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Abstract

This thesis deals with understanding quantum gravitational effects in those anisotropic spacetimes

which serve as black hole interiors. Two types of spacetime are investigated. Kantowski-Sachs spacetime

and Bianchi-III LRS spacetime. The former, in vacuum, is the interor spacetime for Schwarzschild

black holes. The latter is the interior for higher genus black holes. These spacetimes are studied in

the context of loop quantum cosmology. Using effective dynamics of loop quantum cosmology, the

behavior of expansion and shear scalars in different proposed quantizations of the Kantowski-Sachs

spacetime with matter is investigated. It is found that out of the various proposed choices, there is

only one known prescription which leads to the generic bounded behavior of these scalars. The bounds

turn out to be universal and are determined by the underlying quantum geometry. This quantization

is analogous to the so called ‘improved dynamics’ in the isotropic loop quantum cosmology, which is

also the only one to respect the freedom of the rescaling of the fiducial cell at the level of effective

spacetime description. Other proposed quantization prescriptions yield expansion and shear scalars

which may not be bounded for certain initial conditions within the validity of effective spacetime

description. These prescriptions also have a limitation that the “quantum geometric effects” can occur

at an arbitrary scale. We show that the ‘improved dynamics’ of Kantowski-Sachs spacetime turns out

to be a unique choice in a general class of possible quantization prescriptions, in the sense of leading to

generic bounds on expansion and shear scalars and the associated physics being free from fiducial cell

dependence. The behavior of the energy density in the ‘improved dynamics’ reveals some interesting

features. Even without considering any details of the dynamical evolution, it is possible to rule out

pancake singularities in this spacetime. The energy density is found to be dynamically bounded. These

results show that the Planck scale physics of the loop quantized Kantowski-Sachs spacetime has key

features common with the loop quantization of isotropic and Bianchi-I spacetimes.

The loop quantum dynamics of Kantowski-Sachs spacetime and the interior of higher genus black

hole spacetimes with a cosmological constant has some peculiar features not shared by various other

spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects

resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with

small spacetime curvature does not emerge in either the subsequent backward or the forward evolution.

Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces.
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Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective

metric is a solution to the Einstein’s field equations. Analysis of the components of the Ricci tensor

shows that after the singularity resolution, the Kantowski-Sachs spacetime leads to an effective metric

which can be interpreted as of the ‘charged’ Nariai spacetime, while the higher genus black hole interior

can similarly be interpreted as anti Bertotti-Robinson spacetime with a cosmological constant. These

spacetimes are ‘charged’ in the sense that the energy momentum tensor that satisfies the Einstein’s field

equations is formally the same as the one for the uniform electromagnetic field, albeit it has a purely

quantum geometric origin. The asymptotic spacetimes also have an emergent cosmological constant

which is different in magnitude, and sometimes even its sign, from the cosmological constant in the

Kantowski-Sachs and the interior of higher genus black hole metrics. With a fine tuning of the latter

cosmological constant, we show that ‘uncharged’ Nariai, and anti Bertotti-Robinson spacetimes with a

vanishing emergent cosmological constant can also be obtained.
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Chapter 1
Introduction

Einstein’s century old general theory of relativity has been extremely successful in explaining

our cosmos and its dynamics. We now know that our universe is expanding, light bends in

gravitational field, rotating binary neutron stars loose energy due to gravitational waves, there

is a black hole at the center of our galaxy and so on. In most situations thrown out by the

cosmos, general relativity is a perfectly adequate theory to explain it, but the theory has one

major drawback. It is not compatible with the other main pillar of modern Physics, quantum

mechanics. Hence, in phenomena where quantum effects are important along with gravity,

physicists hit a road block. This inability to attain a harmony between general relativity and

quantum mechanics is one of the deepest conceptual problems in present day physics. The

very first solution found for Einstein’s equations of general relativity corresponds to spherical

non-rotating black hole (Schwarzschild black hole). This solution was singular (a point where

the equations break down) at the center of spherical symmetry. Such singularities - where

spacetime comes to an abrupt halt was seen in other solutions of Einstein’s equations as well.

Arguably the most famous of such singularities is the putative big bang singularity at the

‘beginning’ of our universe. The singularity theorems proved by Geroch, Hawking and Penrose

showed that singularities arise naturally in Einstein’s theory. On the observational front, there

are evidences for existence of black holes (rotating ones, though) and for expansion of the

universe (which when traced back leads to a singular point). Hence there is a pressing need to

understand black holes, big bang and other such singularities that appear in general relativity.

This issue of understanding singularities in general relativity is related to one of the most

important conceptual problems in modern day Physics - the dissonance between the quantum

theory and general relativity. Quantum field theory - the theory of subatomic particles and

their interactions with each other has not yet found a way to incorporate gravity. Similarly,

general relativity that governs the large scale evolution of cosmos does not confirm to laws of
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quantum mechanics. It is clear that to comprehend this universe better, it is absolutely essential

to have a theory which accounts for both gravity as well as quantum mechanics. Our research

aims to contribute towards the growing body of work trying to achieve this goal. Specifically,

our research revolves around the two puzzles of interior of the black hole and the quantum

‘beginning’ of our universe. It has been long thought that a quantum theory of gravity will

provide important insights on these problems.

Loop quantum gravity (LQG) [1] is one of the leading candidates for a theory of quan-

tum gravity. It is a non-nonperturbative approach to quantizing gravity that maintains the

background independence of general relativity. The name arises from the usage of holonomies

around loops as basic variables. LQG has already produced a lot of impressive results such

as the existence of a minimum area gap and calculation of black hole entropy. Though a full

theory of quantum gravity is not yet available, insights on the problem of classical singulari-

ties have been gained for various spacetimes in loop quantum cosmology (LQC) in recent years

[2]. LQC is a quantization of symmetry reduced spacetimes using techniques of loop quan-

tum gravity (LQG)which is a nonperturbative canonical quantization of gravity based on the

Ashtekar variables: the SU(2) connections and the conjugate triads. The elementary variables

for the quantization are the holonomies of the connection components, and the fluxes of the

triads. The classical Hamiltonian constraint, the only non-trivial constraint left after symmetry

reduction in the minisuperspace setting, is expressed in terms of holonomies and fluxes and

is quantized. Quantization of various isotropic models in LQC demonstrates the resolution of

classical singularities when the spacetime curvature reaches Planck scale. The big bang and big

crunch are replaced by a quantum bounce, which first found in the case of the spatially flat

isotropic model [3, 4, 5] is tied to the underlying quantum geometry and has been shown to

be a robust phenomena through different analytical [6] and numerical investigations [7, 8, 9].

This was a huge improvement over the previously popular Wheeler-de Witt (WDW) approach

to quantum cosmology which could not achieve the resolution of singularities in cosmology. One

of the key differences of LQC when compared to WDW theory is that the basic configuration

variables are holonomies. The existence of a minimum area in LQG implies that the loops

around which holonomies are constructed cannot be made to shrink arbitrarily. The correc-

tions to dynamics due to these holonomies make gravity repulsive at scales comparable to the
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Planck scale. Thus when evolving the FRW spacetime backwards, before reaching the putative

singularity, the quantum corrections stop the contraction and the make time to expand towards

further past. Thus instead of the big bang of classical (or WDW) cosmology, the universe un-

dergoes a big bounce. A generalization of these results has been performed for Bianchi models

[10, 11, 12, 13, 14, 15, 16, 17], where the quantum Hamiltonian constraint also turns out to be

non-singular.

The LQC equations governing the evolution of the universe are typically difference equa-

tions that are not too conducive for extracting physics analytically. The intractability of the

equations become even more pronounced in anisotropic or inhomogeneous settings. However,

under simplifying assumption that the bounce occurs at a high volume (compared to the Planck

volume), and that the wavefunction of the universe is highly peaked, one can approximate the

difference equations of LQC with a set of differential equations. For sharply peaked states which

lead to a macroscopic universe at late times, it is possible to derive an effective spacetime de-

scription [18, 19, 20]. Additionally, instead of calculating the expectation values of observables

as in LQC, one can apply techniques of classical mechanics to an effective Hamiltonian that

incorporates quantum corrections. Due to its tractability and the remarkable agreement with

LQC, the effective theory has been widely used in literature. For example, the effective the-

ory was used in calculating the effect of LQC in pre-inflationary dynamics of FRW spacetimes

and to prove that strong singularities (points in spacetime beyond which geodesics cannot be

extended) do not occur in flat isotropic model. Due to recent progress in numerical techniques

in LQC achieved here in LSU, it was possible to test the effective theory for FRW spacetimes

for very general states[21, 8]. Introduction of high performance computing techniques to loop

quantum cosmology has facilitated the comparison of evolution of widespread wave functions

in LQC with that of predictions of effective theory. Effective dynamics has been extremely

useful in not only extracting physical predictions, but also to gain insights on the viability of

various possible quantizations. In particular it has been shown that for isotropic models there

is a unique way of quantization, the so called ‘improved dynamics’ or the µ̄ quantization [5],

which results in a consistent ultra-violet and infra-red behavior and is free from the rescalings

of the fiducial cell introduced to obtain finite integrations on the non-compact spatial manifold

[22, 23]. Note that the fiducial cell which acts like an infra-red regulator is an arbitrary choice
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in the quantization procedure. Hence a consistent quantization prescription must yield physical

predictions about observables such as expansion and shear scalars independent of the choice of

this cell if the spatial topology is non-compact.

The improved dynamics quantization of the isotropic LQC results in a generic bound on

the expansion scalar of the geodesics in the effective spacetime and leads to a resolution of all

possible strong singularities in the spatially flat model [24, 25]. These results have also been

extended to Bianchi models, where µ̄ quantization results in generic bounds on expansion and

shear scalars [23, 27, 28, 17], and the resolution of strong singularities in Bianchi-I spacetime

[27]. There are other possible ways to quantize isotropic and anisotropic models, such as the

earlier quantization of isotropic models in LQC – the µo quantization [29, 4] and the lattice

refined models [30]. In these quantization prescriptions,1 quantum gravitational effects can

occur at arbitrarily small curvature scales and the expansion and shear scalars are not bounded

in general [22, 23].

In the context of the black holes, effective Hamiltonian techniques in LQC can again be

employed to gain insights on the Planck scale physics in the interior spacetime. In particu-

lar, the Schwarzschild black hole interior corresponds to the vacuum Kantowski-Sachs space-

time. Similarly, Schwarzschild de Sitter and Schwarzschild anti-de Sitter black hole interiors

can also be studied in minisuperspace setting using Kantowski-Sachs cosmology with a positive

and a negative cosmological constant respectively. Additionally the Bianchi III LRS spacetime

which is analogous to Kantowski-Sachs spacetime but with a negative spatial curvature, turns

out to be corresponding to the higher genus black hole interior. Using symmetries of these

spacetimes, the connection and triad variables simplify and a rigorous loop quantization can

be performed which results in a quantum difference equation, and an effective spacetime de-

scription. Loop quantization of Kantowski-Sachs spacetimes has been mostly studied for the

vacuum case [32, 33, 34, 35, 36, 37, 38], where the quantum Hamiltonian constraint has been

found to be non-singular. Ashtekar and Bojowald proposed a quantization of the interior of the

1Our usage of term “quantization prescriptions” in loop quantization here is different from an earlier work

in isotropic LQC [31]. Here different quantum prescriptions refer to the way the area of the loops over which

holonomies in the quantum theory are constructed are constrained with respect to the minimum area gap.

Whereas in Ref. [31], different quantum prescriptions were used to distinguish the quantum Hamiltonian con-

straints in the µ̄ quantization of isotropic LQC.

4



Schwarzschild interior and concluded that the wavefunction of universe can be evolved across

the classical central singularity pointing towards singularity resolution [32]. Spherically symmet-

ric spacetimes have been studied in the midisuperspace setting by Campiglia, Gambini, Pullin

[37, 35, 36], to quantize Schwarzschild black hole [38] and calculate the Hawking radiation [39].

Though these works provide important insights on the quantization of black holes in LQG, it

is to be noted that the quantization prescription used in these works is analogous to the earlier

works in isotropic LQC (the µo quantization) which was found to yield inconsistent physics. In

particular, the loop quantization in these models is carried out such that the loops over which

holonomies are considered have edge lengths (labeled by δb and δc) as constant. As in the case

of the µo quantization in LQC, the constant δ quantization of Schwarzschild interior has been

shown to be dependent on the rescalings of the fiducial length Lo in the x direction of the R×S2

spatial manifold [40, 41, 42]. To overcome these problems, Boehmer and Vandersloot proposed

a quantization prescription motivated by the improved dynamics in LQC [40], which we label

as µ̄ quantization in Kantowski-Sachs model. In this prescription, δb and δc depend on triad

components in such a way that the effective Hamiltonian constraint respects the freedom in

rescaling of length Lo. This prescription has been used to understand the phenomenology of the

Schwarzschild interior [43] and has been recently used to loop quantize spherically symmetric

spacetimes [42]. It is to be noted that this prescription leads to “quantum gravitational effects”

not only in the neighborhood of the physical singularity at the origin, but also at the coordinate

singularity at the horizon, which points to the limitation of dealing with Schwarzschild interior

in this setting. This problem has been noted earlier, see for eg. Ref. [43] where the problem

with the fiducial cell at the horizon in this prescription is noted. However, note that such an

issue does not arise in the presence of matter which is the focus of the present manuscript.

In literature, another quantization prescription inspired by the improved dynamics, which

we label as the µ̄′ prescription2 has been proposed. In this prescription though edge lengths δb

and δc are functions of the triads, problems with fiducial length rescalings persist [41]. These

prescriptions have also been analyzed for the von-Neumann stability of the quantum Hamiltonian

2Our labeling of the µ̄ and µ̄′ prescriptions in Kantowski-Sachs spacetime is opposite to that of Ref. [41].

This difference is important to realize to avoid any confusions about the physical implications or the limitations

of these prescriptions while relating this work with Ref. [41].
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constraints which turn out to be difference equations [30]. It was found that µ̄′ quantization,

in contrast to the µ̄ quantization, does not yield a stable evolution. These studies indicate that

if we consider fiducial length rescaling issues, µ̄ quantization in the Kantowski-Sachs spacetime

is preferred over the constant δ quantization [32] and the µ̄′ quantization prescription [41].

However one may argue that these issues which arise for the non-compact spatial manifold, can

be avoided if the topology of the spatial manifold is compact (S1 × S2).

