussed above is that now there


an be three phases that 
an intera
t in 
ompli
ated and surprising ways: metal, insulator and

super
ondu
tor. For example, in Fig.1.6 is an example of two possible s
enarios.

Figure 1.6: Two examples of a phase diagram of a super
ondu
ting system where x is some tuning

parameter (�lm thi
kness, disorder or magneti
 �eld). The phases are metal (M), Insulator (I) and

Super
ondu
tor (S). The Insulator transition is denoted with a dashed line to indi
ate that the

insulating phase is only stri
tly de�ned for T = 0. Figure from [7℄.

An example of the �rst s
enario is provided in Fig.1.7 and also demonstrates the predi
ted

suppression of Tc from theory

An experiment on FeSe is provided in Fig.1.9. This is an example of a dire
t super
ondu
tor to

insulator transition without an intermediate metalli
 phase. In addition, it also demonstrates this

SIT 
an be invoked with a perpendi
ular magneti
 �eld: when the super
ondu
tivity is destroyed

in a �lm, s
aling theory predi
ts that it should be an insulator and that is what is observed.

It has been argued that the enhan
ement of super
ondu
tivity 
ould be due to the presen
e of

disorder[192℄ su
h as in experiments related to Al �lms su
h as shown in Fig.1.10. This demon-

strates that the exa
t me
hanism behind the in�uen
e of disorder and weak lo
alization and Tc in

super
ondu
tors is still not well understood: some materials 
an behave drasti
ally di�erent in the

presen
e of disorder. In addition, disordered thin Al �lms 
an also realize novel phases, su
h as a

disordered Fulde-Ferrell-Larkin-Ov
hinnikov (FFLO) phase[15℄ (see Fig.1.11).

11



Figure 1.7: Super
ondu
ting-Insulating transition in NbxSi1−x demonstrating an intermediate

metalli
 phase between insulating and super
ondu
ting phase (a). At low temperature and 19.3% Nb

doping, the material is super
ondu
ting (vanishing resistivity) and goes from �nite values (metalli
)

to exponentially in
reasing (insulating). Also notable is the suppression of Tc in a

ordan
e with

theory [8℄(b). Figure from [7℄

1.3 Theory of Disordered Systems

There are multiple ways that disorder 
an be present in materials. In Fig.1.12, an example of

substitutional disorder and o�-diagonal disorder is given. There exist other forms of disorder su
h as

stru
tural disorder whi
h deviates from the latti
e stru
ture (found in amorphous semi
ondu
tors),

but that is not a fo
us of this work. For a perfe
tly ordered latti
e, the S
hrödinger equation

admits plane wave solutions with the periodi
ity of the latti
e and the ele
tron energies form bands

of allowed and forbidden energies, as dis
ussed above. The details of the band stru
ture are given

by the symmetries of the latti
e (for example, the latti
e in Fig.1.12 would have the symmetries

of a square 2d latti
e). A material 
an be 
lassi�ed as a metal or insulator as to whether or not

there are available states for ele
trons that 
an parti
ipate in transport: the impa
t on 
ondu
tivity

(whether or not the material is a metal or insulator) is determined solely by translational symmetry

12



Figure 1.8: SIT in a thin �lm of FeSe. Shown is the sheet resistan
e as a fun
tion of T for various

�lm thi
kness: a → l is de
reasing in �lm thi
kness from 1300nm to 1nm. The inset shows the

sheet resistan
e a �lm of thi
kness 30nm (whi
h is 
lose to �lm f with 29nm) and ea
h 
urve shows

in
reasing perpendi
ular magneti
 �eld from 0T → 14T . Data from [4℄.

and any other symmetries of the latti
e.

There is another way the transport properties of a material 
an be impa
ted and that is by

spatial lo
alization of ele
trons. Rather than from band theory as des
ribed above, a material 
an

be an insulator if the ele
trons able to 
arry 
urrent be
ome physi
ally 
on�ned to a region of the

latti
e and one way this may happen is by disorder. For example, the red impurity sites in Fig.1.12

may be very large potential wells and so ele
trons will be more likely to be bound to them, and so the

strength of disorder 
ould be 
onsidered the 
on
entration of impurities whi
h is something that 
an

be tuned in the lab. Naturally, being able to 
ontrol the 
ondu
tivity of a material has signi�
ant

te
hnologi
al appli
ations and e�e
t of disorder on materials has been well studied experimentally.

13



Figure 1.9: SIT in thin Bi �lms that also demonstrates the suppression of Tc from in
reasing disorder.

[5℄

1.3.1 Anderson Lo
alization Theory

To be expli
it, we will be 
onsidering the Anderson model whi
h is given by the Hamiltonian

H = −t
∑

<i,j>

(c†i cj + h.c.) +
∑

i

Vic
†
i ci (1.15)

whi
h is just the tight binding Hamiltonian given in Eq. 1.4 with the addition of an onsite potential

Vi that pulled from some probability distribution P (Vi) whi
h models the addition of disorder.

The Anderson Transition is a metal-insulator transition in a non-intera
ting disordered ele
tron

gas at T=0. It was �rst hypothesized by Anderson[147℄ and is due to the 
oherent ba
k s
attering

of time reversed ele
troni
 states for strong disorder. The 
oherent ba
ks
attering e�e
t leads to

a de
rease in the 
lassi
al di�usion 
onstant and is most e�e
tive in systems with time reversal

invarian
e. To see this we 
onsider the forward s
attered path (solid bla
k) and the ba
k s
attered

14



Figure 1.10: Super
ondu
ting transition temperature Tc as a fun
tion of mono layer �lm thi
kness

in an epitaxial Al �lm. In this experiment, the thi
kest �lm of 30ML 
orresponds to a �lm thi
kness

of 72Å whi
h is mu
h less than the super
ondu
ting 
oheren
e length of ξ ∼ 300Å, making them

e�e
tively 2D super
ondu
tors. Inset shows that indeed as the �lm thi
kness is de
reased the

material is be
oming two dimensional and the e�e
ts of weak lo
alization are in
reasing. However,

as the Tc saturates but the sheet resistan
e 
ontinues to in
rease one 
an not purely attribute this

behavior to weak lo
alization. Figure from [193℄.

path (dotted path) in Fig.1.13). We 
onsider the return probability for an ele
tron starting from

position 0 to return in some time t

P0(t) =

∣

∣

∣

∣

∣

∑

i∈S

Ai(t)

∣

∣

∣

∣

∣

2

(1.16)

where Ai(t) is the probability amplitude that an ele
tron following an i'th s
attering path to return

in time t. The reason for the sum is the fa
t we must sum over all possible paths. We now

split all these paths into two subsets: on set will denote the forward s
attered paths (Sf
) and the

15



Figure 1.11: Tunneling 
ondu
tan
e G for a super
ondu
ting Al �lm at 100mK in a parallel mag-

neti
 �eld. The dis
repan
y with theory is attributed to a disordered FFLO phase whi
h is 
on-

tributing states in the predi
ted gap from BCS theory (a). Also shown is the appli
ation of a parallel

magneti
 �eld also deviates from predi
ted theory (b). Figure from [15℄.


orresponding time reversed ba
k s
attered paths (Sb
). we now have

P0(t) =

∣

∣

∣

∣

∣

∣

∑

i∈Sf

Ai(t) +
∑

i∈Sb

Ai(t)

∣

∣

∣

∣

∣

∣

2

(1.17)

=

∣

∣

∣

∣

∣

∣

∑

i∈Sf

Af
i (t) +Ab

i(t)

∣

∣

∣

∣

∣

∣

2

(1.18)

where Af
i (t) (A

b
i (t)) denotes probability amplitude for forward (ba
k) s
attering. The modulus is

expanded and the 
ross (interferen
e) terms 
an be separated out

P0(t) =
∑

i∈Sf

∣

∣

∣A
f
i (t) +Ab

i(t)
∣

∣

∣

2
+





Interferen
e terms for

∑

i 6=j∈Sf



 . (1.19)

From 
an
ellation of 
onstru
tive and destru
tive interferen
e, the interferen
e terms vanish and we

16
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Figure 1.12: A 
artoon of disorder realized on a latti
e. The left region of the latti
e is perfe
tly

ordered. One type of disorder is adding red �impurities� with di�erent onsite potentials in random

pla
es of the latti
e, so 
alled diagonal disorder. Another is 
hanging the 
oupling strength between

atoms denoted by the size of the re
tangles that des
ribes the ability of the ele
trons to hop around

the latti
e, so 
alled o�-diagonal disorder.

now invoke time reversal invarian
e so Af
i (t) = Ab

i (t) = Ai(t) and arrive at

P0(t) = 4
∑

i∈Sf

|Ai(t)|2 (1.20)

whi
h is twi
e the 
lassi
al return probability whi
h is obtained from Eq.1.16 by ignoring any 
ross

terms and so P0(t) =
∑

i∈S |Ai(t)|2 = 2
∑

i∈Sf |Ai(t)|2. This redu
tion of the 
lassi
al di�usion


onstant is refered to as the weak lo
alization e�e
t and is from the phase 
oheren
e of the paths f

and b as mentioned in Se
.1.2.1. For su�
iently strong disorder (whi
h in
reases the ba
k s
attering),

this weak lo
alization 
an lead to states that would be extended 
lassi
ally (as is energy E2 in

Fig.1.14) to be lo
alized in spa
e with a 
hara
teristi
 length s
ale λ 
alled the lo
alization length

(Fig.1.15).

To appre
iate the e�e
t of the time reversal invarian
e, we now 
onsider the addition of a

magneti
 �eld. A magneti
 �eld introdu
es a magneti
 �ux Φi to the probability amplitude

Af
i (t) = Ai(t)e

2πΦi
Φ0

(1.21)
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where Φ0 is a �ux quantum Φ0 = hc/e and the e�e
t of time reversal is

Ab
i (t) = Ai(t)e

−
2πΦi
Φ0 . (1.22)

Therefore, the return probability in the presen
e of a magneti
 �eld (analog of Eq.1.20) is

P0(t) = 4
∑

i∈Sf

|Ai(t)|2 
os2
(

2πΦi

Φ0

)

(1.23)

whi
h is less than Eq.1.20 and demonstrates the negative magnetoresistan
e e�e
t.

Figure 1.13: Coheren
e between a forward s
attered path and its time reversed path. Figure from

[20℄.

1.3.2 S
aling Theory

The basi
 
on
ept of s
aling is that the results are independent of any lo
al details of the phys-

i
al model. The transition only depends on symmetries of the latti
e and dimensionality it will

not depend on the form of the distribution P (Vi), strength of 
ouplings tij et
. that appear in

18



x

E1

E2

V(x)

Figure 1.14: A potential in spa
e 
reated by some realization of disordered potentials. A state with

E1 would be lo
alized in the region of the lowest potential well (but 
ould possibly tunnel as well).

A state with E2 would always be extended 
lassi
ally, but quantum interferen
e e�e
ts 
an allow

this state to be lo
alized.

the Hamiltonian Eq. 1.15. This behavior is en
apsulated by the so 
alled renormalization group

originally proposed by Kenneth Wilson. Any theory is parametrized by some set {gi} of 
oupling


onstants and the basi
 idea of the renormalization group is to 
onsider how these 
oupling 
on-

stants will 
hange as a fun
tion of 
oarse graining or equivalently 
hanges in length s
ale (system

size) of the problem. For the 
ase of only a single (for simpli
ity) 
oupling 
onstant g we write the

β fun
tion as

β(g) =
dg

d log b
(1.24)

where b 
orresponds to some length s
ale of the problem: either the system size or some 
oarse

graining that res
ales the system by a length s
ale b. The β-fun
tion is de�ned in this way as we

are interested in how the system behaves in relation to a 
hange in length s
ale and its e�e
t on

the relevant 
oupling 
onstants. Any point where β(g) = 0 we 
all a �xed point and it 
orresponds

to a point where the system is s
ale invariant (any 
oarse graining of the system has no e�e
t) and

thus experien
es a transition. This 
an also be interpreted from the perspe
tive of fra
tals whi
h

have a self similar stru
ture, meaning the fra
tal will have the same stru
ture under any dilation of

the stru
ture.

We now apply the above to the Anderson model. We 
onsider a d dimensional metal with linear
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x0

ψ ∼ e

|x−x0|
λ

Figure 1.15: A lo
alized state of position x0 that de
ays exponentially with a 
hara
teristi
 lo
al-

ization length λ.

size L that has 
ondu
tan
e G(L) and then with the β-fun
tion 
onsidered by[47℄

β(g) =
d log g

s logL
=
L

g

dg

dL
(1.25)

where g is the dimensionless 
ondu
tan
e de�ned as g = ~G(L)/e2. This fun
tion is used as it

was dis
overed that the only single relevant 
oupling 
onstant for the Anderson transition is the


ondu
tivity[79℄. From Ohm's law, we know for a metal that G(L) ∝ Ld−2
and an insulator with

have a small 
ondu
tan
e G(L) ∝ e−L/ξ
. This leads to the following asymptoti
 behavior

β(g) ∼















d− 2 metalli
 (large g)

log g insulating (small g)

(1.26)

and thus the renormalization �ows in Fig.1.16. It is worth noting that although the above expression

might imply a �xed point in the limit g → ∞ for the 
ase d = 2, but a more 
areful treatment of

the perturbation series leads to the higher order 
orre
tion

β(g) = d− 2− a

g
+ · · · (1.27)

and so the next term beyond order d−2 is negative and so, although this leads to rather spe
ial be-
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havior that is referred to as marginal for d = 2, there is no lo
alization transition in two dimensions.

The above s
aling arguments are in
redibly powerful, implying that even the smallest amount of

disorder will always lead to lo
alization in dimensions less than three.

d=3

d=2

d=1

β(g)

gc
g

Figure 1.16: Renormalization �ows for Anderson transition. The existen
e of the �xed point g
 in

only d = 3 shows that the metal insulator transition exists only in three dimensions and all states

are exponentially lo
alized in d = 1 and d = 2.

1.3.3 Model for Dirty Super
ondu
tors

As overviewed in Se
.1.2.3, disordered super
ondu
tors have re
eived mu
h experimental attention

and display a wide range of interesting behaviors. Spe
i�
ally mentioned was the enhan
ement of

the the 
riti
al temperature of super
ondu
tivity with disorder and one proposal is that this is due

to multifra
tility of the wavefun
tion[171℄ and other theoreti
al studies[43℄ have proposed it. This
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motivates the simulation of models of disordered super
ondu
tors and the multifra
tal study that

will appear in Chapter 4.

The analog of the BCS Hamiltonian for disordered systems (without translational invarian
e

and so k is no longer a good quantum number) is

H =
∑

<ij>σ

(c†jσciσ + h.c.)− U
∑

i

ni↑ni↓ +
∑

i

µiniσ (1.28)

where niσ = c†i ci and U is the strength of the attra
tive Hubbard intera
tion and µi = µ+ vi is an

on-site 
hemi
al potential where vi is the disorder potential. We 
onsider only box disorder. We

introdu
e a MF pairing �eld for ea
h site to de
ouple the intera
tion in the paring 
hannel as

−Uc†i↑c
†
i↓ci↓ci↑ → ∆ic

†
i↑c

†
i↓ + h.c. (1.29)

The Hamiltonian in Eq. 1.28 
an then be put into 2N × 2N matrix form and 
an be solved by

diagonalization and determining the �elds ∆i self 
onsistently. This leads to the Bogoliubov - De

Gennes (bdg) Hamiltonian

Hbdg =







t̂ij − µ+ Vi ∆̂i

∆̂i −t̂ij + µ− Vi







where ∆̂i is a diagonal sub-matrix. Diagonalization of the bdg Hamiltonian leads to the bogolon

wavefun
tion with amplitudes |ψi|2 = |ui|2 + |vi|2 for a site i. Alternatively, the pairing matrix ∆̂i

need not be determined self-
onsistently or be diagonal in whi
h 
ase it may take a more exoti


form whi
h will be 
onsidered in Chapter 4.

1.4 Thesis Stru
ture

Chapter 2 will review the numeri
al methods that are implemented to study disordered systems.

Chapter 3 will des
ribe the work I did on o�-diagonal disordered systems whi
h validated mobility

edge predi
tions of Typi
al Medium Dynami
al Cluster Approximation (TMDCA) against TMM
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al
ulations. Similiarly, Chapter 4 will present the work I did on the validation the multiband

disordered systems, demonstrating the ability to extend TMDCA to real materials (that exibit both

o�-diagonal disorder and multiple bands in pra
ti
e). Finally, Chapter 5 will show how established

methods of multifra
tal analysis 
an be applied to study lo
alization in a model of a disordered

gapless super
ondu
tor.
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Chapter 2

Numeri
al Methods for Disordered

Systems

In this 
hapter, I give an overview of the various numeri
al methods of studying disordered systems.

