
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2015

Z-Spectral Modeling for Magnetization Transfer
Ratio Asymmetry Calculations in Chemical
Exchange Saturation Transfer MRI at 3 Tesla
Ryan Nicholas Schurr
Louisiana State University and Agricultural and Mechanical College, rschur2@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Physical Sciences and Mathematics Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Schurr, Ryan Nicholas, "Z-Spectral Modeling for Magnetization Transfer Ratio Asymmetry Calculations in Chemical Exchange
Saturation Transfer MRI at 3 Tesla" (2015). LSU Master's Theses. 2661.
https://digitalcommons.lsu.edu/gradschool_theses/2661

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/2661?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2661&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


Z-SPECTRAL MODELING FOR MAGNETIZATION TRANSFER RATIO 

ASYMMETRY CALCULATIONS IN CHEMICAL EXCHANGE 

SATURATION TRANSFER MRI AT 3 TESLA 
 

 

 

 

 

 

 

 

 

 

 

A Thesis 

 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

 

in 

 

The Department of Physics and Astronomy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

Ryan N. Schurr 

B.S., Clemson University, 2012 

August 2015 



ii 

 

ACKNOWLEDGMENTS 

I acknowledge the help and contributions of the many people who offered me assistance 

and guidance over the course of completing this project. 

 I thank Randy Deen and Kevin McKlveen, MR technologists at PBRC, for their time and 

assistance with data collection and sharing their knowledge of MRI. I thank Chenfei Gao, 

graduate student working at PBRC, for his assistance and guidance in building the phantom. I 

thank Dr. Jianhua Lu, post-doctoral researcher at LSU and PBRC, for sharing his knowledge of 

CEST-MRI with me. 

 I thank Saba Elias, physicist at The Ohio State University’s Wexner Medical Center, for 

her willingness to give her assistance, knowledge, and time in scanning the phantom. I thank 

Danny Clark, M.D.-Ph.D. student at The Ohio State University for his time and assistance with 

scanning the phantom and helping me process the images. 

 I thank my advisor, Dr. Guang Jia, for sharing his energy, expertise, and knowledge of 

physics with me. His advice and guidance were invaluable and I am grateful for the opportunity 

to work with him. His always-positive attitude kept me encouraged throughout the course of the 

project. 

I thank my committee members, Dr. Owen Carmichael, Dr. Kip Matthews, Dr. Joyoni 

Dey, and Dr. David Young, for offering their time and assistance and sharing their knowledge of 

physics and experimental design.   

Additionally, I thank the entirety of the Medical Physics faculty for their invaluable 

instruction and guidance over the course of my entire education at LSU. 

  



iii 

 

TABLE OF CONTENTS 
 

ACKNOWLEDGMENTS .............................................................................................................. ii 

 

LIST OF TABLES .......................................................................................................................... v 

 

LIST OF FIGURES ....................................................................................................................... vi 

 

LIST OF ABBREVIATIONS ......................................................................................................... x 

 

ABSTRACT ................................................................................................................................... xi 

 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

1.1 MRI PHYSICS REVIEW ..................................................................................................... 1 

1.1.1 NUCLEAR MAGNETIC RESONANCE ..................................................................... 1 

1.1.2 CHEMICAL SHIFT....................................................................................................... 2 

1.1.3 MAGNETIC SUSCEPTIBILITY .................................................................................. 3 

1.2 MAGNETIZATION TRANSFER ........................................................................................ 4 

1.3 APPLICATIONS OF MAGNETIZATION TRANSFER MRI ............................................ 9 

1.4 CHEMICAL EXCHANGE SATURATION TRANSFER ................................................... 9 

1.5 APPLICATIONS OF CHEMICAL EXCHANGE SATURATION TRANSFER MRI..... 13 

1.6 EXTERNAL MAGNETIC FIELD INHOMOGENEITY .................................................. 13 

1.7 PROSTATE CANCER AND MRI ..................................................................................... 15 

1.8 BLADDER CANCER AND MRI ...................................................................................... 15 

1.9 MOTIVATION FOR RESEARCH .................................................................................... 16 

1.10 HYPOTHESIS AND SPECIFIC AIMS ........................................................................... 16 

1.11 OVERVIEW OF THE THESIS ........................................................................................ 17 

 

