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Abstract

This is a two-part thesis strung together by a common underlying theme—quantum correlations.
We present some new characterizations and quantifications of quantum correlations and an appli-
cation of one such correlation—entanglement—for quantum technology.

In Part I of the thesis, we use a Rényi generalization of the quantum conditional mutual
information (QCMI) to define and study new measures of quantum entanglement and quantum
discord. In particular, using a quantity derived from a Rényi QCMI, we introduce: a) the geometric
squashed entanglement, a faithful entanglement measure, which is a lower bound on the squashed
entanglement and which reduces to the geometric measure of entanglement for pure quantum
states, b) the surprisal of measurement recoverability, a discord-like measure, which is similarly
a lower bound on the quantum discord. The surprisal of measurement recoverability enhances
our understanding of quantum discord in terms of the ability to recover one share of a bipartite
quantum system after it has been measured.

In Part II, we discuss entanglement-enhanced quantum sensing. In particular, we consider
optical interferometric sensors that use photon-number parity detection. Using the quantum and
classical Cramér-Rao bounds (QCRB and CCRB) on phase precision as the figures of merit, we
characterize a class of two-mode pure states for which photon-number parity measurement is op-
timal for phase estimation. These states turn out to be a subset of the class of path-symmetric
states—a class for which photon-number counting-based measurements are known to be optimal.
Further, we gauge the performance of the particular interferometry based on coherent light mixed
with squeezed vacuum light and photon-number parity measurement. We show that photon-number
parity is an optimal measurement for the above state in the sense that the detection scheme is ca-
pable of achieving the best phase precision offered by the state (given by its QCRB). The state by
itself is also known to be capable of optimal phase precision for any state in linear interferometry
for a given photon budget, called the Heisenberg limit. Thus, we demonstrate Heisenberg-limited
phase estimation for the state with photon-number parity detection.

vii



Chapter 1
Introduction

Quantum theory undoubtedly finds a place among the most important scientific develop-
ments of the twentieth century. Its roots can be traced back to the seminal works of stal-
warts such as Planck, Einstein, Bohr, and de Broglie (only to name a few). Quantum theory
was then formalized independently by Heisenberg as matrix mechanics, and Schrödinger as
wave mechanics. These two formalisms were later shown to be equivalent by Dirac, who then
introduced a unified formalism, one that is widely used today as non-relativistic quantum me-
chanics. Quantum mechanics has been successfully applied to obtain a deeper understanding
of the structure of the atom, its constituent sub-atomic particles, the elements of the periodic
table, the interaction of different atoms to form molecules, and numerous other micro and
macroscopic physical phenomena. From a technological viewpoint, the mere departure from
classical physics marked by the emergence of quantum mechanics as a fundamental theory
of nature during the mid to late years of the twentieth century paved the way to a series of
advancements, which culminated in the development of semiconductor electronics and the
modern age of information and computation. This phenomenon has been called by some as
the first quantum revolution [52].

Quantum mechanics is fundamentally different from classical physics. If there is one
essential concept in quantum mechanics that distinguishes it from classical mechanics, it
is the non-commutativity of conjugate observables. Take the position and momentum of a
physical system for example. The operators corresponding to these attributes in quantum
theory do not commute; their commutator is given by

[x̂, p̂] = i~,

where x̂ and p̂ are the position and momentum operators, respectively, and ~ = 1.055 ×
10−34J-s is the Dirac constant (which is 1/ (2π) times the Planck constant h = 6.63 ×
10−34J-s). This non-commutativity imposes a fundamental limitation on how precisely the
position and momentum of a subatomic particle can be simultaneously determined. The
much celebrated uncertainty principle given by Heisenberg quantifies this fact as

∆x∆p ≥ ~/2,

where ∆x and ∆p are the uncertainties in the simultaneous estimates of position and momen-
tum of a quantum system, respectively. Thus quantum mechanics forbids the simultaneous
measurement of position and momentum with arbitrary precision. This is in contrast with
classical mechanics, where the state of a particle is in given by its position and momentum
coordinates in phase space, assuming that they can be determined simultaneously with arbi-
trarily high precisions. The state of a system in quantum mechanics, instead, is described by
a wavefunction in either the position or the momentum eigenbasis. The quantum mechan-
ical wavefunction encodes the probability amplitudes of the various possible measurement
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outcomes of an observable in the form of a superposition. For example, the wavefunction
of a quantum system in the position eigenbasis encodes the probability amplitudes of the
various possible locations at which the system could be found. Further, given a Hamiltonian
describing the dynamics of the system, the wavefunction transforms into a new wavefunc-
tion, resulting in new probability amplitudes for the various possible measurement outcomes.
Thus, quantum mechanics is inherently a stochastic theory. This too is in contrast with clas-
sical mechanics, which is a fully deterministic theory, wherein, given the initial position and
momentum of a system and the Hamiltonian, the position and momentum at all future times
can be determined precisely.

1.1 Quantum Correlations

Another salient, distinguishing feature of quantum mechanics is the novel types of corre-
lations allowed to exist between quantum systems, which are beyond what is allowed in
classical physics. This thesis is about such “nonclassical” or “quantum” correlations. If
the mere emergence of quantum mechanics marked a first quantum revolution, then we are
currently in the middle of what is a second quantum revolution, where a large global effort
is underway towards harnessing such quantum correlations towards novel technologies for
information processing and computation [52].

Quantum entanglement. Following the invention of quantum mechanics, Schrödinger in
1935 realized that the mathematical structure of quantum mechanics presented some serious
peculiarities. He observed that a joint quantum state describing two quantum systems may
be such that it is non-factorable into a product of local quantum states on the individual
systems. He called this feature entanglement. Entangled quantum states are such that a
measurement on one of, say two systems in an entangled quantum state, could instantly steer
the other system to a particular state depending on the measurement that was performed on
the first system and its outcome, independent of how separated the two entangled systems are
in distance at the time of the measurement. This peculiar feature, however, became a cause
of concern among many contemporary physicists of the time. In fact, it cast enough doubt
in the minds of Einstein, Podolsky and Rosen that they decided to call quantum mechanics
incomplete. They based their argument on the then already well-established uncertainty
principle. Consider two parties, Alice and Bob, each holding one of two systems that are in
an entangled state. Alice performs a measurement of one of two conjugate observables on her
system, while Bob measures the other observable. Since the two systems are entangled, this
way they could together learn about both conjugate properties of each system simultaneously
with arbitrary precision, which is in violation with the uncertainty principle. This paradox
became famously known as the EPR paradox. EPR reconciled the paradox by claiming
that quantum mechanics was incomplete and that reality in nature was necessarily local
and that there perhaps exist some local hidden variables, which contain information about
the outcomes of all possible measurements on the individual systems. Decades later, Bell
discovered a way to compare the predictions of quantum theory with those of any local hidden
variable theory in a quantitative fashion. These are the now famous Bell’s inequalities,
which are bounds on allowed correlations in any local hidden variable theory. Bell showed
that these bounds could be violated by entangled quantum states, thus establishing that in
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theory quantum mechanics allowed for correlations that could not always be replicated by a
local hidden variable model. Numerous experiments have now confirmed that nature indeed
violates the bounds predicted by local hidden variable theories and, moreover, the results of
these experiments agree with the predictions of quantum mechanics.

Quantum discord. Entanglement is the most prominent manifestation of quantum corre-
lations, but it is not the only type of quantum correlation. For example, there is quantum
discord, which is defined for a multiparty quantum state based on the difference between the
total amount of correlations in the state and those that can be accounted for within clas-
sical physics—with the difference being attributed to purely quantum correlations. Quan-
tum discord includes entanglement-type correlations, but goes beyond and captures other
weaker quantum correlations that result from non-orthogonality of quantum states too. Non-
orthogonality of quantum states can be understood as the following: while in classical physics
a collection of distinct states (well-defined position and momentum coordinates) are com-
pletely distinguishable (or orthogonal mathematical speaking), a collection of distinct quan-
tum states could have overlap and thus may not be completely distinguishable from one
another. This possibility with quantum states already takes us out of the realms of classical
physics when it comes to multiparty correlations.

Quantum correlations as a resource for information processing. Quantum me-
chanics, being a fundamental theory of nature, has a bearing on our ability to process
information physically. Thus, quantum mechanics has direct consequences for computa-
tional, communication and cryptographic technologies. In this regard, the classical theories
of computation, communication, and cryptography have been revisited to study the effects
of quantum mechanics with regard to their ultimate possible performances. This has lead
to exciting new possibilities in these areas, such as quantum algorithms for fast integer fac-
torization, fast database search, quantum teleportation, superdense coding and quantum
key distribution [171, 75, 14, 56, 12]. The same is also true for metrology, i.e., the study
of precision measurements. The theory of parameter estimation, which underlies metrology
has been similarly revisited based on quantum mechanics, which has enabled enhanced pa-
rameter estimation. Some of these novel and enhanced quantum technologies rely on the use
of quantum entanglement as a resource. For example, in linear metrology, probe systems
prepared in suitable entangled quantum states enable estimation of unknown quantities of
interest at precisions beyond what is known to be possible classically, the latter being known
as the shot-noise limit.

Characterizing quantum correlations using the synergy with quantum informa-
tion theory. We mentioned earlier how all information-processing technologies must take
into account the effects of quantum mechanics since information processing ultimately hap-
pened on a physical substrate, whose laws are governed by quantum mechanics. On the
other hand, it has been realized that the notion of information, and information processing
abilities of a physical substrate can also very helpful towards improving our understanding
of quantum mechanics. For example, the entropy, which is a fundamental measure of infor-
mation, and various other information quantities which are linear combinations of entropies,
find crucial meaning in the context of characterizing and quantifying quantum correlations.
Therefore, the benefits of the cross-over between quantum mechanics and information theory
in the form of quantum information theory are mutual to both theories.
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1.2 Outline and Contributions

The specific topics discussed in this thesis lie at the interface of quantum information theory,
quantum estimation theory and quantum optics. We divide the chapters into two parts.

Part I focuses on the characterization and quantification of quantum correlations. We
consider the information quantity called the quantum conditional mutual information (QCMI),
which is widely used in quantum information theory. The QCMI captures the correlation
that can exist between three quantum systems that are together described by a quantum
state. (A detailed introduction to the QCMI is provided in Appendix A.) As with any other
information-theoretic quantity, the QCMI is traditionally defined in terms of the von Neu-
mann entropies. It has been a long-standing open question to obtain Rényi generalizations
of the QCMI. Recently, in a joint work with Mario Berta and Mark Wilde, the present au-
thor proposed and studied several Rényi generalizations of the QCMI [18, 17]. (A detailed
account of these Rényi QCMIs is provided in Appendix B.) In Part I, we use one of those
Rényi QCMIs and its variant to define bipartite entanglement measures, i.e., quantifiers of
entanglement for two-party systems. The measures we define are related to the squashed
entanglement, which is a previously proposed measure based on the QCMI. The squashed
entanglement is known to be a good quantifier of entanglement, satisfying many desired
properties of an entanglement measure. We also define measures of quantum discord based
on the Rényi QCMI. In particular, we define and study a measure of quantum entanglement
called the geometric squashed entanglement, and a quantum discord-like measure called the
surprisal of measurement recoverability.

On the other hand, Part II focuses on entanglement-enhanced quantum technologies for
sensing. (A detailed introduction to quantum-enhanced sensing is provided in Appendix C.)
We consider the optical entanglement generated by the mixing of coherent light and squeezed
vacuum light, and study phase estimation at precisions better than the classical shot noise
limit in Mach Zehnder interferometry. In particular, we focus on the detection scheme, which
is based on the measurement of photon-number parity in one of the two output modes.
We determine the Cramér-Rao bound, which is a figure of merit in quantum parameter
estimation theory, for the interferometry with coherent light and squeezed-vacuum light,
and photon-number parity measurement. We show that this can attain the best estimation
performance that is possible with the given state. We also consider the general problem of
whether photon-number parity is optimal whenever photon number detection is optimal. We
show that this is true for almost all states for which photon number detection is optimal.

Below we give an outline of the thesis.

• Chapter 2 - Preliminaries. In this chapter, we present a brief introduction to the math-
ematical machinery of quantum mechanics, quantum information theory, the theory
of entanglement measures, quantum optics and quantum parameter estimation for the
convenience of the reader.

• Chapter 3 - Rényi Squashed Entanglement and Rényi Quantum Discord. In this chap-
ter, we use a Rényi QCMI (see Appendix B) to define a squashed entanglement and
a quantum discord. By taking as a conjecture that the Rényi QCMI of a tripartite
state ρABC is monotone under local completely positive and trace preserving (CPTP)
maps on both systems A and B, we prove various properties of these quantities and

4



establish them as valid measures of quantum correlation (up to the conjecture). This
is joint work with Mario Berta and Mark Wilde, and can be found in [164].

• Chapter 4 - Fidelity of Recovery, Geometric Squashed Entanglement and Measure-
ment Recoverability. Although the Rényi squashed entanglement and Rényi quantum
discord of Chapter 3 are well-behaved correlation measures, they rely on an unproven
conjecture, namely that the Rényi QCMI of a tripartite state ρABC is monotone under
local CPTP maps on both systems A and B. In this chapter, we consider a variant of a
particular Rényi QCMI to define a squashed entanglement and a quantum discord. We
call them the geometric squashed entanglement and the surprisal of measurement re-
coverability. These quantities satisfy nearly all the same properties as their traditional
counterparts. The underlying quantity behind these measures, which is monotone un-
der local CPTP maps on both systems A and B, is the fidelity of recovery. The fidelity
of recovery for a tripartite state ρABC quantifies how well one can recover the full state
on all three systems if system A is lost and a recovery quantum channel acts only on
system C. This is joint work with Mark Wilde, and can be found in [167].

• Chapter 5 - Optimal Phase Estimation with Parity Detection. This chapter contains
the original results of Part II of the thesis. In here, we discuss two-mode optical
interferometry with the non-classical detection strategy based on photon-number parity
measurement. In particular, we ask the question “For what class of two-mode pure
states is the photon-number parity observable optimal for phase estimation?” We
answer this question in light of Hofmann’s work on the analogous question for photon-
number detection-based measurement observables. Hofmann, in his work, derived a
condition called path symmetry as a sufficient condition on a two-mode pure state so
that photon-number counting-based measurement observables are optimal for the state.
We analyze the performance of photon-number parity detection for Hofmann’s path-
symmetric states. We show that photon-number parity is an optimal measurement
for a restricted class of path-symmetric states, and that there exists a bias phase at
which the optimality is achieved locally. We also discuss the particular interferometry
with coherent light mixed with squeezed vacuum light, which is known to achieve
the Heisenberg limit when the inputs are mixed in equal intensities. We show that
photon-number parity is optimal for this scheme and enables Heisenberg-limited phase
estimation with the state. This chapter is based on joint work with Petr Anisimov,
Sejong Kim, Hwang Lee and Jonathan Dowling, and can be found in [165, 166].

• Chapter 6 - Conclusions and Outlook. In this chapter, we summarize our main contri-
butions and discuss some possible directions for future work.
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Chapter 2
Preliminaries

In this chapter, we give a brief introduction to some essential concepts and the mathematical
machinery of quantum mechanics, quantum information theory, the theory of entanglement
measures, quantum optics and quantum parameter estimation theory for the convenience of
the reader.

2.1 Quantum Mechanics: The Mathematical Machinery

2.1.1 Bounded linear operators, norms and functions

Let B (H) denote the algebra of bounded linear operators acting on a Hilbert space H. We
restrict ourselves to finite-dimensional Hilbert spaces in Part I of the thesis, while Part II
involves infinite-dimensional Hilbert spaces. For α ≥ 1, the α-norm of an operator X is
defined as

‖X‖α ≡
[
Tr{(
√
X†X)α}

]1/α

, (2.1.1)

and we use the same notation even for the case α ∈ (0, 1), when it is not a norm. Let B (H)+

denote the subset of positive semi-definite operators, and let B (H)++ denote the subset of
positive definite operators. We also write X ≥ 0 if X ∈ B (H)+ and X > 0 if X ∈ B (H)++.

We take the usual convention that f (A) =
∑

i:ai 6=0 f (ai) |i〉 〈i| when given a function
f and a Hermitian operator A with spectral decomposition A =

∑
i ai |i〉 〈i|. So this

means that A−1 is interpreted as a generalized inverse, so that A−1 =
∑

i:ai 6=0 a
−1
i |i〉 〈i|,

log (A) =
∑

i:ai>0 log (ai) |i〉 〈i|, exp (A) =
∑

i exp (ai) |i〉 〈i|, etc. The above convention for
f (A) leads to the convention that A0 denotes the projection onto the support of A, i.e.,
A0 =

∑
i:ai 6=0 |i〉 〈i|, where the support of a positive semi-definite operator is defined as the

subspace spanned by eigenvectors corresponding to nonzero eigenvalues. We employ the
shorthand supp(A) and ker(A) to refer to the support and kernel of an operator A, respec-
tively, where the latter is the subspace orthogonal to the support.

2.1.2 Quantum states

States in quantum mechanics are most generally described by linear operators known as
density operators. An operator ρ is in the set S (H) of density operators if ρ ∈ B (H)+

and Tr{ρ} = 1, and an operator ρ is in the set S(H)++ of strictly positive definite density
operators if ρ ∈ B (H)++ and Tr{ρ} = 1. The tensor product of two Hilbert spaces HA and
HB is denoted byHA⊗HB orHAB. Given a multipartite density operator ρAB ∈ S(HA⊗HB),
we unambiguously write ρA = TrB {ρAB} for the reduced density operator on system A.
(Note that when we write ρA, an identity operator is implicit, and the expression should be
interpreted as ρA⊗IB.) We use ρAB, σAB, τAB, ωAB, etc. to denote general density operators
in S(HA⊗HB), while ψAB, φAB, etc. denote rank-one density operators (pure states |ψ〉AB,
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|φ〉AB, etc., respectively) in S(HA ⊗ HB) (with it implicit, clear from the context, and the
above convention implying that ψA, ϕA, φA may be mixed if |ψ〉AB, |φ〉AB are pure).

Schmidt decomposition. Any bipartite pure state |ψ〉AB in HAB can be written in its
Schmidt form as

|ψ〉AB ≡
d−1∑
i=0

√
λi |i〉A |i〉B , (2.1.2)

where {|i〉A} and {|i〉B} form orthonormal bases in HA and HB, respectively, the coefficients
λi are real numbers satisfying 1 ≥ λi ≥ 0 ∀i, ∑d−1

i=0 λi = 1, and d is the Schmidt rank of the
state. A bipartite pure state is said to be entangled if its Schmidt rank is larger than 1.

Purification. Consider a density operator on system A, whose spectral decomposition is
given by

ρA =
∑
x

pX (x) |x〉 〈x|A .

A purification of ρA is a pure bipartite state |ψ〉RA on the original system A and a reference
system R that satisfies the following property:

ρA = TrR {|ψ〉 〈ψ|RA} .

An example of a purification of ρA is given by

|ψ〉RA =
∑
x

√
pX (x) |x〉R |x〉A .

2.1.3 Quantum channels

A linear map NA→B : B (HA) → B (HB) is positive if NA→B (σA) ∈ B (HB)+ whenever
σA ∈ B (HA)+. A linear map NA→B : B (HA) → B (HB) is strictly positive if NA→B (σA) ∈
B (HB)++ whenever σA ∈ B (HA)++. Let idA denote the identity map acting on a system A.
A linear map NA→B is completely positive if the map idR⊗NA→B is positive for a reference
system R of arbitrary size. A linear map NA→B is trace preserving if Tr{NA→B (τA)} =
Tr{τA} for all input operators τA ∈ B (HA). If a linear map is completely positive and
trace-preserving (CPTP), we call it a quantum channel or quantum operation.

2.1.4 Quantum measurements

A quantum measurement is a quantum channel which has a quantum input and a classical
output. The most general quantum measurement is a positive operator-valued measure
(POVM), which is a set {Λx} of positive semi-definite operators such that

∑
x Λx = I.

Given a state ρ and a POVM {Λx}, the probability of obtaining the outcome x is given by

p (x) = Tr {Λxρ} .
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2.1.5 Some important classes of quantum states

Maximally entangled states. By a maximally entangled state, we mean a bipartite pure
state of the form

|Φ〉AB ≡
1√
d

d−1∑
i=0

|i〉A |i〉B . (2.1.3)

Private states. A state γABA′B′ is a private state [94, 96] if Alice and Bob can extract a
secret key from it by performing local von Neumann measurements on the A and B systems
of γABA′B′ , such that the resulting secret key is product with any purifying system of γABA′B′ .
The systems A′ and B′ are known as “shield systems” because they aid in keeping the key
secure from any eavesdropper possessing the purifying system. A private state of log d private
bits can be written in the following form [94, 96]:

γABA′B′ = UABA′B′ (ΦAB ⊗ ρA′B′)U †ABA′B′ , (2.1.4)

where ΦAB is the projection onto a maximally entangled state of Schmidt rank d and

UABA′B′ =
∑
i,j

|i〉 〈i|A ⊗ |j〉 〈j|B ⊗ U ij
A′B′ , (2.1.5)

is called the “twisting unitary”. The unitaries that make up UABA′B′ can be chosen such that
U ij
A′B′ = V j

A′B′ or U ij
A′B′ = V i

A′B′ . This implies that the unitary UABA′B′ can be implemented
either as

UABA′B′ =
∑
i

|i〉 〈i|A ⊗ IB ⊗ V i
A′B′ (2.1.6)

or
UABA′B′ = IA ⊗

∑
i

|i〉 〈i|B ⊗ V i
A′B′ . (2.1.7)

2.2 Quantum Information Theory: Tools

2.2.1 Distance measures

Trace distance. The trace distance between two quantum states ρ, σ ∈ S (H) is equal to

‖ρ− σ‖1 = Tr

{√
(ρ− σ)† (ρ− σ)

}
. (2.2.1)

The trace distance is bound as follows:

0 ≤ ‖ρ− σ‖1 ≤ 2, (2.2.2)

with it being equal to zero if the state are equivalent, and equal to two if they have support
on orthogonal subspaces. It has a direct operational interpretation in terms of the distin-
guishability of these states. If ρ or σ are prepared with equal probability and the task is to
distinguish them via some quantum measurement, then the optimal success probability in
doing so is equal to (1 + ‖ρ− σ‖1 /2) /2.
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The trace distance obeys a triangle inequality, namely, if ρ, σ and τ are three quantum
states, then

‖ρ− σ‖1 ≤ ‖ρ− τ‖1 + ‖τ − σ‖1 . (2.2.3)

It is monotone non-increasing under quantum operations on state ρ and σ, i.e.,

‖N (ρ)−N (σ)‖1 ≤ ‖ρ− σ‖1 , (2.2.4)

where N is a quantum channel.

Fidelity. The fidelity between two quantum states ρ, σ ∈ S (H) is equal to

F (ρ, σ) ≡
∥∥√ρ√σ∥∥2

1
. (2.2.5)

The fidelity is bound as follows:

0 ≤ F (ρ, σ) ≤ 1, (2.2.6)

with it being equal to one if and only if the states are identical and equal to zero if and only
if their respective supports are orthogonal. It captures how well a purification of the state ρ
can pass as a purification of the state σ. For pure states |ψ〉 and |φ〉, the fidelity reduces to
the overlap between the two states

F (|ψ〉 , |φ〉) ≡ |〈ψ| φ〉|2 . (2.2.7)

For a pure state |ψ〉 and a mixed state σ, it reduces to the expectation of σ with respect to
|ψ〉

F (|ψ〉 , σ) ≡ 〈ψ|σ |ψ〉 . (2.2.8)

For two mixed states ρA and σA on system A, the fidelity is also equal to the following
optimized overlap between purifications |ψρ〉RA and |φσ〉RA of the respective states

F (ρ, σ) ≡ max
|ψρ〉RA, |φσ〉RA

|〈ψρ| φσ〉|2 (2.2.9)

= max
U
|〈ψρ|UR ⊗ IA |φσ〉|2 , (2.2.10)

a result due to Uhlmann, where UR is a unitary acting on the purifying system R.
Among other properties, the fidelity is multiplicative over tensor product states, i.e.

F (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F (ρ1, σ1)F (ρ2, σ2) . (2.2.11)

The square root of the fidelity is jointly concave in the state, i.e.√√√√F

(∑
x

pX (x) ρx,
∑
x

pX (x)σx

)
≥
∑
x

pX (x)
√
F (ρx, σx). (2.2.12)

Also it is concave in the state, i.e.

F (λρ1 + (1− λ) ρ2, σ) ≥ λF (ρ1, σ) + (1− λ)F (ρ2, σ) . (2.2.13)

The fidelity is monotone non-decreasing under quantum operations on state ρ and σ, i.e.,

F (ρ, σ) ≤ F (N (ρ) ,N (σ)) , (2.2.14)

where N is a quantum channel.
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Theorem 2.1. The following bounds hold between the fidelity and the trace distance of two
quantum states ρ and σ:

1−
√
F (ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F (ρ, σ). (2.2.15)

Proof. See [196, Theorem 9.3.1].

Corollary 2.2. Suppose ρ is ε-close to σ in trace distance, i.e.,‖ρ− σ‖1 ≤ ε, then the fidelity
between ρ and σ is greater than 1− ε, i.e., F (ρ, σ) ≥ 1− ε. Also, suppose F (ρ, σ) ≥ 1− ε,
then ‖ρ− σ‖1 ≤

√
2ε.

2.2.2 Entropic (Information) measures

von Neumann entropy. The von Neumann entropy of a quantum state ρA is defined as

H (ρ) = H (A)ρ ≡ −Tr {ρ log ρ} . (2.2.16)

It is equivalent to the Shannon entropy of the spectral distribution of the state. That is, if
the spectral decomposition of the state is

ρA =
∑
x

pX (x) |ψx〉 〈ψx|A , (2.2.17)

then
H (A)ρ = −

∑
x

pX (x) log pX (x) . (2.2.18)

Consider that Alice prepares a quantum state from the ensemble {pX (x) , |ψx〉} at random
and sends to Bob, who does not know a priori which state was prepared. The von Neumann
entropy then captures the average amount of “surprisal” or “information” gained by Bob
upon receiving the state in terms of number of qubits of information (assuming the log is to
the base two). The entropy of a quantum state ρA is bound as

log |A| ≥ H (A)ρ ≥ 0, (2.2.19)

where |A| is the dimension of A. It is equal to zero when ρ is a pure state and is equal to
log |A| when the state is maximally mixed, i.e.,

ρA =

|A|∑
x=1

1

|A| |ψx〉 〈ψx|A . (2.2.20)

The entropy is concave in the state, i.e.,

H (ρ) ≥
∑
x

pX (x)H (ρx) , (2.2.21)

where ρ =
∑

x pX (x) ρx. It is invariant under the action of unitary operations on the state,
i.e.,

H (ρ) = H
(
UρU †

)
. (2.2.22)
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It is additive on tensor product states, i.e.

H (ρ⊗ σ) = H (ρ) +H (σ) , (2.2.23)

and sub-additive in general, i.e., for a bipartite state ρAB

H(AB)ρ ≤ H (A)ρ +H (B)ρ . (2.2.24)

Rényi entropy. The Rényi entropy is a one-parameter generalization of the von Neumann
entropy and is defined for a state ρA as

Hα (A)ρ ≡
1

1− α log Tr {ρα} (2.2.25)

=
α

1− α log ‖ρ‖α , (2.2.26)

for α ∈ (0, 1)∪ (1,∞) (with it being defined for α ∈ {0, 1,∞} in the limit as α tends to zero,
one and infinity, respectively.) For a state ρ, whose spectral decomposition is given by

ρA =
∑
x

pX (x) |ψx〉 〈ψx|A , (2.2.27)

the Rényi entropy is equal to

Hα (A)ρ =
1

1− α log
∑
x

pX (x)α . (2.2.28)

In the limit α → 1, the Rényi entropy converges to the von Neumann entropy. Similar to
the von Neumann entropy, the Rényi entropy is also bound as

log |A| ≥ Hα (A)ρ ≥ 0, (2.2.29)

where |A| is the dimension of A. It is equal to zero when ρ is a pure state and is equal to
log |A| when the state is maximally mixed as in (2.2.20) . It is also invariant under the action
of unitary operations on the state, i.e.,

Hα (ρ) = Hα

(
UρU †

)
, (2.2.30)

and additive on tensor product states, i.e.

Hα (ρ⊗ σ) = Hα (ρ) +Hα (σ) . (2.2.31)

Unlike the von Neumann entropy, the Rényi entropy does not obey subadditivity in general.

Relative entropy. For ρ ∈ S (H) (a density operator) and σ ∈ B (H)+ (a positive semi-
definite operator), the Umegaki relative entropy [189] is defined as

D(ρ‖σ) ≡
{

Tr {ρ [log ρ− log σ]} if supp (ρ) ⊆ supp (σ)
+∞ otherwise

. (2.2.32)
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The relative entropy D(ρ‖σ) is non-negative if Tr{ρ} ≥ Tr{σ}, a result known as Klein’s
inequality [117]. Thus, when ρ, σ ∈ S (H) (i.e. when both ρ and σ are density operators),
the relative entropy is non-negative, and furthermore, it is equal to zero if and only if ρ = σ.

The above definition is consistent with the following limit:

lim
ξ↘0

Tr {ρ [log ρ− log (σ + ξI)]} = D(ρ‖σ), (2.2.33)

where I is the identity operator acting on H. The statement in (2.2.33) follows because the
quantity

lim
ξ↘0

Tr {ρ log (σ + ξI)} (2.2.34)

is finite and equal to Tr{ρ log σ} if supp(ρ) ⊆ supp(σ). Otherwise, (2.2.34) is infinite.
The relative entropy is sometimes referred to as the “mother of all entropies” since other

entropic quantities can be written in terms of the relative entropy. For example, the quantum
entropy, conditional entropy and mutual information can be written respectively as

H(A)ρ = −D(ρA‖IA), (2.2.35)

H(A|B)ρ ≡ H(AB)ρ −H(B)ρ = −min
σB

D(ρAB‖IA ⊗ σB), (2.2.36)

I(A;B)ρ ≡ H(A)ρ +H(B)ρ −H(AB)ρ = min
σB

D(ρAB‖ρA ⊗ σB), (2.2.37)

Theorem 2.3. [Pinsker inequality] The relative entropy is an upper bound on the trace
distance:

1

2 ln 2
(‖ρ− σ‖1)2 ≤ D (ρ ‖σ ) .

Proof. See [196, Theorem 11.9.5].

Rényi relative entropy. For ρ ∈ S (H) (a density operator) and σ ∈ B (H)+ (a positive
semi-definite operator), the Rényi relative entropy of order α ∈ [0, 1)∪ (1,∞) [140] is defined
as

Dα(ρ‖σ) ≡
{

1
α−1

log Tr {ρασ1−α} if supp (ρ) ⊆ supp (σ) or (α ∈ [0, 1) and ρ 6⊥ σ)

+∞ otherwise
,

(2.2.38)
with the support conditions established in [183]. It is traditionally defined for α ∈ {0, 1,∞}
in the limit as α approaches 0, 1, and ∞, respectively. The Rényi relative entropy Dα (ρ‖σ)
is non-negative for all α ∈ [0, 1) ∪ (1, 2] whenever Tr{ρ} ≥ Tr{σ}. This implies that it is
always non-negative when ρ, σ ∈ S (H) (i.e. when both ρ and σ are density operators).
Furthermore, it is equal to zero if and only if ρ = σ.

The above definition is consistent with the following limit for α ∈ [0, 1) ∪ (1,∞)

lim
ξ↘0

1

α− 1
log Tr

{
[Tr {P}]−1 Pα (Q+ ξI)1−α} = Dα(P‖Q), (2.2.39)

as can be checked by a proof similar to [132, Lemma 13].
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Sandwiched Rényi relative entropy. For ρ ∈ S (H) (a density operator) and σ ∈
B (H)+ (a positive semi-definite operator), the sandwiched Rényi relative entropy of order
α ∈ (0, 1) ∪ (1,∞) is defined as [132, 198]

D̃α (ρ‖σ) ≡

 1
α−1

log
[
Tr
{(
σ(1−α)/2αρσ(1−α)/2α

)α}] if supp (ρ) ⊆ supp (σ) or
(α ∈ (0, 1) and ρ 6⊥ σ)

+∞ otherwise
.

(2.2.40)

The sandwiched Rényi relative entropy D̃α (ρ‖σ) is non-negative for all α ∈ [1/2, 1)∪ (1,∞)
whenever Tr{ρ} ≥ Tr{σ}, so that it is always non-negative for density operators ρ and σ.
Furthermore, it is equal to zero if and only if ρ = σ. The sandwiched Rényi relative entropy
has found a number of applications in quantum information theory recently in the context
of strong converse theorems [198], [131], [76], [184].

The above definition is consistent with the following limit

lim
ξ↘0

1

α− 1
log
[
Tr
{[

(σ + ξI)(1−α)/2α ρ (σ + ξI)(1−α)/2α
]α}]

= D̃α(ρ‖σ), (2.2.41)

as proved in [132, Lemma 13]. Whenever supp(ρ) ⊆ supp(σ) or (α ∈ (0, 1) and ρ 6⊥ σ), it
admits the following alternate forms:

D̃α (ρ‖σ) ≡ 1

α− 1
log
[
Tr
{(
σ(1−α)/2αρσ(1−α)/2α

)α}]
(2.2.42)

=
α

α− 1
log
∥∥σ(1−α)/2αρσ(1−α)/2α

∥∥
α

(2.2.43)

=
α

α− 1
log
∥∥ρ1/2σ(1−α)/αρ1/2

∥∥
α
. (2.2.44)

The most important property of the Rényi and sandwiched Rényi relative entropies,
which makes them useful for applications is given in the following theorem:

Theorem 2.4. The Rényi relative entropy and the sandwiched Rényi relative entropy obey
monotonicity under quantum operations for α ∈ [0, 1) ∪ (1, 2] and α ∈ [1/2, 1) ∪ (1,∞),
respectively, i.e., for a quantum operation N ,

Dα(ρ‖σ) ≥ Dα(N (ρ) ‖N (σ)) ∀α ∈ [0, 1) ∪ (1, 2], (2.2.45)

D̃α(ρ‖σ) ≥ D̃α(N (ρ) ‖N (σ)) ∀α ∈ [1/2, 1) ∪ (1,∞) . (2.2.46)

Proof. See [140] and [65] (also [11, 131, 198, 132] for other proofs of this for more limited
ranges of α), respectively.

Rényi conditional entropy and Rényi mutual information. The Rényi conditional
entropy for a bipartite state ρAB is defined for α ∈ (0, 1) ∪ (1,∞) as

Hα (A|B) ≡ −min
σB

Dα (ρAB‖IA ⊗ σB) (2.2.47)

=
α

1− α log Tr
{

(TrA {ραAB})1/α
}
, (2.2.48)

13



where Dα is the Rényi relative entropy defined in (2.2.38) and the second equality follows
from a Sibson identity [169]. The Rényi quantum mutual information of a bipartite state
ρAB is defined for α ∈ (0, 1) ∪ (1,∞) as

Iα (A;B)ρ ≡ min
σB

Dα (ρAB‖ρA ⊗ σB) (2.2.49)

=
α

α− 1
log Tr

{(
TrA

{
ρ1−α
A ραAB

}) 1
α

}
, (2.2.50)

where Dα is the Rényi relative entropy defined in (2.2.38) and the second equality follows
from a Sibson identity [76, Corollary 8].

2.3 A Brief Review on Entanglement Measures

Entanglement is widely argued as the characteristic feature of quantum mechanics. Given
the role of entanglement as a resource for quantum information processing, it is important to
be able to quantify how entangled a quantum state is. The topic of entanglement measures
[96] precisely deals with this question. The theory of entanglement tries to compare and
establish an order among states based on their entanglement content. There exist two main
approaches to the theory of entanglement measures:

1. Quantification based on single-copy and asymptotic manipulation of quantum states
using Local operations and classical communication (LOCC, described below),

2. Quantification based on real-valued mathematical functions that obey certain axioms
(which of course includes monotonicity under LOCC).

We now provide a brief overview of both these approaches. Note that we restrict our discus-
sion to the case of finite-dimensional, bipartite, systems.

2.3.1 Entanglement quantification based on LOCC manipulations

What is LOCC? LOCC is a widely used paradigm in entanglement theory. As the name
suggests, LOCC defines the set of allowed quantum operations that can be performed lo-
cally on the different parts of a bi- or multi-partite quantum state in quantum information
processing. A salient feature of LOCC is that it elevates entanglement to the status of a
physical resource. Without the LOCC constraint, any bipartite state can be transformed
into any other using a suitable nonlocal quantum map.

A typical LOCC protocol consists of compositions of the following operations:

1. Alice performs a quantum instrument, which is a map that has both a quantum as well
as a classical output. She forwards the classical output to Bob, who then performs a
quantum operation conditioned on the classical data received.

2. Alternatively, Bob performs the initial instrument and transfers the classical data to
Alice, who then performs a quantum operation conditioned on the classical data.
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Let us now describe LOCC transformations mathematically. Consider a general noisy evo-
lution of a quantum state that produces both a quantum and a classical output. A map
that effects such an evolution—often referred to as a quantum instrument—can be described
using linear completely positive operators Ek, whose sum is trace preserving. For example,
the action of a quantum instrument (Ek) on a density operator ρA can be written as

ρA → ρ̃AA′ :=
∑
k

(Ek)(ρA)⊗ |k〉〈k|A′ , (2.3.1)

where ρ̃AA′ is a valid density operator, and system A′ holds the classical output k. LOCC
transformations of a bipartite quantum state ρAB refer to all those transformations effected
within the constraints of use of only unilocal quantum instruments (Ek) and (Fk′) on the
subsystems A and B, respectively, along with the ability to exchange the classical outputs
k and k′ between A and B. Clearly, the set of LOCC transformations is a subset of the set
of all allowed quantum maps on the state ρAB.

Maximally entangled states. Recall the bipartite maximally entangled states of (2.1.3).
In fact, for a given dimensionality, these states are not unique, but a class in themselves,
which are local unitarily connected to each other. The reason why we know they are max-
imally entangled is that any pure, or mixed, and entangled, or separable, state can be
prepared from them by means of LOCC transformations alone. Since entanglement cannot
increase, but only decrease under LOCC transformations, it is clear why such states are more
entangled than other entangled states.

Examples of measures based on LOCC manipulations. State manipulation under
LOCC transformations can be used to establish a distinction between maximal and non-
maximal entangled states as is evident from the very notion of maximally entangled states
described above. Going beyond it does not enable comparison between the entanglement
content of two arbitrary non-maximally entangled quantum states. This is because LOCC
transformations are discontinuous in the space of bipartite density operators; so, given a
single copy of two non-maximally entangled quantum states, it may not be possible to
transform either into the other. Hence, it may not be possible to conclude which of two
given non-maximally entangled states is more entangled, as ideally wished, using LOCC
transformations. However, it turns out that by considering a large number of copies of the
entangled states, in the asymptotic limit, one can establish a comparison of the entanglement
content of even such non-maximally entangled states using LOCC transformations. For
example, say we have n and m copies of entangled states ρ and σ, respectively. Consider the
transformation ρ⊗n → σm effected by LOCC transformations on ρ⊗n, where ||σ⊗m−σm||1 < ε,
n, m are large numbers and ε > 0. A rate r = m/n for the above transformation is said
to be achievable if there exists LOCC transformations such that, in the limit n → ∞, the
error ε → 0. Now, one can use the optimal achievable rate rsup to define a measure of the
entanglement content of state ρ relative to that of state σ. Two of the most commonly used
entanglement measures defined in this fashion in the asymptotic limit are the entanglement
cost and the distillable entanglement.

For a given bipartite entangled state ρAB on systems A and B, the entanglement cost is
defined the best rate r = m/n at which m copies of a 2-qubit maximally entangled state can
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be transformed approximately into ρ⊗nAB, i.e.,

EC(ρ) = inf{r : lim
n→∞

[inf
Λ
D(ρ⊗nAB,Λ(|Φ〉〈Φ|⊗mAB ))]}, (2.3.2)

where Λ is an LOCC transformation, |Φ〉AB is the 2-qubit maximally entangled state, and
D is any suitable distance measure. It turns out that this measure is the regularization of
another entanglement measure called the entanglement of formation [81], which is defined
as

Ef (ρ) = min
p(x),|ψx〉

∑
x

p(x)Eent(|ψx〉〈ψx|AB), (2.3.3)

where ρAB =
∑

x p(x)|ψx〉〈ψx|AB is a spectral decomposition of ρ, and Eent(|ψ〉〈ψ|AB) is the
entropy of entanglement of the pure state |ψ〉AB, which is nothing but the von Neumann
entropy of the reduced density matrix of |ψ〉AB on either of the two systems A or B. That
is, the entanglement cost can be shown to be

EC(ρ) = lim
n→∞

Ef (ρ
⊗n
AB)

n
. (2.3.4)

The distillable entanglement of a state ρAB can be defined as

ED(ρ) = sup{r : lim
n→∞

[ inf
Λ∈LOCC

||Λ(ρ⊗nAB)− |Φ〉〈Φ|⊗mAB ‖]}, (2.3.5)

where Λ denotes the set of all possible LOCC transformations and |Φ〉AB is the 2-qubit
maximally entangled state. In analogy with the entanglement cost, this measure is to be
understood as the maximum rate at which one may obtain 2-qubit maximally entangled
states from n copies of the state ρ using LOCC transformations.

Pure states: Total order. It is easy to observe that the entanglement cost and the
distillable entanglement are defined based on two opposite processes, namely transforming
multiple copies of 2-qubit maximally entangled states into n copies of the state of interest
ρAB, and vice versa. The natural question that arises is whether the two processes become
equivalent, or reversible under any particular circumstances. It turns out that they do be-
come reversible for pure states ρAB, and further, the entanglement cost and the distillable
entanglement for pure states become identical—both reducing to the entanglement entropy
of ρAB, namely −Tr {ρA log ρA}. Therefore, given two pure states |ψ1〉 and |ψ2〉, when one
considers a transformation from many copies of one state to many copies of the other via
the intermediate step of distilling many 2-qubit maximally entangled states, reversibility is
maintained, which helps to establish a conclusive order between the states in their entan-
glement content based on the optimal achievable rate of the transformation (which involves
nothing but the entropy of entanglement of the relevant pure states).

However, reversibility is lost in the case of mixed states, and hence it becomes difficult
to establish total order for mixed entangled states using single-copy or asymptotic state
manipulation using LOCC transformations. Hence, one looks for alternative ways to quantify
entanglement in mixed states. This leads us to the axiomatic approach, which we discuss
next.
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2.3.2 Axiomatic approach to entanglement measures

In this approach to entanglement measures, one tries to define real-valued functions that sat-
isfy certain basic axioms which seem reasonable to characterize entanglement, such as con-
vexity, LOCC monotonicity, asymptotic continuity, faithfulness, additivity, and monogamy.
We now describe these axioms one by one.

Convexity. Consider a set of distinctly identifiable bipartite quantum states {ρxAB}nx=1, and
another state ρAB, which is their convex sum ρ =

∑
x p(x)ρxAB. The process of going from the

former (set of identifiable states) to the latter (convex sum) involves a loss of information,
which would decrease the amount of entanglement. In line with this observation, we expect
the following relation to hold for any entanglement measure defined on the space of these
states

E(ρAB) ≤
∑
x

p(x)E(ρxAB), (2.3.6)

where E refers to the entanglement measure.

LOCC monotonicity. Consider a bipartite quantum state ρAB, and two unilocal quantum
instruments (Ek1) and (Fk2), which act on the subsystems A and B, respectively, in order
to effect an LOCC transformation. Since entanglement cannot increase under LOCC trans-
formations, we expect the following relation to hold between the input and output states of
the LOCC transformation for any entanglement measure E

E(ρAC) ≥
∑
k1,k2

p(k1, k2)E(ρ̃k1,k2AC ), (2.3.7)

where p(k1, k2) = Tr{Ek1A ⊗Ek2C (ρAC)}, ρ̃k1,k2AC = 1
p(k1,k2)

(Ek1A ⊗Ek2C )(ρAC), and k1, k2 are classical
outputs.

Remark 2.5. A quantity is an entanglement monotone if it is an LOCC monotone and it
is convex [192].

Additivity. A measure E is additive if E(ρ⊗ σ) = E(ρ) + E(σ) for state ρ and σ.

Asymptotic continuity. An ideal property for an entanglement measure to possess is that,
in the case of pure states, it should reduce to the entropy of entanglement, since the latter
represents the optimal reversible rate of conversion between pure states in the asymptotic
limit. Asymptotic continuity over pure states is a property that, along with additivity,
LOCC monotonicity, and normalization over pure states, guarantees this. For a measure
E, and pure states |ψ〉 and |φ〉 such that ‖|ψ〉〈ψ| − |φ〉〈φ|‖1 ≤ ε, where ε > 0 is small, the
asymptotic continuity condition can be written as

E(|ψ〉〈ψ|⊗n)− E(|φ〉〈φ|⊗n)

1 + log d
→ 0 (2.3.8)

when ε → 0, where d is the dimensionality of the Hilbert space. This is related to the
Fannes-Audenaert inequality, which states that for density operators ρ and σ on the same
d-dimensional Hilbert space with T ≡ 1

2
‖ρ− σ‖1,

|H(ρ)−H(σ)| ≤ T log (d− 1) +H2 (T ) . (2.3.9)
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Faithfulness. A measure E is said to be faithful if E(ρAB) is equal to zero if and only if
the state ρAB is separable, i.e., E(ρAB) = 0 if and only if

min
σAB∈SA:B

||ρAB − σAB|| = 0, (2.3.10)

where SA:B is the set of separable states over the space of systems A and B.

Monogamy. A well-known property of entanglement is that it is monogamous, i.e., if a
quantum system is entangled with another, then its possible entanglement with a third
system gets constrained. For example, in the extreme case of maximal entanglement, if a
system is maximally entangled with another, then it simply cannot be entangled with a
third system. It is ideal for an entanglement measure to capture monogamy. One way for a
measure E to achieve this is by satisfying inequalities of the form:

E(A;B)ρ + E(A;C)ρ ≤ E(A;BC)ρ, (2.3.11)

where ρABC is a tripartite quantum state.

2.4 Quantum Optics: Brief Introduction, Optical States

A quantized mode of the electromagnetic field is completely described by its creation and
annihilation operators, â and â†, which satisfy the commutation relation

[
â, â†

]
= 1. They

are defined by their action on the number states of the mode, |n〉—also called Fock states,
given by:

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉. (2.4.1)

Pure states of the single-mode field (vectors in Hilbert space) can be expressed in terms
of the action of a suitable function of the mode creation and annihilation operators on the
vacuum state |0〉. For example, a Fock state |n〉 is â†√

n!
|0〉, where |0〉 is the vacuum state.

The coherent state is
|α〉 = D̂(α)|0〉, (2.4.2)

where D̂(α) = exp
(
αâ† − α∗â

)
is called the displacement operator, and α is a complex

number that denotes the amplitude of the state. Both the Fock states and the coherent states
form complete bases (the coherent states in fact form an over-complete basis). Therefore, any
pure state of the quantum single-mode field can be expressed in terms of these states. More
generally, any state of the single-mode field, including mixed states, which are ensembles of
pure states, can be written in terms of these states in the form of a density operator. For
example, the most general state of a single-mode field can be written in the Fock basis as
the following density operator:

ρ̂ =
∑
n,n′

pn,n′ |n〉〈n′|, Tr(ρ) = 1, ρ ≥ 0. (2.4.3)

Alternatively, a quantized mode can be described in terms of quasi-probability distribu-
tions in the phase space of eigenvalues x and p of the quadrature operators of the mode x̂
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and p̂. These operators are defined in terms of the creation and annihilation operators of the
mode as x̂ = â†+ â and p̂ = i(â†− â), respectively. The Wigner distribution of a single-mode
state can be obtained from its density operator of the form in (2.4.3) as:

W (α) =
1

2π2

∫
d2α̃Tr

{
ρ̂D̂(α̃)

}
e−α̃α

∗−α̃∗α, (2.4.4)

where α̃ = x̃+ ip̃ and α = x+ ip.
Squeezed light [69] refers to minimum uncertainty states of light whose fluctuations with

respect to one of any two orthogonal quadratures in phase space has been reduced at the
expense of increased fluctuations in the other. They are described mathematically using the
squeezing operator. The single-mode squeezing operator acting on a mode â is given by:

Ŝ(ξ) = exp

(
1

2
(ξâ†2 − ξ∗â2)

)
, (2.4.5)

where ξ = reiθ, r and θ being the squeezing parameter and squeezing angle, respectively.
The squeezed vacuum state, which is the state corresponding to the action of the squeezing
operator in (2.4.5) on the vacuum state is given by

|ξ〉 = Ŝ(ξ)|0〉

=
∞∑
m=0

(2m)!

