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Abstract

The volume collapse transition of Cerium has intrigued physicists since its discovery several decades

ago. Various models and mechanisms have been proposed, the most prominent scenarios are based

on the Mott transition and the Kondo volume collapse transition. In this study, we explore the

volume collapse by a dynamical mean field theory (DMFT) study of the periodic Anderson model

with electron-phonon coupling to the conduction band. This allows us to study the effect of the

electron-phonon interaction on the volume collapse. In order to faithfully account for the volume

collapse, we also include the effects due to the volume and temperature dependent bulk modulus.

We find that as the electron-phonon interaction strength increases, the volume collapse effect is

enhanced, which is consistent with the suggestion that the phonons have an important contribution

in the volume collapse transition. Although we start with the canonical model for the Kondo volume

collapse scenario, our results have some of the characteristics of the Mott scenario. For example,

when we plot the conduction electron density of states, we find that when the electron-phonon

interaction effect dominates over the Kondo effect in this system, the conduction band electron

spectra develops a Mott gap at the Fermi energy. Moreover, the width of the gap is proportional to

the effective electron-phonon interaction strength. Currently, we cannot determine the order of this

Mott transition, however, we conjecture that the transition is continuous due to the fact that the

phonon frequency in our model is pretty small, and the fact that the conduction electron is doped

away from half filling, both of which tend to suppress a first order phase transition. The study of

the two-particle quantities, such as the charge susceptibility and the magnetic susceptibility also

reveals several interesting features of the system. From the behavior of the charge and magnetic

susceptibilities and the electronic spectral functions, we can clearly see the competition between

the electron-phonon interaction and the Kondo effect due to the hybridization between conduction

electrons and localized impurity electrons.
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Chapter 1

Introduction

1.1 A brief history of the strong correlation puzzle

Since the discovery of the static electricity in the 18th century, people already noticed the existence

of metals and insulators, a topic that is still intriguing condensed matter physicists today. In the

early 19th century, Pierre-Louis Dulong and Alexis-Thrse Petit discovered that the specific heats of

various solids seem to have the same constant value. By invoking the classical statistical mechanics

that he created, Boltzmann gave a theoretical explanation of this universal behavior in the late

19th century[1]. All of these are attempts to understand the properties of solids from a classical

perspective. Nowadays, we know that the solids are intrinsically quantum, and thus a quantum

theory of solids is required to fully understand the electronic properties of materials.

The study of condensed matter systems with the employment of the principles of quantum

mechanics starts from Sommerfeld’s electron gas theory[2] in the early 20th century. Using the

newly developed theory of quantum mechanics and Fermi-Dirac statistics, Sommerfeld was able to

derive the properties of solids that are consistent with the wave-particle duality and Pauli’s exclusion

principle. Although this theory was cited as the first attempt to study the solids from the quantum

perspective and generated some surprisingly good theoretical results that are in agreement with

experiments, it still made the unphysical prediction that all solids are metals due to its ignorance

of the crystal structures.

The influence of the crystal structure on the electronic properties of solids was captured by

Bloch’s theory[2, 3]. Using the periodic boundary condition and the assumption of the translational

symmetry of the solids, Bloch was able to derive the Bloch wave function from which the band

structure of the solids can be calculated. Compared to Sommerfeld’s theory which predicts that

all solids are metals, Bloch’s theory makes a remarkable progress in the study of solids in that it

can explain the existence of the metals and insulators. Bloch originally wished to use his theory to

understand the mechanism of superconductivity which was discovered in 1911 by Onnes[4]. With
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hindsight, we know that this theory is not enough for an explanation of superconductivity since it

did not take into account the correlations between electrons and the interactions between electrons

and the lattice vibrations, which were later proved to be the critical components for the emergence

of superconductivity.

The discovery of the superconductivity is a groundbreaking feat in the history of physics. Its

existence puzzled the community of the physics for decades. The most prominent minds in the

field of physics dedicated their attention to an explanation of this esoteric phenomenon, and no

significant progress was made since its discovery in 1911 until Fröhlich[5] proposed a model that

considers the electron-phonon interaction as the driving mechanism for superconductivity. A mean

field theory of superconductivity was given by Bardeen, Cooper, and Schrieffer in 1957[6], and a

complete microscopic theory that takes fully into account the many body effects was proposed by

the Russian physicists such as Migdal, Eliashberg, etc[7]. The theoretical study of superconductivity

is a milestone in the field of condensed matter physics and marks a sharp departure from the old

quantum solid theory in that it signifies to the physics community the importance of the electron

correlations in the study of condensed matter systems. Both Sommerfeld’s theory and Bloch’s theory

are single particle approximations, and they are far from complete for the description of the real

systems. It is the strong correlations between the electrons that give rise to the interesting physics

that we observe in the world.

Another equally important line of thought that emphasizes the importance of electronic corre-

lations is the Mott metal-insulator transition[8]. Mott insulator is a special kind of insulator that

should have been a metal according to the non-interacting Bloch’s theory. A theoretical model for

understanding the Mott metal-insulator transition was given by Hubbard in 1963[9] which we now

call the Hubbard model. Hubbard model is the simplest model that captures the essence of the

competition between the delocalization of band electrons due to hopping from one site to its nearest

neighbors and the Coulomb repulsion of electrons of opposite spins that reside on the same lattice

site. This model, although simple, resists all possible theoretical attacks except in one dimensional

case[10, 11]. The desire to understand the details of this model in a non-trivial limit has triggered

the development of the dynamical mean field theory[12–15], a topic to which we will return later.

Since the end of the WWII, perturbation theory and Feynman diagrams have been widely used

to study the electromagnetic interactions. Later, physicists introduced this powerful technique

into the regime of condensed matter[7], and applied this theory successfully to the study of the

low temperature superconductivity. The widely celebrated Migdal-Eliashberg theory is a notable

2



achievement in this field. However, it turned out that when the correlations are strong enough, the

perturbation theory proved to be inapplicable due to the absence of a small expansion parameter. For

example, Kondo’s explanation of the resistance minimum of a metal with dilute magnetic impurities

as a function of temperature depends on the calculation of perturbation series to third order[16],

which is a tour de force in the history of physics. However, this theory also made the unphysical

prediction that the resistance will grow to a logarithmic infinity when the temperature approaches 0.

The reason for this unphysical prediction is that the perturbation theory fails when the temperature

drops below the Kondo temperature TK [17], and in the low temperature regime, non-perturbative

schemes are required to understand the physical behavior of the electrons. The first attempt to

understand the low temperature physics of the Kondo model was taken in 1970 by Anderson[18]

whose formulation of the scaling theory for the Kondo problem predates the work on numerical

renormalization group by Wilson[19]. Wilson later developed the idea of the scaling theory to its

full extent and formulated a thorough theory of numerical renormalization group that completely

solved the Kondo problem[20]. The numerical renormalization group method was later applied to

the Anderson model[21], and became a standard technique for solving the strong correlation puzzle

(especially the single impurity problem) in condensed matter physics. The extension of this method

to one dimensional case is accomplished by the density matrix renormalization group method[22]

which is still seeing strident progress up to now.

The dynamical mean field theory (DMFT)[12–15] is another non-perturbative method that pro-

vides us with exact solutions of strongly interacting models in a non-trivial limit. The DMFT is a

quantum extension of the classical mean field theory which ignores the spatial correlations and be-

comes exact in the infinite dimensional limit. In spite of the restriction that the DMFT is exact only

at infinite dimensions which seems to be far away from the real world, the DMFT made remarkably

accurate predictions for even two and three dimensional systems. With the help of the DMFT,

we now have numerically exact solutions of the Hubbard model[15, 23–25], the Falicov-Kimball

model[26], the Holstein model[27], the periodic Anderson model[28, 29], etc. The existence of the

exact solutions to these models is unthinkable before the invention of the DMFT which can thus be

acclaimed as a great victory over the strong correlation puzzle in recent decades. An extension of

the DMFT that incorporates the short range spatial correlations is given by the dynamical cluster

approximation. For a review of this extended theory and its comparison with DMFT, see Ref. [30].

In the DMFT, we map the original lattice model into a single impurity Anderson model and

then use the iteration cycle that was first proposed in Ref. [15] to obtain a convergent solution.
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The application of the iteration cycle depends critically on the impurity solver that solves the

single impurity problem to which our original model is mapped. There are many kinds of impurity

solvers, such as the numerical renormalization group as discussed above, the exact diagonalization

technique[31], and the quantum Monte Carlo(QMC) method. The advantage of the numerical

renormalization group method is that it gives results of high accuracy and works at zero temperature,

a temperature that is not reachable using QMC. Numerical renormalization group can also deal with

finite temperature physics, however, the temperatures in this method can only take some discrete

values[32]. Thus, for the finite temperature case, we will generally use the QMC method. The exact

diagonalization method works for both zero temperature and finite temperature, but the exponential

growth of the complexity restricts its use in many systems. In our work, we have used the QMC as

our impurity solver.

There are several versions of the QMC, of which the most widely used ones are the Hirsch-Fye

algorithm[33], the hybridization expansion QMC[34], and the weak coupling expansion QMC[35, 36].

What we use in our program is the weak coupling continuous time quantum Monte Carlo, a brief

review of which is given in Chapter 3. The details of this method can be found in Ref. [36] and will

not be reproduced here.

In the QMC simulation, we can only obtain numerical data in imaginary time space. With a

Fourier transformation, we can further obtain the imaginary frequency results. However, in real

world experiments, we can only measure the real frequency quantities, such as the spectral function.

One of the reasons that people prefer to use the numerical renormalization group method is that

they can directly obtain the real frequency information with this method. Fortunately, with the

help of the maximum entropy (maxEnt) method [37], we can equally well extract the real frequency

information from Monte Carlo simulation data. The maxEnt method is a powerful technique that

was initially used in image processing in astronomy, and was later introduced into the realm of

condensed matter physics to extract the real frequency information from imaginary frequency data

that are invariably contaminated by all kinds of numerical noises. Based on the Bayesian inference,

the maxEnt method can yield the best possible guess from incomplete information. This is a very

ingenious method that has some spirit of the artificial intelligence in it. Because of this, the maxEnt

method is also widely used in such areas as computer graphics, finance, big data science, and the

natural langue processing. A brief review of the maxEnt method is given in Chapter 3 and in the

Appendix B. For a detailed review of this method, see Ref. [37].
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All the numerical methods mentioned above are nowadays indispensable tools to study the

strongly correlated transition metals and the heavy-fermion materials, and have already constituted

the basic arsenals of any condensed matter physicist. For example, it is known that the electronic

properties of V2O3 can be well described by the Hubbard model[38]. Another example is the rare-

earth or actinide elements that can be qualitatively and sometimes even quantitatively described

by the periodic Anderson model[29]. Generally, interesting physics, such as the metal-insulator

transition and heavy-fermion behavior, occurs in the parameter regime where the electron-electron

interaction strength is comparable to or larger than the conduction band hopping amplitude, thus

rendering the conventional perturbation schemes inapplicable. In this case, the non-perturbative

methods developed in the last few decades came to our rescue. One example of these interesting

physical phenomena that requires these advanced numerical techniques is the volume collapse as

observed in the transition metals. Among the transition metals that display a volume collapse un-

der pressure, cerium proves to be an outstanding example in two aspects. One is that the volume

collapse of cerium is unexpectedly large, and another is that the cerium has only one 4f electron

which makes it a paradigm for the successful explanation of esoteric physical phenomena using a

simplified strong correlation model. The explanation of the cerium volume collapse is the major

focus of this thesis work, and in the next section, I will give a brief summary of its history.

1.2 Brief summary of the experimental results of the Cerium
volume collapse

The Cerium volume collapse has been a long standing puzzle. It was observed experimentally long

time ago that Cerium under pressure can experience a sharp drop in the volume. A detailed phase

diagram of Cerium is shown in Fig. 2.1. From the phase diagram, we see the separation of the two

5



Figure 1.1: Cerium phase diagram. Picture taken from Ref. [39]. The first order transition line
between γ phase and the α phase has a terminus at high pressure and high temperature.

phases, γ and α, at the lower-left corner. For a fixed temperature T that lies between approximately

180K and 500K, as the external pressure increases, Cerium metal experiences a transition from γ

phase to α phase. On the other hand, when the pressure lies between 0 and 2 GPa, as we lower

the temperature, the Cerium metal also experiences a transition from γ to α phase. This phase

transition, called the γ → α phase transition, is interesting in that there is a sharp volume difference

between the large volume γ phase and the small volume α phase. Moreover, as can be seen from

the phase diagram, the first order phase transition line that separates the γ phase from the α phase

ends at a critical point, making it a solid-solid transition that exhibits a critical behavior, in analogy

to the vapor-liquid transition in water.

In 1931 in the book Physics of high pressures , P. W. Bridgman described quantitatively the

amazingly 16.5% volume collapse of Cerium at 15,000 atmospheres. In 1949, A.W. Lawson and

Ting-Yuan Tang made further investigation of this phenomenon, and discovered that before and

after the volume collapse, the crystal structure of Cerium remains invariant, being always face-

center cubic[40]. In 1951, Parkinson et al measured the atomic heats of the rare-earth elements

including Cerium[41], and found that the atomic heats of Cerium metal exhibit anomalous behavior.

The authors conjectured that this anomaly is due to the transition of the 4f electron to the 5d

state. Obviously, the authors made this deduction based on the then prevalent explanation of the

Cerium volume collapse, an explanation that we now call the promotional model. According to

this model, the 4f electrons of Cerium gets promoted to the 5d state under pressure, and this

promotion is the origin of the volume collapse observed in Cerium. Although this model was later
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refuted experimentally due to the absence of significant change in the 4f electron filling number, it

motivated people to focus their attention on the behavior of the 4f electrons, which are now widely

believed to be responsible for the volume collapse transition.

The 4f electrons, which have a significant influence on the Cerium volume collapse, are closely

associated with the magnetic properties of Cerium. Thus, if the behavior of the 4f electrons changes

across the volume collapse transition, then the magnetic susceptibility of Cerium should change ac-

cordingly. Trombe and Foex found that the magnetic susceptibility decreases when the Cerium

volume collapses[42]. In 1957, J.M. Lock measured the magnetic susceptibilities of various metals,

including Cerium, as a function of temperature from room temperature down to 1.5K at atmospher-

ical pressure[43]. With these thermodynamic parameters, we know from the previous experimental

results that Cerium is in the γ phase. Lock found that the magnetic susceptibility of the γ phase

Cerium obeys the Curie-Weiss law, which, combined with the fact that 4f electrons are responsible

for the magnetic behavior of Cerium, indicates the existence of local moments due to 4f electrons

in this phase[44].

The measurement of the magnetic susceptibility of the α phase Cerium is more difficult due to

the fact that we need to be able to measure small paramagnetic susceptibility under tremendous

external pressure to obtain data in this phase. In 1971, M. R. MacPherson et al managed to measure

the magnetic susceptibility of α Cerium, and showed definitely that there are no local moments in

the α phase based on the observation that the magnetic susceptibility in this phase staturates to a

constant as T → 0, which is a hallmark of the Pauli paramagnet[45]. The authors also obtained the

susceptibility versus pressure curve for Cerium at room temperature, which is reproduced in Fig.

1.2. From the figure, we see that when the external pressure increases, the magnetic susceptibility χ

decreases. A sharp drop in χ is clearly seen around p = 7.6× 103 bar, which is the critical pressure

for the γ → α transition of Cerium at room temperature. The hysteresis loop in the χ − p plane

means that the transition is first order at room temperature, which is consistent with the previous

experiments. The magnetic susceptibility of the γ phase (low pressure) is much larger than that in

the α phase (high pressure).

The existence of local moments in the γ phase and its absence in the α phase can be interpreted

either through the Mott transition scenario[46] or the Kondo volume collapse (KVC) scenario[47].

In the Mott transition scenario, the 4f electrons are localized in the γ phase, giving rise to the local

moments. As the volume collapses, the decrease in the lattice constant induces increase in the 4f

electron hopping amplitude t. Furthermore, the on-site Coulomb repulsion U between 4f electrons

7



Figure 1.2: Picture from Ref. [45]. Main panel: Magnetic susceptibility χ versus pressure p for
Cerium at room temperature. From the figure, we see that the susceptibility drops sharply around
p = 7.6 K bar, which is the critical pressure for the γ → α transition at room temperature. The
hysteresis loop indicates that the transition is first order. Inset: the χ − p diagram in the α phase
extrapolated to p = 50K bar.

of opposite spins is assumed to be constant. Thus, the net increase in the ratio t/U drives the

localized 4f electrons in the γ phase to become delocalized in the α phase. This picture is identical

to the one that was proposed by Mott in 1949[8] for the explanation of the metal-insulator transition

in some materials, and thus this scenario is called the Mott transition scenario. In the KVC scenario,

it is assumed that there is a Kondo coupling between the 5d and 6s conduction electrons and the

localized 4f electrons in the Cerium. The Kondo exchange constant J between the localized 4f

electrons and the conduction electrons is weak in the large volume γ phase, and becomes strong

in the small volume α phase. This variation of the Kondo exchange constant with respect to the

volume causes change in the electronic free energy which can provide the energy gain that is required

for the emergence of the volume collapse in Cerium. Both scenarios can explain some aspects of the

experimental results, such as the magnetic susceptibility behavior and the spectral data, and thus

we have no strong preference to either scenario.
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As noted above, the γ → α transition is established to be a first order phase transition at room

temperature. This first order nature of the phase transition can also be seen from the hysteresis loop

in the resistivity versus temperature plane as shown in Ref. [48]. In 1958, Ponyatovskii discovered

that the latent heat of the γ → α transition decreases as the temperature increases, indicating the

suppression of the first order phase transition by temperature[49]. Later, in 1960, R.I. Beecroft and

C.A. Swenson measured the iso-thermal volume-pressure curves for Cerium, as reproduced in Fig.

1.3[49]. From the figure, we can see that the slope of the volume-pressure curve around the transition

region becomes less steep as the temperature increases, indicating the gradual disappearance of the

first order γ → α transition. The gradual evolution of the volume-pressure curves is analogous to

the iso-thermal pressure-volume diagrams of the real gas. In the case of real gas, we know that the

first order vapor-liquid transition at low temperature ends at a critical point where the difference

between water and vapor disappears. Thus, we may also conjecture from Fig. 1.3 that the first

order γ → α transition may disappear when the temperature is above some critical value Tc.

Figure 1.3: Picture from Ref. [49]. The volume versus pressure diagrams of Cerium at different
temperatures. When the temperature is low (300K), the volume drops sharply at the critical pres-
sure. As the temperature increases, the slope at the transition region becomes less steep. When the
temperature is high enough, the volume-pressure curve becomes smooth, and the first order phase
transition observed at low temperature may disappear.

In the 1980s, people were able to obtain material electron spectra data with unprecedented

accuracy, and significant insight was gained in the nature of the γ → α transition. Spectral

techniques, such as Bremsstrahlung Isochromat Spectroscopy (BIS), and X-ray photoelectron spec-

troscopy (XPS) render it possible to make direct measurements of the 4f electron occupation nf
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and the f -conduction coupling in γ and α Cerium[50]. These two spectral techniques depend on

the photo-electric effect, and can only measure the surface properties of the bulk materials(within

approximately 20Å of the surface). In BIS, the material is exposed to a beam of incident electrons,

which would occupy the empty high-energy states in the material and then experience a decay to

low-energy states while emitting photons of various frequencies. By measuring the intensity of the

emitted photons of certain frequency as a function of the incident electron energy, we can get a spec-

tral curve which reflects the shape of the surface electron density of states (DOS) of the material.

Therefore, the BIS is an electron-in-photon-out technique that measures the material surface DOS

above the Fermi energy. On the other hand, the XPS is a photon-in-electron-out technique that

measures the surface electron DOS below the Fermi energy, making it a complement to the BIS. In

the XPS, a beam of X-ray of well defined frequency is irradiated toward the material surface, ejecting

photoelectrons the energies of which depend on the difference between the incident X-ray photon

energy and the binding energy of the material. Through this technique, the unknown binding energy

of the surface electrons can be calculated by subtracting the photoelectron energy from the X-ray

photon energy, with a possibly constant adjustment parameter. By plotting the counting of the

photoelectrons as a function of the binding energy, we can obtain a spectral curve that reflects the

DOS of the surface electrons below the Fermi energy. Combination of these two techniques yields

an overview of the electron DOS in materials, and enables E. Wuilloud et al to conclude that the

Cerium γ → α transition is driven by the abrupt change in the f -conduction coupling parameter,

rather than by the promotion of the 4f electrons to the 5d band[50]. The promotional model is

refuted by this experiment because of the smallness of the variation (≈15%) in the 4f filling number

across the transition. This result consigns to obliteration the promotional model, and establishes

the Mott transition scenario and the Kondo volume collapse scenario as the standard models for

understanding the Cerium volume collapse.

The electron-phonon interaction is believed to have played an important role in the γ → α

transition. In 2003, Manley et al employed the inelastic neutron scattering to measure the phonon

density of states (DOS) of Cerium[51], and found that in the α phase, the phonon DOS has a strong

temperature dependence. However, the phonon DOS does not change noticeably across the γ → α

transition. With hindsight, we know that this is probably because the authors are actually measuring

the properties of Ce0.9Th0.1 samples rather than pure Cerium. In 2004, Jeong et al measured the

Debye temperatures of the γ and α phase Cerium using the neutron diffraction method. The Debye

temperature is obtained from the slope of the thermal displacement versus temperature curve, as

10



shown in Fig. 1.4. Using this method, the authors found that the Debye temperature in the γ phase

Figure 1.4: Picture from Ref. [52]. The squared thermal displacements versus temperature at
constant pressure. The Debye temperature is obtained from the slope of the curve. According to
Ref. [52], the Debye temperature in the γ phase is 104K, and is 133K in the α phase.

(104K) is smaller than that in the α phase (133K). With the employment of the Debye model for

the evaluation of the entropy, the authors were able to estimate that the phonon entropy accounts

for approximately 1/2 of the total entropy change in the volume collapse[52]. In Ref. [53], the

authors measured the Debye temperatures of the γ and α Cerium using the ultrasonic method, and

obtained different results(132.8 K in the γ phase and 142.9K in the α phase). Although the exact

values of the phonon entropy vary between different measurements, the authors have a consensus

about the importance of the electron-phonon interaction. In 2011, Krisch et al measured the phonon

dispersion across the γ → α transition, and found significant modification of the shapes of the

phonon dispersion relations[54]. All of these results provide compelling evidence for the critical

role played by phonons in the Cerium volume collapse transition, and motivate us to introduce the

electron-phonon correlations in our model Hamiltonian.
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Chapter 2

Cerium Volume Collapse

The experimental observation of the iso-structural cerium volume collapse in 1949 by Lawson and

Tang[40] is remarkable in that it is a first-order transition from one solid phase to another. Moreover,

both the solid phases possess face-center cubic (fcc) structure. This phase transition, called the

γ → α transition, is the transition from the large-volume γ phase to the small-volume α phase.