CHAPTER 2: MATERIALS AND METHODS .......................................................................... 19 

2.1 Z-SPECTRAL CURVE FITTING METHOD – OVERVIEW .......................................... 19 

2.1.1 Z-SPECTRAL CURVE FITTING METHOD - PHANTOM ..................................... 20 

2.1.2 Z-SPECTRAL CURVE FITTING METHOD - PATIENT ......................................... 21 

2.2 MODEL SELECTION CRITERIA .................................................................................... 21 

2.3 AIM 1, APPLICATION OF MODEL TO CEST-MRI PHANTOM IMAGES ................. 22 

2.3.1 PHANTOM MATERIAL SELECTION ..................................................................... 22 

2.3.2 PHANTOM DEVELOPMENT ................................................................................... 22 

2.3.3 PHANTOM IMAGING PROCEDURE ...................................................................... 24 

2.3.4 Z-SPECTRAL DATA COLLECTION........................................................................ 27 

    2.3.5 Z-SPECTRAL CURVE FITTING ............................................................................... 27 

2.3.6 ASSESSMENT OF MODEL PERFORMANCE ........................................................ 28 

2.4 AIM 2, APPLICATION OF MODEL TO PROSTATE CANCER PATIENT IMAGES . 28 

2.4.1 PROSTATE CANCER PATIENT POPULATION .................................................... 28 

2.4.2 PROSTATE CANCER PATIENT IMAGING ............................................................ 28 

2.4.3 PROSTATE CANCER PATIENT Z-SPECTRAL DATA COLLECTION ............... 29 

2.4.4 Z-SPECTRAL CURVE FITTING ............................................................................... 30 

2.4.5 ASSESSMENT OF MODEL PERFORMANCE ........................................................ 30 



iv 

 

2.5 AIM 3, APPLICATION OF MODEL TO BLADDER CANCER PATIENT IMAGES ... 31 

2.5.1 BLADDER CANCER PATIENT POPULATION ...................................................... 31 

2.5.2 BLADDER CANCER PATIENT IMAGING ............................................................. 31 

2.5.3 Z-SPECTRAL DATA COLLECTION........................................................................ 32 

2.5.4 Z-SPECTRAL CURVE FITTING ............................................................................... 32 

2.5.5 DISTINGUISHING NORMAL BLADDER WALL FROM CANCER ..................... 32 

 

CHAPTER 3: RESULTS .............................................................................................................. 33 

3.1 RESULTS FOR AIM 1: PHANTOM MODEL SELECTION ........................................... 33 

3.1.1 PHANTOM PROPERTIES ......................................................................................... 33 

3.1.2 PHANTOM CURVE FITTING RESULTS ................................................................ 34 

3.1.3 PHANTOM MODEL SELECTION ............................................................................ 36 

3.2 RESULTS FOR AIM 2: MODEL SELECTION WITH PATIENT IMAGES .................. 43 

3.2.1 PROSTATE CANCER PATIENT CURVE FITTING RESULTS ............................. 43 

3.2.2 PATIENT MODEL SELECTION ............................................................................... 45 

3.3 RESULTS FOR AIM 3: BLADDER CANCER IMAGES ................................................ 51 

3.3.1 CURVE FITTING RESULTS ..................................................................................... 51 

3.3.2 BLADDER CANCER PATIENT MTR ASYMMETRY RESULTS ......................... 53 

 

CHAPTER 4: DISCUSSION AND CONCLUSIONS ................................................................. 55 

4.1 RESULTS SUMMARY...................................................................................................... 55 

4.2 LIMITATIONS OF PROPOSED MODEL ........................................................................ 56 

4.3 AIM 1, DISCUSSION ........................................................................................................ 57 

4.4 AIM 2, DISCUSSION ........................................................................................................ 58 

4.5 AIM 3, DISCUSSION ........................................................................................................ 59 

4.6 DIRECTION OF FUTURE WORK ................................................................................... 60 

 

REFERENCES ............................................................................................................................. 62 

 

VITA ............................................................................................................................................. 66 