Our first goal, which is studied in Chapter 2, deals with the following issue. For all the models

studied so far, it has been found that all three prescriptions lead to singularity resolution.

Still, little is known about the conditions under which singularity resolution occurs for the

arbitrary matter. Hence, various pertinent questions remain unanswered. In particular, which

of these quantization prescriptions promises to generically resolve all the strong singularities3

within the validity of the effective spacetime description in LQC? Is it possible that in any of

these quantization prescriptions, expansion and shear scalars may not be generically bounded in

effective dynamics which disfavor them over others? Are there any other consistent quantization

prescriptions for the Kantowski-Sachs model, or is the µ̄ quantization prescription unique as in

the isotropic LQC? Finally, what is the fate of energy density if expansion and shear scalar are

generically bounded? Note that in the isotropic LQC, and the Bianchi-I model similar questions

were raised in Refs. [22, 24, 27], and the answers led to µ̄ quantization as the preferred choice.

It turned out to be a unique quantization prescription leading to generic bounds on expansion

and shear scalars, which were instrumental in proving the resolution of all strong singularities

in the effective spacetime [24, 27].

We answer these questions in the effective spacetime description in LQC for Kantowski-

Sachs spacetime with minimally coupled matter. The expansion and shear scalars are tied to

the geodesic completeness of the spacetime and are independent of the fiducial length at the

classical level. We will be interested in finding the quantization prescription which promises to

resolve all possible classical singularities generically. Such a quantization prescription is expected

to yield bounded behavior of these scalars. It is also reasonable to expect, due to the underlying

Planck scale quantum geometry, that in the bounce regime, depending on the approach to the

classical singularity, at least one of the scalars takes Planckian value. We find that in the effective

3For a discussion of the strength of the singularities in LQC, see Ref. [24].
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dynamics for constant δ and µ̄′ prescriptions, these scalars are not necessarily bounded above.

In the cases where the classical singularities are resolved, it is possible that the expansion and

shear scalars in these prescriptions can take arbitrary values in the bounce regime. In contrast,

for the µ̄ quantization prescription, we show that the expansion and shear scalars turn out to

be generically bounded by universal values in the Planck regime. It is to be noted that in the µ̄

prescription, the bounded behavior of the expansion scalar has been mentioned earlier for the

Schwarzschild interior [44].

We find that the behavior of expansion and shear scalars in the µ̄ prescription is similar to

the improved dynamics of isotropic and Bianchi-I spacetime in LQC where the universal bounds

on expansion and shear scalars were found. Next, we address the important question of the

uniqueness of the µ̄ prescription. For this we consider a general ansatz to consider edge lengths

δb and δc as functions of triads, allowing a large class of loop quantization prescriptions in

the Kantowski-Sachs spacetime. We find that demanding that the expansion and shear scalars

be bounded leads to a unique choice – the µ̄ quantization prescription. In this quantization

prescription we also investigate the behavior of the energy density and find that its potential

divergence is determined only by the vanishing gΩΩ component of the spacetime metric. This is

unlike the behavior in the classical GR, and other quantization prescriptions where divergence

in energy density can occur when either of gxx or gΩΩ components vanish. An immediate

consequence of this behavior is that the pancake singularities which occur when gxx component

of the line element approaches zero, and gΩΩ is finite, are forbidden. It turns out that energy

density is bounded dynamically, since gΩΩ never becomes zero and approaches an asymptotic

value. This property of gΩΩ was first seen in the case of vacuum Kantowski-Sachs spacetime,

and turns out to be true for all perfect fluids [45]. These results show that the µ̄ quantization

in the Kantowski-Sachs spacetime is strikingly similar to the µ̄ quantization in the isotropic

and Bianchi-I spacetimes. It leads to generic bounds on the expansion and shear scalars and is

independent of the rescalings of the fiducial cell.

Our first main result is that the analysis of the expansion and shear scalars for the loop

quantized Kantowski-Sachs spacetime reveals that there exists a unique quantization prescrip-

tion which leads to their universally bounded behavior [46]. In Chapter 3, similar conclusions

hold for the higher genus black hole interiors. Using the corresponding effective Hamiltonian
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approach for this quantization prescription, singularity avoidance via a quantum bounce due

to underlying loop quantum geometric effects in black hole interior spacetimes has been found

[40, 41, 47]. These studies noted that the emergent spacetime is “Nariai type” [40, 47]. Further,

these “Nariai type” spacetimes were found to be stable under homogeneous perturbations in

the case of vacuum [48]. However, the detailed nature of these spacetimes and their relation if

any with the known spacetimes in the classical theory was not found. An examination of these

spacetimes, which is a goal of Chapter 3, reveals many novel interesting features which so far

remain undiscovered in LQC.

The spatial manifold of Kantowski-Sachs spacetime has an R × S2 topology whereas the

higher genus black hole interior has the spatial topology of R × H2. Numerically solving the

loop quantum dynamics one finds that on one side of the temporal evolution, in the asymptotic

limit, the spacetime emergent after the bounce has the same spatial topology, but has a constant

radius for the S2 (H2 in the case of higher genus black hole) part and an exponentially increas-

ing R part. We thus obtain a spacetime which is a product of two constant curvature spaces.

Interestingly, though the emergent spacetime has a high spacetime curvature, yet it turns out

to be a solution of the Einstein’s field equations. In the analysis of these spacetimes, the sign

of the Ricci tensor components provide important insights. Here we recall that in the classical

GR, properties of the sign of the Ricci tensor components have been used to establish dualities

between (anti) Nariai and (anti) Bertotti Robinson spacetimes [49]. Analysis of the components

of the Ricci tensor reveals that the emergent spacetime in the evolution of Kantowski-Sachs

spacetime with positive or negative cosmological constant is a ‘charged’ Nariai spacetime, where

as the emergent spacetime in the evolution of higher genus black hole interior with a negative

cosmological constant is actually an anti-Bertotti-Robinson spacetime with a cosmological con-

stant [50]. These emergent spacetimes are ‘charged’ in the sense that they are solutions of the

classical Einstein’s field equations with a stress energy tensor which formally corresponds to the

uniform electromagnetic field. In addition, these spacetimes in the same asymptotic limit after

the bounce also have an emergent cosmological constant, different from the one initially chosen

to study the dynamics of black hole interiors. We find that the asymptotic emergence of ‘charge’

and cosmological constant that develop after the bounce is purely quantum geometric in origin.

The ‘charged’ Nariai and anti-Bertotti-Robinson spacetimes occur in only one side of the tempo-
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ral evolution in the Kantowski-Sachs spacetime with positive and negative cosmological constant

and in higher genus black hole interior spacetimes with a negative cosmological constant respec-

tively. The higher genus black hole interior with a positive cosmological constant does not yield

any of these spacetimes in the asymptotic limit. The emergence of ‘charged’ Nariai and anti-

Bertotti-Robinson spacetimes present for the first time examples of time asymmetric evolution

in LQC, and indicate the same for the black hole interiors in the loop quantization. However,

note that the uncharged Nariai spacetime which is a non-singular spacetime classically [51], can

be considered as the maximal Schwarzschild-de Sitter black hole where the cosmological horizon

and the black hole horizon of a Schwarzschild-de Sitter black hole coincide [52]. Thus the emer-

gent spacetimes in the above cases in LQC are closely related to the original spacetimes - but

are rather special as they are nonsingular and are parameterized by an emergent ‘charge’ and

an emergent cosmological constant. Our analysis shows that with a fine tuning of the value of

the cosmological constant in the Kantwoski-Sachs spacetime, it is possible to obtain ‘uncharged’

Nariai spacetime. However, such a spacetime turns out to be unstable [45]. Similarly, for the

higher genus black hole interior, an anti-Bertotti-Robinson spacetime with a vanishing emergent

cosmological constant can arise, but it too is unstable.

All the above interpretations of emergent spacetime after the bounce is based on the fact that

it is a product of two spaces having constant curvature R0
0 = R1

1 = k1 and R2
2 = R3

3 = k2, which

could be written as k1 = λ+ α1, k2 = λ+ α2. Now if we set α1 = −α2 < 0, it is charged Nariai

while for α1 = −α2 > 0, it is anti-Bertotti-Robinson with a cosmological constant. Note that

anti-Bertotti-Robinson spacetime has electric energy density negative. The moot point is simply

that what emerges after bounce is a product of two constant curvature spaces which by proper

splitting of these constants lead to a nice interpretation as a mixture of Nariai and Bertotti-

Robinson spacetimes which are exact solutions of classical Einstein equation. It is remarkable

that emergent spacetime is solution of classical equation albeit with a proper choice of constants.

This may be an innate characteristic of quantum dynamics of this type of spacetimes and is

perhaps reflection of discreteness in spacetime structure.

In summary, our studies of Kantowski-Sachs spacetimes and higher genus black hole interiors

in LQC reveals many so far unexplored features of quantum geometry. We show that there

is a unique quantization prescription which results in a bounded behavior of expansion and
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shear scalars. Thus, limiting many other potential loop quantizations of the Kantowski-Sachs

spacetime. It is rather surprising that this quantization results in a highly asymmetric evolution

across the bounce. The spacetime after the singularity resolution retains high quantum curvature

and can be interpreted as a classical spacetime with an effective ‘charge.’ It is for the first time

in literature, one finds such a phenomena resulting from the underlying quantum geometry. In

the future research, it will worthwhile to understand this effective charge in more detail. It is

tempting to relate this result with ideas of geometrodynamics where many properties matter

are envisioned to result from the underlying features of geometry [53]. At this stage, however,

this is only a speculation.

Finally, it is important to state that our results are in the caveat of assumption of homo-

geneity and the validity of effective dynamics. It can be hoped that our results do capture some

element of truth of the full quantum gravitational dynamics of these spacetimes, and open a new

window to explore the quantum geometric effects in black hole interiors and spacetime beyond

the would be central singularities.
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Chapter 2
Generic Bounds on Expansion and Shear
Scalars in Kantowski-Sachs Spacetime1

In this Chapter, based on Ref. [46], we study the way loop quantization prescriptions can

be restricted by demanding that the expansion and shear scalars have a bounded behavior.

This Chapter is organized as follows. In the next section we summarize the Kantowski-Sachs

spacetime in terms of Ashtekar variables and obtain the classical equations. In the next section,

we introduce the effective Hamiltonian constraint, and derive expressions for expansion and

shear scalars for three quantization prescriptions. We discuss the boundedness of these scalars

and for completeness also discuss their dependence on fiducial cell. Then we consider a general

ansatz and investigate the conditions under which a quantization prescription yields bounded

behavior of expansion and shear scalars. This leads us to the uniqueness of the µ̄ quantization

prescription. Then the behavior of energy density is discussed, which is followed by a summary

of the main results.

2.1 Classical Hamiltonian of Kantowski-Sachs space-time

We consider the Kantowski-Sachs spacetime with a spatial topology of R × S2. Utilizing the 

symmetries associated with each spatial slice, the symmetry group R×SO(3), and after imposing 

the Gauss constraint, the Ashtekar-Barbero connection and the conjugate (densitized) triad can

be expressed in the following form [32]:

Aiaτidx
a = c̃τ3dx+ b̃τ2dθ − b̃τ1 sin θdφ+ τ3 cos θdφ , (2.1)

Ẽa
i τi∂a = p̃cτ3 sin θ∂x + p̃bτ2 sin θ∂θ − p̃bτ1∂φ , (2.2)

1Sections 2.1 - 2.5 are reproduced from A. Joe and P. Singh, Class. Quant. Grav. 32, 015009 (2015)

(Copyright 2015 Institute of Physics Publishing Ltd) [46] by the permission of the Institute of Physics Publishing.

See Appendix A for the copyright permission from the publishers.
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where τi = −iσi/2, and σi are the Pauli spin matrices. The symmetry reduced triad variables

are related to the metric components of the line element,2

ds2 = −N(t)2dt2 + gxxdx
2 + gΩΩ

(
dθ2 + sin2 θdφ2

)
. (2.3)

as

gxx =
p̃b

2

p̃c
, and gΩΩ = |p̃c|. (2.4)

The modulus sign arises because of two possible triad orientations. Without any loss of gener-

ality, we will assume the orientation to be positive throughout this analysis. Since the spatial

manifold in Kantowski-Sachs spacetime is non-compact, we have to introduce a fiducial length

along the non-compact x direction. Denoting this length be Lo, the symplectic structure is given

by

Ω =
Lo

2Gγ

(
2db̃ ∧ dp̃b + dc̃ ∧ dp̃c

)
. (2.5)

Here γ is the Barbero-Immirzi parameter whose value is fixed from the black hole entropy

calculations in loop quantum gravity to be 0.2375. Since the fiducial length can be arbitrarily

rescaled, the symplectic structure depends on Lo. This dependence can be removed by a rescaling

of the symmetry reduced triad and connection components by introducing the triads pb and pc,

and the connections b and c:

pb = Lop̃b, pc = p̃c, b = b̃, c = Loc̃. . (2.6)

The non-vanishing Poisson brackets between these new variables are given by,

{b, pb} = Gγ, {c, pc} = 2Gγ. (2.7)

Note that pb and pc both have dimensions of length squared, whereas b and c are dimensionless.

Also note that c and pb scale as Lo where as other two variables are independent of the fiducial

cell.