2.1 Transfer Matrix Method

The S
hrödinger equation Hψ = Eψ for the Hamiltonian in Eq.1.15 is written in an iterative

fashion[150℄

tn,n+1ψn+1 = (E −Hn)ψn − tn,n−1ψn−1 (2.1)

where ψn denotes the wavefun
tion for sli
e n of the quasi-1D system of width M and length L

(see Fig.2.1) and tn,m is a matrix that des
ribes the 
oupling between layers n and m. This 
an be

written in terms of the transfer matrix

Tn =







t−1
n,n+1(E −Hn) −t−1

n,n+1tn,n−1

1 0






(2.2)

as







ψn+1

ψn






= Tn







ψn

ψn−1






. (2.3)

It is well known[98℄ how the matrix produ
t

τN =

N
∏

i

Ti. (2.4)
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ψ

Figure 2.1: The wavefun
tion ψn for sli
e n a quasi-1D system with width M and length L.

is related to the de
ay of the wavefun
tion for a lo
alized state

ψ ∼ exp(−γ|x− x0|). (2.5)

And so the algorithm pro
eeds as follows:

1) Generate Transfer Matrix

2) Multiply

3) Orthogonalize every 2-5 steps with a QR de
omposition

4) A

umulate the Matrix norms bn whi
h are the diagonal elements of the R matrix

5) Update the lo
alization length γn = γn−1 + log bn

The slowest de
aying γn is then the γ in Eq.2.5 or the inverse of the lo
alization length λ. The

Kramer-Ma
Kinnon s
aling parameter[149℄ 
an then be 
al
ulated as Λ = λ/M . A lo
alized state

has a well de�ned λ for a parti
ular disorder strength, therefore as M is in
reased Λ will de
rease

for lo
alized states. For an extended state, the lo
alization length will be larger than M and so Λ
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must in
rease as a fun
tion ofM . At the 
riti
al disorder strength Wc, Λ will be s
ale invariant and

this is how the transition 
an be found. In addition, the 
orrelation length ξ exponent ν de�ned by

the assumption the the 
orrelation length de
ays as

ξ ∼ 1

|W −Wc|ν
(2.6)


an be determined from the s
aling ansatz

Λ = f(M/ξ) (2.7)

i.e. all the data points should fall on the 
urve f . This is a

omplished by Taylor expanding f and

least squares �tting is used to �t Wc, ν and the Taylor 
oe�
ients.

2.2 Quantum Cluster Methods

2.2.1 Dynami
al Cluster Approximation (DCA)

All mean �eld treatments of disordered systems fail to 
apture Anderson lo
alization. For instan
e,

while the Coherent Potential Approximation (CPA)[32℄ 
an provide a

urate results for densities of

states, it does not 
apture any mobility edge behavior. Even systemati
 
orre
tions to the CPA by

the Dynami
al Cluster Approximation (DCA)[72℄[73℄ fail to 
apture lo
alization[74℄. This 
an be

understood from Fig.2.2

2.2.2 Typi
al Medium Dynami
al Cluster Approximation (TMDCA)

We saw above that a theory relying on de�ning the e�e
tive medium via linear averages will fail to

des
ribe lo
alization. Therefore, one must 
onsider the typi
al value of the hybridization as this 
an

be
ome zero (and hen
e lo
alize the ele
tron) even if there are some sites with large hybridization. As

the typi
al hybridization is determined by the typi
al density of states, it is reasonable to assume

the typi
al density of states will fun
tion as the order parameter for the lo
alization transition.

This is the argument for typi
al medium theory[100℄ where the bath is not determined by average
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Typical Medium

Average Medium

Figure 2.2: Considering the average hybridization of an ele
tron on a site with the neighboring sites,

a linear average will always result in a �nite hybridization and so the ele
tron 
an always es
ape to

other latti
e sites whi
h will produ
e a metalli
 solution.

quantities, but rather typi
al quantities whi
h are approximated by geometri
 averages. This is also

motivated by 
onsidering the distribution of the lo
al density of states as in Fig.2.4. Unfortunately,

using the true typi
al value 
ould only be used if the distribution were known a priori whi
h a

simulation would not have a

ess to. However, be
ause the distribution is log-normal the geometri


average of the density of states provides a good approximation to the typi
al value or

ρg(ω) = e〈log ρ〉 ≈ ρtyp(ω). (2.8)

The next step would then to develop, just like with the extension of the CPA, a Typi
al Medium

Dynami
al Cluster Approximation (TMDCA) where the usual Dynami
al Cluster Approximation

(DCA) embedding is repla
ed by a typi
al one (approximated by the geometri
 mean) as seen in

Fig.2.3.
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Figure 2.3: Pi
ture of DCA embedding for a 
luster of 16 sites with linear 
luster length Lc.

Ele
trons on 
luster hybridize with the e�e
tive medium. For TMDCA the typi
al hybridization is

used instead for reasons des
ribed in the text. Figure is taken from [12℄.

2.3 Multifra
tal Analysis

We want to analyze the multifra
tal properties of some lo
al variable xi. In the 
ase of the Anderson

Model, it is the wave fun
tion amplitude xi = |ψi|2. To do so, we 
oarse grain this variable by a

box length s
ale ℓ < L and de�ne the 
oarse grained quantity

µb(ℓ) =
∑

i∈b(ℓ)

xi (2.9)

and the asso
iated singularity strength

α̃ =
log µ

log λ
(2.10)

were λ represents the 
oarse graining λ = ℓ/L and the tilde denotes that it is de�ned for a �xed value

of λ (in the limit of in�nite system size or λ → 0, α̃ be
omes the �true� multifra
tal exponent α).

This 
omes from the assumption that the �mass� in di�erent boxes grows with di�erent exponents

i.e. µb(ℓ) ∼ (ℓ/L)α where ea
h α 
orresponds to a fra
tal dimension f(α) that gives how the number
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Figure 2.4: Distribution of the density of states for small γ = 3t disorder and large γ = 18t disorder.
In the small disorder regime, the distribution is gaussian and largely independent of system size.

Past the transition, in the lo
alized regime the distribution is log-normal and it 
an be seen that as

the system size is in
reased that the typi
al value is approa
hing zero. This motivates the usage of

the typi
al value as an order parameter for the transition. Figure is taken from [31℄.

of boxes for that α s
ales, N(α) ∼ (ℓ/L)−f(α)
. See Fig. 2.5.

In general, the q-th moments of α are

α̃q =
〈∑k µ

q
k log µk〉

〈
∑

k µ
q
k〉 log λ

(2.11)

and the pro
edure to perform the �nite size s
aling of these moments and �t the 
riti
al parameters

will be des
ribed in Se
.5.2.3 .

Figure 2.5: S
hemati
 pi
ture of α− f(α) pairs. A system of 
hara
teristi
 length L is divided into

boxes of length ℓ. The largest fra
tal dimension would 
orrespond to A as it 
overs the most boxes.

Figure taken form [41℄
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It has been established that at the 
riti
al point the eigenstates of the 3D Anderson model

exhibit multifra
tality [158℄. Although interesting, the multifra
tal analysis depends on knowing the


riti
al point a-priori as the multifra
tal exponents are de�ned only at the 
riti
al point. However,

it has been shown that a very similar analysis 
an be made on the distributions of these multifra
tal

exponents for �nite λ(see Fig.2.6) whi
h allows for a �nite size analysis[167℄ similar to that des
ribed

in Se
.5.2.2 for Λ. This provides another way of determining the 
riti
al disorder strength, but with

additional information of the spatial variation of the wavefun
tion.

Figure 2.6: Evolution of the distribution of wave fun
tion intensities for Anderson Model for λ =
ℓ/L = 0.1. Here α = log µk/ log λ where µk =

∑

i∈k |ψi|2 where the sum denotes a sum over points

i in box k. The 
rossing of the typi
al value in the W − α plane that indi
ates the 
riti
al disorder

strength and shows this quantity 
an be used to determine the 
riti
al parameters. Figure taken

from [167℄
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Chapter 3

TMDCA Study of O�-diagonal Disorder

Previous work on TMDCA had been restri
ted to purely diagonal or lo
al disorder[105℄. The work

in this 
hapter

1

will show how even non-lo
al disorder 
orrelations 
an be 
orre
tly a

ounted for

within the TMDCA by 
omparisons with the Kernel Polynomial Method for the density of states

and the TMM for the traje
tory of the mobility edge. My 
ontribution to this result was primarily

the TMM data in Fig. 3.7 and Fig. 3.8 whi
h shows the evolution of the mobility edge. I developed

a large s
ale perfe
tly parallel 
ode over energy and disorder strength and 
al
ulated the Kramer-

Ma
Kinnon s
aling parameter for the system lengths and widths des
ribed in the 
aptions (see

Se
.5.2.2 for des
ription of TMM). I found the 
riti
al point by �nite size s
aling analysis of the

Kramer-Ma
Kinnon s
aling parameter as des
ribed in Se
5.2.2.

1

This 
hapter in
ludes previously published work published by Ameri
an Physi
al So
iety and appears in [37℄ and

is reprodu
ed here under term 3 of Author's rights of the APS Transfer of Copyright Agreement to �The right to use

all or part of the Arti
le, in
luding the APS-prepared version without revision or modi�
ation . . . for edu
ational or

resear
h purposes.�
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3.1 Introdu
tion

Disorder whi
h is inevitably present in most materials 
an dramati
ally a�e
t their properties [101,

102℄. It 
an lead to 
hanges in their ele
troni
 stru
ture and transport. One of the most interesting

e�e
ts of disorder is the spatial 
on�nement of 
harge 
arriers due to 
oherent ba
ks
attering o�

random impurities whi
h is known as Anderson lo
alization [103, 47℄. Despite progress over the

last de
ades, the subje
t of Anderson lo
alization remains an a
tive area of resear
h. The la
k of

quantitative analyti
al results has meant that numeri
al investigations [104, 49, 50, 51, 52, 53, 54℄

have provided a signi�
ant role in understanding the Anderson transition [55, 98, 57℄.

The simplest model used to study the e�e
ts of disorder in materials is a single band tight

binding model with a random on-site disorder potential [58℄. Su
h a model is justi�ed when the

disorder is introdu
ed by substitutional impurities, as in a binary alloy. The substitution of host

atoms by impurities only leads to 
hanges of the lo
al potential on the substitutional site and, on

average, does not a�e
t the neighbors [58, 59℄. In this situation, the disorder appears only in the

diagonal terms of the Hamiltonian and hen
e is referred to as diagonal disorder. However, when

the bandwidth of the dopant is very di�erent from the one of the pure host, su
h substitution

results not only in the 
hange of the lo
al potential but may also a�e
t the neighboring sites [58℄.

Consequently, a simple model to 
apture su
h e�e
ts should in
lude both random lo
al potentials

and random hopping amplitudes whi
h depend on the o

upan
y of the sites. The dependen
e of the

hopping amplitude on the disorder 
on�guration is usually referred to as o�-diagonal disorder. It is

apparent that a proper theoreti
al des
ription of realisti
 disordered materials [58, 60, 62, 61, 63℄

(for e.g. many substitutionally disordered alloys and disordered ferromagnets) requires the in
lusion

of both diagonal and o�-diagonal randomness. While the role of the diagonal disorder has been

extensively studied over the last several de
ades [64℄, the e�e
t of o�-diagonal disorder is not well

studied, although the e�e
t is expe
ted to be di�erent. It has been shown [65, 61℄ that o�-diagonal

randomness 
an lead to the delo
alization of the states near the band-
enter. Also re
ently, there

has been a growing interest in the e�e
t of the o�-diagonal randomness in graphene systems, where

studies show that di�erent types of disorder 
an indu
e di�erent lo
alization behavior. [67, 68, 66℄

The 
oherent potential approximation (CPA) is a widely used single site mean �eld theory for
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systems with stri
tly diagonal disorder [59℄. Bla
kman, Esterling and Berk (BEB) [69℄ have extended

the CPA to systems with o�-diagonal disorder. However, being single-site approximations, the CPA

and the BEB theories negle
t all disorder indu
ed non-lo
al 
orrelations.

There have been a number of attempts to develop systemati
 nonlo
al extensions to the CPA.

These in
lude 
luster extensions su
h as the mole
ular 
oherent potential approximation (MCPA) [70,

71℄, the dynami
al 
luster approximation (DCA) [72, 73, 74℄, et
. Self-
onsistent mean �eld studies

of o�-diagonal disorder have been 
ondu
ted by a number of authors [75, 76, 77, 71℄. However,

all these studies have been performed at the lo
al single-site BEB level. To in
lude the e�e
ts

of o�-diagonal disorder, Gonis [70℄ extended the Mole
ular CPA, whi
h uses a self-
onsistently

embedded �nite size 
luster to 
apture non-lo
al 
orre
tions to the CPA. However, he 
riti
ized

the MCPA for violating translational invarian
e and other 
riti
al properties of a valid quantum


luster theory [58, 105℄. In order to take into a

ount su
h non-lo
al e�e
ts on o�-diagonal disorder

models while maintaining translational invarian
e, we extend the BEB formalism using the DCA

s
heme [72, 73, 74℄.

While the CPA, DCA, and BEB have shown to be su

essful self-
onsistent mean-�eld theo-

ries for the quantitative des
ription of the density of states and ele
troni
 stru
ture of disordered

systems, they 
an not properly address the physi
s of Anderson lo
alization. These mean �eld ap-

proa
hes des
ribe the e�e
tive medium using the average density of states whi
h is not 
riti
al at the

transition [79, 105, 55, 80℄. Thus, theories whi
h rely on su
h averaged quantities will fail to properly


hara
terize Anderson lo
alization. As noted by Anderson, the probability distribution of the lo
al

density of states must be 
onsidered, fo
using on the most probable or the typi
al value [103, 81℄.

Close to the Anderson transition, the distribution is found to have very long tails 
hara
teristi
 of

a log-normal distribution[53, 82, 106℄. In fa
t, the distribution is log-normal up to ten orders of

magnitude [84℄ and so the typi
al value [85, 107, 106, 87℄ is the geometri
al mean. Based on this

idea, Dobrosavljevi¢ et. al. [100℄ formulated a single site typi
al medium theory (TMT) for the

Anderson lo
alization. This approximation gives a qualitative des
ription of the Anderson lo
al-

ization in three dimensions. However, it fails to properly des
ribe the traje
tory of the mobility

edge (whi
h separates the extended and lo
alized states) as it negle
ts non-lo
al 
orre
tions and
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so does not in
lude the e�e
ts of 
oherent ba
ks
attering [89℄. It also underestimates 
onsiderably

the 
riti
al strength of the disorder at whi
h the lo
alization happens. In addition, TMT is only

formulated for diagonal disorder.

Re
ently, by employing the DCA within the typi
al medium analysis, we developed a system-

ati
 Typi
al Medium Dynami
al Cluster Approximation (TMDCA) formalism. [105℄ The TMDCA

provides an a

urate des
ription of the Anderson lo
alization transition for modest 
luster sizes in

three-dimensional models with diagonal disorder while re
overing the TMT for a one-site 
luster. In

this work, we generalize our re
ently proposed TMDCA s
heme to address the question of ele
tron

lo
alization in systems with both diagonal and o�-diagonal disorder.

In this paper, to go beyond the lo
al single-site CPA-like level of the BEB formalism, we em-

ploy the DCA [72, 73, 74℄ s
heme whi
h systemati
ally in
orporates non-lo
al spatial 
orrelation

e�e
ts. We �rst present an extension of the DCA for systems with both diagonal and o�-diagonal

disorder. Comparing our single site and �nite 
luster results, we demonstrate the e�e
t of non-lo
al


orrelations on the density of states and the self-energy.

Up to now, there exist no typi
al medium formalism for systems with o�-diagonal disorder. So

far, the typi
al medium analysis has been applied to systems with only diagonal disorder [100, 105℄.

In this paper, we develop a typi
al medium dynami
al 
luster approximation formalism 
apable of


hara
terizing the lo
alization transition in systems with both diagonal and o�-diagonal disorder.

We perform a systemati
 study of the e�e
ts of non-lo
al 
orrelations and o�-diagonal randomness

on the density of states and ele
tron lo
alization. By 
omparing single site and �nite 
luster results

for the typi
al density of states and the extra
ted mobility edges, we demonstrate the ne
essity

of in
luding the non-lo
al multi-sites e�e
ts for proper and quantitative 
hara
terization of the

lo
alization transition. The results of our 
al
ulations are 
ompared with the ones obtained with

other numeri
al methods for �nite size latti
es, in
luding exa
t diagonalization, kernel polynomial,

and transfer matrix methods.

The paper is organized as follows: following the Introdu
tion in Se
. 5.1 we present the model

and des
ribe the details of the formalism we used in Se
. 4.2. In Se
. 3.3.1 we present our results

of the average density of states for both diagonal and o�-diagonal disorder 
ases. In Se
. 3.3.1
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we 
onsider the e�e
ts of diagonal and o�-diagonal disorder on the typi
al density of states, from

whi
h we extra
t the mobility edges and 
onstru
t a 
omplete phase diagram in the disorder-energy

parameter spa
e. We summarize and dis
uss future dire
tions in Se
. 5.4.