  



v 

 

LIST OF TABLES 

Table 2.1: Concentrations of materials included in the CEST-MRI phantom and the 

corresponding frequency offset at which the CEST effects are expected. ....................22 

 

Table 3.1: Average T1 and T2 relaxation times and the associated standard deviations (σT1) 

or standard errors (SET2) for the regions of the phantom. Table 2.1 contains the 

concentration values for A, B, and C. ...........................................................................33 

 

Table 3.2: AICc results of the models for the saturation amplitude of 1.6 µT, ordered by 

increasing average AICc. ..............................................................................................37 

 

Table 3.3: AICc results of the models for the saturation amplitude of 2.4 µT, ordered by 

increasing average AICc. ..............................................................................................39 

 

Table 3.4: AICc results of the models for the saturation amplitude of 3.2 µT, ordered by 

increasing average AICc. ..............................................................................................40 

 

Table 3.5: AICc results of the models for the saturation amplitude of 4.0 µT, ordered by 

increasing average AICc. ..............................................................................................41 

 

Table 3.6: AICc results of the models for all saturation amplitudes, ordered by increasing 

average AICc. ................................................................................................................42 

 

Table 3.7: The preferred fitting models for the CEST-MRI phantom images as selected by 

AICc for each of the saturation amplitudes tested. .......................................................43 

 

Table 3.8: AICc results of the models for the saturation amplitude of 1.6 µT for the 

prostate cancer patient images. ......................................................................................46 

 

Table 3.9: AICc results of the models for the saturation amplitude of 2.4 µT for the 

prostate cancer patient images. ......................................................................................48 

 

Table 3.10: AICc results of the models for the saturation amplitude of 3.2 µT for the 

prostate cancer patient images. ......................................................................................49 

 

Table 3.11: AICc results of the models for the saturation amplitude of 4.0 µT for the 

prostate cancer patient images. ......................................................................................50 

 

Table 3.12: AICc results of the models for all saturation amplitudes for the prostate cancer 

patient images. ...............................................................................................................51 

 

Table 3.13: The preferred fitting models for the prostate cancer patient images as selected 

by AICc for each of the saturation amplitudes tested. ..................................................51 

 

  



vi 

 

LIST OF FIGURES 

Figure 1.1: (a) Alignment of proton magnetic moments in the absence of a magnetic field, 

and (b) in the presence of a strong external magnetic field. Adapted from 

Westbrook 2011. ............................................................................................................1 

 

Figure 1.2: The precession of an individual magnetic moment about the direction of the 

external magnetic field. Adapted from Westbrook 2011. ..............................................2 

 

Figure 1.3: The amount of chemical shift varies depending on molecular structure and the 

electronegativity of participating atoms. Figure adapted from the University of 

Colorado's organic chemistry NMR theory tutorial (orgchem.colorado.edu). ..............3 

 

Figure 1.4: Magnetic susceptibility artifact due to a metallic substance located on the 

surface of the patient's skin. This case is courtesy of Dr. Ayush Goel of 

Radiopaedia.org. ............................................................................................................4 

 

Figure 1.5: An off-resonance RF saturation pulse applied to the bound pool reduces the 

signal detected from the water pool following magnetization transfer. Adapted 

from Henkelman 2001. ..................................................................................................5 

 

Figure 1.6: The larger pool (A) representing the water pool, and a smaller macromolecular 

pool (B). The exchange rate R describes the transfer of magnetization between 

the two pools. Adapted from Henkelman 2001. ............................................................6 

 

Figure 1.7: MT-MRI is performed by applying a RF saturation pre-pulse (red, left) prior to 

a standard imaging pulse sequence (right). Adapted from Zaiss 2013. .........................7 

 

Figure 1.8: A hypothetical Z-spectrum for conventional MT from immobile 

macromolecules has a large width, with noticeable MT effects at saturation 

frequency offsets of 100 kHz. Adapted from Zhou 2006. .............................................8 

 

Figure 1.9: The RF absorption spectra of water and a NH solute pool (left) have a much 

narrower bandwidth than that of the broad macromolecular pool describing 

traditional magnetization transfer. Much like traditional MT, saturation is 

transferred to the water pool, reducing the amount of detectable water signal 

(right). Adapted from Ziv 2013. ..................................................................................10 

 

Figure 1.10: The chemical shifts of common solute protons for CEST-MRI in vivo. 