The volume difference between the γ and the α is approximately 17% at room temperature, and

thus this transition is called the ”volume collapse”. This phenomenon has puzzled the physicists for

decades, and several models have been proposed to explain its occurrence. Up to now, two widely

accepted scenarios survive, which are the Mott transition scenario and the Kondo volume collapse

(KVC) scenario. Recently, the role of the lattice vibrations has been noted by several groups. In this

chapter, we are going to present the experimental results of the cerium phase diagram, explain in

detail two widely accepted and studied scenarios for the volume collapse, and review the importance

of the lattice degrees of freedom during the volume collapse process. Finally, we will give a tabular

form for the experimental values of the parameters that will be used throughout our work.

2.1 Experimental results of cerium volume collapse

A complete phase diagram of cerium is given in Ref. [39]. The phase diagram is shown in Fig.

2.1. From the lower-left corner of the figure, we see that there is a γ phase and an α phase that

are separated from each other by a first order phase transition line which ends at a critical point.

This is the γ → α to which we will dedicate our effort throughout this thesis. The pressure-volume

(p − V) relation is given in Fig. 2.2. The picture is taken from cerium pressure volume diagram.

We will show in later chapters that using our model, we can reproduce the qualitative features of

the cerium p − V diagram. The hallmark feature of the p − V diagram is the kink structure that

indicates the existence of a first order phase transition.
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Figure 2.1: Cerium phase diagram. Picture taken from Ref. [39].

Figure 2.2: Isothermal p − V diagrams of cerium. The volume collapse is clearly seen when T is
lower than the critical temperature, which is approximately 460K.

2.2 Mott transition scenario

In order to explain the volume collapse of cerium, Johassan in 1974 proposed the Mott transition

scenario[46]. In this scenario, the outer shell electrons of the cerium are divided into two groups,

the spd electrons which form the conduction band and are just spectators of the volume collapse

transition, and the 4f electron which plays the central role in the γ → α transition. In this scenario,
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we assume that electronic properties of cerium can be captured by the Hubbard model[9], which is

Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
+ U

∑
i

n̂i,↑n̂i,↓ (2.1)

Here, ĉ†i,σ, ĉi,σ creates and destroys an electron with spin σ on lattice site i, 〈i, j〉 means only nearest

neighbor lattice sites i, j are taken into account, t is the hopping amplitude of the conduction, n̂i,σ is

the number operator of the electron with spin σ on site i, and U is the repulsive Coulomb interaction

between two electrons of opposite spins on the same lattice. This is simplest possible model that

captures the competition between the hopping and the Coulomb repulsion between electrons. This

model can describe the Mott metal-insulator transition (MIT)[23, 24, 55, 56], and is employed in the

formulation of the Mott transition scenario. In the large volume γ phase, where the lattice constant

is large, and the hopping of the 4f from one site to its neighbor is prohibitively energy consuming,

the 4f electrons are assumed to be essentially localized. When the volume collapses, the lattice

constant becomes smaller, which renders the hopping of the 4f possible. Therefore, in the small

volume α phase, we expect the 4f electrons to become delocalized. This localization-delocalization

transition of the 4f electrons is reminiscent of the Mott MIT in the Hubbard model, and prompts

Johanssan to propose the Mott transition scenario to explain the cerium volume collapse. This

model captures some key aspects of the cerium volume collapse, and can reproduce the spectrum

features of the cerium in the γ and α phase. For example, in the γ phase, the 4f are localized, and

the quasi-particle peak at the Fermi energy, if it exists, is extremely small. Whereas in the α phase,

the delocalized 4f electrons form a Fermi liquid, which exhibits a pronounced quasi-particle peak

at the Fermi energy[56].

2.3 Kondo volume collpase scenario

In 1982, Allen and Martin proposed the Kondo volume collapse (KVC)[47] scenario based on the

newly found exact solution of the Kondo problem using the Bethe ansatz[57–59]. From the exact

solution of the Kondo problem, the authors are able to obtain the explicit expression of the electronic

free energy FK(T, J) as a function of the temperature T and the Kondo exchange interaction J .

The Kondo temperature varies significantly across the γ → α transition. The Kondo temperature

TK in the α phase is much higher than that in the γ phase. This may be attributed to the variation

of the Kondo exchange energy J across the volume collapse transition. When the volume is large,
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the Kondo interaction is small, and when the volume is small, the Kondo interaction is large. This

is consistent with our intuition and with the experimental results. For a review of the experimental

results, see the last section of this chapter.

From the explicit dependence of the electronic free energy on the Kondo exchange constant J ,

the authors can obtain the volume dependence of the free energy by invoking the empirical relation

between J and the volume V, J ∝ 1
V6 . The authors argue that inclusion of the electronic free energy

at finite temperature is not enough to the explain the volume collapse, and they further incorporate

the ground state energy EG(J) at zero temperature. The sum of the electronic free energy FK(T, J)

and the ground state energy EG(J) gives the electronic part of the total free energy. Another almost

equally significant contribution to the total free energy comes from the bulk modulus. The authors

assume that Hook’s law holds when describing the elastic properties of the cerium, and introduces

the mechanical energy EM = 1
2BNVV (V/VN − 1)2 into the total free energy. Here, BN , VN are both

constant. With the electronic free energy, the electronic ground state energy, and the mechanical

energy, the authors are able to obtain the iso-thermal pressure-volume curves by taking the partial

derivative of the free energy with respect to the volume at constant temperatures, and show that

when the temperature is below some critical value Tc, the pressure-volume curves can develop a

kink structure which is an indicator of the emergence of a first order phase transition. And this first

order phase transition can be identified as the γ → α phase transition in cerium.

2.4 The role of lattice vibrations in the volume collapse tran-
sition

In recent years, several groups have taken the task of either measuring the variation of the Debye

temperature [52] or the phonon dispersion[54] across the γ → α transition, and they have obtained

sort-of consistent results emphasizing the role of the lattice vibrations during the volume collapse

process.

In Ref. [52], the authors used the X-ray diffraction and neutron powder diffraction to measure

the variation of the Debye temperature across the γ → α transition. Using the relation

∆Sγ−αvib = 3kB log Θγ
D/Θ

α
D, (2.2)

where kB is the Boltzmann constant, Θγ
D is the Debye temperature in the γ phase, and Θα

D is the

Debye temperature in the α phase, the authors estimated that phonons account for approximately
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half of the total entropy change during the volume collapse transition. In Ref. [54], the authors

measured the phonon dispersion across the volume collapse process, and found that the phonon

contribution accounts for about 1/4 of the total entropy change. Although the precise value of the

phonon entropy contribution varies between different measurement methods, many authors hold the

belief that the phonons should play an important, if not critical, role in the cerium volume collapse

transition. It is because of these observations that we have decided to introduce the electron-

phonon correlation in our model, and study the effect of the electron-phonon interaction on the

system. Generally, we expect that the electron-phonon interaction should be able to enhance the

first order phase transition, and our numerical results are consistent with our expectation.

2.5 Important material parameters for the description of
cerium volume collapse

The parameters that are of interest for the PAM + Holstein model are ω,Ueff , J, B, α, ρ. Here, Ω0 is

the bare phonon frequency, Ueff is the effective electron-phonon coupling, J is the Kondo exchange

interaction, B is the bulk modulus, α is the parameter that describes the exponential dependence

of bulk modulus on volume change, and ρ is the density of states at the Fermi energy.

Up to now, I have not yet found a paper that directly measures that Kondo exchange interaction.

Although in Ref. [60], there is a direct measurement of parameters in the Anderson model, the

parameter values do not fit well into the formula that relates the Kondo temperature with the

parameters in the Anderson model. Therefore, I have chosen to calculate the Kondo exchange

interaction from the density of states and Kondo temperatures.

2.5.1 Calculation of Ω0

In Ref. [61, 62], the authors calculate the phonon properties of Cerium using DFT. They have

assumed that phonon frequencies is proportional to Debye temperature, with the proportionality

being 0.69. According to these results, the phonon frequencies are different in the γ and α phases

of Cerium. That is,
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Ω0 =

 119K,α

81K, γ
(2.3)

We know that the band width of Cerium is approximately 0.52 eV, which corresponds to 6000K.

Therefore, it is approximately true that phonon frequency is one percent of the band width.

2.5.2 Calculation of electron-phonon coupling constant

Still in Ref. [61, 62], the authors also calculate the dimensionless electron-phonon coupling constant.

The dimensionless electron-phonon coupling constant λ, originally defined in Ref. [63], is approxi-

mately equal to N(Ef ) ∗ Ueff . Here, N(Ef ) is the density of states near Fermi energy. Therefore,

the effective electron-phonon coupling constant is Ueff = λ
N(Ef ) . In Ref. [62], the authors calcu-

late the dimensionless electron-phonon coupling constant using DFT for two different assumptions.

When they assume that the 5p electrons are core electrons, they obtain one set of electron-phonon

coupling constants; when they assume that the 5p electrons are band electrons, then they obtain

another set of electron-phonon coupling constants. However, the two set of values for λ do not differ

from each other significantly. Since we are making the assumption that the 5p electrons are band

electrons, we will adopt the second set of values for λ. They are

λ =

 0.32, α

0.47, γ
(2.4)

In order to obtain the effective electron-phonon coupling constant, we also need to know the

value of density of states at Fermi energy. In Ref. [62], N(Ef ) is also calculated in DFT. However,

different DFT methods give different N(Ef ). When full-potential linearized augmented plane wave

(FLAPW) method is used, the DOS at Fermi energy is (Ry = 13.6 eV)

N(Ef ) =

 37.58/Ry, α

57/Ry, γ
(2.5)

On the other hand, when linear Muffin-tin orbital (LMTO) method is used, the DOS at Fermi
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energy is

N(Ef ) =

 32.7/Ry, α

63.3/Ry, γ
(2.6)

Thus, the effective electron-phonon coupling constant Ueff is (FLAPW)

Ueff =

 0.12eV, α

0.11eV, γ
(2.7)

or (LMTO)

Ueff =

 0.13eV, α

0.1eV, γ
(2.8)

We can see that the electron-phonon coupling constant is approximately 1/5 of the band width.

2.5.3 Values of Kondo exchange interaction J and DOS ρ

Due to the lack of direct measurement of Kondo exchange interaction J , we need to calculate the

value of Kondo exchange interaction J from band width and DOS through this formula TK = De−
1
ρJ .

The experimental values of Kondo temperature are available in many papers. However, different

papers give different Kondo temperatures, and the difference can be pretty significant sometimes.

Generally, the Kondo temperature in α phase is much larger than the Kondo temperature in γ

phase. According to Ref. [61], Kondo temperature lies between 50K and 100K in γ phase, and lies

between 1000K and 2000K in the α phase. This means the Kondo temperature in α phase is about

20 to 40 times higher than the Kondo temperature in γ phase. Therefore, it is natural to expect

that the Kondo exchange interaction J is larger in α phase than it is in γ phase. In Ref. [60, 64],

the Kondo temperature is given as TK = 945K in α phase and 95K in γ phase. in Ref. [64, 65],

the Kondo temperature is 1800-2000K in α phase and 60K in γ phase. From the band width D, the

Kondo temperature TK , and the DOS ρ, we can calculate the value of Kondo exchange interaction

as J = − 1

ρ log
TK
D

.

If we take the DOS at Fermi level to be 37.58/Ry in the α phase[62], then the value of J

ranges between 0.196 eV and 0.33 eV, with the larger value of J corresponding to higher Kondo

temperature. Similarly, if we take the DOS to be 57/Ry in the γ phase, then the value of J ranges
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between 0.049 eV and 0.058 eV. In table form, this would be

TK =

 945K − 2000K,α

50K − 100K, γ
(2.9)

J =

 0.196eV − 0.33eV, α

0.049eV − 0.058eV, γ
(2.10)

It is clear that Jα � Jγ .

In the above analysis, we have used the DOS from Ref. [62] that is calculated using FLAPW

method. Even if we use some other data for DOS, for example, the results that are calculated using

LMTO, the value of J does not change much.

2.5.4 Bulk modulus properties of Cerium

Because of the presence of the phase transitions between different phases for Cerium, its bulk moduli

depend on the external pressure and the temperature. According to Ref. [66], there is a softening

behavior in bulk modulus when Cerium makes a transition from γ phase to α phase. This is expected

since the electronic contribution to the volume collapse has already been taken into account when

we measure the volume dependence of Cerium bulk modulus. In order to see how the bulk modulus

depends upon volume without the electronic contribution, we need to resort to the metals that do

not display such kind of phase transitions. The bulk moduli of many metals are measured in Ref.

[67], in which the author proposed this formula to describe the volume dependence of bulk modulus

for the metals he measured:

BT = B0e
α∆V/V0 . (2.11)

Here, B0 is the bulk modulus without external pressure, α is a dimensionless parameter whose values

depend on the materials, V0 is the normal volume, ∆V = V0 − V represents the volume change,

and BT means the bulk moduli are measured at constant temperature. The value of α changes

from material to material, but the difference between materials is not quite large. According to the

data provided by the author, we conclude that the value of α varies approximately between 2 and

5. Given that the bulk modulus of Cerium is strongly renormalized by the iso-structural γ → α
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transition, we cannot directly read off the value of α for Cerium. What we can do is to see how

the metals that are adjacent to Cerium behave under external pressure. Praseodymium just follows

Cerium in the periodic table, and its equation of state is measured in Ref. [68]. Using the P − V

relationship in this paper, we can extract the α value of Praseodymium to be 2.49, which lies within

the range 2-5 for the metals measured in Ref. [67]. This value can also be used to estimate the

volume dependence of Cerium bulk modulus since both elements belong to the Lanthanide series.

For the values of B0 and V0, the authors of Ref. [47] have adopted the average bulk moduli and

atomic volumes of La and Pr, and set B0 = 28GPa, V0 = 36Å3.

2.5.5 Parameters in table form

ω Ueff J B0 α ρ

81K - 119K 0.1eV - 0.13 eV
0.196eV − 0.33eV, α

0.049eV − 0.058eV, γ
28GPa 2-5

2.4/eV − 2.76/eV, α

4.12/eV − 4.65/eV, γ
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Chapter 3

Numerical Methods

In this chapter, I will discuss the methods that we employed for the solution of our model. We

have mainly used three methods to solve our model, which are the dynamical mean field theory

(DMFT), the continuous time quantum Monte Carlo method (CTQMC), and the maximum entropy

method (maxEnt). We first map the original lattice model into a single impurity model that is the

embedded in a medium. The medium itself needs to be determined self-consistently. We then use

an iteration cycle to solve this self-consistently embedded single impurity model. The most difficult

part of the iteration cycle consists of solving the impurity problem. For this, we use the CTQMC

as our impurity solver. The CTQMC is a newly developed diagrammatic method for generating

the interaction Green function from the bath Green function. We use the weak coupling expansion

version of the CTQMC in our program. The time complexity of the program is O(β3), and thus

we cannot go to very low temperatures. Once we have the Matsubara Green function, we can

use the maximum entropy method to extract the spectral functions. We can extract the spectral

function either from the imaginary time Green function G(τ) or from the imaginary frequency Green

function G(iωn). These two methods should give identical results. In practice, the result obtained

from G(iωn) is generally better than the result obtained from G(τ), and thus throughout our work,

we only use the spectral functions that are extracted from G(iωn).

3.1 Dynamical mean field theory

Dynamical mean field theory (DMFT) is an approximation that ignores the spatial correlations

while preserving all the temporal correlations[69]. The idea of DMFT was proposed in 1989 by

Metzner and Vollhardt [12], and was later widely used to study the Hubbard model [15], the Holstein

model [27], the periodic Anderson model[29], etc. The precursor of DMFT is the mean field theory

(MFT) which is widely used to simplify some complicated Hamiltonians, such as the ones describing

superconductivity, magnetism, and charge density wave. Considering the similarity of DMFT and

MFT, it is worthwhile to give a brief introduction to the MFT first.
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3.1.1 Classical mean field theory

Mean field theory was first invented by Van der Waals to study the phase transition in real gas in the

late 19th century. In 1907, Weiss re-invented the mean field theory to elucidate the mechanism for

the emergence of magnetism. In the language of modern physics, Weiss’s method for dealing with

magnetism is equivalent to a mean-field solution to the Ising model, which is Ĥ = −J
∑
〈i,j〉 sisj ,

where J is the exchange integral between neighboring spins, si = ±1 corresponds to either up or

down spin, and 〈i, j〉 means only nearest neighbor interaction is taken into account. In the mean

field approach to this Hamiltonian, we single out one spin and assume that this electron is immersed

in an effective magnetic field Heff that is created by all the other spins in the system. The effective

magnetic field is proportional to the expectation value of si, which is itself the magnetization of

this system. This means that Heff = J̃m, where m = 〈si〉, and by the translational invariance of

our system, the expectation value of si is independent of the lattice index. By this approximation,

the original Hamiltonian can be rewritten as Ĥ = −
∑
iHeffsi, which is now easily solvable. The

expectation value of si can now be obtained as

m = 〈si〉 (3.1)

=
1

Z
Tr
(
sie
−βĤ

)
= tanhβHeff .

Here, in this equation, β = 1
kBT

, and kB is the Boltzmann constant. Note that the effective

field Heff depends on the value of m. Thus here we have obtained a self-consistent equation for the

magnetization m, and the solution of this equation yields a mean-field description of the spontaneous

magnetization caused by the exchange integral J .

3.1.2 Mean field theory with temporal correlations included

Dynamical mean field theory (DMFT) is a quantum analogue of the classical mean field theory.

Similar to the classical mean field theory, in DMFT, the spatial degrees of freedom are frozen, and

only the temporal fluctuations are considered. Assume we have a real lattice model, where the

electrons can hop between neighboring lattice sites, and the electrons experience Coulomb repulsive

interactions when two electrons with opposite spins reside on the same lattice site. This is actually

the Hubbard model. In order to solve this model, we can single out one electron, and assume that
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the real interactions of this electron with all the other electrons can be described by a simplified

scenario, where the electron we have singled out has an infinite number of neighbors. All of these

neighboring electrons in synergy create an effective medium, within which the electron we have

singled out is immersed. Up to now, the scenario is the same as that in the classical mean field

theory. What is different in DMFT is that the electron not only experiences the effects from the

medium, but can also hop to and then hop back from the bath medium. By taking this hopping

process into account, we have fully incorporated the temporal fluctuations. Thus, the original mean

field theory has adopted a temporal degree of freedom, from which the dynamical comes.

In DMFT, the bath medium is described by the bath Green function G0, and the self-consistently

embedded impurity is described by the fully interacting Green function G. Initially, we do not know

either G0 or G. We need to find them self-consistently using an iteration cycle. The first step

in the cycle is to start with an arbitrary bath Green function, which we generally take to be the

coarse-grained non-interacting lattice Green function, that is,

G0(iωn) =
∑
k

1

iωn − εk
. (3.2)

From the initial bath Green function, we can use the impurity solver to obtain the fully interacting

impurity Green function G(iωn). With the impurity Green function, we can use the Dyson’s equation

to obtain the self energy as

Σ(iωn) = G−1
0 (iωn)−G−1(iωn). (3.3)

Once we have the self energy, we can calculate the coarse-grained lattice Green function as

Gcg(iωn) =
∑
k

1

iωn − εk − Σ(iωn)
. (3.4)

From the coarse-grained Green function and the self energy, we can use the Dyson’s equation to
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obtain the updated bath Green function as

Gnew0 (iωn) =
(
G−1
cg (iωn)− Σ(iωn)

)−1

. (3.5)

Now that we have an updated bath Green function, we can start the cycle all over again until

the impurity Green function G(iωn) is equal to the coarse-grained Green function Gcg(iωn) within

numerical error tolerance.

The above is a sketch of the DMFT cycle that we used to solve our model. However, there is no

mathematical theorem that guarantees the convergence of this iteration cycle. During the iteration

cycle, we may get solutions that oscillate between tow limits, and we may also get solutions that

vary depending on the initial input. If the iteration cycle converges, then the final result should be

independent of the initial input. When the final result does depend on the initial input, there is

probably a coexistence of more than on solution, and interesting physics may be lurking.

The DMFT approximation is exact in the infinite dimension limit. When the dimension is

infinite, we need to scale the hopping parameter as t → t√
D

, where D is the dimension. Moreover,

we can use the density of states (DOS) to convert the summation over the momentum to an integral

over energy. The DOS depends on the dispersion relation εk and the shape of the lattice. It was

shown in Ref. [13] that the DOS of the hyper-cubic lattice is always Gaussian as long as only

hopping along the axis directions are considered. For a review of the DOS’s for different lattices, see

Ref. [69]. One remarkable thing of the DMFT is that the final results are essentially independent

of the detailed shape of the lattice.

3.1.3 DMFT equations for the PAM+Holstein model

Our model is the PAM + Holstein model, where we have two species of electrons, the conduction c

electrons and the localized f electrons. Because of this, the Green function and the self energy are

both 2× 2 matrices. In order to solve this model, we need to generalize the DMFT formulae in the

previous section.

For the two-band model, the lattice single-particle Green function in our model with self energy

taken into account is

G−1
k (iωn) =

 iωn − εk + µ− Σcc −V − Σcf

−V − Σfc iωn − (εf − µ)− Σff

 (3.6)
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Now define

αn = iωn − (εf − µ)− Σff (3.7)

βn = iωn + µ− Σcc

γn = βn −
(V + Σcf )(V + Σfc)

αn

Then, Green functions can be written as

Gcck (iωn) =
1

γn − εk
(3.8)

Gcfk (iωn) =
V + Σcf

αn

1

γn − εk

Gfck (iωn) =
V + Σfc

αn

1

γn − εk

Gffk (iωn) =
1

αn

βn − εk
γn − εk

The coarse grained Green function is G(iωn) =
∑

kGk(iωn). Now we define the one particle density

of states (DOS) as ρ(ε) = 〈δ(ε − εk)〉k. For the hyper-cubic lattice, it can be shown that the one

particle DOS is ρ(ε) = 1√
2πt

e−
ε2

2t2 . Therefore, the coarse-grained Green function can be rewritten as

Gcc(iωn) =

∫
dε

1

γn − ε
1√
2πt

e−
ε2

2t2 (3.9)

= w(γn)

Gcf (iωn) =
V + Σcf

αn
w(γn)

Gfc(iωn) =
V + Σfc

αn
w(γn)

Gff (iωn) =
1

αn

1

N

∑
k

βn − εk
γn − εk

=
1

αn

1

N

∑
k

(
1 +

(V + Σcf )(V + Σfc)

αn

1

γn − εk

)

=
1

αn

(
1 +

(V + Σcf )(V + Σfc)

αn
w(γn)

)

These are the formulae that we used in our program to calculate the single-particle Green function.
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3.2 Continuous time quantum Monte Carlo

As noted in the previous section, we need an impurity solver to obtain the impurity Green function

from the bath Green function. This is the most difficult part of the DMFT iteration cycle. In this

thesis work, we have used the continuous time quantum Monte Carlo (CTQMC) as the impurity

solver. There are two widely used CTQMC versions, one is the hybridization expansion and the other

is the weak coupling expansion. Here, we are going to use the weak coupling expansion CTQMC as

our impurity solver.