3.2 Formalism

3.2.1 Dynami
al 
luster approximation for o�-diagonal disorder

The simplest model widely used to study disordered systems is the single band tight binding Hamil-

tonian

H = −
∑

<i,j>

tij(c
†
i cj + h.c.) +

∑

i

vini, (3.1)

where disorder is modeled by a lo
al potential vi whi
h is a random variable with probability

distribution fun
tion P (vi). We will fo
us on the binary disorder 
ase, where some host A atoms

are substituted with B impurities with a probability distribution fun
tion of the form

P (vi) = cAδ(vi − VA) + cBδ(vi − VB), (3.2)

where cB = 1− cA. For the diagonal disorder 
ase when the bandwidth of the pure host A is about

the same that the bandwidth of the B system, su
h substitution results only in a 
hange of the

lo
al potential vi at the repla
ed site i. This 
orresponds to 
hanges in the diagonal elements of

the Hamiltonian. In this 
ase it is assumed that substitution of impurity atoms on average has no

e�e
t on hopping amplitudes to the neighboring atoms.

For systems with o�-diagonal disorder, the randomness is introdu
ed not only lo
ally in the

random diagonal potential vi, but also through the hopping amplitudes. To model this, BEB [69℄
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introdu
ed the disorder 
on�guration dependent hopping amplitude of ele
trons tij as

tij = tAA
ij , if i ∈ A, j ∈ A

tBB
ij , if i ∈ B, j ∈ B

tAB
ij , if i ∈ A, j ∈ B

tBA
ij , if i ∈ B, j ∈ A, (3.3)

where tij depends on the type of ion o

upying sites i and j. For o�-diagonal disorder BEB [69℄

showed the s
alar CPA equation be
omes a 2 × 2 matrix equation, with 
orresponding AA, AB,

BA, and BB matrix elements. In momentum spa
e, if there is only near-neighbor hopping between

all ions, the bare dispersion 
an be written as (the under-bar denotes matri
es)

εk =









tAA tAB

tBA tBB









εk (3.4)

where in three dimensions εk = −2t(cos(kx) + cos(ky) + cos(kz)) with 4t = 1 whi
h sets our unit of

energy, and tAA
, tBB

, tAB
, and tBA

are unitless prefa
tors.

The BEB approa
h is lo
al by 
onstru
tion, hen
e all non-lo
al disorder indu
ed 
orrelations are

negle
ted. [69℄ In order to take into a

ount non-lo
al physi
s, we extend the BEB formalism to a

�nite 
luster using the DCA s
heme. Here in the following, we present the algorithm and details of

our non-lo
al DCA extension of the BEB formalism for o�-diagonal disorder. Just as in the DCA

s
heme, [74℄ the �rst Brillouin zone is divided into Nc = LD
(D is the dimension and L is the linear


luster size) 
oarse-grained 
ells with 
enters K surrounded by points k̃ within the 
ell so that an

arbitrary k = K + k̃.

For a given DCA K-dependent e�e
tive medium hybridization ∆(K,ω) matrix we use an un-

derline to denote a 2× 2 matrix in momentum spa
e)
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∆(K,ω) =







∆AA(K,ω) ∆AB(K,ω)

∆BA(K,ω) ∆BB(K,ω)






(3.5)

we solve the 
luster problem, usually in real spa
e. For this we sto
hasti
ally sample random


on�gurations of the disorder potential V and 
al
ulate the 
orresponding 
luster Green's fun
tion

by inverting Nc ×Nc matrix, i.e.,

Gij =
(

ωI− t′ −∆′ − V
)−1

ij
(3.6)

where V is a diagonal matrix for the disorder site potential. The primes stand for the 
on�guration

dependent Fourier transform (FT) 
omponents of the hybridization and hopping, respe
tively. I.e.,

∆′
ij =















































FT (∆AA(K,ω)), if i ∈ A, j ∈ A

FT (∆BB(K,ω)), if i ∈ B, j ∈ B

FT (∆AB(K,ω)), if i ∈ A, j ∈ B

FT (∆BA(K,ω)), if i ∈ B, j ∈ A

(3.7a)

and

t
′
ij =















































FT (ǫAA(K)), if i ∈ A, j ∈ A

FT (ǫBB(K)), if i ∈ B, j ∈ B

FT (ǫAB(K)), if i ∈ A, j ∈ B

FT (ǫBA(K)), if i ∈ B, j ∈ A

(3.7b)

with

ǫ(K) =









tAA tAB

tBA tBB









Nc

N

∑

k̃ εk, (3.7
)
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where∆′
ij and t

′
ij areNc×Nc real-spa
e matri
es (whereNc is the 
luster size), and e.g., FT (∆

AA(K,ω)) =

∑

K ∆AA(K,ω)eiK(ri−rj)
. The hopping 
an be long ranged, but sin
e they are 
oarse-grained quan-

tities are e�e
tively limited to the 
luster. Physi
ally, ∆′
ij represents the hybridization between sites

i and j whi
h is 
on�guration dependent. For example, the AA 
omponent of the hybridization


orresponds to both A spe
ies o

upying site i and j, while the AB 
omponent means that site i

is o

upied by an A atom and site j by a B atom. The interpretation of the hopping matrix is the

same as for the hybridization fun
tion.

In the next step, we perform averaging over the disorder 〈(...)〉 and in doing so we re-expand

the Green fun
tion (Eq. 3.6) into a 2Nc × 2Nc matrix

Gc(ω)ij =









〈

GAA
c (ω)

〉

ij

〈

GAB
c (ω)

〉

ij

〈

GBA
c (ω)

〉

ij

〈

GBB
c (ω)

〉

ij









. (3.8)

This may be done by assigning the 
omponents a

ording to the o

upan
y of the sites i and j

(GAA
c )ij = (Gc)ij if i ∈ A, j ∈ A

(GBB
c )ij = (Gc)ij if i ∈ B, j ∈ B

(GAB
c )ij = (Gc)ij if i ∈ A, j ∈ B

(GBA
c )ij = (Gc)ij if i ∈ B, j ∈ A (3.9)

with the other 
omponents being zero. Be
ause only one of the four matrix elements is �nite for

ea
h disorder 
on�guration (ea
h site 
an be o

upied by either A or B atom), only the sum of the

elements in Eq. 3.8 is normalized as a 
onventional Green fun
tion.

Having formed the disorder average 
luster Green fun
tion matrix, we then Fourier transform

ea
h 
omponent to K-spa
e (whi
h also imposes translational symmetry) and 
onstru
t the K-

dependent disorder averaged 
luster Green fun
tion matrix in momentum spa
e
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Gc(K,ω) =









GAA
c (K,ω) GAB

c (K,ω)

GBA
c (K,ω) GBB

c (K,ω)









. (3.10)

On
e the 
luster problem is solved, we 
al
ulate the 
oarse-grained latti
e Green fun
tion matrix

as

G(K,ω) =







G
AA

(K,ω) G
AB

(K,ω)

G
BA

(K,ω) G
BB

(K,ω)







=
Nc

N

∑

k̃

(

Gc(K,ω)
−1 +∆(K,ω)

− εk + ǫ(K)
)−1

, (3.11)

here we use an overbar to denote the 
luster 
oarse-grained quantities. It is important to note that

ea
h 
omponent of the Green fun
tion matrix above does not have the normalization of a 
onven-

tional, i.e., s
alar, Green fun
tion. Only the sum of the matrix 
omponents has the 
onventional

normalization, so that G(K,ω) ∼ 1/ω, with the total 
oarse grained latti
e Green fun
tion being

obtained as

G(K,ω) = G
AA

(K,ω) +G
BB

(K,ω)

+ G
AB

(K,ω) +G
BA

(K,ω). (3.12)

Next, to 
onstru
t the new DCA e�e
tive medium ∆(K,ω), we impose the BEB DCA (2 × 2)

matrix self-
onsisten
y 
ondition, requiring the disorder averaged 
luster and the 
oarse-grained

latti
e Green fun
tions to be equal

Gc(K,ω) = G(K,ω) . (3.13)
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This is equivalent to a system of three 
oupled s
alar equations

G
AA

(K,ω) = GAA
c (K,ω), (3.14a)

G
BB

(K,ω) = GBB
c (K,ω), and (3.14b)

G
AB

(K,ω) = GAB
c (K,ω). (3.14
)

Note G
BA

(K,ω) = G
AB

(K,ω) automati
ally if tAB = tBA
.

We then 
lose our self-
onsisten
y loop by updating the 
orresponding hybridization fun
tions

for ea
h 
omponents as

∆AA
n (K,ω) = ∆AA

o (K,ω)

+ ξ
(

G−1
c (K,ω)AA −G

−1
(K,ω)AA

)

∆BB
n (K,ω) = ∆BB

o (K,ω)

+ ξ
(

G−1
c (K,ω)BB −G

−1
(K,ω)BB

)

∆AB
n (K,ω) = ∆AB

o (K,ω)

+ ξ
(

G−1
c (K,ω)AB −G

−1
(K,ω)AB

)

∆BA
n (K,ω) = ∆AB

n (K,ω) (3.15)

where `o' and `n' denote old and new respe
tively, and ξ is a linear mixing parameter 0 < ξ < 1.

We then iterate the above steps until 
onvergen
e is rea
hed.

There are two limiting 
ases of the above formalism whi
h we 
arefully 
he
ked numeri
ally. In

the limit of Nc = 1, we should re
over the original BEB result. Here the 
luster Green fun
tion

loses its K dependen
e, so that







GAA
c (ω) 0

0 GBB
c (ω)






=

1

N

∑

k

(

Gc(ω)
−1 +∆(ω)− ε(k)

)−1

(3.16)
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whi
h is the BEB self-
onsisten
y 
ondition. Here we used that ǫ(K) = 0 for Nc = 1. The se
ond

limiting 
ase is when there is only diagonal disorder so that tAA = tBB = tAB = 1. In this 
ase the

above formalism redu
es to the original DCA s
heme. We have veri�ed numeri
ally both limits.

3.2.2 Typi
al medium theory with o�-diagonal disorder

To address the issue of ele
tron lo
alization, we re
ently developed the typi
al medium dynami
al


luster approximation (TMDCA) and applied it to the three-dimensional Anderson model. [105℄ In

Ref. [105℄ we 
on�rmed that the typi
al density of states vanishes for states whi
h are lo
alized and

it is �nite for extended states. In the following we generalize our TMDCA analysis to systems with

o�-diagonal disorder to address the question of lo
alization and the mobility edge in su
h models.

First, we would like to emphasize that the 
ru
ial di�eren
e between TMDCA [105℄ and the

standard DCA [74℄ pro
edure is the way the disorder averaged 
luster Green fun
tion is 
al
ulated.

In the TMDCA analysis instead of using the algebrai
ally averaged 
luster Green fun
tion in the

self-
onsisten
y loop, we 
al
ulate the typi
al (geometri
ally) averaged 
luster density of states

ρctyp(K,ω) = e
1

Nc

∑

i〈ln ρii(ω)〉

〈

− 1
π ImGc(K,ω)

1
Nc

∑

i(− 1
π ImGii(ω))

〉

, (3.17)

with the geometri
 averaging being performed over the lo
al density of states ρii(ω) = − 1
π ImGii(w)

only. Using this ρctyp(K,ω) the 
luster averaged typi
al Green fun
tion is 
onstru
ted via a Hilbert

transform

Gc(K,ω) =

∫

dω′ρ
c
typ(K,ω

′)

ω − ω′
. (3.18)

In the presen
e of o�-diagonal disorder, following BEB, the typi
al density of states be
omes a

2× 2 matrix, whi
h we de�ne as

ρctyp(K,ω) = exp

(

1

Nc

∑Nc

i=1 〈ln ρii(ω)〉
)

×























〈 − 1

π
ImGAA

c (K,ω)

1
Nc

∑Nc

i=1(−
1

π
ImGii(ω))

〉 〈

− 1
π ImGAB

c (K,ω)
1
Nc

∑Nc

i=1(− 1
π ImGii(ω))

〉

〈 − 1

π
ImGBA

c (K,w)

1
Nc

∑Nc

i=1(−
1

π
ImGii(ω))

〉 〈

− 1
π ImGBB

c (K,ω)
1
Nc

∑Nc

i=1(− 1
π ImGii(ω))

〉























.(3.19)
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Here the s
alar prefa
tor depi
ts the lo
al typi
al (geometri
ally averaged) density of states, while

the matrix elements are linearly averaged over the disorder. Also noti
e that the 
luster Green

fun
tion (Gc)ij and its 
omponents GAA
c , GBB

c and GAB
c are de�ned in the same way as in Eqs.

(3.6-3.9).

In the next step, we 
onstru
t the 
luster average Green fun
tion Gc(K,ω) by performing Hilbert

transform for ea
h 
omponent

Gc(K,ω) =











∫

dω′ ρ
AA
typ(K,ω′)

ω−ω′

∫

dω′ ρ
AB
typ (K,ω′)

ω−ω′

∫

dω′ ρ
BA
typ (K,ω′)

ω−ω′

∫

dω′ ρ
BB
typ (K,ω′)

ω−ω′











. (3.20)

On
e the disorder averaged 
luster Green fun
tion Gc(K,ω) is obtained from Eq. 3.20, the self-


onsisten
y steps are the same as in the pro
edure for the o�-diagonal disorder DCA des
ribed in

the previous se
tion: we 
al
ulate the 
oarse-grained latti
e Green fun
tion using Eq. 3.11 whi
h is

then used to update the hybridization fun
tion with the e�e
tive medium via Eq. 3.15.

The above set of equations provide us with the generalization of the TMDCA s
heme for both

diagonal and o�-diagonal disorder whi
h we test numeri
ally in the following se
tions. Also noti
e

that for Nc = 1 with only diagonal disorder (tAA = tBB = tAB = tBA
) the above pro
edure redu
es

to the lo
al TMT s
heme. In this 
ase, the diagonal elements of the matrix in Eq. 3.19 will 
ontribute

cA and cB , respe
tively, with the o�-diagonal elements being zero (for Nc = 1 the o�-diagonal terms

vanish be
ause a given site 
an only be either A or B). Hen
e, the typi
al density redu
es to the

lo
al s
alar prefa
tor only, whi
h has exa
tly the same form as in the lo
al TMT s
heme.

Another limit of the proposed ansatz for the typi
al density of states of Eq. 3.19 is obtained

at small disorder. In this 
ase, the TMDCA redu
es to the DCA for o�-diagonal disorder, as

the geometri
ally averaged lo
al prefa
tor term numeri
ally 
an
els with the 
ontribution from the

linearly averaged lo
al term in the denominator of Eq. 3.19.

Finally, we also want to mention that the developed 
luster TMDCA ful�lls all the essential

requirements expe
ted of a �su

essful� 
luster theory [58℄ in
luding 
ausality and translational

invarian
e.
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We note that in our formalism, instead of doing the very expensive enumeration of the disorder


on�gurations whi
h s
ales as 2

Nc
, we instead do a sto
hasti
 sampling of the disorder 
on�gurations

whi
h greatly redu
es the 
omputational 
ost enabling us to study larger systems. Larger system

sizes need fewer realizations. Sin
e the 
onvergen
e 
riterion is a
hieved when the TDOS(ω = 0)

does not �u
tuate anymore with iteration number, within the error bars, our 
omputational 
ost

does not even s
ale as Nc. For a typi
al Nc = 64 size 
luster, about 500 disorder realizations are

needed to get reliable data and this number de
reases with in
reasing 
luster size.

3.3 Results and Dis
ussion

To illustrate the generalized DCA and TMDCA algorithms des
ribed above, we present our results

for the e�e
ts of diagonal and o�-diagonal disorder in a generalized Anderson Hamiltonian (Eq. 3.1)

for a three dimensional system with binary disorder distribution (VA = −VB) and random hopping

(tAA 6= tBB
, tAB = tBA

) with other parameters as spe
i�ed. The results are presented and dis
ussed

in Subse
tions 3.3.1 and 3.3.1.

3.3.1 DCA results for diagonal and o�-diagonal disorder

The e�e
t of o�-diagonal disorder on the average density of states (DOS) 
al
ulated within the

DCA for 
ubi
 
luster (Nc = 43) is presented in Fig. 3.1. The DOS we present in our results is a

lo
al density of states 
al
ulated as

DOS(ω) = − 1

πNc

Nc
∑

K=1

(

ImG
AA

(K,ω) + ImG
AB

(K,ω)

+ ImG
BA

(K,ω) + ImG
BB

(K,ω)
)

. (3.21)

Noti
e that our DCA pro
edure for Nc = 1 redu
e to the original CPA-like BEB. For a �xed


on
entration cA = 0.5, we examine the e�e
ts of o�-diagonal disorder at two �xed values of

the diagonal disorder potential VA = 0.4 (below the split-band limit) and VA = 0.9 (above the

split-band limit). The o�-diagonal randomness is modeled by 
hanges in the hopping amplitudes

tAA, tBB
with tAB = 0.5(tAA + tBB). For a diagonal disorder 
ase (top panel of Fig. 3.1) with
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Figure 3.1: (Color online). The e�e
t of o�-diagonal disorder on the average density of states


al
ulated in the DCA s
heme with Nc = 43. Our DCA results for Nc = 1 
orresponds to a single

site CPA BEB s
heme. We 
onsider two values of lo
al disorder potential below (VA = 0.4) and
above (VA = 0.9) the band-split limit, and examine the e�e
t of 
hanging the o�-diagonal hopping

strength (whi
h amounts to a 
hange in the non-lo
al potential). We start with the diagonal disorder


ase tAA = tBB = tAB = 1.0 and then 
onsider two o�-diagonal disorder 
ases: tAA = 1.5, tBB = 0.5
and tAA = 1.8, tBB = 0.2, respe
tively. We �x tAB = tBA = 0.5(tAA + tBB) and cA = 0.5. For

this parameter range of o�-diagonal disorder, we do not observe a signi�
ant di�eren
e between the

CPA (Nc = 1) and the DCA (Nc = 43) results indi
ating that non-lo
al inter-site 
orrelations are

weak.

tAA = tBB = tAB = tBA
we have two subbands 
ontributing equally to the total DOS. While as

shown in the middle and bottom panels, the 
hange in the strength of the o�-diagonal disorder

leads to dramati
 
hanges in the DOS. An in
rease of the AA hoping results in the broadening of

the AA subband with the development of a resonan
e peak at the BB subband. For this parameter

range both the DCA (Nc = 64 ) and CPA (Nc = 1) provide about the same results indi
ating that

disorder-indu
ed non-lo
al 
orrelations are negligible.