Adapted from Liu 2013. ...............................................................................................10 

 

Figure 1.11: (a) The 
1
H spectrum, showing a peak for the water pool and smaller solute 

pool, which disappears after saturation and (b) the resulting Z-spectrum, with 

an apparent asymmetry at the location of the solute pool. (c) CEST-MRI is 

quantitatively analyzed by calculating the asymmetry of the Z-spectrum. 

Adapted from Liu 2013. ...............................................................................................12 



vii 

 

Figure 2.1: A sample Z-spectrum (open circles). Downfield from water, DWS, MT, and 

CEST effects are expected, while upfield from water DWS, MT, and NOE 

effects are expected. The DWS and MT components of this Z-spectrum are 

plotted and labeled. ......................................................................................................19 

 

Figure 2.2: The Data Spectrum Corporation's MRI phantom. The phantom includes inserts 

for spatial resolution, slice thickness, slice profile, linearity, and quantitative 

imaging (left), though only the quantitative imaging insert (right) is of interest 

to this study. .................................................................................................................23 

 

Figure 2.3: The layout of vials in the CEST phantom. Numbers 1-6 correspond to the 

materials as numbered in Table 2.1, while the letters A, B, and C identify the 

low concentrations, intermediate concentrations, and high concentrations, 

respectively. Vial 7 in each group contained agar alone in concentrations of 2% 

(7A), 4% (7B), or 6% (7C). .........................................................................................23 

 

Figure 2.4: The software MRMap (Version 1.4, Daniel Messroghli) was used to create T1 

maps, performing the required curve fitting for each pixel. ........................................25 

 

Figure 2.5: The Dynamic Magnetic Resonance Imaging Software Tool (Version-OSU-5.0, 

Division of Imaging Research, The Ohio State University) was used to 

calculate T2 values in user-defined regions of the phantom. .......................................26 

 

 Figure 2.6: The pathologic slide created by the uropathologist (a) and the corresponding 

ROI drawn in the CEST-MR image (b). ......................................................................30 

 

Figure 3.1: The B0 field inhomogeneity maps created with echo time differences of (a) 1 

ms, (b) 3 ms, (c) 5 ms, (d) 7 ms, and (e) 9 ms. A phase wrapping artifact is 

evident for echo time differences of 7 ms and 9 ms. ...................................................34 

 

Figure 3.2: The Z-spectrum for Glucose concentration C with a saturation amplitude of 1.6 

µT fit with (a) the 3
rd

 order combination model, (b) the 8
th

 order combination 

model, (c) the 12
th

 order polynomial model, and (d) the 20
th

 order polynomial 

model............................................................................................................................35 

 

Figure 3.3: The Z-spectrum for Glucose concentration C with a saturation amplitude of 4.0 

µT fit with (a) the 3
rd

 order combination model, (b) the 8
th

 order combination 

model, (c) the 12
th

 order polynomial model, and (d) the 20
th

 order polynomial 

model............................................................................................................................36 

 

Figure 3.4: The distributions of AICc values averaged over all material concentrations 

with the saturation amplitude of 1.6 µT. The averages indicated on the boxplots 

are median values. * indicates the preferred model. ....................................................37 

 



viii 

 

Figure 3.5: The distributions of AICc values averaged over all material concentrations 

with the saturation amplitude of 2.4 µT. The averages indicated on the boxplots 

are median values. * indicates the preferred model. ....................................................38 

 

Figure 3.6: The distributions of AICc values averaged over all material concentrations 

with the saturation amplitude of 3.2 µT. The averages indicated on the boxplots 

are median values. * indicates the preferred model. ....................................................40 

 

Figure 3.7: The distributions of AICc values averaged over all material concentrations 

with the saturation amplitude of 4.0 µT. The averages indicated on the boxplots 

are median values. * indicates the preferred model. ....................................................41 

 

Figure 3.8: The distributions of AICc values for all of the fitting models tested for the 