The weak coupling expansion CTQMC depends on the decomposition of the Hamiltonian into

two parts, the bare Hamiltonian Ĥ0, and the interacting part of the Hamiltonian ĤI , that is,

Ĥ = Ĥ0 + ĤI . With this decomposition, we can write the partition function as

Z = Tre−βĤ0−βĤI . (3.10)

Now define the operator Û(τ) = e−τĤeτĤ0 . The differential of this operator is

dÛ(τ)

dτ
= −Ĥ(τ)Û(τ), (3.11)

where Ĥ(τ) = e−τĤĤ0e
τĤ is the interaction Hamiltonian in the Heisenberg picture. Integration of

the above operator differential equation gives us an iterative integral equation. With the boundary

condition that Û(0) = Î, we have

Û(β) = Î −
∫ β

0

ĤI(τ)Û(τ)dτ (3.12)

= Î −
∫ β

0

ĤI(τ1)dτ1 + (−1)2

∫ β

0

ĤI(τ1)

∫ τ1

0

ĤI(τ2)dτ2dτ1 + ...

= Î −
∫ β

0

ĤI(τ1)dτ1 +
(−1)2

2!

∫ β

0

dτ1

∫ β

0

dτ2Tτ ĤI(τ1)ĤI(τ2) + ...

= Tτe
−

∫ β
0
ĤI(τ)dτ

With the operator Û(τ), the partition function can be re-written as

Z = Tre−βĤeβĤ0e−βĤ0 (3.13)

= TrÛ(β)e−βĤ0

= TrTτe
−

∫ β
0
ĤI(τ)dτe−βĤ0
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Expanding the exponential function, we have

Z = Tr

∞∑
n=0

(−1)n

n!

∫ β

0

dτ1

∫ β

0

dτ2...

∫ β

0

dτnTτ ĤI(τ1)ĤI(τ2)...ĤI(τn)e−βĤ0 (3.14)

With the notation Z0 = Tre−βĤ0 , 〈Ô〉0 = 1
Z0

Tre−βĤ0Ô, we can rewrite the above expression as

Z

Z0
=

∞∑
n=0

(−1)n

n!

∫ β

0

dτ1

∫ β

0

dτ2...

∫ β

0

dτn〈Tτ ĤI(τ1)ĤI(τ2)...ĤI(τn)〉0 (3.15)

This is our basic equation of the weak coupling expansion CTQMC[35]. The above derivation is

independent of the detailed form of the Hamiltonian, and thus is applicable to any Hamiltonian that

can be decomposed into the non-interacting part and the interacting part. Generally, we call the non-

interacting Hamiltonian the kinetic energy, and the interacting Hamiltonian the potential energy.

By doing this, we are expanding the partition function using the interacting Hamiltonian as the

expansion element, and we call each interacting Hamiltonian element a vertex. In the Monte Carlo

process, we add or delete a vertex with certain probability, the value of which is calculated using

the Metropolis algorithm[36]. During the application of the Monte Carlo algorithm, we generally

introduce auxiliary spins either to avoid the negative sign problem in Fermions or to implement the

Hubbard-Stratonovich transformation. The auxiliary spins are Ising spins that may either point to

the up direction or the down direction. Thus, in the Monte Carlo process, besides adding or deleting

a vertex, we can also flip these spins.

When we run the Monte Carlo simulation, we generally start with 0 vertices. Using the Metropo-

lis algorithm, in each Monte Carlo step, we either add a vertex or delete a vertex, or flip one auxiliary

spin. After a long time of Monte Carlo process, the number of vertices will fluctuate around a mean

value 〈n〉, which related to the original Hamiltonian by the integration

〈n〉 = −
∫ β

0

dτ〈ĤI(τ)〉0. (3.16)

Thus, the larger the ratio of potential energy with respect to the kinetic energy, the more vertices

there are when the Monte Carlo process has reached the thermal equilibrium. When the system is

already in thermal equilibrium, we can start to measure the quantity we are interested in. In order

to avoid correlations between successive measurements, we will skip several Monte Carlo updates

between two consecutive measurements. We can determine the length of the skip by calculating

the autocorrelation time of the Monte Carlo measurements, and choose the number of skips in such

27



a way that the autocorrelation time is no larger than 2, thus reducing the correlations among the

Monte Carlo measurements.

Our model Hamiltonian contains phonons, which can be integrated out to yield a retarded

interaction between electron densities. The integration of the phonons was shown in the Appendix

A. It can also be found in Ref. [36]. After integrating out the phonons, we are left with a purely

electronic model, and CTQMC described above is still applicable in our model. The time complexity

of the CTQMC is O(β3), and thus when the temperature is pretty low, the program does not work

very well. This restricts our exploration of the model Hamiltonian to the relatively high temperature

regime. Especially, we cannot study the model at zero temperature using our method. When people

need to know the zero temperature properties of a system, they will generally use the numerical

renormalization group method[20, 70].

This section does not discuss in detail the CTQMC algorithm, and leaves many topics untouched,

such as the Wick’s theorem and its relationship to the determinantal algorithm, the auxiliary spin,

the avoidance of the negative sign problem, the Metropolis algorithm, the fast update algorithm,

etc. Since the Monte Carlo part of the program we are using is already well established and fully

tested, the CTQMC does not constitute the main focus of the thesis. Ref. [35] and [36] are good

sources of details about this algorithm.

One thing that is noteworthy is that the Monte Carlo simulation can only be done in the imagi-

nary time space, and then we use the Fourier transform to convert the imaginary time Green function

into the imaginary frequency Green function. In order to extract the real-frequency information from

the Monte Carlo simulation data, we shall resort to the maximum entropy method to which the next

section is dedicated.

3.3 Maximum entropy method

In the previous section, we have discussed how to measure the Green function in imaginary frequency

space. However, in real experiments, we can only measure the physical quantities as a function of

real frequency. For example, the angle-resolved photoemission spectroscopy (ARPES) measures the

density of single particle in reciprocal space, thereby enabling people to study the surface states

of materials. The measurement of the electronic density of states is done in real frequency space.

Because of this, it is not enough to only have the imaginary frequency information. Fortunately, the

imaginary frequency Matsubara Green function is related to the the real frequency Green function
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through a simple replacement. From the Lehmann representation[71, 72], we know that the imagi-

nary frequency Green function is related with the retarded real frequency Green function through

the replacement iωn → ω + iδ, where δ is an infinitesimal positive number. Therefore, if we know

the analytical formula for the imaginary time Green function G(iωn), then it is a trivial task to get

the real frequency Green function. For example, for the non-interacting Fermion, the Matsubara

Green function is G(iωn) = 1
iωn−ε , and thus the real frequency Green function is G(ω) = 1

ω+iδ−ε .

However, our numerical methods can only yield numerical results for the Matsubara Green function,

and these numerical results are invariably associated with all kinds of numerical noises. Even worse,

there are (not necessarily weak and short-ranged) correlations between different Matsubara frequen-

cies. Given these numerical data with errors and correlations, we need to find an ingenious method

to extract the spectral function from the Green function. Maximum entropy (maxEnt) method [73]

as detailed in the review article [37] was just devised to solve this tricky problem. A brief sketch of

the method is given below.

The spectral representation of the Green function is

G(iωn) =

∫ ∞
−∞

dω
A(ω)

iωn − ω
(3.17)

:= KA

Here, A(ω) is the spectral function that we want to extract. For Fermions, the spectral function

is always positive. The calculation of the A(ω) initially seems not to be especially difficult, since

we know that this is actually a Hilbert transformation, and thus we can apply the inverse Hilbert

transformation to solve the A(ω) from G(iωn). However, it turns out that this equation is hardly

invertible. There are infinitely many and significantly distinct spectral functions that can reproduce

the Green function within numerical error bars. Our job now is to choose the best spectral function

from these infinitely many possible solutions. The criterion of choosing the best spectral function is

to select a spectral function that can maximize the functional Q[A(ω)], which is defined as

Q = αS − 1

2
χ2. (3.18)

Here, S = −
∫
dωA(ω) log A(ω)

M(ω) is the entropy, and χ2 = (G−KA)C−1(G−KA), with C being the

covariance matrix. M(ω) in the entropy is a featureless model function which we generally take to

be Gaussian. We can see from the definition of Q that it is a functional of the spectral function.

In order to find the A(ω) that can maximize Q, we take the functional derivative of Q with respect
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to A(ω) and set the derivative to 0. That is, we define f [A(ω)] = δQ
δA(ω) , and try to find the root

of the equation f [A(ω)] = 0. Newton’s method is widely used to find the root of this equation.

For each specific value of α, we can find a solution Aα(ω) that depends on the value of α. If we

plug the Aα(ω) back into the functional Q, we can obtain a function Q(α). The determination

of the best value of α is also a tricky task. Some people choose the α that maximizes that the

Q (classical method), and some people choose to integrate over the α, with the integration weight

being eQα(Bryan’s method)[74]. It is generally believed that Bryan’s method gives better results,

and thus in our work, we choose to use Bryan’s method to extract the spectral functions.

Here, I have only given a brief sketch of the maxEnt method, leaving many details untouched.

The details are shown in the Appendix B. Even more details about this method can be found in the

review article [37].

3.4 Calculation of the free energy

We study our model in order to explain the volume collapse phenomenon in Cerium. We know that

the volume collapse is a first order phase transition. According to the laws of statistical mechanics,

when there is a first-order phase transition, the isothermal pressure-volume (p − V) graph should

develop a kink, while at the same time, the free energy versus volume curve should be tangent to

a line with two touching points, as shown in Fig. 3.1[75]. In order to obtain the equation of state

(EOS) of cerium, we need to find the free energy as a function of volume and temperature, and then

take the partial derivative of the free energy with respect to the volume at different temperatures to

obtain the isothermal p−V diagrams. In our model, the volume V is related with the hybridization

parameter V through the relation V = b
V2 . Thus, once we have the free energy as a function of the

hybridization parameter V , we can obtain the electronic contribution to the p−V relation. We will

see in the next chapter that only taking into account of the electronic contribution to the pressure is

not enough to have a first order phase transition. But for now, we will only focus on the calculation

of the pressure due to the electrons.

3.4.1 Calculation of the free energy using the Green function method

It is shown in Appendix A that we can calculate the total energy of the system once we know

the Green function. The total energy is equal to the kinetic energy plus the potential energy,
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Figure 3.1: Upper panel: pressure versus volume; lower panel: free energy versus volume. Picture
from Ref. [75]. The two hallmarks of the first order phase transition, that is, the kink structure in
the p − V diagram and the existence of negative curvature region in the free energy versus volume
curve, are concomitant with each other.

Etotal = Ekinetic + EV . The kinetic energy is calculated as

Ekinetic =
1

β
Tr

∑
k,σ,iωn

 εk V

V εf


 Gcck,σ(iωn) Gcfk,σ(iωn)

Gfck,σ(iωn) Gffk,σ(iωn)

 , (3.19)

and the potential energy is calculated as

EV =
1

β

∑
k

∞∑
n=−∞

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

. (3.20)

Combination of the two terms gives us the total energy. Once we know the total energy as a function

of the inverse temperature β for fixed hybridization parameter V , we can integrate the β to obtain

the free energy using the formula [76]

F = E − TS, (3.21)

S(β) = S(β = 0) + βE(β)−
∫ β

0

E(β)dβ.
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This is a viable method to calculate the free energy. However, as we used this method to calculate

the free energy, we encountered a problem. Since we are using the weak coupling expansion CTQMC

as our impurity solver, and according to the Ref. [77], the average expansion order, or the number

of vertices at thermal equilibrium, is

〈n〉 = −
∫ β

0

dτ〈ĤI(τ)〉. (3.22)

Here, ĤI is the interacting part of the Hamiltonian. From the Eq. [3.22], we see that when β → 0,

the expansion order approaches 0, which means we are having zero vertices when we try to make a

Monte Carlo measurement of the Green function. The absence of vertices renders the measurement

impossible, and thus we cannot make any meaningful measurements when β → 0. Because of this

limitation, we have no knowledge of the energy as a function of β when β is infinitesimally small.

However, the implementation of the formula [3.22] requires the detailed knowledge of the energy

as a function of β near β = 0 in order to numerically calculate the integral
∫ β

0
dβE(β). For this

reason, we choose not to use the formula [3.22] to calculate the free energy. Instead, we have adopted

another formula for the calculation of the free energy using the thermodynamical laws, which will

be detailed in the next sub-section.

3.4.2 Calculation of the free energy from the chemical potential

Note that in this section, the Roman V is the hybridization parameter in our model Hamiltonian,

and the calligraphic V is the volume. Empirically, the hybridization is a single-valued function of

the volume. However, currently, we do not need to know this empirical relationship. We will need to

use this relationship in the next chapter when we try to obtain the pressure versus volume curves for

our model. That said, we now continue to derive the formula for the calculation of the free energy

from the thermodynamical laws. From the first law of thermodynamics, we know that

dE = TdS − pdV + µdN. (3.23)

Thus, the differential of the free energy is

dF = −pdV + µdN − SdT. (3.24)
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Once we take the (T,V, N) as the set of independent variables, we have the relation ∂F
∂N

∣∣∣
T,V

=

µ. Therefore, we can set the T,V to be constant and scan the chemical potential to obtain the

corresponding particle number, and integrate the chemical potential over particle number to get the

free energy. With this method to calculate the free energy, we do not have to solve the model near

β = 0. This is the method that we employed in this thesis work for the calculation of the free energy.

The free energy is calculated as F (T, V,N) =
∫ N

0
µdN , for fixed values of T, V . In order to

obtain the µ−N curve, we scan the values of µ, and for each µ, we obtain the total filling number

N . One example of the µ−N curve is shown in Fig. 3.2. During the application of this method, we

need to make sure that we can reach the parameter regime where the total filling number is 0. In

order to obtain a zero filling number, sometimes, we need to scan to a very large range of chemical

potential. This is especially obvious when β is small. As shown in Fig. 3.2, when β = 10, the total

filling number is already zero when µ = −3.2. However, for β = 1, the total filing number decays

much slower, and we need to scan to µ = −12 have a negligible filling number. Note that in the

µ−N curves, there is a jump when filling number N = 1. This is because when −U/2 < µ < U/2,

where U is the Hubbard repulsion between the f electrons, the f electron filling number is almost

a constant (nf = 1). The f filling number begins to drop down noticeably only when µ < −U/2,

which gives rise to the jump in the µ−N curve. This jump is clearer when the temperature is low

than it when the temperature is high, since the thermal fluctuations at high temperature reduce the

Hubbard repulsion effect on the filling number. The free energy for each value of V and β can be

calculated by numerically evaluating the integral
∫ N

0
µdN . As an example, in the inset of the figure,

we plot the free energy as a function of β for fixed value of V . Similarly, we can also calculate the

free energy as a function of V for fixed values of β. In the next chapter, we will use these F − V

data to calculate the pressure versus volume curves.
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Figure 3.2: Main panel: µ − N diagrams for different values of β at Ueff = 1, V = 1.6. The
corresponding free energy for a certain temperature is the area enclosed by the curve and the x-axis.
Inset: The free energy F versus β calculated by integrating µ versus N .
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Chapter 4

PAM+Holstein Model for the Description
of Ce Volume Collapse

4.1 Introduction

The isostructural volume collapse of Cerium is a long-standing puzzle [40]. When a crystal of

Cerium is under a pressure of 15,000 atmospheres, it undergoes a volume collapse of approximately

17% while preserving the face-centered cubic crystal structure. This transformation, called the

γ → α transition, has baffled physicists since its discovery, and several leading theories have been

proposed for its explanation, the most prominent of which are the Mott transition scenario [46]

and the Kondo volume collapse (KVC) scenario [47]. The Mott and KVC scenarios are competing

paradigms, although perhaps not as different and distinct as previously thought [56, 78].

In the KVC scenario, the 4f electrons of Cerium are assumed to be localized in both phases. In

the small volume α phase, the spd electrons strongly screen the local moments of the f electrons,

thus rendering the α phase a Pauli paramagnet. While in the large volume γ phase, the local

moments of the f electrons persist to much lower temperatures than in the α phase, indicating that

the Kondo scale TK in the γ phase is much smaller than that of the α phase, which is consistent

with the experimental observations [60, 64, 65, 79].

In the Mott transition scenario, for which the Hubbard model is a good description, the density

of states (DOS) of the f electrons changes from being metallic (no gap at the Fermi level) in the α

phase to insulating (with a gap at the Fermi level) in the γ phase [23, 24, 55, 56]. This localization-

delocalization of the 4f electrons, which is a metal-insulator Mott transition, is driven by the increase

of the intersite hopping amplitudes of the f electrons when the unit cell volume of Cerium decreases.

Recent experimental and theoretical results have indicated that the electron-phonon interaction

may also play an important role in the γ → α transition [52, 54, 80, 81]. Jeong et al. estimated that

about one half of the entropy change during the transition is due to lattice vibrations. Later, Krisch

et al. showed that the significant changes in the phonon dispersion across the γ → α transition
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provide strong evidences for the importance of the lattice degrees of freedom. Although the precise

value of the lattice vibrational entropy varies between experiments, they do agree that a significant

fraction of the total entropy change during the transition is due to lattice vibrations.

Most of the previous works focus exclusively on the electronic part of the Cerium volume collapse

transition. Some recent study has further refined the calculations by using the electronic dispersion

from the density functional theory (DFT) and combined it with the DMFT (DFT + DMFT) [56, 82–

85]. Unfortunately, there is no well developed method to incorporate the electron-phonon interaction

into this framework. Moreover phonons with non-trivial dispersions cannot be included in the

DMFT.

As a first step to understand the contribution of phonons in the cerium within the Kondo volume

collapse scenario, we follow the original approach by Allen and Martin using a single band impurity

model. In this work, we use the periodic Anderson model with Holstein phonons coupled to the

conduction band as our starting point [86]. Our model Hamiltonian is

Ĥ = Ĥ0 + ĤI (4.1)

Ĥ0 = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + c†j,σci,σ) + εf
∑
j,σ

f†j,σfj,σ

+V
∑
i,σ

(c†i,σfi,σ + f†i,σci,σ) +
∑
i

( P 2
i

2m
+

1

2
kX2

i

)
ĤI = U

∑
i

nfi,↑n
f
i,↓ + g

∑
i,σ

nci,σXi .

Here, c†i,σ, ci,σ(f†i,σ, fi,σ) creates and destroys a c(f) electron of spin σ at lattice site i, respectively. Pi

and Xi are the phonon momentum and displacement operators. Here, we have used dispersionless

Einstein phonons with frequency Ω0 =
√
k/m. The parameter g measures the electron-phonon

interaction strength, U is the Hubbard repulsion between localized f -electrons, and V characterizes

the hybridization between c- and f -electrons. From the parameters g, k, we construct the effective

electron-phonon interaction strength, Ueff = g2

2k . Throughout this paper and to be consistent with

the experimental results, we have set Ω0 = 0.01 [86] unless otherwise specified. We also set U = 4,

the c-electron filling number to 0.8, and the f -electron filling number to 1.0. We propose this

simplified model as our first attempt to incorporate the electron-phonon interaction into the study

of the Cerium volume collapse.

We solve this model using the dynamical mean field theory [69], with the continuous time

quantum Monte Carlo [77] as our impurity solver. We use a hypercubic lattice with Gaussian bare
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DOS, and consider its bandwidth as our unit of energy. We set this unit to be the Fermi energy εF

of Cerium, which is 0.52eV [61, 87]. Finally, we use the maximum entropy method [37] to extract

the spectral functions from the Monte Carlo simulation data.

4.2 Pressure-volume diagrams

Here, in this section, we are going to show the pressure-volume (p− V) diagrams that we obtained

for different parameter regimes. Since the γ → α transition is first order, the p− V curve develops

a kink as the temperature drops below the transition point. To properly account for the static

lattice contribution, we introduce a volume and temperature dependent bulk modulus term into our

pressure-volume (p−V) relation [47]. Therefore, the total pressure contains two parts, the pressure

due to the electrons which we denote as pe, and the pressure due to the bulk modulus term which

we denote as pB .

We calculate pe from the electronic free energy by the relation pe = −∂F∂V , and pB by integrating

the bulk modulus B = −V ∂pB∂V . We calculate the electronic free energy using the formula Fe(T =

T0, V = V0, N) =
∫ N

0
µdN + F (T0, V0, N = 0). Here, we choose not to use the entropy formula

employed in Ref. [76] because the statistical errors in our results become large at high temperatures.

When we plot the free energy versus V , we notice that the curve continuously evolves from a nearly

flat plateau at small V to a nearly straight line with a negative slope at large V , as shown in Fig.

4.1. Therefore, the derivative of the free energy with respect to V is almost 0 for small V and

approaches a negative constant for large V . One simple function that satisfies this condition is the

shifted and stretched tanh, which is

dFe
dV

= −k
(

1 + tanh a(V − c)
)
. (4.2)

Integration of the Eq. [4.2] gives us the function

F (V ) = −k
(
V − c+

1

a
log 2 cosh a(V − c)

)
+ d. (4.3)

We can thus fit the numerical results of the Fe to the above function. Once we have an analytical

expression for the Fe, it would be much easier to calculate its derivative to obtain the pressure.
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Figure 4.1: The electronic free energy Fe versus V for different values of β with Ueff = 1. They all
share similar shapes, that is, a flat region at small V and a straight line of negative slop at large V .