In Fig. 3.2 we show the average density of states 
al
ulated for �xed o�-diagonal-disorder param-

eters and di�erent diagonal disorder potentials VA. We again 
ompare the lo
al CPA (Nc = 1) and
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the DCA (Nc = 43) results. To ben
hmark our o�-diagonal extension of the DCA, we also 
ompare
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Figure 3.2: (Color online). The e�e
t on the average density of states of an in
reasing diagonal

disorder potential VA for a �xed o�-diagonal disorder 
al
ulated with our modi�ed DCA s
heme

with tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB), and cA = 0.5. Results are obtained for Nc = 1
(
orresponding to the CPA) and Nc = 43 
luster sizes. We also 
ompare our DCA average DOS

with the DOS obtained using exa
t diagonalization (ED) for a 123 
ubi
 latti
e 
luster with 48
disorder realizations. For ED results, we used a η = 0.01 broadening in frequen
y.

our results with those obtained from exa
t diagonalization. For small VA, there is no di�eren
e

between the CPA (Nc = 1) and the DCA (Nc = 43) results. As lo
al potential VA is in
reased,

noti
eable di�eren
es start to develop. We 
an see that for larger VA a gap starts to open and is

more dramati
 in the CPA s
heme. While in the DCA (Nc = 43) this gap is partially �lled due to

the in
orporation of non-lo
al inter-site 
orrelations whi
h are missing in the CPA. Furthermore,

the DOS obtained from the DCA pro
edure provides �ner stru
tures whi
h are in basi
 agreement

with the DOS 
al
ulated with exa
t diagonalization for a 
luster of size 12×12×12. The agreement

we get with ED results is a good indi
ation of the the a

ura
y of our extension of the DCA to

o�-diagonal disorder. The additional stru
tures observed in the DOS for Nc > 1, whi
h are absent

in the CPA, are believed to be related to the lo
al order in the environment of ea
h site. [58, 74℄
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Noti
e that while the DCA a

ounts for non-lo
al ba
ks
attering e�e
ts whi
h lead to the Anderson

lo
alization, the average lo
al DOS does not 
apture the transition, as it is not an order parameter

for the Anderson lo
alization.

To further illustrate the important e�e
t of the non-lo
al 
ontributions from the 
luster, we

also show in Fig. 3.3 the imaginary part of the self-energy ImΣ(K,w) for Nc = 1 (dash line) and

for (Nc = 43) (solid lines) at di�erent values of 
luster momenta K = (0, 0, 0), (π, 0, 0), (π, π, 0)

and (π/2, π/2, π/2) for small VA = 0.1 (top) and larger VA = 0.6 (bottom) disorder potentials. At
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Figure 3.3: (Color online). The imaginary part of the self-energy vs frequen
y ω for Nc = 1 (red

dash-line) and Nc = 43 (solid lines) at various K momenta points: (0, 0, 0), (π, 0, 0), (π, π, 0),
and (π/2, π/2, π/2), for VA = 0.1 (top) and VA = 0.6 (bottom) diagonal disorder potential with

tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB), and cA = 0.5. For small disorder VA = 0.1, the
self-energy for Nc = 1 is essentially the same as that of the various K points of the Nc = 43 
luster,
indi
ating that non-lo
al e�e
ts are negligible for su
h small disorder. For a larger value of the

disorder VA = 0.6, the single site and the �nite 
luster data di�er signi�
antly, whi
h illustrates that

at larger disorder, the momentum dependen
e of the self-energy in
reases and be
omes important.

small disorder VA = 0.1, there is a little momentum dependen
e for the Nc = 43 self-energy and

di�erent K momenta 
urves pra
ti
ally fall on top of ea
h other. The results for the Nc = 1 and

Nc = 43 are essentially the same, whi
h indi
ates that for small disorder the CPA still presents a

good approximation for the self-energy. On the hand, for larger disorder VA = 0.6 the Nc = 1 and
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Nc = 43 results di�er signi�
antly, with the Nc = 43 self-energy having a noti
eable momentum

dependen
e, indi
ating that non-lo
al 
orrelations be
ome more pronoun
ed for larger disorder

values.

3.3.2 Typi
al medium �nite 
luster analysis of diagonal and o�-diagonal

disorder

Typi
al medium analysis of diagonal disorder

To 
hara
terize the Anderson lo
alization transition, we now explore the typi
al density of states

(TDOS) 
al
ulated within our extension of the TMDCA presented in Se
. 3.2.2. In the typi
al

medium analysis, the TDOS serves as the order parameter for the Anderson lo
alization transition.

In parti
ular, the TDOS is �nite for extended states and zero for states whi
h are lo
alized.

First we 
onsider the behavior of the TDOS and 
ompare it with the average DOS for diagonal

disorder. In Fig. 3.4 we show our results for Nc = 1 (left panel) and Nc > 1 (right panel). To

demonstrate a systemati
 
onvergen
e of the TDOS with in
reasing 
luster size Nc, we present our

data of the TDOS for Nc = 1, 43, 63. Noti
e that Nc = 1 results for TDOS 
orrespond to the single-

site TMT of Dobrosavljevi¢ et al., [100℄ and for average DOS they 
orrespond to the ordinary CPA.

As expe
ted, [100, 105℄ for small disorder (VA = 0.15) there is not mu
h di�eren
e between the DCA

(Nc = 43) and the TMDCA (Nc = 43) or between the CPA and TMT for Nc = 1 results. However,

there are subtle di�eren
es between the results for �nite Nc = 43 and single site Nc = 1 
lusters due

to in
orporation of spatial 
orrelations. As the disorder strength VA is in
reased (VA = 0.6), the

typi
al density of states (TDOS) be
omes smaller than the average DOS and is broader for the larger


luster. Moreover, the �nite 
luster introdu
e features in the DOS whi
h are missing in the lo
al

Nc = 1 data. Regions where the TDOS is zero while the average DOS is �nite indi
ate Anderson

lo
alized states, separated by the mobility edge (marked by arrows). For Nc > 1 these lo
alized

regions are wider whi
h indi
ates that the lo
alization edge is driven to higher frequen
ies. This

is a 
onsequen
e of the tenden
y of non-lo
al 
orre
tions to suppress lo
alization. For even larger

disorder VA = 1, a gap opens in both the TDOS and the average DOS leading to the formation

of four lo
alization edges, but again the region of extended states is larger for the �nite 
luster,
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Figure 3.4: (Color online). Diagonal disorder 
ase: The average density of states (dash-dotted

line) 
al
ulated within the DCA for Nc = 1 (left panel) and Nc = 43 (right panel) and the typi
al

density of states shown as shaded regions for Nc = 1 (left panel) and Nc = 43 (right panel)

and dash-line for Nc = 63 (right panel) are 
al
ulated within the TMDCA for diagonal disorder

tAA = tBB = tAB = tBA = 1, cA = 0.5, and various values of the lo
al potential VA = −VB . The

TDOS is presented for several 
luster sizes Nc = 1, Nc = 43 and Nc = 63 in order to show its

systemati
 
onvergen
e with Nc. The average DOS 
onverges for 
luster sizes beyond Nc = 43. The
TDOS is �nite for the extended states and zero when the states are lo
alized. The mobility edges

extra
ted from the vanishing of the TDOS are marked by the arrows (we show arrows for Nc = 43

only). The extended states region with a �nite TDOS is always narrower for Nc = 1 as 
ompared

to the results of Nc > 1 
lusters, indi
ating that a single site TMT tends to overemphasize the

lo
alized states.
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indi
ating that lo
al TMT (Nc = 1) tends to underestimate the extended states region.

To further ben
hmark our results for the diagonal disorder, we show in Fig. 3.5 a 
omparison

of the average and typi
al DOS 
al
ulated with the DCA and the TMDCA (Nc = 43) as 
ompared

with the kernel polynomial method (KPM). [109, 108, 92, 93℄ In the KPM analysis, instead of
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Figure 3.5: (Color online). Diagonal disorder 
ase. Comparison of the average and typi
al DOS 
al-


ulated with the DCA/TMDCA and Kernel polynomial methods (KPM) [108℄ for diagonal disorder

with tAA = tBB = tAB = tBA = 1 at various values of lo
al potential VA and 
on
entrations cA for


luster size Nc = 63. The kernel polynomial method used 2048 moments on a 483 
ubi
 latti
e, and
200 independent realizations generated with 32 sites randomly sampled from ea
h realization.

diagonalizing the Hamiltonian dire
tly, the lo
al DOS is expressed in term of an in�nite series of

Chebyshev polynomials. In pra
ti
e, the trun
ated series leads to Gibbs os
illations. The KPM

damps these os
illations by a modi�
ation of the expansion 
oe�
ients. Following previous studies

on the Anderson model, the Ja
kson kernel is used. [109℄ The details of the implementation are

well dis
ussed in Ref. [109℄. The parameters used in the KPM 
al
ulations are listed in the 
aption

of Fig. 3.5. As it is evident from the plots, our TMDCA results reprodu
ed those from the KPM

ni
ely showing that our formalism o�ers a systemati
 way of studying the Anderson lo
alization

transition in binary alloy systems. Su
h good agreement indi
ates a su

essful ben
hmarking of the
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TMDCA method. [105℄

Typi
al medium analysis of o�-diagonal disorder

Next, we explore the e�e
ts of the o�-diagonal disorder. In Fig. 3.6, we 
ompare the typi
al TDOS

from the TMDCA and average DOS from the DCA for several values of the diagonal disorder

strength VA at �xed o�-diagonal disorder amplitudes tAA = 1.5, tBB = 0.5, tAB = 1.0. To show the

e�e
t of a �nite 
luster with respe
t to in
orporation of non-lo
al 
orrelations, we present data for

the single site Nc = 1 and �nite 
lusters Nc = 43 and 53. The TMT (Nc = 1) again underestimates

the extended states regime by having a narrower TDOS as 
ompared to the Nc > 1. We also see

that the mobility edge de�ned by the vanishing of the TDOS (marked by arrows for Nc = 43)

systemati
ally 
onverges with in
reasing 
luster size Nc. For small disorder VA, both the DOS and

the TDOS are pra
ti
ally the same. However, as VA in
reases, signi�
ant di�eren
es start to emerge.

In
reasing VA leads to the gradual opening of the gap whi
h is more pronoun
ed in the Nc = 1 
ase

and for smaller disorder VA = 0.6 is partially �lled for the Nc > 1 
lusters. As 
ompared to the

diagonal disorder 
ase (
f. Fig. 3.4), the average DOS and TDOS be
ome asymmetri
 with respe
t

to zero frequen
y due to the o�-diagonal randomness.

In Fig. 3.7 and Fig. 3.8 we present the disorder-energy phase diagram for both diagonal (Fig. 3.7)

and o�-diagonal (Fig. 3.8) disorder 
al
ulated using the single TMT (Nc = 1) and the non-lo
al

TMDCA (Nc > 1). To 
he
k the a

ura
y of the mobility edge traje
tories extra
ted from our

typi
al medium analysis, we 
ompare our data with the results obtained with the transfer matrix

method (TMM). The TMM [149, 150, 98℄ is a well established numeri
al method for 
al
ulating

the 
orrelation length and determining the mobility edge of the disorder Anderson model. Its

main advantage is in its 
apability of 
apturing the e�e
ts from rather large system sizes. Thus,

TMM provides good data for a �nite size s
aling analysis to 
apture the 
riti
al points and the


orresponding exponents. In our 
al
ulations, the transmission of states down a three-dimensional

bar of widthsM = [6, 12] and length L = 2×104M are studied by adding the produ
ts of the transfer

matri
es with random initial states. The multipli
ation of transfer matri
es is numeri
ally unstable.

To avoid this instability, we orthogonalized the transfer matrix produ
t every �ve multipli
ations
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Figure 3.6: (Color online). O�-diagonal disorder 
ase. The left panel displays results for Nc = 1
and the right panel for Nc > 1. The average density of states (dash-dotted line) and the typi
al

density of states (shaded regions) for Nc = 1 (left panel), Nc = 43 (right panel) and blue dash

lines for Nc = 53 (left panel) for various values of the lo
al potential VA with o�-diagonal disorder

parameters: tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA+ tBB), and cA = 0.5. As in Fig. 3.4, we show the

TDOS for several 
luster sizes Nc = 1, 43, and = 63 in order to show its systemati
 
onvergen
e with

in
reasing 
luster size Nc. The average DOS 
onverges for 
luster sizes beyond Nc = 43. The TDOS
is �nite for the extended states and zero for lo
alized states. The mobility edges are extra
ted as

des
ribed in Fig. 3.4.

using a Lapa
k QR de
omposition. [50℄ The lo
alization edge is obtained by 
al
ulating the Kramer-

Ma
Kinnon s
aling parameter ΛM . [149℄ This is a dimensionless quantity whi
h should be invariant

at the 
riti
al point, that is, ΛM s
ales as a 
onstant for M → ∞. [150℄ Thus, we determine the

boundary of the lo
alization transition vis-à-vis the 
riti
al disorder strength [96℄ by performing a

linear �t to ΛM v. M data: lo
alized states will have a negative slope and visa versa for extended
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Figure 3.7: (Color online). Disorder-energy phase diagram for the diagonal disorder 
ase. Parame-

ters used are: tAA = tBB = tAB = 1.0, and cA = 0.5. We 
ompare the mobility edges obtained from

the TMT Nc = 1 (bla
k dash line), TMDCA with Nc = 43 (green dot-dashed line) and Nc = 63 (red
solid line), and the transfer-matrix method (TMM) (blue dotted line). The single site Nc = 1 results
strongly underestimate the extended states region when 
ompare with TMDCA results for Nc > 1.
The mobility edges obtained from the �nite 
luster TMDCA (Nc > 1) show good agreement with

those obtained from the TMM, in 
ontrast to single site TMT. See the text for parameters and

details of the TMM implementation.

states. The transfer-matrix method �nite size e�e
ts are larger for weak disorder where the states

de
ay slowly with distan
e and so have large values of ΛM that 
arry a large varian
e in the data.

Noti
e that the CPA and the DCA do not su�er su
h �nite size e�e
t limitation for small disorder

and are in fa
t exa
t in this limit.

The mobility edges shown in Fig. 3.7 and Fig. 3.8 were extra
ted from the TDOS, with bound-

aries being de�ned by zero TDOS. As 
an be seen in Fig. 3.7 and Fig. 3.8, while the single-site TMT

does not 
hange mu
h under the e�e
t of o�-diagonal disorder, the TMDCA results are signi�
antly

modi�ed. The bands for a larger 
luster be
ome highly asymmetri
 with signi�
ant widening of

the A subband. The lo
al Nc = 1 boundaries are narrower than those obtained for Nc > 1 in-

di
ating that the TMT strongly underestimates the extended states regime in both diagonal and

o�-diagonal disorder. On the other hand, 
omparing the mobility edge boundaries for Nc > 1 with

those obtained using TMM, we �nd very good agreement. This again 
on�rms the validity of our
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Figure 3.8: (Color online). Disorder-energy phase diagram for the o�-diagonal disorder 
ase. Pa-

rameters used are tAA = 1.5, tBB = 0.5, tAB = 1.0, and cA = 0.5. The mobility edges obtained from

the TMT Nc = 1 (bla
k dashed line), TMDCA Nc = 33 (green dot-dashed line), Nc = 43 (purple

double-dot-dashed line) and Nc = 53 (red solid line), and the transfer-matrix method (TMM) (blue

dotted line). The single site Nc = 1 strongly underestimates the extended states region espe
ially

for higher values of VA. The mobility edges obtained from the �nite 
luster TMDCA (Nc > 1) 
on-
verge gradually with in
reasing Nc and show good agreement with those obtained from the TMM,

in 
ontrast to single site TMT. See the text for parameters and details of the TMM implementation.

generalized TMDCA.