CEST-MRI phantom at all saturation amplitudes. * indicates the preferred 

model............................................................................................................................42 

 

Figure 3.9: The Z-spectrum of the central gland region of the prostate from an image set 

acquired with a saturation amplitude of 1.6 µT. The Z-spectrum was fit with (a) 

the 3
rd

  order combination model, (b) the 6
th

  order combination model, (c) the 

12
th

  order polynomial model, and (d) the 20
th

  order polynomial model. ...................44 

 

Figure 3.10: The Z-spectrum of the central gland region of the prostate from an image set 

acquired with a saturation amplitude of 4.0 µT. The Z-spectrum was fit with (a) 

the 3
rd

 order combination model, (b) the 6
th

 order combination model, (c) the 

12
th

 order polynomial model, and (d) the 20
th

 order polynomial model. .....................45 

 

Figure 3.11: The distributions of AICc values for all regions of the prostate with a 

saturation amplitude of 1.6 µT. The averages indicated on the boxplots are 

median values.* indicates the preferred model. ...........................................................46 

 

Figure 3.12: The distributions of AICc values for all regions of the prostate with a 

saturation amplitude of 2.4 µT. The averages indicated on the boxplots are 

median values. * indicates the preferred model. ..........................................................47 

 

Figure 3.13: The distributions of AICc values for all regions of the prostate with a 

saturation amplitude of 3.2 µT. The averages indicated on the boxplots are 

median values. * indicates the preferred model. ..........................................................48 

 

Figure 3.14: The distributions of AICc values for all regions of the prostate with a 

saturation amplitude of 4.0 µT. The averages indicated on the boxplots are 

median values. * indicates the preferred model. ..........................................................49 

 

Figure 3.15: The distributions of AICc values for all regions of the prostate and all 

saturation amplitudes. The averages indicated on the boxplots are median 

values. * indicates the preferred model. .......................................................................50 

 



ix 

 

Figure 3.16: A representative example of Z-spectral curve fits and MTRasym(ω) calculated 

from the interpolated Z-spectra for (a) the NBW region and (b) the tumor 

region of the bladder cancer patient images. ...............................................................52 

 

Figure 3.17: An example of (a) a small ROI for the NBW region, and (b) the Z-spectrum 

in that ROI for a patient who may have experienced bladder motion during 

acquisition. ...................................................................................................................53 

 

Figure 3.18: Boxplots of the distribution of (a) MTRasym(2.0 ppm) values and (b) 

MTRasym(3.5 ppm) values in both the NBW and tumor regions. .................................54 

  



x 

 

LIST OF ABBREVIATIONS 

AICc – bias-corrected Akaike’s Information Criterion 

CEST – chemical exchange saturation transfer 

CG – central gland 

DWS – direct water saturation 

FFE – fast field echo 

FOV – field of view 

HIPAA – Health Insurance Portability and Accountability Act 

IDL – interactive data language 

IRB – institutional review board 

MT – magnetization transfer 

MTR – magnetization transfer ratio 

NBW – normal bladder wall 

NEX – number of excitations 

NMR – nuclear magnetic resonance 

NOE – Nuclear Overhauser Effect 

NSA – number of signal averages 

PZ – peripheral zone 

RF – radiofrequency 

ROI – region of interest 

TE – echo time 

TR – repetition time 

TSE – turbo spin echo  



xi 

 

ABSTRACT 

 Chemical exchange saturation transfer (CEST) and magnetization transfer (MT) are types 

of magnetic resonance imaging (MRI) experiments in which contrast is based on the transfer of 

magnetization from selectively saturated solute or macromolecular protons to bulk water protons. 

These processes offer insight into the chemical composition of tissue and are quantified by the 

asymmetry of the magnetization transfer ratio (MTRasym). This study was to develop a Z-spectral 

curve fitting procedure based on the underlying physics of CEST-MRI from which MTRasym 

values can be calculated and applied to distinguish healthy tissue from cancer. 