In Ashtekar variables, the Hamiltonian constraint for the Kantowski-Sachs spacetime with

minimally coupled matter corresponding to an energy density ρm can be written as

Hcl =
−N

2Gγ2

[
2bc
√
pc +

(
b2 + γ2

) pb√
pc

]
+ N 4πpb

√
pcρm, (2.8)

2This metric can be expressed as the one for the Schwarzschild interior by choosing N(t)2 =
(

2m
t − 1

)−1

where m denotes the mass of the black hole, and identifying gxx =
(

2m
t − 1

)
and gΩΩ = t2.
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and the physical volume of the fiducial cell is V = 4πpb
√
pc. In the following, the lapse will be

chosen as unity.3 Using the Hamilton’s equations, for N = 1, the dynamical equations become,

ṗb = −Gγ∂Hcl

∂b
=

1

γ

(
c
√
pc +

bpb√
pc

)
(2.9)

ṗc = −2Gγ
∂Hcl

∂c
=

1

γ
2b
√
pc (2.10)

ḃ = Gγ
∂Hcl

∂pb
=
−1

2γ
√
pc

(
b2 + γ2

)
+ 4πGγ

√
pc

(
ρm + pb

∂ρm
∂pb

)
(2.11)

ċ = 2Gγ
∂Hcl

∂pc
=
−1

γ
√
pc

(
bc−

(
b2 + γ2

) pb
2pc

)
+ 8πγGpb

(
ρm

2
√
pc

+
√
pc
∂ρm
∂pc

)
. (2.12)

The vanishing of the classical Hamiltonian constraint, Hcl ≈ 0, yields

2bc

γ2pb
+

b2

γ2pc
+

1

pc
= 8πGρm (2.13)

which using the expressions for the directional Hubble rates Hi = ˙√gii/
√
gii can be written as

the Einstein’s field equation for the 0− 0 component:

2
˙√gxx√
gxx

˙√gΩΩ√
gΩΩ

+

(
˙√gΩΩ√
gΩΩ

)2

+
1

gΩΩ

= 8πGρm . (2.14)

Introducing the expansion θ and the shear σ2 of the congruence of the cosmological observers

θ =
V̇

V
=
ṗb
pb

+
ṗc
2pc

. (2.15)

and

σ2 =
1

2

3∑
i=1

(
Hi −

1

3
θ

)2

=
1

3

(
ṗc
pc
− ṗb
pb

)2

(2.16)

we can rewrite eq.(2.14) as

θ2

3
− σ2 +

1

gΩΩ

= 8πGρm . (2.17)

To investigate if the Kantowski-Sachs spacetime is singular, we consider the expansion and

the shear scalars of the geodesics. At a singular region one or more of these diverge. This

divergence causes the curvature invariants to blow up. To see this, we can compute the Ricci

scalar R, which for the Kantowski-Sachs metric turns out to be

R = 2
p̈b
pb

+
p̈c
pc

+
2

pc
. (2.18)

3To make a connection with the Schwarzschild interior, a convenient choice of lapse is N =
γ
√
pc
b [32]. For

studies of the expansion and shear scalars and the phenomenological implications of Kantowski-Sachs spacetime

with matter, the choice N = 1 is more useful, and is thus considered here.
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Using the equations for the expansion and the shear scalar, the Ricci scalar can be expressed as

R = 2θ̇ +
4

3
θ2 + 2σ2 +

2

pc
. (2.19)

Thus, a divergence in θ and σ2 signals a divergence in the Ricci scalar. For this reason, un-

derstanding the behavior of expansion and shear scalars is important to gain insights on not

only the properties of the geodesic evolution, but it is also useful to understand the behavior of

curvature invariants. The scalars, θ and σ2, diverge if either one or both of ṗb
pb

and ṗc
pc

diverge.

From the Hamilton’s equations of motion (3.8) and (3.9), these ratios are,

ṗb
pb

=
1

γ

(
c
√
pc

pb
+

b
√
pc

)
(2.20)

ṗc
pc

=
2b
√
pcγ

. (2.21)

It is clear from equations (2.20) and (2.21) that the expansion and shear scalars diverge as

the triad components vanish, and/or the connection components diverge. In the Kantowski-

Sachs spacetime with perfect fluid as matter, classical singularities occur at a vanishing volume.

The structure of the singularity can be a barrel, cigar, pancake or a point [54]. For all these

structures, either pb or pc vanish, causing a divergence in θ and σ2.4

At the above classical singular points, the energy density also diverges. From the vanishing

of the Hamiltonian constraint Hcl ≈ 0, the expression for energy density becomes

ρm =
1

8πGγ2

[
2bc

pb
+
b2 + γ2

pc

]
. (2.22)

Thus, if either of pb or pc vanishes, ρm grows unbounded as the physical volume approaches zero.

2.2 Comparison of different quantization prescriptions

Due to the underlying quantum geometry, the loop quantization of the classical Hamiltonian of

the Kantowski-Sachs spacetime yields a difference equation [32]. The difference equation arises

4Note that for the vacuum Kantowski-Sachs spacetime, the expansion and shear scalars are ill defined at the

horizon because of the coordinate singularity. However, θ2/3− σ2 is regular at the horizon, and can be used to

understand the behavior of the curvature invariants. As an example, in this case, the Kretschmann scalar at the

horizon can be written as Kt=2m = 12(θ2/3 − σ2)2, which being finite shows that the singularity at t = 2m is

not physical.
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due to non-local nature of the field strength of the connection in the quantum Hamiltonian

constraint which is expressed in terms of holonomies of connection components over closed

loops. The action of the holonomy operators on the triad states is discrete, leading to a discrete

quantum Hamiltonian constraint which is non-singular.5 The resulting quantum dynamics can

be captured using an effective Hamiltonian constraint derived using the geometrical formulation

of quantum mechanics [55]. Here one treats the Hilbert space as a quantum phase space and

seeks an embedding of the finite dimensional classical phase space into it. For the isotropic

and homogeneous models in LQC, such a suitable embedding has been found using sharply

peaked states which probe volumes larger than the Planck volume [19, 20]. For these models,

the dynamics from the quantum difference equation and the effective Hamiltonian turn out to

be in an excellent agreement for states which correspond to a classical macroscopic universe

at late times. Recent numerical investigations show that the departures between the effective

spacetime description and the quantum dynamics are negligible unless one consider states which

correspond to highly quantum spacetimes, such as states which are widely spread or are highly

squeezed and non-Gaussian, or those which do not lead to a classical universe at late times

[8, 9]. Though the effective Hamiltonian constraint has not been derived for the anisotropic

spacetimes in LQC using the above embedding approach, an expression for it has been obtained

by replacing b with sin bδb
δb

and c with sin cδc
δc

in (2.8), where δb and δc are the edge lengths of the

holonomies [41, 40]. Following this procedure for the case of the loop quantization of the vacuum

Bianchi-I spacetime, the resulting effective Hamiltonian dynamics turns out to be in excellent

agreement with the underlying quantum evolution [56]. In the following we will assume that the

effective Hamiltonian constraint for the Kantowski-Sachs spacetime as obtained from the above

polymerization of the connection components, and assume it to be valid for all values of triads.

For a general choice of δb and δc, the effective Hamiltonian constraint for the Kantowski-Sachs

model with matter is given as [41, 40]:

5In principle, there can also be inverse triad modifications in the quantum Hamiltonian constraint. However,

such modifications can not be consistently defined for spatially non-compact manifolds since they depend on the

fiducial length. For this reason, we do not consider inverse triad modifications in this analysis. However, this

problem does not arise if the spatial topology is compact, and conclusions reached in this manuscript remain

unaffected in this case. It is also possible to get rid of terms depending on inverse triad using a suitable choice

of lapse.
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H =
−N

2Gγ2

[
2

sin (bδb)

δb

sin (cδc)

δc

√
pc +

(
sin2 (bδb)

δ2
b

+ γ2

)
pb√
pc

]
+N4πpb

√
pcρm. (2.23)

Note that (2.23) goes to the classical Hamiltonian (2.8) in the limit δb → 0 and δc → 0. However,

due to the existence of minimum area gap in LQG, in the quantum theory, one shrinks the

loops to the minimum finite area. Different choices of the way holonomy loops are constructed

and shrunk lead to different δb and δc, and different properties of the quantum Hamiltonian

constraint. We will identify these choices as different prescriptions to quantize the theory, which

lead to different functional forms of δb and δc in the polymerization of the connection, and hence

result in different effective Hamiltonian constraints. This is analogous to the situation in the

quantization of isotropic spacetimes in LQC, where the older quantization was based on constant

δ (the so called µo quantization [29, 4]), and improved quantization is based on a δ which is

function of isotropic triad δ ∝ 1/
√
p (the so called µ̄ quantization [5]). As in the isotropic case,

the physics obtained from the theory is dependent on these holonomy edge lengths and hence

they have to be chosen carefully. This can be further seen by noting that sin (bδb) and sin(cδc) in

(2.23) can be expanded in infinite series as bδb−
b3δ3b
3!

+ ... and cδc− c3δ3c
3!

+ ... . Hence it is required

that bδb and cδc should be independent of fiducial length. Else different terms of the expansion

will have different powers of Lo and any calculation based on this Hamiltonian will yield results

which are sensitive to the choice of Lo. Of the possible choices of holonomy edge lengths that

can be motivated, we have to choose the one that gives a mathematically consistent theory

which renders the physical scalars such as expansion and shear scalars independent of the choice

of fiducial length, as in classical GR. There are three proposed prescriptions in LQC literature

for the choice of holonomy edge-lengths in the Kantowski-Sachs model: the constant δ [32],

the µ̄ (or the ‘improved dynamics’) prescription [40], and the µ̄′ (inspired from the improved

dynamics) quantization prescriptions [41]. Due to their similarities with the notation of the

isotropic model, we will label the effective Hamiltonian constraint for constant δ with µo. The

effective Hamiltonians for ‘improved dynamics’ inspired prescription will be labeled by µ̄′, and

that of ‘improved dynamics’ prescription with µ̄.
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2.2.1 Constant δ prescription

The simplest choice of δ′s is to choose them as constant. The resulting effective Hamiltonian

constraint then corresponds to the loop quantization of Kantowski-Sachs spacetime where the

holonomy considered over the loop in x− θ plane, and the loop in the θ−φ plane has minimum

area with respect to the fiducial metric fixed by the minimum area eigenvalue ∆ in LQG:

∆ = 4
√

3πγl2Pl. In the quantization of the Schwarzschild interior proposed in Ref. [32], the δ′s

were chosen equal6 δb = δc = 4
√

3. Loop quantization with constant δb and δc is also considered

in various other works on the loop quantization of black hole spacetimes [39, 35, 36], and is

analogous to the µo quantization in the isotropic LQC [29, 4]. Here we will assume the same

prescription in the presence of matter. The resulting effective Hamiltonian constraint for N = 1

with minimally coupled matter is:

Hµ0 =
−1

2Gγ2

[
2

sin (bδb)

δb

sin (cδc)

δc

√
pc +

(
sin2 (bδb)

δ2
b

+ γ2

)
pb√
pc

]
+ 4πpb

√
pcρm. (2.24)

Using the Hamilton’s equations, the equations of motion for the triads are

ṗb = −Gγ∂Hµ0

∂b
=

1

γ

(
cos (bδb)

sin (cδc)

δc

√
pc +

sin (bδb) cos (bδb)

δb

pb√
pc

)
, (2.25)

ṗc = −2Gγ
∂Hµ0

∂c
=

2

γ
cos (cδc)

sin (bδb)

δb

√
pc. (2.26)

From these one can find the expressions for expansion7 and shear scalars for Kantowski-Sachs

spacetime with matter as follows,

θ =
1

γ

(√
pc cos (bδb) sin (cδc)

pbδc
+

sin (bδb)√
pcδb

(cos (bδb) + cos (cδc))

)
(2.27)

σ2 =
1

3γ2

(
(2 cos (cδc)− cos (bδb))

sin (bδb)

δb
√
pc
− cos (bδb) sin(cδc)

δc

√
pc

pb

)2

. (2.28)

It is clear from the above expressions that the expansion and shear scalars are unbounded and

blow up as pb or pc approach zero, precisely as in the classical Kantowski-Sachs spacetime if

the effective spacetime description is assumed to be valid for all values of triads. Note that

6Since [32] was using an area gap of ∆ = 2
√

3πγl2Pl, the corresponding holonomy edge lengths were 2
√

3. For

∆ = 4
√

3πγ, edge lengths should be 4
√

3.
7The expressions for θ in three prescriptions studied in this section were also obtained for the Schwarzschild

interior in Ref.[44], however no physical implications were studied except for noticing the bounded behavior in

the case of µ̄ prescription.
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the effective spacetime description is expected to breakdown in the regime when the volume of

the spacetime is less than Planck volume [8]. Hence, in this quantization prescription there are

no generic bounds on the expansion and shear scalars within the expected validity of effective

dynamics. Even if one considers a specific matter model which results in a singularity resolution

and a bounce of the mean volume, the dependence of θ and σ2 on the triads shows that these

scalars may not necessarily take Planckian values in the bounce regime. The spacetime curvature

in the bounce regime can in principle be extremely small in this effective dynamics. Note that

the maximum value of expansion (2.27) and shear scalars (2.28) depends on the values of pb

and pc. Since the values of triads at the bounce can be made arbitrarily large or small by the

choice of initial conditions and the matter content, the maximum values of expansion and shear

scalars, reached near the bounce, can hence take arbitrary values. This problem is analogous

to the dependence of energy density at the bounce on the momentum of the scalar field or the

triad in the µo quantization of isotropic LQC. There too by choosing different initial conditions

it is possible to obtain “quantum bounce” at arbitrarily small spacetime curvature.

Let us now consider the issue of fiducial cell dependence for this prescription. Since δb =

δc = 4
√

3, they are independent of the rescaling under the fiducial length Lo. However, since c

is proportional to Lo, therefore cδc depends on the fiducial length Lo. Due to this reason, the

resulting physics from the effective Hamiltonian constraint (2.24), in particular the expressions

for expansion and shear scalars, unlike in the classical theory, are not independent of the fiducial

length rescaling. Again this problem of constant δ prescription in the Kantowski-Sachs spacetime

is analogous to the one for the µo quantization of the isotropic LQC, where the resulting physical

predictions such as the scale at which the quantum bounce occurs and the infra-red behavior

depend on the fiducial volume of the fiducial cell [4, 22]. This problem is tied to the dependence

of the expansion and triad scalars in this quantization prescription on triads as discussed above.

Since pb can be rescaled arbitrarily by rescaling Lo, the curvature scale in the bounce regime

inevitably depends on the fiducial length Lo and hence can take arbitrary values.

In conclusion, we find that constant δ quantization prescription does not provide a generic

bounded behavior of expansion and shear scalars. Further, it is possible to obtain “quantum

gravitational effects,” originating from the trigonometric functions in eq.(2.24), at any arbitrary

scale.
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2.2.2 An ‘improved dynamics inspired’ prescription

For the isotropic models in LQC, the problems with constant δ (i.e. µo) quantization were

overcome in the improved dynamics (the µ̄ quantization) [5], where µ̄ is related to the isotropic

triad as µ̄ = ∆/
√
p [5]. This quantization turns out to be independent of the various problems of

the µo quantization, and is also the unique prescription for the quantization of isotropic models

in which physical predictions are free of the dependence on the fiducial cell in the effective

spacetime description [22]. Motivated by the success of µ̄ quantization, a different prescription

for the choice of δb and δc for Kantowski-Sachs model has been considered [41], where

δb =

√
∆

pb
, and δc =

√
∆

pc
. (2.29)

We note that this choice for δ′s is also motivated from the lattice refinement scheme [30]. The

effective Hamiltonian constraint for this quantization becomes:

Hµ̄′ =
−1

2Gγ2∆

[
2 sin(bδb) sin(cδc)pc

√
pb +

(
sin2(bδb)pb + γ2∆

) pb√
pc

]
+ 4πpb

√
pcρm . (2.30)

As we noted above, for the effective Hamiltonian constraint to yield a consistent physics, the

argument of trigonometric functions should be independent of the fiducial length. However

since b is independent of Lo and pb is proportional to Lo, bδb = b
√

∆
pb

depends on fiducial length.