Next, we 
onsider the e�e
t of o�-diagonal disorder for various 
on
entrations cA. In Fig. 3.9,

we show the typi
al and average DOS for several values of cA 
al
ulated with the TMDCA and

the DCA, respe
tively. As expe
ted, when cA → 0, we obtain a pure B subband 
ontribution (the

top panel). Upon gradual in
rease of the cA 
on
entration, the number of states in the A sub-band

grows until B-subband be
omes a minority for cA > 0.5 and 
ompletely disappears at cA → 1 (the

bottom panel). Again, we see that a �nite 
luster Nc = 53 provides a more a

urate des
ription

(with �nite details in DOS and broader regions of extended states in TDOS) in both average DOS

and TDOS. The asso
iated 
ontour plots for the evolution of the TDOS in the 
on
entration range

0 ≤ cA ≤ 1 are shown in Fig. 3.10.

The essen
e of these plots is to show the overall evolution of the typi
al DOS for a �xed lo
al
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Figure 3.9: (Color online). The average DOS (dot-dashed lines) and the typi
al DOS (shaded

regions) for various values of the 
on
entration cA with o�-diagonal disorder parameters tAA = 1.1,
tBB = 0.9 and tAB = 1.0, at �xed lo
al potential VA = 1.0 for Nc = 1 (left panel) and Nc = 53

(right panel).

potential and o�-diagonal disorder parameters as a fun
tion of the 
on
entration cA. In the limit

of cA → 0, only the B-subband 
entered around ω = −VA survives, and for cA → 1, only the

A-subband 
entered around ω = VA is present. For intermediate 
on
entrations, we 
learly have


ontributions to the total typi
al density of states from both spe
ies, as expe
ted.

Finally, we would like to 
omment on the possible further development of the presented s
heme.

After 
ertain generalizations our 
urrent implementation of the typi
al medium dynami
al 
luster

approximation for o�-diagonal disorder 
an serve as the natural formalism for multiband (multior-
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Figure 3.10: (Color online). The evolution of the typi
al density of states for Nc = 1 (left panel)

and Nc = 53 (right panel) with the 
hange in the 
on
entration 0 < cA < 1 at �xed diagonal and

o�-diagonal disorder parameters: tAA = 1.1, tBB = 0.9, tAB = 1.0 and VA = 1.0

bital) systems. [60℄ Su
h an extension is 
ru
ial for studying disorder and lo
alization e�e
ts in real

materials. Further development towards this dire
tion will be the subje
t of future publi
ations.

3.4 Con
lusion

A proper theoreti
al des
ription of disordered materials requires the in
lusion of both diagonal and

o�-diagonal randomness. In this paper, we have extended the BEB single site CPA s
heme to

a �nite 
luster DCA that in
orporates the e�e
t of non-lo
al disorder. Applying the generalized

DCA s
heme to a single band tight binding Hamiltonian with 
on�guration-dependent hopping

amplitudes, we have 
onsidered the e�e
ts of non-lo
al disorder and the interplay of diagonal and

o�-diagonal disorder on the average density of states. By 
omparing our results with those from

exa
t numeri
al methods, we have established the a

ura
y of our method. We found that non-lo
al

multi-site e�e
ts lead to the development of �nite stru
tures in the density of states and the partial

�lling of the gap at larger disorder. Utilizing the self-energy, we show as a fun
tion of in
reasing

disorder strengths, the importan
e of a �nite 
luster in 
hara
terizing the Anderson lo
alization

transition. For small disorder the single site and �nite 
luster results are essentially the same,

indi
ating that the CPA is a good approximation in the small disorder regime. However, for a

larger disorder we observe a signi�
ant momentum dependen
e in the self-energy resulting from the

non-lo
al 
orrelations whi
h are in
orporated in the DCA.
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Ele
tron lo
alization for o�-diagonal disorder models had not been studied from the the typi
al

medium perspe
tive. The typi
al medium formalism did not exist for su
h disordered systems. In

this paper, we generalized the TMDCA to systems with both diagonal and o�-diagonal disorder.

Our developed method 
an quantitatively and qualitatively be used to study the e�e
ts of disorder

on the ele
tron lo
alization, e�e
tively for systems with both diagonal and o�-diagonal randomness.

We demonstrate that within the TMDCA, the typi
al DOS vanishes for lo
alized states, and is

�nite for states whi
h are extended. Employing the typi
al DOS as an order parameter for Anderson

lo
alization, we have 
onstru
ted the disorder-energy phase diagram for systems with both diagonal

and o�-diagonal disorder. We have also demonstrated the inability of the single site CPA and the

TMT methods to a

urately 
apture the lo
alization and disorder e�e
ts in both the average and the

typi
al DOS, respe
tively. We note that the single site TMT while being able to 
apture the behavior

for the diagonal and o�-diagonal disorder, strongly underestimates the extended regions. Also the

TMT is less sensitive to the o�-diagonal randomness with the mobility edges being only slightly

modi�ed as 
ompared to the diagonal 
ase. In 
ontrast, the �nite 
luster TMDCA results are able

to 
apture the 
onsiderable 
hanges, with a pronoun
ed asymmetry of the extended state region, in

the disorder-energy phase diagram under the e�e
t of the o�-diagonal disorder as 
ompared to the

diagonal 
ase. Most importantly, the TMDCA results are found to be in a quantitative agreement

with exa
t numeri
al results. Comparing our results with kernel polynomial, exa
t diagonalization,

and transfer-matrix methods we �nd a remarkably good agreement with our extended DCA and

TMDCA. To the best of our knowledge, this is the �rst numeri
ally a

urate investigation of the

Anderson lo
alization in systems with o�-diagonal disorder within the framework of the typi
al

medium analysis. We believe that the extended TMDCA s
heme presents a powerful tool for

treating both diagonal and o�-diagonal disorder on equal footing, and 
an be easily extended to

study lo
alization in multi-band systems.
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Chapter 4

TMDCA Study of Multi-band Systems

Prior to this work, TMDCA 
al
ulations had been restri
ed to model 
al
ulations that involve only

a single band. As real materials exhibit multiple bands, it is important to establish that TMDCA


an 
apture the Anderson transition in a multiband system whi
h is the result that will be presented

in this 
hapter

1

. The density of states and predi
tions of the mobility edge are 
ompared with

the kernel polynomial method and the TMM for the model two-band system as seen in Fig.4.1.

Also, the method is then applied to the real material KxFe2−ySe2 and found to not be an Anderson

insulator.

My 
ontribution to this work was primarily in the �gures whi
h show the mobility edge 
om-

parisons with the TMM (Fig.4.6 and Fig.4.7). I extended my parallel TMM 
ode to the multiband

system des
ribed in this 
hapter below and performed �nite size s
aling analysis of the of the

Kramer-Ma
Kinnon s
aling parameter as a fun
tion of disorder as seen in Fig.4.2.

1

This 
hapter in
ludes previously published work published by Ameri
an Physi
al So
iety and appears in [38℄ and

is reprodu
ed here under term 3 of Author's rights of the APS Transfer of Copyright Agreement to �The right to use

all or part of the Arti
le, in
luding the APS-prepared version without revision or modi�
ation . . . for edu
ational or

resear
h purposes.�
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Figure 4.1: Simple two band model where ea
h unit 
ell 
ontains two orbitals with 
ouplings as

de�ned in [38℄.
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Figure 4.2: Krammer-Ma
innon s
aling parameter. The 
rossing denotes the 
riti
al disorder

strength as the s
aling parameter is invariant as a fun
tion of system size.
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4.1 Introdu
tion

The role of disorder (randomness) in materials has been at the forefront of 
urrent resear
h [101,

102, 110℄ due to the new and improved fun
tionalities that 
an be a
hieved in materials by 
arefully


ontrolling the 
on
entration of impurities in the host. At half-�lling and in the absen
e of any

spontaneous symmetry breaking �eld, disorder 
an indu
e a transition in a non-degenerate ele
troni


three-dimensional system from a metal to an insulator (MIT) [103, 111℄. This phenomenon, whi
h

o

urs due to the multiple s
attering of 
harge 
arriers o� random impurities, is known as Anderson

lo
alization [103℄.

The most 
ommonly used mean-�eld theory to study disordered systems is the 
oherent potential

approximation (CPA) [112, 113, 114℄, whi
h maps the original disordered latti
e to an impurity

embedded in an e�e
tive medium. The CPA su

essfully des
ribes some one-parti
le properties,

su
h as the average density of states (ADOS) in substitutional disordered alloys [112, 113, 114℄.

However, being a single-site approximation, the CPA by 
onstru
tion negle
ts all disorder-indu
ed

nonlo
al 
orrelations involving multiple s
attering pro
esses. To remedy this, 
luster extensions of

the CPA su
h as the dynami
al 
luster approximation (DCA) [115, 116, 117℄ and the mole
ular

CPA [118℄ have been developed, where nonlo
al e�e
ts are in
orporated. Unfortunately, all of

these methods fail to 
apture the Anderson lo
alization transition sin
e the ADOS utilized in these

approa
hes is neither 
riti
al at the transition or distinguish the extended and the lo
alized states.

In order to des
ribe the Anderson transition in su
h e�e
tive medium theories, a proper order

parameter has to be used. As noted by Anderson, the probability distribution of the lo
al density

of states (LDOS) must be 
onsidered, and the most probable or typi
al value would 
hara
terize

it [103, 119℄. It was found that the geometri
 mean of the LDOS is a good approximation of its

typi
al value (TDOS) and it is 
riti
al at the transition [120, 106, 107℄, whi
h makes it an appropriate

order parameter to des
ribe Anderson lo
alization. Based on this idea, Dobrosavljevi
 et al.. [100℄

formulated a single-site typi
al medium theory (TMT) for Anderson lo
alization whi
h gives a

qualitative des
ription of the transition in three dimensions. In 
ontrast to the CPA, the TMT uses

the geometri
al averaging over the disorder 
on�guration in the self 
onsisten
y loop. And thus,

the typi
al not the average DOS is used as the order parameter. However, due to the single-site
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nature of the TMT it negle
ts nonlo
al 
orrelations su
h as the e�e
t of 
oherent ba
k s
attering.

Thus, the TMT underestimates the 
riti
al disorder strength of the Anderson lo
alization transition

and fails to 
apture the reentrant behavior of the mobility edge (whi
h separates the extended and

lo
alized states) for uniform box disorder.

Re
ently, a 
luster extension of TMT was developed, named the typi
al medium dynami
al 
lus-

ter approximation (TMDCA) [105℄, whi
h predi
ts a

urate 
riti
al disorder strengths and 
aptures

the reentrant behavior of the mobility edge. The TMDCA was also extended to in
lude o�-diagonal

in addition to diagonal disorder. [121℄. However, like the TMT, the previous TMDCA implemen-

tations have only been developed for single-band systems, and in real materials, there are usually

more than one band 
lose to the Fermi level. Sen performed CPA 
al
ulation on two-band semi
on-

du
ting binary alloys [122℄, and the ele
troni
 stru
ture of disordered systems with multiple bands

has also been studied numeri
ally in �nite systems [123, 124℄. But a good e�e
tive medium theory

to study Anderson lo
alization transition in multiband systems is still needed to understand the

lo
alization phenomenon in real systems su
h as diluted doped semi-
ondu
tors, disordered systems

with strong spin-orbital 
oupling, et
.

In this paper, we extend the TMDCA to multiple band disordered systems with both intra-

band and inter-band hopping, and study the e�e
t of intra-band disorder potential on ele
tron

lo
alization. We perform 
al
ulations for both single-site and �nite size 
lusters, and 
ompare the

results with those from numeri
ally exa
t methods, in
luding transfer matrix method (TMM) and

kernel polynomial method (KPM). We show that �nite sized 
lusters are ne
essary to in
lude the

nonlo
al e�e
ts and produ
e more a

urate results. Sin
e these results show that the method is

a

urate and systemati
, we then apply it to study the iron selenide super
ondu
tor KxFe2−ySe2

with Fe va
an
ies, as an example to show that this method 
an be used to study lo
alization e�e
ts

in real materials. In addition, as an e�e
tive medium theory, our method is also able to treat

intera
tions [125℄, unlike the TMM and KPM.

The paper is organized as follows. We present the model and des
ribe the details of the formalism

in Se
. 4.2. In Se
. 4.3.1, we present our results of the ADOS and TDOS for a two-band disordered

system with various parameters, and use the vanishing of the TDOS to: determine the 
riti
al
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disorder strength, extra
t the mobility edge and 
onstru
t a 
omplete phase diagram in the disorder-

energy parameter spa
e for di�erent inter-band hopping. In Se
. 4.3.2, we dis
uss simulations of

KxFe2−ySe2 with Fe va
an
ies. We summarize and dis
uss future dire
tions in Se
. 5.4. In Appendix

4.4, we provide justi�
ation for the use of our order parameter ansatz.

4.2 Formalism

4.2.1 Dynami
al 
luster approximation for multiband disordered systems

We 
onsider the multiband Anderson model of non-intera
ting ele
trons with nearest neighbor

hopping and random on-site potentials. The Hamiltonian is given by

H =−
∑

<ij>

lb
∑

α,β=1

tαβij (c†iαcjβ + c†jβciα)

+
N
∑

i=1

lb
∑

α,β=1

(V αβ
i − µδαβ)n

αβ
i

(4.1)

The �rst term provides a realisti
 multiband des
ription of the host valen
e bands. The labels i, j

are site indi
es and α, β are band indi
es. The operators c†iα(ciα) 
reate (annihilate) a quasiparti
le

on site i and band α. The se
ond part denotes the disorder, whi
h is modeled by a lo
al potential

V αβ
i that is randomly distributed a

ording to some spe
i�ed probability distribution P (V αβ

i ),

where nαβi = c†iαciβ , µ is the 
hemi
al potential, and tαβij are the hopping matrix elements. Here

we 
onsider binary disorder, where the random on-site potentials V αβ
i obey independent binary

probability distribution fun
tions with the form

P (V αβ
i ) = xδ(V αβ

i − V αβ
A ) + (1− x)δ(V αβ

i − V αβ
B ). (4.2)

In our model, there are lb band indi
es so that both the hopping and disorder potential are lb× lb
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matri
es. The random potential is

Vi =

























V αα
i · · · V αβ

i

. . .

. . .

. . .

V αα
i · · · V βα

i

























, (4.3)

while the hopping matrix is

tij =

























tααij · · · tαβij

. . .

. . .

. . .

tβαij · · · tββij

























, (4.4)

where underbar denotes lb × lb matrix, tαα and tββ are intra-band hoppings, while tαβ and tβα

are inter-band hoppings. Similar de�nitions apply to the disorder potentials. If we restri
t the

matrix elements to be real, Hermiti
ity requires both matri
es to be symmetri
, i.e., tαβ = tβα and

V αβ
i = V βα

i .

To solve the Hamiltonian of Eq. 4.1, we �rst generalize the standard DCA to a multiband

system. Within DCA the original latti
e model is mapped onto a 
luster of size Nc = L3
with

periodi
 boundary 
ondition embedded in an e�e
tive medium. The �rst Brillouin zone is divided

in Nc 
oarse grained 
ells [116℄, whose 
enter is labeled by K, surrounded by points labeled by k̃

within the 
ell. Therefore, all the k-points are expressed as k = K + k̃. The e�e
tive medium is


hara
terized by the hybridization fun
tion ∆(K,ω). The generalization of the DCA to a multiband

system entails representing all the quantities in momentum spa
e as lb × lb matri
es.

The DCA self-
onsisten
y loop starts with an initial guess for the hybridization matrix ∆(K,ω),
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whi
h is given by

∆(K,ω) =

























∆αα(K,ω) · · · ∆αβ(K,ω)

. . .

. . .

. . .

∆βα(K,ω) · · · ∆ββ(K,ω)

























. (4.5)

For the disordered system, we must solve the 
luster problem in real spa
e. In that regard, for

ea
h disorder 
on�guration des
ribed by the disorder potential V we 
al
ulate the 
orresponding


luster Green fun
tion whi
h is now an lbNc × lbNc matrix

Gc(V ) =
(

ωI− t(αβ) −∆′(αβ) − V αβ
)−1

. (4.6)

Here, I is identity matrix and ∆
′

ij is the Fourier transform (FT) of the hybridization, i.e.,

∆
′αβ
ij =

∑

K

∆αβ(K)exp[iK · (ri − rj)]. (4.7)

We then sto
hasti
ally sample random 
on�gurations of the disorder potential V and average

over disorder 〈(· · · )〉 to get the lbNc × lbNc disorder averaged 
luster Green fun
tion in real spa
e

Gc(ω)ij =



























〈Gαα
c (ω, V )〉ij · · ·

〈

Gαβ
c (ω, V )

〉

ij

. . .

. . .

. . .
〈

Gβα
c (ω, V )

〉

ij
· · ·

〈

Gββ
c (ω, V )

〉

ij



























. (4.8)

We then Fourier transform to K spa
e and also impose translational symmetry to 
onstru
t the

K-dependent disorder averaged 
luster Green fun
tion Gc(K,ω), whi
h is a lb × lb matrix for ea
h
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K 
omponent

Gc(K,ω) =

























Gαα
c (K,ω) · · · Gαβ

c (K,ω)

. . .

. . .

. . .

Gβα
c (K,ω) · · · Gββ

c (K,ω)

























. (4.9)

After the 
luster problem is solved, we 
an 
al
ulate the 
oarse grained latti
e Green fun
tion matrix

G(K,ω) =

























G
αα

(K,ω) · · · G
αβ

(K,ω)

. . .