By fitting our numerical data to Eq. [4.3], we obtain the values of the parameters k, a, c, d. Since

the free energy depends on the temperature, these parameters also depend on it. Now, we can obtain

the volume dependence of the free energy using the empirical relationship between hybridization V

and volume V, V = b
V2 [88]. Taking the partial derivative of the free energy with respect to volume,

we obtain the electronic iso-thermal pressure as

pe = −2kb

V3

(
1 + tanh a

( b

V2
− c
))

. (4.4)

The experimental value of b can be estimated from the relation V = b
V2 , and J ∝ V 2

U [89], where

J is the Kondo exchange. The experimental values of J range between 0.2eV −0.3eV in the α phase

and 0.05eV − 0.06eV in the γ phase[60, 61, 64, 65]. From the values of J and the relation between

J and volume, we can estimate the value of b to be between 0.89 and 1.55 in our unit system.

The second contribution to the total pressure comes from the bulk modulus. From the experi-

mental results of Ref. [67, 90], we assume that the bulk modulus depends upon the volume as

B = B0(T )eα(1−V/V0), (4.5)
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and upon the temperature through the relation[91]

B0(T ) = B0(1 + e−
T0
T ), (4.6)

where, B0, T0,V0 and α are material-dependent parameters.

Integration of the bulk modulus gives us the pressure pB as

pB(V) = p0 −B0(T )

∫ V/V0
1

dx
eα(1−x)

x
, (4.7)

where p0 is an arbitrary constant.

Adding the bulk modulus and the electronic pressures yields a p−V graph which exhibits a kink

structure. Fig. 4.2 shows the pressure versus volume diagrams for different values of Ueff . When

Ueff = 1, as we lower the temperature, a kink structure begins to develop. We identify β = 6

as the critical temperature where the kink structure begins to emerge. Experimentally, the ratio

between the γ → α transition critical temperature Tc and the temperature T0 where the volume

collapse of 17% occurs is Tc/T0 = 460/334[92]. Using the same ratio, we can identify the T0 in our

model to be approximately 1/8. From the iso-thermal p − V diagrams, we find that the volume

collapse in our model at β = 8 is about 30%, a result that is in reasonable agreement with the

experiments, considering that we are using a simplified model to study the real Cerium. From the

Maxwell construction, we can read off from the β = 8 iso-thermal line the volumes for the γ and α

phases, with Vα = 0.78, and Vγ = 1.13. We further estimate the corresponding hybridization value

for these two phases to be Vα = 1.93, and Vα = 0.92.

The crossing of the p − V diagrams at different temperatures may be removed once we retain

the temperature dependence of the integration constants p0. Even if we set all the p0 to 0, as we

did in this paper, the crossing could still be a numerical artifact of our approximation, since the

introduction of the volume dependence of the hopping amplitude t will make the p − V diagrams

drop faster in the large volume regime, thus possibly eliminating this crossing feature.

On the other hand, when Ueff = 0 (inset on Fig. 4.2), even though we have used the same

set of parameters, the kink structure that is the indicator for the emergence of a first order phase

transition is absent. Note that the small upturn in the p − V diagram at large volume can also

be eliminated once we consider the volume dependence for the hopping term t in the conduction

band. The different behavior of the p − V diagram for Ueff = 0 and Ueff = 1 implies that the

electron-phonon interaction enhances the γ → α volume collapse transition.
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Similar results can be obtained with many different combinations of parameters. In the data

displayed in Fig. 4.2 we set b = 1.18, p0 = 0, T0 = 0.1, B0 = 12.47, and α = 4.225. The value of

b is within our estimated range. A value of T0 = 0.1 is approximately 600 K within our units, a

value comparable to the critical point temperature of the transition. Following Ref. [47], we use

B0 = 28GPa,V0 = 36Å3 as the bulk modulus and unit cell volume for Cerium in the γ phase.

Once we use the Fermi scale as our unit of energy and set V0 as our unit of volume, the unit of

pressure becomes εF /V0 = 2.3GPa. This justifies our usage of the value B0 = 12.47 as our bare

bulk modulus. And, finally, the experimental values of α range between 2 and 5 for most bulk pure

metals [67].
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Figure 4.2: Main panel: p − V diagram for Ueff = 1,Ω0 = 0.01. As the temperature decreases, a
kink structure develops in the p−V graph, indicating the emergence of a first oder phase transition.
Inset: p− V diagram for Ueff = 0. Here, with the same bulk modulus pressure, the kink structure
does not show up.

4.3 Density of states in various parameter regimes

This phonon-enhanced first order phase transition is actually a Mott metal-insulator transition

(MIT) which can be better understood by studying the evolution of the spectral functions with

respect to the variation of the relative strengths of V and Ueff . Depending on the relative strengths

of V and Ueff , we can divide the parameter regimes into two parts, the small hybridization regime
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and the large hybridization regime. The electron-phonon interaction effect, e.g., the opening of

a Mott gap at the Fermi energy in the conduction electron spectra, is pretty strong in the small

hybridization regime. However, in the large hybridization regime, the electron-phonon interaction

effect is strongly suppressed. We shall study these two regimes separately.

4.3.1 Small hybridization regime

When the hybridization is small, the electron-phonon interaction can significantly modify the DOS

of the conduction electrons. For V = 0.1, as Ueff increases from 0 to 1.1, the DOS changes from

a nearly Gaussian to a DOS gapped at the Fermi energy, as shown in Fig. 5.1. We can also see

the effect of Ueff on the gap at the Fermi energy by observing the behavior of the c-electron Green

function Gc(τ). When there is no gap, the value of Gc(τ = β/2) is finite. However, when there is a

gap at ω = 0, the value of Gc(τ = β/2) decays to zero exponentially. Moreover, the wider the gap,

the more rapid the decay. When we plot the Gc(τ) for different values of Ueff , we see clearly that

with increasing Ueff , Gc(τ) decreases increasingly rapidly when τ approaches β/2.
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Figure 4.3: Main panel: The conduction electron spectral functions for V = 0.1, β = 10,Ω0 = 0.01.
As Ueff increases from 0.0 to 1.1, the gap in the DOS becomes increasingly wider. Inset: The
evolution of Gc(τ) with Ueff . The increasingly rapid decay of Gc(τ = β/2) also indicates the
existence of an energy gap at ω = 0 as Ueff grows.
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The magnitude of the bare phonon frequency Ω0 and the c-electron doping level have profound

influences on the nature of the MIT due to the Ueff . When Ω0 is small, which is the case we are

studying, the transition seems to be continuous or at most extremely weakly discontinuous [93].

The reason is that when Ω0 = 0, we can integrate out the Holstein phonons to obtain the Falicov-

Kimball model in which the conduction electrons always exhibit a non-Fermi liquid behavior for

any non-trivial filling number [26, 94]. The MIT from a non-Fermi liquid metal to an insulator

is continuous due to the absence of the quasi-particle peak at the Fermi energy in the conduction

electron DOS [14]. On the other hand, when Ω0 → ∞, the Holstein model can be mapped to

an attractive Hubbard model, for which the discontinuous MIT is strongly suppressed by doping

away from half filling[95, 96]. Thus, we do not anticipate a first order phase transition for a finite

Ω0 that lies between these two limiting cases. The hitherto absence of a stable hysteresis loop in

the − 1
π ImGc(iπT ) versus Ueff plane for varying values of Ω0 at finite temperature may provide

support for this viewpoint. However, if we introduce a phonon-frequency-dependent bulk modulus

contribution to our system, we would likely see a first order phase transition as we tune the phonon

frequency.

4.3.2 Large hybridization regime

The opening of the Mott gap at the Fermi level is present only when the hybridization between

the conduction band and localized electrons is weak compared with the electron-phonon coupling.

Fig. 4.4 shows that when the hybridization is strong, the opening of the Mott gap is prohibited. In

this parameter regime, the introduction of the electron-phonon interaction has little effect on the

behavior of the conduction electron DOS. Since the filling number of the c-electrons is set to 0.8,

the hybridization cannot induce a gap at the Fermi energy [97], and thus the DOS is always finite

irrespective whether there is electron-phonon interaction or not. Consequently, the c-electrons are

always metallic in the large V regime.

The absence of the Mott gap in the large V regime signals that the electron-phonon interaction

effect is suppressed by the hybridization. Since the electron charge susceptibility is positively cor-

related with the Ueff , the suppression of the electron-phonon coupling effect is also reflected in the

decrease of the charge susceptibility as V increases for fixed β (not shown). As V increases from 0.1

to 1.8, the localized f electron moments that are present at small V get screened by the conduction

electrons when V is large [86]. At the same time, the conduction electrons make a transition from

insulator to metal. The c-electron spectral functions for β = 10 and Ueff = 1 with varying values
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Figure 4.4: Main panel: The conduction electrons DOS for Ueff = 0 and Ueff = 1 when V =
1.8, β = 10, Ω0 = 0.01. Here, the introduction of the electron-phonon interaction has no significant
influence on the DOS, which at the Fermi energy is always finite whether there is electron-phonon
interaction or not. Inset: The Gc(τ) for small and large electron-phonon interaction strength.

of V are shown in Fig. 4.5, where a gap at the Fermi energy is clearly visible for V < 0.6. When

V > 0.6, the Mott gap evolves into a depression which disappears completely for V > 1.2. Therefore

the Mott MIT is present only when the electron-phonon interaction is strong enough.

4.4 Conclusion

In conclusion, using the periodic Anderson model with phonons coupled to the conduction band,

and by introducing a volume and temperature dependent bulk modulus contribution to the total

pressure, we find a first order phase transition which can be identified as the γ → α volume collapse

transition of Cerium. We find that this phase transition is enhanced by the presence of the electron-

phonon interaction which various experiments have shown to play an important role in the volume

collapse process. Moreover, we find that our model, although originally conceived with the KVC
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Figure 4.5: The c-electron spectral functions for β = 10,Ω0 = 0.01, Ueff = 1, at different values
of V . When V is small (below 0.6), the electron-phonon interaction dominates over the Kondo
screening, and the conduction electrons form a Mott insulator. When V gets large, the Kondo
effect dominates over the electron-phonon interaction effect, and the conduction electrons become
metallic.

scenario in mind, exhibits several interesting features of the Mott transition, e.g., a gap at the Fermi

energy in the conduction electrons opens at low temperature, and this gap is proportional to the

effective electron-phonon interaction, Ueff . Our numerical results show that this Mott transition

observed in our model is probably continuous within our parameter regime.
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Chapter 5

Competition Between Hybridization and the
Electron-phonon Interaction in the PAM
with Holstein Phonons

5.1 Introduction

The cerium volume collapse has been a long standing puzzle since its discovery more than 60 years

ago [40]. At room temperature and under pressure of about 15,000 atmospheres the volume of cerium

decreases by about 17%, while preserving its face-centered cubic crystal structure. This volume

collapse, which is a first order iso-structural phase transition, has intrigued the physics community

for a long time, and several theoretical scenarios have been proposed for its explanation. Up to now,

two competing models have survived experimental scrutiny: the Mott transition scenario [46] and

the Kondo volume collapse (KVC) [47] scenario.

In the Mott transition scenario, the outer shell electrons of cerium are divided into two groups,

the spd electrons which form the conduction band and are just spectators of the volume collapse,

and the 4f orbitals which play the central role in the γ → α transition. This scenario assumes that

the electronic properties of cerium can be captured by the Hubbard model, which is the simplest

possible model including the competition between the hopping and the Coulomb repulsion between

electrons. In the large volume γ phase, where the large lattice constant renders the hopping of

the 4f from one site to its neighbor prohibitively expensive, the 4f electrons are assumed to be

essentially localized. When the volume collapses, the lattice constant becomes smaller, thus making

the hopping of the 4f electrons possible. Therefore, in the small volume α phase, we expect the

4f electrons to become delocalized. This localization-delocalization transition of the 4f electrons

is reminiscent of the Mott metal-insulator transition in the Hubbard model [23, 24, 55, 56], and

prompts Johansson [46] to propose the Mott transition scenario to explain some key aspects of the

volume collapse such as the spectrum features in the γ and α phases [56].
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In 1982, Allen and Martin proposed the Kondo volume collapse (KVC)[47] scenario based on the

newly found exact solution of the Kondo problem using the Bethe ansatz. From the exact solution

of the Kondo problem, the authors were able to obtain the explicit expression of the electronic free

energy FK(T, J) as a function of the temperature T and the Kondo exchange interaction J . The

Kondo temperature TK in the α phase is much higher than that in the γ phase, due to the variation

of the Kondo exchange energy J across the volume collapse transition. The authors assumed the

following relation between J and unit cell volume V: J ∝ 1
V6 . Through this relation, the electronic

free energy captures the volume dependence. The authors further introduce the mechanical energy

due to the bulk modulus. Combining the electronic and the mechanical energy, the authors were able

to obtain the iso-thermal pressure versus volume curves by taking the partial derivative of the free

energy with respect to the volume at constant temperature. They showed that when the temperature

is below some critical value Tc, the pressure versus volume curve develops a kink structure which

is an indicator of the emergence of a first order phase transition. This first order transition is then

identified as the γ − α transition in Cerium.

In a previous paper, we have shown that by introducing a temperature and volume dependent

bulk modulus term, we can get a kink in the p − V diagram. Using the periodic Anderson model

(PAM) with Holstein phonons, we found that the electron-phonon interaction can significantly en-

hance the γ → α transition, which is consistent with the previous experimental results[52, 54]. We

further studied the evolution of the conduction electron density of states (DOS), and found that this

transition is actually a Mott metal-insulator transition driven by the electron-phonon interaction.

Due to the electron-phonon interaction, this metal-insulator transition exhibits several features of

the Mott transition[23, 24, 55], such as the opening of a gap at the Fermi energy in the conduction

band electron spectral function, and the width of the gap is proportional to the effective electron-

phonon interaction Ueff . We also noticed that this Mott transition from metal to insulator driven

by the electron-phonon interaction is present only when the hybridization between the conduction

electron and the localized electron is small. When the hybridization is large, the Kondo effect kicks

in and the effects due to the electron-phonon interaction is strongly suppressed. This compels us to

argue that there is a competition between the Kondo effect due to V and the Mott gap opening due

to Ueff .

Here, we will study this competition effect further, by including the behavior of the 4f electron

spectral functions and the results from the two-particle quantities, such as the charge susceptibility

and the magnetic susceptibility. The evolution of the DOS of the c and f electrons with respect to the
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relative strengths of V and Ueff also vividly illustrates this competition. The structure of the paper

will be as follows. In section II, we introduce our model Hamiltonian, and give a brief introduction

of the numerical methods we employed to solve this model. Section III presents the details of our

results, including the c and f electron spectral functions and the two-particle quantities in different

parameter regimes. We compare our results with the previous numerical renormalization group

results in section IV. In section V, a schematic phase diagram summarizing our results is shown.

Finally, we make our conclusion in section VI.

5.2 Model and Methods

Our model Hamiltonian is

Ĥ = Ĥ0 + ĤI (5.1)

Ĥ0 = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + c†j,σci,σ) + εf
∑
j,σ

f†j,σfj,σ

+V
∑
i,σ

(c†i,σfi,σ + f†i,σci,σ) +
∑
i

( P 2
i

2m
+

1

2
kX2

i

)
ĤI = U

∑
i

nfi,↑n
f
i,↓ + g

∑
i,σ

nci,σXi .

Here, c†i,σ, ci,σ(f†i,σ, fi,σ) creates and destroys a c(f) electron of spin σ at lattice site i, respectively. Pi

and Xi are the phonon momentum and displacement operators. Here, we have used dispersionless

Einstein phonons with frequency Ω0 =
√
k/m. The parameter g measures the electron-phonon

interaction strength, U is the Hubbard repulsion between localized f -electrons, and V characterizes

the hybridization between c- and f -electrons. From the parameters g, k, we construct the effective

electron-phonon interaction strength, Ueff = g2

2k . Throughout this paper and to be consistent with

the experimental results, we have set Ω0 = 0.01 [86] unless otherwise specified. We also set U = 4,

the c-electron filling number to 0.8, and the f -electron filling number to 1.0.

To solve this model, we use the dynamical mean field theory (DMFT)[69] with continuous time

quantum Monte Carlo (CTQMC)[36] as our impurity solver. From the DMFT and CTQMC, we get

the imaginary frequency Matsubara Green’s function, from which we can extract the single-particle

density of states (DOS) using the maximum entropy method(MEM)[37].

In DMFT, we map our model into a single impurity that is self-consistently embedded in an

effective medium. Temporal correlations are retained, since the electrons can hop from the impurity
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site to the medium and back, but spatial correlations are discarded. Nevertheless, DMFT becomes

exact in the limit of infinite dimensions and accurately captures the physics of correlated electron

systems even in three dimensions.

The effective medium is described by a bath Green’s function, G0(iωn), and the impurity site is

described by the interacting Green function G(iωn). We use the CTQMC to solve the interacting

impurity problem embedded in the bath. Once we have both G(iωn) and G0(iωn), we use Dyson’s

equation to obtain the electron self-energy, that is

Σ(iωn) = G−1
0 (iωn)−G−1(iωn). (5.2)

From the self energy, we calculate the lattice Green function Gk(iωn) in momentum space. Self

consistency is obtained once we impose the condition that the interacting Green’s function is equal

to the coarse grained momentum Green’s function,

G(iωn) = 〈Gk(iωn)〉k. (5.3)

The DMFT+CTQMC yields the Matsubara Green’s function in imaginary frequency space.

However, we need to know the real-frequency Green’s function to make direct comparisons with

experiments. The Matsubara Green’s function is related with the spectral function through the

spectral representation

G(iωn) =

∫ ∞
−∞

A(ω)

iωn − ω
dω =: KA. (5.4)

where we define the kernel function K(iωn, ω) = 1
iωn−ω . The maximum entropy method enables us

to calculate the spectral function from the mean value of the Matsubara Green’s function and from

the covariance matrix C which is calculated as

Cmn =
1

N(N − 1)
(5.5)

×
N∑
i=1

(
G(i)(iωm)− Ḡ(iωm)

)∗(
G(i)(iωn)− Ḡ(iωn)

)
.

Here, i is an index that enumerates the Monte Carlo bin numbers, and Ḡ is the mean value of the

Matsubara Green’s function. In maximum entropy method, we define a quantity Q = αS − 1
2χ

2

that we try to maximize with respect to the spectral function A(ω). Here S is the entropy defined

by S = −
∫
dωA(ω) logA(ω)/M(ω), with M(ω) being a (usually) featureless model function and
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χ2 = (G − KA)†C−1(G − KA). It can be shown that the Hessian matrix of Q with respect to

A(ω) is always negative definite, and thus solution of the equation δQ
δA(ω) = 0 gives us the A(ω) that

can maximize Q, and thus can serve as our most probable spectral function given the Monte Carlo

measurement results.

5.3 Results

We present the results for three parameter regimes. The first one is when the electron-phonon in-

teraction is dominant in comparison with the hybridization. Then, we consider the case when the

hybridization is comparable to the electron-phonon interaction, and finally when the hybridization

dominates over the electron-phonon interaction. The competition between both interactions is no-

ticeable in any of these three regions, and is especially obvious when the hybridization is comparable

to the electron-phonon interaction.

5.3.1 Small hybridization

Fig. 5.1 illustrates the suppression of the Kondo effect due to the electron-phonon interaction for a

small value of the hybridization (V = 0.4). When Ueff = 0 the c-electron spectral functions (top left

panel of Fig. 5.1) are almost Gaussian for all the inverse temperatures displayed, while the f -electron

spectral functions exhibit a Kondo resonance at low temperatures (lower left panel). Moreover, at

even lower temperatures, the Kondo resonance splits, and a pseudo-gap develops[28, 97]. However,

when Ueff = 1, the strong electron-phonon interaction induces a gap on the c-electron spectral

function at low temperature (top right panel of Fig. 5.1). The depletion of the conduction electrons

at the Fermi energy strongly suppresses the Kondo effect, and thus the Kondo peak in the f -electron

spectral function is absent (bottom right panel) for all shown temperatures. Notice that when Ueff

dominates over V , the filling number is not a single-valued function of the chemical potential at low

temperature, and we are not able to explore temperatures lower than β = 15.

The competition between V and Ueff can also be noticed when we plot the time-integrated f -

electron spin susceptibility, χff , and the c-electron charge susceptibility, χcc (Fig. 5.2). For V = 0.4,

the Kondo effect is pretty weak even when there are no phonons. Therefore, the f local moments

are hardly screened by the conduction electrons, and χff is large, for both Ueff = 0 and 1, which

is shown in the main panel of Fig. 5.2. Although phonons do not alter significantly the f -electron

spin susceptibility, they do largely influence the behavior of the c-electron charge susceptibility. The
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Figure 5.1: Comparison of the periodic Anderson model (PAM) and the PAM with Holstein phonons
for V = 0.4, U = 4,Ω0 = 0.01. Top panels: c-electron spectral functions. Bottom panels: f-electron
spectral functions. Left panels show data for the PAM (Ueff = 0) and several temperatures between
β = 1 and 40. Right panels display data for Ueff = 1 and inverse temperatures between β = 1
and 15. Upper left panel: The c-electron spectral function of the PAM are almost Gaussian. Upper
right panel: The electron-phonon interaction opens a Mott gap on the c-electron spectral function
for β > 10. Lower left panel: A Kondo resonance develops for β > 4 in the f -electron spectral
function. The Kondo resonance splits at the lowest temperatures. Lower right panel: The strong
electron-phonon interaction suppresses the Kondo effect, only the two Hubbard bands appear.

inset of Fig. 5.2 displays a much larger χcc for Ueff = 1 than for Ueff = 0. This confirms that the

charge fluctuations are large when the electron-phonon interaction is strong.

5.3.2 Intermediate hybridization

In this section, we set the hybridization V = 1.2 and still set the Ueff = 1 when we introduce the

electron-phonon interactions. By doing this, we are studying the situation where the hybridization
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Figure 5.2: Susceptibilities versus temperature for V = 0.4. Main panel: The time integrated
f -electron spin susceptibility. Notice that when Ueff increases the f -electron spin susceptibility
also increases due to the reduced screening of the localized f -electrons. Inset: The c-electron charge
susceptibility versus temperature. As Ueff increases the charge susceptibility increases since a larger
Ueff results in stronger charge fluctuations, and thus a larger charge susceptibility.