Similarly cδc also depends on the fiducial length. This clearly shows that this quantization is

unsuitable for Kantowski-Sachs spacetime because the resulting physical implications will be

sensitive to the fiducial length Lo.

The equations of motion for the triads in this quantization are

ṗb = −Gγ∂Hµ̄′

∂b
=

cos(bδb)

γ
√

∆

(
pc sin(cδc) + pb

√
pb
pc

sin(bδb)

)
(2.31)

ṗc = −2Gγ
∂Hµ̄′

∂c
=

2

γ
√

∆

√
pbpc sin(bδb) cos(cδc), (2.32)

using which the expansion and shear scalars turn out to be as follows:

θ =
1

γ
√

∆

[
pc
pb

cos(bδb) sin(cδc) +

√
pb
pc

sin(bδb) (cos(bδb) + cos(cδc))

]
, (2.33)

σ2 =
1

3γ2∆

[
pc
pb

cos(bδb) sin(cδc) +

√
pb
pc

sin(bδb) (cos(bδb)− 2 cos(cδc))

]2

. (2.34)

We see that the µ̄′ quantization has the same problem as the constant δ quantization as far as the

divergence of θ and σ2 is concerned. These scalars can potentially diverge for pb → 0, pb →∞,
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pc → 0 or pc →∞. As in the constant δ quantization prescription, even if the singularities are

resolved, the curvature scale associated with singularity resolution can be arbitrarily small and

depends on the initial conditions. Also remembering that it has spurious dependency on the

fiducial length we are led to the conclusion that µ̄′ quantization is not apt for Kantowski-Sachs

spacetime. The results that constant δ and µ̄′ quantizations do not yield necessarily consistent

physics is in accordance with a similar study in FRW model in LQC [22]. As remarked earlier,

problems of this prescription have also been noted in the context of the von-Neumann stability

analysis of the resulting quantum Hamiltonian constraint [30].8

2.2.3 ‘Improved Dynamics’ prescription

The improved dynamics prescription is based on noting that the field strength of the Ashtekar-

Barbero connection should be computed by considering holonomies around the loop whose

minimum area with respect to the physical metric is fixed by the minimum area eigenvalue

(∆) in LQG. This is in contrast to the constant δ prescription where the minimum area with

respect to the fiducial metric was fixed with respect to the underlying quantum geometry. In

this scheme we obtain the holonomy edge lengths as [40]:

δb =

√
∆

pc
, δc =

√
∆pc
pb

. (2.35)

Now the effective Hamiltonian (2.23) becomes,

Hµ̄ =
−pb
√
pc

2Gγ2∆

[
2 sin (bδb) sin (cδc) + sin2 (bδb) +

γ2∆

pc

]
+ 4πpb

√
pcρm. (2.36)

Before we proceed further, we note an important property of this effective Hamiltonian not

shared by Hµo and Hµ̄′ . Due to the scaling properties of b, c, pb and pc, bδb and cδc are invariant

under the change of the fiducial length Lo. Thus sin (bδb) and sin(cδc) are independent of fiducial

length. Due to this reason, we expect that the physical predictions concerning scalars such as

expansion and shear scalars will be independent of Lo in this prescription, as in the classical

theory.

8For different prescriptions, the problems in the effective dynamics and the numerical instability of the

quantum difference equation in the corresponding quantization run in parallel. See Ref. [7] for a discussion of

these issues in different quantizations in LQC.
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The evolution equations for triads and cotriads turn out to be as follows:

ṗb = −Gγ∂Hµ̄

∂b
=
pb cos (bδb)

γ
√

∆
(sin (cδc) + sin (bδb)) , (2.37)

ṗc = −2Gγ
∂Hµ̄

∂c
=

2pc

γ
√

∆
sin (bδb) cos (cδc) (2.38)

(2.39)

Using (2.15), (3.14) and (3.15), we obtain the following expression for the expansion scalar,

θ =
1

γ
√

∆
(sin (bδb) cos (cδc) + cos (bδb) sin (cδc) + sin (bδb) cos (bδb)) . (2.40)

Unlike the case of Hµo and Hµ̄′ , the expansion scalar turns out to be independent of the fiducial

length Lo, and is generically bounded above by a universal value:

|θ| ≤ 3

2γ
√

∆
≈ 2.78

lPl

. (2.41)

Similarly for the shear scalar, using (2.16), (3.14) and (3.15), we get

σ2 =
1

3γ2∆
(2 sin (bδb) cos (cδc)− cos (bδb) (sin (cδc) + sin (bδb)))

2 . (2.42)

As for the expansion scalar, σ2 turns out to be independent of Lo and has a universal maximum:

σ2 ≤ 5.76

l2Pl

. (2.43)

Hence both shear and expansion scalars are bounded above in this quantization prescription

of the Kantowski-Sachs spacetime. Unlike constant δ and µ̄′ quantization prescriptions, the

expansion and shear scalars take Planckian values in the bounce regime and curvature scale

associated with singularity resolution does not depend on the initial conditions. Note that for

the improved dynamics prescription, similar properties of expansion and shear scalar were earlier

found for the isotropic model [24] and the Bianchi models [23, 27, 28, 17]. In the isotropic and

Bianchi-I model, using the boundedness properties of expansion and shear scalars it was found

that strong singularities are generically resolved in the effective spacetime description [24, 27].9

Above results provide a strong evidence that strong singularities may be generically absent in

this quantization of Kantowski-Sachs spacetime.

9These results have also been extended to the effective description of the hybrid quantization of Gowdy

models [57].
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2.3 Uniqueness of µ̄ prescription

In the previous section, we found that of the three proposed quantization prescriptions for the

Kantowski-Sachs spacetime in LQC, only the the µ̄ effective Hamiltonian leads to consistent

physics and results in generic bounds on expansion and shear scalars. In this section we pose

the question whether µ̄ quantization is the only possible choice for which the expansion and

shear scalars are generically bounded singularity resolution in the Kantowski-Sachs spacetime?

A similar question was posed in the isotropic models in LQC, where the answer turned out to be

positive [22, 23]. We will see that in the Kantowski-Sachs spacetime, under the assumption that

δb and δc have a general form given in eq.(2.47), the answer also turns to be in an affirmative in

the effective spacetime description.

We start with the effective LQC Hamiltonian (2.23), where the holonomy edge lengths δb and

δc are any general functions of the triads. Then the Hamilton’s equations lead to the following

expressions for shear and expansion scalars.

θ =
1

γ

(√
pc cos (bδb(pb, pc)) sin (cδc(pb, pc))

pbδc(pb, pc)
+

sin (bδb(pb, pc))√
pcδb(pb, pc)

(cos (bδb(pb, pc)) + cos (cδc(pb, pc)))

)
(2.44)

σ2 =
1

3γ2

[
(2 cos (cδc(pb, pc)− cos (bδb(pb, pc)))

sin (bδb(pb, pc))

δb(pb, pc)
√
pc

− cos (bδb(pb, pc)) sin(cδc(pb, pc))

δc(pb, pc)

√
pc

pb

]2

. (2.45)

We now find what general choices of δb(pb, pc),δc(pb, pc) yield a bound on expansion and shear

scalars. These scalars become unbounded when either an inverse power of a triad blows up as

that triad tends to zero or when a positive power of triad blows up as that triad tend to infinity.

In eqs. (2.44) and (2.45), the trigonometric factors are always bounded and hence the terms

that will decide the boundedness of the expansion and shear scalars are

Tb =
1

√
pcδb(pb, pc)

and Tc =

√
pc

pbδc(pb, pc)
. (2.46)

Then the task at hand reduces to finding general functions of triads which when chosen as the

holonomy edge lengths, give an upper bound on Tc and Tb. To this end we make an assumption
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that δb and δc are functions of pb and pc such that one can express their inverses as

δ−1
b =

∑
Bijp

mi
b pnjc , δ−1

c =
∑

Cijp
mi
b pnjc , (2.47)

where mi, nj ∈ R. This ansatz includes all the three choices of δb and δc discussed in Sec. III,

but is more general. Using (2.47), one can write (2.46) as

Tc =
∑

Cijp
mi−1
b pnj+1/2

c , (2.48)

Tb =
∑

Bijp
mi
b pnj−1/2

c . (2.49)

We now require that if θ and σ2 have to be bounded then Tc and Tb should not diverge as triads

tend to zero or infinity. This is possible only if mi and nj in (2.48) and (2.49) satisfy certain

constraints. We find that these constraints only allow δb ∝ (pc)
−1/2 and δc ∝ p

1/2
c /pb, the same

as in the µ̄ quantization (3.13).

First let us take a closer look at (2.48) from which we wish to obtain constraints on δc.

Keeping pc as nondiverging and nonvanishing, one can obtain bounds on values of mi, the

powers of pb with nonzero coefficients. As pb → 0, for each term in Tc to be nondiverging, they

should all have a non-negative power of pb. Thus, for any nonzero Cij, mi ≥ 1. Also, as pb →∞,

any positive power of pb diverges. Hence for Tc to be bounded, for any nonzero Cij, mi ≤ 1.

Therefore, the only possible value for mi that leaves Tc bounded for pb → 0 and pb → ∞ is

mi = 1. Similarly, to find the allowed values for nj, we study the behavior of Tc as pc goes

to zero and infinity for a finite nonzero value of pb. It is clear that positive powers of pc will

result in a divergence of Tc as pc →∞ where as negative powers will result in a divergence when

pc → 0. This implies that the only choice of nj that leaves Tc bounded for the whole range of pc

is nj = −1/2. Finally, we consider the case of both the triads simultaneously approaching one of

the extreme values - zero or infinity. For mi = 1 and nj = −1/2, from (2.48) it can be seen that

Tc is independent of triads i.e, it is just a constant. Hence for both the triads simultaneously

approaching an extreme value, Tc remains bounded. For any other choice of mi or nj, Tc can

diverge, causing a divergence in the expansion and shear scalars.

Repeating the same analysis, for Tb in (2.49), it can be seen that the only values of mi and

nj which keep Tb bounded for the whole domain of pb and pc are mi = 0 and pc = 1/2. Thus

from (2.47) it can be seen that the only choice of δ′s which keeps θ and σ2 bounded throughout
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the entire domain of triads correspond to

δc ∝
√
pc

pb
, δb ∝

1
√
pc
. (2.50)

These are precisely the functional dependencies of the holonomy edge lengths on these triads in

the ‘improved dynamics’ prescription. (2.36). Thus, for the general ansatz (2.47) we find that

the only possible choices of δb and δc which result in bounded expansion and shear scalars for the

geodesics in the effective dynamics correspond to µ̄ prescription. It is important to stress that

we found the uniqueness of µ̄ quantization prescription by only demanding that the expansion

and shear scalars be bounded, and our argument is not tied to requirements based on fiducial

cell rescaling freedom or to the topology of the spatial manifold. But, it is rather interesting

that the prescription which results in generic bounds on scalars is the one which is also free from

the freedom under rescalings of the fiducial cell. It is straightforward to see that requiring bδb

and cδc to be independent of fiducial length Lo, and assuming that δb and δc are constructed

from the triads pb and pc, one is led to the µ̄ prescription.

In the above analysis we have seen that by requiring that the expansion and shear scalars

be always bounded, one can find the exact dependence of δb and δc on the triads. The same

functional forms of δb and δc can be obtained from an independent physical motivation. Note that

holonomy corrections in the effective Hamiltonian arise from the field strength of the connection

components b and c, where one has to take the holonomies around closed loops with edge lengths

determined by δb and δc. To compute the field strength, the loops over which the holonomies

are considered are shrunk to the minimum area eigenvalue in LQG. One could in principle form

loops from holonomies with constant edge lengths δb, δc or as in the µ̄′ scheme, where δb =
√

∆
pb

and δc =
√

∆
pc

. But loops with such edge lengths do not have physical area matching the

minimum area gap from LQG. The constant δ quantization takes the holonomy loops to have

constant fiducial area, but not the physical area. However, fiducial area is not independent of

rescaling of fiducial length and thus is not a physical quantity. In this quantization, a loop with

edges of length δb along θ and φ directions will have a physical area δ2
bpc.

10 This area is clearly

dependent of the triad and can even vanish as pc → 0, thus becoming smaller than the minimum

area eigenvalue of LQG. Similarly, in µ̄′ quantization, the area of a loop with edge δb each along

10It is straightforward to see that the same conclusion is reached or the loop in x− θ plane.
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θ and φ directions will be ∆pc
pb

. Once again this area is not constant and can go below the

minimum area gap of LQG if pc/pb becomes less than unity. In contrast the loops constructed

in the improved dynamics with δb =
√

∆/pc and δc =
√

∆pc/pb in x− θ and θ−φ planes have a

physical area ∆, which is same as the minimum area gap. Thus, this argument further supports

the improved dynamics or the µ̄ prescription for the Kantowski-Sachs spacetime.

2.4 Energy density in the ‘improved dynamics’

We have so far seen that out of various possible quantization prescriptions, the µ̄ prescription

for the Kantowski-Sachs spacetime is the only one which results in bounded expansion and

shear scalars for all the values of triads. Also, the resulting physics turns out to be independent

of the rescalings under fiducial length. In this sense, this is the preferred choice for the loop

quantization in the Kantowski-Sachs model. We now investigate the issue of the boundedness

of the energy density in this prescription. It will be useful to recall some features of classical

singularities in this context. In classical GR, approach to singularities in the Kantowski-Sachs

spacetime is accompanied by a divergence in the energy density for perfect fluids when the

volume vanishes [54]. The nature of the singularity – whether it is isotropic or anisotropic

depends on the equation of state of matter. Apart from the isotropic or the point like singularity,

cigar, pancake and barrel singularities can also form in the classical Kantowski-Sachs spacetime.