. . .

. . .

G
βα

(K,ω) · · · G
ββ

(K,ω)

























(4.10)

=
Nc

N

∑

k̃

(

Gc(K,ω)
−1 +∆(K,ω) − εk + ǫ(K)

)−1
,

where the overbar denotes 
luster 
oarse-graining, and ǫ(K) is the 
luster 
oarse-graining Fourier

transform of the kineti
 energy

ǫ(K) = E0 +
Nc

N

∑

k̃

εk (4.11)

where Eαβ
0 is a lo
al energy, whi
h is used to shift the bands. The diagonal 
omponents of Eq. 4.10

have the same normalization than a 
onventional, i.e., s
alar, Green fun
tion.

The DCA self-
onsisten
y 
ondition requires the disorder averaged 
luster Green fun
tion equal

the 
oarse grained latti
e Green fun
tion

Gc(K,ω) = Ḡ(K,ω). (4.12)

Then, we 
lose our self-
onsisten
y loop by updating the hybridization fun
tion matrix using
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linear mixing

∆n(K,ω) = ∆o(K,ω) + ξ[G−1
c (K,ω) − Ḡ−1(K,ω)], (4.13)

where the subs
ript “o” and “n” denote old and new respe
tively, and ξ is a linear mixing fa
tor

0 < ξ < 1. The pro
edure above is repeated until the hybridization fun
tion matrix 
onverges to

the desirable a

ura
y ∆n(K,ω) = ∆o(K,ω).

We 
an see that when the inter-band hopping, tαβ , and disorder potential, V αβ
, vanish all the

lb × lb matri
es be
ome diagonal, and the formalism redu
es to single band DCA for lb independent

bands.

4.2.2 Typi
al medium theory for multiband disordered systems

To study lo
alization in multiband systems, we generalize the re
ently developed TMDCA [105℄

where the TDOS is used as the order parameter of the Anderson lo
alization transition, so the

ele
tron lo
alization is 
aptured by the vanishing of the TDOS. We will use this TMDCA formalism

to address the question of lo
alization and mobility edge evolution in the multiband model.

Unlike the standard DCA, where the Green fun
tion is averaged over disorder algebrai
ally,

the TMDCA 
al
ulates the typi
al (geometri
ally) averaged 
luster density of states in the self-


onsisten
y loop as

ρtypc (K,ω) = e
1

Nc

∑

i〈log ρii(ω)〉

〈

ρ(K,ω)
1
Nc

∑

i ρii(ω)

〉

, (4.14)

whi
h is 
onstru
ted as a produ
t of the geometri
 average of the lo
al density of states, ρii =

− 1
π ImGii(ω), and the linear average of the normalized momentum resolved density of states ρ(K,ω) =

− 1
π ImGc(K,ω). The 
luster-averaged typi
al Green fun
tion is 
onstru
ted via the Hilbert trans-

formation

Gtyp
c (K,ω) =

∫

dω′ ρ
typ
c (K,ω′)

ω − ω′
. (4.15)

Generalization of the TMDCA to the multiband 
ase is not straightforward sin
e the o�-diagonal

LDOS ραβii (ω) = − 1
πG

αβ
ii (ω) is not positive de�nite. We 
onstru
t the lb × lb matrix for the typi
al
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density of states as

ρctyp(K,ω) =





























e
1

Nc

∑

i〈lnραα
ii (ω)〉 〈 ραα(K,ω)

1

Nc

∑

i ρ
αα
ii (ω)

〉

· · · e
1

Nc

∑

i

〈

ln|ραβ
ii (ω)|

〉 〈

ραβ(K,ω)
1

Nc

∑

i |ρ
αβ
ii (ω)|

〉

. . .

. . .

. . .

e
1

Nc

∑

i

〈

ln|ρβα
ii (ω)|

〉 〈

ρβα(K,ω)
1

Nc

∑

i |ρ
βα
ii (ω)|

〉

· · · e
1

Nc

∑

i

〈

lnρββ
ii (ω)

〉 〈

ρββ(K,ω)
1

Nc

∑

i ρ
ββ
ii (ω)

〉





























.

(4.16)

The diagonal part takes the same form as the single-band TMDCA ansatz, and the o�-diagonal

part takes a similar form but involves the absolute value of the o�-diagonal `lo
al' density of states.

We 
onstru
t the typi
al 
luster Green fun
tion through a Hilbert transformation

Gc
typ(K,ω) =

























∫

dω′ ρ
αα
typ(K,ω′)

ω−ω′ · · ·
∫

dω′ ρ
αβ
typ(K,ω′)

ω−ω′

. . .

. . .

. . .
∫

dω′ ρ
βα
typ(K,ω′)

ω−ω′ · · ·
∫

dω′ ρ
ββ
typ(K,ω′)

ω−ω′

























, (4.17)

whi
h plays the same role as Gc(K,ω) in the DCA loop. On
e Gtyp is 
al
ulated from Eq. 4.17,

the self-
onsisten
y steps are the same as those in the multiband DCA des
ribed in the previous

se
tion: we 
al
ulate the 
oarse grained latti
e Green fun
tion using Eq. 4.10, and use it to update

the hybridization fun
tion matrix of the e�e
tive medium via Eq. 4.13.

The proposed ansatz Eq. 4.16 has the following properties. When the inter-band hopping tαβ

and disorder potential V αβ
vanish, it redu
es to single-band TMDCA for lb independent bands,

sin
e all the o�-diagonal elements of the Green fun
tions vanish. When disorder is weak, all the

V αα
are small so the distribution of the LDOS be
omes Gaussian with equal linear and geometri


average so it redu
es to DCA for a multiband disordered system.

When 
onvergen
e is a
hieved, we use the total TDOS ρtottyp(ω) to determine the mobility edge
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whi
h is 
al
ulated as the tra
e of the lo
al TDOS matrix

ρtottyp(ω) = Tr

[

1

Nc

∑

K

ρtyp(K,ω)

]

=
∑

∀α=β

ραβtyp(ω). (4.18)

This 
onstru
tion of the order parameter may not seem very physi
al as the typi
al value of the

LDOS should serve as the order parameter [103, 119℄, and the LDOS for the multiband system

is the sum of the lb bands in the lo
al site basis ρtoti =
∑

α=β ρ
αβ
i (ω). Therefore, the real order

parameter should be the typi
al value of ρtoti de�ned as the geometri
 average of the total LDOS,

exp
(

1
Nc

∑

i log ρ
tot
i

)

whi
h is invariant under lo
al unitary transformations and is not equal to the

ρtottyp de�ned in Eq. 4.18.

However, Eq. 4.18 should also be a 
orre
t order parameter as long as it vanishes simultaneously

with the typi
al value of ρtoti , and we show this in Appendix 4.4. By 
onsidering the distribution of

the LDOS in ea
h band, Appendix 4.4 shows that when lo
alized states mix with extended states

the system is still extended, whi
h is 
onsistent with Mott's insight about the mobility edge [126℄.

Intuitively, this makes sense as when all the distributions of ρααi are 
riti
al then the typi
al values

must behave as |V − Vc|βν
near the transition, and so their sum must as well. If one is not 
riti
al

(on the metalli
 side) then Eq. 4.18 will not vanish as |V − Vc|βν
, as expe
ted.

To test our multiband typi
al medium dynami
al 
luster approximation formulation, we apply

it to the spe
i�
 
ase of a two band model, unless otherwise stated in Se
. 5.3. Throughout the

dis
ussion of our results below, we denote α as a and β as b.

4.3 Results

4.3.1 Two band model

As a spe
i�
 example, we test the generalized DCA and TMDCA algorithms for a three-dimensional

system with two degenerate bands (ab) des
ribed by Eq. 4.1. In this 
ase, both the hopping and
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disorder potential are 2 × 2 matri
es in the band basis given by

tij = t =







taa tab

tba tbb






, (4.19)

and

Vi =







V aa
i V ab

i

V ba
i V bb

i






, (4.20)

respe
tively. The intra-band hopping is set as taa = tbb = 1, with �nite inter-band hopping tab.

Here, the hopping matrix is de�ned as dimensionless so that the bare dispersion 
an be written as

εk = tεk with εk = −2t[cos(kx) + cos(ky) + cos(kz)] in three dimensions. We 
hoose 4t = 1 to set

the units of energy. We 
onsider the two bands orthogonal to ea
h other, where the lo
al inter-band

disorder V αβ
i vanishes and the randomness 
omes from the lo
al intra-band disorder potential V αα

i

that follow independent binary probability distribution fun
tions with equal strength, V aa = V bb
.

Sin
e the two bands are degenerate and the disorder strength for ea
h band is also identi
al, the


al
ulated average DOS will be the same for ea
h band, so we only plot the quantities for one of

the bands in the following results, as it is enough to 
hara
terize the properties of the system.

In our formalism, in order to disorder average instead of performing the very expensive enu-

meration of all disorder 
on�gurations, whi
h s
ales as 22Nc
, we perform a sto
hasti
 sampling of


on�gurations whi
h greatly redu
es the 
omputational 
ost [127℄. This is so we 
an study larger

systems. For a typi
al Nc = 64 
al
ulation, 500 disorder 
on�gurations are enough to produ
e

reliable results and this number de
reases with in
reasing 
luster size.

We �rst 
ompare the ADOS and TDOS at various disorder strengths V aa(V bb), with a �xed

inter-band hopping tab = 0.3, for di�erent 
luster sizes Nc in Fig. 4.3. Our TMDCA s
heme for

Nc = 1 
orresponds to the analog of the TMT for two-band systems, and the ADOS is 
al
ulated

with the two-band DCA. To show the e�e
ts of non-lo
al 
orrelations introdu
ed by �nite 
lusters,

we present data for both Nc = 1 and Nc > 1. We 
an 
learly see that the TDOS, whi
h 
an be

viewed as the the order parameter of the Anderson lo
alization transition, gets suppressed as the

disorder in
reases . By 
omparing the width of the extended state region, where the TDOS is �nite,
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we 
an see that single site TMT overestimates lo
alization.

From Fig. 4.3, we see that the results of TMDCA for Nc = 64 and Nc = 216 are almost on

top of ea
h other, showing a qui
k 
onvergen
e with the in
rease of 
luster size. To see this more
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Figure 4.3: Evolution of the ADOS and TDOS at di�erent disorder strengths V aa(V bb), for Nc = 1
(left panel) and Nc > 1 (right panel) for �xed tab = 0.3. For small disorder, the ADOS and TDOS

are almost identi
al. The TDOS is suppressed as the disorder in
reases. The extended states region

with �nite TDOS for Nc = 1 is narrower than the results of Nc > 1 whi
h indi
ates that the

single-site TMT overemphasizes lo
alization.


learly, we plot in Fig. 4.4 the TDOS at the band 
enter for two di�erent disorder strengths and

various 
luster sizes. We see that the results for both 
ases 
onverge qui
kly with 
luster size.

Faster 
onvergen
e (around Nc = 38) is rea
hed for the 
ase further away from the 
riti
al region

(V aa = V bb = 0.6) than for the one 
loser (V aa = V bb = 0.7) where 
onvergen
e is rea
hed around

Nc = 98. This is expe
ted due to the 
riti
al slowing down 
lose to the transition. To further study

the 
onvergen
e, we also plot in Fig. 4.5 the TDOS at the band 
enter as a fun
tion of disorder

strength (V aa = V bb
) for several Nc. The 
riti
al disorder strength is de�ned by the vanishing of

the TDOS(ω = 0). The results show a systemati
 in
rease of the 
riti
al disorder strength as Nc

in
reases, and the 
onvergen
e is rea
hed at Nc = 98 with the 
riti
al value of 0.74.

To study the e�e
t of inter-band hopping tab, we 
al
ulate the disorder-energy phase diagram
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Figure 4.4: Evolution of the TDOS at the band 
enter (ω = 0) with in
reasing 
luster size for

two di�erent sets of parameters with taa = tbb = 1.0, tab = 0.3, V ab = 0.0, V aa = V bb = 0.6, 0.7.
The former has faster 
onvergen
e (around Nc = 38) than the latter (around Nc = 98), due to the


riti
al slowing down 
loser to the transition region.
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Figure 4.5: The TDOS at the band 
enter (ω = 0) vs. V aa = V bb
with in
reasing 
luster size, for

taa = tbb = 1.0, tab = 0.3, V ab = 0.0. For Nc = 1, the 
riti
al disorder strength is 0.65 and as Nc

in
reases, it in
reases and 
onverges to 0.74 for Nc = 98.
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for the 
ase with vanishing tab and �nite tab = 0.3 in Fig. 4.6. The mobility edge is determined
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Figure 4.6: Disorder-energy phase diagram for vanishing tab (left panel) and �nite tab = 0.3 (right

panel). We 
ompare the mobility edge obtained from the TMT (Nc = 1), TMDCA (Nc = 64 and

216) and TMM. Parameters for the TMM data are given in the text (the TMM data for tab = 0.0
is reprodu
ed from [121℄). A �nite tab in
reases the 
riti
al disorder strength, indi
ating that tab

results in a delo
alizing e�e
t. The single site TMT overestimates the lo
alized region.

by the energy where the TDOS vanishes. By 
omparing the left and right panels, we 
an see

that introdu
ing a �nite tab makes the system more di�
ult to lo
alize, 
ausing an upward shift

of the mobility edge. The single site TMT overestimates the lo
alized region 
ompared to �nite


luster results. We also 
ompare our results with those from the TMM [98, 149, 150℄ to 
he
k the

a

ura
y of the mobility edge 
al
ulated from TMDCA. For the TMM, the S
hrödinger equation is

written in terms of wavefun
tion amplitudes for adja
ent layers in a quasi-one dimensional system,

and the 
orrelation (lo
alization) length is 
omputed by a

umulating the Lyapunov exponents of

su

essive transfer matrix multipli
ations that des
ribe the propagation through the system. All

TMM data is for a 3d system of length L = 106 and the Kramer-Ma
Kinnon s
aling parameter

Λ(V,M) is 
omputed for a given disorder strength V and �bar� width M . The transfer matrix is

a 2Mlb × 2Mlb matrix. The system widths used were M = [4 − 12]. The 
riti
al point is found

by identifying the 
rossing of the Λ(M)vs.V 
urves for di�erent system sizes. The transfer matrix
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produ
t is reorthogonalized after every �ve multipli
ations.

To see the e�e
t of inter-band hopping more dire
tly, we now 
onsider in
reasing tab while

keeping the disorder strength �xed (V aa = V bb = 0.71), and study the evolution of the mobility

edge (Fig. 4.7). The lo
alized region around the band 
enter starts to shrink as tab is in
reased,

leading to a small dome-like shape with the top lo
ated at tab = 0.2. This shows that in
reasing

tab delo
alizes the system whi
h is reasonable sin
e in
reasing tab e�e
tively in
reases the bare

bandwidth.
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Figure 4.7: Evolution of the mobility edge as tab in
reases, while V aa
and V bb

are �xed. The results

are 
al
ulated for Nc = 64. A dome-like shape shows up around the band 
enter, signaling the


losing of the TDOS gap. Parameters for the TMM data are given in the text.

To further ben
hmark our algorithms, we plot the ADOS and TDOS 
al
ulated with two-band

DCA and TMDCA together with those 
al
ulated by the KPM [108, 109, 128, 129℄ (Fig. 4.8). In

the KPM analysis, the LDOS is expanded by a series of Chebyshev polynomials, so that the ADOS

and TDOS 
an be evaluated. The details for the implementation of KPM are well dis
ussed in

Ref. [109℄ and the parameters used in the KPM 
al
ulations are listed in the 
aption of Fig. 4.8.

The Ja
kson kernel is used in the 
al
ulations [109℄. As shown in the plots, the results from the

generalized DCA and TMDCA mat
h ni
ely with those 
al
ulated from the KPM.
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The ex
ellent agreement of the TMDCA results with those from more 
onventional numeri
al

methods, like KPM and TMM, suggest that the method may be used for the a

urate study of real

materials.
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Figure 4.8: Comparison of ADOS and TDOS 
al
ulated with DCA, TMDCA and KPM with �xed

disorder strength V aa = V bb = 0.8 and various values of inter-band hopping tab. The KPM uses

2048 moments on a 
ubi
 latti
e of size 483 and 200 independent realizations generated with 32

sites randomly sampled from ea
h realization.

4.3.2 Appli
ation to KyFe2−xSe2

Next, we demonstrate the method with a 
ase study of Fe va
an
ies in the Fe-based super
ondu
tor

KxFe2−ySe2, whi
h has been studied intensely be
ause of its pe
uliar ele
troni
 and stru
tural

properties. Early on it was found that there is a strong

√
5 ×

√
5 ordering of Fe va
an
ies [130℄.

Later it was dis
overed that this material also 
ontains a se
ond phase[131, 132℄. It is 
ommonly

spe
ulated that the se
ond phase is the one that hosts the super
ondu
ting state and the phase

with the

√
5×

√
5 va
an
y ordering is an antiferromagneti
 (AFM) insulator. Re
ent measurements

of the lo
al 
hemi
al 
omposition [133, 134℄ have determined that the se
ond phase also 
ontains a

large 
on
entration of Fe va
an
ies (up to 12.5%). However, these Fe va
an
ies are not well ordered
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sin
e no strong re
onstru
tion of the Fermi surfa
e [135, 136, 137℄ was observed by angle-resolved

photoele
tron spe
tros
opy (ARPES) experiments [138, 139℄.