V is comparable to Ueff , and thus we expect both Kondo effects and electron-phonon interaction

effects to be present. When there is no electron-phonon interaction, the hybridization is strong

enough to induce a hybridization gap in both the c electron spectral functions and the f electron

spectral functions. When we introduce the electron-phonon interaction by setting Ueff = 1, the Ueff

and the V begins to compete with each other, a competition that results in fine structures in both

the c- and f -electron spectral functions. We see that Ueff weakens the hybridization gap induced

by V , and V weakens the Mott gap induced by Ueff . The comparisons of the c and f electron

spectral functions with and without electron-phonon interactions are plotted in Fig. 5.3. As shown

in the figure, when there is no electron-phonon interaction, the hybridization V can easily induce a

hybridization gap at relatively high temperature (The gap is already clearly visible when β = 10)

in both the c and f electron spectral functions. The fact that the filling number of conduction

electron is set to be 0.8 dictates the the hybridization gap does not open at the Fermi energy. When

we introduce the electron-phonon interaction by setting Ueff = 1, we see a Mott gap opens in the

conduction electron spectral function. However, compared to the previous section, the Mott gap

opens at a much lower temperature than before. For V = 0.4, Ueff = 1, the Mott gap opens when

β = 10, whereas here, the Mott gap opens when β = 50. Therefore, we see that as V increases, the

Mott metal-insulator transition temperature decreases significantly.
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Figure 5.3: Figure panel (a): When V = 1.2, Ueff = 0, the strong hybridization induces a hybridiza-
tion gap in the c electron spectral functions at low temperatures. Panel (b): When V = 1.2, Ueff = 1,
the hybridization gap that is induced by V is strongly suppressed by the electron-phonon interac-
tion. Panel (c): V = 1.2, Ueff = 0. The hybridization induces a gap slightly above the Fermi energy
in the f electron spectral functions. Panel (d): V = 1.2, Ueff = 1. The hybridization effect is
competing with the electron-phonon interactions.

In this parameter regime where the hybridization is comparable to the electron-phonon inter-

action, the competition between V and Ueff is more obvious than it is for V = 0.4. This strong

competition is clearly captured by the behavior of the two-particle quantities. As shown in Fig. 5.4,

when there are no phonons in the system, the f electron spin susceptibility χff is very small. This is

because for this value of V , the Kondo effect is pretty strong, and the localized f electron moments

are almost fully screened by the conduction electrons. However, when Ueff = 1, the electron-phonon

interaction is competing with Kondo effect, and thus the Kondo screening of the local moments by

conduction electrons is significantly reduced, resulting in a much larger χff compared to the case
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when Ueff = 0. The charge fluctuations due to the electron-phonon interaction is also reflected in

the c electron charge susceptibility χcc, the value of which is much larger when Ueff = 1 than when

Ueff = 0. It is this strong charge fluctuation of the conduction band electrons that surpasses the

Kondo effect.
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Figure 5.4: Susceptibilities versus temperature for V = 1.2. Main panel: The time integrated f
electron spin susceptibility. Inset: The c electron charge susceptibility.

5.3.3 Large hybridization, with and without electron-phonon interaction

In this section, we will explore the region where the hybridization is strong. When hybridization

is much larger than the effective electron-phonon interaction strength, the spectral functions of

both c and f electrons mainly exhibit features due to the hybridization effect, and the effect due

electron-phonon interaction, that is, the opening of a Mott gap at the Fermi energy, is suppressed

by the hybridization effect. When we plot the spectral functions for V = 1.8, Uhub with (Ueff = 1)

and without (Ueff = 0) phonons, we find that the spectral functions do not differ from each other

very much. This is because the electron-phonon interaction effect is dominated by the hybridiza-

tion effect, and the presence or the absence of the electron-phonon dost not make a considerable

difference. However, the electron-phohon interaction effect is still noticeable when the temperature

is low enough. When Ueff = 1, a kink structure at the Fermi energy emerges in both the c electron

spectral functions and f electron spectral functions at low temperature. This kink structure is due

to the electron-phonon interaction which induces charge fluctuations in the conduction band elec-

trons, since the kink becomes larger when we increase the value of Ueff from 0.9 to 1.1, as shown

in Fig. 5.6. Moreover, from Fig. 5.6, where we plot the c electron charge susceptibilities χcc, we
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see that the charge susceptibility becomes larger as Ueff increases. χcc is a measure of the strength

of the charge fluctuations, and the monotonic increase of χcc with respect to Ueff corroborates our

assertion that the kink in the spectral functions at the Fermi energy is due to the electron-phonon

interactions.
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Figure 5.5: V = 1.8, Uhub = 4. Upper left panel: Ueff = 0. The strong hybridization generates
a gap slightly above the Fermi energy in the c electron spectral functions. Upper right panel: c
electron spectral function for Ueff = 1. Here, the hybridization dominates over electron-phonon
interaction, and thus the spectral function still displays a strong hybridization gap. However, a
kink structure at Fermi energy caused by Ueff is also visible. Lower left panel: f electron spectral
function without phonons. Lower right panel: f electron spectral functions for Ueff = 1.

We further plot the f electron spin susceptibility χff and c electron charge susceptibility χcc

to study the competition between Kondo effect and electron-phonon interaction in this parameter

regime. As shown in Fig. 5.7, the absence of the electron-phonon interaction renders both χff

and χcc negligibly small. This is because in the strong hybridization parameter regime, the Kondo
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Figure 5.6: Upper left Panel: The spectral functions of c electrons for V = 1.8, Uhub = 4, β = 40,
with different values of Ueff . Upper right panel: The f electron spectral functions with the same
parameters as that in left panel. Lower panel: c electron charge susceptibilities versus T . χcc

increases when Ueff gets large.

effect, when not frustrated by the electron-phonon interaction, is pretty effective in screening the

local moments, thus making the χff negligible. On the hand, when Ueff = 1, the Kondo effect is

mildly suppressed by the electron-phonon interaction, and thus the χff , which is an indicator of the

presence of the localized f moments, becomes large. Moreover, the presence of the electron-phonon

interaction gives rise to large charge fluctuations, and thus a larger χcc.

5.4 Comparison with NRG results

In Ref. [97], the authors measured the spectral function for f electrons in periodic Anderson

model using numerical renormalization group (NRG) method at zero temperature. Here, we try to
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Figure 5.7: Susceptibilities versus temperature for V = 1.8. Main panel: The time integrated f
electron spin susceptibility. Inset: The c electron charge susceptibility.

reproduce their results using QMC at finite temperature. It is found that for nc = 0.6, nf = 1 with

V 2 = 0.2, Uhub = 2, when β = 50, the spectral functions of our results are in good agreement with

results in Ref. [97]. The temperature evolution of the both c and f electron spectral functions are

shown in Fig. 5.8. When the c filling is 0.6, the Kondo resonance in the f electron spectral function

does not split into two peaks within the temperature range that we studied.
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Figure 5.8: The c and f electron spectral functions for PAM with V 2 = 0.2, Uhub = 2. The c electron
filling number is 0.6, and the f electron filling number is 1. The c electron spectral function develops
a pseudo-gap slightly above Fermi energy and the f electron spectral function develops at Fermi
energy a Kondo resonance which never splits, which is consistent with the results in Ref. [97].
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5.5 Phase diagram

We have drawn a schematic phase diagram to illustrate the competition between V and Ueff . The

phase diagram is drawn at low temperature. We have divided the phase diagram into four regions.

Region I is for small V and small Ueff . In this region, the c electron spectral function is almost

Gaussian, and the f electron spectral function displays two sharp Hubbard bands. Region II is

for Ueff � V . Here, the electron-phonon interaction dominates over hybridization, and thus the

Kondo effect is strongly suppressed. The c electron spectral function exhibits a Mott gap at the Fermi

energy due to the electron-phonon interaction, and the f electron spectral function still contains

two sharp Hubbard bands. Region III is for V � Ueff . Here, the Kondo effect dominates over

electron-phonon interaction. The strong hybridization induces hybridization gaps for both c and f

electron spectral functions. The Kondo resonance splits in this region at low temperature. Region

IV is for V ≈ Ueff . Here, the Kondo effect and the electron-phonon interaction competes with each

other. The c electron spectral function displays a gap that has both Mott feature and hybridization

feature. The Kondo effect can still be seen in the f electron spectral function, although the Kondo

scale TK is significantly reduced compared to the case when Ueff = 0.
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Figure 5.9: Schematic phase diagram for V vs. Ueff . There are four regions in the phase diagram,
depending upon the ratio between V and Ueff . For each region, the c and f electron spectral
functions are briefly depicted.
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5.6 Conclusion

In this paper, we have studied the competition between the hybridization V and the electron-

phonon interaction Ueff in our model. In the small hybridization regime, when the electron-phonon

interaction is weak, the conduction c electron DOS is almost Gaussian, and the spectral function

of the localized 4f electrons exhibits a weak Kondo peak. As the electron-phonon interaction gets

stronger, the c electron spectral functions begin to develop a Mott gap, while the Kondo peak in

the 4f electron spectral function is strongly suppressed. When the V is comparable to the Ueff ,

the competition effect between the Kondo effect and the electron-phonon effect is most obvious. In

this parameter regime, both features of the Kondo effect and the electron-phonon effect are present,

although reduced by each other. When V � Ueff , the Kondo effect dominates and the gap-opening

phenomenon in the c electron spectra due to Ueff is absent. We make comparisons between our

results obtained from QMC and the previous results obtained from NRG, and found that they are

consistent. Finally, a schematic phase diagram illustrating this competition due to the variation of

the relative strengths of V and Ueff is plotted.
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Chapter 6

Two-particle Quantities

6.1 Introduction

Dynamical mean field theory (DMFT) is self-consistent in the one-particle level. As a result of this,

only the phase transitions that can be described by the one-particle quantities can be explicitly seen

in DMFT. For example, the Mott metal-insulator as described in Chapter 4 can be reflected by

the value of the single particle density of states at the Fermi energy, and thus we can directly see

the effect of this phase transition by having a critical slowing down as when approach the phase

transition point. Here, the critical slowing down means that the number of iteration cycles that are

required to have a convergent solution becomes very large near the critical point.

However, from the single particle Green’s functions, we can also construct the two-particle

Green’s functions, or susceptibilities. By definition, the susceptibility is defined as the response

of the systems to an external perturbing field when the external field approaches zero. When the

temperature is above the transition temperature, the susceptibility is positive and well-behaved.

As the temperature approaches the transition temperature from above, the susceptibility tends to

increase rapidly. In DMFT, the susceptibility generally increases as χ ∝ 1
T−Tc when T > Tc, where

Tc is the transition temperature. We can thus locate the transition point by plotting the inverse of

the susceptibility versus temperature and find the point where the inverse of susceptibility becomes

zero. Another way of locating the transition point is to calculate the the leading eigenvalue of the

pairing matrix and find the temperature where the leading eigenvalue of the pairing matrix equals

to 1. We call the eigenvalue that is closed to 1 the leading eigenvalue and the pairing matrix will

be defined later. The two methods of locating the phase transition point are consistent with each

other and can be used complementary evidences of a phase transition.

Although we can define the two particle Green’s function and from its divergence point locate

the phase transition temperature, we cannot claim that the phase transition that we find using this

method really exists in the system, since the DMFT is one-particle level self-consistent and the
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divergence of the two-particle quantities that we construct from the single-particle Green’s function

does not have an influence on the system we are studying. If we want to study the behavior of the

system due to the phase transition that we found from the divergence of the susceptibility, we need

to introduce the order parameter that can describe the existence of the phase, and calculate the

order parameter self-consistently as a function of temperature. From the classical mean field theory,

we know that above the transition temperature, the order parameter is zero and we only a have

homogeneous phase. When the temperature drops below the critical value Tc, the order parameter

becomes finite. By using this method, we also have a transition temperature, and this transition

temperature should be the same as the transition temperature we found using the susceptibility if

the theory is thermodynamically consistent. From the work of Gordon Baym and Leo P. Kadanoff,

we know that a theory is thermodynamically self-consistent if the theory is Φ derivable[98]. Since

the DMFT satisfies this criterion[69], we can thus find the transition temperature using either the

susceptibility method or the order parameter method. However, in order to go below the transition

temperature and see explicitly the effects of the phase transition, we can only use the order parameter

method. On the other hand, we also go below the transition temperature without having a finite

order parameter. This is like the super-cooled water case where we can still have liquid water

phase even when the temperature is below zero. We can also easily frustrate the divergence of

the susceptibility, and significantly reduce or even remove the phase transition temperature[13, 14]

without affecting the single particle Green’s function. Thus, we can say that the phase transition

that is located from the two-particle Green’s function is not as robust the phase transition that is

found from the single-particle Green’s function, and thus in many cases, we can safely go below the

critical temperature which is identified from the divergence of the susceptibilities.

6.2 Bethe-Salpeter equation

In order to calculate the two-particle Green’s functions, we need to use the Bethe-Salpeter equation.

Like the Dyson’s equation that is used to calculate the single-particle Green’s function iteratively,

the Bethe-Salpter equation also employs the iteration principle to calculate the two-particle Green’s

functions. In Dyson’s equation, we use the single-particle self energy as the iteration core, and in

the Bethe-Salpeter equation, we use the vertex function Γ as the iteration core. The Bethe-Salpeter
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equation, which will be denoted BSE from now on, takes the form

χ = χ0 + χ0Γχ (6.1)

= χ0

(
1− Γχ0

)−1

From the Eq. 6.2, we can define the pairing matrix M = Γχ0. We can see that the divergence of χ

is equivalent to the pairing matrix having an eigenvalue that is indistinguishable numerically from

1.

In order to find the phase transition point, we need to calculate the value of the lattice suscepti-

bility χk. We make the assumption that the vertex function is independent of the momentum and

can thus be calculated in the impurity site. The vertex function can be calculated from the Monte

Carlo process using the formula Γ = χ−1
0 −χ−1. Here, both χ and χ0 are local quantities defined in

the impurity site. With the vertex function, we can calculate the two-particle lattice Green functions

χk from the non-interacting lattice two-particle Green function χ0
k. χ0

k can be calculated from the

knowledge of the single-particle lattice Green function, which can in turn be calculated from the

single-particle self energy. The self energy has already been calculated from the DMFT iteration

cycles. Therefore, we can calculate the two-particle Green function following the above steps.

6.3 Frustration of the divergence

From the previous section, we can see that the lattice two-particle Green’s function depends on the

momentum only through the non-interacting two-particle lattice Green’s function χ0
k. In the single

band model, χ0
q =

∑
kGk(iωn)Gk+q(iωn), which can be further written as

χ0
q =

∑
k

1

iωn − εk
1

iωn − εk+q
(6.2)

=

∫∫
dε1dε2

1

iωn − ε1
1

iωn − ε2

∑
k

δ(ε1 − εk)δ(ε2 − εk+q).

Here, we can define the two-particle density of states (DOS) as

∆q =
∑
k

δ(ε1 − εk)δ(ε2 − εk+q). (6.3)
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The form of the two-particle DOS depends on the dispersion relation. For the hyper-cubic lattice

we are using, we have

εk = t1ε1(k) + t2ε2(k) (6.4)

ε1(k) = − 2√
2D

D∑
n=1

cos kn

ε2(k) = − 2√
2D

D∑
n=1

cos 2kn

Now define:

t2 = t21 + t22 (6.5)

t?21 =
t21
t2
, t?22 =

t22
t2

ηq =
t?21

D

D∑
n=1

cos qn +
t?22

D

D∑
n=1

cos 2qn

DOS can be obtained through inverse Fourier transform

∆q(ε1, ε2) =
1

2πt2
√

1− η2
q

exp
(
− ε21 + ε22 − 2ηqε1ε2

2t2(1− η2
q)

)
. (6.6)

Therefore, all the momentum dependence of the two-particle Green’s function comes from the mo-

mentum dependence of the two-particle DOS, which further comes from the single indicator ηq.

When t2 = 0, the minimum of ηq is equal to -1 when the external momentum is equal to (π, π, ..., π).

However, when t2 is finite, the minimum of ηq may deviate from −1, and the external momentum

corresponding to the minimum may not be (π, π, ..., π). By this, we say that the model is frustrated.

6.4 Frustration of CDW susceptibility in PAM+Holstein model

Here, we are only interested in the divergence of the lattice susceptibility, and minimization of ηq

leads to maximization of lattice susceptibility. Therefore, we only use the minimum value of ηq

while calculating lattice susceptibilities. For the hyper-cubic lattice that we are using, if only the

nearest neighbor hopping is considered, then ηq reaches its minimum value that is -1 when lattice

vector Q = (π, π, ..., π). However, if we also take into account the next-nearest neighbor hopping

along the axis directions, then the minimum value that ηq can reach will deviate from -1, and the
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maximum value that the minimum of ηq can reach is -1/2. The CDW transition temperature, which

is identified when the inverse of CDW susceptibility is zero, decreases steadily as ηq shifts from -1 to

-0.5. In Fig. 6.1, we plot the inverse of the hybridization susceptibility and the CDW susceptibility

for different values of ηq together and see clearly that the CDW transition temperature is always

higher than the hybridization critical point temperature that is identified as the point where the

inverse of hybridization susceptibility extrapolates to zero.
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Figure 6.1: The inverse of the hybridization susceptibility and the CDW susceptibilities correspond-
ing to different values of ηq. U = 4, V = 0.955, Ueff = 1,Ω0 = 0.01.

The CDW transition temperature varies as a function of ηq. We plot the transition temperature
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shifts from -1 to -0.5. When ηq = −0.5, the transition temperature is approximately β = 25, which

is still much higher than the temperature corresponding to the critical point, which was identified

as approximately β = 60[86].

6.5 Conclusion

We can see that the CDW susceptibility can be frustrated by introducing the next nearest neighbor

hopping along the axis directions. This frustration mechanism is efficient in reducing the CDW

transition temperature, but it cannot fully reduce the transition temperature to zero. Thus, we can

go below the CDW transition temperature that is found when we only consider the nearest neighbor

hopping. However, we need to be careful when the system temperature is much lower than the CDW

transition temperature, since the CDW cannot be fully frustrated and thus its effect at extremely

low temperature, especially at zero temperature, cannot be blatantly ignored.
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Chapter 7

Conclusion

In conclusion, we have studied the periodic Anderson model (PAM) with Holstein phonons, and

have used this model to try to elucidate the mechanism for the volume collapse observed in cerium.

In order to solve this model, we have used the dynamical mean field theory (DMFT) with the

continuous time quantum Monte Carlo (CTQMC) as our impurity solver.

In order to obtain the pressure-volume (p−V) relation for cerium, we first calculate the free energy

of the model using the formula F =
∫ N

0
µdN . To evaluate the integral numerically, we scan the

chemical potential for fixed hybridization V and β, and solve the model to obtain the corresponding

filing number. By plotting the chemical potential versus filling number, we can obtain the µ − N

curve, and the area enclosed by this curve and the horizontal axis gives us the value of the free

energy. Since we can calculate the free energy at fixed V, β, we can plot the free energy versus V

for different values of β. Once we have the free energy versus V , we can calculate the electronic

part of the pressure from the formula pe = −∂F∂V . Besides the pressure due to the electrons, we

also need to incorporate the pressure due to the bulk modulus. In order to faithfully represent

the properties of the transition metals, we have taken into account of the experiential results by

introducing the volume and temperature dependence of the bulk modulus. With the bulk modulus,

we can obtain the mechanical part of the pressure due to the bulk modulus, which we denote as pB .

Combination of the electronic pressure and the bulk modulus pressure gives us the total pressure,

which is p = pe+pB . What we found is that when we introduce the electron-phonon interaction, we

can see a kink structure emerge at low temperature in the p−V diagram, which means we are seeing

a first order phase transition. This first order phase transition can be identified as the γ−α volume

collapse transition observed in cerium. However, when there is no electron-phonon interaction in

our model, such a kink structure is absent. From this, we may conclude that the electron-phonon

interaction can enhance the first order γ − α volume collapse phase transition. This is consistent

with the experimental results and justifies our introduction of the electron-phonon interaction into

our model.
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We further studied the nature of the first order phase transition by plotting the evolution of the

electron spectral functions with the V and the effective electron-phonon interaction strength Ueff as

tuning parameters. When V is small, as we tune the Ueff from small to large, the conduction band

electron spectral function evolves from an almost Gaussian to a curve with a Mott gap at the Fermi

energy. This is a Mott metal-insulator transition (MIT) driven by the electron-phonon interaction.

We also tried to determine the order of the metal-insulator transition by trying to obtain hysteresis

loops in the − 1
π ImGc(iπT ) versus Ueff plane. To get a hysteresis loop, we fix the chemical potential,

start from a small Ueff when the system is metallic, run the program to obtain a convergent result,

increase the Ueff by a small amount, and initialize the next Ueff from the previous Ueff results,

continue this process until we reach a very large Ueff for which the system is known to be insulting,

and then scan back from the large Ueff to the originally small Ueff . By completing this process,

we have scanned the Ueff from small to large and then from large to small. Finally, we plot the

− 1
π ImGc(iπT ) versus Ueff to see if we can find any hysteresis loop which is an indicator of a first

order phase transition. According to previous results, we know that for small phonon frequency

Ω0, it is currently beyond the numerical precision to tell whether the transition is first order or

not. Thus, we have focused our attention on the parameter regime where Ω0 is large. However,

we found that even when the phonon frequency is pretty large, there is still no stable hysteresis

loop in the − 1
π ImGc(iπT ) versus Ueff plane. However, note that there may exist hysteresis loops

at lower temperature, since previous results obtained from numerical renormalization group at zero

temperature show that when the phonon frequency is larger than 0.05W , where W is the conduction

band width, there should be a first order metal-insulator transition. On example is shown in Fig. 7.1.

Here, we have used a pretty large phonon frequency (Ω0 = 20), yet there is still no stable hysteresis

loop in our program. This means we are either having a continuous metal-insulator transition or

the temperature is not low enough and thus what we are seeing is just a smooth crossover from

metal to insulator. Furthermore, when we dope the system away from half-filling, the discontinuous

Mott transition would be strongly suppressed, thus making the prospect of finding a hysteresis loop

even bleaker. Although the results of the large frequency regime are non-conclusive, we believe that

the metal-insulator transition at small frequency limit is continuous or at most extremely weakly

discontinuous. We held this belief due to the fact it is already shown that the Faclicov-Kimball

model, to which the static (Ω0 = 0) Holstein model can be mapped, should show a continuous Mott

transition when the filling number is non-trivial (The filling number is neither empty nor completely

full). Considering these two limits, we do not anticipate to observe a first order Mott transition
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in our model when the c electron filling number is set to 0.8, away from half-filling, and the bare

phonon frequency is set to be 0.01, which is in close proximity to the Falicov-Kimball model.
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Figure 7.1: The hysteresis loop for V = 0.1, β = 30,Ω0 = 20. Here the phonon frequency is
unphysically large, giving us an almost instantaneous attractive Hubbard model. This should be
the parameter regime where it is easiest to obtain a hysteresis loop. Even for this parameter regime,
a stable hysteresis loop is still non-existent. As shown in the figure, the red curve (hysteresis) was
obtained when we used fewer iteration cycles in the DMFT calculation. However, once we increase
the number of iterations, the original hysteresis loop shrinks to a single line within numerical error
bars. This means we are either having a continuous Mott transition or a smooth crossover above
the transition temperature.