For the point singularity both gxx and gΩΩ vanish, for the cigar singularity gxx → ∞ and

gΩΩ → 0, for the barrel singularity gxx approaches a finite value and gΩΩ → 0, and for the pancake

singularity gxx vanishes and gΩΩ approaches a finite value. In terms of the triad components,

for point, cigar and barrel singularities both pb and pc vanish. However, the pancake singularity

occurs at a finite value of pc, with pb vanishing.

We now investigate whether the energy density is bounded in the effective spacetime descrip-

tion of the µ̄ quantization. The energy density can be obtained from the Hamiltonian constraint

Hµ̄ ≈ 0 as

ρµ̄ =
1

8πGγ2∆

[
2 sin(bδb) sin(cδc) + sin2(bδb) +

γ2∆

pc

]
. (2.51)

It is clear that this energy density is bounded for all values of triads and cotriads except when

pc → 0. Especially, we note that even if the triad pb is vanishing, the energy density is bounded

as far as pc is nonzero. Since a pancake singularity is attained when pc remains finite, we can
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Figure 2.1: Evolution of pc for the massless scalar field evolution

already conclude that such a singularity is absent in the effective description of the Kantowski-

Sachs spacetime for the µ̄ quantization.11

Let us now return to the properties of the energy density in general, and understand its

behavior for the generic singularities. The energy density in µ̄ approach will be bounded if

pc does not vanish. In the non-singular evolution, one expects that the dynamics results in a

non-zero value of pc. The pertinent question is whether in effective dynamics this happens to

be true. Numerical analysis of the Hamilton’s equations shows that the answer turns out to be

positive. The first evidence of this behavior of pc was reported in the vacuum Kantowski-Sachs

case, where it was found that due to holonomy corrections, pc (as well as pb) undergo non-

singular evolution, and pc never approaches zero throughout the evolution [40]. It was found

that pc approaches an asymptotic non-zero value after classical singularity is avoided. Detailed

numerical analysis of effective Hamiltonian constraint (2.36) for different types of matter fields

shows that a similar behavior occurs for pc in general [45]. An example of this phenomena is

shown in Fig. 2.1, where we plot the behavior of pc versus proper time for the case of massless

scalar field in a typical numerical simulation. Giving the initial date at t = 0 we numerically solve

the Hamilton’s equations for the effective Hamiltonian constraint (2.36). The initial conditions

are pb(0) = 5× 105, b(0) = −0.1, pc(0) = 4× 105, c(0) = 0.16 (all in Planck units). Initial value

of energy density is obtained by solving the Hamiltonian constraint. During the past and future

11In contrast, this is not true in the constant δ and the ‘improved dynamics inspired’ quantizations discussed

earlier. For these prescriptions, the expression of energy density contains inverse power of pb as well as pc in the

expression for energy density. Thus, allowing all kinds of singularities.
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evolution, the physical volume does not go to zero when the classical singularity is approached,

but instead bounces. The triad pc never goes to zero in the entire evolution, but asymptotes

towards a constant value. A similar plot is obtained for the vacuum case, where it was shown

that some cycles of classical phases appear before pc reaches Planck regime [41]. These results,

and also of Ref. [40], confirm that dynamically pc is always bounded away from zero. Hence,

we conclude that the energy density (2.51) is always bounded in the loop quantization of the

Kantowski-Sachs spacetime.

2.5 Discussion

Classical Kantowski-Sachs spacetime is singular for generic matter choices, which calls upon a

quantum gravitational treatment to see if the singularity persists. A good understanding about

the geodesic completeness of a spacetime can be obtained via expansion and shear scalars.

Any divergence in these scalars indicates presence of a singularity. Since singularity denotes

break down of the theory which is used to describe spacetime, it is hoped that the right theory

of quantum gravity will resolve these singularities in general. A quantum theory of spacetime

should pass various consistency tests. If the spatial manifold is non-compact, then the expansion

and shear scalars must be independent of the choice of the fiducial cell. If the singularities are

indeed resolved, then the curvature scale associated with singularity resolution should not be

arbitrary. Due to quantization ambiguities, various prescriptions can exist for quantization of a

spacetime. Is it possible that a particular prescription is favored over others? This question was

earlier posed in the isotropic [22] and Bianchi-I spacetime in LQC [23], where it was found that µ̄

quantization prescription in contrast to other quantization prescriptions leads to generic bounded

behavior of expansion and shear scalars, and physical predictions free from the rescaling under

fiducial cell. The goal of this analysis was to answer this question in the loop quantization of

Kantowski-Sachs spacetime assuming the validity of effective spacetime description for minimally

coupled matter.

Previous works on loop quantization of Kantowski-Sachs spacetime have been mostly devoted

to study the vacuum case, for which the expansion scalar has been partially studied earlier [44].

Little details about the physics of singularity resolution for generic matter were so far available.

Three quantization prescriptions were proposed in the literature. Of these, only one was shown
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to be preferred in the sense that the effective Hamiltonian does not depend on the rescalings of

the fiducial length. This quantization prescription (denoted by µ̄) is the analog of the improved

dynamics in isotropic LQC [5]. The other two quantization prescriptions, denoted by µo and

µ̄′ lead to resolution of singularities in the vacuum case, but were known to be problematic

under rescalings of the fiducial cell. Unlike µ̄ prescription, these also yield quantum difference

equations which are von-Neumann unstable [30]. We obtained the expansion and shear scalars

using the effective dynamics in each of these prescriptions and found that except the case of µ̄

quantization, in both the other choices these scalars are not necessarily bounded in the effective

spacetime. Thus it is possible that a strong curvature singularity may not get resolved for µo

and µ̄′ prescriptions for some choices of matter depending on the initial conditions in effective

dynamics. Even if the singularities are resolved, we found that the associated curvature scale

is arbitrary. In contrast, the µ̄ quantization leads to universal bounds on the expansion and

shear scalars which are dictated by the underlying Planckian geometry for Kantowski-Sachs

spacetime with matter. These bounds point towards a generic resolution of singularities in

this prescription. Analysis of the behavior of energy density in µ̄ prescription reveals that it

is dynamically bounded because pc is bounded from below. It turns out that this is a generic

feature of all types of perfect fluids, whose details will be reported in a future work [45]. It is

interesting to note that without solving dynamical equations, it is possible to rule out pancake

singularities in the µ̄ prescription. The bounded behavior of expansion and shear scalars and

energy density is a strong indication that curvature singularities may be generically resolved in

the µ̄ quantization prescription of the Kantowski-Sachs spacetime with matter, as in the case of

isotropic and Bianchi-I model [24, 26, 27].

To investigate whether there is another quantization prescription which gives a bounded

behavior of expansion and shear scalars, we considered a general ansatz of the edge lengths of

the holonomies. It turns out that µ̄ quantization is a unique choice for which the expansion

and shear scalars are bounded. For any other prescription, expansion and shear scalars can be

unbounded in the effective dynamics. It is remarkable that the demand that these scalars are

bounded also chooses the prescription which is free from the rescalings of the fiducial cell. This

property is shared by the µ̄ quantization in the isotropic and Bianchi-I spacetime in LQC [22, 23].

All these similarities between the µ̄ quantization of the isotropic, Bianchi-I and Kantowski-Sachs
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spacetimes bring out a harmonious and robust picture of the loop quantization.

Finally, it is important to stress that though this analysis provides further insights on the loop

quantization of Kantowski-Sachs spacetime, singling out the µ̄ prescription on various grounds,

more work is needed to rigorously formulate the µ̄ prescription in the quantum theory. It is

known that for the Schwarzschild interior, the µ̄ quantization results in quantum gravitational

effects at the event horizon where the spacetime curvature in the classical theory can be very

small [40]. The existence of these effects is tied to the choice of the coordinates which lead to

the classical coordinate singularity at the horizon. Not distinguishing it from the curvature sin-

gularity, quantum geometric effects resulting from the holonomies of the connection components

thus become significant at the horizon resolving even the coordinate singularity. Note that this

coordinate artifact does not arise in the Kantowski-Sachs spacetime in presence of matter. These

issues will be closely examined in the µ̄ quantization of the Schwarzschild interior [58]. Further,

it has been reported that the Kantowski-Sachs vacuum spacetime in the µ̄ prescription leads

to the Nariai-like spacetime after the bounce in the asymptotic approach [40].1213 It turns out

that this feature is more general, which reveals some subtle properties of the effective spacetime

in LQC [50]. A deeper understanding of these issues is required to gain further insights on the

details of the physics of singularity resolution in the Kantowski-Sachs spacetime in LQC.

12It is important to make a distinction here with the classical Nariai spacetime, since in the asymptotic

approach to Nariai-like spacetime, the spacetime is quantum.
13Before the Nariai-like phase is asymptotically approached, the spacetime gives birth to baby blackhole

spacetimes [41].
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Chapter 3
Emergence of ‘Charged’ Nariai and Anti-

Bertotti-Robinson Spacetimes in LQC1

In the previous chapter, we summarized the way a unique quantization prescription for the

Kantowski-Sachs spacetimes emerges in LQC. The goal of this chapter, based on Ref. [50], is

to understand the nature of the spacetime beyond the classical singularity in this quantization

prescription. We study Kantowski-Sachs spacetimes with cosmological constant, which serve as

the interior of the Schwarzschild-DeSitter black holes, and Bianchi-III LRS spacetimes with a

negative cosmological constant which serve as the interior of higher genus black holes. We show

that in these spacetimes, the evolution is highly time asymmetric and results in a spacetime

which is a product of two constant curvature in the evolution in one branch of the singularity

resolution. Interestingly, such a spacetime is a solution of general relativity with an effective

‘charge’. In the loop quantum evolution of Kantowski-Sachs spacetime beyond the classical

singularity one obtains a ‘charged’ Nariai spacetime. And, in the loop quantum evolution

Bianchi-III LRS spacetime, one obtains the anti-Bertotti-Robinson spacetime. The emergence

of this ‘charge’ is purely quantum geometric in nature.

This chapter is organized as follows. In Sec. I, we summarize some of the main features of

the classical theory for the higher genus black hole interior in terms of the Ashtekar variables

and the way the symmetry reduced triads are related to the metric components in these models.

This is based on the similar analysis for the Kantowski-Sachs spacetime in the previous chapter.

In the same section, we introduce the classical Hamiltonian in Ashtekar variables and derive the

classical Hamilton’s equations which result in a singular evolution. Note that in the classical

1Sections 3.1 - 3.6 are reproduced from N. Dadhich, A. Joe and P. Singh, Class. Quant. Grav. 32, 185006

(2015) (Copyright 2015 Institute of Physics Publishing Ltd) [50] by the permission of the Institute of Physics

Publishing. See Appendix A for the copyright permission from the publishers.
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evolution of the Kantwoski-Sachs or the higher genus black hole interior, there is no emergence of

the classical Nariai or anti-Bertotti-Robinson spacetimes. The loop quantum evolution derived

from the effective Hamiltonian constraints is discussed in Sec. II, which is non-singular. Here

after deriving the modified Hamilton’s equations, we first discuss the boundedness of expansion

and shear scalars, and then study the numerical solutions in different cases. In section III we

consider the properties of the asymptotic spacetime emerging in the loop quantum evolution

and find them as the ‘charged’ Nariai spacetime and the anti Bertotti-Robinson spacetime

of classical GR. These spacetimes have an emergent ‘charge’ and an emergent cosmological

constant, both arising from the loop quantum geometry of the spacetime. The values of these

quantum geometric ‘charge’ and cosmological constant are computed in Sec. IV. We then

consider the fine tuned case where there is no ‘charge’ in the spacetime emerging from the loop

quantum model of Kantowski-Sachs spacetime and a vanishing emergent cosmological constant

in the loop quantum model of higher genus black hole interior in Sec. V. We summarize with a

discussion of the results in Sec. VI.

3.1 Higher genus black hole interior: classical aspects

In this section, we summarize the classical Hamiltonian constraint for the higher genus black

hole interior [47]. This analysis is parallel to the one for the Kantowski-Sachs spacetime which

we discussed in the previous chapter. In this case, the Ashtekar-Barbero connection and the

conjugate triads simplify to [47]

Aiaτidx
a = cτ3dx+ bτ2dθ − bτ1 sinh θdφ+ τ3 cosh θdφ , (3.1)

Ea
i τi∂a = pcτ3 sinh θ∂x + pbτ2 sinh θ∂θ − pbτ1∂φ . (3.2)

Here τi = −iσi/2, and σi are the Pauli spin matrices. The symplectic structure is determined

by

Ω =
Lo

2Gγ
(2db ∧ dpb + dc ∧ dpc) , (3.3)

where L0 is a fiducial scale. It is convenient to work with rescaled triads and connections,

pb = Lopb, pc = pc, b = b, c = Loc (3.4)
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which are independent of any change to rescaling of the fiducial cell. These variables satisfy the

following Poisson brackets:

{b, pb} = Gγ, {c, pc} = 2Gγ, (3.5)

where γ ≈ 0.2375 is the Barbero-Immirzi parameter whose value is set from the black hole

thermodynamics in LQG.

The physical volume of the fiducial cell for the higher genus black hole interior, differs from

that of the Kantowski-Sachs spacetime by an overall factor and is given by2 V = 2π(cosh(θ0)−

1)pb
√
pc. Further, the metric of the spacetime in this case is similar to the Kantwoski-Sachs

spacetime albeit which is spatially open, and is same as of the Bianchi-III LRS spacetime.

Thus, as the Schwarzschild case, the higher genus black hole interior can also be studied using a

homogeneous anisotropic spacetime metric. Due to this reason, in the following discussion the

higher genus black hole interior spacetime in our analysis will also be referred to as Bianchi-III

LRS spacetime.

The gravitational part of the classical Hamiltonian for the interior of higher genus black

holes in Ashtekar variables turns out to be [47]

H(g)
HG =

−N ′

2Gγ2

[
2bc
√
pc +

(
b2 − γ2

) pb√
pc

]
(3.6)

where we have absorbed the factor (cosh(θ0)− 1)/2 in to the lapse N ′.

Our goal is to study the dynamics of Kantowski-Sachs and higher genus black hole interior

spacetimes in the presence of cosmological constant. Since the forms of the gravitational Hamil-

tonians for the Kantowski-Sachs as discussed in the previous chapter and the Bianchi-III LRS

spacetime (higher genus black hole interior) are very similar, we can write them together in the

following form by setting N and N ′ to unity, and add a term corresponding to the cosmological

constant. We obtain the classical Hamiltonian as:

Hcl =
−1

2Gγ2

[
2bc
√
pc +

(
b2 + kγ2

) pb√
pc

]
+ 4πpb

√
pc ρΛ (3.7)

where k = 1 for the Kantowski-Sachs spacetime and k = −1 for the higher genus black hole

interior, and ρΛ = Λ/8πG with Λ allowed to have both signs.