Interestingly, with su
h a disordered stru
ture, this material hosts a relatively high super
on-

du
ting transition temperature of 31 K at ambient pressure [140℄. It was the �rst Fe-based super-


ondu
tor that was shown from ARPES [138, 139℄ to have a Fermi surfa
e with ele
tron po
kets only

and no hole po
kets, apparently disfavoring the widely dis
ussed S±
pairing symmetry [141℄ in the

Fe-based super
ondu
tors. KxFe2−ySe2 is also the only Fe-based super
ondu
tor whose parent 
om-

pound (with perfe
tly ordered Fe va
an
y) is an AFM insulator [142℄ rather than a AFM bad metal.

Furthermore from neutron s
attering [130℄, it has been observed that the anti-ferromagnetism has

a novel blo
k type stru
ture with a re
ord high Neel temperature of TN = 559K and magneti


moment of 3.31µB/Fe. Su
h a spe
ial magneti
 stru
ture is obviously not driven from the nesting

of the simple Fermi surfa
e, but requires the interplay between lo
al moments and itinerant 
arriers

present in the normal state [143, 144℄.

Given that Fe va
an
ies are about the strongest possible type of disorder that 
an exist in

Fe-based super
ondu
tors and given that the Fe-based super
ondu
tors are quasi two-dimensional

materials, it is natural to spe
ulate how 
lose the se
ond phase is to an Anderson insulator. If it

is indeed 
lose, this would have interesting impli
ations for the strong 
orrelation physi
s and the

non-
onventional super
ondu
tivity in these 
ompounds.

To investigate the possibility of Anderson lo
alization in the se
ond phase of KxFe2−ySe2 we will

employ TMDCA on a realisti
 �rst prin
iples model. To this end we use Density Fun
tional Theory

(DFT) in 
ombination with the proje
ted Wannier fun
tion te
hnique [145℄ to extra
t the low energy

e�e
tive Hamiltonian of the Fe-d degrees of freedom. Spe
i�
ally we applied the WIEN2K [146℄

implementation of the full potential linearized augmented plane wave method in the lo
al density

approximation. The k-point mesh was taken to be 10×10×10 and the basis set size was determined

by RKmax=7. The latti
e parameters of the primitive unit 
ell (
.f. Fig. 4.9(b)) are taken from

Ref. [130℄. The subsequent Wannier transformation was de�ned by proje
ting the Fe-d 
hara
ters on

the low energy bands within the interval [-3,2℄ eV. For numeri
al 
onvenien
e, we use the 
onventional

unit 
ell shown in Fig. 4.9(a) whi
h 
ontains 4 Fe atoms. Sin
e there are 5 d orbitals per Fe atom,
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we are dealing with a 20-band problem. To simulate the e�e
t of Fe va
an
ies we add a lo
al binary

disorder with strength V and Fe va
an
y 
on
entration ca:

P (Vi) = caδ(Vi − V ) + (1− ca)δ(Vi). (4.21)

We set the disorder strength to be V = 20eV , mu
h larger than the Fe-d bandwidth, su
h that

it e�e
tively removes the 
orresponding Fe-d orbitals from the low energy Hilbert spa
e. This

will 
apture the most dominant e�e
t of the Fe va
an
ies. The Fe 
on
entration is taken to be

ca = 12.5%, whi
h is the maximum value found in the experiments.

Figure 4.9: Crystal stru
ture of KFe2Se2.

Fig. 4.10 presents the ADOS and TDOS, obtained from our multiband TMDCA for whi
h we


onsidered two 
luster sizes Nc = 1 and Nc = 2
√
2 × 2

√
2 × 2 = 16. Consistent with the model


al
ulations presented in the previous se
tions, we �nd that the TMT (Nc = 1) tends to overestimate

the lo
alization e�e
ts 
ompared to TMDCA results (Nc = 16). While the TMT shows lo
alized

states within [0.6,1.1℄ eV, the TMDCA for Nc = 16 �nds lo
alized states in the mu
h smaller energy

region [1.0,1.1℄ eV instead. Apparently a 
on
entration of ca = 12.5% is still too small to 
ause
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any signi�
ant lo
alization e�e
ts despite the strong impurity potentials of the Fe va
an
ies and the

material being quasi-two dimensional. To determine the 
hemi
al potential we 
onsider two �llings.

The �rst �lling of 6.0 ele
trons per Fe 
orresponds to the reported K2Fe7Se8 phase [134℄. Sin
e

strong ele
tron doping has been found in ARPES experiments [138, 139℄, we also 
onsider a �lling

of 6.5 ele
trons per Fe. The latter would 
orrespond to the extreme 
ase of no va
an
ies. Clearly

for both �llings the 
hemi
al potential remains energeti
ally very far from the mobility edge, and

thus far from Anderson insulating.
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Figure 4.10: The average and typi
al density of states of KFe2Se2 with 12.5% Fe va
an
y 
on
entra-

tion 
al
ulated by multiband DCA and TMDCA with 
luster size Nc = 1 and Nc = 16, 
ompared

with the average density of states of the 
lean (no va
an
y) KFe2Se2.

4.4 Con
lusion

We extend the single-band TMDCA to multiband systems and study ele
tron lo
alization for a

two-band model with various hopping and disorder parameters. We ben
hmark our method by


omparing our results with those from other numeri
al methods (TMM and KPM) and �nd good

agreement. We �nd that the inter-band hopping leads to a delo
alization e�e
t, sin
e it gradually
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loses the ω = 0 disorder indu
ed gap on the TDOS. A dire
t appli
ation of our extended TMDCA


ould be done for disordered systems with strong spin-orbital 
oupling. Combined with ele
troni


stru
ture 
al
ulations, our method 
an be used to study the ele
tron lo
alization phenomenon in real

materials. To show this, we apply this approa
h to the iron selenide super
ondu
tors KxFe2−ySe2

with Fe va
an
ies. By 
al
ulating the TDOS around the 
hemi
al potential, we 
on
lude that the

insulating behavior of its normal state is unlikely due to Anderson lo
alization. This method also

has the ability to in
lude intera
tions [125℄, and future work will involve real material 
al
ulations

that fully treat both disorder and intera
tions.
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The order parameter de�ned in Eq. 4.18

We know the system is lo
alized if the distribution of the total LDOS is 
riti
al, having a probability

distribution p(ρaai + ρbbi ) whi
h is highly skewed with a typi
al value 
lose to zero. So if we 
an

show that this is true if and only if both ρaai and ρbbi are 
riti
al, then the 
riti
al behavior is basis

independent and we 
an 
hoose any parti
ular basis and use the order parameter de�ned by Eq. 4.18
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to study the lo
alization transition.

To show this is true, we 
onsider two probability distribution fun
tions p1(x1) and p2(x2). The

probability distribution fun
tion for X = x1 + x2 is

P (X) =

∫ X

0
p1(x)p2(X − x)dx, (4.22)

and we want to show P (X) is 
riti
al if and only if both p1(x1) and p2(x2) are 
riti
al.

4.4.1 Su�
ien
y

If both p1(x) and p2(x) are 
riti
al, then both p1(x) and p2(x) are dominated by the region 0 < x < δ

where δ → 0+. The 
ontribution to the integral in P (X) mainly 
omes from the region 0 < x < δ

and 0 < X−x < δ whi
h is max(X−δ, 0) < x < min(δ,X). Sin
e δ is in�nitesimal, we 
an assume

X > δ, and then we have X − δ < x < δ. To maximize P (X), we want this region to be as big as

possible, so we want δ− (X − δ) = 2δ−X to be as big as possible whi
h means X must be smaller

than 2δ → 0+. Thus, P (X) is also 
riti
al with the typi
al value around 2δ whi
h is in�nitesimal.

4.4.2 Ne
essity

We now 
onsider the 
ase where one of the distributions is not 
riti
al. Without loss of generality,

we assume p2(x) is not 
riti
al and is peaked at some �nite value x0. We 
al
ulate

P (x0)− P (δ) =

∫ x0

0
p1(x)p2(x0 − x)dx−

∫ δ

0
p1(x)p2(δ − x)dx

=

∫ δ

0
p1(x)[p2(x0 − x)− p2(δ − x)]dx+

∫ x0

δ
p1(x)p2(x0 − x)dx.

(4.23)

The �rst term is positive sin
e p2(x) is peaked around x0 and δ ≪ x0. The se
ond term is positive

obviously, so P (x0) > P (δ). Therefore, P (X) is not 
riti
al.

In this way we argue that P (X) is 
riti
al if and only if both p1(x1) and p2(x2) are 
riti
al. In

other words, when the lo
alized states hybridize with extended states, only extended states remain

whi
h is exa
tly Mott's insight about the mobility edge [126℄. The generalization to the multiple

band 
ase is trivial.
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Chapter 5

Multifra
tal Study of Quasiparti
le

Lo
alization in Disordered

Super
ondu
tors

In addition to o�-diagonal disorder and multiple bands, materials 
an also be super
ondu
ting. This

adds mu
h 
ompli
ation to the interpretation of lo
alization in the Anderson sense as one 
an not

only 
onsider lo
alization of the 
harge 
arriers (resulting in a standard metal to insulator transition

as has so far been 
onsidered in this thesis), but of any quasiparti
le ex
itations and it is an open

question if the �traditional� methods of numeri
al analysis of disordered systems 
an be applied

to 
apture su
h a lo
alization transition. The purpose of this work was to apply the multifra
tal

analysis that has been applied to the Anderson model to a model of a disordered super
ondu
tor to

establish it 
an also 
apture the lo
alization of bogolons (the ex
itations of this Hamiltonian), and

the appli
ation of TMDCA to su
h a model is 
onsidered for future work.

My 
ontribution to this work that was made in 
ollaboration with K.-M. Tam, Yi Zhang, and M.

Jarrell that has been submitted to Physi
al Review B was to �rst determine the 
riti
al parameters

(the 
riti
al disorder strengthWc and 
orrelation exponent ν) with a TMM 
ode for a super
ondu
tor

with extended s-wave pairing. The reason for this 
hoi
e of pairing was to avoid the problem of not

being able to �target� the lowest energy ex
itations with the TMM in the presen
e of a gap in the

spe
trum whi
h a more 
onventional pairing realization would have . I then implemented a large

s
ale diagonalization 
ode in order to 
ompute the bogolon wave fun
tion |ψi|2 = |ui|2 + |vi|2 and

applied multifra
tal �nite size s
aling to also 
ompute the 
riti
al parameters and �nd agreement

with TMM, establishing the ability of the method to 
apture lo
alization of ex
itations in disordered

super
ondu
tors.
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5.1 Introdu
tion

Anderson lo
alization involves the lo
alization of single-parti
le ele
troni
 states in a disordered

metal[147℄. Although this has proved to be a 
hallenging and 
omplex problem[148℄, the basi


interpretation of the transition is 
lear: it is a transition from a metalli
 phase where ele
trons

are able to di�use and transport over long distan
es to an insulating phase where this is pre-

vented. Anderson lo
alization o

urs in normal ele
troni
 systems (most famously doped[152℄ and

amorphous[153℄ semi
ondu
tors). The 
ondu
ting ele
troni
 states are separated from the insulat-

ing states by a mobility edge in energy and disorder strength. Many features of the lo
alization

transition have been studied and mu
h attention has been paid to two in parti
ular: the multi-

fra
tality of 
riti
al wave fun
tions at the transition and the role played by the symmetries of the

Hamiltonian [154, 155, 156, 158℄.

The Anderson transition was �rst and most studied for Hamiltonians of the three Wigner-

Dyson[156℄ symmetry 
lasses. The identi�
ation of additional symmetry 
lasses (bringing the full

number to ten[154℄) has lead to the study of the e�e
ts of Anderson lo
alization beyond the original

three symmetry 
lasses and the additional ri
h phenomena[159℄. In this paper, we 
onsider the

question of quasiparti
le lo
alization in the Bogoliubov de Gennes 
lass for three dimensions with

time reversal and spin rotation symmetry (
lass CI) whi
h we use to model a dirty super
ondu
tor

with a �nite density of states at the Fermi level. The ex
itations of this 
lass are Bogoliubov

quasiparti
les[160℄ (also referred to as bogolons in this paper) with no de�nite 
harge as they are

a superposition of ele
tron and hole ex
itations [161℄, so this is di�erent from the 
ase of the

Anderson model where the ex
itations have a well de�ned 
harge. In this 
ase, the lo
alization

transition is interpreted as lo
alization of bogolons that o

urs within the super
ondu
ting phase.

The two phases are refereed to as a �thermal metal� where the bogolons are extended and a �thermal

insulator� where they are lo
alized[162℄. As mentioned above, the quasiparti
les do not transport


harge and so there is no Weidemann-Franz law between the thermal and ele
tri
 transport, but

there is still thermal transport and so on the lo
alized side of the transition the system will be

thermally insulating and on the extended side it will be thermally metalli
 [162℄.

The idea of multifra
tality was introdu
ed by Mandlebrot[164, 165℄ and des
ribes spatial stru
-
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tures that have a 
ompli
ated distribution and require an in�nite number of 
riti
al exponents to

des
ribe the s
aling of their moments. The multifra
tal nature of the wavefun
tion at 
riti
ality

was realized for Anderson transitions [166, 158℄ and is now re
ognized as a de�ning 
hara
teristi
.

A proposed generalization of the multifra
tal analysis 
an be used to 
al
ulate the 
riti
al parame-

ters of the Anderson transition[168, 167, 169℄ whi
h has even been applied to 
al
ulations of doped

semi
ondu
tors[170℄.

In this paper, we apply the generalized multifra
tal �nite size s
aling (MFSS) [168, 167℄ analysis

to a simple model of a dirty super
ondu
tor. The model Hamiltonian and methods of extra
ting


riti
al parameters whi
h in
lude transfer matrix method and multifra
tal analysis are des
ribed

in Se
.5.2. We will demonstrate that the multifra
tal analysis 
an be used to extra
t the 
riti
al

disorder strength by showing agreement with transfer matrix method 
al
ulations and 
on�rms

that this transition falls outside the Wigner-Dyson symmetry 
lass. Also, we will argue that the

multifra
tal 
hara
ter of the wavefun
tions 
an possibly explain some experimental �ndings on dirty

super
ondu
tors, su
h as the in
rease in Tc with disorder. These results are presented in Se
.5.3

and dis
ussed in Se
.5.3.1. We 
on
lude in Se
. 5.4

5.2 Model and Methods

5.2.1 Model of Dirty Super
ondu
tor

We study our model of a dirty super
ondu
tor within the mean �eld Bogoliubov-de Gennes approx-

imation, and so the Hamiltonian is given by

H =
∑

i,j

[ti,j
∑

σ=↑,↓

(c†i,σcj,σ +H.c) + ∆i,j(c
†
i,↑c

†
j,↓ +H.c.)]. (5.1)

The annihilation operator for site i with spin σ is given by ci,σ, and similarly for the 
reation

operators. We only 
onsider spin one-half fermions in this study, so σ =↑ or ↓. ti,j and ∆i,j are the

hopping and pairing between site i and j respe
tively.

Previous studies of dirty super
ondu
tors predominately fo
used on the pairing with 
onven-

tional s-wave symmetry with on-site pairing whi
h has a spe
tral gap at the band 
enter. With-
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out disorder, the spe
tral fun
tion is given by E(k) =
√

∆(k)2 + ǫ(k)2, and for a 
ubi
 latti
e

ǫ(k) = −2t
∑

i=x,y,z cos(ki). For the 
ase of 
onventional s-wave pairing, we have ∆(k) = ∆0 a


onstant. Sin
e we do not expe
t for gap formation to be required for multifra
tal behavior of the

wavefun
tion, we instead fo
us on a gapless super
ondu
tor. A simple 
hoi
e is one with extended

s-wave pairing with the same nodal stru
ture as that of the bare dispersion ǫ(k) [163℄, in whi
h

∆(k) = ∆0
∑

i=x,y,z cos(ki).

Random disorder is introdu
ed via two independent terms, one for the on-site lo
al potential

and the other for the on-site pairing. Following the 
onvention in Ref. [163℄, the total Hamiltonian

may be written as

H = H0 +Hdis, (5.2)

H0 =
∑

<i,j>

[
1√
2

∑

σ=↑,↓

(c†i,σcj,σ +H.c) +
1√
2
(c†i,↑c

†
j,↓ +H.c.)], (5.3)

Hdis =
∑

i

[ǫi
∑

σ=↑,↓

(c†i,σci,σ +H.c) + ∆i(c
†
i,↑c

†
i,↓ +H.c.)]. (5.4)

The disorder in onsite potential and onsite pairing is assumed to be uniformly distributed from

−W to W , and so P (ǫi) = P (∆i) = 1/2W ∀ − W < ǫi,∆i < W . The Hamiltonian possesses

time reversal symmetry, spin rotation symmetry and parti
le-hole symmetry whi
h di
tates that

eigenstates always 
ome in pairs with energy E and −E. These symmetries put the Hamiltonian

into the CI 
lass [154℄.