We also study the evolution of the conduction electron spectral function with respect to V for

fixed Ueff = 1. We found that the spectral function is metallic when V is large, and is insulating

when V is small. This means we are having a metal-insulator transition when we change from the

large V (small volume) regime to the small V (large volume) regime. We have already shown that

the transition from the large volume phase to the small volume phase is a first order phase transition

if we include the bulk modulus contribution, thus we can say that the transition exhibits several

features of the Mott transition scenario, e.g., the opening of the Mott gap and the width of the Mott

gap is proportional to the effective electron-phonon interaction.
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We have seen that there is a competition between the hybridization and the electron-phonon

interaction by studying the evolution of the conduction band electron spectral functions. This

competition can be further proved if we consider the evolution of the f electron spectral functions

and the two-particle quantities. From the f electron spectral functions, we found that when the

hybridization is small but finite, when the Ueff = 0, the f spectral function exhibits a Kondo peak

that splits at low temperature, which is consistent with the previous results for the PAM. However,

when we set Ueff = 1, the Kondo peak disappears, indicating that the electron-phonon interaction

can significantly reduce the hybridization effect. When the hybridization (V = 1.2) is comparable to

Ueff = 1, both features of Kondo effect and the electron-phonon effects are present. For example,

we can see the remnants of the Kondo peak in the f electron spectral function, and we can also see

the remnants of the Mott gap in the conduction electron spectral function. When the hybridization

is large (V 1.8), the Kondo effect dominates over the electron-phonon interaction, and the Mott gap

is absent in the c electron spectral function. The magnetic susceptibility of the f electrons can

further illustrate this competition. When the Ueff = 0, the spin susceptibility is small; when the

Ueff = 1, the spin susceptibility is large. This is because the electron-phonon interaction can reduce

the Kondo effect, thus rendering the Kondo screening of the local f electron moments less effective.

As a result, there are more local moments when there are electron-phonon interactions, and thus

the f electron magnetic susceptibility is larger when Ueff = 1. This competition between the

hybridization and the electron-phonon interaction is the driving force for the Mott metal-insulator

transition in our model, which together with the bulk modulus contribution gives rise to the first

order volume collapse transition observed in cerium.
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Appendix A

Calculation of the Total Energy

Here, in this appendix, we are going to show how to calculate the total energy from the knowledge of

the Green function. In this chapter, the path integral formulation of the many body theory will be

employed. For more details about the path integral methods used in this chapter, see Ref. [72, 99].

A.1 Path integral formulation of our model and integration
out the phonons

Our model Hamiltonian in momentum space is

Ĥ = Ĥ0 + ĤI (A.1)

Ĥ0 =
∑
k,σ

(
ĉ†kσ f̂†kσ

)
.

 εk V

V εf

 .

 ĉkσ

f̂kσ

+
∑
k

ω0â
†
kâk

ĤI =
∑
kqσ

gĉ†k+q,σ ĉkσφ̂q + U
∑
kpq

f̂†p↑f̂k↑f̂
†
q↓f̂p+q−k,↓

φ̂q = âq + â†−q

We are going to use the path integral method to integrate out the phonons and obtain a Hamil-

tonian which includes the retarded density-density interactions between the electrons. From this

Hamiltonian, we can calculate the total energy of the system. With path integrals, the partition

function can be written as

Z =

∫
D[c̄, c]D[f̄ , f ]D[ā, a]e−S (A.2)

74



Here, S is the action which is

S =

∫ β

0

dτ
∑
k,σ

(
c̄kσ f̄kσ

)
.

 ∂τ + εk V

V ∂τ + εf

 .

 ckσ

fkσ

 (A.3)

+

∫ β

0

dτ
∑
k

āk(∂τ + ω0)ak +

∫ β

0

dτ
∑
kqσ

gc̄k+q,σckσ(aq + ā−q)

− U

∫ β

0

dτ
∑
kpq

f̄p↑f̄q↓fk↑fp+q−k,↓

The part of the action that involves the phonons is

Sφ =

∫ β

0

dτ
∑
k

āk(∂τ + ω0)ak +

∫ β

0

dτ
∑
kqσ

gc̄k+q,σckσ(aq + ā−q) (A.4)

Integrating out the phonons yields

Zeff =

∫
D[ā, a]e−Sφ (A.5)

= ZBare phonons exp

(
−
∑
q,m

J̄q,m
1

iνm − ω0
Jq,m

)

Here, the partition function for bare phonons is

ZBare phonons =
∏
q

1

1− e−βω0
, (A.6)

and the current Jq,m is defined as

Jq,m = β−1/2g
∑
k,σ

∑
iωn

c̄k−q,σ(iωn − iνm)ck,σ(iωn) (A.7)

= gβ−1/2

∫ β

0

dτeiνmτ
∑
k,σ

c̄k−q,σ(τ)ck,σ(τ)

Its conjugate is

J̄q,m = gβ−1/2

∫ β

0

dτe−iνmτ
∑
kσ

c̄kσ(τ)ck−q(τ) (A.8)
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After integrating out the phonons, we have an effective action

Seff =
∑
q,m

J̄q,m
1

iνm − ω0
Jq,m (A.9)

An important property of Jq,m is that J−q,−m = J̄q,m. Thus, the effective action can be rewritten

as

Seff =
∑
q,m

J̄q,m
1

iνm − ω0
Jq,m (A.10)

=
∑
−q,−m

J̄−q,−m
1

−iνm − ω0
J−q,−m

=
∑
q,m

Jq,m
1

−iνm − ω0
J̄q,m

=
∑
q,m

J̄q,m
1

−iνm − ω0
Jq,m

=
1

2

∑
q,m

J̄q,m
−2ω0

ω2
0 − (iνm)2

Jq,m

Fourier transforming back to τ space, we have

Seff =
1

2
g2
∑
q

∫ β

0

dτ1

∫ β

0

dτ2
∑
k,σ

c̄k,σ(τ1)ck−q,σ(τ1)D0(τ1 − τ2)
∑
p,s

c̄p−q,s(τ2)cp,s(τ2) (A.11)

Here, we have introduced the bare phonon propagator in the effective action,

D0(τ1 − τ2) =
1

β

∑
iνm

2ω0

(iνm)2 − ω2
0

e−iνm(τ1−τ2) (A.12)

= − 1

1− e−βω0
(e−ω0|τ1−τ2| + e−(β−|τ1−τ2|)ω0)

The effective action Seff represents the time-retarded density-density interaction between two c

electrons mediated by the exchange of a virtual phonon. This interaction differs from the instanta-

neous Hubbard interaction not only in that it is time-retarded, but also in that the spins of the two

electrons do not have to be opposite, as required for on-site Hubbard interactions.

With this observation, the original partition function can be recast into the form

Z = ZBare phonons

∫
D[c̄, c]D[f̄ , f ]e−S , (A.13)
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where, the action is

S =

∫ β

0

dτ
∑
k,σ

(
c̄kσ f̄kσ

)
.

 ∂τ + εk V

V ∂τ + εf

 .

 ckσ

fkσ

 (A.14)

+
1

2
g2
∑
q

∫ β

0

dτ1

∫ β

0

dτ2
∑
k,σ

c̄k,σ(τ1)ck−q,σ(τ1)D0(τ1 − τ2)
∑
p,s

c̄p−q,s(τ2)cp,s(τ2)

− U

∫ β

0

dτ
∑
kpq

f̄p↑f̄q↓fk↑fp+q−k,↓

A.2 The effective Hamiltonian obtained from the effective
action Seff

The effective Hamiltonian describing the retarded density-density electron interaction can be ob-

tained by taking the derivative of Seff with respect to β, that is,

Heff =
∂Seff
∂β

(A.15)

=
g2

2

∑
q

∑
k,σ

c̄k,σ(0)ck−q,σ(0)

∫ β

0

D0(τ2)
∑
p,s

c̄p,s(τ2)cp+q,s(τ2)dτ2

+
g2

2

∑
q

∫ β

0

dτ1
∑
k,σ

c̄k,σ(τ1)ck−q,σ(τ1)D0(τ1)
∑
p,s

c̄p,s(0)cp+q,s(0)

+
g2

2

∑
q

∫ β

0

dτ1

∫ β

0

dτ2
∑
k,σ

∑
p,s

c̄k,σ(τ1)ck−q,σ(τ1)
∂D0(τ1 − τ2)

∂β
c̄p,s(τ2)cp+q,s(τ2)

Here, we have taken advantage of the fact that c(β) = −c(0), D0(τ − β) = D0(τ) and D0(−τ) =

D0(τ). In order to get the Hamiltonian in operator notation, we are to rewrite the above effective

Hamiltonian as

Heff = −g
2

2

∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ2c̄k,σ(0)c̄p,s(τ2)D0(τ2)ck−q,σ(0)cp+q,s(τ2) (A.16)

− g2

2

∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ1c̄k,σ(τ1)c̄p,s(0)D0(τ1)ck−q,σ(τ1)cp+q,s(0)

− g2

2

∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ1

∫ β

0

dτ2c̄k,σ(τ1)c̄p,s(τ2)
∂D0(τ1 − τ2)

∂β
ck−q,σ(τ1)cp+q,s(τ2)
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In operator notation, the effective Hamiltonian would be

Ĥeff = −g
2

2

∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ2ĉ
†
k,σ(0)ĉ†p,s(τ2)D0(τ2)ĉk−q,σ(0)ĉp+q,s(τ2) (A.17)

− g2

2

∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ1ĉ
†
k,σ(τ1)ĉ†p,s(0)D0(τ1)ĉk−q,σ(τ1)ĉp+q,s(0)

− g2

2

∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ1

∫ β

0

dτ2ĉ
†
k,σ(τ1)ĉ†p,s(τ2)

∂D0(τ1 − τ2)

∂β
ĉk−q,σ(τ1)ĉp+q,s(τ2)

It turns out that this effective Hamiltonian is useless to us, since we cannot obtain the equation of

motion from this Hamiltonian. Actually, when we integrate out the phonons to obtain a retarded

interaction between electrons, we obtain a system that cannot be described by a Hamiltonian. Path

integral formulation is just designed to deal with this case. Therefore, we will use the path integral

method to derive the equation of the motion. But before we start using that method, we first need

to show that the two methods can yield the same results when the system has both the Hamiltonian

formulation and the path integral formulation.This is the subject of the next section.

A.3 Schwinger-Dyson equation method for the derivation of
the equation of motion for a simplified Holstein model

Schwinger-Dyson equation is a method that furnishes us with the equation of motion of a system

represented in path integrals. To see this, let us consider this simplified Holstein model.

Ĥ = εĉ†ĉ+ ωâ†â+ gĉ†ĉ(â+ â†) (A.18)

The action for this model is

S =

∫ β

0

dτ
(
c̄(∂τ + ε)c+ ā(∂τ + ω)a+ gc̄c(a+ ā)

)
(A.19)

Definition of electron Green function is

G(τ ′ − τ) = −〈T ĉ(τ ′)ĉ†(τ)〉 (A.20)

= − 1

Z

∫
D[c̄, c]D[ā, a]c(τ ′)c̄(τ)e−S

78



Now we are going to derive the equation of motion for the electron’s Green function using both

operator notation and path integral formulation, and show that these two methods yield identical

result.

A.3.1 Operator formulation

Take the derivative of Green function with respect to imaginary time, we have

∂G(τ ′, τ)

∂τ ′
= −δ(τ ′ − τ) + ε〈T ĉ(τ ′)ĉ†(τ)〉+ g〈T ĉ(τ ′)φ̂(τ ′)ĉ†(τ)〉 (A.21)

That is,

(∂τ ′ + ε)G(τ ′, τ) = −δ(τ ′ − τ) + g〈T ĉ(τ ′)φ̂(τ ′)ĉ†(τ)〉 (A.22)

A.3.2 Path integral formulation

For the derivation of equation of motion in the path integral formulation, we are to use the Schwinger-

Dyson method. In this method, the Grassmann numbers c and c̄ are replaced with the shifted ones,

that is,

c→ c′ = c+ δc, (A.23)

c̄→ c̄′ = c̄+ δc̄,

and everything is expanded to first order in δc and δc̄. Consider this quantity,

∫
D[c̄, c]D[ā, a]c̄(τ)e−S[c̄,c;ā,a] =

∫
D[c̄′, c′]D[ā, a]c̄′(τ)e−S[c̄′,c′;ā,a] (A.24)

The action S represented in c̄′, c′ is

S[c̄′, c′; ā, a] = S[c̄, c; ā, a] (A.25)

+

∫ β

0

dτ
(
δc̄(∂τ + ε)c+ c̄(∂τ + ε)δc+ gδc̄c(a+ ā) + gc̄δc(a+ ā)

)
=: S[c̄, c; ā, a] + δS
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Thus, we have (we have taken advantage of the fact that D[c̄, c] = D[c̄′, c′])

∫
D[c̄, c]D[ā, a]c̄(τ)e−S[c̄,c;ā,a] =

∫
D[c̄, c]D[ā, a](c̄(τ) + δc̄(τ))e−S[c̄,c;ā,a]−δS (A.26)

=

∫
D[c̄, c]D[ā, a](c̄(τ) + δc̄(τ))e−S(1− δS)

=

∫
D[c̄, c]D[ā, a]c̄(τ)e−S[c̄,c;ā,a] +

∫
D[c̄, c]D[ā, a]e−S(δc̄(τ)− c̄(τ)δS)

So we have the Schwinger-Dyson equation

0 =

∫
D[c̄, c]D[ā, a]e−S(δc̄(τ)− c̄(τ)δS) (A.27)

In order to get the equation of motion for Green function, we set δc = 0, and thus

δc̄(τ)− c̄(τ)δS (A.28)

= δc̄(τ)− c̄(τ)

∫ β

0

dτ ′(δc̄(∂τ ′ + ε)c+ gδc̄c(a+ ā))

=

∫ β

0

dτ ′
(
δ(τ ′ − τ)δc̄(τ ′)− δc̄(τ ′)(∂τ ′ + ε)c(τ ′)c̄(τ)− gδc̄(τ ′)c(τ ′)(a+ ā)c̄(τ)

)

Plug this back into the Schwinger-Dyson equation, we have

∫ β

0

dτ ′

[
δ(τ − τ ′)− (∂τ ′ + ε)

1

Z

∫
D[c̄, c]D[ā, a]e−Sc(τ ′)c̄(τ) (A.29)

− g
1

Z

∫
D[c̄, c]D[ā, a]e−Sc(τ ′)φ(τ ′)c̄(τ)

]
δc̄(τ ′) = 0

Since this equation holds for any δc̄, we thus, from the definition of Green function in path integral

formulation, have

(∂τ ′ + ε)G(τ ′, τ)− g〈T ĉ(τ ′)φ̂(τ ′)ĉ†(τ)〉 = −δ(τ − τ ′) (A.30)

This is identically the same with the equation of motion that was derived using operator notation.
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A.4 Schwinger-Dyson equation for simplified Holstein model:
with phonons integrated out

The advantage of Schwinger-Dyson equation method for derivation of equation of motion for Green

function is that all we need is the action, rather than the Hamiltonian. Sometimes, the system

can be only represented using path integral formulation, but not Hamiltonian. In this case, the

Schwinger-Dyson equation is the only method available for the derivation of equation of motion.

One such case when the system can be only represented in path integrals is the Holstein model

with phonons integrated out, resulting in a time-retarded electronic density interactions. As already

stated, the simplified Holstein model is represented by the action

S =

∫ β

0

dτ c̄(τ)(∂τ + ε)c(τ) + Sφ, (A.31)

where Sφ is the part of the action for phonons, that is,

Sφ =

∫ β

0

dτ
(
ā(∂τ + ω)a+ gc̄c(a+ ā)

)
(A.32)

The partition function for this model is

Z =

∫
D[c̄, c]D[ā, a]e−S (A.33)

= Zφ

∫
D[c̄, c]e−Seff

Here, Zφ is the partition function for bare phonons, that is, Zφ =
(

1 − e−βω
)−1

, and Seff is the

effective action obtained after integrating out the phonons. The full expression for the effective

action is

Seff =

∫ β

0

dτ c̄(∂τ + ε)c+
1

2
g2

∫ β

0

dτ1

∫ β

0

dτ2c̄(τ1)c(τ1)D0(τ1 − τ2)c̄(τ2)c(τ2) (A.34)

Define a quantity that is invariant under the transformation c→ c′ = c+ δc, c̄→ c̄′ + δc̄′, that is,

∫
D[c̄, c]e−Seff [c̄,c]c̄(τ) =

∫
D[c̄′, c′]e−Seff [c̄′,c′]c̄′(τ) (A.35)
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From this equation, after expanding to first order, we have

0 =

∫
D[c̄, c]e−Seff [c̄,c](−δSeff c̄(τ) + δc̄(τ)) (A.36)

If we set δc = 0 and notice that D0(τ1 − τ2) = D0(τ2 − τ1), then the variation for the action is

δSeff =

∫ β

0

dτδc̄(∂τ + ε)c+ g2

∫ β

0

dτ1

∫ β

0

dτ2δc̄(τ1)c(τ1)D0(τ1 − τ2)c̄(τ2)c(τ2) (A.37)

Thus we have

δc̄(τ)− δSeff c̄(τ) (A.38)

=

∫ β

0

dτ ′δc̄(τ ′)

[
δ(τ − τ ′)− (∂τ ′ + ε)c(τ ′)c̄(τ)− g2c(τ ′)c̄(τ)

∫ β

0

dτ2D
0(τ ′ − τ2)c̄(τ2)c(τ2)

]

It is required that Equation [A.36] should hold for any variation δc̄, thus we have the equation of

motion for Green function as

(∂τ ′ + ε)G(τ ′, τ) (A.39)

− g2 1

Z

∫
D[c̄, c]e−Seff

[
c(τ ′)c̄(τ)

∫ β

0

dτ2D
0(τ ′ − τ2)c̄(τ2)c(τ2)

]
= −δ(τ ′ − τ)

For the above equation of motion, if we set τ = 0, τ ′ = 0−, then we have the expectation value of

the interaction energy as

g2 1

Z

∫
D[c̄, c]e−Seff

[
c̄(0)c(0)

∫ β

0

dτ2D
0(τ2)c̄(τ2)c(τ2)

]
(A.40)

= −(∂τ ′ + ε)G(τ ′)
∣∣∣
τ ′=0−

− δ(0−)

=
1

β

∑
iωn

Σ(iωn)G(iωn)eiωn0+
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A.5 Schwinger-Dyson method for derivation of equation of
motion for periodic Anderson model with electron-phonon
interactions

The model that we are studying, the periodic Anderson model with electron-phonon interactions,

with the phonons being integrated out, is represented by this effective action

S =

∫ β

0

dτ
∑
k,σ

(
c̄kσ f̄kσ

)
.

 ∂τ + εk V

V ∂τ + εf

 .

 ckσ

fkσ

 (A.41)

+
1

2
g2
∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ1

∫ β

0

dτ2c̄k,σ(τ1)ck−q,σ(τ1)D0(τ1 − τ2)c̄p−q,s(τ2)cp,s(τ2)

− U

∫ β

0

dτ
∑
kpq

f̄p↑f̄q↓fk↑fp+q−k,↓

Consider the transformation of the variables,

ck,σ(τ)→ c′k,σ(τ) = ck,σ(τ) + δck,σ(τ) (A.42)

c̄k,σ(τ)→ c̄′k,σ(τ) = c̄k,σ(τ) + δc̄k,σ(τ)

fk,σ(τ)→ f ′k,σ(τ) = fk,σ(τ) + δfk,σ(τ)

f̄k,σ(τ)→ f̄ ′k,σ(τ) = f̄k,σ(τ) + δf̄k,σ(τ)

With this transformation, the action becomes S[c̄, c; f̄ , f ]→ S[c̄′, c′; f̄ ′, f ′] = S[c̄, c; f̄ , f ]+δS. Define

a quantity that is invariant under this transformation,

∫
D[c̄, c]D[f̄ , f ]e−S[c̄,c;f̄ ,f ]

(
c̄k,σ(τ), f̄k,σ(τ)

)
(A.43)

=

∫
D[c̄′, c′]D[f̄ ′, f ′]e−S[c̄′,c′;f̄ ′,f ′]

(
c̄′k,σ(τ), f̄ ′k,σ(τ)

)
=

∫
D[c̄, c]D[f̄ , f ]e−S[c̄,c;f̄ ,f ]−δS

(
c̄k,σ(τ) + δc̄k,σ(τ), f̄k,σ(τ) + δf̄k,σ(τ)

)

After expanding to first order, we have

0 =

∫
D[c̄, c]D[f̄ , f ]e−S

(
δc̄k,σ(τ)− δSc̄k,σ(τ), δf̄k,σ(τ)− δSf̄k,σ(τ)

)
(A.44)
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Here, the variation of action is

δS =

∫ β

0

dτ
∑
k,σ

(
δc̄kσ δf̄kσ

)
.

 ∂τ + εk V

V ∂τ + εf

 .

 ckσ

fkσ

 (A.45)

+

∫ β

0

dτ
∑
k,σ

(
c̄kσ f̄kσ

)
.

 ∂τ + εk V

V ∂τ + εf

 .