2In higher genus black hole interior spacetimes the area of constant t − x surface is given by∫ 2π

0

∫ θ0
0

sinh(θ)dθdφ = 2π(cosh(θ0)− 1).
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Using the Hamilton’s equations, the classical equations of motion for the symmetry reduced

connection and triads turn out to be,

ṗb = −Gγ∂H
∂b

=
1

γ

(
c
√
pc +

bpb√
pc

)
(3.8)

ṗc = −2Gγ
∂H
∂c

=
1

γ
2b
√
pc (3.9)

ḃ = Gγ
∂H
∂pb

=
−1

2γ
√
pc

(
b2 + kγ2

)
+ 4πGγ

√
pcρΛ (3.10)

ċ = 2Gγ
∂H
∂pc

=
−1

γ
√
pc

(
bc−

(
b2 + kγ2

) pb
2pc

)
+ 4πγGpb

ρΛ√
pc

(3.11)

where the ‘dot’ refers to the derivative with respect to proper time.

In the classical theory, unless the matter violates weak energy condition, evolution deter-

mined by the above equations generically leads to a singularity. For matter satisfying weak

energy condition, there are two special but highly fine tuned cases which lead to a singularity

free spacetime. These two cases are allowed by demanding that b = 0 at all times for: (i) the

positive cosmological constant for k = 1, and (ii) the negative cosmological constant for k = −1.

The first case leads to the classical uncharged Nariai spacetime which is topologically dS2 × S2,

which is discussed in Ref. [41]. It is straightforward to see from the above equations that the

second case leads to the uncharged anti Nariai spacetime which has a topology AdS2 × H2.

These spacetimes are non-singular in the classical theory [51]. In general, when b = 0 is not

assumed, for arbitrary values of cosmological constant, the evolution is singular. The same is

true if instead of ρΛ one chooses energy density sourced with perfect fluids or matter fields obey-

ing weak energy condition. In the backward or the forward evolution from a finite volume at a

small spacetime curvature, the behavior of the triads and connections is such that the spacetime

curvature becomes infinite in a finite time when the physical volume approaches zero.

3.2 Effective loop quantum dynamics

In the loop quantization, the elementary variables are the holonomies of the connection and the

fluxes of the corresponding triads. In the case of the homogeneous spacetimes, fluxes turn out to

be proportional to triads, thus the key modification, in terms of the variables, from the classical

to the quantum theory appears in the usage of holonomies, which are the trigonometric functions

of the connection components. The Hamiltonian constraint expressed in terms of holonomies
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and then quantized results in a quantum difference equation in the triad representation with

discreteness determined by the minimum area in LQG. The physical states obtained as the

solutions of the quantum Hamiltonian constraint exhibit non-singular evolution, a result which

is a direct manifestation of the underlying quantum geometry. Interestingly, the underlying

quantum dynamics can be captured using an effective Hamiltonian constraint. As discussed in

the previous chapter, the effective dynamics, derived from the Hamilton’s equations, has been

shown to capture the quantum evolution to an excellent degree of accuracy in different models

at all the scales. In the following, we assume the validity of the effective spacetime description

for the Kantowski-Sachs and higher genus black hole interior spacetimes.

In the effective spacetime description, the LQC Hamiltonian for Kantowski-Sachs and the

higher genus black hole spacetime can be written as [40, 47]:

H =
−1

2Gγ2

[
2

sin (bδb)

δb

sin (cδc)

δc

√
pc +

(
sin2 (bδb)

δ2
b

+ kγ2

)
pb√
pc

]
+ 4πpb

√
pcρΛ, (3.12)

where k = +1 and −1 for the Kantowski-Sachs spacetime and the Bianchi-III LRS/higher

genus black hole spacetime. Here δb and δc are the functions of triads, whose exact form is

dictated by the loop quantization. For the quantization corresponding to the improved dynamics

prescription in LQC [5], these are given by

δb =
√

∆
1

p
1/2
c

, δc =
√

∆
p

1/2
c

pb
(3.13)

where ∆ = 4
√

3πγl2Pl corresponds to the minimum area eigenvalue in LQG. Recently, this quan-

tization prescription has been shown to be the unique choice which leads to physical predictions

independent of the choice of the fiducial length Lo, and yield universal bounds on expansion

and shear scalars for the geodesics in the effective spacetime description in the Kantowski-Sachs

model for arbitrary matter [46]. These properties, which are not shared by other possible quan-

tization prescriptions, also hold true for the Bianchi-III LRS spacetimes as shown later in this

section.

To obtain the effective dynamics, we first obtain the Hamilton’s equations from (3.12) which

are then numerically solved. The resulting Hamilton’s equations are:
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ṗb =
pb cos (bδb)

γ
√

∆
(sin (cδc) + sin (bδb)) , (3.14)

ṗc =
2pc

γ
√

∆
sin (bδb) cos (cδc) (3.15)

ḃ =
cpc

pbγ
√

∆
sin (bδb) cos (cδc) (3.16)

ċ =
1

γ
√

∆

(
cos (bδb) (sin (bδb) + sin (cδc))

bpb
pc
− c sin (bδb) cos (cδc)

)
+
γkpb

p
3/2
c

. (3.17)

where the ‘dot’ refers to the derivative with respect to the proper time τ , and we have used the

Hamiltonian constraint H ≈ 0 to simplify the equations.

In a similar way, modified Hamilton’s equations can be derived for arbitrary matter energy

density. Unlike the classical theory, the solutions from these equations are non-singular. Various

properties of singularity resolution for the vacuum case were studied in Refs. [32, 40]. The case

of the massless scalar field for k = 1 is studied in Ref. [41], and the case of k = −1 was

earlier investigated in Ref. [47]. General properties of Kantowski-Sachs model and the issues

of singularities are discussed in [46], and details of the evolution for different types of matter

are studied in Ref. [45]. In particular, there are no divergences in expansion and shear scalars

in the Kantowski-Sachs model, thus pointing towards the nonsingular nature of the spacetime

[46]. This result can be easily generalized to the higher genus black hole interior as well, so it is

worthwhile to discuss it further.

The expansion of a geodesic congruence can be written in terms of triads as

θ =
V̇

V
=
ṗb
pb

+
ṗc
2pc

. (3.18)

where the derivative is with respect to proper time. Thus for the expansion scalar to be bounded,

ṗb
pb

and ṗc
pc

have to be bounded. From eqs.(3.14) and (3.15), we note that the relative rate of

change of triads with respect to proper time is the same for Kantowski-Sachs spacetime and the

higher genus black hole interior (the difference due to the sign of curvature affects only the ċ

equation). Using these equations, the expansion scalar can be obtained as

θ =
1

γ
√

∆
(sin (bδb) cos (cδc) + sin (cδc) cos (bδb) + sin (bδb) cos (bδb)) (3.19)

The dependence of expansion scalar on phase space variables is only through bounded functions.

Thus there is a maxima that expansion scalar can reach, corresponding to saturation of the
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trigonometric terms. Thus the expansion scalar in the Kantowski-Sachs or the higher genus

black hole interior has a universal bound given as

|θ| ≤ 3

2γ
√

∆
≈ 2.78

lpl
, (3.20)

where we have used γ ≈ 0.2375. The shear scalar which signifies the anisotropy seen by an

observer following a geodesic congruence in Kantowski-Sachs or the higher genus black hole

interior spacetimes can be written as

σ2 =
1

2

3∑
i=1

(
Hi −

1

3
θ

)2

=
1

3

(
ṗc
pb
− ṗb
pb

)2

, (3.21)

where Hi = ȧi/ai are the directional Hubble rates. Using eqs.(3.14) and (3.15), we obtain

σ2 =
1

3γ2∆
(2 sin (bδb) cos (cδc)− cos (bδb) (sin (cδc) + sin (bδb)))

2 . (3.22)

As the expansion scalar, the shear scalar is also bounded with a universal bound [46]

|σ|2 ≤ 5.76

l2pl
. (3.23)

The boundedness of both expansion and shear scalars point towards the geodesic completeness

of the loop quantum model of Kantowski-Sachs and the higher genus black hole interior in

the improved dynamics prescription (3.13). These results are in synergy with similar results is

isotropic and Bianchi models in LQC [24, 23, 26, 27, 28, 59].

3.2.1 Kantowski-Sachs spacetime with a positive cosmological constant

We now discuss the results from the numerical simulations performed for positive cosmological

constant using the effective dynamics of Kantowski-Sachs model. As discussed earlier, in this

case the classical dynamics in general leads to a singularity where pb and pc vanish, and the

spacetime curvature diverges. In LQC, the evolution is strikingly different. Starting from a

large value of triad components and a small spacetime curvature, we find that pb and pc undergo

bounces due to quantum gravitational modifications in the effective dynamics. The triads have

different asymptotic behaviors as t→ ±∞. In all the numerical simulations that we carried out

with a value of cosmological constant not greater than 0.1 in Planck units, it was observed that

pc expands exponentially in the asymptotic regime, after few bounces, in one of the directions in
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Figure 3.1: Triads for Kantowski-Sachs spacetime with positive cosmological constant.

time whereas it reaches a constant value in the other 3. This behavior is shown in the top left plot

of Fig. 3.1. In this figure, initial conditions are chosen at t = 0 as pb(0) = 8×102, pc(0) = 5×102,

b(0) = −0.15, ρΛ(0) = 10−7. (All values in the numerical simulations are in Planck units). Initial

value of connection component c is obtained from the vanishing of the Hamiltonian constraint.

The top plots show the behavior in the forward and the backward evolution, where as the

bottom plots show the zoomed in behavior of pb and pc in the future evolution for positive

time. In the forward as well as the backward evolution, the triad pb undergoes exponential

expansion in proper time in the asymptotic regimes. The rate of exponential expansion for pb

in both of the asymptotic regimes turns out to be different. Interestingly, in the asymptotic

region in which pc is exponentially expanding, pb has the same rate of expansion as pc and

this rate approaches a constant value. In this regime, the holonomy corrections are negligible

and the spacetime behaves as a classical spacetime with a small spacetime curvature which is a

3For close to Planckian values of cosmological constant this may not be true. For rather large values of Λ,

say greater than 0.1 (in Planck units), one finds de Sitter expansion after quantum bounce in both the directions

of time.
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solution of the classical Hamilton’s equations for the Kantowski-Sachs model, eqs.(3.8-3.11) with

a positive cosmological constant. The exponential behavior of the triads shows that the classical

spacetime in this regime is a de Sitter spacetime. The other side of the temporal evolution, i.e.

when for positive values of time, leads to a spacetime not having small spacetime curvature even

long after the bounce. In this region, shown in the large t range of bottom plots in Fig. 3.1,

while pc takes a constant value in the asymptotic regime, pb grows exponentially. The holonomy

corrections are large, denoting that the quantum effects are very significant in this regime. This

is evident from the left plot in Fig. 3.2, which shows that cos(cδc) approaches zero, and hence

| sin(cδc)| is unity. The left plot shows the case for the positive cosmological constant, and

the right plot shows for the negative cosmological constant. The initial conditions correspond

respectively to those in Fig. 3.1. In the same regime, b is also finite and non-vanishing, and

takes a constant value. It turns out that this asymptotic regime is not a solution of the classical

Hamilton’s equations of the Kantowski-Sachs model (eqs.(3.8-3.11)), which do not allow pc to

be a constant when b is non-vanishing. A more detailed characterization of this region, will be

carried out in the next section. As we will show, the loop quantum spacetime in this regime is

a product of constant curvature spaces with an effective metric which is a solution of Einstein

field equations for a ‘charged’ Nariai spacetime.
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Figure 3.2: Behavior of cos(cδc) is shown in the asymptotic regime where pc is a constant.

3.2.2 Kantowski-Sachs spacetime with a negative cosmological constant

In the presence of the negative cosmological constant, the mean volume in the Kantowski-Sachs

spacetime undergoes a recollapse at large scales in the classical theory when the expansion is
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halted by the negative energy density pertaining to the cosmological constant. Due to the

recollapse, the classical Kantowski-Sachs spacetime with a negative cosmological constant in

general encounters a past as well as a future singularity with triads vanishing in a finite time.

As a result of the quantum gravitational effects originating from the holonomy modifications

in the effective Hamiltonian constraint, the classical singularity is avoided in the loop quantum

dynamics, generically, as is in the case for the positive cosmological constant. In contrast to the

latter case, the effective dynamics in LQC involves several cycles of bounces and recollapses.

Thus, the evolution is cyclic. The behavior of the triads in each cycle is such that one triad

grows whereas the other decreases. The physical volume oscillates between fixed maxima and

minima thanks to the fixed potential due to the negative cosmological constant. An example of

a typical evolution is shown in Fig. 3.3, where for the considered initial conditions, pc increases

through multiple bounces in the backward evolution whereas pb decreases. The initial conditions

are chosen at t = 0 as pb(0) = 8× 105, pc(0) = 8× 105, b(0) = −0.05, ρΛ(0) = −10−8 (in Planck

units). The behavior of the triads in this regime is such that the mean volume undergoes periodic

cycles of expansion and contraction. In contrast, for the evolution in positive time, the series

of bounce and recollapses damps down and pc approaches a constant value in the asymptotic

regime. In the same regime, pb grows exponentially. As in the case of the positive cosmological

constant, holonomy corrections are significant in this regime, as can be seen in the right plot

in Fig. 3.2. The regime where pc approaches a constant value asymptotically is not a solution

of the classical Hamilton’s equations for the Kantowski-Sachs spacetime. Further details of this

asymptotic solution are discussed in the next section.

3.2.3 Bianchi-III LRS spacetime with a negative cosmological constant

The evolution of triads in the Bianchi-III LRS spacetime/higher genus black hole interior with

a negative cosmological constant is cyclic in nature, similar to the case earlier discussed for

the Kantowski-Sachs spacetime. An earlier study of this spacetime in LQC was performed in

Ref. [47], where its non-singular properties were first noted. It turns out that to carry out the

numerical simulations in this case, it is more convenient to work with a lapse N = 1/pb
√
pc.