22m(m!)2

tanh2m r

cosh r
|2m〉. (2.4.6)

It has a mean photon number of n = sinh2 r. There are numerous ways to generate squeezed
light. The most common method is based on degenerate parametric down conversion using
nonlinear crystals that contain second order (χ(2)) susceptibility. When a χ(2) nonlinear
crystal is pumped with photons of frequency ωp, some of these pump photons get converted
into a pair of photons—of frequencies ωp/2, which are in the single-mode squeezed vacuum
state of (2.4.6). The value of the squeezing parameter r is directly related to the power of
the pump beam used in the parametric down conversion process.

2.5 Quantum Parameter Estimation Theory

There exist two main paradigms in parameter estimation, (i) where an unknown parameter
is assumed to hold a deterministic value, (ii) where an unknown parameter is assumed to be
intrinsically random. In this thesis, we focus on the first one.

Consider N identical copies of a quantum state that has acquired information about
an unknown parameter of interest. Since the state carries the information about the pa-
rameter of interest, say ϕ, let us denote it as ρ̂ϕ. Now, consider a set of data points
x = {x1, x2, . . . , xν} that are obtained from the N copies of ρ̂ϕ as outcomes of a gener-
alized quantum measurement. Recall that a generalized quantum measurement is a positive
operator-valued measure (POVM), which is a collection of positive operators Λx, with the
index x ∈ {1, 2, . . . ,M} denoting the outcome of the measurement, whose probability of
occurrence for a state ρ, is given by p(x) = Tr{ρΛx}. The elements of a POVM add up to
the identity

∑
x Λx = I, which ensures that p(x) is a valid probability distribution. Since
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the data points are obtained by measuring identical copies of the quantum state , the Xis
∀i ∈ {1, 2, . . . , ν} are independent and identically distributed random variables that are dis-
tributed according to some probability distribution function pϕ(x). The goal is to apply a
suitable estimation rule ϕ̂ν to the data points, to obtain a good estimate for the unknown
parameter ϕ.

2.5.1 Classical and quantum Cramér-Rao bounds

When estimation rule ϕ̂ν is applied to a set of data points x, a good measure of precision
for the resulting estimate ϕ̂ν(x) is its mean-square error, given by:

∆2ϕ̂ν = E[(ϕ̂ν(x)− ϕ)2], (2.5.1)

where E denotes expectation value. For any estimation rule ϕ̂ν , which is unbiased, i.e.,

E[ϕ̂ν(x)] = ϕ, (2.5.2)

the Cramér-Rao theorem of classical estimation theory lower bounds the mean-square error
as

∆2ϕ̂ν ≥
1

νF (pϕ)
, (2.5.3)

where F (pϕ) is known as the Fisher information of the probability distribution given by

F (pϕ) = FCl(ρ̂ϕ,Λ
x) = E

[
− d2

dϕ2
log pϕ

]
. (2.5.4)

The above lower bound is called the classical Cram ér-Rao bound. It gives the optimal
precision of estimation that is possible when both the parameter-dependent quantum state
and the measurement scheme are specified. Estimation rules that attain the classical Cramér-
Rao bound are called efficient estimators. The maximum-likelihood estimator is an example
of an efficient estimator that attains the lower bound in the asymptotic limit.

The quantum theory of parameter estimation further provides an ultimate lower bound
on precision of estimation when the quantum state alone is specified. It goes by the name
of quantum Cram ér-Rao bound, and is given by

∆2ϕ̂ν ≥
1

νFQ(ρ̂ϕ)
, (2.5.5)

where FQ(ρ̂ϕ) is known as the quantum Fisher information, which is defined as the optimum
of the classical Fisher information over all possible generalized measurements:

FQ(ρ̂ϕ) = max
Λx

FCl(ρ̂ϕ,Λ
x). (2.5.6)

A measurement scheme that attains this lower bound is called an optimal measurement
scheme. The symmetric logarithmic derivative operation is one such measurement, which is
known to be optimal for all quantum states [27].
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In the case of entangled pure states, the quantum Fisher information takes the simplified
expression given by

FQ = 4∆2H, (2.5.7)

where Ĥ is the generator of parameter evolution. This gives rise to a generalized uncertainty
relation between the generating Hamiltonian of parameter evolution and the estimator that
is used for estimating the unknown value of the parameter, given by

∆2ϕ̂ν∆
2H ≥ 1

4ν
(2.5.8)

for a generating Hamiltonian Ĥ, and where ν is the number of data points gathered from
measuring identical copies of the state.

2.5.2 Shot-noise and Heisenberg limits

Consider linear interferometry, i.e., where Ĥ is linear in the number of probe particles used.
Then, for an N -particle probe state, where the probes are uncorrelated, and ν independent
and identical probe states, the quantum Cramér-Rao bound scales as

∆ϕ̂ν ≥
1√
νN

, (2.5.9)

referred to as the shot-noise limit. It is called so, because the scaling is identical to that of
a Poisson-distributed probe state of mean photon number n̄, which is given by

∆ϕ̂ν =
1√
n̄
, (2.5.10)

known in the classical literature as shot noise. On the other hand, when the N probes are
prepared in a maximally entangled state, e.g., in the N00N state in two-mode interferometry
given by

|Ψ〉N00N ≡
1√
2

(|N〉a ⊗ |0〉b + |0〉a ⊗ |N〉b) , (2.5.11)

then the quantum Cramér-Rao bound at best scales as

∆ϕ̂ν ≥
1√
νN

, (2.5.12)

for ν independent and identical copies of the state. The above lower bound is known as the
Heisenberg limit.
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Part I
Rényi Quantum Conditional Mutual

Information and Applications

Chapter 3
Rényi Squashed Entanglement and Rényi
Quantum Discord

3.1 Introduction

Quantum information theory is immensely useful in quantifying quantum correlations. In-
formation quantities such as the quantum entropy, conditional entropy, mutual information,
and quantum conditional mutual information (QCMI) underlie various measures of quan-
tum correlations. For example, the squashed entanglement and the quantum discord are
based upon the QCMI. Also, the operational meanings that the entropic quantities take in
information-theoretic protocols aid in understanding the correlation measures defined based
on them. The entropy finds operational meaning in the context of quantum data compres-
sion, the conditional entropy in quantum state merging, the mutual information in erasure
of total correlations and the conditional mutual information in quantum state redistribution.

In this chapter, we study two new quantifiers of quantum correlation defined based on
a Rényi QCMI (see Appendix B), namely, a Rényi squashed entanglement and a Rényi
quantum discord. We explore various properties of these measures, and some potential
applications.

3.2 Rényi Squashed Entanglement

Squashed entanglement: A brief review. The squashed entanglement mentioned above
in Section 3.1 is an entanglement measure defined based on the QCMI. We recall the formal
definition of the squashed entanglement below.
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Definition 3.1. The squashed entanglement of a bipartite state ρAB ∈ S (HAB) is defined
as

Esq (A;B)ρ ≡
1

2
inf
ωABE

{I (A;B |E )ω : ρAB = TrE {ωABE}} , (3.2.1)

where the infimum is over all possible extensions ωABE of the state ρAB and I (A;B |E )ω is
the quantum conditional mutual information from (A.2.1).

The squashed entanglement can also be equivalently defined as

Esq (A;B)ρ ≡
1

2
inf
SE′→E

{
I (A;B |E )SE′→E(ψABE′ )

}
, (3.2.2)

where ψABE′ is any purification of the state ρAB and SE′→E is a quantum channel called
the “squashing channel”. Conceptually speaking, the squashed entanglement of a state ρAB
shared between Alice and Bob captures how much quantum correlations between Alice and
Bob survive despite the attempts of a third party Eve, who has access to an extension of the
state, to try and squash down the correlations.

The squashed entanglement is known to hold many of the properties that are desired of
an entanglement measure in the axiomatic approach to such measures. For example, it is
monotone non-increasing under LOCC, it is additive on tensor product states and subadditive
in general [40]. It is faithful in the sense that the measure equals zero if and only if the state
is separable [25, 120] and is asymptotically continuous [4]. The squashed entanglement is
normalized on maximally entangled states and private states: for a maximally entangled
state of Schmidt rank d, the squashed entanglement equals log d [40], and is at least log d
for a private state of (2.1.4) containing log d private bits [36, Proposition 4.19]. Further, the
squashed entanglement of a state ρAB is an upper bound on the rate at which Bell states
can be distilled per copy of ρAB using LOCC in the independent and identically distributed
(i.i.d.) limit of a large number of copies of the state [40]. Similarly, it is also an upper bound
on the rate at which private states can be distilled using LOCC in the i.i.d. limit [37].

A Rényi squashed entanglement. Likewise, a Rényi squashed entanglement can be
defined based on a Rényi QCMI. We now formally define the quantity.

Definition 3.2. The Rényi squashed entanglement of a bipartite state ρAB ∈ S (HAB) is
defined for α ∈ (0, 1) ∪ (1,∞) as

Esq
α (A;B)ρ ≡

1

2
inf
ωABE

{Iα (A;B |E )ω : ρAB = TrE {ωABE}} , (3.2.3)

where the infimum is over all extensions ωABE of the state ρAB and Iα (A;B |E )ω is the
Rényi quantum conditional mutual information from Definition B.1.

We will now prove some of the afore-mentioned axioms for the Rényi squashed entangle-
ment. However, before we do so, it is important to emphasize that many of the results we
prove in this section rely on the following conjecture:
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Conjecture 3.3. The Rényi quantum conditional mutual information of Definition B.1
obeys monotonicity under CPTP maps on system A, i.e., for ρABE ∈ S (HABE) and α ∈
(0, 1) ∪ (1, 2],

Iα (A;B |E )ρ ≥ Iα (A′;B |E )τ , (3.2.4)

where τA′BE ≡MA→A′ (ρABE) and MA→A′ is a CPTP map acting on system A alone.

3.2.1 An entanglement monotone

Assuming Conjecture 3.3, we now prove that the Rényi squashed entanglement defined in
Definition 3.2 is an entanglement monotone for α ∈ (0, 1)∪ (1, 2]. In order to do so, we show
that under the said assumption, the Rényi squashed entanglement Esq

α (A;B)ρ is monotone
under local operations and classical communication (LOCC) and convex.

Consequence 3.4. Assuming Conjecture 3.3, the Rényi squashed entanglement Esq
α (A;B)ρ

is monotone under local operations for α ∈ (0, 1) ∪ (1, 2]

Esq
α (A;B)ρ ≥ Esq

α (A′;B′)σ (3.2.5)

where ρAB ∈ S (HAB), σA′B′ ≡ (NA→A′ ⊗MB→B′) (ρAB), and NA→A′ andMB→B′ are CPTP
maps.

Proof. This follows directly from monotonicity under local operations of the Rényi QCMI
Iα (A;B |E )ρ.

Consequence 3.5. Assuming Conjecture 3.3, the Rényi squashed entanglement Esq
α (A;B)ρ

is invariant under classical communication between A and B for α ∈ (0, 1) ∪ (1, 2], i.e.,

Esq
α (XAA;B)ρ = Esq

α (XAA;XBB)ρ = Esq
α (A;XBB)ρ , (3.2.6)

where ρXAAXBB ≡
∑
x

pX (x) |x〉 〈x|XA ⊗ |x〉 〈x|XB ⊗ ρxAB.

Proof. Let ρxABE be any extension of ρxAB, and |ϕρX 〉ABER be a purification of ρxABE. Then,

ρXAABE ≡
∑
x

pX (x) |x〉 〈x|XA ⊗ ρ
x
ABE

is an extension of ρXAAB, and

|ϕρ〉XAXRABER ≡
∑
x

√
pX (x) |x〉XA ⊗ |x〉XR ⊗ |ϕ

ρX 〉ABER ,

a purification of ρXAABE. Further, consider the state ϕρXAXBXRABER defined as

ϕρXAXBXRABER ≡
∑
x

pX (x) |x〉 〈x|XA ⊗ |x〉 〈x|XB ⊗ |x〉 〈x|XR ⊗ ϕ
ρx
ABER,

24



where the state of XA has been copied to XB, and let θXAXBXRABERFbe a purification of
ϕρXAXBXRABER. We then have that Iα (XAA;B |E )ρ

= Iα (B;XAA |XRR)ϕρ (3.2.7)

≥ Iα (B;XAA |XRR)ϕρ (3.2.8)

=
α

α− 1
log
∑
x

pX (x) exp

{(
α− 1

α

)
Iα (XAA;B |R)|x〉〈x|XA⊗ϕ

ρx

}
(3.2.9)

=
α

α− 1
log
∑
x

pX (x) exp

{(
α− 1

α

)
Iα (XAA;XBB |R)|x〉〈x|XA⊗|x〉〈x|XB⊗ϕ

ρx

}
(3.2.10)

= Iα (XBB;XAA |XRR)ϕρ (3.2.11)

= Iα (XAA;XBB |EF )θ (3.2.12)

≥ 2Esq
α (XAA;XBB)ρ . (3.2.13)

The first equality follows from duality of the Rényi QCMI. The first inequality is a result of
monotonicity under a local dephasing operation∑

|x〉 〈x|XA (·) |x〉 〈x|XA , (3.2.14)

which relies on Conjecture 3.3. The second equality follows from Lemma D.6 given in
Appendix D.2.4. The third equality is an application of Lemma D.7 given in Appendix
D.2.5. The fourth equality is from another application of Lemma D.6. The fifth equality is
from another application of duality. The final inequality is a result of Definition 3.2. Since
the inequality holds for any extension of ρXAAB, it follows that

Esq
α (XAA;B)ρ ≥ Esq

α (XAA;XBB)ρ . (3.2.15)

By a similar line of reasoning, but without having to rely on Conjecture 3.3, it follows that

Esq
α (A;XBB)ρ ≥ Esq

α (XAA;XBB)ρ . (3.2.16)

However, from monotonicity of Esq
α under local operations, we already know that

Esq
α (XAA;B)ρ ≤ Esq

α (XAA;XBB)ρ , (3.2.17)

Esq
α (A;XBB)ρ ≤ Esq

α (XAA;XBB)ρ . (3.2.18)

Therefore, (3.2.15)-(3.2.18) give the statement of the proposition.

Consequence 3.6. Assuming Conjecture 3.3, Propositions 3.4 and 3.5 together imply that
the Rényi squashed entanglement Esq

α (A;B)ρ is an LOCC monotone for α ∈ (0, 1) ∪ (1, 2].

Proposition 3.7. The Rényi squashed entanglement Esq
α (A;B)ρ is convex for α ∈ (0, 1),

i.e., for a state ρ̄AB ≡
∑
x

pX (x)ρxAB,

Esq
α (A;B)ρ̄ ≤

∑
x

pX (x)Esq
α (A;B)ρx . (3.2.19)
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Proof. Let ρxABE be any extension of ρxAB. Then

ρABEX ≡
∑
x

pX (x) |x〉 〈x|X ⊗ ρxABE (3.2.20)

is an extension of ρ̄AB. Therefore, we have that

2Esq
α (A;B)ρ̄ ≤ Iα (A;B |EX )ρ (3.2.21)

=
α

α− 1
log
∑
x

pX (x) exp

{(
α− 1

α

)
Iα (A;B |E )ρx

}
(3.2.22)

≤
∑
x

pX (x)

[
α

α− 1
log exp

{(
α− 1

α

)
Iα (A;B |E )ρx

}]
(3.2.23)

=
∑
x

pX (x) Iα (A;B |E )ρx . (3.2.24)

The first inequality follows from Definition 3.2. The second inequality follows from the
convexity of − log. Of course this step is applicable only for α ∈ (0, 1), which forms the
bottleneck of this proof. Since the inequality holds for any extension of each ρxAB, we can
conclude the statement of the proposition.

Consequence 3.8. Assuming Conjecture 3.3, Remark 3.6 and Proposition 3.7 together
imply that the Rényi squashed entanglement Esq

α (A;B)ρ is an entanglement monotone for
α ∈ (0, 1).

3.2.2 More properties

Proposition 3.9. For separable state ρAB ∈ S (HAB), the Rényi squashed entanglement
Esq
α (A;B)ρ vanishes for α ∈ (0, 1) ∪ (1,∞).

Proof. Consider any separable state ρAB ∈ S (HAB). We can write it as a convex sum of
tensor product of pure states as follows:

ρAB =
∑
x

pX (x) |ψx〉 〈ψx|A ⊗ |φx〉 〈φx|B . (3.2.25)

Let ρABX =
∑
x

pX (x) |ψx〉 〈ψx|A⊗ |φx〉 〈φx|B be an extension of ρAB. Then, by applying

Lemma D.6, we find that

Iα (A;B |X ) =
α

α− 1
log
∑
x

pX (x) exp(α−1
α )Iα(A;B)ψx⊗φx . (3.2.26)

However, the Rényi mutual information is equal to zero for any product state. This
implies that

Iα (A;B |X ) =
α

α− 1
log
∑
x

pX (x) = 0. (3.2.27)
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Proposition 3.10. For tensor product states ρA1A2B1B2 ≡ σA1B1 ⊗ τA2B2 ∈ S (HA1A2B1B2),
the Rényi squashed entanglement Esq

α (A;B)ρ is subadditive for α ∈ (0, 1) ∪ (1,∞), i.e.,

Esq
α (A1A2;B1B2)ρ ≤ Esq

α (A1;B1)σ + Esq
α (A2;B2)τ . (3.2.28)

Proof. Let σA1B1E1 and τA2B2E2 be extensions of σA1B1 and τA2B2 . Then, we have that

ωA1B1E1A2B2E2 ≡ σA1B1E1 ⊗ τA2B2E2 (3.2.29)

is an extension of ρA1A2B1B2 . Therefore, we have that

2Esq
α (A1A2;B1B2)ρ ≤ Iα (A1A2;B1B2 |E1E2 )ω (3.2.30)

= Iα (A1;B1 |E1 )σ + Iα (A2;B2 |E2 )τ . (3.2.31)

The inequality follows from Definition 3.2, and equality follows by direct substitution of the
state ω into (B.4.11). Since the inequality is independent of the particular extensions σA1B1E1

and τA2B2E2 , the statement of the proposition follows.

3.2.3 Relations to Rényi entropy of entanglement and Rényi entanglement of
formation

The entropy of entanglement [13] and the entanglement of formation [15] are among the
earliest proposed measures of entanglement for bipartite pure and mixed states, respectively.
The entropy of entanglement of a bipartite pure state ψAB ∈ S (HAB) is defined as the von
Neumann entropy of either reduced density operators, i.e.,

E (A;B)ψ ≡ H (A)ψ = H (B)ψ . (3.2.32)

The entanglement of formation of a bipartite mixed state is based upon the entropy of
entanglement via an extended convex roof construction. For a state ρAB ∈ S (HAB), the
entanglement of formation is defined as

EF (A;B) ≡ min
{pX(x), |ψx〉AB}

{∑
x

pX (x)E (A;B)ψx : ρAB =
∑
x

pX (x) |ψx〉 〈ψx|AB

}
(3.2.33)

= min
{pX(x), |ψx〉AB}

{
H (A |X )σ : σABX =

∑
x

pX (x) |x〉 〈x|X ⊗ |ψx〉 〈ψx|AB

}
,

(3.2.34)

where the state ρAB has been decomposed into a mixture of pure states, and the state σABX
is a classical-quantum state constructed based on the decomposition.

Likewise, a Rényi entropy of entanglement and entanglement of formation can be defined
with the Rényi entropies in place of the von Neumann entropies. We now formally define
these quantities.
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Definition 3.11. The Rényi entropy of entanglement of a bipartite pure state ψAB ∈
S (HAB) is defined for α ∈ (0, 1) ∪ (1,∞) as Hα (A)ψ. Further, the Rényi entanglement
of formation of a bipartite state ρAB ∈ S (HAB) is defined for α ∈ (0, 1) ∪ (1,∞) as

EF
α (A;B)ρ ≡ inf

{pX(x), |ψx〉AB}

{
Hα (A |X )σ : σABX =

∑
x

pX (x) |x〉 〈x|X ⊗ |ψx〉 〈ψx|AB

}
,

(3.2.35)
where Hα (A |X )σ is the Rényi conditional entropy of (2.2.47), σABX is the classical extension
of ρAB based on its decomposition into a mixture of pure states.

Proposition 3.12. For a pure state ψAB ∈ S (HAB) and for α ∈ (0, 1) ∪ (1, 2] , the Rényi
squashed entanglement is related to the Rényi entropy of entanglement as

Esq
α (A;B)ψ = H(2−α)/α (A)ψ .

Proof. Consider that any extension of a pure state ψAB is of the form ψAB⊗ωE. So applying
Lemma D.7, we find that

Iα (A;B|E)ψ⊗ω = Iα (A;B)ψ . (3.2.36)

The Rényi mutual information of a pure state can then be evaluated as

Iα (A;B)ψ =
α

α− 1
log Tr

{(
TrA

{
ψ1−α
A ψαAB

})1/α
}

(3.2.37)

=
α

α− 1
log Tr

{(
TrA

{
ψ1−α
A ψAB

})1/α
}

(3.2.38)

=
α

α− 1
log Tr

{(
TrA

{
ψ1−α
B ψAB

})1/α
}

(3.2.39)

=
α

α− 1
log Tr

{(
ψ1−α
B ψB

)1/α
}

(3.2.40)

=
α

α− 1
log Tr

{
ψ

(2−α)/α
B

}
(3.2.41)

= 2
1

1− (2− α) /α
log Tr

{
ψ

(2−α)/α
B

}
(3.2.42)

= 2H(2−α)/α (B)ψ (3.2.43)

= 2H(2−α)/α (A)ψ . (3.2.44)

The first equality follows from (2.2.50). The second equality follows because ψαAB = ψAB
for a pure state ψ. The third equality follows because ψ1−α

A |ψ〉AB = ψ1−α
B |ψ〉AB for a pure

bipartite state ψ. The fourth equality follows by taking the partial trace over system A. The
rest of the equalities are straightforward, by applying the definition of the Rényi entropy.

Corollary 3.13. The Rényi squashed entanglement is normalized on maximally entangled
states, in the sense that for α ∈ (0, 1) ∪ (1, 2]

Esq
α (A;B)Ψ = log d, (3.2.45)

where d is the Schmidt rank of the maximally entangled state ΨAB.
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Proof. This follows from Proposition 3.12 and from the fact that the Rényi entropy of a
maximally mixed state of dimension d is equal to log d.

Proposition 3.14. The Rényi entanglement of formation of ρAB ∈ S(HAB) can be written
as

EF
α (A;B)ρ

= min
{pX(x),|ψx〉AB}

{
α

1− α log
∑
x

pX (x)
[
Tr {(ψxA)α}1/α

]
: ρAB =

∑
x

pX (x) |ψx〉 〈ψx|AB

}
.

(3.2.46)

Proof. By applying the Sibson identity mentioned in [169] to Hα (A|X)σ in (3.2.35), we
find that

Hα (A|X)σ =
α

1− α log Tr
{

(TrA {σαAX})1/α
}

(3.2.47)

=
α

1− α log Tr


(

TrA

{∑
x

pαX (x) |x〉 〈x|X ⊗ (ψxA)α
})1/α

 (3.2.48)

=
α

1− α log Tr


({∑

x

pαX (x) |x〉 〈x|X Tr {(ψxA)α}
})1/α

 (3.2.49)

=
α

1− α log
∑
x

pX (x)
[
Tr {(ψxA)α}1/α

]
. (3.2.50)

Finally, by an application of the Carathodory theorem, we know that the infimum can be
replaced by a minimum because 2

1−α
α
Hα(A|X)σ can be written as a convex combination of

Tr{(ψxA)α}1/α
, which is a continuous function of the marginals of the elements of a convex

decomposition of the state ρAB and these marginals are elements of a compact set.

Proposition 3.15. For ρAB ∈ S(HAB), the Rényi squashed entanglement is upper bounded
by the Rényi entanglement of formation for α ∈ (0, 1) ∪ (1, 2) as

EF
(2−α)/α (A;B)ρ ≥ Esq

α (A;B)ρ . (3.2.51)

Proof. Consider a spectral decomposition of ρAB in terms of an ensemble{pX (x) , |ψx〉AB}
ρAB =

∑
x

pX (x) |ψx〉 〈ψx|AB . (3.2.52)

Let σXAB be a classical extension of ρAB, given by

σXAB =
∑
x

pX (x) |x〉 〈x|X ⊗ |ψx〉 〈ψx|AB . (3.2.53)

Consider that

Hβ (A|X) =
β

1− β log
∑
x

pX (x)

[
Tr
{

(ψxA)β
}1/β

]
(3.2.54)

=
1

1− β log

[∑
x

pX (x)

[
Tr
{

(ψxA)β
}1/β

]]β
. (3.2.55)
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For β ∈ (0, 1) ∪ (1,∞), we have from concavity / convexity of the function xβ that

Hβ (A|X) ≥ 1

1− β log
∑
x

pX (x) Tr
{

(ψxA)β
}
. (3.2.56)

Let β = (2− α) /α. Then, from (3.2.56), for α ∈ (0, 1) ∪ (1, 2), we have that

H(2−α)/α (A|X) ≥ 1

1− (2− α) /α
log
∑
x

pX (x) Tr
{

(ψxA)(2−α)/α
}
. (3.2.57)

Now consider that

1

2
Iα (A;B|X)σ =

1

2

α

α− 1
log
∑
x

pX (x) exp(α−1
α )Iα(A;B)ψx (3.2.58)

=
1

2

α

α− 1
log
∑
x

pX (x) exp
(α−1

α ) α
α−1

log Tr

{
(ψxA)

(2−α)/α
}

(3.2.59)

=
1

2

α

α− 1
log
∑
x

pX (x) Tr
{

(ψxA)(2−α)/α
}

(3.2.60)

=
1

1− (2− α) /α
log
∑
x

pX (x) Tr
{

(ψxA)(2−α)/α
}
. (3.2.61)

The first equality follows by applying Lemma D.6. The second equality follows from some
steps given in the proof of Proposition 3.12. The last two equalities are straightforward.

From (3.2.57) and (3.2.61), we have that

H(2−α)/α (A|X) ≥ 1

2
Iα (A;B|X) . (3.2.62)

The statement of the proposition follows from (3.2.62), because

1

2
Iα (A;B|X) ≥ Esq

α (A;B)ρ , (3.2.63)

which in turn follows because the state in (3.2.53) is a particular extension of the state ρAB
and by definition, the Rényi squashed entanglement is equal to the infimum over all such
extensions. So putting together (3.2.62) and (3.2.63) gives the statement of the proposition.

We end this section with Table 3.1, which summarizes the properties of the Rényi
squashed entanglement and draws a comparison with those of the von Neumann entropy
based squashed entanglement.

3.3 Rényi Quantum Discord

Quantum discord: A brief review. The quantum discord of a bipartite state ρAB is
defined as the gap between the quantum mutual information I (A;B)ρ ≡ H (A)ρ +H (B)ρ−
H (AB)ρ and the mutual information after one of the systems A or B has been measured,
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Table 3.1: Properties of the Rényi squashed entanglement in comparison to those of the
original von Neumann entropy based squashed entanglement. question marks indicate prop-
erties that remain open for the Rényi squashed entanglement of Definition 3.2. Two of
the properties for the Rényi squashed entanglement rely on conjectures. Conj. 3.3 is the
statement that the Rényi conditional quantum mutual information obeys monotonicity un-
der quantum operations on system A, i.e., for ρABE ∈ S(HABE) and α ∈ (0, 1) ∪ (1, 2],
Iα (A;B|E)ρ ≥ Iα (A′;B|E)τ , where τA′BE ≡ MA→A′(ρABE) and MA→A′ is a CPTP map
acting on system A alone. Conjecture B.25 is the statement that the Rényi conditional
quantum mutual information is monotone non-decreasing in the Rényi parameter, i.e.,
Iα(A;B|C) ≤ Iβ(A;B|C) for 0 ≤ α ≤ β.

Property Squashed Ent. Rényi Squashed Ent.
of (3.2.1) of (3.2.3)

Normalized X X
for α ∈ (0, 1) ∪ (1, 2]

LOCC Monotonicity X if Conj. 3.3 true,
then true for α ∈ (0, 1) ∪ (1, 2]

Convexity X X
for α ∈ (0, 1)

Faithfulness X vanishing on sep. states for α ∈ (0, 1) ∪ (1,∞);
if Conj. B.25 true,

then true for α ∈ (1,∞)
Additivity X subadditive for α ∈ (0, 1) ∪ (1,∞)
Monogamy X ?

Non-lockability X ?
Asymptotic Continuity X ?
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where the latter is maximized over all measurements [136, 207]. That is, if the measurement
occurs on system A, then the quantum discord is defined as

D(A;B)ρ ≡ I (A;B)ρ −max
{Λx}

I(X;B)ω, (3.3.1)

with the overbar denoting the system being measured, and

ωXB ≡
∑
x

|x〉〈x|X ⊗ TrA{(Λx
A ⊗ IB)ρAB}, (3.3.2)

Λx ≥ 0 ∀x, and
∑

x Λx = I. (It is well known to be sufficient to optimize the quantum discord
over rank-one POVMs [129].) The quantum discord characterizes quantum correlations that
are different from those due to entanglement. It is non-negative, invariant under local unitary
operations, and equal to zero if and only if the state is classical on the system being measured.

We think that it is an important conceptual realization that the quantum discord can
be re-expressed in terms of the QCMI [145]. To see how this comes about, consider the
following. Let MA→X denote the following measurement map on a state σA:

MA→X (σA) ≡
∑
x

Tr {Λx
AσA} |x〉 〈x|X . (3.3.3)

Using this, we can write (3.3.2) as ωXB = MA→X (ρAB). Now, to every measurement map
MA→X , we can find an isometric extension of it, having the following form:

UMA→XE |ψ〉A ≡
∑
x

|x〉X |x, y〉E 〈ϕx,y|A |ψ〉A , (3.3.4)

where the vectors
{
|ϕx,y〉A

}
are part of a rank-one refinement of the POVM {Λx

A}:

Λx
A =

∑
y

|ϕx,y〉 〈ϕx,y| . (3.3.5)

Thus,
MA→X (σA) = TrE

{
UMA→XE (σA)

}
, (3.3.6)

where
UMA→XE (σA) ≡ UMA→XE (σA)

(
UMA→XE

)†
. (3.3.7)

Figure 3.1 illustrates this equivalence between the action of a measurement map and its
isometric extension.

ρAB

A

B

{Λx}
X

B

ωXB} ρAB

A

B

X

E

B

ωXEB}UM
A→XE

Figure 3.1: A measurement map M described by {Λx}, and its isometric extension UM.

Let ωXEB denote the following state:

ωXEB = UMA→XE (ρAB) . (3.3.8)
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We can use the above development to rewrite the objective function of the quantum discord
in (3.3.1) as follows:

I (A;B)ρ − I (X;B)ω = I (XE;B)ω − I (X;B)ω (3.3.9)

= I (E;B|X)ω . (3.3.10)

Thus, the quantum discord can be defined in terms of the QCMI as follows.

Definition 3.16. The quantum discord of a state ρAB ∈ S (HAB)is defined as

D
(
A;B

)
ρ
≡ min
{Λx}

I (E;B|X)ω , (3.3.11)

where the optimization is over all possible POVMs acting on system A, with X being the
classical output and E being an environment for the measurement map, so that

ωXEB ≡ UA→XEρABU
†
A→XE, (3.3.12)

UA→XE|ψ〉A ≡
∑
x

|x〉X ⊗
(√

Λx|ψ〉A ⊗ |x〉
)
E
. (3.3.13)

Here UA→XE (·)U †A→XE is an isometric extension of a generalized rank-one POVM-based
measurement mapMA→X (·) =

∑
x Tr {Λx·} |x〉 〈x|X acting on system A. Thus, the quantum

discord captures how much correlations are lost to the environment in the act of a quantum
measurement. This interpretation is made concrete in [197, Section 6.3].

A Rényi quantum discord. Similarly to Definition 3.16, a Rényi quantum discord can be
defined with a Rényi QCMI in place of the QCMI. We now formally define the quantity.

Definition 3.17. The Rényi quantum discord of a state ρAB ∈ S (HAB) is defined for
α ∈ (0, 1) ∪ (1, 2] as

D
(
Ā;B

)
ρ
≡ inf
{Λx}

Iα (E;B|X)ρ , (3.3.14)

where ρEXB = UA→EX (ρAB), UA→EX (·) ≡ UA→EX (·)U †A→EX is an isometric extension map
of a generalized rank-one POVM-based measurement map MA→X (·) =

∑
x Tr {Λx·} |x〉 〈x|X

acting on system A.

3.3.1 Properties

We now prove that the Rényi quantum discord for α ∈ (0, 1) ∪ (1, 2] is non-negative, invariant
under local unitaries, vanishes on the set of classical-quantum states, and is optimized by a
rank-one POVM.

Proposition 3.18. The Rényi quantum discord Dα(A;B)ρ is non-negative for α ∈ (0, 1) ∪ (1, 2].

Proof. This follows easily from the fact that the Rényi conditional mutual information is
non-negative for α ∈ (0, 1) ∪ (1, 2] [18, Corollary 16].

Proposition 3.19. For a classical-quantum state ρAB ∈ S(HAB) the Rényi quantum discord
is equal to zero for α ∈ (0, 1) ∪ (1,∞).
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Proof. Consider a classical-quantum state ρAB:

ρAB =
∑
x

pX (x) |x〉 〈x|A ⊗ ρxB. (3.3.15)

Let the dilation of a von Neumann measurement of system A be |x〉A → |x〉X |x〉E, so that
it produces

ρXEB ≡
∑
x

p (x) |x〉 〈x|X ⊗ |x〉 〈x|E ⊗ ρxB. (3.3.16)

So the conditioning system X is classical. Applying Lemma D.6, we find that

Iα (E;B|X) =
α

α− 1
log
∑
x

pX (x) exp(α−1
α )Iα(E;B)|x〉〈x|⊗ρx =

α

α− 1
log
∑
x

pX (x) = 0.

(3.3.17)

Combining this with the previous proposition, we see that it is equal to zero for classical-
quantum states.

Proposition 3.20. The Rényi quantum discord Dα(A;B)ρ is invariant under local unitaries
for α ∈ (0, 1) ∪ (1,∞).

Proof. First, from the definition of Iα (A;B|E), we can see that this quantity is invariant
under local unitaries. It then immediately follows that the Rényi discord is invariant under
local unitaries UA ⊗ VB. That is, if the optimal measurement is given by {Λx

A}, then the

optimal measurement under a local unitary UA can be taken as
{
U †AΛx

AUA

}
.

Proposition 3.21. The infimum in the definition of Rényi quantum discord (Definition 3.17)
is optimized by a rank-one POVM for α ∈ (0, 1) ∪ (1, 2].

Proof. Consider an arbitrary measurement map

M (σ) ≡
∑
x

Tr {Λxσ} |x〉 〈x|X , (3.3.18)

and a spectral decomposition of each Λx:

Λx =
∑
y

µy |φx,y〉 〈φx,y| . (3.3.19)

For a fixed x, the set {|φx,y〉}y is orthonormal. Furthermore, the set {µy |φx,y〉 〈φx,y|}x,y
forms a POVM (a rank-one refinement of the original POVM). We can then rewrite the
measurement map as

M (σ) =
∑
x,y

Tr {µy |φx,y〉 〈φx,y|σ} |x〉 〈x|X . (3.3.20)

In this way, we can already see that there is some loss of information when discarding the
outcome y. An isometric extension of the original measurement map is specified by

UMA→EXEY X |ψ〉A ≡
∑
x,y

√
µy
(
|φx,y〉E 〈φx,y|A

)
|ψ〉A ⊗ |x〉XE |y〉Y ⊗ |x〉X . (3.3.21)
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This is because the original map is recovered by tracing over the environmental systems
EXEY :

TrEXEY

{
UMA→EXEY Xσ

(
UMA→EXEY X

)†}
= TrEXEY

{ ∑
x,y,x′,y′

√
µy
√
µy′
(
|φx,y〉E 〈φx,y|A

)
σ |φx′,y′〉A 〈φx′,y′ |E ⊗ |x〉 〈x′|XE ⊗ |y〉 〈y

′|Y

⊗ |x〉 〈x′|X
}

(3.3.22)

=
∑
x,y

µy
(
〈φx,y|E |φx,y〉E 〈φx,y|A

)
σ |φx,y〉A ⊗ |x〉 〈x|X (3.3.23)

=
∑
x,y

Tr {µy |φx,y〉 〈φx,y|σ} |x〉 〈x|X (3.3.24)

=M (σ) . (3.3.25)

Let ψρRAB be a purification of the state ρAB on which we are evaluating the Rényi discord.
Then let ωREXEY XB be the following pure state:

ωREXEY XB ≡ UMA→EXEY Xψ
ρ
RAB

(
UMA→EXEY X

)†
. (3.3.26)

Consider the following chain of inequalities:

Iα (EXEY ;B|X)ω = Iα (B;EXEY |R)ω ≥ Iα (B;EXE|R)ω = Iα (EXE;B|XY )ω . (3.3.27)

The first equality is by duality of the Rényi QCMI. The second inequality is from mono-
tonicity under local quantum operation. The last equality is again from duality. But now
consider that the last quantity corresponds to the quantum discord for the following refined
rank-one measurement map:

σ →
∑
x,y

Tr {µy |φx,y〉 〈φx,y|σ} |x〉 〈x|X ⊗ |y〉 〈y|Y . (3.3.28)

Furthermore, the systems EXE above play the role of the environment of the refined rank-one
measurement map from A to X and Y . This is because

TrEXE

{
UMA→EXEY Xσ

(
UMA→EXEY X

)†}
= TrEXE

{ ∑
x,y,x′,y′

√
µy
√
µy′
(
|φx,y〉E 〈φx,y|A

)
σ |φx′,y′〉A 〈φx′,y′ |E ⊗ |x〉 〈x′|XE

⊗ |y〉 〈y′|Y ⊗ |x〉 〈x′|X
}

(3.3.29)

=
∑
x,y,y′

µy
(
〈φx,y′|E |φx,y〉E 〈φx,y|A

)
σ |φx,y′〉A ⊗ |y〉 〈y′|Y ⊗ |x〉 〈x|X (3.3.30)

=
∑
x,y,y′

µy 〈φx,y|A σ |φx,y〉A ⊗ |y〉 〈y|Y ⊗ |x〉 〈x|X (3.3.31)

=
∑
x,y

Tr {µy |φx,y〉 〈φx,y|σ} |x〉 〈x|X ⊗ |y〉 〈y|Y . (3.3.32)
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Since a rank-one POVM always achieves a lower value of the Rényi quantum discord, it
suffices to optimize over only these kinds of POVMs when calculating it.

A different Rényi quantum discord. At this point we would like to note that a different
Rényi generalization of the quantum discord Dα(A;B)ρ, proposed in [128], is optimized by
a rank-one POVM as well. This quantity was defined based upon an optimization over
rank-one projective measurements, but can be extended to an optimization over all POVMs.
Consider the definition for the Rényi discord of a bipartite state ρAB proposed in [128,
Eq. (26)] (with projective measurements replaced by POVMs {Λx}):

Dα(A;B)ρ ≡ min
σA,σB

Dα(ρAB‖σA ⊗ σB)−max
{Λx}

min
σX ,σB

Dα(ρXB‖σX ⊗ σB). (3.3.33)

The sufficiency of rank-one POVMs {Λx} in the above definition can be proven along the
following lines. Similar to the proof of Proposition 3.21, consider a spectral decomposition
of the POVM elements {Λx}:

Λx =
∑
y

µxy |φx,y〉 〈φx,y| . (3.3.34)

Once again, for a fixed x, the set {|φx,y〉}y is orthonormal, and the set {µxy |φx,y〉 〈φx,y|}x,y
forms a rank-one refinement of the original POVM. The output state corresponding to the
measurement consisting of these above rank-one refinements can be written as

ρXY B =
∑
x,y

|x〉 〈x|X ⊗ |y〉 〈y|Y ⊗ µxy 〈φx,y|A ρAB |φx,y〉A . (3.3.35)

Due to the monotonicity of the Rényi relative entropy under local quantum operations, we
have that

min
σXY ,σB

Dα(ρXY B‖σXY ⊗ σB) ≥ min
σX ,σB

Dα(ρXB‖σX ⊗ σB). (3.3.36)

This implies

max
{µy |φx,y〉〈φx,y |}x,y

min
σXY ,σB

Dα(ρXY B‖σXY ⊗ σB) ≥ max
{µy |φx,y〉〈φx,y |}x,y

min
σX ,σB

Dα(ρXB‖σX ⊗ σB).

(3.3.37)

Hence, the second term in (3.3.33) can be replaced with

max
{µy |φx,y〉〈φx,y |}x,y

min
σXY ,σB

Dα(ρXY B‖σXY ⊗ σB). (3.3.38)

Therefore, it suffices to optimize the Rényi quantum discord defined in [128, Eq. (26)] over
only rank-one POVMs.

We summarize the above discussed properties in the Table 3.2.
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Table 3.2: Properties of the Rényi quantum discord of (3.3.11) in comparison to those of
the original von Neumann entropy based quantum discord and the Rényi quantum discord
proposed in [128, Eq. (26)]. In the first column, cq-states refers to classical-quantum states.
The property of monotonicity in α for the Rényi quantum discord of (3.3.14) relies on
Conjecture B.25, which is the statement that the Rényi QCMI is monotone non-decreasing
in the Rényi parameter, i.e., Iα(A;B|C) ≤ Iβ(A;B|C) for 0 ≤ α ≤ β. Rényi discord of [128]
is not monotone in α because it is equal to a difference of two Rényi relative entropies.

Property Discord of Rényi Discord of Rényi Discord of (3.3.33)
(3.3.11) (3.3.14) as in [128]

Non-negative X X X
for α ∈ (0, 1) ∪ (1, 2] for α ∈ [1/2, 1) ∪ (1,∞)

Vanishing on cq-states X X X
for α ∈ (0, 1) ∪ (1,∞) for α ∈ (0, 1) ∪ (1,∞)

Unitary invariance X X X
for α ∈ (0, 1) ∪ (1,∞) for α ∈ (0, 1) ∪ (1,∞)

Rank-1 POVM optimal X X X
for α ∈ (0, 1) ∪ (1, 2] for α ∈ [1/2, 1) ∪ (1,∞)

Monotone in α N/A if [18, Conj. 34] x
true, then true

3.3.2 Rényi quantum discord for pure bipartite states

We now give an expression for the Rényi discord of pure bipartite states.

Proposition 3.22. The Rényi quantum discord of a pure bipartite state ψAB ∈ S(HAB) for
α ∈ (0, 1) ∪ (1, 2] is given by

Dα
(
A;B

)
ψ

= inf
{|ϕx〉:

∑
x |ϕx〉〈ϕx|=I}

α

α− 1
log
∑
x

p (x) 〈ξx|B ψ1−α
B |ξx〉1/α , (3.3.39)

where

|ξx〉B =
〈ϕx|A|ψ〉AB√

p(x)
, p(x) = ‖〈ϕx|A|ψ〉AB‖2

2, (3.3.40)

and {|ϕx〉 :
∑

x |ϕx〉〈ϕx| = I} denotes a rank-one POVM acting on system A.

Proof. We begin by recalling Proposition 3.21, i.e., that it suffices to optimize the Rényi
quantum discord over rank-one POVMs. Let {|ϕx〉 〈ϕx|A}x denote such a POVM, so that∑

x |ϕx〉 〈ϕx|A = IA. Consider a bipartite pure state

|ψ〉AB =
d−1∑
y=0

√
λ(y)

∣∣∣ψ̃y〉
A
|ψy〉B , (3.3.41)

where
∣∣∣ψ̃y〉 and |ψy〉 are orthonormal bases in HA and HB. The post measurement tripartite

state is given by
ωBEX ≡ UA→EXψABU

†
A→EX , (3.3.42)
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where UA→EX an isometric extension of the aforementioned rank-one measurement:

UA→EX ≡
∑
x

|x〉E |x〉X 〈ϕx|A . (3.3.43)

The above state, and the reduced states on systems BE and B can thus be equivalently
written as

ωBEX ≡
∑
x,y

√
p (x) p (y) |x〉 〈y|X ⊗ |x〉 〈y|E ⊗ |ξx〉 〈ξy|B , (3.3.44)

ωBE ≡
∑
x

p (x) |x〉 〈x|E ⊗ |ξx〉 〈ξx|B , (3.3.45)

where p(x) = Tr{|ϕx〉〈ϕx|A|ψ〉〈ψ|AB} and |ξx〉 〈ξx|B = TrA{|ϕx〉〈ϕx|A|ψ〉〈ψ|AB}/p(x). The
Rényi conditional quantum mutual information of ωBEX is thereby given by

Iα (E;B|X)ω = Iα (B;E)ω (3.3.46)

=
α

α− 1
log Tr

{
TrB

{
ωαBEω

1−α
B

}1/α
}

(3.3.47)

=
α

α− 1
log Tr

TrB

{(∑
x

p (x)α |x〉 〈x|E ⊗ |ξx〉 〈ξx|B

)
ω1−α
B

}1/α
 (3.3.48)

=
α

α− 1
log Tr

{∑
x

p (x) |x〉 〈x|E TrB
{
|ξx〉 〈ξx|B ω1−α

B

}1/α

}
(3.3.49)

=
α

α− 1
log Tr

{∑
x

p (x) TrB
{
|ξx〉 〈ξx|B ω1−α

B

}1/α

}
(3.3.50)

=
α

α− 1
log
∑
x

p (x) 〈ξx|B ω1−α
B |ξx〉1/α . (3.3.51)

The first equality follows from application of duality of Rényi QCMI along with the fact that
ωBEX is a pure state. The second and third equalities follow from the definition of Rényi
QCMI, the fact that the system E is classical, and the fact that the post-measurement states
on system B are pure whenever a rank-one POVM is performed on system A. The fourth one
follows from tracing over the E system. The fifth and sixth equalities are straightforward.

Corollary 3.23. The Rényi quantum discord of a maximally entangled state ΦAB ∈ S(HAB)
simplifies to

Dα
(
A;B

)
Φ

= log |A|. (3.3.52)

Proof. For a maximally entangled state, p(x) in (3.3.44) is equal to 1/|A|, and the reduced
state on system B is maximally mixed. The result then follows from (3.3.51).

3.3.3 Conjectured remainder terms for quantum discord

Conjecture B.25 predicts that a Rényi QCMI defined based upon the sandwiched Rényi
relative entropy of (B.4.24) is also monotone in the Rényi parameter. That is, for a positive
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definite tripartite state ρABC and 0 ≤ α ≤ β, it was conjectured that

Ĩα (A;B|C)ρ ≤ Ĩβ (A;B|C)ρ , (3.3.53)

where the “sandwiched” Rényi conditional mutual information is defined as [18, Section 6]

Ĩα (A;B|C)ρ ≡
1

α− 1
log
∥∥∥ρ1/2

ABCρ
(1−α)/2α
AC ρ

(α−1)/2α
C ρ

(1−α)/2α
BC

∥∥∥2α

2α
. (3.3.54)

Proofs were given for this conjectured inequality in Section B.6.3 in some special cases.
Since the quantum discord is based upon the QCMI, we now examine the implications of

this conjecture for the quantum discord, by writing down a corresponding lower bound on
it. This lower bound if true would provide a characterization for states with small quantum
discord (the von Neumann entropy based quantity that is). It has the interpretation as
quantifying how far a quantum state is from being a fixed point of an entanglement-breaking
map. In case the discord is equal to zero we can conclude that the state is a fixed point of
an entanglement-breaking map. In this case, we can apply [67, Theorem 5.3] to conclude
the known result that any zero-discord state is in fact a classical-quantum state.