 Z-spectra were collected from CEST-MR images of a phantom. The data were fit to both 

the proposed model which separately fits the upfield and downfield regions of the Z-spectra, and 

two polynomial models from literature. A preferred model was identified using the small sample 

bias-corrected Akaike’s Information Criterion (AICc). Z-spectra were collected from CEST-MR 

images of prostate cancer patients and fit with the same models; the preferred model was 

selected using the AICc. CEST-MR images of bladder cancer patients were acquired and the Z-

spectra were fit with the preferred model identified from the phantom images. MTRasym was 

calculated at frequency offsets of 3.5 ppm and 2.0 ppm to determine if these quantities were 

capable of distinguishing normal bladder wall (NBW) from bladder cancer. 

  The proposed fitting model with a 5
th

 order polynomial for the downfield region was the 

preferred curve fitting model by the AICc model selection procedure for the phantom while a 6
th

 

order polynomial was preferred for the prostate cancer Z-spectra. MTRasym(2.0 ppm) values 

calculated from the bladder cancer Z-spectra did not differ significantly between the NBW and 

tumor regions. A statistically significant difference existed between the NBW and tumor regions 

for the MTRasym(3.5 ppm) values (p < 0.001). 
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 The proposed model was preferred to the polynomial models from literature based on the 

AICc metric. Application of the technique to patient images showed the potential to distinguish 

NBW from bladder cancer based on the statistically significant MTRasym(3.5 ppm) values in 

these regions. 
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CHAPTER 1: INTRODUCTION 

1.1 MRI PHYSICS REVIEW 

1.1.1 NUCLEAR MAGNETIC RESONANCE 

Some species of nuclei have an intrinsic magnetic moment, which will be oriented 

isotropically in a material under normal conditions. In the presence of a strong external magnetic 

field, these magnetic moments will align to either parallel (low energy) or antiparallel (high 

energy) states to create a net magnetic moment oriented in the direction of the external magnetic 

field (Figure 1.1). The ratio of the number of protons in the low energy state to the number of 

protons in the high energy state is determined by 

 
𝑛𝑠𝑝𝑖𝑛 𝑢𝑝

𝑛𝑠𝑝𝑖𝑛 𝑑𝑜𝑤𝑛
= 𝑒−

ℏ𝛾𝐵0
𝑘𝑇    (1.1) 

where γ represents the gyromagnetic ratio (42.58 MHz/T for hydrogen nuclei), ħ is the 

Dirac constant (1.05 × 10
-34

 Js), k is the Boltzmann constant (1.38 × 10
-23

 m
2
kgs

-2
K

-1
), T is the 

temperature (37˚C for the human body), and B0 is the strength of the external magnetic field 

(Haacke, Brown et al. 1999). The gyromagnetic ratio, γ, is a property of the nucleus. For MR 

imaging of the human body, the hydrogen nucleus due to the large abundance of both water and 

fat in the human body (Westbrook, Roth et al. 2011).  

 

Figure 1.1: (a) Alignment of proton magnetic moments in the absence of a magnetic field, and 

(b) in the presence of a strong external magnetic field. Adapted from Westbrook 2011. 

a) b) 
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 Although the net magnetic moment aligns with the external magnetic field, the magnetic 

moments of the individual hydrogen nuclei maintain an angle of 54.73˚ from the direction of the 

external magnetic field and precess about this field at the resonance or Larmor frequency, ω0, 

given by 

 𝜔0 = 𝛾𝐵0  (1.2) 

where γ is the gyromagnetic ratio and B0 is the strength of the external magnetic field (Figure 

1.2). For hydrogen nuclei in a 3 T external magnetic field, the Larmor frequency is 127.7 MHz.  

 

Figure 1.2: The precession of an individual magnetic moment about the direction of the external 

magnetic field. Adapted from Westbrook 2011. 

 

1.1.2 CHEMICAL SHIFT 

Though all nuclei of a single species have a constant gyromagnetic ratio, the resonance 

frequency of these nuclei can change based on the electronic environment. Changes in geometry 

B0 
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including bond length and bond angle, as well as the electronegativity of elements participating 

in a bond, affect the net magnetic field experienced by an individual nucleus. From Equation 1.2, 

a change in magnetic field strength changes the resonance frequency of the nucleus. This shift is 

often expressed in units of parts per million (ppm or Hz/MHz), calculated as 

 Δ𝜔 =
𝜔−𝜔𝑟𝑒𝑓

𝜔𝑟𝑒𝑓
  (1.3) 

where ω is the resonance frequency of the shifted nucleus and ωref is the resonance frequency of 

a reference material. Tetramethylsilane (TMS) is commonly chosen as a reference material.  