 δckσ

δfkσ


+

g2

2

∑
q

∑
k,σ

∑
p,s

∫ β

0

dτ1

∫ β

0

dτ2

[
c̄k,σ(τ1)δck−q,σ(τ1)D0(τ1 − τ2)c̄p−q,s(τ2)cp,s(τ2)

+ δc̄k,σ(τ1)ck−q,σ(τ1)D0(τ1 − τ2)c̄p−q,s(τ2)cp,s(τ2)

+ c̄k,σ(τ1)ck−q,σ(τ1)D0(τ1 − τ2)c̄p−q,s(τ2)δcp,s(τ2)

+ c̄k,σ(τ1)ck−q,σ(τ1)D0(τ1 − τ2)δc̄p−q,s(τ2)cp,s(τ2)
]

− U
∑
pqk

∫ β

0

dτ
[
δf̄p,↑f̄q,↓fk,↑fp+q−k,↓ + f̄p,↑δf̄q,↓fk,↑fp+q−k,↓

+ f̄p,↑f̄q,↓fk,↑δfp+q−k,↓ + f̄p,↑f̄q,↓δfk,↑fp+q−k,↓

]

We have two independent equations, which are

∫
D[c̄, c]D[f̄ , f ]e−S

[
δc̄k,σ(τ)− δSc̄k,σ(τ)

]
= 0 (A.46)∫

D[c̄, c]D[f̄ , f ]e−S
[
δf̄k,σ(τ)− δSf̄k,σ(τ)

]
= 0

84



For the first equation, we can set δc = 0, δf = 0, δf̄ = 0, and then we have

δc̄k,σ(τ)− δSc̄k,σ(τ) (A.47)

= δc̄k,σ(τ)−
∫ β

0

dτ ′
∑
k′,σ′

(
δc̄k′,σ′(τ

′) 0

) ∂τ ′ + εk′ V

V ∂τ ′ + εf


 ck′,σ′(τ

′)c̄k,σ(τ)

fk′,σ′(τ
′)c̄k,σ(τ)


− g2

2

∑
q

∑
k′,σ′

∑
p,s

∫ β

0

dτ1

∫ β

0

dτ2

[
δc̄k′,σ′(τ1)ck′−q,σ′(τ1)D0(τ1 − τ2)c̄p−q,s(τ2)cp,s(τ2)c̄k,σ(τ)

+ c̄k′,σ′(τ1)ck′−q,σ′(τ1)D0(τ1 − τ2)δc̄p−q,s(τ2)cp,s(τ2)c̄k,σ(τ)
]

= δc̄k,σ(τ)−
∫ β

0

dτ ′
∑
k′,σ′

[
δc̄k′,σ′(τ

′)
(

(∂τ ′ + εk′)ck′,σ′(τ
′)c̄k,σ(τ) + V fk′,σ′(τ

′)c̄k,σ(τ)
)]

− g2

2

∑
q

∑
k′,σ′

∑
p,s

∫ β

0

dτ1

∫ β

0

dτ2

[
δc̄k′,σ′(τ1)ck′−q,σ′(τ1)D0(τ1 − τ2)c̄p−q,s(τ2)cp,s(τ2)c̄k,σ(τ)

+ δc̄k′,σ′(τ1)ck′+q,σ′(τ1)D0(τ1 − τ2)c̄p,s(τ2)cp−q,s(τ2)c̄k,σ(τ)
]

=

∫ β

0

dτ ′
∑
k′,σ′

δc̄k′,σ′(τ
′)

[
δk,k′δσ,σ′δ(τ − τ ′)−

(
(∂τ ′ + εk′)ck′,σ′(τ

′)c̄k,σ(τ) + V fk′,σ′(τ
′)c̄k,σ(τ)

)
+

g2

2

∑
q

∑
p,s

∫ β

0

dτ2

[
c̄k,σ(τ)ck′−q,σ′(τ

′)D0(τ ′ − τ2)c̄p,s(τ2)cp+q,s(τ2)

+ c̄k,σ(τ)ck′+q,σ′(τ
′)D0(τ ′ − τ2)c̄p,s(τ2)cp−q,s(τ2)

]]

=

∫ β

0

dτ ′
∑
k′,σ′

δc̄k′,σ′(τ
′)

[
δk,k′δσ,σ′δ(τ − τ ′)−

(
(∂τ ′ + εk′)ck′,σ′(τ

′)c̄k,σ(τ) + V fk′,σ′(τ
′)c̄k,σ(τ)

)

− g2
∑
q

∑
p,s

∫ β

0

dτ2

[
ck′−q,σ′(τ

′)c̄k,σ(τ)D0(τ ′ − τ2)c̄p,s(τ2)cp+q,s(τ2)
]]

Plug this into the path integral, we have the equation

−
〈
g2
∑
q

∑
p,s

∫ β

0

dτ2

[
ck′−q,σ′(τ

′)c̄k,σ(τ)D0(τ ′ − τ2)c̄p,s(τ2)cp+q,s(τ2)
]〉

(A.48)

= −δk,k′δσ,σ′δ(τ ′ − τ)−
[
(∂τ ′ + εk′)G

cc
k,σ;k′,σ′(τ

′ − τ) + V Gfck,σ;k′,σ′(τ
′ − τ)

]
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For the second equation, we can set δf = 0, δc = 0, δc̄ = 0, and then we have

δf̄k,σ(τ)− δSf̄k,σ(τ) (A.49)

= δf̄k,σ(τ)−
∫ β

0

dτ ′
∑
k′,σ′

(
0 δf̄k′,σ′(τ

′)

) ∂τ ′ + εk′ V

V ∂τ ′ + εf


 ck′,σ′(τ

′)f̄k,σ(τ)

fk′,σ′(τ
′)f̄k,σ(τ)


− U

∑
pqk′

∫ β

0

dτ ′
[
δf̄p,↑f̄q,↓fk′,↑fp+q−k′,↓f̄k,σ(τ) + f̄p,↑δf̄q,↓fk′,↑fp+q−k′,↓f̄k,σ(τ)

]
= δf̄k,σ(τ)−

∑
k′,σ′

∫ β

0

dτ ′δf̄k′,σ′(τ
′)
[
V ck′,σ′(τ

′)f̄k,σ(τ) + (∂τ ′ + εf )fk′,σ′(τ
′)f̄k,σ(τ)

]
− U

∑
k′qp

∫ β

0

dτ ′
[
δf̄k′,↑f̄q,↓fp,↑fk′+q−p,↓f̄k,σ(τ)− δf̄k′,↓f̄p,↑fq,↑fp+k′−q,↓f̄k,σ(τ)

]

=
∑
k′,σ′

∫ β

0

dτ ′δf̄k′,σ′(τ
′)

[
δk,k′δσ,σ′δ(τ − τ ′)−

(
V ck′,σ′(τ

′)f̄k,σ(τ) + (∂τ ′ + εf )fk′,σ′(τ
′)f̄k,σ(τ)

)

+ U
∑
pq

(
δσ′,↑f̄k,σ(τ)f̄q,↓fp,↑fk′+q−p,↓ + δσ′,↓f̄p,↑f̄k,σ(τ)fq,↑fp+k′−q,↓

)]

Plug this into the path integral, we have

〈
U
∑
pq

(
δσ′,↑f̄k,σ(τ)f̄q,↓fp,↑fk′+q−p,↓ + δσ′,↓f̄p,↑f̄k,σ(τ)fq,↑fp+k′−q,↓

)〉
(A.50)

= −δk,k′δσ,σ′δ(τ ′ − τ)−
[
V Gcfk,σ;k′,σ′(τ

′ − τ) + (∂τ ′ + εf )Gffk,σ;k′,σ′(τ
′ − τ)

]

Combining the above two equations together, we have the matrix equation

 Egk,σ;k′,σ′(τ
′, τ) φ

φ̃ EUk,σ;k′,σ′(τ
′, τ)

 (A.51)

=

 −δk,k′δσ,σ′δ(τ ′ − τ) 0

0 −δk,k′δσ,σ′δ(τ ′ − τ)


−

 ∂τ ′ + εk′ V

V ∂τ ′ + εf


 Gcck,σ;k′,σ′(τ

′ − τ) Gcfk,σ;k′,σ′(τ
′ − τ)

Gfck,σ;k′,σ′(τ
′ − τ) Gffk,σ;k′,σ′(τ

′ − τ)
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Here, in the above equation, we have defined two quantities

Egk,σ;k′,σ′(τ
′, τ) = −

〈
g2
∑
q

∑
p,s

∫ β

0

dτ2

[
ck′−q,σ′(τ

′)c̄k,σ(τ)D0(τ ′ − τ2)c̄p,s(τ2)cp+q,s(τ2)
]〉

EUk,σ;k′,σ′(τ
′, τ) =

〈
U
∑
pq

(
δσ′,↑f̄k,σ(τ)f̄q,↓fp,↑fk′+q−p,↓ + δσ′,↓f̄p,↑f̄k,σ(τ)fq,↑fp+k′−q,↓

)〉

If we set k = k′, σ = σ′, τ = 0, τ ′ = 0− in Equation [A.51], then we have

 Egk,σ φ

φ̃ EUk,σ

 (A.52)

=

 −δ(0−) 0

0 −δ(0−)


−

 ∂τ ′ + εk V

V ∂τ ′ + εf


 Gcck,σ(0−) Gcfk,σ(0−)

Gfck,σ(0−) Gffk,σ(0−)


=

 −δ(0−) 0

0 −δ(0−)


− 1

β

∑
iωn

 ∂τ ′ + εk V

V ∂τ ′ + εf


 Gcck,σ(iωn) Gcfk,σ(iωn)

Gfck,σ(iωn) Gffk,σ(iωn)

 e−iωnτ
′
∣∣∣
τ ′=0−

=

 −δ(0−) 0

0 −δ(0−)


− 1

β

∑
iωn

 −iωn + εk V

V −iωn + εf


 Gcck,σ(iωn) Gcfk,σ(iωn)

Gfck,σ(iωn) Gffk,σ(iωn)

 eiωn0+

=

 −δ(0−) 0

0 −δ(0−)

+
1

β

∑
iωn

(
G0
k(iωn)

)−1

Gk,σ(iωn)eiωn0+

=

 −δ(0−) 0

0 −δ(0−)

+
1

β

∑
iωn

(
G−1
k,σ(iωn) + Σk,σ(iωn)

)
Gk,σ(iωn)eiωn0+

= −δ(0−)I2×2 +
1

β

∑
iωn

I2×2e
iωn0+

+
1

β

∑
iωn

Σk,σ(iωn)Gk,σ(iωn)eiωn0+

=
1

β

∑
iωn

Σk,σ(iωn)Gk,σ(iωn)eiωn0+
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Therefore, the total potential energy is

EV =
1

2

∑
k,σ

Tr

 Egk,σ φ

φ̃ EUk,σ

 (A.53)

=
1

2

1

β

∑
iωn

∑
k,σ

Tr
(

Σk,σ(iωn)Gk,σ(iωn)
)
eiωn0+

A.6 Total energy for periodic Anderson model with electron-
phonon interactions

In the previous section, we have shown how to calculate the potential energy in periodic Anderson

model (PAM) with electron-phonon interactions. In order to obtain the total energy of the system,

it is also necessary to calculate the kinetic energy. The calculation of kinetic energy is pretty

straightforward. The only thing that calls for special attention is that high-frequency conditioning

is indispensable while summing over all the Matsubara frequencies.

A.6.1 Numerical calculation of kinetic energy

First define some variables that are useful for expressing the Green function.

αn = iωn − (εf − µ)− Σff (A.54)

βn = iωn + µ− Σcc

γn = βn −
(V + Σcf )(V + Σfc)

αn
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The kinetic energy is

Ekinetic =
1

β
Tr

∑
k,σ,iωn

 εk V

V εf


 Gcck,σ(iωn) Gcfk,σ(iωn)

Gfck,σ(iωn) Gffk,σ(iωn)

 (A.55)

=
2

β
Tr
∑
k,iωn

 εk V

V εf


 Gcck (iωn) Gcfk (iωn)

Gfck (iωn) Gffk (iωn)


=

2

β
Tr
∑
k,iωn

 εk V

V εf


 1

γn−εk
V+Σcf

αn
1

γn−εk
V+Σfc

αn
1

γn−εk
1
αn

βn−εk
γn−εk


=

2

β

∑
k,iωn

(
εk

γn − εk
+
V + Σfc

αn

V

γn − εk
+
V + Σcf

αn

V

γn − εk
+
εf
αn

βn − εk
γn − εk

)

=
2

β

∑
k,iωn

εk
γn − εk

+
2

β

∑
iωn

(
V G

fc
(iωn) + V G

cf
(iωn) + εfG

ff
(iωn)

)

The first term in the kinetic energy is

∑
k

εk
γn − εk

=

∫ ∞
−∞

dε
ε

γn − ε
ρ(ε), (A.56)

and ρ(ε) is the one-particle density of states which, for infinite dimensional hyper-cubic lattice, is

ρ(ε) =
1√
2πt

e−
ε2

2t2 . (A.57)

In order to have the best possible result, we need to apply the high-frequency conditioning to

the summation in the calculation of kinetic energy. We are to evaluate the summations analytically

with the assumptions that the self-energy is zero. Thus, we have a summation like this:

1

β

∑
iωn

1

γn − ε
, γn = iωn + µ− V 2

iωn + µ− εf
(A.58)

In order to get a physically meaningful result, we need to introduce a convergence factor in the

summation. That is,

1

β

∑
iωn

eiωn0+

γn − ε
(A.59)

=
1

β

∑
iωn

iωn + µ− εf
(iωn + µ− ε)(iωn + µ− εf )− V 2

eiωn0+
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Consider this contour integral.

∮
z=Reiθ

(z + µ− εf )ez0
+

(z + µ− ε)(z + µ− εf )− V 2

1

eβz + 1
dz (A.60)

It can be shown that the integral on the outer circle z = Reiθ is zero, as R → ∞. From Cauchy’s

theorem, we have

∮
z=Reiθ

= 0 =

∮
z=z++δeiθ

+

∮
z=z−+δeiθ

+
∑
iωn

∮
z=iωn+δeiθ

, (A.61)

z± = −µ+
1

2
(ε+ εf ±

√
∆),∆ = (ε− εf )2 + 4V 2

∮
z=z++δeiθ

= 2πi
1
2 (ε− εf +

√
∆)

√
∆

1

eβz+ + 1
(A.62)∮

z=z−+δeiθ
= 2πi

1
2 (ε− εf −

√
∆)

−
√

∆

1

eβz− + 1∮
z=iωn+δeiθ

= −2πi

β

1

γn − ε

Therefore, we have

1

β

∑
iωn

eiωn0+

γn − ε
=

1
2 (ε− εf +

√
∆)

√
∆

1

eβz+ + 1
+

1
2 (ε− εf −

√
∆)

−
√

∆

1

eβz− + 1
, (A.63)

z± = −µ+
1

2
(ε+ εf ±

√
∆),∆ = (ε− εf )2 + 4V 2,

γn = iωn + µ− V 2

iωn + µ− εf

Another term that requires high-frequency conditioning is the summation over Gff (iωn). Here,

we have

1

β

∑
iωn

Gff0 (iωn)eiωn0+

=
1

β

∑
iωn

iωn + µ− ε
(iωn + µ− εf )(iωn + µ− ε)− V 2

eiωn0+

(A.64)

Consider this contour integral.

∮
z=Reiθ

(z + µ− ε)ez0+

(z + µ− εf )(z + µ− ε)− V 2

1

eβz + 1
dz (A.65)
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Similarly, we have

∮
z=Reiθ

= 0 =

∮
z=z++δeiθ

+

∮
z=z−+δeiθ

+
∑
iωn

∮
z=iωn+δeiθ

, (A.66)

z± = −µ+
1

2
(ε+ εf ±

√
∆),∆ = (ε− εf )2 + 4V 2

∮
z=z++δeiθ

= 2πi
1
2 (−ε+ εf +

√
∆)

√
∆

1

eβz+ + 1
(A.67)∮

z=z−+δeiθ
= 2πi

1
2 (−ε+ εf −

√
∆)

−
√

∆

1

eβz− + 1∮
z=iωn+δeiθ

=
2πi

−β
iωn + µ− ε

(iωn + µ− εf )(iωn + µ− ε)− V 2

Therefore, we have the summation formula

1

β

∑
iωn

Gff0 eiωn0+

(A.68)

=
1

β

∑
iωn

iωn + µ− ε
(iωn + µ− εf )(iωn + µ− ε)− V 2

eiωn0+

=
1
2 (−ε+ εf +

√
∆)

√
∆

1

eβz+ + 1
+

1
2 (−ε+ εf −

√
∆)

−
√

∆

1

eβz− + 1

With the introduction of high-frequency conditioning, the formula for the calculation of kinetic

energy needs to be modified. We are going to use the fully interacting Green function and here the

self energy dependence of the variables αn, βn, γn is restored. That is,

αn = iωn − (εf − µ)− Σff (A.69)

βn = iωn + µ− Σcc

γn = βn −
(V + Σcf )(V + Σfc)

αn

With these notations, the kinetic energy is

Ekinetic =
2

β

∑
k,iωn

(
εk

γn − εk
+
V + Σfc

αn

V

γn − εk
+
V + Σcf

αn

V

γn − εk
+
εf
αn

βn − εk
γn − εk

)
(A.70)

=
2

β

∑
k,iωn

εk
γn − εk

+
2

β

∑
k,iωn

εf
αn

βn − εk
γn − εk

+
2V

β

∑
iωn

(
G
fc

(iωn) +G
cf

(iωn)
)

=

∫ ∞
−∞

dερ(ε)
2

β

∑
iωn

ε

γn − ε
+

∫ ∞
−∞

dερ(ε)
2

β

∑
iωn

εf
αn

βn − ε
γn − ε

+
2V

β

∑
iωn

(
G
fc

(iωn) +G
cf

(iωn)
)
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To apply high-frequency conditioning, we are to make the following replacements:

1

β

∑
iωn

1

γn − ε
→ 1

β

∑
iωn

1

γn − ε
(A.71)

+

(
1
2 (ε− εf +

√
∆)

√
∆

1

eβz+ + 1
+

1
2 (ε− εf −

√
∆)

−
√

∆

1

eβz− + 1
− 1

β

∑
iωn

Gcc0 (iωn)

)
1

β

∑
iωn

1

αn

βn − ε
γn − ε

→ 1

β

∑
iωn

1

αn

βn − ε
γn − ε

+

(
1
2 (−ε+ εf +

√
∆)

√
∆

1

eβz+ + 1
+

1
2 (−ε+ εf −

√
∆)

−
√

∆

1

eβz− + 1
− 1

β

∑
iωn

Gff0 (iωn)

)

Here, we have made the following definitions:

z± = −µ+
1

2
(ε+ εf ±

√
∆), (A.72)

∆ = (ε− εf )2 + 4V 2.

A.6.2 Numerical calculation of potential energy

Now with both kinetic energy and potential energy, we can calculate the total energy of the system.

The total energy of the system can be written compactly as

E = Ekinetic + EV (A.73)

=
1

β

∑
k,σ,iωn

Tr

[(
ε̃k +

1

2
Σ̃k,σ(iωn)

)
G̃k,σ(iωn)

]
eiωn0+

Here, ε̃k, Σ̃k,σ(iωn), G̃k,σ(iωn) are all 2× 2 matrices, which are defined as

ε̃k =

 εk V

V εf

 (A.74)

Σ̃k,σ(iωn) =

 Σcck,σ(iωn) Σcfk,σ(iωn)

Σfck,σ(iωn) Σffk,σ(iωn)


G̃k,σ(iωn) =

 Gcck,σ(iωn) Gcfk,σ(iωn)

Gfck,σ(iωn) Gffk,σ(iωn)


To calculate the numerical value of the potential energy, we also need high frequency conditioning.
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The high frequency behavior of self-energy in DMFT is known to be

 Σcck,σ(iωn) Σcfk,σ(iωn)

Σfck,σ(iωn) Σffk,σ(iωn)

→
 a+ b

ω2
n

+ ic
ωn

0

0 a′ + b′

ωn
+ ic′

ωn

 (A.75)

It is already shown that the potential energy is

EV =
1

2β

∑
k,σ,iωn

Tr
[
Σ̃k,σ(iωn)G̃k,σ(iωn)

]
eiωn0+

(A.76)

=
1

β

∑
k

∞∑
n=−∞

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

93



Next we will only focus on the summation over frequencies. The frequency summation is

Sk =
1

β

∞∑
n=−∞

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

(A.77)

=
1

β

N∑
n=−N

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

+
1

β

−N−1∑
n=−∞

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

+
1

β

∞∑
n=N+1

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

≈ 1

β

N∑
n=−N

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

+
1

β

−N−1∑
n=−∞

Tr

[ a 0

0 a′


 G

cc(0)
k (iωn) G

cf(0)
k (iωn)

G
fc(0)
k (iωn) G

ff(0)
k (iωn)

]eiωn0+

+
1

β

∞∑
n=N+1

Tr

[ a 0

0 a′


 G

cc(0)
k (iωn) G

cf(0)
k (iωn)

G
fc(0)
k (iωn) G

ff(0)
k (iωn)

]eiωn0+

=
1

β

N∑
n=−N

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

+
1

β

∞∑
n=−∞

Tr

[ a 0

0 a′


 G

cc(0)
k (iωn) G

cf(0)
k (iωn)

G
fc(0)
k (iωn) G

ff(0)
k (iωn)

]eiωn0+

− 1

β

N∑
n=−N

Tr

[ a 0

0 a′


 G

cc(0)
k (iωn) G

cf(0)
k (iωn)

G
fc(0)
k (iωn) G

ff(0)
k (iωn)

]eiωn0+

=
1

β

N∑
n=−N

Tr
[
Σ̃k(iωn)G̃k(iωn)

]
eiωn0+

+
1

β

∞∑
n=−∞

(
aG

cc(0)
k (iωn) + a′G

ff(0)
k (iωn)

)
eiωn0+

− 1

β

N∑
n=−N

(
aG

cc(0)
k (iωn) + a′G

ff(0)
k (iωn)

)
eiωn0+
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The potential energy is thus

EV =
∑
k

Sk (A.78)

=
1

β

N∑
n=−N

Tr
[
Σ̃(iωn)G̃(iωn)

]
+ a

∫ ∞
−∞

dερ(ε)

(
1
2 (ε− εf +

√
∆)

√
∆

1

eβz+ + 1
+

1
2 (ε− εf −

√
∆)

−
√

∆

1

eβz− + 1

)

+ a′
∫ ∞
−∞

dερ(ε)

(
1
2 (−ε+ εf +

√
∆)

√
∆

1

eβz+ + 1
+

1
2 (−ε+ εf −

√
∆)

−
√

∆

1

eβz− + 1

)

− 1

β

N∑
n=−N

(
aGcc(0)(iωn) + a′Gff(0)(iωn)

)

Here, we have made the following definitions:

z± = −µ+
1

2
(ε+ εf ±

√
∆), (A.79)

∆ = (ε− εf )2 + 4V 2.
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Appendix B

Maximum Entropy Method

Maximum entropy method is widely used to extract the density of states (DOS) from the knowledge

of Matsubara Green function, whether be it in imaginary time space or imaginary frequency space.