Consequence 3.24. Assuming Conjecture B.25, the following lower bounds hold for the
quantum discord of ρAB ∈ S(HAB):

D(A;B)ρ ≥ min
{|φx〉:∑x|φx〉〈φx|=I}

− logF (ρAB, EA(ρAB)) , (3.3.55)

where

ρxB ≡
1

Tr {|φx〉 〈φx|A ρAB}
〈φx|A ρAB |φx〉A , (3.3.56)

and EA is the following entanglement-breaking map:

EA(σA) ≡
∑
x

〈φx|A σA |φx〉A
ρ

1/2
A |φx〉 〈φx|A ρ

1/2
A

Tr {|φx〉 〈φx|A ρA}
. (3.3.57)

Consider a rank-one measurement {|φx〉 〈φx|}, and its isometric extension

UA→XE =
∑
x

|x〉X |x〉E 〈φx|A . (3.3.58)

For a given state ρAB, the state relevant for discord becomes

UA→XEρABU
†
A→XE =

∑
x,y

|x〉X |x〉E 〈φx|A ρAB |φy〉A 〈y|X 〈y|E (3.3.59)

=
∑
x,y

〈φx|A ρAB |φy〉A ⊗ |x〉 〈y|X ⊗ |x〉 〈y|E . (3.3.60)

The lower bound in (B.6.40) for this state takes the form:

I (E;B|X) ≥ − logF
(
ρBEX , ρ

1/2
EXρ

−1/2
X ρBXρ

−1/2
X ρ

1/2
EX

)
. (3.3.61)
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So, we need to calculate ρBX , ρX , and ρEX :

ρBX =
∑
x

〈φx|A ρAB |φx〉A ⊗ |x〉 〈x|X , (3.3.62)

ρX =
∑
x

Tr {|φx〉 〈φx|A ρAB} |x〉 〈x|X , (3.3.63)

ρEX =
∑
x,y

Tr {|φy〉 〈φx|A ρAB} |x〉 〈y|X ⊗ |x〉 〈y|E . (3.3.64)

Let

ρxB ≡
1

Tr {|φx〉 〈φx|A ρAB}
〈φx|A ρAB |φx〉A . (3.3.65)

Then we have that

ρ
1/2
EXρ

−1/2
X ρBXρ

−1/2
X ρ

1/2
EX

= ρ
1/2
EX

(∑
x

|x〉 〈x|X ⊗ ρxB

)
ρ

1/2
EX (3.3.66)

=
(
UA→XEρAU

†
A→XE

)1/2
(∑

x

|x〉 〈x|X ⊗ ρxB

)(
UA→XEρAU

†
A→XE

)1/2

(3.3.67)

= UA→XEρ
1/2
A U †A→XE

(∑
x

|x〉 〈x|X ⊗ ρxB

)
UA→XEρ

1/2
A U †A→XE. (3.3.68)

Sandwiching by U †A→XE (·)UA→XE then gives

ρ
1/2
A U †A→XE

(∑
x

|x〉 〈x|X ⊗ ρxB

)
UA→XEρ

1/2
A

= ρ
1/2
A

(∑
z

|φz〉A 〈z|X 〈z|E

)(∑
x

|x〉 〈x|X ⊗ ρxB

)(∑
z′

|z′〉X |z′〉E 〈φz′ |A

)
ρ

1/2
A (3.3.69)

= ρ
1/2
A

(∑
z,x,z′

|φz〉A 〈φz′|A 〈z| |z′〉E 〈z| |x〉 〈x| |z′〉X ⊗ ρxB

)
ρ

1/2
A (3.3.70)

= ρ
1/2
A

(∑
x

|φx〉 〈φx|A ⊗ ρxB

)
ρ

1/2
A (3.3.71)

=
∑
x

ρ
1/2
A |φx〉 〈φx|A ρ

1/2
A ⊗ ρxB, (3.3.72)

which we can see is a density operator on systemsA andB. This establishes that ρ
1/2
EXρ

−1/2
X ρBX

ρ
−1/2
X ρ

1/2
EX is in the subspace onto which UA→XEU

†
A→XE projects, and since this is true also

for the state ρBXE, we find that

F
(
ρBEX , ρ

1/2
EXρ

−1/2
X ρBXρ

−1/2
X ρ

1/2
EX

)
= F

(
ρAB,

∑
x

ρ
1/2
A |φx〉 〈φx|A ρ

1/2
A ⊗ ρxB

)
(3.3.73)

which is the bound in (3.3.55).
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3.4 Discussion

To summarize, in this chapter, we defined a Rényi squashed entanglement and a Rényi
quantum discord, and examined various properties of the quantities. We took as a conjecture
that the Rényi conditional mutual information of a tripartite state ρABC is monotone under
local CPTP maps on both systems A and B. Assuming the conjecture, we showed that these
quantities retain most of the properties of the original von Neumann entropy based quantities.
For example, we showed that the Rényi squashed entanglement is convex, monotone under
LOCC, that it vanishes on separable states and is subadditive on tensor-product states.
Similarly, we showed that the Rényi quantum discord is non-negative, invariant under the
action of local unitaries, vanishes on the set of classical-quantum states, and is optimized
by a rank-one POVM. Further, we proved relations of the Rényi squashed entanglement
to a Rényi entropy of entanglement and a Rényi entanglement of formation. We gave an
expression for the Rényi discord of pure bipartite states. Also, assuming the truth of a
conjecture on the monotonicity of the Rényi QCMI with respect to the Rényi parameter, we
derived a remainder term for von Neumann entropy based quantum discord via the Rényi
quantum discord.

The following are some future directions that could be considered based on the results
presented in this chapter. One could also try to prove more properties of the Rényi squashed
entanglement and discord. For example, we have left open the converse part of faithfulness
for both the Rényi squashed entanglement as well as the Rényi discord. The von Neumann
entropy based squashed entanglement is known to be superadditive in general and additive
on tensor-product states. However, we have only been able to show that the Rényi squashed
entanglement is subadditive on tensor-product states; super-additivity of the Rényi squashed
entanglement in general has been left open. As far as applications are concerned, it is an
open question if the von Neumann entropy based squashed entanglement is a strong converse
rate for entanglement distillation; the Rényi squashed entanglement may be a useful tool in
investigating this question. Also, using the Rényi squashed entanglement, one could try to
prove that the von Neumann entropy based squashed entanglement is a strong converse rate
for the two-way assisted quantum capacity of any channel (the weak converse bound being
shown in [178, 177]). It might also be interesting to determine if a Koashi-Winter type [112]
relation holds for the proposed Rényi discord.

41



Chapter 4
Fidelity of Recovery, Geometric Squashed
Entanglement and Measurement Recov-
erability

4.1 Introduction

While defining the Rényi squashed entanglement and discord quantities in Chapter 3, we had
left the Rényi parameter to be any arbitrary real value α ∈ (0, 1)∪ (1, 2]. Also, subsequently
in proving some of the properties of these quantities, we had to assume the monotonicity
of the Rényi quantum conditional mutual information (QCMI) Iα (A;B |C )ρ with respect
to quantum operations on system A to be true. In this chapter, we define a new squashed
entanglement and quantum discord that are inspired from a particular Rényi QCMI, and
these quantities do not rely on such an assumption about monotonicity under quantum
operations.

Before defining the new Rényi squashed entanglement and discord quantities, we give
some background that led to the development of the core quantity behind these new quanti-
ties. Consider the Rényi QCMI Ĩα (A;B|C)ρ of (B.4.24). It can be written as the following
norm:

Ĩα (A;B|C)ρ ≡
1

α− 1
log
∥∥∥ρ1/2

ABCρ
(1−α)/2α
AC ρ

(α−1)/2α
C ρ

(1−α)/2α
BC

∥∥∥2α

2α
. (4.1.1)

In particular, consider the quantity corresponding to α = 1/2

Ĩ1/2 (A;B |C )ρ = −2 log
∥∥∥ρ1/2

ABCρ
1/2
ACρ

−1/2
C ρ

1/2
BC

∥∥∥
1

(4.1.2)

= − log Tr

{(
ρ

1/2
ABCρ

1/2
ACρ

−1/2
C ρBCρ

−1/2
C ρ

1/2
ACρ

1/2
ABC

)1/2
}2

(4.1.3)

= − logF
(
ρABC ,RPC→AC (ρBC)

)
, (4.1.4)

where
RPC→AC (·) ≡ ρ

1/2
ACρ

−1/2
C (·) ρ−1/2

C ρ
1/2
AC (4.1.5)

is a quantum channel called the Petz recovery map [80], and

F (ρ, σ) ≡
∥∥√ρ√σ∥∥2

1
(4.1.6)

is the fidelity between two positive semidefinite operators ρ and σ. The Conjecture B.25,
if proven to be true, would imply the following lower bound for the QCMI in terms of
Ĩ1/2 (A;B |C )ρ

I (A;B |C )ρ ≥ − logF
(
ρABC ,RPC→AC (ρBC)

)
. (4.1.7)
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The above statement would then in turn imply that it is possible to understand tripartite
states with small QCMI in the following sense: If one loses system A of a tripartite state
ρABC and is allowed to perform the Petz recovery map on system C alone, then the fidelity
of recovery in doing so will be high. The converse statement was already discussed in Propo-
sition B.26 and independently in [62, Eq. (8)]. It has also been explicitly proven in [62,
Eq. (8)] that the following lower bound on the QCMI holds

I (A;B |C )ρ ≥ IF (A;B |C )ρ ≡ − inf
RC→AC

logF (ρABC ,RC→AC (ρBC)) , (4.1.8)

where RC→AC (·) is now any recovery quantum channel acting on system C that attempts
to recover system A.

We show that the IF (A;B |C )ρ quantity serves as a proxy for the QCMI in the sense that
it obeys many of the same properties as the QCMI. Unlike the Rényi QCMI for arbitrary
α, IF (A;B |C )ρ is a well behaved quantity for which we can prove monotonicity under local
quantum operations on both systems A and B. Consequently, we define a new squashed
entanglement and discord based on IF (A;B |C )ρ and prove that they are valid correlation
measures without having to rely on any conjectures.

This chapter is organized as follows. We introduce the fidelity of recovery of state ρABC ,
F (A;B|C)ρ, which is a quantity that underlies IF (A;B |C )ρ of (4.1.8) as − logF (A;B|C)ρ.
(In other words, IF (A;B |C )ρ is the surprisal of the fidelity of recovery.) We explain the
essence of this quantity, and prove the properties that place IF (A;B |C )ρ on an almost
equal footing as the QCMI. We then define and study our new correlation measures based
on IF (A;B |C )ρ, namely the geometric squashed entanglement and the surprisal of mea-
surement recoverability. We show that the geometric squashed entanglement is a 1-LOCC
monotone, which is also faithful and continuous. Likewise, we show that the surprisal of mea-
surement recoverability satisfies all the same properties as the von Neumann entropy-based
quantum discord.

4.2 Fidelity of Recovery

Consider a tripartite state ρABC ∈ S (HA ⊗HB ⊗HC) on systems A, B, and C. Suppose
that system A is lost, and a recovery operation is performed on system C alone in an
attempt to recover the full state on all three systems. The fidelity of recovery is a measure
that quantifies how well one can recover the full state when the optimal recovery operation
is performed. Figure 4.1 illustrates the essence of the quantity. We now formally define the
fidelity of recovery, and prove some properties.

A

B

C

B

C
A
C

ρABC ρABC

R } ρ̃ABC

A

Figure 4.1: The fidelity of recovery of a tripartite state ρABC captures how closely the state
ρ̃ABC approximates ρABC .
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Definition 4.1. Let ρABC be a tripartite state. The fidelity of recovery of ρABC with respect
to system A is defined as follows:

F (A;B|C)ρ ≡ sup
RC→AC

F (ρABC ,RC→AC (ρBC)) . (4.2.1)

Proposition 4.2. Let ρABC be a tripartite state. Then IF (A;B|C)ρ ≥ 0 and for finite-
dimensional ρABC, IF (A;B|C)ρ = 0 if and only if ρABC is a short quantum Markov chain,
as defined in [80].

Proof. The inequality IF (A;B|C)ρ ≥ 0 is a consequence of the fidelity always being less
than or equal to one. Suppose that ρABC is a short quantum Markov chain as defined in
[80]. As discussed in that paper, this is equivalent to the equality

ρABC = RP
C→AC (ρBC) , (4.2.2)

where RP
C→AC is the Petz recovery channel. So this implies that

F
(
ρABC ,RP

C→AC (ρBC)
)

= 1, (4.2.3)

which in turn implies that F (A;B|C)ρ = 1 and hence IF (A;B|C)ρ = 0. Now suppose that
IF (A;B|C)ρ = 0. This implies that

sup
RC→AC

F (ρABC ,RC→AC (ρBC)) = 1. (4.2.4)

Due to the finite-dimensional assumption, the space of channels over which we are optimizing
is compact. Furthermore, the fidelity is continuous in its arguments. This is sufficient for
us to conclude that the supremum is achieved and that there exists a channel RC→AC for
which F (ρABC ,RC→AC (ρBC)) = 1, implying that

ρABC = RC→AC (ρBC) . (4.2.5)

From a result of Petz [141], this implies that the Petz recovery channel recovers ρABC per-
fectly, i.e.,

ρABC = RP
C→AC (ρBC) , (4.2.6)

and this is equivalent to ρABC being a short quantum Markov chain [80].

Proposition 4.3. Let φABCD denote a four-party pure state. Then

F (A;B|C)φ = F (A;B|D)φ , (4.2.7)

which is equivalent to
IF (A;B|C)φ = IF (A;B|D)φ . (4.2.8)

Proof. The proof of this proposition uses Uhlmann’s theorem given in . By definition,

F (A;B|C)φ = sup
R1
C→AC

F
(
φABC ,R1

C→AC (φBC)
)
. (4.2.9)
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Figure 4.2: This figure helps to illustrate the main idea behind the proof of Proposition 4.3
and furthermore highlights the dual role played by an isometric extension of the recovery
map on C and an Uhlmann isometry acting on system D (and vice versa).

Let UR1

C→ACE be an isometric map which extends R1
C→AC . Since φABCD is a purification

of φABC and UR1

C→ACE (φBCA′D) is a purification of R1
C→AC (φBC), we can apply Uhlmann’s

theorem for fidelity to conclude that

sup
R1
C→AC

F
(
φABC ,R1

C→AC (φBC)
)

= sup
UD→A′DE

sup
UR1
C→ACE

F
(
UD→A′DE (φABCD) ,UR1

C→ACE (φBCA′D)
)
.

(4.2.10)
Now consider that

F (A;B|D)φ = sup
R2
D→AD

F
(
φABD,R2

D→AD (φBD)
)
. (4.2.11)

Let UR2

D→ADE be an isometric map which extends R2
D→AD. Since φABCD is a purification

of φABD and UR2

D→ADE (φBDA′C) is a purification of R2
D→AD (φBD), we can apply Uhlmann’s

theorem for fidelity to conclude that

sup
R2
D→AD

F
(
φABD,R2

D→AD (φBD)
)

= sup
UC→A′CE

sup
UR2
D→ADE

F
(
UC→A′CE (φABCD) ,UR2

D→ADE (φBDA′C)
)
. (4.2.12)

By inspecting the RHS of (4.2.10) and the RHS of (4.2.12), we see that the two expressions
are equivalent so that the statement of the proposition holds. Figure 4.2 gives a graphical
depiction of this proof which should help in determining which systems are “connected
together” and furthermore highlights how the duality between the recovery map and the
map from Uhlmann’s theorem is reflected in the duality for the fidelity of recovery.

Remark 4.4. The physical interpretation of the above duality is as follows: beginning with
a four-party pure state φABCD, suppose that system A is lost. Then one can recover the state
on systems ABC from system C alone just as well as one can recover the state on systems
ABD from system D alone.

Proposition 4.5. The fidelity of recovery is monotone under local operations on systems A
and B, i.e.

F (A;B|C)ρ ≤ F (A′;B′|C)τ , (4.2.13)
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where τA′B′C ≡ (NA→A′ ⊗MB→B′) (ρABC). The above inequality is equivalent to

IF (A;B|C)ρ ≥ IF (A′;B′|C)τ . (4.2.14)

Proof. Consider any recovery map RC→AC . We have that

F (ρABC ,RC→AC (ρBC)) (4.2.15)

≤ F ((NA→A′ ⊗MB→B′) (ρABC) , (NA→A′ ⊗MB→B′) (RC→AC (ρBC))) (4.2.16)

= F ((NA→A′ ⊗MB→B′) (ρABC) , (NA→A′ ◦ RC→AC) (MB→B′ (ρBC))) (4.2.17)

≤ sup
RC→A′C

F ((NA→A′ ⊗MB→B′) (ρABC) ,RC→A′C (MB→B′ (ρBC))) (4.2.18)

= F (A′;B′|C)(N⊗M)(ρ) . (4.2.19)

The first inequality is due to monotonicity of the fidelity under quantum operations. The
first equality follows from the fact that the recovery map R and the noisy mapM commute
since the former does not act on system B. The second inequality follows from the fact that
the supremum of the fidelity with respect to an optimization over recovery maps can only
be greater than or equal to the fidelity corresponding to an arbitrary recovery map. The
second equality follows from Definition 4.1. Finally, since the above chain of reasoning holds
for all RC→AC , it follows that

F (A;B|C)ρ = sup
RC→AC

F (ρABC ,RC→AC (ρBC)) ≤ F (A′;B′|C)(N⊗M)(ρ) . (4.2.20)

Remark 4.6. The physical interpretation of the above monotonicity under local operations
is as follows: for a tripartite state ρABC, suppose that system A is lost. Then it is easier
to recover the state on systems ABC from C alone if there is local noise applied to systems
A or B or both, before system A is lost (and thus before attempting the recovery). The
only property of the fidelity used to prove the above proposition is that it is monotone under
quantum operations. This suggests that we can construct a fidelity-of-recovery-like measure
from any “generalized divergence” (a function that is monotone under quantum operations).

Proposition 4.7. Let ρABC be a tripartite quantum state and let

σA′B′C′ ≡ (UA→A′ ⊗ VB→B′ ⊗WC→C′) (ρABC) , (4.2.21)

where UA→A′, VB→B′, and WC→C′ are isometric quantum channels. Then

F (A;B|C)ρ = F (A′;B′|C ′)σ , (4.2.22)

IF (A;B|C)ρ = IF (A′;B′|C ′)σ . (4.2.23)

Proof. We prove the statement for fidelity of recovery. We first need to define some CPTP
maps that invert the isometric channels UA→A′ , VB→B′ , andWC→C′ , given that U †A→A′ , V†B→B′ ,
andW†C→C′ are not necessarily quantum channels. So we define the CPTP linear map T UA′→A
as follows:

T UA′→A (ωA′) ≡ U †A→A′ (ωA′) + Tr
{(

idA′ − U †A→A′
)

(ωA′)
}
τA, (4.2.24)
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where τA is some state on system A. We define the maps T VB′→B and T WC′→C similarly. All
three maps have the property that

T UA′→A ◦ UA→A′ = idA, (4.2.25)

T VB′→B ◦ VB→B′ = idB, (4.2.26)

T WC′→C ◦WC→C′ = idC . (4.2.27)

Let RC→AC be an arbitrary recovery map. Then

F (ρABC ,RC→AC (ρBC))

= F ((UA→A′ ⊗ VB→B′ ⊗WC→C′) (ρABC) , (UA→A′ ⊗ VB→B′ ⊗WC→C′) (RC→AC (ρBC)))
(4.2.28)

= F (σA′B′C′ , (UA→A′ ⊗WC→C′) (RC→AC (VB→B′ (ρBC)))) (4.2.29)

= F
(
σA′B′C′ , (UA→A′ ⊗WC→C′)

(
RC→AC

(
T WC′→C (VB→B′ ⊗WC→C′) (ρBC)

)))
≤ sup
RC′→A′C′

F (σA′B′C′ ,RC′→A′C′ ((VB→B′ ⊗WC→C′) (ρBC)))

= F (A′;B′|C ′)σ .

The first equality follows from invariance of fidelity with respect to isometries. The second
equality follows because RC→AC and VB→B′ commute. The third equality follows from
(4.2.27). The inequality follows because

(UA→A′ ⊗WC→C′) ◦ RC→AC ◦ T WC′→C (4.2.30)

is a particular CPTP recovery map from C ′ to A′C ′. The last equality is from the definition
of fidelity of recovery. Given that the inequality

F (ρABC ,RC→AC (ρBC)) ≤ F (A′;B′|C ′)σ (4.2.31)

holds for an arbitrary recovery map RC→AC , we can conclude that

F (A;B|C)ρ ≤ F (A′;B′|C ′)σ . (4.2.32)

For the other inequality, let RC′→A′C′ be an arbitrary recovery map. Then

F (σA′B′C′ ,RC′→A′C′ (σB′C′))

≤ F
((
T UA′→A ⊗ T VB′→B ⊗ T WC′→C

)
(σA′B′C′) ,

(
T UA′→A ⊗ T VB′→B ⊗ T WC′→C

)
(RC′→A′C′ (σB′C′))

)
(4.2.33)

= F
(
ρABC ,

(
T UA′→A ⊗ T WC′→C

) (
RC′→A′C′

(
T VB′→B (σB′C′)

)))
(4.2.34)

= F
(
ρABC ,

(
T UA′→A ⊗ T WC′→C

) (
RC′→A′C′

((
T VB′→B ◦ VB→B′ ⊗WC→C′

)
(ρBC)

)))
(4.2.35)

= F
(
ρABC ,

(
T UA′→A ⊗ T WC′→C

)
(RC′→A′C′ (WC→C′ (ρBC)))

)
(4.2.36)

≤ sup
RC→AC

F (ρABC ,RC→AC (ρBC)) (4.2.37)

= F (A;B|C)ρ . (4.2.38)
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The first inequality is from monotonicity of the fidelity with respect to quantum channels.
The first equality is a consequence of (4.2.25)-(4.2.27). The second equality is from the
definition of σB′C′ . The third equality follows from (4.2.27). The last inequality follows
because

(
T UA′→A ⊗ T WC′→C

)
◦ RC′→A′C′ ◦ WC→C′ is a particular recovery map from C to AC.

Given that the inequality

F (σA′B′C′ ,RC′→A′C′ (σB′C′)) ≤ F (A;B|C)ρ (4.2.39)

holds for an arbitrary recovery map RC′→A′C′ , we can conclude that

F (A′;B′|C ′)σ ≤ F (A;B|C)ρ . (4.2.40)

Remark 4.8. The only property of the fidelity used to prove Propositions 4.5 and 4.7 is
that it is monotone with respect to quantum operations. This suggests that we can con-
struct a fidelity-of-recovery-like measure from any “generalized divergence” (a function that
is monotone with respect to quantum operations).

Proposition 4.9. The fidelity of recovery obeys the following dimension bound:

F (A;B|C)ρ ≥
1

|A|2
, (4.2.41)

which is equivalent to
IF (A;B|C)ρ ≤ 2 log |A| . (4.2.42)

If the system A is classical, so that we relabel it as X, then the following hold

F (X;B|C)ρ ≥
1

|X| , (4.2.43)

IF (X;B|C)ρ ≤ log |X| . (4.2.44)

Examples of states achieving these bounds are ΦAB ⊗ σC for (4.2.41)-(4.2.42) and ΦXB ⊗ σC
for (4.2.43)-(4.2.44), where

ΦXB ≡
1

|X|
∑
x

|x〉 〈x|X ⊗ |x〉 〈x|B . (4.2.45)

Proof. Consider that the following inequality holds, simply by choosing the recovery map
to be one in which we do not do anything to system C and prepare the maximally mixed
state πA ≡ IA/ |A| on system A:

F (A;B|C)ρ ≥ F (ρABC , πA ⊗ ρBC) (4.2.46)

=
1

|A|F (ρABC , IA ⊗ ρBC) (4.2.47)

≥ 1

|A|
[
Tr
{√

ρABC
√
IA ⊗ ρBC

}]2

. (4.2.48)
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Taking a negative logarithm and letting φABCD be a purification of ρABC , we find that

IF (A;B|C)ρ ≤ log |A| − 2 log Tr
{√

ρABC
√
IA ⊗ ρBC

}
(4.2.49)

= log |A| −H1/2 (A|BC)ρ (4.2.50)

= log |A|+H3/2 (A|D)ρ (4.2.51)

≤ log |A|+H3/2 (A)ρ (4.2.52)

≤ 2 log |A| . (4.2.53)

The first equality follows by recognizing that the second term is a conditional Rényi entropy
of order 1/2 [183, Definition 3]. The second equality follows from a duality relation for this
conditional Rényi entropy [183, Lemma 6]. The second inequality is a consequence of the
quantum data processing inequality for conditional Rényi entropies [183, Lemma 5] (with
the map taken to be a partial trace over system D). The last inequality follows from a
dimension bound which holds for any Rényi entropy.

To see that ΦAB ⊗ σC has IF (A;B|C) = 2 log |A|, we can apply Propositions 4.24 and
4.23.

For classical A system, we follow the same steps up to (4.2.50), but then apply Lemma D.8
to conclude that H1/2 (A|BC) ≥ 0 for a classical A. This gives (4.2.43)-(4.2.44). To see that
ΦXB ⊗ σC has IF (X;B|C) = log |X|, we apply Proposition 4.12 and then evaluate

F
(
ΦXB, τX ⊗ ΦB

)
=

∥∥∥∥∥
(∑

x

1√
|X|
|x〉 〈x|X ⊗ |x〉 〈x|B

)(
√
τX ⊗

1√
|X|

IB

)∥∥∥∥∥
2

1

(4.2.54)

=

[
1

|X|

∥∥∥∥∥
(∑

x

|x〉 〈x|X ⊗ |x〉 〈x|B

)
(
√
τX ⊗ IB)

∥∥∥∥∥
1

]2

(4.2.55)

=

[
1

|X|
∑
x

‖|x〉 〈x|X
√
τX‖1

]2

(4.2.56)

=

[
1

|X|
∑
x

√
〈x| τ |x〉

]2

≤ 1

|X|
∑
x

〈x| τ |x〉

=
1

|X|

Choosing τX maximally mixed then achieves the upper bound, i.e.,

sup
τX

F
(
ΦXB, τX ⊗ ΦB

)
= F

(
ΦXB, πX ⊗ ΦB

)
=

1

|X| . (4.2.57)

49



Proposition 4.10. Given a four-party state ρABCD, the following inequality holds

IF (AC;B|D)ρ ≥ IF (A;B|CD)ρ . (4.2.58)

Proof. The inequality is equivalent to

F (AC;B|D)ρ ≤ F (A;B|CD)ρ , (4.2.59)

which is the statement that it is easier to recover A from CD than it is to recover both A
and C from D alone. Indeed, let RD→ACD be any recovery map. Then

F (ρABCD,RD→ACD (ρBD)) = F (ρABCD, (RD→ACD ◦ TrC) (ρBCD)) (4.2.60)

≤ sup
RCD→ACD

F (ρABCD, (RCD→ACD) (ρBCD)) (4.2.61)

= F (A;B|CD)ρ . (4.2.62)

Since the chain of inequalities holds for any recovery map RD→ACD, we can conclude (4.2.59)
from the definition of F (AC;B|D)ρ.

Proposition 4.11. Let ωABCX be a state for which system X is classical:

ωABCX =
∑
x

pX (x)ωxABC ⊗ |x〉 〈x|X , (4.2.63)

where {|x〉X} is an orthonormal basis, pX (x) is a probability distribution, and each ωxABC is
a state. Then the following equalities hold

F (A;B|CX)ω ≥
[∑

x

pX (x)
√
F (A;B|C)ωx

]2

, (4.2.64)

IF (A;B|CX)ω ≤ −2 log

[∑
x

pX (x) exp

{
−1

2
IF (A;B|C)ωx

}]
. (4.2.65)

Proof. For any set of recovery maps Rx
C→CA, we define RCX→CXA as follows:

RCX→CXA (τCX) ≡
∑
x

Rx
C→CA (〈x|X (τCX) |x〉X) |x〉 〈x|X , (4.2.66)

so that it first measures the system X in the basis {|x〉 〈x|X}, places the outcome in the
same classical register, and then acts with the particular recovery map Rx

C→CA. Then[∑
x

pX (x)
√
F (ωxABC ,Rx

C→CA (ωxBC))

]2

= F

(∑
x

pX (x)ωxABC ⊗ |x〉 〈x|X ,
∑
x

pX (x)Rx
C→CA (ωxBC)⊗ |x〉 〈x|X

)
(4.2.67)

= F

(∑
x

pX (x)ωxABC ⊗ |x〉 〈x|X ,RCX→CXA

(∑
x

pX (x)ωxBC ⊗ |x〉 〈x|X

))
(4.2.68)

≤ F (A;B|CX)ω . (4.2.69)
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Since the inequality holds for any set of individual recovery maps {Rx
C→CA}, we obtain

(4.2.64).
Finally, we recover (4.2.65) by applying a negative logarithm to the inequality in (4.2.64)

and convexity of − log.

Proposition 4.12. Let ρABC = σAB ⊗ ωC. Then

F (A;B|C)ρ = F (A;B)σ ≡ sup
τA

F (σAB, τA ⊗ σB) , (4.2.70)

IF (A;B|C)ρ = IF (A;B)σ ≡ − logF (A;B)σ . (4.2.71)

Proof. Consider that, for any recovery map RC→AC

F (σAB ⊗ ωC ,RC→AC (σB ⊗ ωC)) = F (σAB ⊗ ωC , σB ⊗RC→AC (ωC)) (4.2.72)

≤ F (σAB, σB ⊗RC→A (ωC)) (4.2.73)

≤ sup
τA

F (σAB, σB ⊗ τA) . (4.2.74)

The first inequality follows because fidelity is monotone under partial trace over the C
system. The second inequality follows by optimizing the second argument to the fidelity
over all states on the A system. Since the inequality holds independent of the recovery map
RC→AC , this proves that

F (A;B|C)ρ ≤ F (A;B)σ . (4.2.75)

To prove the other inequality F (A;B)σ ≤ F (A;B|C)ρ, consider for any state τA that

F (σAB, σB ⊗ τA) = F (σAB ⊗ ωC , σB ⊗ τA ⊗ ωC) (4.2.76)

= F (σAB ⊗ ωC , (idC ⊗ PτA) (σB ⊗ ωC)) (4.2.77)

≤ sup
RC→AC

F (σAB ⊗ ωC ,RC→AC (σB ⊗ ωC)) . (4.2.78)

The first equality follows because fidelity is multiplicative under tensor-product states. The
second equality follows by taking (idC ⊗ PτA) to be the recovery map that does nothing
to system C and prepares τA on system A. The inequality follows by optimizing over all
recovery maps. Since the inequality is independent of the prepared state, we obtain the
other inequality

F (A;B)σ ≤ F (A;B|C)ρ . (4.2.79)

The equality IF (A;B|C)ρ = IF (A;B)σ follows by applying a negative logarithm to

F (A;B|C)ρ = F (A;B)σ . (4.2.80)

We note in passing that the quantity on the RHS in (4.2.71) is closely related to the sand-
wiched Rényi mutual information of order 1/2 [132, 198, 11, 76].

The following proposition gives a simple proof of the main result of [62] when the tripartite
state of interest is pure:

Proposition 4.13. The QCMI I (A;B|C)ψ of a pure tripartite state ψABC has the following
lower bound:

I (A;B|C)ψ ≥ − logF (A;B|C)ψ . (4.2.81)
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Proof. Let ϕD be a pure state on an auxiliary system D, so that |ψ〉ABC ⊗ |ϕ〉D is a
purification of |ψ〉ABC . Consider the following chain of inequalities:

I (A;B|C)ψ = I (A;B|D)ψ⊗ϕ (4.2.82)

= I (A;B)ψ (4.2.83)

≥ − logF (ψAB, ψA ⊗ ψB) (4.2.84)

≥ − logF (A;B)ψ (4.2.85)

= − logF (A;B|D)ψ⊗ϕ (4.2.86)

= − logF (A;B|C)ψ . (4.2.87)

The first equality follows from duality of QCMI. The second follows because system D
is product with systems A and B. The first inequality follows from monotonicity of the
sandwiched Rényi relative entropies [132, Theorem 7]:

D̃α (ρ‖σ) ≤ D̃β (ρ‖σ) , (4.2.88)

for states ρ and σ and Rényi parameters α and β such that 0 ≤ α ≤ β. We apply this
with the choices α = 1/2, β = 1, ρ = ψAB, and σ = ψA ⊗ ψB. The second inequality
follows by optimizing over states on system A and applying the definition in (4.2.71). The
second-to-last equality follows from Proposition 4.12 and the last from Proposition 4.3.

4.3 Geometric Squashed Entanglement

In this section, we formally define the geometric squashed entanglement of a bipartite state
ρAB, and we prove its properties.

Definition 4.14. The geometric squashed entanglement of a bipartite state ρAB is defined
as follows:

Esq
F (A;B)ρ ≡ −

1

2
logF sq (A;B)ρ , (4.3.1)

where

F sq (A;B)ρ ≡ sup
ωABE

{
F (A;B|E)ρ : ρAB = TrE {ωABE}

}
(4.3.2)

= sup
ωABE

sup
RE→AE

{F (ωABE,RE→AE (ωBE)) : ρAB = TrE {ωABE}} . (4.3.3)

The geometric squashed entanglement can equivalently be written in terms of an opti-
mization over “squashing channels” acting on a purifying system of the original state (cf. [40,
Eq. (3)]):

Proposition 4.15. Let ρAB be a bipartite state and let |ψ〉ABE′ be a fixed purification of it.
Then

F sq (A;B)ρ = sup
SE′→E

F (A;B|E)S(ψ) , (4.3.4)

where the optimization is over squashing channels SE′→E.
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Proof. We first prove the inequality F sq (A;B)ρ ≥ supSE′→E F (A;B|E)S(ψ). Indeed, for
a given squashing channel SE′→E and purification ψABE′ , the state SE′→E (ψABE′) is an
extension of ρAB. So it follows by definition that

F (A;B|E)S(ψ) ≤ F sq (A;B)ρ . (4.3.5)

Since the choice of squashing channel was arbitrary, the first inequality follows.
We now prove the other inequality

F sq (A;B)ρ ≤ sup
SE′→E

F (A;B|E)S(ψ) . (4.3.6)

Let ωABE be an extension of ρAB. Let ϕABEE1 be a purification of ωABE, which is in turn also
a purification of ρAB. Since all purifications are related by isometries acting on the purifying
system, we know that there exists an isometry Uω

E′→EE1
(depending on ω) such that

|ϕ〉ABEE1
= Uω

E′→EE1
|ψ〉ABE′ . (4.3.7)

Furthermore, we know that

ωABE = TrE1

{
Uω
E′→EE1

ψABE′
(
Uω
E′→EE1

)†}
(4.3.8)

≡ SωE′→E (ψABE′) , (4.3.9)

where we define the squashing channel SωE′→E from the isometry Uω
E′→EE1

. So this implies
that

F (A;B|E)ω = F (A;B|E)Sω(ψ) ≤ sup
SE′→E

F (A;B|E)S(ψ) . (4.3.10)

Since the inequality above holds for all extensions, the inequality in (4.3.6) follows.

The following statement is a direct consequence of Proposition 4.5:

Corollary 4.16. The geometric squashed entanglement is monotone under local operations
on both systems A and B:

Esq
F (A;B)ρ ≥ Esq

F (A′;B′)τ , (4.3.11)

where τA′B′ ≡ (NA→A′ ⊗MB→B′) (ρAB). This is equivalent to

F sq (A;B)ρ ≤ F sq (A′;B′)τ . (4.3.12)

Proof. Let ωABE be an arbitrary extension of ρAB and let

θA′B′E ≡ (NA→A′ ⊗MB→B′) (ωABE) . (4.3.13)

Then by the monotonicity of fidelity of recovery with respect to local quantum operations,
we find that

F (A;B|E)ω ≤ F (A′;B′|E)θ ≤ F sq (A′;B′)τ . (4.3.14)

Since the inequality holds for an arbitrary extension ωABE of ρAB, we can conclude that
(4.3.12) holds and (4.3.11) follows by definition.
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Proposition 4.17. The geometric squashed entanglement is invariant with respect to local
isometries, in the sense that

Esq
F (A;B)ρ = Esq

F (A′;B′)σ, (4.3.15)

where
σA′B′ ≡ (UA→A′ ⊗ VB→B′) (ρAB) (4.3.16)

and UA→A′ and VB→B′ are isometric quantum channels.

Proof. From Corollary 4.16, we can conclude that

Esq
F (A;B)ρ ≥ Esq

F (A′;B′)σ. (4.3.17)

Now let T UA′→A and T VB′→B be the quantum channels defined in (4.2.24). Again using Corol-
lary 4.16, we find that

Esq
F (A′;B′)σ ≥ Esq

F (A;B)(T U⊗T V )(σ) = Esq
F (A;B)ρ , (4.3.18)

where the equality follows from (4.2.25)-(4.2.26).

Proposition 4.18. The geometric squashed entanglement obeys the following classical com-
munication relations:

Esq
F (AXA;B)ρ ≤ Esq

F (AXA;BXB)ρ = Esq
F (A;BXB)ρ , (4.3.19)

for a state ρXAXBAB defined as

ρXAXBAB ≡
∑
x

pX (x) |x〉 〈x|XA ⊗ |x〉 〈x|XB ⊗ ρ
x
AB. (4.3.20)

These are equivalent to

F sq (AXA;B)ρ ≥ F sq (AXA;BXB)ρ = F sq (A;BXB)ρ . (4.3.21)

Proof. From monotonicity with respect to local operations, we find that

F sq (AXA;BXB)ρ ≤ F sq (AXA;B)ρ , (4.3.22)

F sq (AXA;BXB)ρ ≤ F sq (A;BXB)ρ . (4.3.23)

We now give a proof of the following inequality:

F sq (A;BXB)ρ ≤ F sq (AXA;BXB)ρ . (4.3.24)

Let

ρXAXBXEABE =
∑
x

pX (x) |x〉 〈x|XA ⊗ |x〉 〈x|XB ⊗ |x〉 〈x|XE ⊗ ρ
x
ABE, (4.3.25)

where ρxABE extends ρxAB. Observe that ρXAXBXEABE is an extension of ρXAXBAB and ρXBABE
is an arbitrary extension of ρXBAB. Let RE→AE be an arbitrary recovery channel and let
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REXE→AXAEXE be a channel that copies the value in XE to XA and appliesRE→AE to system
E. Consider that

F (ρABXBE,RE→AE (ρBXBE)) (4.3.26)

=

[∑
x

pX (x)
√
F (ρxABE,RE→AE (ρxBE))

]2

(4.3.27)

= F

(∑
x

pX (x) |xxx〉 〈xxx|XAXBXE ⊗ ρ
x
ABE,

∑
x

pX (x) |xxx〉 〈xxx|XAXBXE

⊗RE→AE (ρxBE)

)
(4.3.28)

= F (ρAXABXBEXE ,REXE→AXAEXE (ρBXBEXE)) (4.3.29)

≤ F sq (AXA;BXB)ρ . (4.3.30)

The first two equalities are a consequence of the following property of fidelity:

√
F (τZS, ωZS) =

∑
z

pZ (z)
√
F (τ zS, ω

z
S) , (4.3.31)

where

τZS ≡
∑
z

pZ (z) |z〉 〈z|Z ⊗ τ zS, ωZS ≡
∑
z

pZ (z) |z〉 〈z|Z ⊗ ωzS. (4.3.32)

The third equality follows from the description of the map REXE→AXAEXE given above. The
last inequality is a consequence of the definition of F sq because ρAXABXBEXE is a particular
extension of ρABXBE and REXE→AXAEXE is a particular recovery map. Given that the chain
of inequalities holds for all recovery maps RE→AE and extensions ρABXBE of ρABXB , we can
conclude that

F sq (A;BXB)ρ ≤ F sq (AXA;BXB)ρ . (4.3.33)

Remark 4.19. The inequalities in Proposition 4.18 demonstrate that the geometric squashed
entanglement is monotone non-increasing with respect to classical communication from Bob
to Alice, but not necessarily the other way around. The essential idea in establishing the
inequality F sq (A;BXB)ρ ≤ F sq (AXA;BXB)ρ is to give a copy of the classical data to the
party possessing the extension system and to have the recovery map give a copy to Alice.
It is unclear to us whether the other inequality F sq (AXA;B)ρ ≤ F sq (AXA;BXB)ρ could be
established, given that the recovery operation only goes from an extension system to Alice,
and so it appears that we have no way of giving a copy of this classical data to Bob.

The following theorem is a direct consequence of Corollary 4.16 and Proposition 4.18:

Theorem 4.20. The geometric squashed entanglement is a 1-LOCC monotone, in the sense
that it is monotone non-increasing with respect to local operations and classical communica-
tion from Bob to Alice.
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Theorem 4.21. The geometric squashed entanglement is convex, i.e.,∑
x

pX (x)Esq
F (A;B)ρx ≥ Esq

F (A;B)ρ , (4.3.34)

where
ρAB ≡

∑
x

pX (x) ρxAB. (4.3.35)

Proof. Let ρxABE be an extension of each ρxAB, so that

ωXABE ≡
∑
x

pX (x) |x〉 〈x|X ⊗ ρxABE (4.3.36)

is some extension of ρAB. Then the definition of Esq
F (A;B)ρ and Proposition 4.11 give that

2Esq
F (A;B)ρ ≤ IF (A;B|EX)ω ≤

∑
x

pX (x) IF (A;B|E)ρx . (4.3.37)

Since the inequality holds independent of each particular extension of ρxAB, we can conclude
(4.3.34).

Theorems 4.20 and 4.21 immediately lead to the following corollary:

Theorem 4.22. The geometric squashed entanglement is faithful, in the sense that

Esq
F (A;B)ρ = 0 if and only if ρAB is separable. (4.3.38)

This is equivalent to

F sq (A;B)ρ = 1 if and only if ρAB is separable. (4.3.39)

Furthermore, we have the following bound holding for all states:

Esq
F (A;B)ρ ≥

1

512 |A|4
‖ρAB − SEP(A : B)‖4

1 . (4.3.40)

Proof. We first prove the if-part of the theorem. So, given by assumption that ρAB is
separable, it has a decomposition of the following form:

ρAB =
∑
x

pX (x) |ψx〉 〈ψx|A ⊗ |φx〉 〈φx|B . (4.3.41)

Then an extension of the state is of the form

ρABE =
∑
x

pX (x) |ψx〉 〈ψx|A ⊗ |φx〉 〈φx|B ⊗ |x〉 〈x|E . (4.3.42)

Clearly, if the system A becomes lost, someone who possesses system E could measure it
and prepare the state |ψx〉A conditioned on the measurement outcome. That is, the recovery
map RE→AE is as follows:

RE→AE (σE) =
∑
x

〈x|σE |x〉 |ψx〉 〈ψx|A ⊗ |x〉 〈x|E . (4.3.43)
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So this implies that
F (ρABE,RE→AE (ρBE)) = 1, (4.3.44)

and thus F sq (A;B)ρ = 1.
The only-if-part of the theorem is a direct consequence of the reasoning in [199]. We

repeat the argument from [199] here for the convenience of the reader. The reasoning from
[199] establishes that the trace distance between ρAB and the set SEP(A : B) of separable
states on systems A and B is bounded from above by a function of −1/2 logF sq (A;B)ρ and
|A|. This will then allow us to conclude the only-if-part of the theorem.

Let
ε ≡ −1/2 logF sq (A;B)ρ (4.3.45)

for some bipartite state ρAB and let

εω,R ≡ −1/2 logF (ωABE,RE→AE (ωBE)), (4.3.46)

for some extension ωABE and a recovery map RE→AE. By definition, we have that

ε = inf
ω,RE→AE

εω,R. (4.3.47)

Then consider that

εω,R ≥
1

8
‖ωABE −RE→AE (ωBE)‖2

1 , (4.3.48)

where the inequality follows from a well known relation between the fidelity and trace distance
[66]. Therefore, by defining δω,R =

√
8εω,R we have that

δω,R ≥ ‖ωABE −RE→AE (ωBE)‖1 (4.3.49)

= ‖ωABE − (RE→A2E ◦ TrA1) (ωA1BE)‖1 , (4.3.50)

where the systems A1 and A2 are defined to be isomorphic to system A. Now consider
applying the same recovery map again. We then have that

δω,R ≥
∥∥(RE→A3E ◦ TrA2) (ωA2BE)−©3

i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

∥∥
1
, (4.3.51)

which follows from the inequality above and monotonicity of the trace distance under the
quantum operation RE→A3E◦TrA2 . Combining via the triangle inequality, we find for k ≥ 2
that ∥∥ωABE −©3

i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

∥∥
1
≤ 2δω,R (4.3.52)

≤ kδω,R. (4.3.53)

We can iterate this reasoning in the following way: For j ∈ {4, . . . , k} (assuming now k ≥ 4),
apply the maps RE→AjE◦TrAj−1

along with monotonicity of trace distance to establish the
following inequalities:∥∥[©j

i=3

(
RE→AiE ◦ TrAi−1

)
(ωA2BE)

]
−
[
©j

i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

]∥∥
1
≤ δω,R

(4.3.54)

57



Apply the triangle inequality to all of these to establish the following inequalities for j ∈
{1, . . . , k}: ∥∥ωABE −©j

i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

∥∥
1
≤ kδω,R, (4.3.55)

with the interpretation for j = 1 that there is no map applied. From monotonicity of
trace distance under quantum operations, we can then conclude the following inequalities
for j ∈ {1, . . . , k}:∥∥ρAB − TrE

{
©j

i=2

(
RE→AiE ◦ TrAi−1

)
(ωA1BE)

}∥∥
1
≤ kδω,R. (4.3.56)

Let γA1A2···AkBE denote the following state:

γA1A2···AkBE ≡ RE→AkE (· · · (RE→A2E (ωA1BE))) . (4.3.57)

(See Figure 4.3 for a graphical depiction of this state.) Then the inequalities in (4.3.56) are
equivalent to the following inequalities for j ∈ {1 . . . , k}:∥∥ρAB − γAjB∥∥1

≤ kδω,R, (4.3.58)

which are in turn equivalent to the following ones for any permutation π ∈ Sk:∥∥∥ρAB − TrA2···Ak

{
W π
A1A2···AkγA1A2···AkB

(
W π
A1A2···Ak

)†}∥∥∥
1
≤ kδω,R, (4.3.59)

with W π
A1A2···Ak a unitary representation of the permutation π. We can then define γA1···AkB

as a symmetrized version of γA1···AkB:

γA1···AkB ≡
1

k!

∑
π∈Sk

W π
A1A2···AkγA1···AkB

(
W π
A1A2···Ak

)†
. (4.3.60)

The inequalities in (4.3.59) allow us to conclude that

kδω,R ≥
1

k!

∑
π∈Sk

∥∥∥ρAB − TrA2···Ak

{
W π
A1A2···AkγA1A2···AkB

(
W π
A1A2···Ak

)†}∥∥∥
1

(4.3.61)

≥
∥∥∥∥∥ρAB − TrA2···Ak

{
1

k!

∑
π∈Sk

W π
A1A2···AkγA1A2···AkB

(
W π
A1A2···Ak

)†}∥∥∥∥∥
1

(4.3.62)

=
∥∥ρAB − γA1B

∥∥
1
, (4.3.63)

where the second inequality is a consequence of the convexity of trace distance. So what the
reasoning in [199] accomplishes is to construct a k-extendible state γA1B that is kδω,R-close
to ρAB in trace distance.

Following [199], we now recall a particular quantum de Finetti result in [38, Theorem
II.7’]. Consider a state ωA1···AkB which is permutation invariant with respect to systems
A1 · · ·Ak. Let ωA1···AnB denote the reduced state on n of the k A systems where n ≤ k.
Then, for large k, ωA1···AnB is close in trace distance to a convex combination of product
states of the form

∫
σ⊗nA ⊗ τ (σ)B dµ(σ), where µ is a probability measure on the set of
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Ek

AkEk−1 R
Figure 4.3: This figure illustrates the global state after performing a recovery map k times
on system E.

mixed states on a single A system and {τ (σ)}σ is a family of states parametrized by σ, with
the approximation given by

2 |A|2 n
k

≥
∥∥∥∥ωA1···AnB −

∫
σ⊗nA ⊗ τ (σ)B dµ(σ)

∥∥∥∥
1

. (4.3.64)

Applying this theorem in our context (choosing n = 1) leads to the following conclusion:

2 |A|2
k
≥
∥∥∥∥γA1B −

∫
σA1 ⊗ τ (σ)B dµ(σ)

∥∥∥∥
1

(4.3.65)

≥
∥∥γA1B − SEP(A1 : B)

∥∥
1
, (4.3.66)

because the state
∫
σA1 ⊗ τ (σ)B dµ(σ) is a particular separable state.

We can now combine (4.3.63) and (4.3.66) with the triangle inequality to conclude the
following bound

‖ρAB − SEP(A : B)‖1 ≤
2|A|2
k

+ kδω,R. (4.3.67)

By choosing k to diverge slower than δ−1
ω,R, say as k = |A|

√
2/δω,R, we obtain the following

bound:

‖ρAB − SEP(A : B)‖1 ≤ |A|
√

8δω,R (4.3.68)

= (512)1/4 |A| ε1/4
ω,R. (4.3.69)

Since the above bound holds for all extensions and recovery maps, we can obtain the tightest
bound by taking an infimum over all of them. By substituting with (4.3.45) and (4.3.46),
we find that

‖ρAB − SEP(A : B)‖1 ≤ (512)1/4 |A|
(
−1/2 logF sq (A;B)ρ

)1/4

, (4.3.70)

or equivalently

Esq
F (A;B)ρ = −1/2 logF sq (A;B)ρ ≥

1

512 |A|4
‖ρAB − SEP(A : B)‖4

1 . (4.3.71)
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This proves the converse part of the faithfulness of the geometric squashed entanglement.