Due to the effect of chemical structure on the resonance frequency of nuclei, NMR 

spectroscopy is able to identify the types of bonds in a sample (Figure 1.3). 

 

Figure 1.3: The amount of chemical shift varies depending on molecular structure and the 

electronegativity of participating atoms. Figure adapted from the University of Colorado's 

organic chemistry NMR theory tutorial (orgchem.colorado.edu). 

 

1.1.3 MAGNETIC SUSCEPTIBILITY 

Magnetic susceptibility is a property of a material that describes the relationship between 

the magnetization of the material and the strength of an applied external magnetic field, which 
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causes differences in the Larmor frequency of protons in the context of MRI. This change in 

Larmor frequency causes signal loss at the interface between materials with different magnetic 

susceptibilities, and the magnitude of the resulting artifact (Figure 1.4) can range from 

insignificant to severe; the presence of ferromagnetic materials especially causes B0 field 

inhomogeneity in surrounding tissues. 

 

Figure 1.4: Magnetic susceptibility artifact due to a metallic substance located on the surface of 

the patient's skin. This case is courtesy of Dr. Ayush Goel of Radiopaedia.org. 

 

The B0 field inhomogeneities caused by differences in magnetic susceptibility between 

tissues and even in regions within a tissue also have an effect on chemical shift and MR 

spectroscopy. The resonance frequency of protons is shifted an amount based on the magnitude 

of the B0 field inhomogeneity as described by the Larmor equation (Equation 1.2). The entire 

MR spectrum becomes shifted laterally along the frequency axis. 

1.2 MAGNETIZATION TRANSFER 

 The T2 relaxation time of protons associated with immobile macromolecules is too short 

for direct imaging with standard 
1
H MRI (Henkelman, Stanisz et al. 2001). However, these 
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macromolecular protons can be detected indirectly based on the interactions with water protons. 

An off-resonance radiofrequency saturation pulse can selectively excite the macromolecular 

spins; the magnetization will subsequently be transferred to water protons (Figure 1.5) through a 

combination of spin-spin interactions and direct chemical exchange of protons. This 

magnetization transfer (MT) process is described using a two pool model, with one pool 

representing the water protons (bulk water pool or free pool) and the other representing the 

macromolecular protons (bound pool), each with their own relaxation rates and an exchange rate 

between the two pools (Figure 1.6). Though the goal of magnetization transfer MRI (MT-MRI) 

is to detect changes in the bulk water pool due to MT from the bound pool, some direct 

saturation of the water pool (direct water saturation, DWS) always occurs when the saturation 

pre-pulse is applied. 

 

Figure 1.5: An off-resonance RF saturation pulse applied to the bound pool reduces the signal 

detected from the water pool following magnetization transfer. Adapted from Henkelman 2001. 
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Figure 1.6: The larger pool (A) representing the water pool, and a smaller macromolecular pool 

(B). The exchange rate R describes the transfer of magnetization between the two pools. Adapted 

from Henkelman 2001. 

 

 The magnetizations of the two pools in this model are described by the Bloch equations, 

modified to include exchange terms: 

 
𝑑𝑀𝑧

𝑎

𝑑𝑡
= 𝑅𝑎(𝑀0

𝑎 − 𝑀𝑧
𝑎) − 𝑅𝑀0

𝑏𝑀𝑧
𝑎 + 𝑅𝑀0

𝑎𝑀𝑧
𝑏 + 𝜔1𝑀𝑦

𝑎  (1.4) 

 
𝑑𝑀𝑧

𝑏

𝑑𝑡
= 𝑅𝑏(𝑀0

𝑏 − 𝑀𝑧
𝑏) − 𝑅𝑀0

𝑎𝑀𝑧
𝑏 + 𝑅𝑀0

𝑏𝑀𝑧
𝑎 + 𝜔1𝑀𝑦

𝑏  (1.5) 