It is a method that is based upon Bayesian analysis, and can give us the best possible inference

given incomplete information. A detailed review of this method is already available in [37]. Here, I

will give only a brief introduction

B.1 Algorithm description

In this section, I will briefly describe the method of extracting the DOS from the imaginary frequency

Matsubara Green function. The spectral function, which is proportional to the DOS, is related with

the Green function through

G(iωn) =

∫ ∞
−∞

dω
A(ω)

iωn − ω
(B.1)

:= KA(iωn)

Here, ωn = (2n+1)π
β is a discrete variable, and ω is a continuous variable, K is the kernel function,

and KA is a short-hand notation for the integration over ω. From the above equation, we can easily

determine the value of G(iωn) once we know the spectral function A(ω). However, in reality, what

we know is the imaginary frequency Green function, which can be computed from quantum Monte

Carlo simulation, and what we want to extract is the spectral function that allows us to compare our

numerical results with experiments. Direct inversion of Equation [B.1] is not viable, since the rapid

decrease of the spectral function at large frequency region renders the Green function insensitive to

the details of the spectral function. Thus, infinitely many spectral functions may correspond to a

single Green function. In order to solve this conundrum, maximum entropy (MaxEnt) method is

devised. In the framework of MaxEnt, what we get is not the precise density of states corresponding

to a Matsubara Green function, rather, it the most probable DOS that can be obtained from the
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existing incomplete and noisy information. In order to do this, we will use Bayesian inference, within

which framework, our search of the most probable DOS can be formulated as, how to maximize the

probability of getting some spectral function given the knowledge of the imaginary frequency Green

function? This probability can be denoted as p(A|Ḡ), and according to the Bayesian inference, we

have the relation

p(A|Ḡ) =
p(A)p(Ḡ|A)

p(Ḡ)
(B.2)

According to [37], p(A) = exp(αS), and p(Ḡ|A) = exp(− 1
2χ

2). From these, we define a quantity

Q,

Q = αS − 1

2
χ2. (B.3)

It is clear that maximization of the probability p(A|Ḡ) is equivalent to maximization of Q. Here, α

is a real number that is introduced for annealing purpose, S is the entropy, and χ2 is the difference

between the actual value of Green function and the expected value of Green function. This formula

can be understood as a generalization of the least square method. When α is zero, maximization of Q

is equivalent to minimization of the difference between the real data and the fitted data. When α→

∞, Q is dominated by entropy, and the maximization of Q is precisely the maximization of entropy.

We can interpret the α as temperature, and the 1
2χ

2 as the energy. With these interpretations, Q

can be interpreted as the negative free energy. Thus, maximization of Q is just the minimization of

the free energy. The entropy is defined as

S = −
∫ ∞
−∞

dωA(ω) log
A(ω)

D(ω)
, (B.4)

where, D(ω) is the default model, and χ2 is defined as

χ2 = (Ḡ−KA)†C−1(Ḡ−KA) (B.5)

In order to understand this formula, some explanation of the Monte Carlo process is needed. The

Matsubara Green function G is obtained from Monte Carlo measurements. In order to eliminate the

correlations between two successive measurements, we have binned the data. Assume that we want

to make 1000 measurements. We will not make these measurements all at once. Rather, we will
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make, say 20 measurements in bin one, and another 20 measurements in bin two, etc, until finally

we have 20 measurements in bin 50. We average the 20 measured Green functions in bin one, and

call it G(1), and similarly in bin two, we get G(2), etc, until we get G(50). The Ḡ that appears in

Equation [B.5] is the average of these 50 bin Green functions. That is, G = 1
N

∑N
i=1G

i, here N is

the bin number. From the binned Green functions, we can calculate the covariance matrix C. The

definition of the covariance matrix is

Cmn =
1

N(N − 1)

N∑
i=1

(
G(i)(iωm)− Ḡ(iωm)

)∗(
G(i)(iωn)− Ḡ(iωn)

)
(B.6)

From the definition, we see that the covariance matrix describes the correlations between adjacent

Matsubara frequencies. It is easy to show that the matrix C is Hermitian, that is, C† = C. For sake

of the simplicity of notations, we will denote ξ = Ḡ−KA. Since ξ is a complex vector, we can rewrite

it as ξ = ξR + iξI . Here, ξR and ξI are the real and imaginary part of the vector ξ, respectively. In

a similar fashion, the inverse of the covariance matrix can also be rewritten as C−1 = C−1
R + iC−1

I .

With these notations, Equation [B.5] can be recast into the form

χ2 = ξTRC
−1
R ξR + ξTI C

−1
R ξI (B.7)

=

(
ξTR ξTI

) C−1
R 0

0 C−1
R


 ξR

ξI


However, before we can do any numerical calculation, some more work still need to be done. Gen-

erally, the covariance matrix may possess exceedingly small eigenvalues, and thus, the covariance

matrix may not be invertible. In order to avoid this problem, we will rotate the covariance into its

diagonal form, and discard these exceedingly small eigenvalues. We know that CR is the a real sym-

metric matrix, thus, it is easy to find an orthogonal matrix U that can rotate C−1
R into a diagonal
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matrix. That is, we can rewrite Equation [B.7] as

χ2 =

(
ξTR ξTI

) UΛ−1UT 0

0 UΛ−1UT


 ξR

ξI

 (B.8)

=

(
ξTRU ξTI U

) Λ−1 0

0 Λ−1


 UT ξR

UT ξI


=

(
ξ̃TR ξ̃TI

) Λ−1 0

0 Λ−1


 ξ̃R

ξ̃I


= ξ̃T

 Λ−1 0

0 Λ−1

 ξ̃

Here,

ξ̃R = UT ξR (B.9)

= UTGR − UTKRA

= G̃R − K̃RA,

ξ̃I = UT ξI

= UTGI − UTKIA

= G̃I − K̃IA,

ξ̃ =

 ξ̃R

ξ̃I


The diagonal matrix Λ may contain exceedingly small eigenvalues, and thus its inverse may diverge.

In order to avoid this kind of singularity, we should discard these exceedingly small eigenvalues. To

do this, we will cut off the matrix Λ. After the cut off, the dimension of the matrix would become

smaller, and we denote this new matrix as Λc. Similarly, the matrix U and the vector ξ̃ will also be

cut off, and we denote the new matrix and vector as Uc and ξ̃c.

Now we can write Q as (Here, and from now on, for sake of simplicity, the subscript c has been

removed. It should be understood that the matrices and vectors that appear in the formula below
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are all truncated matrices and vectors. )

Q = αS − 1

2
χ2 (B.10)

= αS − 1

2
ξ̃TRΛ−1ξ̃R −

1

2
ξ̃TI Λ−1ξ̃I

In the maximum entropy method, we will calculate the extremal values for Q, and the extremum

is obtained by setting the gradient of Q to zero, that is, ∇AQ = 0. The gradient of Q with respect

to A(ωi) is (Here, the originally continuous variable ω has been discretized, and the index i is used

to enumerate the discretized ω. )

f(A(ωi)) =
δQ

δA(ωi)
(B.11)

= −α
(

1 + log
A(ωi)

D(ωi)

)
∆ω

+
∑
nm

K̃R(ωn, ωi)∆ω(Λ−1)nm

(
G̃R − K̃RA

)
m

+
∑
nm

K̃I(ωn, ωi)∆ω(Λ−1)nm

(
G̃I − K̃IA

)
m

We will use Newton’s method to calculate the roots of the equation f(A(ωi)) = 0. In Newton’s

method, we are to solve the iteration equation

An+1(ωi) = An(ωi)−
∑
j

(J−1)ijf(An(ωj)). (B.12)

Here, we have defined the Jacobian matrix as

Jij =
δf(A(ωi))

δA(ωj)
(B.13)

=
δ2Q

δA(ωi)δA(ωj)

= −α∆ω
δij

A(ωi)

−
∑
nm

K̃R(ωn, ωi)∆ω(Λ−1)nmK̃R(ωm, ωj)∆ω

−
∑
nm

K̃I(ωn, ωi)∆ω(Λ−1)nmK̃I(ωm, ωj)∆ω

It is easy to see that the Jaocbian matrix is actually the Hessian matrix for the function Q, with

A(ωi) as the variables. Moreover, the matrix J is negative definite, which guarantees that we can
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always find the maximum for the function Q. Thus, we can rewrite the Equation [B.12] as

−J
(
An+1(ω)−An(ω)

)
= f(An(ω)) (B.14)

Since −J is positive definite, we can use conjugate gradient method to solve the above equation.

The calculate of the inverse of Jaocbian matrix is not recommended for the solution of Equation

[B.12] because of the instability of inverting matrices. The rule of thumb for the numerical solution

of linear systems is that, you should avoid inverting matrices whenever possible. As a result of

this, we adopt the conjugate gradient method for the solution of Equation [B.12]. The conjugate

gradient method is fully described in wikipedia and will not be repeated here. The pseudocode for

this method is displayed in Fig. [B.1].

Figure B.1: The pseudocode for conjugate gradient algorithm. From wikipedia.

When I run the program, I start from a very large α value. As has been noted above, we can

interpret the α as temperature. Maximization of Q, which is equivalent to the minimization of ”free

energy”, is easier to do at high temperature. It can be seen from the definition of Q that when

α →∞, the extremal values of Q will coincide with the extremal values of S. Setting the gradient

101



of entropy to zero, we have

δS

δA(ω)
= −1− log

A(ω)

D(ω)
= 0 (B.15)

Solving the above equation, we have A(ω) = e−1D(ω). Therefore, when α is very large, the spectral

function we have should be very similar to the default model. I have used the Gaussian as the

default model, and run the program by initializing the initial spectral function at small α from

the calculated spectral function at large α. By doing this, we can get relatively smooth spectral

functions free from the spurious features, such as the sharp peaks that do not correspond to any

energy scales in the original model.

B.2 DOS results

I am going to use the python program that I developed to calculate the DOS from the knowledge

of imaginary frequency Green function. In order to test if the program is correct, I assume that we

have a spectral function, which is

A(ω) =
1

2
N(ω,−2.1, 0.4) +

1

2
N(ω, 1.2, 0.5). (B.16)

Here, N(ω, µ, σ) means a normal distribution with mean value µ and standard deviation σ. From

this spectral function, I can calculate the imaginary frequency Green function. I further added

Gaussian noise to the Green function, and from the Green function, I extract the spectral function,

and compare the calculated spectral function with the original spectral function. The comparison

is shown in Fig. B.2.

It can be seen that the calculated result is almost the same as the original spectral function.

Therefore, the program can generate the correct spectral function from the knowledge of the imag-

inary frequency Green function. However, it should be noted that the program is not guaranteed

to give the correct spectral function. I have also tested the program for the spectral functions that

possess rather special features, such as a sharp peak. In that case, the program cannot resolve the

sharp peak. Considering that we are using the program to extract spectra from the Green functions

that are generated from Monte Carlo simulation, we do not expect to have very sharp features in

the spectral function. Actually, when there are too many sharp features in our spectral function

result, we almost always suspect these are spurious features that can be removed when we anneal
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Figure B.2: Comparison of the calculated spectral function with the original known spectral function.
The calculated result and the original test model are almost the same, which provides a sound
vindication of the program.

the system. Here, by anneal the system, I mean we run program from high temperature to low tem-

perature, and use the output from the high temperature as the input for the low temperature. Our

experience is that when we introduce this annealing in temperature, the spurious features disappear,

leaving us with a relatively smooth spectral function. Therefore, it is not a serious drawback of the

program that it cannot resolve the very sharp features of the spectral function.

B.3 Program implementation of the algrithom

Throughout the thesis, I have been using Mark Jarrell’s Fortran code to calculate the DOS. However,

I have also written a python code myself. I have tested my program against Mark’s program, and

they give consistent results. My program for the implementation of the max entropy algorithm can

be found through the link: https://github.com/PrimerLi/maxEntLambda
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Appendix C

Bethe-Salpeter Equation for the Two-band
Model

The Bethe-Salpeter equation can be used to calculate the two-particle quantities, such as the charge

and magnetic susceptibility. The Bethe-Salpeter equation for one-band has already been well known,

and here we will present the derivation of the Bethe-Salpeter equation for the two-band model. Our

two band model Hamiltonian is:

Ĥ = Ĥ0 + Ĥint + Ĥext (C.1)

Here, the bare Hamiltonian is:

Ĥ0 =
∑
k,σ

(
ĉ†kσ f̂†kσ

) εk V

V εf


 ĉkσ

f̂kσ

 , (C.2)

and the coupling of particles to external field is described by Ĥext:

Ĥext =
∑
k,σ

(
ĉ†kσ f̂†kσ

) h11
kσ h12

kσ

h21
kσ h22

kσ


 ĉkσ

f̂kσ

 (C.3)

The interaction of particles is incorporated in Ĥint, which may include the retarded density-density

interaction mediated by electron-phonon coupling.

To avoid cluttered notation, in this section, we will leave out the momentum dependence, and

only focus on the spins and frequencies. Thus, the partition function without momentum dependence

of this Hamiltonian is :

Z =

∫
D[c̄, c]D[f̄ , f ]e−S , (C.4)

104



and the action is:

S =

∫ β

0

dτ
∑
σ

(
c̄σ(τ) f̄σ(τ)

) ∂τ + εc V

V ∂τ + εf


 cσ(τ)

fσ(τ)

 (C.5)

+
1

β

∫∫ β

0

dτ1dτ2
∑
σ

(
c̄σ(τ1) f̄σ(τ1)

) h11
σ (τ1 − τ2) h12

σ (τ1 − τ2)

h21
σ (τ1 − τ2) h22

σ (τ1 − τ2)


 cσ(τ2)

fσ(τ2)


+ Sint

If we Fourier transform both c and f , that is,

cσ(τ) =
1√
β

∑
iωn

cσ(iωn)e−iωnτ (C.6)

fσ(τ) =
1√
β

∑
iωn

fσ(iωn)e−iωnτ ,

and assume that the external field has the property that h(τ + β) = −h(τ), then action becomes:

S =
∑
iωn,σ

(
c̄σ(iωn) f̄σ(iωn)

) −iωn + εc V

V −iωn + εf


 cσ(iωn)

fσ(iωn)

 (C.7)

+
∑
iωn,σ

(
c̄σ(iωn) f̄σ(iωn)

) h11
σ (iωn) h12

σ (iωn)

h21
σ (iωn) h22

σ (iωn)


 cσ(iωn)

fσ(iωn)


+ Sint

In the derivation of the above formula, use has been made of this integral:

1

β

∫ β

0

dτ1

∫ β

0

dτ2e
iωnτ1e−iωmτ2h(τ1 − τ2) = δnm

∫ β

0

dτeiωnτh(τ) (C.8)

Differentiation with respect to external field once gives us the one particle Green function as:

− δ

δhαβσ (iωn)
logZ =

1

Z

∫
D[c̄, c]D[f̄ , f ]e−S c̄ασ(iωn)cβσ(iωn) (C.9)

= 〈T ĉ†ασ ĉβσ〉

= Gβασ (iωn)
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Differentiation with respect to external field twice gives us the two-particle Green function as:

− δ

δhγδσ′ (iωn′)

δ logZ

δhαβσ (iωn)
=

δGβασ (iωn)

δhγδσ′ (iωn′)
(C.10)

= −〈T ĉ†γσ′ ĉ
δ
σ′ ĉ
†α
σ ĉ

β
σ〉+ 〈T ĉ†γσ′ ĉ

δ
σ′〉〈T ĉ†ασ ĉβσ〉

Thus, we see that differentiation of one-particle Green function with respect to external field

once will yield the two-particle Green function. Assume the one particle Green function is :

G−1
σ (iωn) = Bσ(iωn) = iωnI−

 εc V

V εf

− Σσ(iωn)− hσ(iωn) (C.11)

Taking the functional derivative of one particle Green function with respect to h gives:

χαβδγ(iωn, iωn′) =
δGβασ (iωn)

δhγδσ′ (iωn′)
(C.12)

= δσσ′δnn′G
βγ
σ (iωn)Gδασ (iωn)

+ Gβaσ (iωn)Gbασ (iωn)
δΣabσ (iωn)

δGcdσ′′(iωn′′)

δGcdσ′′(iωn′′)

δhγδσ′ (iωn′)

Two particle Green function appears on both sides of this equation, and thus we get an iterative

equation for two particle Green function.

Feynman diagram representation for this equation is shown in Fig (C.1).

Figure C.1: Feynman diagram representation for Bethe-Salpeter equation.

C.1 Magnetic susceptibility

To study magnetic susceptibility, we should set external field like this:

hσ = σh (C.13)
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Then action becomes:

S =
∑
iωn,σ

(
c̄σ(iωn) f̄σ(iωn)

) −iωn + εc V

V −iωn + εf


 cσ(iωn)

fσ(iωn)

 (C.14)

+
∑
iωn,σ

σ

(
c̄σ(iωn) f̄σ(iωn)

) h11(iωn) h12(iωn)

h21(iωn) h22(iωn)


 cσ(iωn)

fσ(iωn)


+ Sint

Take functional derivative of free energy with respect to external field once, and we get:

− δ logZ

δhαβ(iωn)
=
∑
σ

σGβασ (iωn) (C.15)

With a further functional derivative, we get the two-particle Green function as:

− δ

δhγδ(iωn′)

δ logZ

δhαβ(iωn)
=

δ

δhγδ(iωn′)

∑
σ

σGβσ(iωn) (C.16)

= −
∑
σσ′

σσ′〈T ĉ†γσ′ ĉ
δ
σ′ ĉ
†α
σ ĉ

β
σ〉+

∑
σ′

σ′〈T ĉ†γσ′ ĉ
δ
σ′〉
∑
σ

σ〈T ĉ†ασ ĉβσ〉

One particle Green function with presence of external magnetic field is:

G−1
σ (iωn) = Bσ(iωn) = iωnI−

 εc V

V εf

− Σσ(iωn)− σh(iωn) (C.17)

Differentiation of magnetization with respect to external magnetic field is:

δ

δhγδ(iωn′)

∑
σ

σGβασ (iωn) =
∑
σ

σ2Gβγσ (iωn)Gδασ (iωn)δnn′ (C.18)

+
∑
σ

σGβaσ (iωn)Gbασ (iωn)
δΣabσ (iωn)

δGcdσ′′(iωn′′)

δGcdσ′′(iωn′′)

δhγδ(iωn′)

It is already shown that

δ

δhγδ(iωn′)

∑
σ

σGβασ (iωn) (C.19)

= −
∑
σσ′

σσ′〈T ĉ†γσ′ ĉ
δ
σ′ ĉ
†α
σ ĉ

β
σ〉+

∑
σ′

σ′〈T ĉ†γσ′ ĉ
δ
σ′〉
∑
σ

σ〈T ĉ†ασ ĉβσ〉

=
∑
σσ′

σσ′χαβδγσ′σ′σσ(iωn, iωn′)
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Therefore, we have the Bethe-Salpeter equation for magnetic susceptibility:

δ
∑
σ σG

βα
σ (iωn)

δhγδ(iωn′)
=

∑
σσ′

σσ′χαβδγσ′σ′σσ(iωn, iωn′) (C.20)

= δnn′
∑
σ

Gβγσ (iωn)Gδασ (iωn)

+
∑
σσ′

σGβaσ (iωn)Gbασ (iωn)σ′′
δΣabσ (iωn)

δGcdσ′′(iωn′′)
σ′σ′′χdcδγσ′σ′σ′′σ′′(iωn′′ , iωn′)

If we define

Γabcd,z(iωn, iωn′)
.
=

δΣab↑ (iωn)

δGcd↓ (iωn′)
−
δΣab↓ (iωn)

δGcd↑ (iωn′)
(C.21)

χαβδγz (iωn, iωn′)
.
= χαβδγ↑↑↑↑ (iωn, iωn′)− χαβδγ↑↑↓↓ (iωn, iωn′)

χαβδγ0 (iωn)
.
= Gβγ(iωn)Gδα(iωn),

and sum over all spin indices, then we get the Bethe-Salpeter equation for magnetic susceptibility:

χαβδγz (iωn, iωn′) = δnn′χ
αβδγ
0 (iωn) + χαβba0 (iωn)Γabcd,z(iωn, iωn′′)χ

dcδγ
z (iωn′′ , iωn′) (C.22)

C.2 Charge susceptibility

In the case of charge susceptibility, the external field is independent of spin indices, that is, hσ = h.

For this external field, action is:

S =
∑
iωn,σ

(
c̄σ(iωn) f̄σ(iωn)

) −iωn + εc V

V −iωn + εf


 cσ(iωn)

fσ(iωn)

 (C.23)

+
∑
iωn,σ

(
c̄σ(iωn) f̄σ(iωn)

) h11(iωn) h12(iωn)

h21(iωn) h22(iωn)


 cσ(iωn)

fσ(iωn)


+ Sint
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Thus, the functional derivative of free energy with respect to external field is:

− δ logZ

δhαβ(iωn)
=

∑
σ

Gβασ (iωn) (C.24)

− δ

δhγδ(iωn′)

δ logZ

δhαβ(iωn)
=

δ

δhγδ(iωn′)

∑
σ

Gβασ (iωn)

= −
∑
σσ′

〈T ĉ†γσ′ ĉ
δ
σ′ ĉ
†α
σ ĉ

β
σ〉+

∑
σ′

〈T ĉ†γσ′ ĉ
δ
σ′〉
∑
σ

〈T ĉ†ασ ĉβσ〉

=
∑
σσ′

χαβδγσ′σ′σσ(iωn, iωn′)

One particle Green function with presence of external charge field is:

G−1
σ (iωn) = Bσ(iωn) = iωnI−

 εc V

V εf

− Σσ(iωn)− h(iωn) (C.25)

Similarly, we have Bethe-Salpeter equation for charge susceptibility:

δ
∑
σ G

βα(iωn)

δhγδ(iωn′)
=

∑
σσ′

χαβδγσ′σ′σσ(iωn, iωn′) (C.26)

= δnn′
∑
σ

Gβγσ (iωn)Gδασ (iωn)

=
∑
σσ′

Gβaσ (iωn)Gbασ (iωn)
δΣabσ (iωn)

δGcdσ′′(iωn′′)
χdcδγσ′σ′σ′′σ′′(iωn′′ , iωn′)

Define:

χαβδγC (iωn, iωn′)
.
= χαβδγ↑↑↑↑ (iωn, iωn′) + χαβδγ↑↑↓↓ (iωn, iωn′) (C.27)

Γabcd,C(iωn, iωn′)
.
=

δΣab↑ (iωn)

δGcd↑ (iωn′)
+
δΣab↓ (iωn)

δGcd↑ (iωn′)

Then Bethe-Salpeter equation for charge susceptibility in its final form is:

χαβδγC (iωn, iωn′) = δnn′χ
αβδγ
0 (iωn) + χαβba0 (iωn)Γabcd,C(iωn, iωn′′)χ

dcδγ
C (iωn′′ , iωn′) (C.28)
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