Proposition 4.23. Let φAB be a bipartite pure state. Then

Esq
F (A;B)φ = −1

2
log sup

|ϕ〉A
〈φ|AB (ϕA ⊗ φB) |φ〉AB (4.3.72)

= −1

2
log
∥∥φ2

A

∥∥
∞ . (4.3.73)

Any extension of a pure bipartite state is of the form φAB⊗ωE. Applying Proposition 4.12,
we find that

F (A;B|E)φ⊗ω = F (A;B)φ (4.3.74)

= sup
σA

F (φAB, φB ⊗ σA) (4.3.75)

= sup
|ϕ〉A
〈φ|AB (ϕA ⊗ φB) |φ〉AB . (4.3.76)

The last equality follows due to a convexity argument applied to

F (φAB, φB ⊗ σA) = 〈φ|AB φB ⊗ σA |φ〉AB . (4.3.77)

Since the equality holds independent of any particular extension of φAB, we obtain (4.3.72)
upon applying a negative logarithm and dividing by two. The other equality (4.3.73) follows
because

〈φ|AB (ϕA ⊗ φB) |φ〉AB = 〈φ|AB (ϕAφA ⊗ IB) |φ〉AB (4.3.78)

= Tr {|φ〉 〈φ|AB (ϕAφA ⊗ IB)} (4.3.79)

= Tr {φAϕAφA} (4.3.80)

= 〈ϕ|A φ2
A |ϕ〉A . (4.3.81)

Taking a supremum over all unit vectors |ϕ〉A then gives (4.3.73).

Proposition 4.24. For a maximally entangled state ΦAB of Schmidt rank d,

Esq
F (A;B)Φ = log d. (4.3.82)

Proof. This follows directly from (4.3.73) of Proposition 4.23 because ΦA = IA/d.

Proposition 4.25. For a private state γABA′B′ of log d private bits, the geometric squashed
entanglement obeys the following bound:

Esq
F (AA′;BB′)γ ≥ log d. (4.3.83)

Proof. The proof is in a similar spirit to the proof of [36, Proposition 4.19], but tailored to
the fidelity of recovery quantity. Recall (2.1.4)-(2.1.7). Any extension γABA′B′E of a private
state γABA′B′ takes the form:

γABA′B′E = UABA′B′ (ΦAB ⊗ ρA′B′E)U †ABA′B′ , (4.3.84)
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where ρA′B′E is an extension of ρA′B′ . This is because the state ΦAB is not extendible. Then
consider that

F (AA′;BB′|E)γ = sup
R
F (γABA′B′E,RE→AA′E (γBB′E)) , (4.3.85)

where RE→AA′E is a recovery map. From (2.1.4)-(2.1.7), we can write

γABA′B′E =
1

d

∑
i,j

|i〉 〈j|A ⊗ |i〉 〈j|B ⊗ V i
A′B′ρA′B′E

(
V j
A′B′

)†
, (4.3.86)

which implies that

γBB′E =
1

d

∑
i

|i〉 〈i|B ⊗ TrÂ′
{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†}
. (4.3.87)

So then consider the fidelity of recovery for a particular recovery map RE→AA′E:

F (γABA′B′E,RE→AA′E (γBB′E))

= F

(
UABA′B′ (ΦAB ⊗ ρA′B′E)U †ABA′B′ ,

1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†}))
(4.3.88)

= F

(
(ΦAB ⊗ ρA′B′E) ,

U †ABA′B′

[
1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})]
UABA′B′

)
, (4.3.89)

where the second equality follows from invariance of the fidelity under unitaries. Then
consider that

U †ABA′B′

[
1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})]
UABA′B′

=

(
IA ⊗

∑
j

|j〉 〈j|B ⊗
(
V j
A′B′

)†)[1

d

∑
i

|i〉 〈i|B ⊗RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})]

×
(
IA ⊗

∑
j′

|j′〉 〈j′|B ⊗ V j′

A′B′

)
(4.3.90)

=
1

d

∑
i

|i〉 〈i|B ⊗
(
V i
A′B′

)†RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})
V i
A′B′ . (4.3.91)

If we trace over systems A′B′, the fidelity only goes up, so consider that the state above
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becomes as follows under this partial trace:

1

d

∑
i

|i〉 〈i|B ⊗ TrA′B′
{(
V i
A′B′

)†RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})
V i
A′B′

}
=

1

d

∑
i

|i〉 〈i|B ⊗ TrA′B′
{
RE→AA′E

(
TrÂ′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})}
(4.3.92)

=
1

d

∑
i

|i〉 〈i|B ⊗ TrA′
{
RE→AA′E

(
TrÂ′B′

{
V i
Â′B′

ρÂ′B′E
(
V i
Â′B′

)†})}
(4.3.93)

=
1

d

∑
i

|i〉 〈i|B ⊗ TrA′ {RE→AA′E (TrÂ′B′ {ρÂ′B′E})} (4.3.94)

=
1

d

∑
i

|i〉 〈i|B ⊗ TrA′ {RE→AA′E (ρE)} (4.3.95)

= πB ⊗RE→AE (ρE) , (4.3.96)

where πB is a maximally mixed state on system B. So an upper bound on (4.3.89) is given
by

F (ΦAB ⊗ ρE, πB ⊗RE→AE (ρE)) ≤ F (ΦAB, πB ⊗RE→A (ρE)) (4.3.97)

= 1/d2. (4.3.98)

Since this upper bound is universal for any recovery map and any extension of the original
state, we obtain the following inequality:

sup
γABA′B′E :

γABA′B′=TrE{γABA′B′E}

F (AA′;BB′|E)γ ≤ 1/d2. (4.3.99)

After taking a negative logarithm, we recover the statement of the proposition.

Proposition 4.26. Let ωA1B1A2B2 ≡ ρA1B1 ⊗ σA2B2. Then

Esq
F (A1A2;B1B2)ω ≤ Esq

F (A1;B1)ρ + Esq
F (A2;B2)σ , (4.3.100)

which is equivalent to

F sq (A1;B1)ρ · F sq (A2;B2)τ ≤ F sq (A1A2;B1B2)ρ⊗τ . (4.3.101)

Proof. Let ρA1B1E1 be an extension of ρA1B1 and let τA2B2E2 be an extension of τA2B2 . Let
R1
E1→A1E1

and R2
E2→A2E2

be recovery maps. Then

F
(
ρA1B1E1 ,R1

E1→A1E1
(ρB1E1)

)
· F
(
τA2B2E2 ,R2

E2→A2E2
(τB2E2)

)
= F

(
ρA1B1E1 ⊗ τA2B2E2 ,R1

E1→A1E1
(ρB1E1)⊗R2

E2→A2E2
(τB2E2)

)
(4.3.102)

≤ sup
ωA1A2B1B2E

sup
RE→A1A2E

{F (ωA1A2B1B2E,RE→A1A2E (ωB1B2E)) : ρA1B1 ⊗ τA2B2 = TrE {ωA1A2B1B2E}} (4.3.103)

= F sq (A1A2;B1B2)ρ⊗τ (4.3.104)
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Since the inequality holds for all extensions ρA1B1E1 and τA2B2E2 and recovery mapsR1
E1→A1E1

and R2
E2→A2E2

, we can conclude that

F sq (A1;B1)ρ · F sq (A2;B2)τ ≤ F sq (A1A2;B1B2)ρ⊗τ (4.3.105)

By taking negative logarithms and dividing by 1/2, we arrive at the subadditivity statement
for Esq

F .

Proposition 4.27. The geometric squashed entanglement is a continuous function of its
input. That is, given two bipartite states ρAB and σAB such that F (ρAB, σAB) ≥ 1− ε where
ε ∈ [0, 1], then the following inequalities hold∣∣∣F sq (A;B)ρ − F sq (A;B)σ

∣∣∣ ≤ 8
√
ε, (4.3.106)∣∣∣Esq

F (A;B)ρ − Esq
F (A;B)σ

∣∣∣ ≤ 4 |A|2√ε. (4.3.107)

Proof. One of the main tools for our proof is the purified distance [180, Definition 4], defined
for two quantum states as

P (ρ, σ) ≡
√

1− F (ρ, σ), (4.3.108)

and which for our case implies that

P (ρAB, σAB) ≤ √ε. (4.3.109)

Letting σABE be an arbitrary extension of σAB, [180, Corollary 9] implies that there exists
an extension ρABE of ρAB such that

P (ρABE, σABE) = P (ρAB, σAB) ≤ √ε. (4.3.110)

Let RE→AE be an arbitrary recovery map. Then the above and monotonicity of the purified
distance under quantum operations [180, Lemma 7] imply that

P (RE→AE (ρBE) ,RE→AE (σBE)) ≤ P (ρABE, σABE) ≤ √ε. (4.3.111)

So consider that the triangle inequality for purified distance [180, Lemma 5] implies that

P (ρABE,RE→AE (ρBE)) ≤ P (ρABE, σABE) + P (σABE,RE→AE (σBE))

+ P (RE→AE (σBE) ,RE→AE (ρBE)) (4.3.112)

≤ √ε+ P (σABE,RE→AE (σBE)) +
√
ε (4.3.113)

= P (σABE,RE→AE (σBE)) + 2
√
ε. (4.3.114)

This is equivalent to√
1− F (ρABE,RE→AE (ρBE)) ≤

√
1− F (σABE,RE→AE (σBE)) + 2

√
ε (4.3.115)

which upon squaring gives

1− F (ρABE,RE→AE (ρBE)) ≤ 1− F (σABE,RE→AE (σBE)) + 8
√
ε, (4.3.116)
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where we used that F (ρ, σ) ∈ [0, 1] and ε ≤ √ε for ε ∈ [0, 1]. This in turn implies the
following inequality

F (ρABE,RE→AE (ρBE)) + 8
√
ε ≥ F (σABE,RE→AE (σBE)) . (4.3.117)

By taking a supremum, we find that

F sq (A;B)ρ + 8
√
ε ≥ F (σABE,RE→AE (σBE)) . (4.3.118)

Since the extension of σAB and the recovery map RE→AE were arbitrary, it follows that

F sq (A;B)ρ + 8
√
ε ≥ F sq (A;B)σ . (4.3.119)

By a similar argument (but tailoring an extension of σABE to an arbitrary extension of ρAB),
we can conclude the other inequality

F sq (A;B)σ + 8
√
ε ≥ F sq (A;B)ρ , (4.3.120)

which gives us (4.3.106).
By dividing (4.3.119) by F sq (A;B)ρ and taking a logarithm, we find that

log

(
F sq (A;B)σ
F sq (A;B)ρ

)
≤ log

(
1 +

8
√
ε

F sq (A;B)ρ

)
(4.3.121)

≤ 8
√
ε

F sq (A;B)ρ
(4.3.122)

≤ |A|2 8
√
ε. (4.3.123)

where we used that log (x+ 1) ≤ x and the dimension bound from Proposition 4.9. Applying
this to the other inequality in (4.3.120) gives that

log

(
F sq (A;B)ρ
F sq (A;B)σ

)
≤ |A|2 8

√
ε, (4.3.124)

from which we can conclude (4.3.107) upon dividing both sides by 1/2.

4.4 Surprisal of Measurement Recoverability

In this section, we propose an alternative measure of quantum correlations, the surprisal
of measurement recoverability, which follows the original motivation behind the quantum
discord [207]. However, our measure has a clear operational meaning in the “one-shot”
setting, being based on how well one can recover a bipartite quantum state if one system is
measured.

Recall the definition of quantum discord from Definition 3.16. Similarly, we define the
surprisal of measurement recoverability as follows.
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Definition 4.28. We define the following information quantity:

DF

(
A;B

)
ρ
≡ inf
{Λx}

IF (E;B|X)σ , (4.4.1)

where we have simply substituted the QCMI in (3.3.11) with IF . Writing out the right-hand
side of (4.4.1) carefully, we find that

DF

(
A;B

)
= − log sup

UMA→XE ,RX→XE
F
(
UMA→XE (ρAB) ,RX→XE (MA→X (ρAB))

)
, (4.4.2)

where MA→X is defined in (3.3.3), UMA→XE is defined in (3.3.4), and UMA→XE is defined in
(3.3.7).

This quantity has a similar interpretation as the original discord, as summarized in the
following quote from [207]:

“A vanishing discord can be considered as an indicator of the superselection
rule, or — in the case of interest — its value is a measure of the efficiency of
einselection. When [the discord] is large for any measurement, a lot of information
is missed and destroyed by any measurement on the apparatus alone, but when
[the discord] is small almost all the information about [the system] that exists in
the [system–apparatus] correlations is locally recoverable from the state of the
apparatus.”

Indeed, we can rewrite DF as characterizing how well a bipartite state ρAB is preserved when
an entanglement-breaking channel [95] acts on the A system:

Proposition 4.29. For a bipartite state ρAB, we have the following equality:

DF

(
A;B

)
= − log sup

EA
F (ρAB, EA (ρAB)) , (4.4.3)

where the optimization on the right-hand side is over the convex set of entanglement-breaking
channels acting on the system A.

Proof. We begin by establishing that

sup
UMA→XE ,RX→XE

F
(
UMA→XE (ρAB) ,RX→XE (MA→X (ρAB))

)
≤ sup
EA

F (ρAB, EA (ρAB)) . (4.4.4)

Let MA→X be any measurement map, let UMA→XE be an isometric extension for it, and let
RX→XE be any recovery map. Let TXE→A denote the following quantum channel:

TXE→A (γXE) ≡
(
UM

)†
γXEU

M + Tr
{(
I − UM

(
UM

)†)
γXE

}
σA, (4.4.5)

where σA is some state on the system A. Observe that(
TXE→A ◦ UMA→XE

)
(ρAB) = ρAB. (4.4.6)
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Then consider that

F
(
UMA→XE (ρAB) ,RX→XE (MA→X (ρAB))

)
≤ F

(
TXE→A

(
UMA→XE (ρAB)

)
, TXE→A (RX→XE (MA→X (ρAB)))

)
(4.4.7)

= F (ρAB, TXE→A (RX→XE (MA→X (ρAB)))) (4.4.8)

≤ sup
EA

F (ρAB, EA (ρAB)) . (4.4.9)

The first inequality is a consequence of the monotonicity of fidelity under quantum operations
and the last follows because any entanglement breaking channel can be written as a con-
catenation of a measurement followed by a preparation. In the third line, the measurement
is MA→X and the preparation is TXE→A ◦ RX→XE.

We now prove the other inequality:

sup
UMA→XE ,RX→XE

F
(
UMA→XE (ρAB) ,RX→XE (MA→X (ρAB))

)
≥ sup
EA

F (ρAB, EA (ρAB)) . (4.4.10)

Let EA be any entanglement-breaking channel, which consists of a measurement MA→X
followed by a preparation PX→A. Let UMA→XE be an isometric extension of the measurement
map. Then consider that

F (ρAB, EA (ρAB)) = F (ρAB,PX→A (MA→X (ρAB))) (4.4.11)

= F
(
UMA→XE (ρAB) ,UMA→XE (PX→A (MA→X (ρAB)))

)
(4.4.12)

≤ sup
UMA→XE ,RX→XE

F
(
UMA→XE (ρAB) ,RX→XE (MA→X (ρAB))

)
, (4.4.13)

where the inequality follows because UMA→XE ◦PX→A is a particular recovery map. So (4.4.10)
follows and this concludes the proof.

The proof follows the interpretation given in the quote above: the measurement map
MA→X is performed on the A system of the state ρAB, which is followed by a recovery map
PX→A that attempts to recover the A system from the state of the measuring apparatus.
Since the measurement map has a classical output, any recovery map acting on such a
classical system is equivalent to a preparation map. So the quantity DF

(
A;B

)
captures

how difficult it is to recover the full bipartite state after some measurement is performed on
it, following the original spirit of the quantum discord. However, the quantity DF

(
A;B

)
defined above has the advantage of being a “one-shot” measure, given that the fidelity has
a clear operational meaning in a “one-shot” setting. If DF

(
A;B

)
is near to zero, then

F (ρAB, (PX→A (MA→X (ρAB)))) is close to one, so that it is possible to recover the system
A by performing a recovery map on the state of the apparatus. Conversely, if DF

(
A;B

)
is

far from zero, then the measurement recoverability is far from one, so that it is not possible
to recover system A from the state of the measuring apparatus.

The observation in Proposition 4.29 leads to the following proposition, which character-
izes quantum states with discord nearly equal to zero.

Proposition 4.30. A bipartite quantum state ρAB has quantum discord nearly equal to zero
if and only if it is an approximate fixed point of an entanglement breaking channel. More
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precisely, we have the following: If there exists an entanglement breaking channel EA and
ε ∈ [0, 1] such that

‖ρAB − EA (ρAB)‖1 ≤ ε, (4.4.14)

then the quantum discord D
(
A;B

)
ρ

obeys the following bound

D
(
A;B

)
ρ
≤ 4h2 (ε) + 8ε log |A| , (4.4.15)

where h2 (ε) is the binary entropy with the property that limε↘0 h2 (ε) = 0. Conversely, if the
quantum discord D

(
A;B

)
ρ

obeys the following bound for ε ∈ [0, 1]:

D
(
A;B

)
ρ
≤ ε, (4.4.16)

then there exists an entanglement breaking channel EA such that

‖ρAB − EA (ρAB)‖1 ≤ 2
√
ε. (4.4.17)

Proof. We begin by proving (4.4.14)-(4.4.15). Since any entanglement breaking channel EA
consists of a measurement map MA→X followed by a preparation map PX→A, we can write
EA = PX→A ◦MA→X . Then consider that

D
(
A;B

)
ρ

= I (A;B)ρ − sup
{Λx}

I (X;B)σ (4.4.18)

≤ I (A;B)ρ − I (X;B)M(ρ) (4.4.19)

≤ I (A;B)ρ − I (A;B)P◦M(ρ) (4.4.20)

= I (A;B)ρ − I (A;B)E(ρ) (4.4.21)

≤ 4h2 (ε) + 8ε log |A| . (4.4.22)

The first inequality follows because the measurement given by MA→X is not necessarily
optimal. The second inequality is a consequence of the quantum data processing inequality,
in which quantum mutual information is non-increasing under the local operation PX→A.
The last equality follows because EA = PX→A ◦MA→X . The last inequality is a consequence
of the Alicki-Fannes inequality [4].

We now prove (4.4.16)-(4.4.17). The Fawzi-Renner inequality

I(A;B|C)ρ ≥ − logF (A;B|C)ρ (4.4.23)

which holds for any tripartite state ρABC [62], combined with other observations recalled
in this section connecting discord with QCMI, gives us that there exists an entanglement
breaking channel EA such that

D
(
A;B

)
ρ
≥ − logF (ρAB, EA (ρAB)) (4.4.24)

≥ − log

(
1− 1

4
‖ρAB − EA (ρAB)‖2

1

)
(4.4.25)

≥ 1

4
‖ρAB − EA (ρAB)‖2

1 , (4.4.26)

where the second inequality follows from well known relations between trace distance and
fidelity [66] and the last from − log (1− x) ≥ x, valid for x ≤ 1. This is sufficient to conclude
(4.4.16)-(4.4.17).
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Remark 4.31. The main conclusion we can take from Proposition 4.30 is that quantum
states with discord nearly equal to zero are such that they are recoverable after performing
some measurement on one share of them, making precise the quote from [207] given above.
In prior work [78, Lemma 8.12], quantum states with discord exactly equal to zero were
characterized as being entirely classical on the system being measured, but this condition is
perhaps too restrictive for characterizing states with discord approximately equal to zero.

Remark 4.32. In prior work, discord-like measures of the following form have been widely
considered throughout the literature [129]:

inf
χAB∈CQ

∆ (ρAB, χAB) , (4.4.27)

inf
χAB∈CC

∆ (ρAB, χAB) , (4.4.28)

where CQ and CC are the respective sets of classical-quantum and classical-classical states
and ∆ is some suitable (pseudo-)distance measure such as relative entropy, trace distance,
or Hilbert-Schmidt distance. The larger message of Proposition 4.30 is that it seems more
reasonable from the physical perspective argued in this section and in the original discord
paper [207] to consider discord-like measures of the following form:

inf
EA

∆ (ρAB, EA (ρAB)) , (4.4.29)

inf
EA,EB

∆ (ρAB, (EA ⊗ EB) (ρAB)) , (4.4.30)

where the optimization is over the convex set of entanglement breaking channels and ∆ is
again some suitable (pseudo-)distance measure as mentioned above. One can understand
these measures as being a special case of the proposed measures in [146], but we stress here
that we arrived at them independently through the line of reasoning given in this section.

We now establish some properties of the surprisal of measurement recoverability:

Proposition 4.33. DF

(
A;B

)
ρ

is invariant under local isometries, in the sense that

DF

(
A;B

)
ρ

= DF (A′;B′)σ, (4.4.31)

where
σA′B′ ≡ (UA→A′ ⊗ VB→B′) (ρAB) (4.4.32)

and UA→A′ and VB→B′ are isometric CPTP maps.

Proof. Let EA be some entanglement-breaking channel and let UA→A′ and VB→B′ denote
the local isometries, with corresponding isometric maps UA→A′ and VB→B′ . Let TA′→A and
TB′→B denote the following CPTP maps:

TA′→A (ωA′) ≡ U †ωA′U + Tr
{(
IA′ − UU †

)
ωA′
}
τA, (4.4.33)

TB′→B (ωB′) ≡ V †ωB′V + Tr
{(
IB′ − V V †

)
ωB′
}
τB, (4.4.34)
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where τA and τB are some states on systems A and B, respectively. Observe that

TA′→A ◦ UA→A′ = idA, (4.4.35)

TB′→B ◦ VB→B′ = idB, (4.4.36)

where id denotes the identity map. Then from invariance of fidelity under isometries and
the above fact, we find that

F (ρAB, EA (ρAB))

= F ((UA→A′ ⊗ VB→B′) (ρAB) , (UA→A′ ⊗ VB→B′) (EA (ρAB))) (4.4.37)

= F ((UA→A′ ⊗ VB→B′) (ρAB) , (UA→A′ ◦ EA ◦ TA′→A) [(UA→A′ ⊗ VB→B′) (ρAB)]) (4.4.38)

≤ sup
EA′

F ((UA→A′ ⊗ VB→B′) (ρAB) , EA′ ((UA→A′ ⊗ VB→B′) (ρAB))) . (4.4.39)

Since the inequality is true for any entanglement breaking channel EA, we find after applying
a negative logarithm that

DF

(
A;B

)
ρ
≥ DF

(
A;B

)
(U⊗V)(ρ)

. (4.4.40)

Now consider that

F ((UA→A′ ⊗ VB→B′) (ρAB) , EA′ [(UA→A′ ⊗ VB→B′) (ρAB)])

= F (UA→A′ (ρAB) , (EA′ ◦ UA→A′) (ρAB)) (4.4.41)

≤ F ((TA′→A ◦ UA→A′) (ρAB) , (TA′→A ◦ EA′ ◦ UA→A′) (ρAB)) (4.4.42)

= F (ρAB, (TA′→A ◦ EA′ ◦ UA→A′) (ρAB)) (4.4.43)

≤ sup
EA

F (ρAB, EA (ρAB)) . (4.4.44)

Since the inequality is true for any entanglement breaking channel EA′ , we find after applying
a negative logarithm that

DF

(
A;B

)
ρ
≤ DF

(
A;B

)
(U⊗V)(ρ)

, (4.4.45)

which gives the statement of the proposition.

Proposition 4.34. The surprisal of measurement recoverability DF

(
A;B

)
ρ

is equal to zero

if and only if ρAB is a classical-quantum state, having the form

ρAB =
∑
x

pX (x) |x〉 〈x|A ⊗ ρxB, (4.4.46)

for some orthonormal basis {|x〉}, probability distribution pX (x), and states {ρxB}.

Proof. Suppose that the state is classical-quantum. Then it is a fixed point of the en-
tanglement breaking map

∑
x |x〉 〈x|A (·) |x〉 〈x|A, so that the fidelity of measurement recov-

ery is equal to one and its surprisal is equal to zero. On the other hand, suppose that
DF

(
A;B

)
ρ

= 0. Then this means that there exists an entanglement breaking channel EA
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of which ρAB is a fixed point (since F (ρAB, EA (ρAB)) = 1 is equivalent to ρAB = EA (ρAB)),
and furthermore, applying the fixed point projection

EA ≡ lim
K→∞

1

K

K∑
k=1

EkA (4.4.47)

leaves ρAB invariant. The map EA has been characterized in [67, Theorem 5.3] to be an
entanglement breaking channel of the following form:

EA (·) =
∑
i

Tr {Mi (·)}σi, (4.4.48)

where the states σi have orthogonal support. Applying this channel to ρAB then gives a
classical-quantum state, and since ρAB is invariant under the action of this channel to begin
with, it must have been classical-quantum from the start.

Proposition 4.35. The surprisal of measurement recoverability obeys the following dimen-
sion bound:

DF

(
A;B

)
ρ
≤ log |A| , (4.4.49)

or equivalently,

sup
EA

F (ρAB, EA (ρAB)) ≥ 1

|A| . (4.4.50)

Proof. The idea behind the proof is to consider an entanglement breaking channel EA that
completely dephases the system A. Let ∆A denote such a channel, so that

∆A (·) ≡
∑
i

|i〉 〈i|A (·) |i〉 〈i|A , (4.4.51)

where {|i〉A} is some orthonormal basis spanning the space for the A system. Let a spectral
decomposition of ρAB be given by

ρAB =
∑
x

pX (x) |ψx〉 〈ψx|AB , (4.4.52)

where pX is a probability distribution and {|ψx〉AB} is a set of pure states. We then find
that

DF

(
A;B

)
ρ
≤ − logF

(
ρAB,∆A (ρAB)

)
(4.4.53)

= −2 log
√
F
(
ρAB,∆A (ρAB)

)
(4.4.54)

≤
∑
x

pX (x)

[
−2 log

√
F
(
ψxAB,∆A (ψxAB)

)]
(4.4.55)

=
∑
x

pX (x)
[
− log 〈ψx|AB ∆A (ψxAB) |ψx〉AB

]
(4.4.56)

=
∑
x

pX (x)

[
− log

∑
i

[〈i|A ψxA |i〉A]2
]

(4.4.57)

≤ log |A| . (4.4.58)
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The second inequality follows from joint concavity of the root fidelity
√
F and convexity

of − log. The last equality is a consequence of a well known expression for the entangle-
ment fidelity of a channel (see, e.g., [196, Theorem 9.5.1]). The last inequality follows by
recognizing

− log
∑
i

[〈i|A ψxA |i〉A]2 (4.4.59)

as the Rényi 2-entropy of the probability distribution 〈i|A ψxA |i〉A and from the fact that
all Rényi entropies are bounded from above by the logarithm of the alphabet size of the
distribution, which in this case is log |A|.

By making use of the special form of the entanglement fidelity for a quantum channel (see,
e.g., [196, Theorem 9.5.1]), we arrive at the following form for DF

(
A;B

)
when evaluated for

a pure state:

Proposition 4.36. Let ψAB be a pure state. Then

DF

(
A;B

)
ψ

= − log sup
|φx〉,|ϕx〉:

∑
x|ϕx〉〈ϕx|=I

∑
x

|〈ϕx|A ψA |φx〉A|
2 , (4.4.60)

where the optimization is over pure-state vectors |φx〉 and corresponding measurement vectors
|ϕx〉 satisfying

∑
x |ϕx〉 〈ϕx| = I.

Proposition 4.37. The surprisal of measurement recoverability DF

(
A;B

)
Φ

is equal to log d
for a maximally entangled state with Schmidt rank d.

Proof. The following bound is a consequence of [152, Lemma 2]

F (ΦAB, EA (ΦAB)) ≤ 1

d
(4.4.61)

because EA (ΦAB) is a separable state. Since the bound holds for any entanglement breaking
channel, we get

DF

(
A;B

)
Φ
≥ log d. (4.4.62)

On the other hand, Proposition 4.35 gives DF

(
A;B

)
Φ
≤ log d, which concludes the proof.

Proposition 4.38. The surprisal of measurement recoverability is monotone with respect to
quantum operations on the unmeasured system, i.e.,

DF

(
A;B

)
ρ
≥ DF

(
A;B′

)
σ
, (4.4.63)

where σAB′ ≡ NB→B′ (ρAB).

Proof. Intuitively, this follows because it is easier to recover from a measurement when the
state is noisier to begin with. Indeed, let EA be an entanglement breaking channel. Then

F (ρAB, EA (ρAB)) ≤ F (σAB′ , EA (σAB′)) (4.4.64)

≤ sup
EA

F (σAB′ , EA (σAB′)) , (4.4.65)
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where the first inequality is due to the fact that EA commutes with NB→B′ and monotonicity
of the fidelity under quantum operations. Since the inequality holds for all entanglement
breaking channels, we can conclude that

sup
EA

F (ρAB, EA (ρAB)) ≤ sup
EA

F (σAB′ , EA (σAB′)) . (4.4.66)

Taking a negative logarithm gives the statement of the proposition.

With a proof nearly identical to that for Proposition 4.27, we find that DF

(
A;B

)
ρ

is
continuous:

Proposition 4.39. DF

(
A;B

)
is a continuous function of its input. That is, given two

bipartite states ρAB and σAB such that F (ρAB, σAB) ≥ 1 − ε where ε ∈ [0, 1], then the
following inequalities hold∣∣∣∣sup

EA
F (ρAB, EA (ρAB))− sup

EA
F (σAB, EA (σAB))

∣∣∣∣ ≤ 8
√
ε, (4.4.67)∣∣∣DF

(
A;B

)
ρ
−DF

(
A;B

)
σ

∣∣∣ ≤ |A| 8√ε. (4.4.68)

4.5 Discussion

To summarize, in this chapter we defined the fidelity of recovery F (A;B|C)ρ of a tripartite
state ρABC to quantify how well one can recover the full state on all three systems if system A
is lost and the recovery map can act only on system C. By taking the negative logarithm of
the fidelity of recovery, we obtain an entropic quantity IF (A;B|C)ρ which obeys nearly all of
the entropic relations that the conditional mutual information does (non-negativity, mono-
tonicity under local operations, duality, and dimension bounds). The quantities F (A;B|C)ρ
and IF (A;B|C)ρ are rooted in the Rényi generalizations of the QCMI presented in Appendix
B. Whereas we have not been able to prove that all of the aforementioned properties hold for
the Rényi QCMI from Appendix A, it is pleasing to us that it is relatively straightforward
to show that these properties hold for IF (A;B|C)ρ.

We then defined a geometric squashed entanglement measure Esq
F (A;B)ρ, inspired by the

original squashed entanglement measure from [40]. We proved that Esq
F (A;B)ρ is a 1-LOCC

monotone, is faithful, reduces to a variant of the well known geometric measure of entan-
glement [195, 35], normalized on maximally entangled states, subadditive, and continuous.
The new entanglement measure could find applications in “one-shot” scenarios of quantum
information theory, since it is fundamentally a one-shot measure based on the fidelity.

Further, we also defined the surprisal of measurement recoverability DF

(
A;B

)
ρ
, a quan-

tum correlation measure having physical roots in the same vein as those used to justify the
definition of the quantum discord. We showed that it is non-negative, invariant under local
isometries, faithful on classical-quantum states, obeys a dimension bound, and is continuous.
Furthermore, we used this quantity to characterize quantum states with discord nearly equal
to zero, finding that such states are approximate fixed points of an entanglement breaking
channel.

From here, there are several interesting lines of inquiry to pursue. Can we prove a
stronger chain rule for the fidelity of recovery? If something along these lines holds, it might
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be helpful in establishing that the geometric squashed entanglement is monogamous. Can we
use geometric squashed entanglement to characterize the one-shot distillable entanglement
or secret key of a bipartite state? Is it possible to improve our continuity bounds? Can
one show that geometric squashed entanglement is non-lockable [36]? Preliminary evidence
from considering the strongest known locking schemes from [61] suggests that it might not
be lockable. We are also interested in a multipartite geometric squashed entanglement, but
we face similar challenges as those discussed in [120] for establishing its faithfulness.
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Part II
Parity-based Quantum Optical

Metrology

Chapter 5
Optimal Phase Estimation with Parity

Detection1

5.1 Introduction

The role of measurement in any metrology scheme cannot be overemphasized. It is perhaps
as important as, if not more than, preparing probe systems. In quantum metrology, probe
systems are typically prepared in optimal quantum states such that they can acquire max-
imal information about the unknown parameter of interest. Yet, it is equally crucial that
the observable that is used to measure the probes also be optimal. In other words, the mea-
surement observable should be able to fetch all the information acquired about the unknown
parameter by the probes, so that a good estimate of the unknown value of the parameter
can be made. In quantum parameter estimation theory (see Section 2.5), this optimality of a
measurement observable translates into the condition that the classical Cramér-Rao bound
of the observable for a given quantum state be equal to the quantum Cramér-Rao bound of
the state [27].

In Appendix C, we mention various detection strategies that have been considered for
phase estimation in two-mode quantum optical interferometry. Some of them involve classical
ideas, e.g., homodyne detection [69], where a strong local oscillator is mixed with the signal-
carrying beam and intensity difference is measured at the output. On the other hand,

1This chapter is reproduced by updating and adapting the contents of Kaushik P. Seshadreesan, Petr M.
Anisimov, Hwang Lee, and Jonathan P. Dowling, New Journal of Physics, 13(8):083026, August 2011, and
Kaushik P. Seshadreesan, Sejong Kim, Jonathan P. Dowling, and Hwang Lee, Physical Review A, 87:043833,
April 2013, with the permission of IOP Publishing and APS, respectively. See Appendix E for the copyright
permission from the publishers.
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recent technological advances have enabled detection of light at the level of single-photon
resolution (at least for small photon numbers) [125]. As a result, photon-number counting-
based measurement observables have attracted a lot of attention recently. They have opened
up new vistas in low-power applications of quantum optical interferometry that could not
have been possible with classical detection schemes. In particular, it has been shown that in
the small photon number regime, photon-number counting-based observables in two-mode
interferometry could be used to achieve optimal phase sensitivities independent of the actual
value of the phase [143]—a feat impossible to achieve, e.g., with homodyne detection.

In this chapter, we present phase estimation based on a measurement observable, which
is nonclassical as is photon-number counting, and in fact very related to the latter—namely,
photon-number parity detection [72]. One way to think of the parity measurement, which
is perhaps obvious, is counting the number of photons and inferring parity depending on
whether the count is even or odd. Photon-number parity has been shown to be optimal for
several interferometric states. In our work, we make an attempt to characterize pure states
for which photon-number parity is optimal. Also, we explicitly show optimality of photon-
number parity for the interferometry with coherent light mixed with squeezed vacuum light.
This state is known to be optimal for phase estimation when the coherent and squeezed-
vacuum states are mixed in equal intensities, i.e., it is capable of Heisenberg limited phase
estimation. We show that photon-number parity is an optimal measurement observable for
this interferometry, including when the state itself is optimal. In other words, we demon-
strate Heisenberg-limited phase estimation for this optimal state with photon-number parity
detection.

The chapter is organized as follows. We begin by setting up the mathematical condition
for a measurement observable to be optimal for phase estimation with any given pure state
preparation of the probes. We then review Hofmann’s work [87] on pure-state interferometry
with photon-number counting. This includes a description of the “path-symmetric” states,
which is a class of pure states for which photon-number counting-based observables are
optimal for phase estimation. Almost all states considered for interferometric metrology thus
far, such as the coherent state, the squeezed states, the twin-Fock state, are path symmetric.
We present photon-number parity-based phase estimation for the path-symmetric states and
show that parity measurement is locally optimal at some bias values of the unknown phase for
a restricted class of path-symmetric states. Interestingly, the commonly considered states for
interferometric metrology also satisfy this restricted path symmetry condition, which seems
to be a more natural condition on two-mode states than complete path symmetry. We apply
photon-number parity detection to the particular interferometry with coherent light mixed
with squeezed-vacuum light input and demonstrate Heisenberg-limited phase estimation.
Finally, for the same optimal state prepared by mixing coherent and squeezed vacuum states
in equal intensities, we compare the performance of photon-number parity detection with
another homodyne-based detection scheme that has been proposed in the literature. We
show that although both the measurement observables are optimal at particular values of
phase, parity offers better phase sensitivities over a broader range of values of phase than
the other detection scheme.
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5.2 Condition for Optimality of a Measurement Observable with Pure States

Consider a typical MZI with an unknown phase ϕ, as shown in Fig. 5.1, where we have
labeled the states at various stages of the interferometer. Here, we use the Schwinger rep-
resentation [205] presented in C.3.3 to describe the interferometer. Recall that a two-mode
N -photon state in this representation resides in the j = N/2 subspace of the angular mo-
mentum Hilbert space, with the angular momentum operators operators Ĵx, Ĵy, and Ĵz given

in terms of the mode operators â1, â†1, b̂1, and b̂†1 inside the interferometer as:

Ĵx =
1

2
(â†1b̂1 + b̂†1â1), Ĵy =

1

2i
(â†1b̂1 − b̂†1â1), Ĵz =

1

2
(â†1â1 − b̂†1b̂1), (5.2.1)

where N̂ = â†1â1 + b̂†1b̂1 and J2 = N̂/2
(
N̂/2 + 1

)
is the Casimir invariant of the group.

Also, the unitary phase evolution in the MZI is represented as Ûϕ = exp(−iϕĴz), and the

50:50 beam splitter transformation can be chosen to be ÛBS = exp(−iπ
2
Ĵy).

2 Using the SU(2)

algebra of the angular momentum operators, namely [Ĵq, Ĵr] = iĴsεqrs where q, r, s ∈ {x, y, z}
and ε is the antisymmetric tensor, and the Baker-Hausdorff lemma [160], the overall MZI
transformation, ÛMZI = Û †BSÛϕÛBS, can be shown to be ÛMZI = exp(−iϕĴx).

|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

â0

b̂0 b̂3

â3
ϕ

Figure 5.1: (Color online) A MZI with a two-mode input |ψ0〉, which after the 50:50 beam
splitter and phase shifter transformations ÛBS = exp(−iπ

2
Ĵy), Ûϕ = exp(−iϕĴz) and Û †BS =

exp(iπ
2
Ĵy) (in that order), is denoted by |ψ1〉, |ψ2〉 and |ψ3〉, at the respective stages.

Our goal is to estimate the unknown phase ϕ. The error in the estimate based on the
measurement of an observable Ô on state |ψ2〉 can be written as:

δϕ =
∣∣∣∆O/(∂ 〈Ô〉 /∂ϕ)

∣∣∣ . (5.2.2)

where
〈
Ô
〉

is the expectation value of Ô, and ∆O is the uncertainty in the measurement.

Based on the Heisenberg equation of motion for operators, the expectation value of observable

2Note that all the results presented in this chapter can also be obtained if the beam-splitter transforma-
tion is chosen to be exp(−iπ2 Ĵx) with minor modifications.
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Ô with respect to the state |ψ2〉 satisfies

∂

∂ϕ

〈
Ô
〉

= −i
[
Ô, Ĵz

]
, (5.2.3)

where the commutator is with respect to the Ĵz operator—the generator of phase evolution
in the MZI. According to the uncertainty principle [168], we have:

∆O∆Jz ≥
1

2

∣∣∣[Ô, Ĵz]∣∣∣ =
1

2

∣∣∣∣ ∂∂ϕ 〈Ô〉
∣∣∣∣ . (5.2.4)

Consequently, the error in the estimate δϕ obeys:

δϕ =
∣∣∣∆O/(∂ 〈Ô〉 /∂ϕ)

∣∣∣ ≥ 1

2∆Jz
. (5.2.5)

For pure quantum states |ψ3〉, the right-hand side of the above inequality is identically equal
to the QCRB of the state [27]. The equivalent (necessary and sufficient) condition on an
observable Ô and state |ψ2〉 for achieving the bound is identically the same as the condition
for equality in Eq. (5.2.4), given by:

Õ |ψ2〉 = iλJ̃z |ψ2〉 , (5.2.6)

for any nonzero λ ∈ R, where Õ = Ô −
〈
Ô
〉
Î, J̃z = Ĵz −

〈
Ĵz

〉
Î, and Î is the

(2j+1)×(2j+1) identity operator [168]. (Note that Õ and J̃z are also Hermitian operators.)

5.3 Photon-Number Counting and Path-Symmetric States

We now consider the above interferometry for the case of photon-number detection. In
particular, we examine the condition in (5.2.6) for measurement observables that are diagonal
in the photon-number basis. The goal is to describe the class of pure states for which such
observables are optimal in the task of phase estimation, as originally done by Hofmann [87].

In the MZI of Fig. 5.1, the photon-number difference measurement observable at the out-
put is given by â†3â3− b̂†3b̂3. For the chosen beam-splitter transformation ÛBS = exp(−iπ

2
Ĵy),

this observable is given by the Ĵx operator in the Schwinger representation of (5.2.1) up to
a factor of half. This is because

1

2

(
â†3â3 − b̂†3b̂3

)
= ÛBSÛϕĴzÛ

†
ϕÛ
†
BS (5.3.1)

= ÛBSÛϕ
1

2

(
â†1â1 − b̂†1b̂1

)
Û †ϕÛ

†
BS (5.3.2)

= Ĵx, (5.3.3)

which follows from the Baker-Hausdorff lemma [160]. Note that the observable diagonal in
the Ĵx basis acts not on |ψ3〉, but instead on |ψ1〉 (and|ψ2〉since Ûϕ commutes with Ĵz). In a
sense, we have transformed the observable acting on |ψ3〉 to an observable that acts on |ψ1〉
via the SU(2) equivalence given in (5.3.3).
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Theorem 5.1. In two-mode optical interferometric phase estimation, photon-number counting-
based measurement observables are optimal for pure states that satisfy the following condition

〈mx |ψ2〉 = 〈mx |ψ2〉∗ e−i2χ ∀ mx ∈ {−j, ...,+j} (5.3.4)

where |mx〉 are the eigenkets of the Ĵx operator and the expectation is with respect to |ψ2〉.

Proof. For a photon-number counting-based observable Õ acting on the state |ψ2〉, multi-
plying both sides of Eq. (5.2.6) by an eigenbra of Ĵx, 〈mx|, we get:

pm 〈mx |ψ2〉 = iλ 〈mx| J̃z |ψ2〉 , (5.3.5)

where pm is the eigenvalue of Õ satisfying:

Õ |mx〉 = pm |mx〉 . (5.3.6)

Rearranging the terms of Eq. (5.3.5), we obtain:

pm
λ

= i
〈mx| J̃z |ψ2〉
〈mx |ψ2〉

. (5.3.7)

Since pm and λ are purely real numbers, 〈mx| J̃z |ψ2〉 / 〈mx| |ψ2〉 has to be purely imaginary
in order for the state |ψ2〉 to satisfy Eq. (5.3.7).

We can rewrite 〈mx| J̃z |ψ2〉 / 〈mx| |ψ2〉 by inserting the identity operator Î =
∑
|m〉 |m〉 〈m|

as:
〈mx| J̃z |ψ2〉
〈mx |ψ2〉

=
∑
|m〉

〈mx| J̃z |m〉 〈m| |ψ2〉
〈mx |ψ2〉

, (5.3.8)

where {|m〉} is the eigenbasis of the Ĵx operator. (Note that we call the basis elements as
|m〉 in order to distinguish it from a specific |mx〉.) The matrix elements of Ĵz in the Ĵx basis
are all purely imaginary due to the cyclic property of the commutation relation between
the angular momentum operators. (For example, recall that the matrix elements of the Ĵy
operator are purely imaginary in the Ĵz basis.) This implies all the non-zero off-diagonal
entries of J̃z are purely imaginary numbers, and all the diagonal entries are identically equal

to
〈
Ĵz

〉
. Therefore, Eq. (5.3.8) reduces to:

〈mx| J̃z |ψ2〉
〈mx |ψ2〉

=
∑

|m〉6=|mx〉

〈mx| Ĵz |m〉
〈m |ψ2〉
〈mx |ψ2〉

−
〈
Ĵz

〉
, (5.3.9)

where 〈mx| Ĵz |m〉 , |m〉 6= |mx〉 are all purely imaginary numbers. Clearly, the following is
a sufficient condition so that the right-hand side of (5.3.9) is purely imaginary:

〈m |ψ2〉 / 〈mx |ψ2〉 ∈ R ∀ {m, mx} ∈ {−j, ...,+j}, (5.3.10)〈
Ĵz

〉
= 0.
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Further, the condition in (5.3.10) can be rewritten as

〈mx |ψ2〉 = 〈mx |ψ2〉∗ e−i2χ, ∀ mx ∈ {−j, ...,+j}, (5.3.11)

i.e., the state must have purely real coefficients in the Ĵx basis (up to a global phase) in
order for (5.3.10) to be true. That proves the statement of the theorem.

As a result, we know that states that satisfy the condition given in Theorem 5.1 are
capable of reaching their maximal phase sensitivities at the QCRB with photon-number
counting-based detection strategies. Hofmann [87] identified these conditions with a sym-
metry property in the alternative picture, where the abstract angular momentum operator
J = {Jx, Jy, Jz} undergo rotation instead of the state. The property can be explained

as follows. Consider the Ĵx-basis complex-conjugation operation of (5.3.4) on the angu-
lar momentum vector instead of the state |ψ2〉. Since in the Ĵx-basis Ĵx and Ĵy are real,

but Ĵz imaginary, the above operation leaves the former invariant, but flips the latter, i.e.,
Ĵz → −Ĵz. Therefore, the condition in (5.3.4) translates to the condition of invariance under

the transformation Ĵz → −Ĵz. Note that this condition implicitly conveys that
〈
Ĵz

〉
= 0.

Hofmann calls this the “path-symmetry” condition, since the operation Ĵz → −Ĵz corre-
sponds to an exchange of paths (modes) in the Schwinger representation. However, it is
important to realize that it is an unphysical exchange of paths, because Ĵx and Ĵy remain
unchanged all along, while that is not the case in general with an exchange of paths.

The condition of (5.3.4) is also sometimes referred to as the path-symmetry condition on
a pure state. When transformed to the eigenbasis of the Ĵz operator, the condition of (5.3.4)
yields

〈mz| |ψ2〉 = 〈−mz| |ψ2〉∗ e−i2χ, ∀ mz ∈ {−j, ...,+j}. (5.3.12)

It is easy to verify that states |ψ2〉 that obey (5.3.12) implicitly satisfy
〈
Ĵz

〉
= 0. Also, if

|ψ2〉 =
∑+j

mz=−j cm|mz〉, then |ψ1〉 =
∑+j

mz=−j cme
imzϕ|m〉. Hence, 〈mz| |ψ2〉 / 〈−mz| |ψ2〉∗ =

e−i2χ also implies 〈mz |ψ1〉 / 〈−mz |ψ1〉∗ also equals e−i2χ. In other words, the condition
of (5.3.12) is satisfied independently of the value of the unknown phase ϕ. Thus, path-
symmetric states are capable of reaching their QCRB with photon-number counting-based
measurement observables independent of the actual value of phase ϕ. Almost all quantum
states that have been considered for interferometric metrology, such as the coherent state,
the squeezed vacuum states, the twin-Fock state, are path-symmetric states. Therefore,
photon-number counting-based observables are optimal for all such states.

5.4 Photon-Number Parity and Path-Symmetric States

Photon number parity, in a nutshell, is the Hermitian observable (−1)n̂, where n̂ ≡ b̂†b̂ is
the number operator of a mode labeled by b̂. It is a two-valued observable described by the
projection operators Π+, Π− with eigenvalues +1 and −1, respectively, where

Π+ = |0〉 〈0|+ |2〉 〈2|+ · · · (5.4.1)

Π− = |1〉 〈1|+ |3〉 〈3|+ · · · . (5.4.2)
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Consider the parity operator for the mode b̂3 of Fig. 5.1, Π̂ = (−1)b̂
†
3b̂3 . For the chosen

beam-splitter transformation ÛBS = exp(−iπ
2
Ĵy), this can be written in the Schwinger rep-

resentation as (−1)jexp(−iπĴx), where j = N/2. Similar to (5.3.3), this follows from an
application of the Baker-Hausdorff lemma [160]

(−1)b̂
†
3b̂3 = ÛBSÛϕ(−1)j−Ĵz Û †ϕÛ

†
BS, (5.4.3)

= (−1)jexp(−iπĴx). (5.4.4)

We call this operator Q̂. It acts on the states |ψ1〉 and |ψ2〉 of Fig. 5.1. When expanded in
the eigenbasis of the Ĵz operator, {|mz〉}, the Q̂ operator takes the form:

Q̂ =
∑
|mz〉

|mz〉〈−mz|. (5.4.5)

Our goal is to identify the class of pure states for which photon-number parity measure-
ment observables are optimal in the task of phase estimation. However, since photon-number
parity is implicitly based on photon-number counting (although it is of interest to try and
implement parity without having to count photons), we expect it to be optimal only for a
subset of any class of states for which photon-number counting-based observables are opti-
mal. Therefore, we focus our analysis on studying the performance of parity-based detection
strategies for the path-symmetric states of Section 5.3.