For any given choice of initial conditions, on one side of the temporal evolution, the triad

pc undergoes several bounces and recollapses until it approaches an asymptotic value. In this
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Figure 3.3: Triads in Kantowski-Sachs model sourced with a negative cosmological constant.

regime, pb increases linearly in coordinate time for lapse N = 1/pb
√
pc. One finds that pb grows

exponentially in this regime with respect to the proper time, whereas pc attains a constant value.

For the initial conditions in Fig. 3.4, we show that such an asymptotic region occurs in positive

time (see also Fig. 3.5). The lapse for the simulations of this case is chosen to be N = 1/pb
√
pc.

The initial conditions are chosen at t = 0 as pb(0) = 8 × 105, pc(0) = 8 × 105, b(0) = 0.05,

ρΛ(0) = −10−8 (in Planck units). Note that in contrast to the Kantowski-Sachs spacetime with

a negative cosmological constant, the transitions are not as smooth which can be seen in the

zoomed version of pb and pc in the above figure. In the negative time, pb decreases whereas pc

increases after several cycles of bounces and recollapse as is shown in Fig. 3.4. For large positive

time, the mean volume of the spacetime increases in each cycle of loop quantum bounce and the

classical recollapse. Finally, we note that in the asymptotic regime where pc attains a constant

value, holonomy corrections are significant similar to the case of asymptotic spacetime in the

loop quantum model of Kantowski-Sachs spacetime shown in Fig. 3.2. As in the case of the
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Figure 3.4: Triads for negative cosmological constant in higher genus black hole spacetime.

Kantowski-Sachs spacetime, this regime is not a solution of the classical Hamilton’s equations

for the Bianchi-III LRS model with a negative cosmological constant. In the following section

we discuss further properties of this asymptotic regime.

Figure 3.5: Triads for the higher genus black hole interior is shown in the asymptotic regime.
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3.3 Properties of the asymptotic spacetime with a constant pc

The main conclusion from the numerical simulations of the Kantowski-Sachs spacetimes with a

positive and a negative cosmological constant, and the Bianchi-III LRS spacetime (or the higher

genus black hole spacetime) with a negative cosmological constant is that the spacetime in one

side of the temporal evolution after the singularity resolution has a constant value of triad pc.

Let us look at some of the key features of this asymptotic regime. As was illustrated in Fig. 3.2,

in this regime cos(cδc) = 0. Thus, cδc takes a constant value, and eq.(3.15) implies that ṗc = 0.

Further, using eq.(3.16) we find that b is a constant in proper time for this asymptotic regime

in Kantowski-Sachs model as well as the higher genus black hole interior. Since δb =
√

∆/pc, in

this regime bδb is also a constant. Using the constancy of bδb and cδc in (3.14) one finds that ṗb
pb

is a constant. That is, pb expands exponentially in proper time, both for the Kantowski-Sachs

and higher genus black hole spacetimes. For the case of the higher genus black hole interior,

where numerical simulations were carried with lapse N = 1/pb
√
pc, pb is a constant with respect

to the coordinate time in the asymptotic regime. Note that since δc =
√

∆p
1/2
c /pb, for cδc to be

a constant, c
pb

has to be a constant. Hence c also exhibits an exponential behavior with respect

to proper time. In the simulations discussed in the previous section, one finds that both c and

pb expand exponentially in such a way that c
pb

is a constant in the asymptotic regime.

Since the triads are related to the metric components, knowing the asymptotic behavior of

the triads allows us to find the asymptotic behavior of the metric components. The radius of

the 2-sphere part, gθθ = pc, hence has the same asymptotic value as the triad pc. Setting this

asymptotic value to be R2
0, we have asymptotically

gθθ(τ) = R2
0, (3.24)

a constant value, where τ is the proper time. Also, it is obvious that in the asymptotic region,

gφφ = R2
0 sin2 θ for the Kantowski-Sachs spacetime and gφφ = R2

0 sinh2 θ for the Bianchi III LRS

spacetime.

In the asymptotic regime, while the triad pc is constant, triad pb is expanding exponentially.

Let us first consider the case when one reaches this asymptotic region in the forward evolution.

Then, asymptotically pb = p
(0)
b eατ , where α is a positive constant. The coefficient p

(0)
b is a

positive constant which formally has the following meaning. If the exponential expansion began
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at some proper time τ0, with the initial value of pb as p
(i)
b , then, p

(0)
b =

p
(i)
b

eατ0
. Note that this is not

the initial value of pb where the numerical evolution was started with at τ = 0. Since pb scales

linearly with the fiducial length, p
(0)
b is also a fiducial cell dependent quantity. If the asymptotic

region with the exponential behavior of pb had been in the backward evolution, then α would

have been a negative quantity and pb would increase exponentially as τ → −∞. Either way,

gxx(τ) =
p2
b

L2
0pc

=
(p

(0)
b )2e2ατ

L2
0R

2
0

. (3.25)

Note that since p
(0)
b depends on the fiducial length linearly, gxx is independent of the fiducial

cell. Once we have the metric components from (3.24) and (3.25), we can analyze the properties

of these asymptotic spacetimes and ask if they satisfy the Einstein equations for some Tµν . We

do this separately for the Kantowski-Sachs spacetime and the Bianchi III LRS spacetime in the

following subsections.

We can now obtain the effective metric of the asymptotic spacetime for the Kantowski-Sachs

case with a positive and a negative cosmological constant, and the higher genus black hole interior

with a negative cosmological constant. Using equations (3.24) and (3.25), the line element of

the emergent asymptotic spacetime in the LQC evolution of Kantowski-Sachs spacetime can be

written as

ds2 = −dτ 2 +
(p

(0)
b )2e2ατ

L2
0R

2
0

dx2 +R2
0

(
dθ2 + sin2 θdφ2

)
. (3.26)

Since τ → ∞ in the asymptotic region, it is permitted to substitute eατ with cosh (ατ). Addi-

tionally, using the redefinition x→ p0b
L0R0

x, the line element can be written as

ds2 = −dτ 2 + cosh2 (ατ)dx2 +R2
0

(
dθ2 + sin2 θdφ2

)
. (3.27)

The above line element (3.27) is formally similar to the Nariai metric written in its homogeneous

form [51, 52, 40], with the difference that for the Nariai metric α = 1
R0

. This formal similarity had

led the earlier authors [40] to call the asymptotic spacetime obtained as Nariai-type spacetime. In

classical GR, for α 6= 1/R0, the spacetime metric corresponds to a charged Nariai spacetime with

a uniform electromagnetic field. Thus, the effective metric obtained above formally corresponds

to a charged Nariai solution of the Einstein’s theory. Such spacetimes are often discussed

in literature [60, 61, 62] in static coordinates. One can go to those coordinates using the
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transformations kτ → sinh(kτ), R = iτ and T = ix. The line element (3.27) becomes

ds2 = −(1− k2R2)dT 2 +
dR2

1− k2R2
+R2

0

(
dθ2 + sin2 θdφ2

)
. (3.28)

One can do yet another coordinate transformation k2 = k0
R2

0
and sin2 χ = 1− k2R2, to write the

static line element in the form used in the references [60, 61, 62],

ds2 =
R2

0

k0

(
− sin2(χ)dτ 2 + dχ2

)
+R2

0

(
dθ2 + sin2(θ)dφ2

)
. (3.29)

Thus we see that the asymptotic spacetime we obtain in the evolution of Kantowski-Sachs

spacetime corresponds to a classical charged Nariai spacetime. However, the quantum spacetime

is different from these classical charged spacetimes in the sense that the ‘charge’ in LQC evolution

of Kantowski-Sachs spacetime is purely of quantum geometric origin and is not electromagnetic.

Similarly, one can write the line element for the asymptotic constant pc spacetime obtained

in the LQC evolution of Bianchi III LRS spacetime (or higher genus black hole interior) with

negative cosmological constant using (3.24) and (3.25) together with eατ → cosh (ατ) and x→
p0b

L0R0
x as,

ds2 = −dτ 2 + cosh2 (ατ)dx2 +R2
0

(
dθ2 + sinh2 θdφ2

)
. (3.30)

Following the coordinate transformations used to reach from (3.27) to (3.29), one can write

the line element (3.30) in the static coordinates as

ds2 =
R2

0

k0

(
− sin2(χ)dτ 2 + dχ2

)
+R2

0

(
dθ2 + sinh2 θdφ2

)
. (3.31)

This metric corresponds the anti-Bertotti-Robinson spacetime, which in classical GR is an elec-

trovacuum solution. As in the case of emergent ’charged’ Nariai spacetime discussed above, even

though classically these spacetimes are solutions of Einstein equations with matter as uniform

electromagnetic field in the loop quantum case the energy momentum tensor in these emergent

spacetime originates from the quantum geometry and is not electromagnetic in origin.

‘Charged’ Nariai and anti-Bertotti-Robinson spacetimes that emerge in LQC evolution of

black hole interiors are product of constant curvature spaces. ‘Charged’ Nariai spacetime has a

topology of dS2× S2 where as the anti Bertotti-Robinson spacetime has the dS2×H2 topology.

Thus, both are product manifolds with each of the two manifolds (t−x manifold whose curvature

may be denoted by k+ and θ − φ manifold whose curvature may be denoted by k−) having
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constant curvature. For a discussion of these product of constant curvature manifolds in classical 

general relativity we refer the reader to [49].4 For classical charged Nariai spacetime (as well 

as for the quantum ones with the non electric or magnetic charge), both the t − x manifold 

and θ − φ manifold have positive curvatures. The special case of both these curvatures being 

equal k+ = k− > 0 corresponds to the ‘uncharged’ Nariai spacetime (or just Nariai spacetime 

as it is commonly referred to in the literature). For anti-Bertotti-Robinson spacetime, k+ is 

positive where as k− is negative. The special case of k+ = −k− corresponds to a spacetime with 

no cosmological constant and is a conformally flat spacetime. There are two other spacetimes 

(anti-Nariai and Bertotti-Robinson spacetimes) for different choices of the sign of k+ and k− as 

tabulated below.

Type Topology Rt
t R2

2 Λ̃

Nariai dS2 × S2 +ve +ve +ve

Anti-Nariai AdS2 ×H2 -ve -ve -ve

Bertotti-Robinson AdS2 × S2 -ve +ve any sign

Anti-Bertotti-Robinson dS2 ×H2 +ve -ve any sign

Table 3.1: Some features of (anti) Nariai and (anti) Bertotti-Robinson spacetimes.

In the present context, the necessary condition to respect positivity of energy is k− > k+. 

This is never true in anti-Bertotti-Robinson spacetimes as k− < 0 and k+ > 0, and hence they 

always violate positive energy conditions. Even though negative energy solutions of Einstein 

equations are deemed unphysical, it is plausible that in scenarios where quantum geometric 

effects are important, the energy density may be allowed to be negative. Such a scenario where 

a modified gravity theory gives rise to negative energy density has been observed earlier in the 

context of brane world models [64, 65].

3.4 Emergent ‘charge’ and cosmological constant in loop quantum cosmology

The charged Nariai and anti Bertotti-Robinson solutions in classical general relativity have

electromagnetic field as its matter content. The asymptotic spacetimes obtained in the loop

4Nariai and Bertotti-Robinson spacetimes have also been shown to be solutions of modified Einsteinian

gravity in presence of one loop quantum corrections to the stress energy tensor, see for eg. Ref.[63].
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quantum evolution of Kantowski-Sachs and Bianchi III LRS spacetimes are identical to these

classical solutions as far as the metric and curvature components are concerned. Hence from

a computational point of view determining the energy momentum tensor of these emergent

spacetimes follow that of the corresponding general relativistic spacetime. However one must

be cautious in interpreting the nature of this energy momentum tensor. Specifically, one should

not attribute the energy momentum tensor to the existence of a uniform electromagnetic field

as one would do in the classical geometrodynamical setting. The ‘field’ and ‘charge’ arising in

loop quantum evolution of black hole interiors is not electromagnetic but quantum geometric.

It is plausible that these quantum spacetimes are sourced by some energy momentum tensor

of quantum gravitational origin but similar to that of the uniform electromagnetic field in its

effect on curvature. This is the sense in which we use the word ‘charge’ or ‘field’ to describe the

matter content of emergent spacetimes. The situation is similar to the case of the bulk/brane

models, where the Weyl curvature of the bulk induces a ‘charge’ on the brane [64]. Further

studies are required to exactly pin point the nature of this ‘charge’ and to determine if this

charge is identical to the electromagnetic charge in geometrodynamics. For now, we adopt the

techniques of geometrodynamics [53] for computational purposes, relegating the interpretation of

the ‘charge’ to future works. In the following subsection we summarize the calculation of energy

momentum tensor and charge in a classical setting, which then will extended to the calculation

of non electric (or magnetic) charge in the quantum spacetimes obtained in the evolution of

black hole interiors.

Let us first consider the classical aspects of charged Nariai and anti-Bertotti-Robinson space-

times. In classical geometrodynamics, with a vanishing cosmological constant, for a spacetime

to admit a uniform electromagnetic field, the Ricci tensor components must satisfy R0
0 = R1

1 =

−R2
2 = −R3

3. For a spacetime satisfying above conditions, the electromagnetic field tensor that

satisfies the Einstein equations

Ri
j −

R

2
gij =

1

4π

(
F ikFjk −

F klFkl
4

gij

)
(3.32)

can be found uniquely from the Ricci tensor [53]. This result was extended to the case in the

presence of a non-zero cosmological constant by Bertotti [66].

The electromagnetic field tensor in charged Nariai spacetime (3.29) is [62, 60]
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F = q sin θdθ ∧ dφ (3.33)

when the field is purely magnetic and

F =
q

k0

sinχdτ ∧ dχ (3.34)

when field is purely electric. Here q is the electric or magnetic charge. In geometrodynamics, q

is purely geometric in origin and has nothing to do with the quantized charge, of say an electron

[53]. The electromagnetic field is constant in spacetime and hence one might expect that there is

no localized charge. This is indeed true, and one can see that the 4-current vanishes as F ik;k = 0.

Thus the field can be visualized as created by effective charges at the boundary of the spacetime

[49]. The energy momentum of the field is [60]

diag(T ij ) = (
−q2

8πR4
0

,
−q2

8πR4
0

,
q2

8πR4
0

,
q2

8πR4
0

). (3.35)

Since the above energy momentum tensor is traceless, the cosmological constant in the charged

Nariai spacetime is determined by the Ricci scalar. The energy momentum tensor and cosmolog-

ical constant of anti-Bertotti-Robinson spacetime can also be found in the same way. The only

difference for anti Bertotti-Robinson spacetime from the above calculation is that one should

use sinh θ instead of sin θ in (3.33) and −q2 instead of q2 in (3.35).