5.2.2 Transfer Matrix Method

We �rst lo
ate the 
riti
al point of the model and its lo
alization length exponent using the transfer

matrix method. The three dimensional system has a width and height equal to M for ea
h sli
e of

a N -sli
e 
uboid, forming a �bar� of length N . The Hamiltonian 
an be de
omposed into the form

H =
∑

i

Hi +
∑

i

(Hi,i+1 +H.c.), (5.5)
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where Hi des
ribes the Hamiltonian for sli
e i and Hi,i+1 is the 
oupling terms between the i and

i+ 1 sli
es. The S
hrödinger equation 
an be written in the form

Hn,n+1cn+1 = (E −Hn)cn −Hn,n−1cn−1 (5.6)

where ci is the M
2

omponents wavefun
tion of the sli
e i. We introdu
e the transfer matrix

Ti =







H−1
i,i+1(E −Hi) −H−1

i,i+1Hi−1,i

1 0






(5.7)

and Eq.5.6 
an be interpreted as the iteration of







ci+1

ci






= Ti ×







ci

ci−1






. (5.8)

The goal of the transfer matrix method is to 
al
ulate the lo
alization length, λM (E), from the

produ
t of N transfer matri
ies

τN ≡
N
∏

i=1

Ti. (5.9)

The Lyapunov exponents of the matrix τN is given by the logarithm of its eigenvalues. The small-

est exponent 
orresponds to the slowest exponential de
ay of the wavefun
tion and thus 
an be

identi�ed as 
orresponding to the lo
alization length, λM (E). The lo
alization length is 
omputed

by repeated multipli
ation of Ti, but sin
e the multipli
ation of matri
es is numeri
ally unstable

periodi
 reorthogonalization is needed in the numeri
al implementation[150℄. We use a QR de
om-

position for reorthogonalization implemented by LAPACK[151℄, and so at the s reorthogonalization

step the matrix (
orresponding to some intermediate L'th multipli
ation in 
al
ulating Eq.5.9) the

matrix is de
omposed

τL = QR (5.10)
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where R is an upper triangular matrix and the Lyapunov exponents γs are 
al
ulated as

γs = γs−1 + log bs (5.11)

where bs are the 2M2
diagonal elements of R for the s renormalization step. The multipli
ation of

transfer matri
es is then 
ontinued with the Q matrix. The slowest de
aying exponent (γℓ) is used

to 
ompute the lo
alization length λM (E) = 1/γℓ for a given width M and energy E.

The lo
alization length is then used to 
al
ulate the the Kramer-Ma
kinnon[149℄ s
aling param-

eter ΛM (E) = λM (E)/M whi
h is expe
ted to s
ale as

ΛM =
λM
M

= f

(

M

ξ

)

, (5.12)

where ξ ∝ |W − Wc|−ν
. The s
aling fun
tion f is Taylor expanded about the 
riti
al point Wc

and the 
riti
al parameters Wc and ν enter as �tting parameters and so 
an be determined by a

least-squares minimization.

5.2.3 Multifra
tal Analysis

We 
onsider the multifra
tal properties of the bogolon wave-fun
tion |ψi|2 = |ui|2 + |vi|2 for a three

dimensional simple 
ubi
 latti
e of linear size L. The method is based on the study of Anderson

models in Wigner-Dyson 
lass. [168, 167, 169℄ This 
ubi
 wavefun
tion is partitioned into boxes

of linear size ℓ. We introdu
e the quantity λ = ℓ/L and so we have Nb = λ−d
as the number of

boxes where d is the dimensionality of the system. In this paper, we shall only 
onsider d = 3. We

introdu
e the �
oarse grained� box measure

µb(ℓ) =
∑

i∈b(ℓ)

|ψi|2 (5.13)

where b(ℓ) indexes the Nb boxes for a given box size ℓ. We introdu
e for 
onvenien
e[167℄ the

quantity

α ≡ log µ

log λ
(5.14)
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to work with instead of dire
tly with the box measures given in Eq.5.13. Multifra
tility implies that

the number of boxes that 
orrespond to a given α (we denote as N(α)) must s
ale as

N(α) ∼ λ−f(α)
(5.15)

where f(α) is some fra
tal dimension that depends on α. For the 
ase where |ψ|2 are distributed

uniformly in spa
e, one would expe
t there to be only a singular α and from the de�nition of λ

above f(α) = d. However, for �nite λ a narrow distribution peaked around f(α) = d would be

expe
ted and so the above Eq.5.15 is only de�ned in the limit λ→ 0. The fa
t that there exists an

α dependent spe
trum f(α) 
hara
terizes a system as being multifra
tal[157℄.

We will want to 
onsider the q-dependent moments of the distribution of α or α(q). We �rst

introdu
e the generalized inverse parti
ipation ratios for the 
oarse grained distributions P (µb(ℓ))

as

Rq =

Nb
∑

b(ℓ)

(

µb(ℓ)
)q

(5.16)

and assume (similarly to Eq.5.15) that the moments of the distribution of ea
h box measure s
ale

by the q dependent exponents τ(q) or

〈Rq〉 ∼ λτ(q) (5.17)

where 〈· · ·〉 denotes an ensemble average. It 
an be shown[157℄ that f(α) and τ(q) 
an be related

by a Legendre transform

f(α) = −τ(q) + qα , (5.18)

where

α(q) =
dτ(q)

dq
. (5.19)

Carrying out the di�erentiation in Eq.5.19 and using the de�nition of τ(q) in Eq.5.17 leads to the

expression

α(q) = lim
λ→0

〈Sq〉
log λ〈Rq〉

(5.20)
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where

Sq =

Nb
∑

k

µqk log µk. (5.21)

As de�ned above, the multifra
tal exponents are only stri
tly de�ned in the limit of in�nite

system size (λ→ 0 as mentioned above) and at the 
riti
al point. However, they 
an be de�ned for

�xed λ whi
h we denote with a tilde as

α̃q =
〈Sq〉

log λ〈Rq〉
. (5.22)

The error in α̃q, σα̃, is then estimated from standard propagation of un
ertainty

(σα̃
α̃

)2
=

(

σ〈Sq〉

〈Sq〉

)2

+

(

σ〈Rq〉

〈Rq〉

)2

− 2

(

σ〈Rq〉〈Sq〉

〈Rq〉〈Sq〉

)2

where the 
ovarian
e term σ〈Sq〉〈Rq〉 is kept to a

ount for 
orrelations as Rq and Sq are 
omputed

from the same data set.

The quantity α̃q s
ales a

ording to standard one parameter s
aling for �xed λ in a relevant (ρ)

and an irrelevant (η) s
aling variable or [168, 167℄

α̃q(W,L) = G(ρL1/ν , ηL−|y|). (5.23)

We expand the s
aling fun
tion to �rst order in the irrelevant operator η

α̃q(W,L) = G(0)(ρL1/ν) + ηL−|y|G(1)(ρL1/ν), (5.24)

where the sub-leading term is 
hara
terized by η, y, and G(1)
. The fun
tion G(s)

(where s = 0, 1

from above) is expanded as a Taylor series

G(s)(L1/ν) =

ns
∑

k=0

askρ
kLk/ν . (5.25)
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The s
aling �elds ρ and η are likewise expanded in terms of w = (W −Wc)/Wc as

ρ(w) = w +

mρ
∑

m=2

bmw
m

(5.26)

and

η(w) = 1 +

mη
∑

m=1

cmw
m. (5.27)

The 
riti
al parameters (Wc, ν) and the irrelevant s
aling exponent y are determined by �tting the

data for α̃q(W,L) to Eq.5.24. In addition, we have n0+n1+mρ+mη Taylor expansion parameters.

The 
orrelation length is ξ = |ρ(ω)|−ν
and so the s
aled α̃q(W,L) data (whi
h we denote as α̃corr

q )


ollapses onto two bran
hes

α̃corr
q = G(0)

q (±(L/ξ)1/ν) (5.28)

5.3 Results

We employ the transfer matrix method to �nd the 
riti
al disorder strength by performing a �nite

size s
aling analysis as shown in Fig.5.1. We will 
ompare this result with that predi
ted by

multifra
tal analysis of the bogolon wavefun
tion. The �tting is performed using the S
iPy pa
kage

whi
h a
ts as a wrapper to MINPACK to perform the least squares minimization [178, 179℄. The

�tting range used in Fig.5.1 is determined by performing multiple �ts and 
hoosing the one that

approximately provides the minimum for the sum of squares. This range is then used for 100

bootstrapped resamples of the data to estimate the error bars. Note however that there 
an still be

error in 
hoosing the �tting range so the error bars are most likely under-estimated. The 
al
ulation

was performed for E = 0 as were are interested in only the lowest energy ex
itations whi
h will also

be the fo
us in the following multifra
tal analysis.

For the multifra
tal analysis of the bogolon wavefun
tions, we use the JADAMALU pa
kage

whi
h implements a Ja
obi-Davidson method with pre
onditioning[176, 177℄ to diagonalize the

Hamiltonian. In 
ontrast to that of the 
onventional Anderson model, the disorder terms for the

present model appear in the o�-diagonal elements. This poses as a 
hallenge for attaining 
onver-

gen
e by the iterative algorithm, both in term of the memory storage and �oating point operation.
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Figure 5.1: Kramer-Ma
kinnon s
aling parameter as a fun
tion of disorder strength 
al
ulated with

the transfer matrix method for a bar of length N = 20000, E = 0 and a QR reorthogonalization

is performed after every 5 multipli
ations. Note the 
rossing indi
ating a 
riti
al disorder strength

around W = 3.2. When the �nite size s
aling is performed as des
ribed in 5.2.2 the data 
ollapses

as is shown in the inset. A bootstrap re-sampling is performed to generate 100 data sets to estimate

the �tting parameters yielding Wc = 3.212 ± 0.008 and a 
riti
al exponent of ν = 1.01 ± 0.05.

Therefore the a

essible system sizes are limited in 
omparison to that of the models with diagonal

disorder terms. [168, 167℄ We keep only one state from ea
h realization with the 
losest eigenvalue

(and asso
iated eigenve
tor) to zero. This is to prevent 
orrelations in wavefun
tions that 
ome

from the same realization of disorder. The wave fun
tion 
an then be 
oarse grained (as des
ribed

in Se
.5.2.3) and the distribution of α is plotted in in Fig.5.2.

We 
an then 
al
ulate α̃q for q = 0 (given by Eq.5.22 whi
h we denote as α̃0) and is plotted in

Fig.5.3 as a fun
tion of system size and disorder strength whi
h is expe
ted to show the 
hara
teristi


�nite size behavior and exhibit a 
rossing at the 
riti
al disorder strength[167℄[168℄. We also 
arry

out multifra
tal �nite size s
aling for �xed λ and we assume our data yi (with un
ertainty σi) is
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un
orrelated (as we only 
onsider �xed λ so ea
h point is from it's own realization) and thus the χ2

statisti
 for our model �ts fi is

χ2 =
∑

i

(yi − fi)
2

σ2i
(5.29)

The order of expansion in n0, n1, mη and mρ is determined by 
hoosing the �t that keeps the χ2

statisti
 small, keeps the order of expansion small and provides a �good� 
ollapse of the data into

two bran
hes. Error bars in �tting parameters are determined by generating new values of 〈Sq〉 and

〈Rq〉 for ea
h 
orresponding L and W by pulling from a Gaussian distribution with mean 〈Sq〉 and

varian
e σ〈Sq〉/
√
N − 1 where N is the number of samples of Sq and this is likewise done for 〈Rq〉.

This allows for a new 
al
ulation of αq. The result from this pro
edure yields Wc = 3.208 ± 0.007

and ν = 0.97± 0.06 in agreement with the above transfer matrix study.

0 2 4 6 8
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0

0.1

0.2

0.3

0.4
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0.6

P(
α 0)

L=16 W=3.24
L=16 W=3.30
L=16 W=3.38
L=64 W=3.24
L=64 W=3.30
L=64 W=3.38

Figure 5.2: Distribution of the quantity α (de�ned in Eq.5.14) for a �nite value of λ = 1/8 for

various system sizes and two disorder strengths. The behavior of the distributions as a fun
tion of

L motivates the appli
ation of the multifra
tal analysis in the Ref. [167℄ as when the transition is

approa
hed (∼ 3.2) the distributions be
ome more s
ale invariant (not depending on system size).
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Figure 5.3: The multifra
tal exponent α0 as a fun
tion of disorder strength W that exhibits s
aling

behavior around the 
riti
al disorder strength W = 3.2. The inset shows the data 
ollapse into after
performing the �nite size s
aling and plotting the s
aling fun
tion for both bran
hes of α̃0 in Eq.

5.28. The 
riti
al parameters used are Wc = 3.21, ν = 1.09, y = 15.94. The orders of expansion

used for G(0), G(1), ρ, and η are n0 = 2, n1 = 2,mρ = 1 and mη = 0 respe
tively. The resulting

χ2 = 22. The �t was 
hosen by keeping the order of expansion low and taking the smallest χ2
for

whi
h the data 
ollapse 
lose to the �tting fun
tion α̃0.

5.3.1 Dis
ussion

It has been established by the work of Ref.[163℄ that the exponent ν is mu
h di�erent than the

Anderson model. We 
on�rm this with our multifra
tal analysis, establishing that this falls outside

the Wigner-Dyson (WD) symmetry 
lass.

The motivation for studying models of disordered super
ondu
tors is the ri
h variety of unusual
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properties they 
an exibit su
h as an enhan
ed single parti
le energy gap that persists even after

super
ondu
tivity is destroyed [189℄. Spe
i�
 to this paper, the motivation for studying the mul-

tifra
tal 
hara
ter of the eigenstates is the proposal that multifra
tility 
an lead to enhan
ements

of the 
riti
al temperature at whi
h super
ondu
tivity is destroyed (Tc)[172, 171℄ whi
h is observed

in thin super
ondu
ting �lms that are weakly disordered, namely Al[193℄[192℄ wi
h is still not well

understood. An explanation for the enhan
ement of Tc due to multifra
tility is that multifra
tility

implies a broad distribution of exponents for the spatial 
orrelations at the transition (given by

f(α)). This 
an be understood by the fa
t that there are regions of the system that have exponents

that will de
ay o� more slowly than if there were only a single one, implying stronger 
orrelations

among bogolon wavefun
tion |ψi|2. It is known that the regions of large |ψi|2 for the lowest ex
ita-

tions will 
orrespond to regions of large lo
al pairing amplitude ∆i[174℄ [175℄, and so ∆i will also

realize multifra
tal 
orrelations. The result of the longer range 
orrelations would lead to stronger

pairing 
orrelations, resulting in an in
rease in Tc. Given the present 
al
ulations are done with

a �xed distribution of ∆i, we 
annot address quantitatively the relation between the Tc and the

disorder.

Furthermore, it is known that the presen
e of bogolon ex
itations is what dissipates momentum

and disrupts the �ow of super 
urrent, destroying super
ondu
tivity[191℄. Therefore, a state in

whi
h the ex
itations are lo
alized would help to �prote
t� super
ondu
tivity at �nite temperatures

and in
rease Tc. As the lo
alization e�e
t would be very strong in a quasi-2D system, when a

super
ondu
ting �lm is made more thin the bogolons must be
ome lo
alized. The reason it is not

observed for all thin �lms (it is more typi
al for Tc to de
rease) is that if the disorder is strong this

e�e
t will not be observed be
ause strong disorder is already destroying the super
ondu
tivity as it

destroys the long range phase 
oheren
e[194℄.

Finally, we note that the multifra
tal analysis used here 
ould be applied to models of 
onven-

tional s-wave super
ondu
tivity with disorder whi
h has been well studied [183, 182, 184, 173, 185,

186, 187, 188℄. This is important be
ause the transfer matrix method 
annot be used to lo
ate

the lo
alization transition if the pairing must be solved self-
onsistently as this 
reates a 
orrela-

tion between layers [190℄. However, as all that is needed is the wavefun
tion for this method, the

91



multifra
tal �nite size s
aling analysis 
ould be applied.

5.4 Con
lusion

We 
on
lude that the multifra
tal analysis that works for the Anderson model 
an also be used

for models of disordered super
ondu
tors to �nd the lo
alization transition of the quasi parti
le

ex
itations. In addition, it also 
on�rms that the thermal metal to thermal insulator is indeed in a

separate universality 
lass from the Anderson model. [163℄

Future work would in
lude addressing the question of the relation between multifra
tility of


riti
al wavefun
tions and the impa
t on Tc more dire
tly by �nding the transition temperature for

a model of a 
onventional s-wave super
ondu
tor by solving the pairing �eld ∆i self 
onsistently

for a given attra
tion intera
tion strength U . [175℄ The multifra
tal spe
trum f(α) 
ould then be


ompared as a fun
tion of intera
tion strength and Tc to quantitatively address the role played by

multifra
tal eigenstates and 
oupling strength on the 
riti
al temperature. Also, the question of

whether this method 
an dete
t the super
ondu
tor to insulator transition [183℄ would be of interest

as this model 
ould not be studied with transfer matrix due to the self 
onsisten
y requirement on

the pairing.
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