We now state our main theorem. The theorem is given for the parity measurement Q̂.
However, the result can be generalized to other observables that are diagonal in the eigenbasis
of Q̂. For convenience of notation, we omit the subscript z from the eigenkets of Ĵz {|mz〉}.
Theorem 5.2. In two-mode optical interferometric phase estimation, the photon-number
parity measurement observable Q̂ is optimal for a path symmetric state if and only if

〈Q̂〉 = ±1. (5.4.6)

Proof. Let |ψ2〉 be an N -photon path-symmetric state given by

|ψ2〉 =

j∑
m=−j

rme
i(θm−mϕ)|m〉, (5.4.7)

where {|m〉} are the eigenkets of Ĵz. Recall the optimality condition for a measurement
observable in phase estimation given in (5.2.6). In order to be optimal, the parity observable
Q̂ acting on a path-symmetric state |ψ2〉 must satisfy

Q̃|ψ2〉 = iλĴz|ψ2〉 (5.4.8)

for some nonzero λ ∈ R, where Q̃ = Q̂ − 〈Q̂〉Î, and Î is the (2j + 1) × (2j + 1) identity
operator. (Note that 〈Ĵz〉 is zero since |ψ2〉 is taken to be path symmetric.) Multiplying
throughout by the identity operator Î =

∑
|m〉 |m〉〈m|, we can rewrite Eq. (5.4.8) as∑

|m〉

|m〉〈m|
(
Q̃− iλĴz

)
|ψ2〉 = 0,

⇒
∑
|m〉

(
〈m|Q̂|ψ2〉 − 〈Q̂〉〈m|ψ2〉 − iλm〈m|ψ2〉

)
|m〉 = 0 (5.4.9)
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Dividing (5.4.9) throughout by 〈m|ψ2〉 (assuming them to be nonzero without loss of gener-
ality), we obtain ∑

|m〉

(
〈m|Q̂|ψ2〉
〈m|ψ2〉

− 〈Q̂〉 − iλm
)
|m〉 = 0. (5.4.10)

At this point, we can say that (5.4.10) holds if and only if

〈Q̂〉+ iλm =
〈m|Q̂|ψ2〉
〈m|ψ2〉

∀ m ∈ {−j, ...,+j}. (5.4.11)

Let us define

S (m) ≡ 〈m|Q̂|ψ2〉
〈m|ψ2〉

. (5.4.12)

Using 〈m|ψ2〉 = cme
−imϕ, and the form in (5.4.5) for the Q̂ operator, S (m) can be rewritten

as
S (m) =

c−m
cm

ei2mϕ. (5.4.13)

Let cm = rme
iθm , where rm and θm are real. Then, based on the path-symmetry condition

of (5.3.12), it is easy to show that c−m
cm

= e−2i(θm+χ), and therefore, we have

S (m) = ei2(mϕ−χ−θm). (5.4.14)

We note that for all m, |S (m) |2 = 1. Further, for all m, we decompose S (m) as S (m) ≡
S ′ (m) + iS ′′ (m) , where S ′ (m) and S ′′ (m) are the real and imaginary parts, respectively.

Meanwhile, the expectation of the Q̂ operator with the state |ψ2〉, 〈Q̂〉, can be written as

〈Q̂〉 =

j∑
m=−j

c−mc
∗
me

i2mϕ. (5.4.15)

Also, the real number λ can be determined by multiplying each side of (5.4.8) with its own
conjugate transpose, to be

λ = ±∆Q

∆Jz
, (5.4.16)

where ∆Q = 〈Q̂2〉 − 〈Q̂〉2 and similarly ∆Jz. Since 〈Q̂2〉 = 1, and for any path-symmetric
state, 〈Ĵz〉 = 0, we have

λ = ±
√

1− 〈Q̂〉2
〈Ĵ2

z 〉
. (5.4.17)

We note that λ is a function of 〈Q̂〉.
The condition in (5.4.11) can now be rewritten in terms of S ′ (m) and S ′′ (m) as

S ′ (m) + iS ′′ (m) = 〈Q̂〉+ iλm ∀ m ∈ {−j, ...,+j}. (5.4.18)

In other words, for all m ∈ {−j, ...,+j}, the real part of the left-hand side of (5.4.18) has to
be equal to the real part of the right-hand side, and similarly the imaginary parts, i.e.,

S ′ (m) = 〈Q̂〉 and S ′′ (m) = λm ∀ m ∈ {−j, ...,+j}. (5.4.19)
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Notice in (5.4.15) that 〈Q̂〉 is independent of m and a function of ϕ alone. Then S ′ (m) has
to be independent of m too in order for (5.4.18) to be satisfied.

We now prove that (5.4.6) is a sufficient condition. Say for some bias value of the phase,
i.e., for ϕ = ϕ0, 〈Q̂〉 = ±1. Then, S ′ (m) |ϕ0 = ±1 ∀ m ∈ {−j, ...,+j} has to be true
in order for (5.4.18) to be satisfied. Since |S (m) |2 = 1 ∀ m ∈ {−j, ...,+j}, fixing all the
S ′ (m) = ±1 ∀ m ∈ {−j, ...,+j} automatically fixes all the S ′′ (m) = 0 ∀ m ∈ {−j, ...,+j}.
From (5.4.17), we find that λm = 0, when 〈Q̂〉 = ±1. Therefore, (5.4.18) holds when
〈Q̂〉 = ±1.

We now prove that (5.4.6) is also a necessary condition. Say for some fixed value ϕ = ϕ0,
〈Q̂〉 = q, where −1 ≤ q ≤ 1 is a constant. Then, S ′ (m) |ϕ0 = q ∀ m ∈ {−j, ...,+j} has to
be true in order for (5.4.18) to be satisfied. However, since |S (m) |2 = 1 ∀ m ∈ {−j, ...,+j},
fixing all the S ′ (m)s to a constant automatically fixes all the S ′′ (m)s to ±

√
1− q2 too, but

the imaginary part of the right-hand side of (5.4.18) is clearly dependent on m. Therefore,
(5.4.18) cannot hold for all values q. The only values of q for which it can hold are q = ±1.
That completes the proof of the theorem.

Next we ask the question, “For a given path-symmetric state |ψ2〉 , does there exist a bias
phase ϕ0 for which 〈Q̂〉 = ±1?” The quantity 〈Q̂〉 can be rewritten as

〈Q̂〉 =

j∑
m=−j

c−mc
∗
me

i2mϕ

=

j∑
m=−j

S (m) |cm|2

=

j∑
m=−j

|cm|2 ei2(mϕ−χ−θm),

where we have used (5.4.13) and (5.4.14) for S (m). Therefore, the following should hold in
order for 〈Q̂〉 = ±1 :

ei2(mϕ−χ−θm) = ±1 ∀ m ∈ {−j, ...,+j}
⇒ 2(mϕ− χ− θm) = nπ, n ∈ Z.

Although it is hard to say something general here, the following are two sufficient conditions
for the above to hold:

• θm = 0 ∀ m ∈ {−j, ...,+j}

• θm = mθ for a constant θ.

Note that both the above conditions imply χ = 0 in the path symmetry condition of (5.3.12).
Consider ϕ→ ϕ+ϕ0 and set ϕ = 0. Then the values of ϕ0 in the first condition and ϕ0− θ
in the second, when chosen as {

π
2
, 3π

2
; N odd

0, π
2
, π, 3π

2
; N even

, (5.4.20)
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satisfy 〈Q̂〉 = ±1 for the respective types of restricted path-symmetric states. Interestingly,
almost all the states considered for interferometric metrology in fact belong to this restricted
class of path-symmetric states. This is related to linearity and how the beam splitter trans-
formation ÛBS = exp(−iπ

2
Ĵy) operates.

Since optimality with parity is achieved only at specific values of phase ϕ, the applicability
of parity detection, is restricted to estimating “local” phases (the N00N state being an
exception since it satisfies Eq. (5.4.6) independently of the value of ϕ). Local parameter
estimation is concerned with detecting small changes of parameters that are more or less
known, as opposed to the “global” one, wherein a complete lack of knowledge about the
parameter is initially assumed [54]. It is assumed that we have complete control over the
initial phase of the interferometer, which is tuned to an optimal bias phase or “sweet spot”
given in (5.4.20). At the optimal operating point, our scheme can detect very tiny changes
in phase with sensitivity at the QCRB of the quantum state used. Potential applications
include quantum sensing and imaging.

5.5 Coherent-mixed with Squeezed Vacuum Light Interferometry

In this section, we focus on a particular interferometry scheme, namely the one based on
mixing coherent light and squeezed vacuum light. This interferometric state, as mentioned
before, holds an important place in the history of quantum metrology. It is where the
possibility of sub-shot noise phase estimation was originally unearthed [34]. This scheme has
been revisited recently. Hofmann and Ono [88] showed that when these inputs are mixed in
equal intensities, namely such that sinh2 r = |α|2 = n/2 (for any value of average photon
number n), then the state that results past the mixing splitter is such that each N -photon
component in the state has a fidelity higher than 90% with the corresponding N00N state.
This provides an alternative explanation for the sub-shot-noise phase precision capabilities
of the scheme. The scheme has been widely used to generate N00N states in experiments.
Afek et al. [3, 101] used this scheme to generate N00N states of up to N = 5; the state of
the art in the generation of such states.

5.5.1 Performance with photon-number detection

Pezze and Smerzi [143] calculated the classical Cramér-Rao bound for the interferometer
with coherent light and squeezed vacuum light along with photon-number detection at the
output, and found it to be:

FCl = |α|2e2r + sinh2 r. (5.5.1)

When the average photon numbers of the two inputs are about the same, i.e., sinh2 r =
|α|2 = n/2, the classical Fisher information is approximately n2 + n/2, which results in
Heisenberg scaling for the phase precision, namely ∆ϕ = 1/(

√
νn), where ν is the number

of data points gathered from measuring identical copies of the state. Note that the classical
Fisher information is independent of the phase. Thus, the scheme is capable of Heisenberg-
limited phase estimation independent of the actual value of phase, as was shown with the
help of a Bayesian update protocol in [143].
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5.5.2 Performance with photon-number parity detection

We now describe our analysis of the interferometry with coherent light mixed with squeezed
vacuum light for parity detection [165]. In this section, since the states are Gaussian, it is
easier to analyze the interferometry in terms of phase space representations. We choose to
use the Wigner functions.

The input to the interferometer is in the product state |α0〉 ⊗ |ξ = r eiφs〉 that describes
coherent light with amplitude α0 =

√
nce
−iφc in one mode and squeezed vacuum with pa-

rameters r and ϕs in the other. The corresponding Wigner function of the input state is the
product of the respective Wigner functions as well [69]:

Win(α, α0; β, r) = Wc(α, α0)Ws(β, r), (5.5.2)

with the Wigner function for the corresponding states being

Wc(α, α0) = 2
π
e−2|α−α0|2 , Ws(β, r) = 2

π
e−2|β|2 cosh 2r−(β2+β∗2) sinh 2r, (5.5.3)

and where we have made φs = 0 by appropriately fixing the irrelevant absolute phase. This
choice implies that the phase of the coherent light φc is now measured with respect to the
phase of the squeezed vacuum state. The state of light at the output of the Mach-Zehnder
interferometer is described by the following Wigner function:

Wout(αf , βf ) =
4

π2
e−2|iei

ϕ
2 (αf sin ϕ

2
+βf cos ϕ

2
)+α0|2

× e−2|αf cos ϕ
2
−βf sin ϕ

2
|2 cosh 2r × e2 Re

[
eiϕ(αf cos ϕ

2
−βf sin ϕ

2 )
2
]

sinh 2r
.

An expected signal of the parity detection scheme 〈Π̂a〉 is calculated as the value of the
Wigner function at the origin for the corresponding mode. In the case of mode âf , 〈Π̂af 〉 =
π
2

∫
Wout(0, β)d2β, and is found to be:

〈Π̂af 〉 =

exp

[
−nc

(√
n2
s+ns sin2 ϕ cos 2φc−cosϕ

ns sin2 ϕ+1
+ 1

)]
√
ns sin2 ϕ+ 1

, (5.5.4)

where the coherent light amplitude and the squeezing parameter have been expressed in
terms of the average photon numbers, nc and ns, using the relations α0 =

√
nce
−iφc and

r = sinh−1√ns.
The signal of the parity detection scheme is periodic with period 2π and attains its

maximum value of one at ϕ = 0. Although this maximum value is independent of the
phase of the coherent light φc and the light intensities nc and ns, the visibility of the signal
and its width are functions of these parameters. The visibility of the signal is found to
be best when φc = 0 and to diminish as φc drifts away from zero, becoming worst at
φc = π/2. Since it is reasonable to assume the coherent and squeezed vacuum light to be
locked to the same external phase, φc can be set to zero for optimal performance. Further,
the dependence of the signal on the light intensities is studied in terms of the total input
intensity, nin = nc + ns, and the fraction of total intensity in the squeezed vacuum state,
η = ns/nin. When η is increased from zero, the signal is found to grow narrower until reaching
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an optimal width, and then to broaden again, but with reduced visibility as η approaches
one. For η = 0 and η = 1, the width of the signal is found to be proportional to π/

√
nin,

which is narrower than the resolution of conventional interferometry by a factor of
√
nin and

thus demonstrates super-resolution [22]. The fraction η = 0.5 is found to be the most optimal
choice for distributing the input light intensity, since it allows a higher narrowing factor of
nin. Figure 5.2 demonstrates this result by comparing the parity signals for interferometry
with only coherent light (η = 0) [68] or squeezed light (η = 1) and interferometry with
coherent and squeezed vacuum light of equal intensities (η = 0.5). We see that for the same
total input photon number, nin = 10, the parity signal for the latter case is narrower than
any other case.

0.2

0.4

0.6

0.8

1

Figure 5.2: (Color online) The parity signal 〈Π̂af 〉, as a function of the accumulated phase
between the arms of the MZI ϕ: dashed (purple) line for coherent light interferometry (η = 0)
with nc = 10, φc = 0; dotted (red) line for squeezed vacuum light interferometry (η = 1)
with ns = 10; and solid (blue) line for coherent and squeezed vacuum light interferometry
(η = 0.5) with nc = ns = 5, φc = 0. The dot-dashed (green) line is the scaled-down signal
for conventional coherent light interferometry with intensity difference measurement.

The phase sensitivity ∆ϕ of the scheme with parity detection can be characterized using
the error propagation formula of (C.3.13) with Ô = Π̂af . The smaller the value of ∆ϕ, the
higher is the phase sensitivity. Interestingly, for the parity operator, this formula is equivalent
to the classical Fisher information. The classical Fisher information is given by [190]

FC =
∑
i

1

P (i|ϕ)

(
dP (i|ϕ)

dϕ

)2

, (5.5.5)

where i represents the outcome of the measurement and P (i|ϕ) is the probability of the
measurement resulting in the i-th outcome conditioned on a specific value of phase ϕ. For
parity measurement described by the operator Π̂ = (−1)n̂, the two outcomes denoted by +
for even and − for odd, are such that

P (+|ϕ) + P (−|ϕ) = 1,

(+1)P (+|ϕ) + (−1)P (−|ϕ) = 〈Π̂〉. (5.5.6)
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Also, Π̂2 = 1, and therefore,

∆Π2 = 1− 〈Π̂〉2 = 4P (+|ϕ)P (−|ϕ), (5.5.7)

dP (+|ϕ)

dϕ
=

1

2

d〈Π̂〉
dϕ

= −dP (−|ϕ)

dϕ
. (5.5.8)

From (5.5.5-5.5.8) we can see that the classical Fisher information for parity measurement
is:

FC =

∆Π2
/∣∣∣∣∣d〈Π̂〉dϕ

∣∣∣∣∣
2
−1

=

1− 〈Π̂〉2∣∣∣d〈Π̂〉dϕ

∣∣∣2

−1

. (5.5.9)

The phase sensitivity with parity detection for coherent and squeezed vacuum light in-
terferometry is in general a function of the actual value of the phase. (We don’t show it
here since it is a complicated expression that does’t say much anyway). However, we find
the best phase precision to be at ϕ = 0, which is given by:

∆ϕ2 =
1

2nc
√
ns(ns + 1) cos 2φc + 2ncns + nc + ns

. (5.5.10)

For a detection scheme to be optimal, it has to saturate the quantum Cramér-Rao bound.
The quantum Cramér-Rao bound for the interferometry with coherent light and squeezed
vacuum was derived in Ref. [143]:

∆ϕ2
QCRB =

1

|α0|2e2r + sinh2 r
. (5.5.11)

This expression can be shown to be identical to the phase sensitivity with parity detection,
given in (5.5.10) (under the condition φc = 0), when α0 and r are expressed in terms of the
average photon numbers, nc and ns. Thus, parity detection saturates the quantum Cramér-
Rao bound and is optimal for the considered interferometric scheme for accumulated phases
around zero.

Although parity detection is optimal for the considered interferometric scheme irrespec-
tive of the input intensities, the combination as a whole achieves its best phase sensitivity
when η = 0.5. Figure 5.3 is a plot of the quantum Cramér-Rao bound ∆ϕQCRB for the
interferometry with coherent and squeezed vacuum light given in (5.5.11), as a function of
the fraction of squeezed vacuum in the input η. The phase sensitivity ∆ϕQCRB can be seen
to be best when η ≈ 0.5. At this value of η, under the condition φc = 0, (5.5.10) reveals
that the phase sensitivity ∆ϕ of the considered interferometric scheme with parity detection
coincides with the Heisenberg-limit, ∆ϕ ≈ 1/nin, while it coincides with the shot-noise limit,
∆ϕ ≈ 1/

√
nin, when η = 0 or 1.

Figure 5.4 compares the phase sensitivity ∆φ with parity detection for the cases corre-
sponding to η = 0, η = 1 and η = 0.5. It reveals that η = 0.5 with nc = ns = 5 provides
sub-shot noise phase sensitivities up to accumulated phases of about ±0.2 away from the
optimum value of ϕ = 0, but the phase sensitivity plummets in a dramatic fashion beyond
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Figure 5.3: The quantum Cramér-Rao bound ∆ϕQCRB for the interferometry with coherent
and squeezed vacuum light, as a function of the fraction of squeezed vacuum in the input η.
The total input photon number nin = 10.

these values of accumulated phase. However, η = 0 provides a fairly constant phase sensi-
tivity at about the shot-noise limit over a much broader range of accumulated phases. (The
case η = 0 is not of much interest since it’s phase sensitivity ∆ϕ also deteriorates rather
quickly, from the shot noise limit, as one moves away from the optimal value of ϕ = 0.)
Thus, a suggested way to perform phase estimation is to start with coherent light η = 0 and
roughly learn the value of the accumulated phase; move the accumulated phase closer to the
origin and then tune-up η to 0.5 for an improved phase sensitivity.
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Figure 5.4: (Color online) Phase sensitivity ∆ϕ with parity detection, as a function of
the accumulated phase between the arms of the MZI ϕ: dashed (purple) line for coherent
light interferometry (η = 0) with nc = 10, φc = 0, dotted (red) line for squeezed vacuum
interferometry (η = 1) with ns = 10 and solid (blue) line for coherent and squeezed vacuum
light interferometry (η = 0.5) with nc = ns = 5, φc = 0.

5.5.3 Performance with a particular homodyne-based detection

So far, we have shown that parity detection could be used to achieve Heisenberg-limited phase
estimation in the interferometry with coherent and squeezed vacuum light. In Ref. [137], Ono
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and Hofmann discussed a different detection scheme that implements the measurement of a
symmetric logarithmic derivative. Implementation of this measurement is based on interfer-
ence with a local oscillator and intensity difference measurement as shown in Fig. 5.5. Since
symmetric logarithmic derivative based phase estimators saturate the quantum Cramér-Rao
bound, Heisenberg-limited phase sensitivity was anticipated with this scheme for the inter-
ferometry with coherent and squeezed vacuum light mixed in equal proportions (η = 0.5).
Here, we present a brief study of the Ono-Hofmann detection scheme (in the absence of
losses), for the purpose of comparing it with parity detection.

The Ono-Hofmann detection scheme consists of a second MZI appended at the output
of the first, with a phase φ, which is set to π 3. A local oscillator field, which is in the
coherent state, |γlo〉 =

√
nlo/Te

iφlo , is introduced by mixing with the mode âf ′ through a
highly reflective beam splitter of transmissivity, T << 1, where nlo is the average number of
photons in the field that eventually enters the interferometer, and φlo, its phase. In the end,
the difference in intensities at the two output modes is measured.
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Figure 5.5: The Ono-Hofmann detection scheme for interferometry with coherent and
squeezed vacuum light. The detection scheme uses interference with an auxiliary local oscil-
lator and intensity difference measurement for phase estimation. A highly reflective beam
splitter is used to mix the local oscillator field into the interferometer.

Intensity measurements at the output provide:

〈ĉ†ĉ〉 = 〈
{
ĉ†ĉ
}
s
〉 − 1

2
,

〈d̂†d̂〉 = 〈
{
d̂†d̂
}
s
〉 − 1

2
,

(5.5.12)

{
ĉ†ĉ
}
s

(
{
d̂†d̂
}
s
) being the symmetric form of the operator, which can be evaluated based on

3We have also analyzed the case ϕ = 0. The phase sensitivity is found to be the same, but the signal
turns out to be different.
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the final Wigner function of the state Wf as:

〈
{
ĉ†ĉ
}
s
〉 =

∫ ∫
|α|2Wf (α, β)d2αd2β, (5.5.13)

〈
{
d̂†d̂
}
s
〉 =

∫ ∫
|β|2Wf (α, β)d2αd2β, (5.5.14)

where α and β are the complex amplitudes in the modes ĉ and d̂ respectively.
The signal, which is the difference in intensities at the output ports, is thus given by:

I =
∫ ∫

(|α|2 − |β|2)Wf (α, β)d2αd2β, (5.5.15)

and is found to be:

I = −2
√
ncnlo cos ϕ

2
cos
(
ϕ
2

+ φc − φlo

)
− (nc − ns) sinϕ. (5.5.16)

It is plotted in Fig. 5.6, as a function of ϕ, under the condition φc = 0, φlo = π/2 and
nlo = nc(e

2 sinh−1(
√
ns) + 1)2 (the condition when the phase sensitivity is found to be optimal,

as mentioned later in the paper). The figure compares the signal for the interferometry with
equal intensities of coherent and squeezed vacuum light (η = 0.5), with those of interferom-
etry with only coherent light (η = 0) and very little coherent light (η ≈ 1). We see that for
the same total input photon number, nin = 10, the signal for the former is stronger than any
other case. However, unlike with parity detection, there is no super-resolution in the signal
for the Ono-Hofmann detection scheme.
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Figure 5.6: (Color online) The signal with the Ono-Hofmann detection scheme—the intensity
difference I, plotted as a function of the accumulated phase between the arms of the MZI ϕ:
dashed (purple) line for coherent light interferometry (η = 0) with nc = 10, φc = 0, dotted
(red) line for squeezed vacuum light interferometry (η ≈ 1) with ns = 9.9, nc = 0.1, φc = 0
and solid (blue) line for coherent and squeezed vacuum light interferometry (η = 0.5) with
nc = ns = 5, φc = 0. A local oscillator of strength nlo = nc(e

2 sinh−1(
√
ns) + 1)2 and phase

φlo = π/2 is used in each case.

We calculate the phase sensitivity with the Ono-Hofmann detection scheme for the inter-
ferometry with coherent and squeezed vacuum light based on the error propagation formula
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mentioned in (C.3.13). Variance of the signal ∆I2 which is required in the formula, can be
shown to be:

∆I2 =
∫ ∫

(|α|2 − |β|2)
2
Wf (α, β)d2αd2β − 1

2
. (5.5.17)

The phase sensitivity thus calculated, is found to be optimal at ϕ = π, under the condition
φc = 0, φlo = π/2, and is given by:

∆ϕ2 =
−2
(
−2ns+2

√
n2
s+ns−1

)
(
√
nc−
√
nlo)2+2ns+1

2(
√
ncnlo−nc+ns)2

. (5.5.18)

(5.5.18) attains it’s minimum value at nlo =
nc(−e2r+e4r+e6r+1)

2

(e2r−1)4
(where r = sinh−1√ns),

which is only slightly different from the optimal value of nlo given in Ref. [137], namely
nlo = nc(e

2r + 1)2. This difference can be explained as due to not optimizing the error
propagation formula. When evaluated at nlo = nc(e

2r + 1)2, Eq. (5.5.18) takes the form:

∆ϕ2 = 1
nce2r+ns

+ 1
2(nce2r+ns)2

. (5.5.19)

The leading term of this expression is nothing but the quantum Cramér-Rao bound men-
tioned in (5.5.11), while the second term is negligibly small and can be ignored. Thus,
the Ono-Hofmann detection scheme indeed saturates the quantum Cramér-Rao bound for
accumulated phases of value around π.

For ns ≈ nc ≈ nin

2
(η = 0.5) and nlo = nc(e

2r + 1)2, (5.5.18) takes the form:

∆ϕ2 =
2(nin(nin+

√
nin+2

√
nin+2)+1)

n2
in(nin+

√
nin+2

√
nin+2)

2 . (5.5.20)

In the limit of large nin, namely the regime of interest of the Ono-Hofmann detection scheme,
this can be expanded in a series as:

∆ϕ2 =

(
1

nin

)2

− 3

2n3
in

+O

((
1

nin

)4
)
. (5.5.21)

The above expression for phase sensitivity ∆ϕ shows Heisenberg-limited scaling with the total
number of photons nin and thus proves that the Ono-Hofmann scheme provides Heisenberg-
limited phase sensitivity as anticipated.

Figure 5.7 compares the phase sensitivity ∆ϕ with the Ono-Hofmann detection scheme
for the cases corresponding to η = 0, η ≈ 1 and η = 0.5. Similar to the results with parity
detection, the case η = 0.5 with nc = ns = 5, provides sub-shot noise phase sensitivities
up to accumulated phases of about ±0.3 away from the optimum value of ϕ = π, but the
phase sensitivity diminishes beyond these values of accumulated phase. However, η = 0
provides a fairly constant phase sensitivity at about the shot-noise limit over a broader
range of accumulated phases. (Note: Although the phase sensitivity of the case η ≈ 1
reaches below the shot noise limit around ϕ = π, it is found to deteriorate even faster than
the case η = 0.5 as one moves away from ϕ = π and hence is not of much interest with
the Ono-Hofmann detection scheme either.) Thus, very similar to what was suggested for
parity detection, phase estimation with the Ono-Hofmann detection scheme may be best
performed by starting with coherent light η = 0 and roughly learning the value of the
accumulated phase; moving the accumulated phase closer to ϕ = π and then tuning up η to
0.5 for an improved phase sensitivity.

90



2.8 3.0 3.2 3.4

0.1

0.2

0.3

0.4

0.5

Figure 5.7: (Color online) Phase sensitivity with the Ono-Hofmann detection scheme ∆ϕ, as
a function of the accumulated phase between the arms of the MZI ϕ: dashed (purple) line
for coherent light interferometry (η = 0) with nc = 10, φc = 0, dotted (red) line for squeezed
vacuum interferometry (η ≈ 1) with ns = 9.9, nc = 0.1, φc = 0 and solid (blue) line for
coherent and squeezed vacuum light interferometry (η = 0.5) with nc = ns = 5, φc = 0. A
local oscillator of strength nlo = nc(e

2 sinh−1(
√
ns) + 1)2 and phase φlo = π/2 is used in each

case.

5.6 Discussion

In this chapter, we discussed two-mode optical interferometry with the non-classical detection
strategy based on photon-number parity measurement. In particular, we studied the question
“For what class of two-mode pure states is the photon-number parity observable optimal for
phase estimation?” We began by reviewing Hofmann’s work on a the same question for
photon-number detection-based measurement observables. We discussed the condition of
path symmetry, which was introduced in that work as a sufficient condition on a two-mode
pure state so that photon-number counting-based measurement observables are optimal for
the state. We then analyzed the performance of photon-number parity detection for the
path-symmetric states. We showed that photon-number parity is an optimal measurement
for a restricted class of path-symmetric states, and that there exists a bias phase where the
optimality is achieved.

In the latter part of the chapter, we discussed the interferometry with coherent light
mixed with squeezed vacuum light, which is known to achieve the Heisenberg limit when the
inputs are mixed in equal intensities. We showed that photon-number parity is optimal for
this scheme and thus enables Heisenberg-limited phase estimation with the state. We also
compared the performance of parity with a homodyne-based detection scheme proposed by
Ono and Hofmann. Though this other scheme also achieves the Heisenberg limit, we showed
that parity provides better phase sensitivities than the other scheme over a broad range of
values of the unknown phase.

One may ask, what is the advantage of photon-number parity detection over photon-
number counting-based observables? On the one hand, for a path-symmetric state, photon-
number counting reveals all possible information about the unknown phase and leads to
phase estimation at the QCRB for all values of phase (global phase estimation). On the
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other hand, (assuming we are able to measure parity directly without having to count pho-
tons) parity only fetches partial information about the unknown phase and leads to phase
estimation at the QCRB for some particular values of phase (local phase estimation). The
important advantage of parity measurement over photon counting, however, is that there is
no need for any pre–, or post–data processing. Photon counting-based strategies typically
work via the construction of the likelihood function ahead of every detection event based
on the conditional probability distribution of phase conditioned on the previous detection
outcome [93, 143]. In general, after a sequence of detection events, the error in the phase
estimate is determined by the variance of the likelihood function, σ2 = 1/(MFC), where M
is the number of measurements and FC is the classical Fisher information. The classical
Fisher information for parity detection, however, as shown in (5.5.9), is equivalent to the
error propagation formula. Hence, the phase sensitivity can be calculated as a simple func-
tion of the expectation value of parity (the signal) alone, without the need for much pre–,
or post–data processing as is required with photon-number counting.

On the flip side, parity detection suffers from some major drawbacks. First of all, its
performance is highly susceptible to photon losses. Thus, it becomes very crucial to maintain
lossless conditions in order to apply parity detection. Secondly, an efficient implementation
of photon-number parity measurement without having to count photons and infer parity
remains elusive. There have been some promising proposals for its efficient implementation.
Gerry and co-workers suggested the use of optical nonlinearities [70, 71]. Plick et al. showed
that homodyne quantum state tomography can be used to construct the expected parity
signal, at least in the case of Gaussian states, since the expectation value of the parity
operator is proportional to the value of the Wigner function of the state at the origin in
phase space for such states [149, 157]. However, remain unsatisfactory. For example, the
latter scheme of [149, 157] successfully reconstructs the parity expectation value (the signal)
from homodyne measurements. Those homodyne measurements are but themselves shot
noise limited and hence the scheme is essentially shot-noise limited. Thus, it remains an
open problem to find a way to implement photon number parity observable efficiently.
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Chapter 6
Conclusions and Outlook

6.1 Summary of Findings

In the first part of the thesis, we considered the Rényi generalizations of the quantum
conditional mutual information (QCMI) proposed in [18, 17] (also discussed in Appendix B).
Such generalizations of the QCMI have been much sought after for quite some time now. For
a tripartite state ρABC , the proposed quantities Iα (A;B |C ) and Ĩα (A;B |C ) (Definitions
B.1 and B.3) satisfy many of the desired properties of such a Rényi generalization for the
QCMI, e.g., they are non-negative, converge to the von Neumann entropy-based QCMI in
a suitable limit of the Rényi parameter, obey a duality relation and are monotone non-
increasing under local quantum operations on system B. Numerical evidence has not ruled
out monotonicity under local operations on system A either, but unfortunately it has not
been proven yet. We used one of the proposed Rényi QCMIs to define a Rényi bipartite
squashed entanglement and a Rényi bipartite quantum discord. By taking as a conjecture
that the Rényi QCMI of a tripartite state ρABC is monotone under local CPTP maps on
both systems A and B, we proved various properties of these quantities and establish them
as valid measures of quantum correlation.

One important contribution of the work in Appendix B on the Rényi QCMI was a con-
jecture that the proposed Rényi QCMIs are monotone increasing in the Rényi parameter. If
proven to be true, this conjecture would imply the following lower bound on von Neumann
entropy-based QCMI

I (A;B |C ) ≥ I1/2 (A;B |C ) (6.1.1)

= − logF
(
ρABC ,RPC→AC (ρBC)

)
, (6.1.2)

where RPC→AC is a quantum channel known as the Petz recovery map. Inspired by this lower
bound, we defined a new quantum called the fidelity of recovery of a tripartite state, given
by

F (A;B |C )ρ ≡ sup
RC→AC

F (ρABC ,RC→AC (ρBC)) . (6.1.3)

The fidelity of recovery F (A;B |C )ρ of a tripartite state ρABC captures how well a lost system
A can be recovered by performing a local quantum operation on system C alone. Assuming
the truth of (6.1.1), the − log of “surprisal” of the fidelity of recovery IF (A;B |C )ρ also gives
a lower bound on the QCMI as

I (A;B |C ) ≥ − logF
(
ρABC ,RPC→AC (ρBC)

)
≥ IF (A;B |C )ρ ≡ − logF (A;B |C )ρ . (6.1.4)

In a recent breakthrough result, Fawzi and Renner have proven the latter lower bound on
the QCMI, namely the bound given by the surprisal of the fidelity of recovery. That is, we
now know it is indeed true that if the QCMI of a tripartite state is small, then the state
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has a smaller surprisal of fidelity of recovery, or equivalently a very high fidelity of recovery.
This gives a new operational characterization of approximate quantum Markov-chain states,
namely states with QCMI approximately zero. The new characterization is that such states
are approximately recoverable. This is in contrast with the earlier notion of approximate
Markov chain states being close in trace distance from the set of quantum Markov chain
states, for which counter examples are known. Our contribution for the surprisal of the
fidelity of recovery was to show that it obeys all the same properties are the QCMI, e.g., it
is non-negative, monotone non-increasing under local quantum operations on both systems
A and B, obeys a duality relation, and satisfies a dimension bound given by 2 log |A|.

Unlike the Rényi QCMIs, the surprisal of the fidelity of recovery is monotone under
local operations on both A and B. Therefore, we further defined a squashed entanglement
and quantum discord with IF (A;B |C )ρ in place of I (A;B |C )ρ. We proved that these
measures satisfy many of the same properties as the original squashed entanglement and
discord based on von Neumann entropies. In the case of the surprisal of measurement
recoverability, we remark that the quantity is an important step forward conceptually in
the understanding of quantum discord. While the traditional discord quantity captures
how much correlations are lost to the environment in the act of a quantum measurement,
the surprisal of measurement recoverability captures how well the lost correlations could
be recovered. Further, the quantity can be equivalently be thought of as capturing how
close a given state is from being a fixed point of an entanglement-breaking channel. This
should be put in contrast against other discord-like measures that have been proposed in the
literature that capture how close a given state is from being a zero-discord state. Given our
recent understanding of approximate quantum Markov chain states as being approximately
recoverable and not necessarily close in trace distance to the set of quantum Markov chain
states, we draw into question discord-like measures of the latter type.

In the second part of the thesis, we presented results on pure-state quantum optical
metrology based on the measurement of photon-number parity. We considered the general
problem of identifying the class of pure states for which photon number parity detection is
optimal. Hofmann had already solved the analogous problem for photon number counting-
based detection strategies. He had derived a condition called path symmetry as a sufficient
condition on pure states for which photon number counting was optimal. Since photon
number parity is a subset of photon number counting, we narrowed down our search to
Hofmann’s path-symmetric states. We analytically proved that photon number parity is
optimal for local phase estimation, i.e., at particular values of phase, for a restricted class
of path-symmetric states. The restricted class is characterized by two conditions: a) path-
symmetric states that have all real coefficients in the Schwinger basis, or b) path-symmetric
states whose coefficients in the Schwinger basis have periodic phases. We argued that these
restriction occur rather naturally in a linear interferometer, and therefore still capture almost
all pure states that have been considered for quantum metrology. This includes coherent
states, squeezed states, twin Fock states, N00Nstates, etc.

Further, we applied parity detection to the particular case of coherent-mixed with squeezed
vacuum light interferometry. This state is evidently path symmetric. Therefore, as expected,
photon number parity detection was found to be optimal for this state. Since when coherent
state and squeezed vacuum state are mixed in equal intensities, the interferometric scheme
is capable of Heisenberg-limited phase estimation, we demonstrated that parity achieves
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the Heisenberg limit with this scheme at particular values of phase. We also compared the
performance of photon number parity with respect to a homodyne-based detection scheme
proposed by Ono and Hofmann, which was also shown to be optimal for the coherent-mixed
with squeezed vacuum light interferometry. We found that although both the detection
schemes achieve optimality, parity performances better over a broader range of values of the
phase around the optimum as compared to the scheme suggested by Ono and Hofmann.

6.2 Future Directions

Rényi generalizations of the quantum conditional mutual information. As men-
tioned before, the proposed Rényi generalizations of the QCMIs have only been proven to
be monotone non-increasing under local quantum operations on one of the two systems A
or B, while numerical tests have not failed in upholding the monotonicity with respect to
the other system either. It is thus an important open question to prove this monotonicity in
order to completely validate the proposed quantities as truly useful Rényi generalizations of
the QCMI. Another problem that has been left open is the proof of the conjectured mono-
tonicity of the proposed Rényi QCMIs in the Rényi parameter. Finally, it is largely left
open to use the proposed Rényi QCMIs to characterize quantum state redistribution in the
one-shot setting [7, 127].

Rényi squashed entanglement and discord. As far as properties of these quantities are
concerned, there are several of them left to be proved. For example, we have left open the
converse part of faithfulness for both the Rényi squashed entanglement as well as the Rényi
discord; i.e., the proof of the statements that the Rényi squashed entanglement is equal to
zero only if the state is separable, and Rényi discord is equal to zero only if the state is
classical-quantum. Also, while the von Neumann entropy-based squashed entanglement is
known to be superadditive in general and additive on tensor-product states, we have only
been able to show that the Rényi squashed entanglement is subadditive on tensor-product
states; super-additivity of the Rényi squashed entanglement in general has been left open.

As far as applications are concerned, it is an open question if the von Neumann entropy
based squashed entanglement is a strong converse rate for entanglement distillation. The
Rényi squashed entanglement may potentially be of use in proving this. One may also try to
use the Rényi squashed entanglement to strengthen the results of [178, 177] by showing that
the von Neumann entropy-based squashed entanglement is a strong converse rate for the
two-way assisted quantum capacity of any channel. As for the Rényi discord, one interesting
open question is to determine if a Koashi-Winter type [112] relation holds.

Fidelity of recovery, geometric squashed entanglement and surprisal of measure-
ment recoverability. At the moment, we only have a weak chain rule for the fidelity of
recovery. It is thus an open question to prove a chain rule akin to that of the von Neu-
mann entropy-based QCMI. Such a chain rule might also be helpful in establishing that the
geometric squashed entanglement is monogamous. As for the geometric squashed entan-
glement, an interesting question is if the geometric squashed entanglement can be used to
characterize the one-shot distillable entanglement or secret key of a bipartite state. Another
interesting question is on the continuity. At the moment, we have only proven continuity,
and not asymptotic continuity as in the Alicki-Fannes’ inequality. So, asymptotic continuity
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of the quantity is left open. Also, another question of interest is if we can show that geo-
metric squashed entanglement is non-lockable [36]. Preliminary evidence from considering
the strongest known locking schemes from [61] suggests that it might not be lockable.
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William K. Wootters. Teleporting an unknown quantum state via dual classical and
einstein-podolsky-rosen channels. Physical Review Letters, 70:1895–1899, Mar 1993.

[15] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Woot-
ters. Mixed-state entanglement and quantum error correction. Physical Review A,
54(5):3824–3851, November 1996. arXiv:quant-ph/9604024.

[16] D. W. Berry and H. M. Wiseman. Optimal states and almost optimal adaptive mea-
surements for quantum interferometry. Physical Review Letters, 85:5098–5101, Dec
2000.

[17] Mario Berta, Kaushik P. Seshadreesan, and Mark M. Wilde. Rényi generalizations of
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channels, and Rényi information measures, 2015. arXiv:1501.05636v3.

[48] Rafal Demkowicz-Dobrzanski, Jan Kolodynski, and Madalin Guta. The elusive Heisen-
berg limit in quantum-enhanced metrology. Nature Communications, 3:1063, Septem-
ber 2012.

[49] Igor Devetak and Jon Yard. Exact cost of redistributing multipartite quantum states.
Physical Review Letters, 100(23):230501, June 2008.

[50] U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski,
K. Banaszek, and I. A. Walmsley. Optimal quantum phase estimation. Physical Review
Letters, 102:040403, Jan 2009.

[51] Jonathan P. Dowling. Quantum optical metrology—the lowdown on high-N00N states.
Contemporary Physics, 49(2):125–143, 2008.

[52] Jonathan P. Dowling and Gerard J. Milburn. Quantum technology: the second quan-
tum revolution. Philosophical Transactions of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 361(1809):1655–1674, 2003.

100



[53] W. Dür, L. Hartmann, M. Hein, M. Lewenstein, and H.-J. Briegel. Entanglement
in spin chains and lattices with long-range ising-type interactions. Physical Review
Letters, 94:097203, Mar 2005.

[54] Gabriel A. Durkin and Jonathan P. Dowling. Local and global distinguishability in
quantum interferometry. Physical Review Letters, 99:070801, Aug 2007.

[55] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium. Reviews of Modern Physics,
82:277–306, Feb 2010.

[56] Artur K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review
Letters, 67:661–663, Aug 1991.

[57] Berthold-Georg Englert. Fringe visibility and which-way information: An inequality.
Physical Review Letters, 77:2154–2157, Sep 1996.
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[150] Y. Polyanskiy and S. Verdú. Arimoto channel coding converse and Rényi divergence.
Proceedings of the 48th Allerton Conference on Communication, Control, and Com-
puting, (Monticello, USA), September 2010.

[151] M. Jarzyna R. Demkowicz-Dobrzanski and J. Kolodynski. Quantum limits in optical
interferometry, 2014. arXiv:1405.7703v2.

[152] Eric M. Rains. Bound on distillable entanglement. Physical Review A, 60(1):179–184,
July 1999. arXiv:quant-ph/9809082.

107



[153] Renato Renner. Security of Quantum Key Distribution. PhD thesis, ETH Zürich,
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Appendix A
Quantum Conditional Mutual Informa-

tion1

A.1 Introduction

Quantum information theory is built on a powerful toolset consisting of the quantum en-
tropy and various other information measures that are linear combinations of entropies.
Entropic quantities emerge rather naturally in quantum information-theoretic problems,
similar to classical information theory of Shannon. For example, consider the quantum
noiseless-source coding problem studied by Schumacher [162], where an independent and
identically-distributed (i.i.d.) quantum information source emits quantum states from an
ensemble described by a density operator ρA ≡ {p (x) , |ψx〉}. The entropy of ρA, defined as
the von Neumann entropy (discussed earlier in Section 2.2.2)

H (A)ρ ≡ −Tr {ρA log ρA} , (A.1.1)

emerges as the optimal rate for error-free compression of the quantum data arising from the
source in the limit of a large number of invocations of the source. This can be understood as
due to the entropy capturing the average information content of a quantum state ρA. Simi-
larly, also consider the canonical noisy channel-coding problem for classical communication
over a quantum channel [91, 163]. The relevant quantity in this context is the following
optimized mutual information between a classical input X and the quantum output B of
the noisy channel

χ (N ) ≡ max
ρ
I (X;B) = max

ρ

[
H (X)ρ +H (B)ρ −H (XB)ρ

]
, (A.1.2)

where the maximization is over classical-quantum states ρXB of the form

ρXB ≡
∑
x

pX (x) |x〉 〈x|X ⊗NA′→B (ψxA′) (A.1.3)

and {ψx} are pure states that form the codebook for the communication. This is the cele-
brated Holevo information χ (N ) [89], whose regularization

lim
n→∞

χ (N⊗n)

n

is found to be an upper bound on the optimal rate of channel encoding for error-free com-
munication in the asymptotic limit of a large number of channel uses.

1This appendix is reproduced by updating and adapting the contents of Mario Berta, Kaushik P. Se-
shadreesan, and Mark M. Wilde, Journal of Mathematical Physics, 56(2):022205, February 2015, with the
permission of AIP Publishing LLC. See Appendix E for the copyright permission from the publishers.
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The usefulness of such entropic quantities transcends quantum information theory and
permeates many areas of physics too. In particular, they are naturally suited to capture
quantum correlations in various physical theories. For example, the von Neumann entropy,
which is a central measure of information is widely used under the name of entanglement
entropy to study entanglement in ground states (which are pure states) of quantum many
body systems and lattice systems [191, 53], relativistic quantum field theory [30, 31], and the
holographic theory of black holes [173, 83]. The entanglement entropy of a bipartite pure
quantum state is calculated as the entropy of the reduced state on one of the subsystems;
i.e., for a pure state |ψ〉AB, it is defined to be

EE (A;B)ψ ≡ H (A) = −Tr {ψA logψA} = −Tr {ψB logψB} , (A.1.4)

where ψA = TrB {ψAB} for example. It has been shown to obey many of the desired prop-
erties of an entanglement measure (see Section 2.3). In the case of a many-body ground
state, the entanglement entropy captures the entanglement shared between the subsystem,
whose reduced density matrix is considered, and the rest of the system across the boundary.
A large body of work in the quantum many-body physics literature has focused on various
questions related to the entanglement entropy, such as its scaling with respect to the size
of the subsystem. The area law establishes that this scaling depends only on the area of
the boundary [24, 20, 174, 148, 77, 55]. For a more general mixed bipartite state ρAB, the
mutual information I (A;B)ρ offers use as a correlation measure. In essence, it captures how
much more information about a bipartite quantum state can be obtained when having joint
access to the two subsystems in comparison to when only having access to them separately.

In this appendix, we discuss the entropic quantity called quantum conditional mutual
information (QCMI). There is plenty of motivation to study this quantity in detail. For
example, in quantum information theory, while the quantum mutual information could be
used to capture how correlated two quantum systems held by Alice and Bob are, it is
sometimes also important to consider those correlations from the perspective of a third
quantum system held by an eavesdropper Eve. This is particularly relevant in quantum
cryptography, since Eve might have access to the rest of the universe (with respect to Alice
and Bob) and could potentially be correlated with Alice and Bob. Likewise, in quantum
many-body physics, the quantum mutual information could capture the resulting correlation
between parts of a large system of particles. However, it is necessary that we consider those
correlations with respect to a third system if we want to learn something about the type of
interactions that caused the correlation [10]. The QCMI is the quantity of interest in both
these scenarios.

We discuss various properties of the QCMI. We describe the information-theoretic task of
quantum state redistribution, where the QCMI finds operational meaning. This is followed
by various possible descriptions of the structure of quantum states that have zero QCMI,
namely the quantum Markov chain states. Finally, we give different possible representations
of the quantity in terms of the relative entropy. These representations pave the way forward
towards Rényi generalizations of the quantity, which are presented in Appendix B.
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A.2 Definition and Properties

Definition A.1. The quantum conditional mutual information of a tripartite state ρABC is
defined as

I(A;B|C)ρ ≡ H(AC)ρ +H(BC)ρ −H(C)ρ −H(ABC)ρ, (A.2.1)

where H(F )σ ≡ −Tr{σF log σF} is the von Neumann entropy of a state σF on system F .

The QCMI is non-negative for any tripartite quantum state, a nontrivial fact, known as
strong subadditivity of quantum entropy [122, 123]. Strong subadditivity can be viewed as a
general constraint imposed on the correlations that could exist in any tripartite state, and
finds extensive use in nearly all coding theorems in quantum information theory. Thus, it is
widely regarded as a fundamental law of quantum information theory. Strong subadditivity
also implies that the QCMI is non-increasing under the action of local quantum operations
performed on the systems A and B [40]. That is, the following inequality holds

I(A;B|C)ρ ≥ I(A′;B′|C)ω, (A.2.2)

where ωA′B′C ≡ (NA→A′ ⊗MB→B′) (ρABC) with NA→A′ andMB→B′ arbitrary local quantum
operations performed on the input systems A and B, leading to output systems A′ and B′,
respectively. This monotonicity of the QCMI under local quantum operations justifies its use
as a measure of correlation between systems A and B from the perspective of C. Another
interesting property of the QCMI is that for a four-party pure state ψABCD it obeys a duality
relation given by I(A;B|C)ψ = I(B;A|D)ψ [49]. Further, the QCMI of a four-party state
ρABCD obeys an additive chain rule given by

I (AB;C |D )ρ = I (A;C |D )ρ + I (B;C |AD )ρ , (A.2.3)

which augments its usability in applications. Also, the QCMI obeys a dimension bound,
given by

I(A;B|C)ρ ≤ 2 log |A| , (A.2.4)

where |A| is the dimension of system A. This bound is attained by a state of the form

ρABC = ΨAB ⊗ σC , (A.2.5)

where the systems A and B are in a maximally entangled state, and are in product with
some state on the system C.

A.3 Quantum State Redistribution

The QCMI finds an operational meaning in the information-theoretic task called quantum
state redistribution. We describe this task now.