The emergent loop quantum spacetimes obtained in Sec. III have the same curvature and

Einstein tensors as the one discussed in the classical theory above. The difference however is

that for these quantum spacetimes the energy momentum tensor in (3.35) is purely of quantum

geometric origin. Thus the electric or magnetic charge q in (3.35) should be substituted with an

emergent ‘charge’ q̃ which is neither electric nor magnetic. Similarly the cosmological constant

is also of quantum geometric origin and we refer to it as Λ̃. The emergent ‘charge’ q̃ and Λ̃ is

related to k0 and R0 in (3.29) as in the classical case [60]

q̃2 =
k − k0

2
R2

0 =
k − α2R2

0

2
R2

0. (3.36)

and

Λ̃ =
k + k0

2R2
0

=
k + α2R2

0

2R2
0

. (3.37)

where k = +1 for the ‘charged’ Nariai spacetime and k = −1 for the anti-Bertotti-Robinson

spacetime. In the latter case, since the electric energy density is negative, the corresponding
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emergent charge satisfies q̃2 < 0. Note that this interpretation is based on the appropriate choice

of splitting of the constant curvatures k+ and k− giving rise to a mixture of Nariai and (anti)

Bertotti-Robinson spacetimes.

Using the asymptotic values of α2 and R2
0 obtained numerically from the LQC evolution

in Kantowski-Sachs and the higher genus black hole interior, the values of emergent ‘charge’ q̃

and emergent cosmological constant Λ̃ can be computed. For the Kantowski-Sachs case, with

Λ in eq.(3.12) zero, the the emergent ‘charge’ and cosmological constant of the ‘charged’ Nariai

spacetime in geometrized units evaluates to q̃2 = 0.151 and Λ̃ = 1.610. The emergent ‘charge’

and cosmological constant change by less than 0.1% of these vacuum values for small magnitudes

of cosmological constant (|ρΛ| < 10−6). For higher values of |ρΛ|, the change in these emergent

quantities from the values in the vacuum case are more appreciable. It was found that both

the emergent ‘charge’ and the cosmological constant varies monotonically with ρΛ, such that q̃2

decreases and Λ̃ increases with increasing ρΛ. For example, for ρΛ = −10−2, we find q̃2 = 0.164

and Λ̃ = 1.487 in geometrized units. The same quantities turn out to be 0.139 and 1.734

respectively for ρΛ = 10−2. Further work is required to find the precise dependence of these

quantities on ρΛ. Also note that these quantities depend on the choice of ∆ as any change in

the holonomy edge length will result in a change in asymptotic values of pc and ṗb
pb

.

We have already seen that the electric energy density developed in the anti-Bertotti-Robinson

spacetime obtained in the evolution of Bianchi III LRS/higher genus black hole interior is nega-

tive. It turns out that the emergent cosmological constant is also negative for these spacetimes.

Once again, the values of these emergent quantities depend on ρΛ. Unlike the case of Kantowski-

Sachs spacetime, constant pc asymptotic regime occurs only if the cosmological constant is neg-

ative for the Bianchi III LRS spacetime in LQC evolution. In this case, q̃2 decreases with

increasing (decreasing magnitude) ρΛ whereas Λ̃ increases. For example, for ρΛ = −1×10−8, we

get q̃2 = −0.050 and Λ̃ = −4.997 in geometrized units, whereas for ρΛ = −1×10−2, q̃2 = −0.053

and Λ̃ = −4.647. The dependence of both the emergent quantities were seen to be approxi-

mately linear with ρΛ, as in the case for emergent cosmological constant in LQC evolution of

Kantowski-Sachs model.

In summary, the emergent asymptotic spacetimes in the loop quantum evolution of Kantowski-

Sachs spacetime and Bianchi III LRS spacetime are a product of constant curvature spaces
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whose matter content is parameterized by an emergent ‘charge’ and cosmological constant, both

of which are of quantum gravitational origin. The emergent charge in these spacetimes should

not be a priori identified with electric or magnetic charge but is a result of quantum geometry.

This is similar to the emergence of a ‘tidal charge’ in the brane world scenario discussed in [64]

arising from the projection of the Weyl tensor of a 5 dimensional brane world model on to a

four dimensional brane.

3.5 ‘Uncharged’ Nariai spacetime and Λ̃ = 0 anti-Bertotti-Robinson spacetimes

A natural question to be posed in the light of last section is if loop quantum evolution of

Kantowski-Sachs spacetime can lead to ‘uncharged’ Nariai spacetime which corresponds to the

special case of k+ = k− i.e, a spacetime where all the diagonal components of Ri
j are equal.

Similarly one could also ask if the special anti Bertotti-Robinson solution with k+ = −k− (which

corresponds to Λ̃ = 0) may emerge from LQC evolution of Bianchi III LRS spacetime/higher

genus black hole interior.

Let us rewrite the loop quantum Hamiltonian constraint (3.12) for the Kantowski-Sachs

spacetime and for the Bianchi III LRS/higher genus black hole interior spacetime as

sin2(bδb) + 2 sin(bδb) sin(cδc) + β = 0 (3.38)

where β = γ2∆(k/pc−Λ) with k = 1 for Kantowski-Sachs spacetime, and k = −1 for the higher

genus black hole. Any solution with β < −3 is unphysical as it does not solve the Hamiltonian

constraint.

We now check what additional conditions should be satisfied for a constant pc spacetime to

exist. Since cos (cδc) = 0 for derivative of pc to vanish, sin (cδc) = ±1 in the constant pc regime.

Hence, the Hamiltonian constraint for the constant pc regime is a quadratic equation in sin(bδb),

sin2(bδb)± 2 sin(bδb) + β = 0 (3.39)

Existence of a real solution requires β ≤ 1. Hence β is constrained to lie between -3 and 1.

It is convenient to introduce x =
√

1− β which varies from 0 to 2, in terms of which α2 and

1/pc become:

α2 =
x2

γ2∆
(2x− x2), and

1

pc
= Λ +

k(1− x2)

γ2∆
. (3.40)
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For the curvature components to satisfy k+ = k− or k+ = −k−, or equivalently α2 = ± 1
pc

,

the following equation needs to be satisfied

x4 − 2x3 + k(−x2 + 1 + γ2∆Λ) = 0 . (3.41)

The function f(x) = x4 − 2x3 − kx2 with x ∈ [0, 2] has a range [−4, 0] for k = 1 and a range

[0, 4] for k = −1. Hence, the plausible range of cosmological constant is

−1

γ2∆
≤ Λ ≤ 3

γ2∆
(3.42)

for the existence of both ‘uncharged’ Nariai spacetime as well as anti Bertotti-Robinson space-

time with Λ̃ = 0. So, for a Λ lying in the above range, one may find a suitable value of x which

will yield a spacetime with equal magnitudes for all the non-vanishing Ricci components.

Another condition which has to be satisfied for any constant pc spacetime is that cδc should

be a constant. This is satisfied when c/pb is a constant, which yields (using (3.14) and (3.17))

1− x+ cos(
γ2∆Λ + 1− x2

x
√

2x− x2
) = 0. (3.43)

Since we need to solve equations (3.41) and (3.43) simultaneously, we obtain

1− x+ cos(x
√

2x− x2) = 0. (3.44)

One of the solutions of the above equation is at x = 2, which corresponds to α = 0 and such a

spacetime will have constant pb, not an exponentially expanding pb. In fact such a spacetime will

have all the triads and cotriads constant. Since we are interested in obtaining an ‘uncharged’

Nariai spacetime or anti-Bertotti-Robinson spacetime with a vanishing cosmological constant,

this solution will not be considered. The second root of (3.44) was numerically found to be

x = 1.31646. Note that this solution is true for both the Kantowski-Sachs and the higher genus

black hole interior spacetimes. Knowing x, one can find the asymptotic values of pc and α2 as

pc = 0.18697 and α2 = 5.34842 in Planck units.

For the above values of asymptotic pc and α, one can obtain an ‘uncharged’ Nariai solution

in the LQC evolution of Kantowski-Sachs spacetime or anti Bertotti-Robinson spacetime in the

LQC evolution of Bianchi III LRS spacetime. The cosmological constant needed for obtaining

such a Nariai spacetime turns out to be 7.86251 in Planck units. This is a huge value, especially

since the corresponding energy density is around three fourth of the critical energy density of
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isotropic loop quantum cosmology. For Bianchi III LRS spacetime, the cosmological constant

needed to obtain an anti-Bertotti-Robinson spacetime without emergent cosmological constant

turned out to be -2.83432 in Planck units.

For these special spacetimes to emerge naturally from the loop quantum evolution of black

hole interiors, the corresponding constant pc regime should be stable, which turns out to be not

the case [45]. The stability was tested by choosing initial conditions from the exact solution, such

that the Hamiltonian constraint is satisfied, and then using LQC equations of motion to evolve

the spacetime. It was found that the ‘uncharged’ Nariai spacetime evolves to a deSitter spacetime

in both past and future evolution and thus is not stable. This does not come as surprise given the

high value of positive cosmological constant, for which generic initial conditions lead to de Sitter

spacetime in both the forward and backward evolution of Kantowski-Sachs universe in LQC. The

anti-Bertotti-Robinson solution with vanishing emergent cosmological constant was also found to

be unstable. It evolved in to an anti-Bertotti-Robinson solution with a smaller constant pc (and

thus a nonzero emergent cosmological constant) on one side where as pc kept on increasing after

each recollapse on the other side. In summary we did not find a stable emergent ‘uncharged’

Nariai spacetime or anti-Bertotti-Robinson spacetime with vanishing emergent cosmological

constant in the loop quantum evolution of Kantowski-Sachs or Bianchi III LRS spacetimes.

Thus whenever a constant pc regime emerges from the quantum evolution of these spacetimes,

there is an associated emergent ‘charge’ and an emergent cosmological constant. In the presented

scenario spacetime which is a product of constant curvature spaces with equal magnitudes for

all the non-vanishing Ricci tensor components seems to be disfavored in the LQC evolution of

black hole interiors.

3.6 Discussion

Loop quantum evolution of Schwarzschild and higher genus black hole interiors were studied

in a minisuperspace setting using their isometries to Kantowski-Sachs spacetime (in [40]) and

Bianchi III LRS spacetime (in [47]) respectively. These studies found that the black hole interior

spacetime undergoes a quantum bounce and the classical central singularity is resolved, similar to

the singularity resolution in other loop quantum cosmological models. However, the post bounce

evolution in these black hole interior models has the surprising feature that it asymptotes towards
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a spacetime where the triad pc which is the radius of the two-sphere part attains a constant value

where as the triad pb undergoes an exponential expansion. Also, these spacetimes were found

to have non-negligible holonomy corrections asymptotically after the bounce, i.e, the quantum

geometric effects do not fade away after the bounce. Due to its similarity with the Nariai

spacetime which also has a constant gθθ and an exponentially increasing gxx, these asymptotic

regions were termed ‘Nariai type’ spacetimes in previous works [40, 47]. In this work, we

re-examined the loop quantum evolution of black hole interior spacetimes in the presence of

cosmological constant to study the asymptotic spacetime in detail assuming the validity of the

effective spacetime description in LQC.

We find that the asymptotic constant pc spacetime obtained in the effective loop quan-

tum evolution of Kantowski-Sachs spacetime can be interpreted as a ‘charged’ Nariai solution

of classical GR. The asymptotic solution obtained in the evolution of Bianchi III LRS space-

time with a negative cosmological constant (or the higher genus black hole interior) can be

similarly interpreted as an anti-Bertotti-Robinson spacetime, again a solution to the Einstein

equations. Both these solutions are product spacetimes of constant curvature manifolds [49]

with R0
0 = R1

1 = ±R2
2 = ±R3

3. The constancy of Ricci components was verified numerically for

the asymptotic spacetimes emergent in LQC evolution of black hole interiors. These curvatures

were found to be Planckian even though the effective metric is a solution of the Einstein equa-

tions. Thus the emergent spacetime has the peculiar nature of being isometric to a classical

spacetime while the quantum gravity effects (via the holonomy corrections of LQC) are large.

It is also noteworthy that classical ‘charged’ Nariai and anti-Bertotti-Robinson spacetimes are

nonsingular and thus the geodesics in black hole interiors can be extended to infinity in the loop

quantum evolution. Another striking feature of these spacetimes is the existence of an emer-

gent ‘charge’ and cosmological constant - both of quantum geometric in origin. One could fine

tune the asymptotic pc and ṗb
pb

to obtain ‘uncharged’ Nariai spacetime or anti-Bertotti-Robinson

spacetime with vanishing cosmological constant. However these fine tuned spacetimes turn out

to be unstable and evolve to more generic ‘charged’ Nariai spacetime or anti-Bertotti-Robinson

spacetime with cosmological constant. Thus emergence of the quantum geometric ‘charge’ and

cosmological constant seems to be inevitable in the LQC evolution of black hole interior space-

times. The basic property of emergent spacetime is that it is a product of two spaces of unequal
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constant curvatures. The interpretation of these constant curvature spaces in LQC as ‘charged’

Nariai and anti-Bertotti-Robinson spacetimes comes about by a proper splitting of the two cur-

vature constants of product spaces. This is indeed remarkable that emergent spacetime after

the bounce is classical GR solution.

The emergence of a quantum geometric ‘charge’ in the LQC evolution of black hole interior

spacetimes is in parallel to a similar result in the brane world scenario [64]. There, the projection

of the Weyl tensor of a 5 dimensional bulk spacetime on to a four dimensional brane gave rise to

Weyl or ‘tidal’ charge (and not an electric charge) which was taken to be negative on physical

considerations. The metric however had exactly the same form as that of Reissner-Nordstrom

solution with Q2 → −Q2. The parallel between the current work and the findings of [64] are

striking. In both cases, a theory of modified general relativity gives rise to an emergent ‘charge’

which mimics an electric or magnetic charge in the way it affects the geometry of spacetime,

but which has its origin not in electromagnetism but in the modifications to general relativity.

Thus this emergent ’charge’ is purely gravitational in nature. However it seems that we are

finding evidence that attempts to capture quantum corrections to general relativity through

such a ‘charge’. Much further work and analysis is required to further nail its actual character

and significance.
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