In quantum information theory, the task of quantum state redistribution represents the
most general bipartite noiseless source coding problem. Suppose that Bob and Charlie share
a tripartite state ρBCD, such that Bob holds system BD and Charlie holds system C. Let
ρBCD be purified by a reference system A held by Alice, so that the overall state is a pure
state |ψ〉ABCD. Then the quantum state redistribution task requires Bob to transfer the share
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B to Charlie using minimal resources needed to do so, such that the overall state |ψ〉ABCD
remains undisturbed. The allowed resources, which are also the quantities of interest, are
shared entanglement and noiseless quantum channels. (Note that classical communication
other than what can be encoded in qubits is not allowed). Figure A.1 provides a pictorial
description of the initial and final configurations of the task.

Alice Bob Charlie

A

A D

D B

B

C

C

T
im

e

Figure A.1: The task of quantum state redistribution. Alice, Bob and Charlie share a
large number of i.i.d. copies of a four-party pure state. Initially, Bob holds the systems
BD and Charlie holds C. At the end of the protocol, Bob would hold system D alone,
while Charlie would hold BC. The quantities of interest are the optimal rate of quantum
communication and shared entanglement that are required for a protocol that achieves the
task on an asymptotically large number of copies of the state such that the overall state is
preserved after redistribution with nearly unit fidelity.

Luo, Devetak and Yard [49, 203] studied this task in the i.i.d. asymptotic limit, where
Alice and Bob share many copies of the state ρBCD. For rates of quantum communication
from Alice to Bob and entanglement consumption Q and E, Luo and Devetak proved the
converse theorem that the said quantum state redistribution can be achieved if and only if
the following conditions are satisfied:

Q ≥ 1

2
I (A;B |C )ψ

Q+ E ≥ H (B |C )ψ . (A.3.1)

The theorem can be written in a compact manner in terms of the following resource inequal-
ity. It is given as

ψA|BD|C +Q [q → q] + E [qq] ≥ ψA|D |BC , (A.3.2)

if and only if Q and E satisfy the conditions in (A.3.1). Subsequently Devetak and Yard
showed that these rates are achievable. That is, they showed that for any ε > 0, there exist
(n,Q,E, ε)-protocols for the rates of quantum communication and entanglement consump-
tion precisely given by Q = 1

2
I (A;B |C )ψ and E = H (B |C )ψ− 1

2
I (A;B |C )ψ that achieves

the redistribution from ψA|BD|C to ψA|D |BC in the limit of a large n number of copies of the
state ψABCD within an error ε. This means that for a large number of copies of ψABCD
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(denoted together as ψnABCD), there exists a protocol that operates at the above mentioned
rates and accomplishes the task such that ‖ψnABCD − ρAnBnCnDn‖ ≤ ε, where the output
state after redistribution is denoted by ρAnBnCnDn , a large combined state on n copies of the
individual systems A, B, C and D.

When an optimal protocol is employed (i.e., when we have equalities in (A.3.1)), there
are three distinct possibilities. In the case that 1

2
I (A;B |C )ψ = H (B |C )ψ, the optimal

protocol redistributes the state without consuming any shared entanglement, and can be
described as

ψA|BD|C +
1

2
I (A;B |C )ψ [q → q] ≥ ψA|D |BC . (A.3.3)

In the case that 1
2
I (A;B |C )ψ < H (B |C )ψ, the optimal protocol redistributes the state,

while consuming shared entanglement, and can be described as

ψA|BD|C +
1

2
I (A;B |C )ψ [q → q]+

(
H (B |C )ψ −

1

2
I (A;B |C )ψ

)
E [qq] ≥ ψA|D |BC . (A.3.4)

Finally, in the case that 1
2
I (A;B |C )ψ > H (B |C )ψ, the optimal protocol redistributes the

state, and in the meantime generates shared entanglement, described as

ψA|BD|C +
1

2
I (A;B |C )ψ [q → q] ≥ ψA|D |BC +

(
−H (B |C )ψ +

1

2
I (A;B |C )ψ

)
E [qq] .

(A.3.5)

A.4 Quantum Markov Chain States

In classical information theory, a tripartite probability distribution pA,B,C (a, b, c) has QCMI
I (A;B|C) equal to zero if and only if it can be written as a Markov distribution

pA,B,C (a, b, c) = pC (c) pA|C (a|c) pB|C (b|c) . (A.4.1)

Equivalently, it is equal to zero if and only if the distribution pA,B,C (a, b, c) is recoverable
after marginalizing over the random variable A, that is, if there exists a classical channel
q (a|c) such that pA,B,C (a, b, c) = q (a|c) pB,C (b, c).

The quantum analog of the above states were introduced in [1] and studied for finite-
dimensional tripartite states in [80]. Following [80], we define a state ρABC to be a quantum
Markov state if I (A;B|C)ρ = 0. Let MA−C−B denote this class of states. The main result
of [80] is that such a state has the following explicit form:

ρABC =
⊕
j

q (j)σACLj ⊗ σCRj B, (A.4.2)

for some probability distribution q (j), density operators {σACLj , σCRj B}, and a decomposition

of the Hilbert space for C as HC =
⊕
j

HCLj
⊗ HCRj

. We also know that a state ρABC is a

quantum Markov state if any of the following conditions hold [142, 159]:

ρABC = ρ
1/2
ACρ

−1/2
C ρBCρ

−1/2
C ρ

1/2
AC , (A.4.3)

ρABC = ρ
1/2
BCρ

−1/2
C ρACρ

−1/2
C ρ

1/2
BC , (A.4.4)

ρABC = exp {log ρAC + log ρBC − log ρC} . (A.4.5)
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Interestingly, if ρC is positive definite, then the map (·) → ρ
1/2
ACρ

−1/2
C (·) ρ−1/2

C ρ
1/2
AC is a quan-

tum channel from system C to AC, as one can verify by observing that it is completely
positive and trace preserving. Otherwise, the map is trace non-increasing. These same
statements also obviously apply to the map (·) → ρ

1/2
BCρ

−1/2
C (·) ρ−1/2

C ρ
1/2
BC . See [103, 104] for

more conditions for a tripartite state to be a quantum Markov state.

A.5 Various Representations of the Quantum Conditional Mutual Information
in terms of the Relative Entropy

In this section, we write the QCMI of Definition A.1 in terms of the relative entropy.
Consider the following function of four density operators ρABC ∈ S (HABC), τAC ∈

S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC):

∆ (ρABC , τAC , θBC , ωC) ≡ Tr {ρABC [log ρABC − log τAC − log θBC + logωC ]} . (A.5.1)

This function forms our core quantity in order to write the QCMI as a relative entropy.
Let IABC denote the identity operator acting on HABC . A sufficient condition for

lim
ξ↘0

∆ (ρABC , τAC + ξIABC , θBC + ξIABC , ωC + ξIABC) (A.5.2)

to be finite and equal to (A.5.1) is that

supp (ρABC) ⊆ supp (τAC) , supp (θBC) , supp (ωC) , (A.5.3)

for the same reason given after (2.2.33). When comparing with supp(ρABC), it is implicit
throughout this thesis that supp(τAC) ≡ supp(IB ⊗ τAC), supp(θBC) ≡ supp(IA ⊗ θBC), and
supp(ωC) ≡ supp(IAB ⊗ ωC). The condition in (A.5.3) is equivalent to supp(ρABC) being
in the intersection of the supports of τAC , θBC , and ωC . Note that there are more general
support conditions which lead to a finite value for (A.5.2), but for simplicity, we focus
exclusively on the above support condition. If the support condition in (A.5.3) holds, then
by inspection we can write

∆ (ρABC , τAC , θBC , ωC) = D (ρABC‖ exp {log τAC + log θBC − logωC}) . (A.5.4)

Furthermore, observe that

lim
ξ↘0

∆ (ρABC , ρAC + ξIABC , ρBC + ξIABC , ρC + ξIABC) (A.5.5)

is finite and equal to (A.5.1) because the support condition in (A.5.3) holds when choosing
τAC , θBC , and ωC as the marginals of ρABC (see, e.g., [153, Lemma B.4.1]).

Lemma A.2. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC)
and suppose that the support condition in (A.5.3) holds. Then

∆ (ρABC , τAC , θBC , ωC) = I (A;B|C)ρ +D (ρAC‖τAC) +D (ρBC‖θBC)−D (ρC‖ωC) . (A.5.6)
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Proof. This follows simply by adding to and subtracting from ∆ (ρABC , τAC , θBC , ωC) each
of Tr{ρABC log ρAC}, Tr{ρABC log ρBC}, and Tr{ρABC log ρC}. We then apply the definitions
of I (A;B|C)ρ, D (ρAC‖τAC), D (ρBC‖θBC), and D (ρC‖ωC).

The mutual information of a bipartite state ρAB can be written as a relative entropy in
one of four seemingly different ways [41], namely

I (A;B)ρ = D (ρAB ‖ρA ⊗ ρB ) (A.5.7)

= min
τA

D (ρAB ‖τA ⊗ ρB ) (A.5.8)

= min
θB

D (ρAB ‖ρA ⊗ θB ) (A.5.9)

= min
τA, θB

D (ρAB ‖τA ⊗ θB ) . (A.5.10)

For the QCMI, however, there are more ways of doing so, as summarized in the following
proposition. The significance of Proposition A.3 is that it paves the way for designing many
different Rényi generalizations of the QCMI.

Proposition A.3. Let ρABC ∈ S (HABC). Then

I (A;B|C)ρ = ∆ (ρABC , ρAC , ρBC , ρC) = inf
τAC

∆ (ρABC , τAC , ρBC , ρC) (A.5.11)

= inf
θBC

∆ (ρABC , ρAC , θBC , ρC) = sup
ωC

∆ (ρABC , ρAC , ρBC , ωC) (A.5.12)

= inf
τAC

∆ (ρABC , τAC , ρBC , τC) = inf
τAC

sup
ωC

∆ (ρABC , τAC , ρBC , ωC) (A.5.13)

= inf
θBC

∆ (ρABC , ρAC , θBC , θC) = inf
θBC

sup
ωC

∆ (ρABC , ρAC , θBC , ωC) (A.5.14)

= inf
σABC

∆ (ρABC , σAC , σBC , ρC) = inf
τAC ,θBC

∆ (ρABC , τAC , θBC , ρC) (A.5.15)

= inf
σABC

∆ (ρABC , σAC , σBC , σC) = inf
τAC ,θBC

∆ (ρABC , τAC , θBC , τC) (A.5.16)

= inf
τAC ,θBC

∆ (ρABC , τAC , θBC , θC) = inf
σABC

sup
ωC

∆ (ρABC , σAC , σBC , ωC) (A.5.17)

= inf
τAC ,θBC

sup
ωC

∆ (ρABC , τAC , θBC , ωC) , (A.5.18)

where the optimizations are over states on the indicated Hilbert spaces obeying the support
condition in (A.5.3) and over σABC for which supp (ρABC) ⊆ supp (σABC). The infima and
suprema can be interchanged in all of the above cases, are achieved by the marginals of ρABC,
and can thus be replaced by minima and maxima.

Proof. We only prove two of these relations, noting that the rest follow from similar ideas.
We first prove (A.5.18). Invoking Lemma A.2, we have that

inf
τAC ,θBC

sup
ωC

∆ (ρABC , τAC , θBC , ωC) = I (A;B|C)ρ

+ inf
τAC

D (ρAC‖τAC) + inf
θBC

D (ρBC‖θBC)− inf
ωC
D (ρC‖ωC) . (A.5.19)
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Invoking the fact that the relative entropy is minimized and equal to zero when its first
argument is equal to its second, we see that the right hand side is equal to I (A;B|C)ρ.

We now prove the first equality in (A.5.16). Let σABC denote some tripartite state for
which supp (ρABC) ⊆ supp (σABC). By Lemma A.2, we have that

∆ (ρABC , σAC , σBC , σC) = I (A;B|C)ρ+D (ρAC‖σAC)+D (ρBC‖σBC)−D (ρC‖σC) . (A.5.20)

But it is known that the relative entropy is monotone under a partial trace, so that

D (ρAC‖σAC) ≥ D (ρC‖σC) . (A.5.21)

Thus, we have that

D (ρAC‖σAC) +D (ρBC‖σBC)−D (ρC‖σC) ≥ 0. (A.5.22)

This implies that

inf
σABC

∆ (ρABC , σAC , σBC , σC) = I (A;B|C)ρ+ inf
σABC

[D (ρAC‖σAC) +D (ρBC‖σBC)−D (ρC‖σC)] .

(A.5.23)
The three rightmost terms are non-negative (as shown above), so that we can minimize them
(to their absolute minimum of zero) by picking a state σABC such that

σAC = ρAC , log σBC − log σC = log ρBC − log ρC , (A.5.24)

or by symmetry, one such that

σBC = ρBC , log σAC − log σC = log ρAC − log ρC . (A.5.25)

One clear choice satisfying this is σABC = ρABC , but there could be others.

Remark A.4. A priori, we require infima and suprema in the above proposition because
the sets over which the optimizations occur are not compact. More explicitly, suppose that
ρABC = ωAB ⊗ θC for ωAB ∈ S (HAB) and θC ∈ S (HC). Then the sequence of states

ωAB (n) ≡ 1

n

ω0
AB

Tr {ω0
AB}

+

(
1− 1

n

)
IAB − ω0

AB

Tr {IAB − ω0
AB}

, (A.5.26)

is such that supp (ρABC) ⊆ supp (ωAB (n)) for all n ≥ 1, but supp (ρABC) 6⊆ supp (ωAB (∞)).

Corollary A.5. Let ρABC ∈ S (HABC). Then there is a Pinsker-like lower bound on the
conditional mutual information I (A;B|C)ρ:

I (A;B|C)ρ ≥ 1
4
‖ρABC − exp {log ρAC + log ρBC − log ρC}‖2

1 . (A.5.27)

Proof. The corollary results from the following chain of inequalities:

D (ρABC‖ exp {log ρAC + log ρBC − log ρC})
≥ D1/2 (ρABC‖ exp {log ρAC + log ρBC − log ρC}) (A.5.28)

= −2 log Tr
{√

ρABC
√

exp {log ρAC + log ρBC − log ρC}
}

(A.5.29)

≥ − logF (ρABC , exp {log ρAC + log ρBC − log ρC}) (A.5.30)

≥ − log
(

1−
(

1
2
‖ρABC − exp {log ρAC + log ρBC − log ρC}‖1

)2
)

(A.5.31)

≥ 1
4
‖ρABC − exp {log ρAC + log ρBC − log ρC}‖2

1 . (A.5.32)
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The first step follows from monotonicity of the Rényi relative entropy with respect to the
Rényi parameter (see Theorem 2.4). The equality in (A.5.29) and the inequality in (A.5.30)
follow from the definition of D1/2 and the fidelity. The inequality in (A.5.31) is a well-known
relation between the fidelity and trace distance. Finally, the inequality in (A.5.32) holds
because − log (1− x) ≥ x for x ≤ 1. This line of reasoning is similar to that in the proofs of
[206, Theorem 2.1 and Corollary 2.2], which in turn follows from some of the development
in [33].

A.6 Discussion

To summarize, in this appendix we discussed the QCMI I (A;B |C ) of a tripartite state ρABC
and its properties including the strong subadditivity inequality, monotonicity under local
quantum operations on A and B and duality for a purification ψABCD. We then discussed
the quantum state redistribution protocol, where the QCMI finds operational interpretation.
This was followed by a brief description of the states for which QCMI is zero, namely the
quantum Markov-chain states. Finally, we rewrote the QCMI as a relative entropy and
showed that there exist several possible ways to do so.

As we will see in Appendix B, these relative entropy-based expressions pave the way
towards Rényi QCMIs. It is desired that a Rényi QCMI also hold the same properties as
those of the QCMI discussed in this appendix. Therefore, we will use the afore-mentioned
properties to validate the proposed Rényi QCMIs.

The QCMI has many important applications. It underlies the squashed entanglement [40],
which is a measure of entanglement that satisfies nearly all of the axioms desired for such
a measure [4, 112, 25]. It also underlies the quantum discord [136], which is a measure of
quantum correlations subsuming those due to entanglement. We described these measures
in greater detail in Chapter 3. Newer applications of the QCMI include results in the areas
of information and communication complexity [28, 186, 185].
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Appendix B
Rényi Generalizations of the Quantum

Conditional Mutual Information1

B.1 Introduction

The Rényi entropies [154] have attracted a lot of interest both in quantum information
theory and in various areas of physics in recent times. The α-Rényi entropies have been
shown to be useful for characterizing information processing tasks in the regimes of a single
or finite number of resource utilizations [131, 92, 79, 130]. They have also been used to
establish strong converse theorems [8, 134, 116, 150, 169, 198, 76, 184]. In many-body
physics, the α-Rényi entanglement entropies have been shown to be useful in characterizing
the entanglement spectra of condensed matter systems, akin to moments of a probability
distribution [119, 63]. They have also been considered for similar applications in the contexts
of relativistic quantum field theory and holographic theory of black holes [64, 82, 60]. In
Gaussian quantum information theory, the α = 2 Rényi entropy has been shown to be useful
in studying Gaussian entanglement and other more general quantum correlations [2]. In
quantum thermodynamics, α-Rényi entropies have been shown to represent the derivative
of the free energy with respect to temperature [9] and are relevant for the work value of
information [45].

Given the rich variety of applications of the Rényi entropies, there has been a substantial
effort towards obtaining Rényi generalizations of other information measures, such as the
quantum conditional entropy (QCE), or the quantum mutual information (QMI). While
a Rényi QCE and QMI have been proposed, validated and studied extensively [134, 116,
130, 169, 132, 198, 76, 182], it has been a long-standing open problem to obtain a Rényi
generalization of the quantum conditional mutual information (QCMI).

In this appendix, we propose Rényi generalizations of the QCMI and nearly validate them
as appropriate generalizations by proving many of the desired properties of such a quantity.
As discussed in Appendix A, the desired properties are those that are held by the von
Neumann entropy-based QCMI, such as non-negativity, monotonicity under local quantum
operations and duality for four-party pure states. We used the Rényi generalizations of the
QCMI proposed here in Chapters 3 and 4 to define measures of quantum entanglement and
quantum discord.

We begin this appendix by motivating the interest behind Rényi generalizations of quan-
tum information measures. We give some background on the typical approach to obtaining

1This appendix is reproduced by updating and adapting the contents of Mario Berta, Kaushik P. Se-
shadreesan, and Mark M. Wilde, Journal of Mathematical Physics, 56(2):022205, February 2015, and Mario
Berta, Kaushik P. Seshadreesan, and Mark M. Wilde, Physical Review A, 91:022333, February 2015, with
the permission of AIP Publishing LLC and APS, respectively. See Appendix E for the copyright permission
from the publishers.
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Rényi generalizations of quantum information measures and briefly mention about the pre-
vious attempts at Rényi generalizing the QCMI. We then present our prescription to Rényi
generalize any quantum information measure, which is a linear combination of von Neumann
entropies. We apply this prescription to the case of the QCMI, and obtain various gener-
alizations of the quantity. As said before, we prove many of the desired properties of these
quantities and state some open questions about other properties that remain to be proven.
We present numerical evidence, which suggests that these unproven properties should also
hold for the proposed Rényi generalizations of the QCMI.

B.2 Background

Suppose that we would like to establish a Rényi generalization of the following linear com-
bination of entropies: ∑

S⊆{A1,...,Al}

aSH(S)ρ, (B.2.1)

where ρA1...Al is a density operator on l systems, the coefficients aS ∈ {−1, 0, 1}, and the
sum runs over all subsets of the systems A1, . . . , Al. This criterion is met by many useful
measures; e.g., the QCE, the QMI, and the QCMI are defined respectively as

H(A|B)ρ ≡ H(AB)ρ −H(B)ρ, (B.2.2)

I(A;B)ρ ≡ H(A)ρ +H(B)ρ −H(AB)ρ, (B.2.3)

I(A;B|C)ρ ≡ H(AC)ρ +H(BC)ρ −H(C)ρ −H(ABC)ρ, (B.2.4)

where ρ is taken to be a bipartite state ρAB in (B.2.2) and (B.2.3), and a tripartite state ρABC
in (B.2.4). A first approach one might consider is simply to replace the linear combination
of von Neumann entropies with the corresponding linear combination of α-Rényi entropies:∑

S⊆{A1,...,Al}

aSHα (S)ρ . (B.2.5)

However, the work of [124] establishes that there are no universal constraints on such a quan-
tity. For example, consider the following quantity obtained by replacing the von Neumann
entropies in (B.2.4) with α-Rényi entropies, namely

I ′α(A;B|C)ρ ≡ Hα(AC)ρ +Hα(BC)ρ −Hα(C)ρ −Hα(ABC)ρ. (B.2.6)

For α ∈ (0, 1) ∪ (1,∞), this quantity does not generally satisfy non-negativity [124], while
the von Neumann QCMI is known to be non-negative, the latter being a result of the strong
subadditivity inequality [123]. Since strong subadditivity is consistently useful in applications
and often regarded as a “law of quantum information theory,” the work in [124] suggests
that the Rényi generalization in (B.2.5) is perhaps not the appropriate one to be using in
applications 2.

2There are exceptions though, if we restrict ourselves to special types of quantum states. For example,
for Gaussian states, the α = 2 Rényi entropy satisfies strong subadditivity, as was shown in [2].
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On the other hand, one can write a quantum information measure in terms of the relative
entropy of Section 2.2.2, and subsequently replace the relative entropy with a Rényi relative
entropy of Section 2.2.2 [140], [132], [198] in order to obtain a Rényi generalization of the
measure. Recall that the von Neumann entropy of a state ρA on system A can itself be
written in terms of the relative entropy as −D (ρA‖IA), where IA is the identity operator.
Also, the QCE and the QMI can also be written in terms of the relative entropy as

H(A|B)ρ = −min
σB

D (ρAB‖IA ⊗ σB) , (B.2.7)

I(A;B)ρ = min
σB

D (ρAB‖ρA ⊗ σB) , (B.2.8)

respectively, where σB is any density operator on the Hilbert space HB of system B. (The
unique optimum σB in the above expressions turns out to be the reduced density operator
ρB.) Therefore, one can obtain Rényi generalizations of the above quantities by using the
Rényi relative entropy in place of the relative entropy. Rényi generalizations of quantum
information measures obtained via the above procedure converge to the corresponding von
Neumann entropy based quantities in the limit as α tends to one. They also retain most
of the desired properties of the original quantities. For example, a Rényi QMI obtained
from (B.2.8), just like the original von Neumann entropy based quantity, is non-negative and
non-increasing under the action of local completely positive and trace preserving (CPTP)
maps for α ∈ [0, 1) ∪ (1, 2]. This is because the Rényi relative entropy for α ∈ [0, 1) ∪ (1, 2],
just like the relative entropy, is non-negative and non-increasing under the action of any
CPTP map, in the sense that

Dα(ρ‖σ) ≥ Dα(N (ρ)‖N (σ)) (B.2.9)

for a quantum map N [140].
One could also use the sandwiched Rényi relative entropy of Section 2.2.2 [132], [198]

instead of the Rényi relative entropy. Recall that the sandwiched Rényi relative entropy is
non-negative and non-increasing under the action of any CPTP map for α ∈ [1/2, 1)∪(1,∞)
[65]. Sandwiched Rényi generalizations of quantum information measures as discussed above
thus also satisfy the above properties.

In order to write an information quantity in terms of a relative entropy, the key task is to
identify the second argument for the relative entropy. This task, however, can be nontrivial
in some cases. For example, it is not obvious as to what the second argument should
be for the QCMI. Taking a cue from the QMI of (B.2.8), in which the second argument
(when suitably normalized) has vanishing QMI, one may try to write the QCMI as an
optimized relative entropy with respect to the set of quantum Markov states [80], which are
defined as those tripartite states which have zero QCMI. This is indeed true for the classical
conditional mutual information of a joint probability distribution pA,B,C , that it can be
written as the relative entropy distance between pA,B,C and the nearest Markov distribution
[100, Section II]. However, a similar approach does not succeed in the case of the QCMI.

Let M (ρABC) denote the relative entropy “distance” to quantum Markov states [100]:

M (ρABC) ≡ inf
σABC∈MA−C−B

D (ρABC‖σABC) , (B.2.10)
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where MA−C−B is the set of quantum Markov states defined above. Clearly, it suffices
to restrict the above infimum to the set of Markov states σABC for which supp (ρABC) ⊆
supp (σABC). We can now easily compare I (A;B|C) with M (ρABC), as done in [100]. First,
since every quantum Markov state satisfies the condition

σABC = exp {log σAC + log σBC − log σC} , (B.2.11)

we see that this formula is equivalent to

M (ρABC) = inf
σABC∈MA−C−B

D (ρABC‖ exp {log σAC + log σBC − log σC}) , (B.2.12)

from which we obtain the following inequality:

M (ρABC) ≥ inf
ωABC

D (ρABC‖ exp {logωAC + logωBC − logωC}) (B.2.13)

= inf
ωABC

∆ (ρABC , ωAC , ωBC , ωC) (B.2.14)

= I (A;B|C)ρ , (B.2.15)

where the infimum is over all states ωABC satisfying supp (ρABC) ⊆ supp (ωABC) and ∆ is the
function defined in (A.5.1) of Section A.5 in Appendix A. The above inequality was already
stated in [100, Theorem 4] (and with the simpler proof along the lines above given by Jenčov
at the end of [100]), but one of the main contributions of [100] was to show that there are
tripartite states ωABC for which there is a strict inequality M (ωABC) > I (A;B|C)ω, and in
fact [100, Section VI] showed that the gap can be arbitrarily large.

Thus, from the results in [100], we can already conclude that taking the Rényi relative
entropy distance to quantum Markov states will not lead to a useful Rényi generalization of
the QCMI as one might hope. This point was further reiterated in [58].

B.3 Prescription for Rényi Generalization

Having discussed the traditional approach towards obtaining Rényi generalizations of quan-
tum information measures of the form given in (B.2.1), and the hurdles faced, we now give
our prescription for a Rényi generalization. It is also based on the relative entropy and its
variants.

In the case that aA1...Al is nonzero, without loss of generality, we can set aA1...Al = −1
(otherwise, factor out −1 to make this the case). Then, we can rewrite the quantity in
(B.2.1) in terms of the relative entropy as follows:

D

(
ρA1...Al

∥∥∥∥∥exp

{∑
S⊆A′

aS log ρS

})
, (B.3.1)

where A′ = {A1, . . . , Al} \A1 · · ·Al. On the other hand, if aA1...Al = 0, i.e., if all the marginal
entropies in the sum are on a number of systems that is strictly smaller than the number of
systems over which the state ρ is defined (as is the case with H(AB) + H(BC) + H(AC),
for example), we can take a purification of the original state and call this purification the
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state ρA1...Al . This state is now a pure state on a number of systems strictly larger than
the number of systems involved in all the marginal entropies. We then add the entropy
H(A1 . . . Al)ρ = 0 to the sum of entropies and apply the above recipe (so we resolve the issue
with this example by purifying to a system R, setting the sum formula to be H(ABCR) +
H(AB) +H(BC) +H(AC), and proceeding with the above recipe).

We then appeal to a multipartite generalization of the Lie-Trotter product formula D.1
[176], to rewrite the second argument in (B.3.1) as

lim
α→1

[
©
S⊆A′

Θ
ρ
aS(1−α)/2
S

(IA1···Al)

]1/(1−α)

, (B.3.2)

where the map
Θ
ρ
aS(1−α)/2
S

(X) ≡ ρ
aS(1−α)/2
S Xρ

aS(1−α)/2
S (B.3.3)

and the composition © of maps Θ
ρ
aS(1−α)/2
S

for all subsets S can proceed in any order, and

IA1···Al is the identity operator on the support of the state ρA1...Al . Finally, we obtain a Rényi
generalization of the linear combination in (B.2.1) as

Dα

(
ρA1...Al

∥∥∥∥∥
[
©
S⊆A′

Θ
ρ
aS(1−α)/2
S

(IA1···Al)

]1/(1−α)
)
, (B.3.4)

where Dα is the Rényi relative entropy, and we have used (B.3.2) in (B.3.1) and promoted
the parameter α in (B.3.2) to take the role of the Rényi parameter.

A similar Rényi generalization can also be obtained using the sandwiched Rényi relative
entropy as

D̃α

(
ρA1...Al

∥∥∥∥∥
[
©
S⊆A′

Θ
ρ
aS(1−α)/(2α)
S

(IA1···Al)

]α/(1−α)
)
. (B.3.5)

Note that there exist a number of different possible variants of the above Rényi general-
izations since different choice of orderings of the maps Θ

ρ
aS(1−α)/2
S

are possible. Moreover,

we could also consider arbitrary density operators on the appropriate subsystems for the
maps Θ instead of the reduced density operators (marginals) of ρA1...Al , and then optimize
over these operators (under the assumption that the support of ρA1...Al is contained in the
intersection of the supports of these operators).

For any quantum information measure, it is possible to prove that these different Rényi
generalizations converge to the original von Neumann entropy based quantity in (B.2.1) in
the limit as α→ 1. Also, consider that we can write the linear combination in (B.2.1) as

∑
S⊆{A1,...,Al}

aSH (S)ρ = −Tr

ρA1...Al

 ∑
S⊆{A1,...,Al}

aS log ρS

 . (B.3.6)

The information second moment corresponding to this combination of entropies is then

V (ρA1...Al , {aS}) ≡ Tr

ρA1...Al

 ∑
S⊆{A1,...,Al}

aS log ρS

2 . (B.3.7)
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It can be shown that the Rényi generalization in (B.3.4) has the following Taylor expansion
about γ = 0, where γ = α− 1:

1

γ
log

[
Tr {ρA1...Al}+ γ

∑
S⊆{A1,...,Al}

aSH (S)ρ +
γ2

2
V (ρA1...Al , {aS}) +O

(
γ3
) ]
, (B.3.8)

thus recovering the information second moment as the second order term in the Taylor
expansion. (See [18, Appendix E.1], for example, which shows the Taylor expansion in a
neighborhood of γ = 0 for the Rényi QCMI.) Note that the Rényi generalization in (B.2.5)
does not recover the information second moment in a Taylor expansion. Furthermore, we
leave it as an open question to determine whether the following statement is generally true: if
a von Neumann entropy-based measure is non-negative and non-increasing under the action
of local CPTP maps, then its Rényi generalizations of the above type are also non-negative
and non-increasing under local CPTP maps.

B.4 Definitions of Rényi Quantum Conditional Mutual Informations

We will now apply the above prescribed formula to obtain Rényi generalizations of the QCMI.
We study generalizations based on both the Rényi, and sandwiched Rényi relative entropies.
Note that throughout this appendix, for technical convenience and simplicity, some of our
statements apply only to states in S (H)++ (strictly positive definite density operators). This
might seem restrictive, but in the following sense, it is physically reasonable. Given any state
ω ∈ S (H) \S (H)++, there is a state ω (ξ) = (1− ξ)ω+ ξI/ dim (H) for a constant ξ > 0, so
that ω (ξ) ∈ S (H)++ and ‖ω − ω (ξ)‖1 ≤ 2ξ. Thus, the bias in distinguishing ω from ω (ξ)
is no more than ξ/2, so that ω (ξ) can “mask” as ω.

B.4.1 Rényi quantum conditional mutual informations based on the Rényi rel-
ative entropy

Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC). We define the
following quantities for α ∈ [0, 1) ∪ (1,∞):

Qα (ρABC , τAC , ωC , θBC) ≡ Tr
{
ραABCτ

(1−α)/2
AC ω

(α−1)/2
C θ1−α

BC ω
(α−1)/2
C τ

(1−α)/2
AC

}
, (B.4.1)

∆α (ρABC , τAC , ωC , θBC) ≡ 1

α− 1
logQα (ρABC , τAC , ωC , θBC) . (B.4.2)

We stress that the formula in (B.4.2) is to be interpreted in the sense of generalized inverses,
so that it is always finite if

ρABC 6⊥
∣∣∣τ (1−α)/2
AC ω

(α−1)/2
C θ

(1−α)/2
BC

∣∣∣2 . (B.4.3)

The non-orthogonality condition in (B.4.3) is satisfied, e.g., if the support condition in (A.5.3)
holds, so that (B.4.3) is satisfied when τAC = ρAC , ωC = ρC , and θBC = ρBC . It remains
largely open to determine support conditions under which

lim
ξ↘0

∆α (ρABC , τAC + ξIABC , ωC + ξIABC , θBC + ξIABC) (B.4.4)
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is finite and equal to (B.4.2), with complications being due to the fact that (B.4.1) features
the multiplication of several non-commuting operators which can interact in non-trivial ways.
We can also consider five other different operator orderings for the last three arguments of
Qα, i.e.,

Qα (ρABC , θBC , ωC , τAC) ≡ Tr
{
ραABCθ

(1−α)/2
BC ω

(α−1)/2
C τ 1−α

AC ω
(α−1)/2
C θ

(1−α)/2
BC

}
, (B.4.5)

Qα (ρABC , ωC , τAC , θBC) ≡ Tr
{
ραABCω

(α−1)/2
C τ

(1−α)/2
AC θ1−α

BC τ
(1−α)/2
AC ω

(α−1)/2
C

}
, (B.4.6)

Qα (ρABC , ωC , θBC , τAC) ≡ Tr
{
ραABCω

(α−1)/2
C θ

(1−α)/2
BC τ 1−α

AC θ
(1−α)/2
BC ω

(α−1)/2
C

}
, (B.4.7)

Qα (ρABC , τAC , θBC , ωC) ≡ Tr
{
ραABCτ

(1−α)/2
AC θ

(1−α)/2
BC ωα−1

C θ
(1−α)/2
BC τ

(1−α)/2
AC

}
, (B.4.8)

Qα (ρABC , θBC , τAC , ωC) ≡ Tr
{
ραABCθ

(1−α)/2
BC τ

(1−α)/2
AC ωα−1

C τ
(1−α)/2
AC θ

(1−α)/2
BC

}
. (B.4.9)

In the above, we are abusing notation by always having the power (α− 1) /2 associated with
ωC and the power (1− α) /2 associated with τAC and θBC , but we take the convention that
the different Qα quantities are uniquely identified by the operator ordering of its last three
arguments. These different Qα functions lead to different ∆α quantities, again uniquely
identified by the operator ordering of the last three arguments.

We can then use the above observations, the observation in Proposition A.3, and the
definition of the Rényi relative entropy to define Rényi generalizations of the QCMI. There
are many definitions that we could take for a Rényi QCMI by using the different optimizations
summarized in Proposition A.3 and the different orderings of operators as suggested above.

In spite of the many possibilities suggested above, we choose to define the Rényi QCMI as
the following quantity because it obeys some additional properties (beyond those satisfied by
many of the above generalizations) which we would expect to hold for a Rényi generalization
of the QCMI.

Definition B.1. Let ρABC ∈ S (HABC). The Rényi quantum conditional mutual information
of ρABC is defined for α ∈ [0, 1) ∪ (1,∞) as

Iα (A;B|C)ρ ≡ inf
σBC

∆α (ρABC , ρAC , ρC , σBC) , (B.4.10)

where the optimization is over density operators σBC such that supp (ρABC) ⊆ supp (σBC).

Note that unlike the QCMI, this definition is not symmetric with respect to A and B.
Thus one might also call it the Rényi information that B has about A from the perspective
of C. Note also that, for trivial C, the definition reduces to the definition of Rényi mutual
information in Section 2.2.2.

One advantage of the above definition is that we can identify an explicit form for the
minimizing σBC and thus for Iα (A;B|C)ρ, as captured by the following proposition:

Proposition B.2. Let ρABC ∈ S (HABC). The Rényi quantum conditional mutual informa-
tion of ρABC has the following explicit form for α ∈ (0, 1) ∪ (1,∞):

Iα (A;B|C)ρ =
α

α− 1
log Tr

{(
ρ

(α−1)/2
C TrA

{
ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC

}
ρ

(α−1)/2
C

)1/α
}
. (B.4.11)
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This follows because the infimum in (B.4.10) can be replaced by a minimum and the minimum
σBC is unique with an explicit form.

A proof of Proposition B.2 appears in Appendix D.2.1.

B.4.2 Rényi quantum conditional mutual informations based on the sandwiched
Rényi relative entropy

As in the previous section, there are many ways in which we can define a sandwiched Rényi
QCMI. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC). We define
the following core quantities for α ∈ (0, 1) ∪ (1,∞):

Q̃α (ρABC , τAC , ωC , θBC) ≡ Tr
{(
ρ

1/2
ABCτ

(1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/α
BC ω

(α−1)/2α
C τ

(1−α)/2α
AC ρ

1/2
ABC

)α}
,

(B.4.12)

∆̃α (ρABC , τAC , ωC , θBC) ≡ 1

α− 1
log Q̃α (ρABC , τAC , ωC , θBC) . (B.4.13)

We stress again that the formula above is to be interpreted in terms of generalized inverses.
By employing (2.1.1) and (B.4.12), we can write

Q̃α (ρABC , τAC , ωC , θBC) =
∥∥∥ρ1/2

ABCτ
(1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/2α
BC

∥∥∥2α

2α
, (B.4.14)

and we see that Q̃α (ρABC , τAC , ωC , θBC) = 0 if and only if

ρ
1/2
ABCτ

(1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/2α
BC = 0. (B.4.15)

So Q̃α (ρABC , τAC , ωC , θBC) > 0 if

ρ
1/2
ABC 6⊥ τ

(1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/2α
BC . (B.4.16)

The non-orthogonality condition in (B.4.16) is satisfied, e.g., if the support condition in
(A.5.3) holds, so that (B.4.16) is satisfied when τAC = ρAC , ωC = ρC , and θBC = ρBC . It
remains largely open to determine support conditions under which

lim
ξ↘0

∆̃α (ρABC , τAC + ξIABC , ωC + ξIABC , θBC + ξIABC) (B.4.17)

is finite and equal to (B.4.13), with complications being due to the fact that (B.4.12) features
the multiplication of several non-commuting operators which can interact in non-trivial ways.
As before, we define five other different Q̃α quantities, again uniquely identified by the order
of the last three arguments:

Q̃α (ρABC , θBC , ωC , τAC) ≡
∥∥∥ρ1/2

ABCθ
(1−α)/2α
BC ω

(α−1)/2α
C τ

(1−α)/2α
AC

∥∥∥2α

2α
, (B.4.18)

Q̃α (ρABC , ωC , τAC , θBC) ≡
∥∥∥ρ1/2

ABCω
(α−1)/2α
C τ

(1−α)/2α
AC θ

(1−α)/2α
BC

∥∥∥2α

2α
, (B.4.19)

Q̃α (ρABC , ωC , θBC , τAC) ≡
∥∥∥ρ1/2

ABCω
(α−1)/2α
C θ

(1−α)/2α
BC τ

(1−α)/2α
AC

∥∥∥2α

2α
, (B.4.20)

Q̃α (ρABC , τAC , θBC , ωC) ≡
∥∥∥ρ1/2

ABCτ
(1−α)/2α
AC θ

(1−α)/2α
BC ω

(α−1)/2α
C

∥∥∥2α

2α
, (B.4.21)

Q̃α (ρABC , θBC , τAC , ωC) ≡
∥∥∥ρ1/2

ABCθ
(1−α)/2α
BC τ

(1−α)/2α
AC ω

(α−1)/2α
C

∥∥∥2α

2α
. (B.4.22)

128



These then lead to different ∆̃α quantities. We call the quantities above “sandwiched”
because they can be viewed as having their root in the sandwiched Rényi relative entropy,
i.e., for ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++:

∆̃α (ρABC , τAC , ωC , θBC)

= D̃α

(
ρABC

∥∥∥∥[τ (1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/α
BC ω

(α−1)/2α
C τ

(1−α)/2α
AC

]α/(1−α)
)
. (B.4.23)

Although there are many different possible sandwiched Rényi generalizations of the
QCMI, found by combining the different ∆̃α quantities discussed above with the different
optimizations summarized in Proposition A.3, we choose the definition given below because
it obeys many of the properties that the QCMI does.

Definition B.3. Let ρABC ∈ S (HABC). The sandwiched Rényi quantum conditional mutual
information is defined as

Ĩα (A;B|C)ρ ≡ inf
σBC

sup
ωC

∆̃α (ρABC , ρAC , ωC , σBC) , (B.4.24)

where the optimizations are over states obeying the support conditions in (A.5.3).

Again, unlike the QCMI, this definition is not symmetric with respect to A and B.
Thus one might also call it the sandwiched Rényi information that B has about A from
the perspective of C. Also, for trivial C, the definition reduces to the usual definition of
sandwiched Rényi mutual information (see, e.g., [198, 76, 42]).

B.5 Properties of Rényi Quantum Conditional Mutual Informations

B.5.1 Limit of the Rényi quantum conditional mutual informations as α→ 1

We now consider the limit of the ∆α quantity as the Rényi parameter α → 1 and prove
that some variations of the Rényi QCMI based on the Rényi relative entropy converge to the
QCMI in the limit as α→ 1.

Theorem B.4. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC)
and suppose that the support condition in (A.5.3) holds. Then

lim
α→1

∆α (ρABC , τAC , ωC , θBC) = ∆ (ρABC , τAC , ωC , θBC) . (B.5.1)

The same limiting relation holds for the other ∆α quantities defined from (B.4.5)-(B.4.9).

Proof. We will consider L’Hôpital’s rule in order to evaluate the limit of ∆α as α→ 1, due
to the presence of the denominator term α−1 in ∆α. To this end, we compute the following
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derivative with respect to α

d

dα
Qα (ρABC , τAC , ωC , θBC) = Tr

{
(log ρABC) ραABCτ

(1−α)/2
AC ω

(α−1)/2
C θ1−α

BC ω
(α−1)/2
C τ

(1−α)/2
AC

}
− 1

2
Tr
{
ραABC (log τAC) τ

(1−α)/2
AC ω

(α−1)/2
C θ1−α

BC ω
(α−1)/2
C τ

(1−α)/2
AC

}
+

1

2
Tr
{
ραABCτ

(1−α)/2
AC (logωC)ω

(α−1)/2
C θ1−α

BC ω
(α−1)/2
C τ

(1−α)/2
AC

}
− Tr

{
ραABCτ

(1−α)/2
AC ω

(α−1)/2
C (log θBC) θ1−α

BC ω
(α−1)/2
C τ

(1−α)/2
AC

}
+

1

2
Tr
{
ραABCτ

(1−α)/2
AC ω

(α−1)/2
C θ1−α

BC (logωC)ω
(α−1)/2
C τ

(1−α)/2
AC

}
− 1

2
Tr
{
ραABCτ

(1−α)/2
AC ω

(α−1)/2
C θ1−α

BC ω
(α−1)/2
C (log τAC) τ

(1−α)/2
AC

}
. (B.5.2)

Thus, the functionQα (ρABC , τAC , ωC , θBC) is differentiable for α ∈ (0,∞). Applying L’Hôpital’s
rule, we consider

lim
α→1

∆α (ρABC , τAC , ωC , θBC) = lim
α→1

1

Qα (ρABC , τAC , ωC , θBC)

d

dα
Qα (ρABC , τAC , ωC , θBC) .

(B.5.3)
We can evaluate the limits separately to find that

lim
α→1

Qα (ρABC , τAC , ωC , θBC) = Tr
{
ρABCτ

0
ACω

0
Cθ

0
BCω

0
Cτ

0
AC

}
, (B.5.4)

lim
α→1

d

dα
Qα (ρABC , τAC , ωC , θBC) = Tr

{
(log ρABC) ρABCτ

0
ACω

0
Cθ

0
BCω

0
Cτ

0
AC

}
− 1

2
Tr
{
ρABC (log τAC) τ 0

ACω
0
Cθ

0
BCω

0
Cτ

0
AC

}
+

1

2
Tr
{
ρABCτ

0
AC (logωC)ω0

Cθ
0
BCω

0
Cτ

0
AC

}
− Tr

{
ρABCτ

0
ACω

0
C (log θBC) θ0

BCω
0
Cτ

0
AC

}
+

1

2
Tr
{
ρABCτ

0
ACω

0
Cθ

0
BC (logωC)ω0

Cτ
0
AC

}
− 1

2
Tr
{
ρABCτ

0
ACω

0
Cθ

0
BCω

0
C (log τAC) τ 0

AC

}
. (B.5.5)

Since by assumption supp(ρABC) is contained in each of supp(τAC), supp(ωC), and supp(θBC),
we exploit the relations ρABC = ρ0

ABCρABCρ
0
ABC , ρ0

ABCτ
0
AC = ρ0

ABC , ρ0
ABCθ

0
BC = ρ0

ABC ,
ρ0
ABCω

0
C = ρ0

ABC and their Hermitian conjugates to find that

lim
α→1

Qα (ρABC , τAC , ωC , θBC) = 1, (B.5.6)

lim
α→1

d

dα
Qα (ρABC , τAC , ωC , θBC) = ∆ (ρABC , τAC , ωC , θBC) , (B.5.7)

which when combined with (B.5.3) leads to (B.5.1). Essentially the same proof establishes
the limiting relation for the other ∆α quantities defined from (B.4.5)-(B.4.9).

Corollary B.5. Let ρABC ∈ S (HABC). Then the following limiting relation holds

lim
α→1

∆α (ρABC , ρAC , ρC , ρBC) = I (A;B|C)ρ . (B.5.8)
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Proof. This follows from the fact that supp(ρABC) ⊆ supp(ρAC), supp(ρC), supp(ρBC) (see,
e.g., [153, Lemma B.4.1]), from the above theorem, and by recalling that ∆ (ρABC , ρAC , ρC , ρBC)
equals I (A;B|C)ρ.

Theorem B.6. Let ρABC ∈ S (HABC)++. Then the Rényi quantum conditional mutual
information converges to the quantum conditional mutual information in the limit as α→ 1:

lim
α→1

Iα (A;B|C)ρ = I (A;B|C)ρ . (B.5.9)

Proof. The idea behind the proof of Theorem B.6 is the same as that behind the proof of
Theorem B.4. However, we have the explicit form for Iα (A;B|C)ρ from Proposition B.2,
which allows us to evaluate the limit without needing uniform convergence of ∆α(ρABC , τAC ,
ωC , θBC) in τAC , ωC , and θBC as α→ 1. A proof of Theorem B.6 appears in Appendix D.2.2.

Remark B.7. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC)
and suppose that the support condition in (A.5.3) holds. If ∆α (ρABC , τAC , ωC , θBC) converges
uniformly in τAC, ωC, and θBC to ∆ (ρABC , τAC , ωC , θBC) as α→ 1, then we could conclude
that all Rényi generalizations of the QCMI (as proposed at the beginning of Section B.4)
converge to it in the limit as α→ 1.

Similarly, consider the limit of the ∆̃α quantities as α → 1. For technical reasons, we
restrict the development to positive definite density operators. It remains open to determine
whether the following theorems hold under less restrictive conditions.

Theorem B.8. Let ρABC ∈ S (HABC)++, τAC ∈ S (HAC)++, θBC ∈ S (HBC)++, and ωC ∈
S (HC)++. Then

lim
α→1

∆̃α (ρABC , τAC , ωC , θBC) = ∆ (ρABC , τAC , ωC , θBC) . (B.5.10)

The same limiting relation holds for the other ∆̃α quantities defined from (B.4.18)-(B.4.22).

Proof. The proof of Theorem B.8 is very similar to the proof of Theorem B.4.

Corollary B.9. Let ρABC ∈ S (HABC)++. The following limiting relation holds

lim
α→1

∆̃α (ρABC , ρAC , ρC , ρBC) = I (A;B|C)ρ . (B.5.11)

Proof. This follows from the fact that supp(ρABC) ⊆ supp(ρAC), supp(ρC), supp(ρBC) (see,
e.g., [153, Lemma B.4.1]), Theorem B.8, and by recalling that ∆ (ρABC , ρAC , ρC , ρBC) =
I (A;B|C)ρ.

Remark B.10. Let ρABC ∈ S (HABC)++, τAC ∈ S (HAC)++, θBC ∈ S (HBC)++, and

ωC ∈ S (HC)++. If ∆̃α (ρABC , τAC , ωC , θBC) converges uniformly to ∆ (ρABC , τAC , ωC , θBC)
in τAC, ωC, θBC as α → 1, then we could conclude that all sandwiched Rényi generaliza-
tions of the quantum conditional mutual information (as proposed at the beginning of Sec-
tion B.4.2) converge to it in the limit as α→ 1. In particular, uniform convergence implies

that Ĩα (A;B|C)ρ converges to I (A;B|C)ρ as α→ 1.
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B.5.2 Monotonicity under local quantum operations

The following lemma is the critical one which will allow us to conclude that the Rényi QCMI
is monotone non-increasing with respect to local quantum operations acting on one system
for α ∈ [0, 1) ∪ (1, 2].

Lemma B.11. Let ρABC ∈ S (HABC)++, τAC ∈ S (HAC)++, θBC ∈ S (HBC)++, and ωC ∈
S (HC)++ and suppose that the non-orthogonality condition in (B.4.3) holds. Let NA→A′
and MB→B′ denote quantum operations acting on systems A and B, respectively. Then the
following monotonicity inequalities hold for α ∈ [0, 1) ∪ (1, 2]:

∆α (ρABC , τAC , ωC , θBC) ≥ ∆α (MB→B′ (ρABC) , τAC , ωC ,MB→B′ (θBC)) , (B.5.12)

∆α (ρABC , ωC , τAC , θBC) ≥ ∆α (MB→B′ (ρABC) , ωC , τAC ,MB→B′ (θBC)) , (B.5.13)

∆α (ρABC , ωC , θBC , τAC) ≥ ∆α (NA→A′ (ρABC) , ωC , θBC ,NA→A′ (τAC)) , (B.5.14)

∆α (ρABC , θBC , ωC , τAC) ≥ ∆α (NA→A′ (ρABC) , θBC , ωC ,NA→A′ (τAC)) . (B.5.15)

Proof. We begin by proving (B.5.12). Consider that Qα (ρABC , τAC , ωC , θBC) is jointly
concave in ρABC and θBC when α ∈ [0, 1). This is a result of Lieb’s concavity theorem [121],
a special case of which is the statement that the function

(S,R) ∈ B(H)+ × B(H)+ → Tr
{
SλXR1−λX†

}
(B.5.16)

is jointly concave in S and R when λ ∈ [0, 1]. (We apply the theorem by choosing S = ρABC ,

R = θBC , and X = τ
(1−α)/2
AC ω

(α−1)/2
C .) Furthermore, by an application of Ando’s convexity

theorem [5], we know that Qα (ρABC , τAC , ωC , θBC) is jointly convex in ρABC and θBC when
α ∈ (1, 2].

By a standard (well known) argument due to Uhlmann [188], the monotonicity inequality
in (B.5.12) holds. For completeness, we detail this standard argument here for the case when
α ∈ [0, 1). Note that it suffices to prove the following monotonicity under partial trace:

Qα (ρAB1B2C , τAC , ωC , θB1B2C) ≤ Qα (ρAB1C , τAC , ωC , θB1C) , (B.5.17)

because the Qα quantity is clearly invariant under isometries acting on system B and the
Stinespring representation theorem [175] states that any quantum channel can be modeled

as an isometry followed by a partial trace. To this end, let
{
U i
B2

}d2B2
−1

i=0
denote the set of

Heisenberg-Weyl operators acting on the system B2, with dB2 the dimension of system B2.
Then

Qα (ρAB1B2C , τAC , ωC , θB1B2C)

=
1

d2
B2

d2B2
−1∑

i=0

Qα

(
U i
B2
ρAB1B2C

(
U i
B2

)†
, τAC , ωC , U

i
B2
θB1B2C

(
U i
B2

)†)
. (B.5.18)
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We can then invoke the Lieb concavity theorem to conclude that

Qα (ρAB1B2C , τAC , ωC , θB1B2C)

≤ Qα

(
1

d2
B2

∑
i

U i
B2
ρAB1B2C

(
U i
B2

)†
, τAC , ωC ,

1

d2
B2

∑
i

U i
B2
θB1B2C

(
U i
B2

)†)
(B.5.19)

= Qα (ρAB1C ⊗ πB2 , τAC , ωC , θB1C ⊗ πB2) (B.5.20)

= Qα (ρAB1C , τAC , ωC , θB1C) , (B.5.21)

where π is the maximally mixed state. After taking logarithms and dividing by α − 1, we
can conclude the monotonicity for α ∈ [0, 1). A similar development with Ando’s convexity
theorem gets the monotonicity for α ∈ (1, 2]. The inequalities in (B.5.13)-(B.5.15) follow
from a similar line of reasoning.

Remark B.12. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC)
and suppose that the non-orthogonality condition in (B.4.3) holds. It is an open question to
determine whether the ∆α quantities defined from (B.4.1), (B.4.5)-(B.4.9) are monotone non-
increasing with respect to quantum operations acting on either systems A or B for α ∈ [0, 1)∪
(1, 2]. In particular, it is an open question to determine whether ∆α (ρABC , ρAC , ρC , ρBC)
and infθBC ∆α (ρABC , ρAC , ρC , θBC) are monotone non-increasing with respect to quantum
operations acting on system A for α ∈ [0, 1) ∪ (1, 2].

Corollary B.13. Let ρABC ∈ S (HABC), τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC).
All Rényi generalizations of the conditional mutual information derived from

∆α (ρABC , τAC , ωC , θBC) , ∆α (ρABC , ωC , τAC , θBC) , (B.5.22)

are monotone non-increasing with respect to quantum operations acting on system B, for
α ∈ [0, 1) ∪ (1, 2]. All Rényi generalizations of the quantum conditional mutual information
derived from

∆α (ρABC , ωC , θBC , τAC) , ∆α (ρABC , θBC , ωC , τAC) , (B.5.23)

are monotone non-increasing with respect to quantum operations acting on system A, for
α ∈ [0, 1) ∪ (1, 2]. The derived Rényi generalizations are optimized with respect to τAC, ωC,
and θBC satisfying the support condition in (A.5.3) (which implies the non-orthogonality
condition in (B.4.3)).

Proof. We prove that a variation derived from (A.5.18) obeys the monotonicity (with the
others mentioned above following from similar ideas). Beginning with the inequality in
Lemma B.11, we find that

sup
ωC

∆α (ρABC , τAC , ωC , θBC) ≥ sup
ωC

∆α (MB→B′ (ρABC) , τAC , ωC ,MB→B′ (θBC)) , (B.5.24)

≥ inf
τ ′AC ,θ

′
BC

sup
ωC

∆α (MB→B′ (ρABC) , τ ′AC , ωC , θ
′
BC) . (B.5.25)

Since this inequality holds for all τAC and θBC , it holds in particular for the infimum of the
first line over all such states, establishing monotonicity for the Rényi generalization of the
QCMI derived from (A.5.18).
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Corollary B.14. We can employ the monotonicity inequalities from Lemma B.11 to con-
clude that some Rényi generalizations of the quantum conditional mutual information derived
from (B.5.22)-(B.5.23) and Proposition A.3 are non-negative for all α ∈ [0, 1) ∪ (1, 2]. This
includes ∆α (ρABC , ρAC , ρC , ρBC) and the one from Definition B.1.

Proof. Let ρABC ∈ S (HABC)++, τAC ∈ S (HAC)++, θBC ∈ S (HBC)++, and ωC ∈ S (HC)++

and suppose that the support condition in (A.5.3) holds. A common proof technique applies
to reach the conclusions stated above. We illustrate with an example for

inf
θBC

sup
ωC

∆α (ρABC , ρAC , ωC , θBC) . (B.5.26)

We apply Lemma B.11, choosing the local map on system B to be a trace-out map, to
conclude that

∆α (ρABC , ρAC , ωC , θBC) ≥ ∆α (ρAC , ρAC , ωC , θC) . (B.5.27)

Then, we can conclude that

sup
ωC

∆α (ρABC , ρAC , ωC , θBC) ≥ sup
ωC

∆α (ρAC , ρAC , ωC , θC) (B.5.28)

≥ ∆α (ρAC , ρAC , θC , θC) (B.5.29)

=
1

α− 1
log Tr

{
ραACρ

(1−α)/2
AC θ

(α−1)/2
C θ1−α

C θ
(α−1)/2
C ρ

(1−α)/2
AC

}
(B.5.30)

=
1

α− 1
log Tr

{
ρACθ

0
C

}
(B.5.31)

= 0, (B.5.32)

with the last inequality following from the support condition supp(ρABC) ⊆ supp(θBC) imply-
ing the support condition supp(ρAC) ⊆ supp(θC) [153, Lemma B.4.2]. Since the inequality
holds for all θBC satisfying the support condition, we can conclude that the quantity in
(B.5.26) is non-negative. A similar technique can be used to conclude that other Rényi
generalizations of the QCMI are non-negative (including the one in Definition B.1).

Remark B.15. If the system C is classical, then the Rényi quantum conditional mutual
information given in Definition B.1 is monotone with respect to local operations on both A
and B. This is because the optimizing state is classical on system C and then we have the
commutation

ρ
(1−α)/2
AC ρ

(α−1)/2
C σ1−α

BC ρ
(α−1)/2
C ρ

(1−α)/2
AC = σ

(1−α)/2
BC ρ

(α−1)/2
C ρ1−α

AC ρ
(α−1)/2
C σ

(1−α)/2
BC . (B.5.33)

Remark B.16. It is an open question to determine whether all Rényi generalizations of
the quantum conditional mutual information designed from the different optimizations in
Proposition A.3 and the different orderings in (B.4.1), (B.4.5)-(B.4.9) are non-negative for
α ∈ [0, 1) ∪ (1, 2].
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We now consider monotonicity of the ∆̃α quantities under local quantum operations.
For technical reasons, we restrict the development to positive definite density operators.
It remains open to determine whether the following theorems hold under less restrictive
conditions.

Lemma B.17. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈
S(HC)++. Let NA→A′ and MB→B′ denote quantum operations acting on systems A and B,
respectively. Then the following monotonicity inequalities hold for all α ∈ [1/2, 1) ∪ (1,∞):

∆̃α (ρABC , τAC , ωC , θBC) ≥ ∆̃α (MB→B′ (ρABC) , τAC , ωC ,MB→B′ (θBC)) , (B.5.34)

∆̃α (ρABC , ωC , τAC , θBC) ≥ ∆̃α (MB→B′ (ρABC) , ωC , τAC ,MB→B′ (θBC)) , (B.5.35)

∆̃α (ρABC , ωC , θBC , τAC) ≥ ∆̃α (NA→A′ (ρABC) , ωC , θBC ,NA→A′ (τAC)) , (B.5.36)

∆̃α (ρABC , θBC , ωC , τAC) ≥ ∆̃α (NA→A′ (ρABC) , θBC , ωC ,NA→A′ (τAC)) . (B.5.37)

Proof. We first focus on establishing the inequality in (B.5.34) for α ∈ [1/2, 1). From part
1) of [85, Theorem 1.1], we know that the following function is jointly concave in S and T :

(S, T ) ∈ B(H)++ × B(H)++ 7→ Tr
{[

Φ (Sp)1/2 Ψ (T q) Φ (Sp)1/2
]s}

, (B.5.38)

for strictly positive maps Φ (·) and Ψ (·), 0 < p, q ≤ 1, and 1/2 ≤ s ≤ 1/ (p+ q). We can

then see that Q̃α (ρABC , τAC , ωC , θBC) is of this form, with

Ψ = τ
(1−α)/2α
AC ω

(α−1)/2α
C (·)ω(α−1)/2α

C τ
(1−α)/2α
AC , (B.5.39)

q =
1− α
α

, (B.5.40)

Φ (·) = id, (B.5.41)

p = 1, (B.5.42)

s = α. (B.5.43)

For the range α ∈ [1/2, 1), we have that p ∈ (0, 1] and 1/ (p+ q) = α, so that the conditions

of part 1) of [85, Theorem 1.1] are satisfied. We conclude that Q̃α (ρABC , τAC , ωC , θBC) is
jointly concave in θBC and ρABC . From this, we can conclude the monotonicity in (B.5.34) for
α ∈ [1/2, 1). A similar proof establishes the inequalities in (B.5.35)-(B.5.37) for α ∈ [1/2, 1).

The proof of (B.5.34) for α ∈ (1,∞) is a straightforward generalization of the technique
used for [65, Proposition 3]. To prove (B.5.34), it suffices to prove that the following function

(ρABC , θBC) ∈ S(HABC)++ × S(HABC)++ 7→ Tr
{[
ρ

1/2
ABCK (α) ρ

1/2
ABC

]α}
(B.5.44)

is jointly convex for α ∈ (1,∞), where

K (α) ≡ τ
(1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/α
BC ω

(α−1)/2α
C τ

(1−α)/2α
AC . (B.5.45)

To this end, consider that we can write the trace function in (B.5.44) as

Tr
{[
ρ

1/2
ABCK (α) ρ

1/2
ABC

]α}
= sup

H≥0
αTr {HρABC} − (α− 1) Tr

{[
H1/2L (α)H1/2

]α/(α−1)
}
,

(B.5.46)
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where
L (α) ≡ τ

(α−1)/2α
AC ω

(1−α)/2α
C θ

(α−1)/α
BC ω

(1−α)/2α
C τ

(α−1)/2α
AC , (B.5.47)

so that [L (α)]−1 = K (α). From the fact that the following map

S ∈ B(H)+ 7→ Tr
{[
T †SpT

]1/p}
(B.5.48)

is concave in S for a fixed T ∈ B(H) and for−1 ≤ p ≤ 1 [65, Lemma 5] and the representation
formula given in (B.5.46), we can then conclude that the function in (B.5.44) is jointly convex
in ρABC and θBC for α ∈ (1,∞).

So it remains to prove the representation formula in (B.5.46). Recall from the alternative
proof of [65, Lemma 4] that for positive semi-definite operators X and Y and 1 < p, q <∞
with 1/p+ 1/q = 1, the following inequality holds

Tr {XY } ≤ 1

p
Tr {Xp}+

1

q
Tr {Y q} , (B.5.49)

with equality holding if Xp = Y q. To apply the inequality in (B.5.49), we set

X = K (α)1/2 ρABCK (α)1/2 , (B.5.50)

Y = L (α)1/2HL (α)1/2 , (B.5.51)

p = α, (B.5.52)

q =
α

α− 1
. (B.5.53)

Applying (B.5.49), we find that

Tr {HρABC} ≤
1

α
Tr
{[
ρ

1/2
ABCK (α) ρ

1/2
ABC

]α}
+
α− 1

α
Tr
{[
H1/2L (α)H1/2

]α/(α−1)
}
, (B.5.54)

which can be rewritten as

αTr {HρABC} − (α− 1) Tr
{[
H1/2L (α)H1/2

]α/(α−1)
}
≤ Tr

{[
ρ

1/2
ABCK (α) ρ

1/2
ABC

]α}
.

(B.5.55)
From the equality condition Xp = Y q, we can see that the optimal H attaining equality is

L (α)−1/2
[
K (α)1/2 ρABC K (α)1/2

]α−1

L (α)−1/2 . (B.5.56)

This proves the representation formula in (B.5.46). A proof similar to the above one demon-
strates (B.5.35)-(B.5.37) for α ∈ (1,∞).

Remark B.18. It is open to determine whether Lemma B.17 applies to ρABC ∈ S (HABC),
τAC ∈ S (HAC), θBC ∈ S (HBC), and ωC ∈ S (HC). That is, it is not clear to us whether
Lemma B.17 can be extended by a straightforward continuity argument as was the case in [65,

Proposition 3], due to the fact that ∆̃α features many non-commutative matrix multiplications
which can interact in non-trivial ways.
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Let ρABC ∈ S (HABC)++, τAC ∈ S (HAC)++, θBC ∈ S (HBC)++, and ωC ∈ S (HC)++. It

is an open question to determine whether the ∆̃α quantities defined from (B.4.12), (B.4.18)-
(B.4.22) are monotone non-increasing with respect to quantum operations acting on either
systems A or B for α ∈ [1/2, 1) ∪ (1,∞). It is also an open question to determine whether

Ĩα (A;B|C)ρ is monotone non-increasing with respect to local quantum operations acting on
the system A for α ∈ [1/2, 1) ∪ (1,∞).

Corollary B.19. Let ρABC ∈ S (HABC)++, τAC ∈ S (HAC)++, θBC ∈ S (HBC)++, and
ωC ∈ S (HC)++. All sandwiched Rényi generalizations of the quantum conditional mutual
information derived from

∆̃α (ρABC , τAC , ωC , θBC) , ∆̃α (ρABC , ωC , τAC , θBC) , (B.5.57)

are monotone non-increasing with respect to quantum operations on system B, for α ∈
[1/2, 1) ∪ (1,∞). All sandwiched Rényi generalizations of the quantum conditional mutual
information derived from

∆̃α (ρABC , ωC , θBC , τAC) , ∆̃α (ρABC , θBC , ωC , τAC) , (B.5.58)

are monotone non-increasing with respect to quantum operations on system A, for α ∈
[1/2, 1) ∪ (1,∞).

Proof. The argument is exactly the same as that in the proof of Corollary B.13.

Corollary B.20. We can employ the monotonicity inequalities from Lemma B.11 to con-
clude that some Rényi generalizations of the quantum conditional mutual information derived
from (B.5.57)-(B.5.58) and Proposition A.3 are non-negative for all α ∈ [1/2, 1) ∪ (1,∞).

This includes ∆̃α (ρABC , ρAC , ρC , ρBC) and the one from (B.4.24).

Proof. The argument proceeds similarly to that in the proof of Corollary B.14.

Remark B.21. It is an open question to determine whether all sandwiched Rényi general-
izations of the conditional mutual information designed from the different optimizations in
Proposition A.3 and the different orderings in (B.4.12), (B.4.18)-(B.4.22) are non-negative
for α ∈ [1/2, 1) ∪ (1,∞).

B.5.3 Duality

A fundamental property of the QCMI is a duality relation: For a four-party pure state ψABCD,
the following equality holds

I (A;B|C)ψ = I (A;B|D)ψ . (B.5.59)

This can easily be verified by considering Schmidt decompositions of ψABCD for the different
possible bipartite cuts of ABCD (see [49, 203] for an operational interpretation of this duality
in terms of the state redistribution protocol). Furthermore, since the QCMI is symmetric
under the exchange of A and B, we have the following equalities:

I (B;A|C)ψ = I (A;B|C)ψ = I (A;B|D)ψ = I (B;A|D)ψ . (B.5.60)
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In this section, we prove that the Rényi QCMI in Definition B.1 and the sandwiched
quantity in Definition B.3 obey a duality relation of the above form. However, note that
other (but not all) variations satisfy duality as well. In order to prove these results, we make
use of the following standard lemma:

Lemma B.22. For any bipartite pure state ψAB, any Hermitian operator MA acting on
system A, and the maximally entangled vector |Γ〉AB ≡

∑
j |j〉A |j〉B (with {|j〉A} and {|j〉B}

orthonormal bases), we have that

(MA ⊗ IB) |Γ〉AB =
(
IA ⊗MT

B

)
|Γ〉AB , (B.5.61)

ψA |ψ〉AB = ψB |ψ〉AB , (B.5.62)

〈ψ|MA ⊗ IB|ψ〉AB = 〈ψ|IA ⊗MT
B |ψ〉AB, (B.5.63)

where the transpose is with respect to the Schmidt basis.

Theorem B.23. The following duality relation holds for all α ∈ (0, 1) ∪ (1,∞) for a pure
four-party state ψABCD:

Iα (A;B|C)ψ = Iα (B;A|D)ψ . (B.5.64)

Proof. Our proof exploits ideas used in the proof of [183, Lemma 6] and [182, Theorem 2].
We know from Proposition B.2 that

Iα (A;B|C)ψ =
α

α− 1
log Tr

{(
TrA

{
ψ

(α−1)/2
C ψ

(α−1)/2
AC ψαABCψ

(α−1)/2
AC ψ

(α−1)/2
C

})1/α
}
,

(B.5.65)

Iα (B;A|D)ψ =
α

α− 1
log Tr

{(
TrB

{
ψ

(α−1)/2
D ψ

(α−1)/2
BD ψαABDψ

(α−1)/2
BD ψ

(α−1)/2
D

})1/α
}
.

(B.5.66)

Thus, we will have proved the theorem if we can show that the eigenvalues of

TrA

{
ψ

(α−1)/2
C ψ

(α−1)/2
AC ψαABCψ

(α−1)/2
AC ψ

(α−1)/2
C

}
(B.5.67)

and
TrB

{
ψ

(α−1)/2
D ψ

(α−1)/2
BD ψαABDψ

(α−1)/2
BD ψ

(α−1)/2
D

}
(B.5.68)

are the same. To show this, consider that

TrA

{
ψ

(α−1)/2
C ψ

(α−1)/2
AC ψαABCψ

(α−1)/2
AC ψ

(α−1)/2
C

}
= TrA

{
ψ

(α−1)/2
C ψ

(α−1)/2
AC ψ

(α−1)/2
ABC ψABCψ

(α−1)/2
ABC ψ

(α−1)/2
AC ψ

(α−1)/2
C

}
(B.5.69)

= TrAD

{
ψ

(α−1)/2
C ψ

(α−1)/2
AC ψ

(α−1)/2
ABC ψABCDψ

(α−1)/2
ABC ψ

(α−1)/2
AC ψ

(α−1)/2
C

}
. (B.5.70)
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The eigenvalues of the operator in the last line are the same as those of the operator in the
first line of what follows (from the Schmidt decomposition):

TrBC

{
ψ

(α−1)/2
C ψ

(α−1)/2
AC ψ

(α−1)/2
ABC ψABCDψ

(α−1)/2
ABC ψ

(α−1)/2
AC ψ

(α−1)/2
C

}
= TrBC

{
ψ

(α−1)/2
C ψ

(α−1)/2
AC ψ

(α−1)/2
D ψABCDψ

(α−1)/2
D ψ

(α−1)/2
AC ψ

(α−1)/2
C

}
(B.5.71)

= TrBC

{
ψ

(α−1)/2
D ψ

(α−1)/2
C ψ

(α−1)/2
AC ψABCDψ

(α−1)/2
AC ψ

(α−1)/2
C ψ

(α−1)/2
D

}
(B.5.72)

= TrBC

{
ψ

(α−1)/2
D ψ

(α−1)/2
C ψ

(α−1)/2
BD ψABCDψ

(α−1)/2
BD ψ

(α−1)/2
C ψ

(α−1)/2
D

}
(B.5.73)

= TrBC

{
ψ

(α−1)/2
D ψ

(α−1)/2
BD ψ

(α−1)/2
C ψABCDψ

(α−1)/2
C ψ

(α−1)/2
BD ψ

(α−1)/2
D

}
(B.5.74)

= TrBC

{
ψ

(α−1)/2
D ψ

(α−1)/2
BD ψ

(α−1)/2
ABD ψABCDψ

(α−1)/2
ABD ψ

(α−1)/2
BD ψ

(α−1)/2
D

}
(B.5.75)

= TrB

{
ψ

(α−1)/2
D ψ

(α−1)/2
BD ψ

(α−1)/2
ABD ψABDψ

(α−1)/2
ABD ψ

(α−1)/2
BD ψ

(α−1)/2
D

}
(B.5.76)

= TrB

{
ψ

(α−1)/2
D ψ

(α−1)/2
BD ψαABDψ

(α−1)/2
BD ψ

(α−1)/2
D

}
. (B.5.77)

In the above, we have applied (B.5.62) several times.

Theorem B.24. The following duality relation holds for all α ∈ (0, 1) ∪ (1,∞) for a pure
four-party state ψABCD:

Ĩα (A;B|C)ψ = Ĩα (B;A|D)ψ . (B.5.78)

Proof. Our proof uses ideas similar to those in the proof of [132, Theorem 10]. We start by
considering the case α > 1. We recall that it is possible to express the α-norm with its dual
norm (see, e.g., [132, Lemma 12]):

inf
σBC

sup
ωC

∥∥∥ψ1/2
ABCψ

(1−α)/2α
AC ω

(α−1)/2α
C σ

(1−α)/α
BC ω

(α−1)/2α
C ψ

(1−α)/2α
AC ψ

1/2
ABC

∥∥∥
α

=

inf
σBC

sup
ωC

sup
τABC

Tr
{
ψ

1/2
ABCψ

(1−α)/2α
AC ω

(α−1)/2α
C σ

(1−α)/α
BC ω

(α−1)/2α
C ψ

(1−α)/2α
AC ψ

1/2
ABCτ

(α−1)/α
ABC

}
. (B.5.79)

So it suffices to prove the following relation:

inf
σBC

sup
ωC

sup
τABC

Tr
{
ψ

1/2
ABCψ

(1−α)/2α
AC ω

(α−1)/2α
C σ

(1−α)/α
BC ω

(α−1)/2α
C ψ

(1−α)/2α
AC ψ

1/2
ABCτ

(α−1)/α
ABC

}
=

inf
σAD

sup
τD

sup
ωABD

Tr
{
ψ

1/2
ABDψ

(1−α)/2α
BD τ

(α−1)/2α
D σ

(1−α)/α
AD τ

(α−1)/2α
D ψ

(1−α)/2α
AC ψ

1/2
ABDω

(α−1)/α
ABD

}
,

(B.5.80)

because

Ĩα (B;A|D)ψ = inf
σAD

sup
τD

sup
ωABD

α

α− 1
log Tr

{
ψ

1/2
ABDψ

(1−α)/2α
BD τ

(α−1)/2α
D σ

(1−α)/α
AD τ

(α−1)/2α
D

ψ
(1−α)/2α
AC ψ

1/2
ABDω

(α−1)/α
ABD

}
. (B.5.81)
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Indeed, we will prove that

Tr
{
ψ

1/2
ABCψ

(1−α)/2α
AC ω

(α−1)/2α
C σ

(1−α)/α
BC ω

(α−1)/2α
C ψ

(1−α)/2α
AC ψ

1/2
ABCτ

(α−1)/α
ABC

}
= Tr

{
ψ

1/2
ABDψ

(1−α)/2α
BD

(
τTD
)(α−1)/2α (

σTAD
)(1−α)/α (

τTD
)(α−1)/2α

ψ
(1−α)/2α
BD

ψ
1/2
ABD

(
ωTABD

)(α−1)/α
}
, (B.5.82)

from which one can conclude (B.5.80), which has the optimizations.
Proceeding, we observe that

Tr
{
ψ

1/2
ABCψ

(1−α)/2α
AC ω

(α−1)/2α
C σ

(1−α)/α
BC ω

(α−1)/2α
C ψ

(1−α)/2α
AC ψ

1/2
ABCτ

(α−1)/α
ABC

}
= 〈Γ|ψ1/2

ABCψ
(1−α)/2α
AC ω

(α−1)/2α
C σ

(1−α)/α
BC ω

(α−1)/2α
C ψ

(1−α)/2α
AC ψ

1/2
ABCτ

(α−1)/α
ABC |Γ〉ABC|D (B.5.83)

= 〈Γ|ψ1/2
ABCψ

(1−α)/2α
AC ω

(α−1)/2α
C σ

(1−α)/α
BC ω

(α−1)/2α
C ψ

(1−α)/2α
AC ψ

1/2
ABC

(
τTD
)(α−1)/α |Γ〉ABC|D

(B.5.84)

= 〈ψ|ψ(1−α)/2α
AC ω

(α−1)/2α
C

(
τTD
)(α−1)/2α

σ
(1−α)/α
BC

(
τTD
)(α−1)/2α

ω
(α−1)/2α
C ψ

(1−α)/2α
AC |ψ〉ABCD

(B.5.85)

= 〈ψ|ψ(1−α)/2α
BD ω

(α−1)/2α
C

(
τTD
)(α−1)/2α

σ
(1−α)/α
BC

(
τTD
)(α−1)/2α

ω
(α−1)/2α
C ψ

(1−α)/2α
BD |ψ〉ABCD

(B.5.86)

= 〈ψ|ω(α−1)/2α
C ψ

(1−α)/2α
BD

(
τTD
)(α−1)/2α

σ
(1−α)/α
BC

(
τTD
)(α−1)/2α

ψ
(1−α)/2α
BD ω

(α−1)/2α
C |ψ〉ABCD

(B.5.87)

= 〈Γ|ψ1/2
ABDω

(α−1)/2α
C ψ

1−α
2α
BD

(
τTD
)α−1

2α σ
1−α
α

BC

(
τTD
)α−1

2α ψ
1−α
2α
BD ω

(α−1)/2α
C ψ

1/2
ABD |Γ〉ABD|C (B.5.88)

= 〈Γ|ω(α−1)/2α
C ψ

1/2
ABDψ

1−α
2α
BD

(
τTD
)α−1

2α σ
1−α
α

BC

(
τTD
)α−1

2α ψ
1−α
2α
BD ψ

1/2
ABDω

(α−1)/2α
C |Γ〉ABD|C (B.5.89)

= 〈Γ|
(
ωTABD

)α−1
2α ψ

1/2
ABDψ

1−α
2α
BD

(
τTD
)α−1

2α σ
1−α
α

BC

(
τTD
)α−1

2α ψ
1−α
2α
BD ψ

1/2
ABD

(
ωTABD

)α−1
2α |Γ〉ABD|C ,

(B.5.90)

where we used the standard transpose trick (B.5.61) for the maximally entangled vector
|Γ〉ABD|C and the first identity from Lemma B.22. For the vector

|ϕ〉ABCD ≡
(
τTD
)(α−1)/2α

ψ
(1−α)/2α
BD ψ

1/2
ABD

(
ωTABD

)(α−1)/2α |Γ〉ABD|C , (B.5.91)

we get from the second identity in Lemma B.22 that

〈Γ|
(
ωTABD

)α−1
2α ψ

1/2
ABDψ

1−α
2α
BD

(
τTD
)α−1

2α σ
1−α
α

BC

(
τTD
)α−1

2α ψ
1−α
2α
BD ψ

1/2
ABD

(
ωTABD

)α−1
2α |Γ〉ABD|C

= 〈ϕ|σ
1−α
α

BC |ϕ〉ABCD (B.5.92)
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= 〈ϕ| (σTAD)
1−α
α |ϕ〉ABCD (B.5.93)

= 〈Γ|
(
ωTABD

)α−1
2α ψ

1/2
ABDψ

1−α
2α
BD

(
τTD
)α−1

2α (σTAD)
1−α
α

(
τTD
)α−1

2α ψ
1−α
2α
BD ψ

1/2
ABD

(
ωTABD

)α−1
2α |Γ〉ABD|C

(B.5.94)

= Tr
{(
ωTABD

)α−1
2α ψ

1/2
ABDψ

1−α
2α
BD

(
τTD
)α−1

2α
(
σTAD

)(1−α)/α (
τTD
)α−1

2α ψ
1−α
2α
BD ψ

1/2
ABD

(
ωTABD

)α−1
2α

}
(B.5.95)

= Tr
{
ψ

1/2
ABDψ

(1−α)/2α
BD

(
τTD
)(α−1)/2α (

σTAD
)(1−α)/α (

τTD
)(α−1)/2α

ψ
(1−α)/2α
BD ψ

1/2
ABD

(
ωTABD

)(α−1)/α
}
.

(B.5.96)

For the case α ∈ (0, 1) the proof is similar, where we also use [132, Lemma 12]. We omit the
details for this case.

B.6 Conjectured Monotonicity in α

From numerical evidence and proofs for some special cases, we think it is natural to put
forward the following conjecture:

Conjecture B.25. Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and

ωC ∈ S(HC)++. Then all of the Rényi core quantities ∆α and ∆̃α derived from (B.4.1),
(B.4.5)-(B.4.9) and (B.4.12), (B.4.18)-(B.4.22), respectively, are monotone non-decreasing
in α. That is, for 0 ≤ α ≤ β, the following inequalities hold

∆α (ρABC , τAC , ωC , θBC) ≤ ∆β (ρABC , τAC , ωC , θBC) , (B.6.1)

∆̃α (ρABC , τAC , ωC , θBC) ≤ ∆̃β (ρABC , τAC , ωC , θBC) , (B.6.2)

and similar inequalities hold for all orderings of the last three arguments of ∆α and ∆̃α.

If Conjecture B.25 is true, we could conclude that all non-sandwiched and sandwiched
Rényi generalizations of the QCMI are monotone non-decreasing in α for positive definite
operators. Another implication of monotonicity in α ≥ 1/2 for ∆̃α (ρABC , ρAC , ρC , ρBC)
would be that a tripartite quantum state ρABC is a quantum Markov state if and only if

∆̃α (ρABC , ρAC , ρC , ρBC) = 0 (B.6.3)

(with α ≥ 1/2). This would generalize the results from [80] to the case α 6= 1. However,
note that (B.6.3) has now been proven for α ∈ (0, 1) ∪ (1, 2) in [47].

Note that this conjecture does not follow straightforwardly from the following monotonic-
ity

Dα (ρ‖σ) ≤ Dβ (ρ‖σ) , (B.6.4)

D̃α (ρ‖σ) ≤ D̃β (ρ‖σ) , (B.6.5)

which holds for 0 ≤ α ≤ β [183, 132]. However, for classical states ρABC , the conjecture

is clearly true for ∆α (ρABC , ρAC , ρC , ρBC) and ∆̃α (ρABC , ρAC , ρC , ρBC) by appealing to the
above known inequalities.
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Observe that some of the conjectured inequalities are redundant. For example, if

∆α (ρABC , τAC , θBC , ωC) ≤ ∆β (ρABC , τAC , θBC , ωC) (B.6.6)

holds for all ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, θBC ∈ S(HBC)++, and ωC ∈ S(HC)++,
then the following monotonicity holds as well

∆α (ρABC , θBC , τAC , ωC) ≤ ∆β (ρABC , θBC , τAC , ωC) , (B.6.7)

due to a symmetry under the exchange of systems A and B. Similar statements apply
to other pairs of inequalities, so that it suffices to prove only six of the 12 monotonicities
discussed above in order to establish the other six. However, as we will see below, a single
proof of the monotonicity for each kind of Rényi QCMI (non-sandwiched and sandwiched)
should suffice because we think one could easily generalize such a proof to the other cases.

B.6.1 Approaches for proving the conjecture

We briefly outline some approaches for proving the conjecture. One idea is to follow a proof
technique from [183, Lemma 3] and [132, Theorem 7]. If the derivative of ∆α(ρABC , τAC , ωC ,

θBC) and ∆̃α (ρABC , τAC , ωC , θBC) with respect to α is non-negative, then we can conclude
that these functions are monotone increasing with α. It is possible to prove that the deriva-
tives are non-negative when α is in a neighborhood of one, by computing Taylor expansions
of these functions. We explore this approach further in Appendix D.2.3.

B.6.2 Numerical evidence

To test the conjecture in (B.6.1) and its variations, we conducted several numerical exper-
iments. First, we selected states ρABC , τAC , ωC , θBC at random [44], with the dimensions
of the local systems never exceeding six. We then computed the numerator in (D.2.44) for
values of γ ranging from −0.99 to 10 with a step size of 0.05 (so that α = γ + 1 goes from
0.01 to 11). For each value of γ, we conducted 1000 numerical experiments. The result
was that the numerator in (D.2.44) was always non-negative. We then conducted the same
set of experiments for the various operator orderings and always found the numerator to be
non-negative.

To test the conjecture in (B.6.2) and its variations, we conducted similar numerical
experiments. First, we selected states ρABC , τAC , ωC , θBC , µABC at random [44], with the
dimensions of the local systems never exceeding six. We then computed the numerator in
(D.2.53) for values of γ ranging from −10 to 0.99 with a step size of 0.05 (so that α =
1/ (1− γ) goes from ≈ 0.091 to ≈ 100). For each value of γ, we conducted 1000 numerical
experiments. The result was that the numerator in (D.2.53) was always non-negative. We
then conducted the same set of experiments for the various operator orderings and always
found the numerator to be non-negative.

B.6.3 Special cases of the conjecture

We can prove that the conjecture is true in a number of cases, due to the special form that
the Rényi QCMI takes in these cases. Let ρABC ∈ S(HABC)++. Consider the Rényi and
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sandwiched Rényi QCMI of Definitions B.1 and B.3, respectively:

Iα (A;B|C)ρ|ρ ≡
1

α− 1
log Tr

{
ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C ρ1−α

BC ρ
(α−1)/2
C ρ

(1−α)/2
AC

}
, (B.6.8)

Ĩα (A;B|C)ρ|ρ ≡
α

α− 1
log
∥∥∥ρ1/2

ABCρ
(1−α)/2α
AC ρ

(α−1)/2α
C ρ

(1−α)/α
BC ρ

(α−1)/2α
C ρ

(1−α)/2α
AC ρ

1/2
ABC

∥∥∥
α
,

(B.6.9)

so that

I0 (A;B|C)ρ|ρ = − log Tr
{
ρ0
ABCρ

1/2
ACρ

−1/2
C ρBCρ

−1/2
C ρ

1/2
AC

}
, (B.6.10)

I2 (A;B|C)ρ|ρ = log Tr

{
ρ2
ABC

(
ρ

1/2
ACρ

−1/2
C ρBCρ

−1/2
C ρ

1/2
AC

)−1
}
. (B.6.11)

Recall that the following inequality holds for all α ∈ (0, 1) ∪ (1,∞) [46]:

D̃α (ρ‖σ) ≤ Dα (ρ‖σ) . (B.6.12)

Using the monotonicity given in (B.6.5) and the above inequality, we can conclude that

I0 (A;B|C)ρ|ρ ≤ I2 (A;B|C)ρ|ρ . (B.6.13)

However, we cannot relate to the von Neumann entropy-based QCMI because its represen-
tation in terms of the relative entropy does not feature the operator ρ

1/2
ACρ

−1/2
C ρBCρ

−1/2
C ρ

1/2
AC

as its second argument but instead has exp {log ρBC + log ρAC − log ρC}.
Let ρABC ∈ S(HABC)++, τAC ∈ S(HAC)++, ωC ∈ S(HC)++, and θBC ∈ S(HBC)++.

Tomamichel has communicated that the inequality in (B.6.2) and its variations are true for
0 ≤ α ≤ β and such that 1/α + 1/β = 2 [181]. This is because in such a case, we have that
α/ (1− α) = −β (1− β), so that[

τ
(1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/α
BC ω

(α−1)/2α
C τ

(1−α)/2α
AC

]α/(1−α)

=
[
τ

(1−β)/2β
AC ω

(β−1)/2β
C θ

(1−β)/β
BC ω

(β−1)/2β
C τ

(1−β)/2β
AC

]β/(1−β)

, (B.6.14)

and similar equalities hold for the five other operator orderings. Since this is the case,
the monotonicity follows directly from the ordinary monotonicity of the sandwiched Rényi
relative entropy. By a similar line of reasoning, the inequality in (B.6.1) and its variations
are true for 0 ≤ α ≤ β and such that α + β = 2. Similarly, in such a case, we have that
1− α = − (1− β), so that[

τ
(1−α)/2
AC ω

(α−1)/2
C θ1−α

BC ω
(α−1)/2
C τ

(1−α)/2
AC

]1/(1−α)

=
[
τ

(1−β)/2
AC ω

(β−1)/2
C θ1−β

BC ω
(β−1)/2
C τ

(1−β)/2
AC

]1/(1−β)

, (B.6.15)

and similar equalities hold for the five other operator orderings. Then the monotonicity
again follows from the ordinary monotonicity of the Rényi relative entropy. The observation
in (B.6.13) is then a special case of the above observation.
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B.6.4 Implications for tripartite states with small conditional mutual informa-
tion

It has been an open question since the work in [80] to characterize tripartite quantum
states ρABC with small conditional mutual information I (A;B|C)ρ. That is, given that the
various quantum Markov state conditions in (A.4.2) and (A.4.3)-(A.4.5) are equivalent to
I (A;B|C)ρ being equal to zero, we would like to understand what happens when we perturb
these various conditions. In this section, we pursue this direction and explicitly show how
Conjecture B.25 could be used to address this important question.

Several researchers have already considered what happens when perturbing the quantum
Markov state condition in (A.4.2), but we include a discussion here for completeness. To
begin with, we know that if there exists a quantum Markov state µABC ∈ MA−C−B such
that

‖ρABC − µABC‖1 ≤ ε (B.6.16)

then

I (A;B|C)µ = 0, (B.6.17)

I (A;B|C)ρ ≤ 8ε log min {dA, dB}+ 4h2 (ε) , (B.6.18)

where
h2 (x) ≡ −x log x− (1− x) log (1− x) (B.6.19)

is the binary entropy, which obeys

lim
ε↘0

h2 (ε) = 0. (B.6.20)

The first line is by definition and the second follows from an application of the Alicki-Fannes
inequality [4]. However, the example in [39] and the subsequent development in [58] exclude
a particular converse of the above bound. That is, by [39, Lemma 6], there exists a sequence
of states ρdABC such that

I (A;B|C)ρd = 2 log ((d+ 2) /d) , (B.6.21)

which goes to zero as d → ∞. However, for this same sequence of states, the following
constant lower bound is known

min
µABC∈MA−C−B

D0

(
ρdABC

∥∥µABC) ≥ log
√

4/3, (B.6.22)

by [58, Theorem 1]. By employing monotonicity of the Rényi relative entropy with respect
to the Rényi parameter, so that D1/2 ≥ D0, and the well-known relation 1− ‖ω − τ‖1 /2 ≤
Tr{√ω√τ} for ω, τ ∈ S (H) (see, e.g., [32, Equation (22)]), we can readily translate the
bound in (B.6.22) to a constant lower bound on the trace distance of ρdABC to the set of
quantum Markov states:∥∥ρdABC −MA−C−B

∥∥
1
≡ min

µABC∈MA−C−B

∥∥ρdABC − µABC∥∥1
≥ 2

(
1− (3/4)1/4

)
≈ 0.139.

(B.6.23)
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So (B.6.21) and (B.6.23) imply that a Pinsker-like bound of the form

I (A;B|C)ρ ≥ K ‖ρABC −MA−C−B‖2
1 (B.6.24)

cannot hold in general, with K a dimension-independent constant.
We now focus on a perturbation of the conditions in (A.4.3)-(A.4.4). It appears that these

cases will be promising for applications if Conjecture B.25 is true. The following proposition
states that the conditional mutual information is small if it is possible to recover the system
A from system C alone (or by symmetry, if one can get B from C alone). We note that
(B.6.27) was proven independently in [62, Eq. (8)].

Proposition B.26. Let ρABC ∈ S (HABC), RC→AC be a CPTP “recovery” map, and ε ∈
[0, 1]. Suppose that it is possible to recover the system A from system C alone, in the following
sense

‖ρABC − ωABC‖1 ≤ ε, (B.6.25)

where
ωABC ≡ RC→AC (ρBC) . (B.6.26)

Then the conditional mutual informations I (A;B|C)ρ and I (A;B|C)ω obey the following
bounds:

I (A;B|C)ρ ≤ 4ε log dB + 2h2 (ε) , (B.6.27)

I (A;B|C)ω ≤ 4ε log dB + 2h2 (ε) , (B.6.28)

where dB is the dimension of the B system and h2 (ε) is defined in (B.6.19). By symmetry,
a related bound holds if one can recover system B from system C alone.

Proof. Consider that

I (A;B|C)ρ = H (B|C)ρ −H (B|AC)ρ (B.6.29)

≤ H (B|AC)ω −H (B|AC)ρ (B.6.30)

≤ H (B|AC)ω −H (B|AC)ω + 4ε log dB + 2h2 (ε) (B.6.31)

= 4ε log dB + 2h2 (ε) . (B.6.32)

The first inequality follows because the conditional entropy is monotone increasing under
quantum operations on the conditioning system (the map RC→AC is applied to the system
C of state ρABC to produce ωABC and the conditional entropy only increases under such
processing). The second inequality is a result of (B.6.25) and the Alicki-Fannes inequality
[4] (continuity of conditional entropy). Similarly, consider that

I (A;B|C)ω = H (B|C)ω −H (B|AC)ω (B.6.33)

≤ H (B|C)ρ −H (B|AC)ω + 4ε log dB + 2h2 (ε) (B.6.34)

≤ H (B|AC)ω −H (B|AC)ω + 4ε log dB + 2h2 (ε) (B.6.35)

= 4ε log dB + 2h2 (ε) . (B.6.36)
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The first inequality is from the fact that (B.6.25) implies that

‖ρBC − ωBC‖1 ≤ ε (B.6.37)

and the Alicki-Fannes’ inequality. The second is again from monotonicity of conditional
entropy.

The implications of Conjecture B.25 are nontrivial. For example, if it were true, then we
could conclude a converse of Proposition B.26, that if the conditional mutual information
is small, then it is possible to recover the system A from system C alone (or by symmetry,
that one can get B from C alone). That is, the following relation would hold for ρABC ∈
S(HABC)++:

I (A;B|C)ρ ≥ Imin (A;B|C)ρ|ρ (B.6.38)

= − logF
(
ρABC , ρ

1/2
ACρ

−1/2
C ρBCρ

−1/2
C ρ

1/2
AC

)
(B.6.39)

= − logF
(
ρABC ,RP

C→AC (ρBC)
)

(B.6.40)

≥ − log

[
1−

(
1

2

∥∥ρABC −RP
C→AC (ρBC)

∥∥
1

)2
]

(B.6.41)

≥ 1

4

∥∥ρABC −RP
C→AC (ρBC)

∥∥2

1
, (B.6.42)

where RP
C→AC is Petz’s transpose map discussed in [80]

RP
C→AC(·) ≡ ρ

1/2
ACρ

−1/2
C (·)ρ−1/2

C ρ
1/2
AC . (B.6.43)

In the above, the first inequality would follow from Conjecture B.25, the second is a result of
well known relations between trace distance and fidelity [66], and the last is a consequence
of the inequality − log (1− x) ≥ x, valid for x ≤ 1. Thus, the truth of Conjecture B.25
would establish the truth of an open conjecture from [109] (up to a constant). As pointed
out in [109], this would then imply that for tripartite states ρABC with conditional mutual
information I(A;B|C)ρ small (i.e., states that fulfill strong subadditivity with near equality),
Petz’s transpose map for the partial trace over A is good for recovering ρABC from ρBC .
Hence, even though ρABC does not have to be close to a quantum Markov state if I(A;B|C)ρ
is small (as discussed above), A would still be nearly independent of B from the perspective
of C in the sense that ρABC could be approximately recovered from ρBC alone. This would
give an operationally useful characterization of states that fulfill strong subadditivity with
near equality and would be helpful for answering some open questions concerning squashed
entanglement, as discussed in [199].

For the quantum Markov state condition in (A.4.5), for simplicity we consider instead
the “relative entropy distance” between ρABC and ςABC , where

ςABC ≡ exp {log ρAC + log ρBC − log ρC} . (B.6.44)

So if
D (ρABC‖ςABC) ≤ ε, (B.6.45)
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then we can conclude that

I (A;B|C)ρ = D (ρABC‖ςABC) ≤ ε. (B.6.46)

If desired, one can also obtain an ε-dependent upper bound on I (A;B|C)ς′ , where

ς ′ABC ≡ ςABC/Tr {ςABC} , (B.6.47)

which vanishes in the limit as ε goes to zero. This can be accomplished by employing the
bound in Corollary A.5 and by bounding Tr{ςABC} from below by 1−‖ρABC − ςABC‖1. The
bound in Corollary A.5 also serves as a converse of these bounds: if the conditional mutual
information is small, then the trace distance between ρABC and ςABC is small. However, it
is not clear that a perturbation of the quantum Markov state condition in (A.4.5) will be
as useful in applications as a perturbation of (A.4.3)-(A.4.4) would be, mainly because the
map ρABC → exp {log ρAC + log ρBC − log ρC} is non-linear (as discussed in [108]).

B.7 Discussion

To summarize, in this appendix we defined several Rényi generalizations of the QCMI that
satisfy the properties desired of such a generalization of the QCMI. Namely, we showed that
these generalizations are non-negative and are monotone under local quantum operations on
one of the systems A or B. An important open question is to prove that they are monotone
under local quantum operations on both systems. Some of the Rényi generalizations satisfy
a generalization of the duality relation I(A;B|C) = I(A;B|D), which holds for a four-
party pure state ψABCD. We conjecture that these Rényi generalizations of the QCMI are
monotone non-decreasing in the Rényi parameter α, and we have proved that this conjecture
is true when α is in a neighborhood of one and in some other special cases. The truth of
this conjecture in general would have implications in condensed matter physics, as detailed
in [109], and quantum communication complexity, as mentioned in [186]. A summary of the
properties of the proposed Rényi generalizations of the QCMI is given in Table B.1.
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Table B.1: Rényi generalizations of the conditional quantum mutual information (QCMI). The Rényi generalizations prescribed
in this work are applicable to the QCMI. The leftmost column of the table lists some desired properties of a Rényi QCMI. These
properties are satisfied by the original von Neumann QCMI I(A;B|C)ρ in (B.2.4) as shown in Column 2. The Rényi QCMI
in (B.2.6) obtained by simply replacing the linear sum of von Neumann entropies with the corresponding linear sum of Rényi
entropies, in Column 3, is compared with the Rényi generalizations obtained through the formula prescribed in this work, in
Columns 4 and 5. The question marks indicate open questions, with numerical evidence supporting a positive answer. The
quantity in Column 3 does not retain many of the desired properties. On the contrary, the quantities in Columns 4 and 5 retain
some of these desired properties. The table suggests that the latter are more useful Rényi generalizations of the QCMI.

Formula QCMI in (B.2.4) Rényi QCMI in (B.2.6) Rényi QCMI in (B.4.11) Rényi QCMI in (B.4.24)

Non-negative ! # ! !
Monotone under

local op.’s on A ! # ? ?
Monotone under

local op.’s on B ! # ! !

Duality ! ! ! !
Converges to

(B.2.4) as α→ 1 N/A ! ! ?

Monotone in α N/A # ? ?



Based on the fact that the QCMI can be written as

I (A;B|C)ρ = D (ρABC‖ exp {log ρAC + log ρBC − log ρC}) , (B.7.1)

one could consider another Rényi generalization of the QCMI, such as

Dα (ρABC‖ exp {log ρAC + log ρBC − log ρC}) , (B.7.2)

or with the sandwiched variant. However, it is unclear to us whether (B.7.2) is monotone
under local operations, which we have argued is an important property for a Rényi general-
ization of the QCMI.

There are many directions to consider going forward on the proposed Rényi QCMI. First,
one could improve many of the results here on a technical level. It would be interesting to
understand in depth the limits in (A.5.5), (B.4.4), and (B.4.17) in order to establish the most

general support conditions for the ∆, ∆α, and ∆̃α quantities, respectively, as has been done
for the quantum and Rényi relative entropies, as recalled in (2.2.33), (2.2.39), and (2.2.41).

Next, if one could establish uniform convergence of the ∆α and ∆̃α quantities as α goes to
one, then we could conclude that the optimized versions of these quantities converge to the
QCMI in this limit. One might also attempt to extend Theorem B.6, Theorem B.8, and
Lemma B.17 to hold for positive semi-definite density operators.

As far as applications are concerned, we explored a Rényi squashed entanglement in
Chapter 3 and showed that several properties hold for the quantity which are analogous
to the squashed entanglement [40]. Such a quantity might be helpful in strengthening [40,
Proposition 10], so that the squashed entanglement could be interpreted as a strong converse
upper bound on distillable entanglement. More generally, it might be helpful in strengthen-
ing the main result of [178], so that the upper bound established on the two-way assisted
quantum capacity could be interpreted as a strong converse rate. We also explored a Rényi
quantum discord in Chapter 3. Such a quantity could be used to study phase transitions in
condensed matter systems [128]. More generally, the quantities defined here might be useful
in the context of one-shot information theory, for example, to establish a one-shot state
redistribution protocol as an extension of the main result of [49]. One could also explore
applications of the Rényi QCMIs in the context of condensed matter physics or high energy
physics, as the Rényi entropy has been employed extensively in these contexts [31].

Finally, these potential applications in information theory and physics should help in
singling out some of our many possible definitions for Rényi QCMI.
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Appendix C

Quantum Optical Metrology1

C.1 Introduction

Metrology is the science of precision measurements. It is fundamentally based on informa-
tion acquisition and processing by physical systems. Thus, quantum mechanics has been
considered to uncover the ultimate possibilities in metrology. Quantum metrology [74] is the
field of research that concerns with this pursuit. Strategies suggested in quantum metrology
have been found to enable measurements with precisions that surpass what is possible using
classical strategies. Potential applications of this exciting field of research include gravita-
tional wave detection [147], quantum positioning and clock synchronization [73], quantum
frequency standards [97], quantum sensing [201, 43], quantum radar and LIDAR [106, 68],
quantum imaging [170, 126] and quantum lithography [114, 113, 22].

Quantum metrology offers a theoretical framework to analyze the precision performance
of measurement devices that employ quantum mechanical probes containing nonclassical
effects such as entanglement or squeezing. The framework consists of the theory of quantum
parameter estimation (discussed earlier in Section 2.5) [84, 26, 27].

Consider the typical scenario of parameter estimation described in Fig. C.1, where we
want to estimate an unknown parameter associated with the unitary dynamics generated by a
known physical process. We prepare probes in suitable quantum states, evolve them through
the process, and measure the probes at the output using a suitable detection strategy. We
then compare the input and output probe states, which allows us to estimate the unknown
parameter of the physical process. Let us suppose that the generating Hamiltonian is linear in
the number of probes. (For example, in the case of two-mode interferometry discussed later
in the appendix, we suppose that the generator of phase evolution is the photon-number
difference between the two modes â†â − b̂†b̂.) When N classical probes (probes with no
quantum effects) are used, the precision is limited by a scaling given by 1/

√
N ; known as

the shot noise limit. This scaling arises from the central limit theorem of statistics. On the
other hand, probes with quantum entanglement can reach below the shot noise limit and
determine the unknown parameter with a precision that can scale as 1/N ; known as the
Heisenberg limit [93].

C.2 Quantum Optical Interferometry

Optical metrology uses light interferometry as a tool to perform precision measurements.
The most basic optical interferometer is a two-mode device with an unknown relative phase

1This appendix is reproduced by updating and adapting the contents of J.P. Dowling and K.P. Se-
shadreesan, Journal of Lightwave Technology, 33(12):2359-2370, June 2015, with the permission of IEEE.
See Appendix E for the copyright permission from the publishers.
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Figure C.1: A schematic of a typical quantum parameter estimation setup. Probes prepared
in suitable quantum states are made to evolve through a unitary process U(ϕ), which is
an optical interferometer in our case. The process imparts information about the unknown
parameter of interest on to the probes. The probes are then detected at the output, and the
measurement outcomes used to estimate the unknown value of the parameter.

(between the two modes). This unknown phase can be engineered to carry information
about different quantities of interest in different contexts, e.g., it is related to the strength of a
magnetic field in an optical magnetometer, a gravitational wave at LIGO (light interferometer
gravitational wave observation), etc.

Fig. C.2 shows a conventional optical interferometer in the Mach Zehnder configuration.
The input to the classical interferometer is a coherent laser source, and the detection is based
on intensity difference measurement. When a coherent light of average photon number n is
used, the precision of phase estimation is limited by the shot noise of 1/

√
n associated with

intensity fluctuations at the output, which have their origin in the vacuum fluctuations of
the quantized electromagnetic field that enter the device through the unused input port b0.

ϕ

Laser

-

a0

b0

b1

a1

b2

a2

BS BS
PS

Mirror

Mirror

a3

b3

Figure C.2: A schematic of the conventional Mach-Zehnder interferometry based on coherent
light input and intensity difference detection. The BS and PS denote beam splitters and
phase shifters.

However, quantum optical metrology enables sub-shot noise phase estimation. In a sem-
inal work in the field, Caves [34] showed that when the nonclassical squeezed vacuum state
is mixed instead of the vacuum state in the unused port of the same interferometer, sub-shot
noise precision that scales as 1/n2/3 can be attained. Subsequently, two-mode squeezed states
were shown to enable phase estimation at a precision of 1/n [21]. With the advancement
in single-photon technology, finite photon-number states containing quantum entanglement
were also proposed and studied in quantum optical metrology. This includes the N00N
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states [51], which are Schrdinger cat-like, maximally mode-entangled states of two modes,
where the N photons are in superposition of all N photons being in one mode or the other;
the Holland-Burnett states [93] and the Berry-Wiseman states [16], to name a few. All these
states were found to be capable of attaining the Heisenberg limit 1/N . The above theoretical
results have led to many experimental demonstrations of sub-shot noise metrology with finite
photon-number states [193, 202, 3, 86, 133, 23].

Along with the different quantum states of light, a plethora of detection strategies have
also been investigated. This includes homodyne and heterodyne detection [204], the canon-
ical phase measurement [139] (which can be mimicked by an adaptive measurement [200]),
photon-number counting [155, 107], and photon-number parity measurement [72]. These
measurement schemes have been shown to be capable of attaining the optimal precisions of
different quantum states of light.

More recently, numerous studies have been devoted to investigating the effects of photon
loss, dephasing noise and other decoherence phenomena, on the precision of phase estimation
in quantum optical metrology. Useful lower bounds on precision, and optimal quantum states
that attain those bounds, have been identified in some such scenarios both numerically and
analytically [111, 48, 59, 110, 118, 50].

C.3 Tools to Study Quantum Optical Metrology

In this section, we describe the basic tools that get used in quantum optical metrology. (Note
that we restrict ourselves to pure states.)

C.3.1 Two-mode interferometry in the Fock basis

In the quantum description of the Mach-Zehnder interferometer (MZI), we associate creation
and annihilation operators with each of the two modes. Here, we call them â†i , âi and b̂†i ,

b̂i, i ∈ {0, 1, 2}, where the different values of i refer to the modes at the input, inside,
and output of the interferometer. The two modes of an MZI could be spatial modes or
polarization modes.

Consider the propagation of the input quantum states of the two modes through the
different linear optical elements present in the MZI. In the so-called Heisenberg picture, the
propagation can be viewed as a transformation of the mode operators via a scattering matrix
Mi: [

â0

b̂0

]
= M̂i

−1
[
â1

b̂1

]
. (C.3.1)

The scattering matrices corresponding to a 50:50 beam splitter and a phase shifter are given
by

M̂BS =
1√
2

[
1 i
i 1

]
, (C.3.2)

M̂ϕ =

[
1 0
0 e−iϕ

]
, (C.3.3)

respectively. (Note that this form for M̂BS holds for beam splitters that are constructed as a
single dielectric layer, in which case the reflected and the transmitted beams gather a relative
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phase of π/2.) The two-mode quantum state at the output of a MZI in the Fock basis, can be
therefore obtained by replacing the mode operators in the input state in terms of the output
mode operators, where the overall scattering matrix is given by: M̂MZI = M̂BSM̂ϕM̂BS and
is found to be:

M̂MZI = ie−i
ϕ
2

[
sin ϕ

2
cos ϕ

2

cos ϕ
2
− sin ϕ

2

]
. (C.3.4)

(Note that the overall scattering matrix has been suitably renormalized.)

C.3.2 Two-mode interferometry in terms of phase space representations

In terms of phase space quasi-probability distributions such as the Wigner distribution func-
tion, the propagation through the Mach-Zehnder interferometer can be similarly described
by relating the initial complex variables in the Wigner function to their final expressions as:

Wout(α1, β1) = Win [α0(α1, β1), β0(α1, β1)] . (C.3.5)

The relation between the complex variables is similarly given in terms of the two-by-two
scattering matrices M̂ : [

α0

β0

]
= M̂−1

[
α1

β1

]
, (C.3.6)

α0, β0, α1, and β1 being the complex amplitudes of the field in the modes â0, b̂0, â1, and
b̂1, respectively. The approach based on phase space probability distributions is particularly
convenient and powerful when dealing with Gaussian states, namely, states that have a
Gaussian Wigner distribution, and Gaussian operations [194]. Examples include the coherent
state, the squeezed vacuum state and the thermal state [69]. This is due to the fact that
a Gaussian distribution is completely described by its first and second moments, and there
exist tools based on the algebra of the symplectic group that can be used to propagate the
mean and covariances of Gaussian states of any number of independent photonic modes.

C.3.3 Two-mode interferometry in the Schwinger basis

The Schwinger model presents an alternative way to describe quantum states and their
dynamics in a MZI [205]. The model is based on an interesting relationship between the
algebra of the mode operators of two independent photonic modes and the algebra of angular
momentum.

Consider the following functions of the mode operators of a pair of independent photonic
modes, say, the modes inside the MZI of Fig. C.2, â1, â†1, b̂1, and b̂†1:

Ĵx =
1

2
(â†1b̂1 + b̂†1â1), Ĵy =

1

2i
(â†1b̂1 − b̂†1â1), Ĵz =

1

2
(â†1â1 − b̂†1b̂1), (C.3.7)

and N̂ = â†1â1 + b̂†1b̂1. The operators in (C.3.7) obey the SU(2) algebra of angular momentum

operators, namely,
[
Ĵq, Ĵr

]
= i~εq,r,sĴs, where ε is the antisymmetric tensor and where

q, r, s ∈ {x, y, z}. Further, J2 = N̂/2
(
N̂/2 + 1

)
is the Casimir invariant of the group, which
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commutes with the operators in (C.3.7). (In fact, N̂ itself commutes with the operators in
(C.3.7).)

In the Schwinger representation, a two-mode N -photon pure state gets uniquely mapped
on to a pure state in the spin-N/2 subspace of the angular momentum Hilbert space, i.e.,

|na, nb〉 →
∣∣∣∣j =

na + nb
2

,m =
na − nb

2

〉
, (C.3.8)

where na+nb = N. The propagation of the state of the quantized single-mode field is realized
by a SU(2)-group transformation generated by the angular momentum operators Ĵx, Ĵy and

Ĵz. For example, the beam splitter transformation of (C.3.2) can be written as:[
â0

b̂0

]
= UBS

[
â1

b̂1

]
U †BS, (C.3.9)

where UBS = exp(i (π/2) Ĵy), and likewise, the transformation due to the phase shifter inside
the interferometer can be described as[

â2

b̂2

]
= U †ϕ

[
â1

b̂1

]
Uϕ. (C.3.10)

Using the SU(2) algebra of the angular momentum operators and the Baker-Hausdorff lemma
(See [160]), the overall unitary transformation corresponding to the MZI of Fig. C.2 can
be expressed as ÛMZI = exp(−iϕĴx). Operationally, for any given two-mode state inside
the interferometer, the operator Ĵz tracks the photon-number difference between the two
modes inside the interferometer (which is ∝ â†1â1 − b̂†1b̂1). Similarly, when the beam-splitter
transformation is chosen to be UBS = exp(i (π/2) Ĵy), it can be shown using the SU(2)

commutation relations that the operators Ĵy and Ĵx track the photon-number differences at

the input (which is ∝ â†0â0 − b̂†0b̂0) and the output (which is ∝ â†3â3 − b̂†3b̂3), respectively.
Alternatively, the propagation through the MZI can be viewed as an SO(3) rotation of

the abstract angular momentum vector J =
{
Ĵx, Ĵy, Ĵz

}
, while the state remains as it is at

the input modes â0 and b̂0. For example, the MZI transformation on the angular momentum
vector can be captured as followsĴ ′xĴ ′y

Ĵ ′z

 =

0 0 −1
0 1 0
1 0 0

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 0 0 1
0 1 0
−1 0 0

ĴxĴy
Ĵz

 , (C.3.11)

which can be simplified asĴ ′xĴ ′y
Ĵ ′z

 =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

ĴxĴy
Ĵz

 . (C.3.12)
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C.3.4 Measurement and phase estimation

After propagating the two-mode quantum state through the MZI, we measure the output
state (most generally a density operator ρ̂) using a suitable Hermitian operator Ô as the
measurement observable. For example, the measurement observable corresponding to the
intensity difference detection of the conventional MZI described in Fig. C.2 is the photon-
number difference operator Ô = b̂†3b̂3 − â†3â3. Another interesting detection scheme that has
been found to be optimal for many input states is the photon-number parity operator [166,
165, 6, 72] of one of the two output modes, e.g., the parity operator of mode â3 is given by

Π̂ = (−1)â
†
3â3 . The measured signal corresponding to any observable Ô is given by 〈Ô〉 =

Tr{Ôρ̂}. Further, the precision with which the unknown phase ϕ can be estimated using
the chosen detection scheme, to a good approximation, is given using the error propagation
formula as [27]

∆ϕ =
∆O∣∣∣d〈Ô〉/dϕ∣∣∣ , (C.3.13)

where

∆O =

√
〈Ô2〉 − 〈Ô〉2. (C.3.14)

C.3.5 An example

As an example, consider the coherent light interferometer of Fig. C.2. We will use the Fock
state representation for this example. The output state is determined using the scattering
matrix of (C.3.4) as

|α〉 ⊗ |0〉 →
∣∣iα sin(ϕ/2)e−iϕ/2

〉
⊗
∣∣iα cos(ϕ/2)e−iϕ/2

〉
. (C.3.15)

The output signal for the measurement operator Ô = b̂†3b̂3 − â†3â3 corresponding to intensity
difference detection is

〈Ô〉 = |α|2(cos2(ϕ/2)− sin2(ϕ/2)) = |α|2 cosϕ, (C.3.16)

which matches the classical result. The second moment 〈Ô2〉 for the output state is |α|4 cos2 ϕ+
|α|2, with which we can then ascertain the precision of phase estimation possible with the
coherent light interferometer and intensity difference measurement to be

∆ϕ =

√
|α|4 cos2 ϕ+ |α|2 − |α|4 cos2 ϕ

|α|2 sinϕ
(C.3.17)

=
1

|α|| sinϕ| =
1√

n| sinϕ|
, (C.3.18)

where n is the average photon number of the coherent state. Say the unknown phase ϕ is
such that ϕ − θ is a small real number, where θ is a control phase. Then, the precision is
optimal when θ is an odd multiple of π/2, attaining ∆ϕ = 1/

√
n, which is the quantum

shot noise limit. Unlike classical interferometry based on intensity difference detection, it is
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possible to get rid of the dependence on the actual value of phase by considering the fringe
visibility observable [57]. The visibility observable accomplishes this by keeping track of not
only the photon-number difference, but also the total photon number observed.

The above fully quantum result about coherent light interferometry being shot noise lim-
ited can also be arrived at using a semi-classical treatment. In the latter, light is considered
to be classical, but the detection process to be quantum. However, this result cannot be
captured by a fully classical treatment as we show below. In the classical picture, the input
laser beam to the interferometer of Fig. C.2 is split into two beams of equal intensities by the
first 50:50 beam splitter. These beams then gather an unknown relative phase as they pass
through the device. They are then recombined on the final beam splitter, and the average
intensity difference between the two output beams is measured. A simple classical optics
calculation tells us that the intensities at the output ports may be written in terms of the
input intensity Ia0 and the relative phase ϕ as

Ia2 = Ia0 sin2(ϕ/2), (C.3.19)

Ib2 = Ia0 cos2(ϕ/2). (C.3.20)

This implies the intensity difference between the two output ports is M(ϕ) ≡ Ib3 − Ia3 =
Ia0 cosϕ—sinusoidal fringes that can be observed when the relative phase is varied.

The precision with which one can estimate an unknown relative phase based on the
measurement of M , in terms of the phase error, or the minimum detectable phase, ∆ϕ, may
be determined to a good approximation using the following linear error-propagation formula:

∆ϕ =
∆M

|dM/dϕ| =
∆M

Ia0 sinϕ
. (C.3.21)

The above equation suggests that at a local value of phase ϕ = π/2, the precision of phase
estimation can be made arbitrarily small by measuring the intensity differenceM with infinite
precision, and further by making the input intensity Ia arbitrarily large.

However, quantum mechanics rules out the possibility of measuring intensities with infi-
nite precision, i.e., with ∆M = 0. This is because photon detection is intrinsically a quantum
phenomenon, where the measured quantity is not a continuously varying intensity signal, but
rather the discrete number of quanta of energy, or photons, that are absorbed by the detec-
tor. This absorption process is inherently stochastic due to the vacuum fluctuations of the
quantized electromagnetic field, and in the case of coherent laser light the photon numbers
detected obey a Poisson distribution. Hence, in such a semi-classical treatment of coherent
light interferometry, the precision of phase estimation is limited by ∆ϕ = 1/

√
n, n being the

intensity of the input laser beam, which is consistent with the fully quantum treatment.

C.4 Entanglement and Squeezing

Like in many other quantum information applications, entanglement is thought to be the
driving force behind the enhancements possible in quantum metrology over classical ap-
proaches. The quantum Fisher information of N independent probes in a separable state,
i.e., without quantum entanglement, cannot exceed N . Since this value of the quantum
Fisher information corresponds to precision at the shot noise limit based on (2.5.6), thus,
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separable states cannot beat the shot noise limit. On the other hand, the quantum Fisher
information of entangled states can exceed this bound. In fact it has been shown that the
Fisher information of a N -particle state being greater than N is a sufficient condition for
multipartite entanglement [144, 74]. Entangled states are therefore capable of achieving
sub-shot noise precision. However, it is important to note that the presence of entanglement
is necessary, but not a sufficient condition for achieving sub-shot noise precisions. In other
words, not all entangled states offer a quantum enhancement to precision metrology [99].
When the generator of parameter evolution Ĥ is linear in the number of probes, according
to (2.5.8), the quantum Fisher information of a state containing N probes can at best at-
tain a value of N2, which corresponds to the Heisenberg limit in the precision of parameter
estimation.

In two-mode optical interferometry, e.g., of the type in Fig. C.2, the relevant type of
entanglement to consider is entanglement between the two modes past the first beam splitter,
namely a1 and b1. The most well-known mode entangled states are the N00N states [161, 51],
where are defined as

|N :: 0〉a1,b1 =
1√
2

(|N〉a1 ⊗ |0〉b1 + |0〉a1 ⊗ |N〉b1), (C.4.1)

where a1 and b1 denote the two modes past the first beam splitter. The N00N state has a
quantum Fisher information of N2 2 and hence is capable of achieving the Heisenberg limit
in phase estimation. It is known that both the photon-number difference operator and the
photon-number parity operator are optimal for Heisenberg-limited phase estimation with the
N00N states [19, 51]. Another example of finite photon-number states that are known to
be capable of Heisenberg-limited precision are the Holland-Burnett states |N〉a0 |N〉b0 , which
result in a mode-entangled state inside the interferometer.

In the indefinite photon-number (continuous variable) regime, entanglement is intimately
connected to another nonclassical effect—squeezing. The connection between squeezing and
entanglement is unveiled when two single-mode squeezed vacuum beams are mixed on a
beam splitter of the type described in (C.3.2). The state that results past the beam splitter
is given by the two-mode squeezed vacuum state

|ξ〉 = Ŝ2(ξ)|0〉a1 ⊗ |0〉b1 (ξ = rei(θ+π/2))

=
1

cosh r

∞∑
0

(−1)nein(θ+π/2)(tanh r)n|n〉a ⊗ |n〉b, (C.4.2)

where Ŝ2(ξ) = exp
(
ξâ†1b̂

†
1 − ξ∗â1b̂1

)
is the two-mode squeezing operator. This state is mode-

entangled as the state of the two modes cannot be written in a separable form. The two-mode
squeezing operator can itself also be implemented using a non-degenerate parametric con-
version process, where once again a strong pump emitting photons at frequency ωp interacts
with a nonlinear crystal containing a second order nonlinearity, generating pairs of photons
at frequencies ωa1 and ωb1 , such that ωa1 + ωb1 = ωp.

2The quantum Fisher information (QFI) of a pure state is 4 (∆H)
2
, where H is the generating Hamilto-

nian. For H = n̂a1 − n̂b1 , the QFI of the N00N state evaluates to be N2.
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C.5 Quantum Technologies with Entangled Photons

In this section, we review some recent experiments that have demonstrated the enhanced
sensing and imaging capabilities of entangled photons in interferometry with the N00N
states. In particular, these experiments focus on the small photon-number regime, which
is relevant for sensing and imaging delicate material systems such as biological specimen,
single molecules, cold quantum gases and atomic ensembles. We also discuss a recent exper-
iment based on the N00N state for enhanced spatial resolution for applications in quantum
lithography.

C.5.1 Quantum metrology and sensing

Several experiments based on the N00N states have demonstrated phase estimation beyond
the shot noise limit, and achieving the Heisenberg limit. Here, we briefly mention two
experiments, which have used N00N states to measure useful quantities mapped on to
the optical phase under realistic conditions of photon loss and other decoherence. The
first one is by Crespi et al. [43], where N = 2 N00N states were used to measure the
concentration of a blood protein in an aqueous buffer solution. The experiment used an opto-
fluidic device, which consists of a waveguide interferometer whose one arm passes through a
microfluidic channel containing the solution. The concentration-dependent refractive index
of the solution causes a relative phase shift between the two arms of the interferometer,
which is then detected using coincidence photon-number detection. The N = 2 N00N
states were generated using Hong-Ou-Mandel interference [69] with entangled photon pairs
from a parametric down conversion source. At the output, an array of telecommunication
optical fibers were used to collect the photons, which were then detected with coincidence
detection using four single-photon avalanche photo-diodes. The photons were detected with
a fringe visibility of about 87% in the case where the micro channel had a transmissivity of
only about 61% due to photon loss. The experiment achieved a sensitivity below the shot
noise limit.

In another experiment, Wolfgramm et al. [201] used N = 2 polarization N00N states and
Faraday rotation to probe a Rubidium atomic spin ensemble in a non-destructive manner.
Atomic spins ensembles find application in optical quantum memory, quantum-enhanced
atom interferometry, etc. Such atomic spin ensembles, when interacted with via optical
measurements, e.g., to store or readout quantum information in a quantum memory or to
produce spin-squeezing in atom interferometry, inherently suffer from scattering induced
depolarization noise. Also, there is photon loss due to the scattering of the optical probes
off the ensemble. In order to minimize loss, the experiment generated narrowband N00N
states of about 90% fidelity and purity, at a frequency detuned four Doppler widths from the
nearest Rb-85 resonance containing matter-resonant indistinguishable photons. The photons
at the output were detected using condense photon-number detection with a fringe visibility
of > 90%. The experiment achieved a sensitivity that was five standard deviations better
than the shot noise limit.
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C.5.2 Quantum imaging

Another important application of optical phase measurement is that of microscopy and
imaging. In biology, the technique of differential interference contrast microscopy is widely
used to image biological samples. The depth resolution of the images produced by this
technique is related to the signal-to-noise ratio (SNR) of the measurement. In the case of
classical laser-light-based imaging, for a given light intensity, this is limited by the shot noise
limit in phase precision. While one way to enhance the SNR is to raise the illumination power,
this might have undesirable effects on delicate, photosensitive samples such as biological
tissues, ice crystals, etc. Quantum metrology, however, can provide an enhancement to the
SNR without having to increase the illumination power, and therefore could be of significant
help in this scenario. In one of the first works on the use of quantum metrology for phase
imaging, Brida et al. [29] showed that entangled photon pairs can provide sub-shot noise
imaging of absorbing samples. Later, Taylor et al. [179] showed that squeezed light could be
used to achieve sub-shot noise sensitivities in micro-particle tracking, with applications in
tracking diffusive biological specimen in realtime.

We describe two recent experiments that have used entangled photons for phase super-
sensitive imaging. The first one is by Ono et al. [138], where N = 2 N00N states were used
in a laser confocal microscope in conjunction with a differential interference contrast micro-
scope (LCM-DIM) to demonstrate quantum-enhanced microscopy. The LCM-DIM works
based on polarization interferometry, where the H and V modes are separated using a polar-
ization beam splitter or a Nomarski prism, and made to pass through different spatial parts
of the sample. These modes, depending on the local refractive index and the structure of
the sample, experience different phase shifts, whose difference is then measured at the out-
put. The experiment used N = 2 polarization N00N states generated via Hong-Ou-Mandel
interference with about 98% fidelity, and the photons were detected at the output using
photon-number parity measurement with a fringe visibility of about 95%. The microscope
attained an SNR 1.35-times better than the shot noise limit.

In another experiment, Israel et al. [102] used N = 2 and N = 3 N00N states in quantum
polarization light microscopy (QPLM) to image a quartz crystal. In QPLM, a birefringent
sample causes the H and V modes to experience a differential phase shift, which is then
measured at the output to image the sample. The N00N states for the experiment were
generated from the mixing of coherent light and squeezed vacuum light in equal intensities
(discussed later in Section 5.5), and the photons were detected using an array of single photon
counting modules. The experiment achieved quantum-enhanced imaging with sensitivities
close to the Heisenberg limit.

C.5.3 Quantum lithography

Lithography relies on the creation and detection of spatial interference fringes to etch ultra
fine features on a chip. While classical light lithography is limited by the Rayleigh diffraction
limit, as mentioned before, the N00N states can beat this limit—a result known as super-
resolution [114, 113, 22]. A few independent experiments with N = 2 N00N states had
earlier demonstrated this result. However, it was realized that the N00N state lithography
suffers from the problem that the efficiency of detecting N photons in the same spatial
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location decreases exponentially in N .
In a new theoretical development, a counter-measure was suggested based on the optical

centroid measurement [187], which does not require all the photons to arrive at the same
spatial point. The optical centroid measurement is based on an array of detectors that
keep track of every N photon detection event irrespective of which detectors fired. Then the
average position of the photons is obtained via post-processing. In a recent experiment, using
N = 2, 3, 4 N00N states and the optical centroid measurement, Rozema et al. [158] for the
first time demonstrated a scalable implementation of quantum super-resolving interferometry
with a visibility of interference fringes nearly independent of N .

C.6 Discussion

In this appendix, we presented a brief overview of quantum optical metrology, with an
emphasis on quantum technologies that have been demonstrated with entangled photons. We
presented some state-of-the-art experiments for technological applications such as quantum-
enhanced biosensing, imaging, and spatial resolution lithography.

This review is by no means representative of everything there is to quantum optical
metrology. For a comprehensive review of the field, please refer [151, 115]. We did not dis-
cuss the approach to quantum metrology via the Bayesian method [90], where the unknown
parameter is assumed to be inherently random, and thus distributed according to an un-
known probability distribution. Optimal states in this paradigm have also been identified,
and adaptive protocols have been designed, which implement the optimal measurements for
such states based on measurement settings that continually changed based on the results
previously obtained [202, 86, 16, 200]. Also, we did not go into the details of how the effects
of photon loss and decoherence such as collective dephasing noise due to the thermal motion
of optical components or laser noise, etc, are handled in optical metrology. A large body of
work in the recent literature has dealt with identifying useful lower bounds on phase precision
in the presence of such decoherence [48, 59]. Further, optimal quantum states of light that
attain these bounds in the presence of decoherence have been identified in the asymptotic
limit of a large number of photons [111].

It must be mentioned here that the N00N states are highly susceptible to photon loss,
or other types of decoherence in the limit of a large photon number N . Nevertheless, the use
of the N00N state in the experiments discussed here is justified, since the N00N states still
remain optimal for relatively small photon numbers. In fact, in noisy, decoherence-ridden
interferometry, given a large finite photon-number constraint, it has been recently shown that
the best strategy for phase estimation is to divide the total number of photons into smaller
independent packets or “clusters”, where each cluster is prepared in a N00N state [111].
These clusters are then to be sent through the interferometer one at a time. (The optimal
size of the clusters will depend on the decoherence strength inside the interferometer.) In
addition, alternatives to the N00N states, of the form

(|M〉|N −M〉+ |N −M〉|M〉)/2, M ≤ N (C.6.1)

have been proposed for interferometry in the presence of photon loss [105, 98]. Such states,
when suitably chosen, offer the same benefits as the N00N states, while being more robust
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against photon loss than the latter. Both the N00N states and the states of the form in
(C.6.1) of a moderate number of photons, have been shown to perform optimally in the
presence of collective dephasing noise [156]. Therefore, the states of the form in (C.6.1)
may provide a way to perform quantum metrology in the presence of both photon loss
and collective dephasing noise in suitable regimes of photon numbers and the decoherence
parameters.
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Appendix D
Useful Lemmata

D.1 Generalized Lie-Trotter Product Formula

Proposition D.1. For invertible operators A, B and C, the following equivalence holds

exp {A+B − C}

= lim
N→∞

[
exp

{
B

2N

}
exp

{−C
2N

}
exp

{
A

N

}
exp

{−C
2N

}
exp

{
B

2N

}]N
.

= lim
N→∞

[
exp

{
A

N

}
exp

{
B

N

}
exp

{−C
N

}]N
. (D.1.1)

Proof. We shall prove (D.1.1) . The other equality can be proved essentially identically. Let
us first compare the following two operators:

XN = exp {(A+B − C)/N} , (D.1.2)

YN = exp

{
B

2N

}
exp

{−C
2N

}
exp

{
A

N

}
exp

{−C
2N

}
exp

{
B

2N

}
. (D.1.3)

Consider the Taylor expansions of XN and YN up to first order in N−1.

XN = I +
A+B − C

N
+O(N−2), (D.1.4)

YN = (I +
B

2N
+O(N−2))(I − C

2N
+O(N−2))(I +

A

N
+O(N−2))

× (I − C

2N
+O(N−2))(I +

B

2N
+O(N−2)) (D.1.5)

= I +
A+B − C

N
+O(N−2). (D.1.6)

Therefore, clearly, XN − YN = O(N−2).
Now, consider XN

N − Y N
N . For arbitrary matrices X and Y , it can be shown that∥∥XN − Y N

∥∥ ≤ NMN−1 ‖X − Y ‖ , (D.1.7)

where M = max(‖X‖ , ‖Y ‖). For the case X = XN and Y = YN , we have∥∥XN
N − Y N

N

∥∥ ≤ NMN−1 ‖XN − YN‖ . (D.1.8)

Given that

‖XN‖ ≤ ‖exp {(A+B − C)/N}‖ ≤ exp {(‖A‖+ ‖B‖+ ‖C‖)/N} , (D.1.9)

‖YN‖ ≤
∥∥∥∥exp

{
B

2N

}
exp

{−C
2N

}
exp

{
A

N

}
exp

{−C
2N

}
exp

{
B

2N

}∥∥∥∥ (D.1.10)

≤ exp {‖A‖+ ‖B‖+ ‖C‖)/N} , (D.1.11)
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we have MN ≤ exp {‖A‖+ ‖B‖+ ‖C‖}. Therefore,∥∥XN
N − Y N

N

∥∥ ≤ N exp {‖A‖+ ‖B‖+ ‖C‖}O(N−2) = O(N−1). (D.1.12)

That is, in the limit N → ∞,
∥∥XN

N − Y N
N

∥∥ = 0. The proof for the limit when α → +1 is
similar, so that we can conclude the statement of the proposition.

Corollary D.2. For invertible operators σAC ,σBC and σC , the following equivalence holds

exp {log σAC + log σBC − log σC} = lim
α→1

[
σ

(1−α)/2
BC σ

(α−1)/2
C σ1−α

AC σ
(α−1)/2
C σ

(1−α)/2
BC

]1/(1−α)

.

(D.1.13)

D.2 Rényi Quantum Conditional Mutual Information

D.2.1 A Sibson identity for the Rényi quantum conditional mutual information

The Rényi QCMI in Definition B.1 has an explicit form, much like other Rényi information
quantities [116, 169, 76, 182]. We prove this in two steps, first by proving the following
Sibson identity [172].

Lemma D.3. The following quantum Sibson identity holds when supp (ρABC) ⊆ supp (σBC)
and for α ∈ (0, 1) ∪ (1,∞):

∆α (ρABC , ρAC , ρC , σBC) = ∆α (ρABC , ρAC , ρC , σ
∗
BC) +Dα (σ∗BC‖σBC) , (D.2.1)

with the state σ∗BC having the form

σ∗BC ≡

(
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

})1/α

Tr

{(
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

})1/α
} . (D.2.2)

Proof. The relation for σ∗BC implies that[
σ∗BCTr

{(
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

})1/α
}]α

= TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

}
. (D.2.3)

Then consider that

∆α (ρABC , ρAC , ρC , σBC)

=
1

α− 1
log Tr

{
ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C σ1−α

BC ρ
(α−1)/2
C ρ

(1−α)/2
AC

}
(D.2.4)

=
1

α− 1
log Tr

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C σ1−α

BC

}
(D.2.5)

=
1

α− 1
log Tr

{
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

}
σ1−α
BC

}
(D.2.6)

=
1

α− 1
log Tr

{
[σ∗BC ]α σ1−α

BC

}
(D.2.7)

+
α

α− 1
log Tr

{(
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

})1/α
}
. (D.2.8)
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Now consider expanding the following:

∆α (ρABC , ρAC , ρC , σ
∗
BC)

=
1

α− 1
log Tr

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C [σ∗BC ]1−α

}
(D.2.9)

=
1

α− 1
log Tr

{
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

}
[σ∗BC ]1−α

}
(D.2.10)

=
1

α− 1
log Tr

{[
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

}]1/α
}

(D.2.11)

+ log Tr

{(
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

})1/α
}

(D.2.12)

=
α

α− 1
log Tr

{(
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

})1/α
}
. (D.2.13)

Putting everything together, we can conclude the statement of the lemma.

Corollary D.4. The Rényi quantum conditional mutual information has the following ex-
plicit form for α ∈ (0, 1) ∪ (1,∞):

Iα (A;B|C)ρ =
α

α− 1
log Tr

{(
ρ

(α−1)/2
C TrA

{
ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC

}
ρ

(α−1)/2
C

)1/α
}
. (D.2.14)

The infimum in Iα (A;B|C)ρ is achieved uniquely by the state in (D.2.2), so that it can be
replaced by a minimum.

Proof. This follows from the previous lemma:

Iα (A;B|C)ρ = inf
σBC

∆α (ρABC , ρAC , ρC , σBC) (D.2.15)

= inf
σBC

[∆α (ρABC , ρAC , ρC , σ
∗
BC) +Dα (σ∗BC‖σBC)] (D.2.16)

= ∆α (ρABC , ρAC , ρC , σ
∗
BC) (D.2.17)

=
α

α− 1
log Tr

{(
TrA

{
ρ

(α−1)/2
C ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC ρ

(α−1)/2
C

})1/α
}
. (D.2.18)

That proves the statement of the corollary.

Other Sibson identities hold for other variations of the Rényi QCMI (whenever the in-
nermost operator is optimized over and the others are the marginals of ρABC). The proof
for this is the same as given above.

D.2.2 Convergence of the Rényi quantum conditional mutual information

Before giving a proof of Theorem B.6, we first establish the following lemma, which is a
slight extension of [132, Proposition 15].
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Lemma D.5. Let Z (α) ∈ B (H)++ be an operator-valued function and let f (α) be a
function, both continuously differentiable in α for all α ∈ (0,∞). Then the derivative
d
dα

Tr{Z (α)f(α)} exists and is equal to

d

dα
Tr
{
Z (α)f(α)

}
=

(
d

dα
f (α)

)
Tr
{
Z (α)f(α) logZ (α)

}
+f (α) Tr

{
Z (α)f(α)−1 d

dα
Z (α)

}
.

(D.2.19)

Proof. We proceed as in [135] or [132]. Consider that

Z (α + h)f(α+h) − Z (α)f(α)

=

∫ 1

0

ds
d

ds

[
Z (α + h)sf(α+h) Z (α)(1−s)f(α)

]
(D.2.20)

=

∫ 1

0

ds Z (α + h)sf(α+h)
[
logZ (α + h)f(α+h) − logZ (α)f(α)

]
Z (α)(1−s)f(α) . (D.2.21)

Taking the trace, we get

Tr
{
Z (α + h)f(α+h)

}
− Tr

{
Z (α)f(α)

}
= f (α + h)

∫ 1

0

ds Tr
{
Z (α)(1−s)f(α) Z (α + h)sf(α+h) [logZ (α + h)− logZ (α)]

}
(f (α + h)− f (α))

∫ 1

0

ds Tr
{
Z (α)(1−s)f(α) Z (α + h)sf(α+h) logZ (α)

}
. (D.2.22)

Dividing by h and taking the limit as h→ 0, we find

lim
h→0

1

h

[
Tr
{
Z (α + h)f(α+h)

}
− Tr

{
Z (α)f(α)

}]
= f (α)

∫ 1

0

ds Tr

{
Z (α)(1−s)f(α) Z (α)sf(α) lim

h→0

1

h
[logZ (α + h)− logZ (α)]

}
+ lim

h→0

f (α + h)− f (α)

h

∫ 1

0

ds Tr
{
Z (α)(1−s)f(α) Z (α)sf(α) logZ (α)

}
, (D.2.23)

which is equal to

f (α) Tr

{
Z (α)f(α) d

dα
[logZ (α)]

}
+

(
d

dα
f (α)

)
Tr
{
Z (α)f(α) logZ (α)

}
. (D.2.24)

Carrying out the same arguments as in [135, Theorem 2.7] or [132, Proposition 15] in order
to compute d

dα
[logZ (α)], we recover the formula in the statement of the lemma.

We now provide a proof of Theorem B.6. The idea is similar to that in the proof of
Theorem B.4. To this end, we again invoke L’Hôpital’s rule. We begin by defining

G (α) ≡ ρ
(α−1)/2
C TrA

{
ρ

(1−α)/2
AC ραABCρ

(1−α)/2
AC

}
ρ

(α−1)/2
C , (D.2.25)
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which implies that

Iα (A;B|C)ρ =
1

1− 1
α

log Tr
{
G (α)1/α

}
. (D.2.26)

Applying Lemma D.5 to G (α) and the function 1/α, we find that

d

dα
Tr
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G (α)1/α

}
= − 1

α2
Tr
{
G (α)1/α logG (α)

}
+

1

α
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{
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}
. (D.2.27)

Also, we have that

d

dα
G (α) =

d
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[
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C
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ρ
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Applying L’Hôpital’s rule gives

lim
α→1

Iα (A;B|C)ρ = lim
α→1

−Tr
{
G (α)1/α logG (α)

}
+ αTr

{
G (α)(1−α)/α d

dα
G (α)

}
Tr
{
G (α)1/α

} . (D.2.29)

Consider that

lim
α→1

G (α)(1−α)/α =
[
ρ0
CTrA

{
ρ0
ACρABCρ

0
AC

}
ρ0
C

]0
(D.2.30)

= ρ0
BC . (D.2.31)

Evaluating the limits above one at a time and using that supp(ρABC) ⊆ supp(ρAC) ⊆
supp(ρC) (see, e.g., [153, Lemma B.4.1]), we find that

lim
α→1

1

Tr
{
G (α)1/α

} =
1

Tr {ρ0
CTrA {ρ0

ACρABCρ
0
AC} ρ0

C}
(D.2.32)

= 1, (D.2.33)

lim
α→1
−Tr

{
G (α)1/α logG (α)

}
= −Tr

{[
ρ0
CTrA

{
ρ0
ACρABCρ

0
AC

}
ρ0
C

]
log
[
ρ0
CTrA

{
ρ0
ACρABCρ

0
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}
ρ0
C

]}
(D.2.34)

= −Tr {ρBC log ρBC} (D.2.35)
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lim
α→1

d

dα
G (α) =
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(log ρC) ρ0
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}
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C . (D.2.36)

Putting all of this together, we can see that the limit in (D.2.29) evaluates to

lim
α→1

Iα (A;B|C)ρ = ∆ (ρABC , ρAC , ρC , ρBC) (D.2.37)

= I (A;B|C)ρ . (D.2.38)

D.2.3 Approaches for proving Conjecture B.25 and proof for a special case

This section gives more details regarding the approach outlined in Section B.6.1 for proving
Conjecture B.25. Let ρABC ∈ S (HABC)++, τAC ∈ S (HAC)++, θBC ∈ S (HBC)++, and
ωC ∈ S (HC)++. We begin by introducing a variable

γ = α− 1, (D.2.39)

and with

Y (γ) ≡ ρ1+γ
ABCτ

−γ
2

ACω
γ
2
Cθ
−γ
BCω

γ
2
C τ

−γ
2

AC , (D.2.40)

it follows that ∆α (ρABC , τAC , ωC , θBC) is equal to

1

α− 1
log Tr
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ραABCτ
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2

AC ω
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2

C θ1−α
BC ω
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2
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}
=

1

γ
log Tr {Y (γ)} . (D.2.41)

Since dγ/dα = 1,

d

dα

[
1
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BC ω
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]
. (D.2.42)

We can then explicitly compute the derivative:

d

dγ

[
1

γ
log Tr {Y (γ)}

]
= − 1

γ2
log Tr {Y (γ)}+

Tr
{

d
dγ
Y (γ)

}
γTr {Y (γ)} (D.2.43)

=
γTr

{
d
dγ
Y (γ)

}
− Tr {Y (γ)} log Tr {Y (γ)}
γ2Tr {Y (γ)} . (D.2.44)

So

γ
d
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AC . (D.2.45)
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If it is true that the numerator in (D.2.44) is non-negative for all ρABC , then we can conclude
the monotonicity in α.

A potential path for proving the conjecture for the sandwiched version is to follow a
similar approach developed by Tomamichel et al. (see the proof of [132, Theorem 7]). Since
we can write

∆̃α (ρABC , τAC , ωC , θBC) = max
γABC

D̃α (ρ, τ, ω, θ, γ) , (D.2.46)

where

D̃α (ρ, τ, ω, θ, µ)

≡ α

α− 1
log Tr

{
ρ

1/2
ABCτ

(1−α)/2α
AC ω

(α−1)/2α
C θ

(1−α)/α
BC ω

(α−1)/2α
C τ

(1−α)/2α
AC ρ

1/2
ABCµ

(α−1)/α
ABC

}
, (D.2.47)

it suffices to prove that D̃α (ρ, τ, ω, θ, µ) is monotone in α. For this purpose, the idea is

similar to the above (i.e., try to show that the derivative of D̃α (ρ, τ, ω, θ, µ) with respect to
α is non-negative). To this end, now let

γ =
α− 1

α
, (D.2.48)

and with

Z (γ) ≡ ρ
1/2
ABCτ

−γ
2

ACω
γ
2
Cθ
−γ
BCω

γ
2
C τ

−γ
2

AC ρ
1/2
ABCµ

γ
ABC , (D.2.49)

it follows that (D.2.47) is equal to

D̃α (ρ, τ, ω, θ, µ) =
1

γ
log Tr {Z (γ)} . (D.2.50)

Then since dγ/dα = 1/α2,

d

dα

[
D̃α (ρ, τ, ω, θ, µ)

]
=

1

α2

d

dγ

[
1

γ
log Tr {Z (γ)}

]
. (D.2.51)

Computing the derivative then results in

d

dγ

[
1

γ
log Tr {Z (γ)}

]
= − 1

γ2
log Tr {Z (γ)}+

Tr
{

d
dγ
Z (γ)

}
γTr {Z (γ)} (D.2.52)

=
γTr

{
d
dγ
Z (γ)

}
− Tr {Z (γ)} log Tr {Z (γ)}
γ2Tr {Z (γ)} . (D.2.53)

The calculation of the derivative γTr
{

d
dγ
Z (γ)

}
is very similar to what we have shown above.

So, in order to prove the conjecture, it suffices to prove that the numerator of the last line
above is non-negative.

If the above approach is successful, one could take essentially the same approach to prove
all of the other conjectured monotonicities detailed in Conjecture B.25.
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D.2.4 Conditioning on classical information

Lemma D.6. Let ρXABC be a classical-quantum state of the following form:

ρXABC =
∑
x

pX (x) |x〉 〈x|X ⊗ ρxABC . (D.2.54)

Then the following identity holds for α ≥ 0:

Iα (A;B|CX)ρ =
α

α− 1
log
∑
x

pX (x) exp(α−1
α )Iα(A;B|C)ρx . (D.2.55)

Proof. Recalling the formula in (B.4.11), we have
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α
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(D.2.56)
So
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×[∑
x
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]α [∑
x
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](1−α)/2

×[∑
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(D.2.57)

=
∑
x

pαX (x) [ρxC ](α−1)/2 [ρxAC ](1−α)/2 [ρxABC ]α [ρxAC ](1−α)/2 [ρxC ](α−1)/2 ⊗ |x〉 〈x|X . (D.2.58)
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From the fact that
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{(
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{∑
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}
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(D.2.59)

= Tr
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(D.2.60)

=
∑
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pX (x) Tr
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(D.2.61)

=
∑
x

pX (x) exp(α−1
α )Iα(A;B|C)ρx , (D.2.62)

it follows that

Iα (A;B|CX)ρ =
α

α− 1
log
∑
x

pX (x) exp(α−1
α )Iα(A;B|C)ρx . (D.2.63)

D.2.5 Invariance under tensoring with product states

Lemma D.7. Let ρAA1BB1EE1 ≡ ωABE ⊗ σA1 ⊗ τB1 ⊗ γE1. Then

Iα (AA1;BB1|EE1)ρ = Iα (A;B|E)ω . (D.2.64)

Proof. This follows from a direct calculation. Consider that
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(D.2.65)
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= TrAA1

{(
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= TrAA1
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From the fact that
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= Tr
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= Tr
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= Tr

{(
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(α−1)/2
E TrA

{
ω
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AE ωαABEω

(1−α)/2
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}
ω

(α−1)/2
E

)1/α
}
, (D.2.72)

it follows that
Iα (AA1;BB1|EE1)ρ = Iα (A;B|E)ω . (D.2.73)

D.3 Rényi Conditional Entropy

Lemma D.8. Let ρXB be a classical-quantum state, i.e., such that

ρXB ≡
∑
x

p (x) |x〉 〈x|X ⊗ ρxB, (D.3.1)

where p (x) is a probability distribution and {ρxB} is a set of quantum states. For α ∈
[0, 1) ∪ (1, 2],

Hα (X|B) ≥ 0. (D.3.2)

Proof. This follows because it is possible to copy classical information, and conditional
entropy increases under the loss of a classical copy. Consider the following extension of ρXB:

ρXX̂B ≡
∑
x

p (x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ ρxB. (D.3.3)
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Then we show that Hα(X|X̂B) = 0 for all α ∈ [0, 1) ∪ (1,∞). Indeed, consider that

Hα(X|X̂B)

=
1

1− α log Tr

{(∑
x

p (x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ ρxB

)α

IX ⊗(∑
x′

p (x′) |x′〉 〈x′|X̂ ⊗ ρx
′

B

)1−α
} (D.3.4)

=
1

1− α log Tr

{∑
x

pα (x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ (ρxB)α

∑
x′

p1−α (x′) IX ⊗ |x′〉 〈x′|X̂ ⊗
(
ρx
′

B

)1−α
}

(D.3.5)

=
1

1− α log Tr

{∑
x

p (x) |x〉 〈x|X ⊗ |x〉 〈x|X̂ ⊗ ρxB

}
(D.3.6)

= 0. (D.3.7)

Then for α ∈ [0, 1)∪(1, 2], the desired inequality is a consequence of quantum data processing
[183, Lemma 5]:

Hα(X|B) ≥ Hα(X|X̂B) = 0. (D.3.8)
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