 
𝑑𝑀𝑥

𝑎

𝑑𝑡
= −

𝑀𝑥
𝑎

𝑇2𝑎
− 2𝜋Δ𝑀𝑦

𝑎  (1.6) 

 
𝑑𝑀𝑥

𝑏

𝑑𝑡
= −

𝑀𝑥
𝑏

𝑇2𝑏
− 2𝜋Δ𝑀𝑦

𝑏  (1.7) 

 
𝑑𝑀𝑦

𝑎

𝑑𝑡
= −

𝑀𝑦
𝑎

𝑇2𝑎
+ 2𝜋Δ𝑀𝑥

𝑎 − 𝜔1𝑀𝑧
𝑎  (1.8) 

 
𝑑𝑀𝑦

𝑏

𝑑𝑡
= −

𝑀𝑦
𝑏

𝑇2𝑏
+ 2𝜋Δ𝑀𝑥

𝑏 − 𝜔1𝑀𝑧
𝑏  (1.9) 

where Mi
j
 represents the i

th
 component (x, y, or z) of the magnetization of the j

th
 pool (a = water 

and b = bound), R is the exchange rate, Ra,b is the longitudinal relaxation rates of the water and 

bound pools (A and B), M0
a,b

 is the magnetization in the absence of saturation, Δ is the frequency 

offset of the RF saturation pulse (in Hz), T2a,b is the transverse relaxation times for the water (a) 

and bound (b) pools, and ω1 is the angular frequency of precession caused by the RF saturation 
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pulse (Henkelman, Huang et al. 1993). Assuming steady state, these equations may be solved to 

provide a description of the magnetization of the water pool 

 𝑀𝑧
𝑎 =

𝑅𝑏(
𝑅𝑀0

𝑏

𝑅𝑎
)+𝑅𝑟𝑓𝑏+𝑅𝑏+𝑅

(
𝑅𝑀0

𝑏

𝑅𝑎
)(𝑅𝑏+𝑅𝑟𝑓𝑏)+(1+(

𝜔1
2𝜋Δ

)
2

(
1

𝑅𝑎𝑇2𝑎
)(𝑅𝑏+𝑅𝑟𝑓𝑏+𝑅)

  (1.10) 

where Rrfb is a function describing the RF absorption rate of the bound pool. While the solution 

of Equations 1.4-1.9 suggests a Lorentzian line shape for both the water and bound pools, 

experiments have shown a Gaussian function better fits the bound pool in agar, and a super-

Lorentzian better fits the bound pool in tissue (Morrison and Henkelman 1995). 

 The imaging procedure for MT-MRI consists of a narrow-band RF saturation pre-pulse 

applied immediately prior to the image acquisition sequence (Figure 1.7). Common pulse 

sequences used to acquire these images include 2D single-slice fast spin echo or fast gradient 

echo techniques and 3D echo planar imaging techniques. In principle, the saturation pre-pulse 

can be applied prior to any image acquisition sequence, but in practice, fast imaging techniques 

are preferred to minimize the decay of the MT effect (Zaiss and Bachert 2013). 

 

Figure 1.7: MT-MRI is performed by applying a RF saturation pre-pulse (red, left) prior to a 

standard imaging pulse sequence (right). Adapted from Zaiss 2013. 
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 The effect of MT has been traditionally quantified by the magnetization transfer ratio, or 

MTR, which is calculated as: 

 𝑀𝑇𝑅 = 1 −
𝑆𝑠𝑎𝑡

𝑆0
  (1.11) 

where Ssat is the signal intensity with the saturation pre-pulse and S0 is the signal intensity in the 

absence of saturation.  

 Graphically, the effect of MT may be depicted by plotting signal intensity as a function of 

the frequency offset of the applied saturation pre-pulse (Figure 1.8). This often is called the Z-

spectrum, or MT-spectrum (Bryant 1996). The plotted signal intensity is often normalized by the 

signal intensity in the absence of saturation, so the Z-spectrum may alternatively be thought of as 

the plot of 1-MTR versus the frequency offset of the applied saturation pre-pulse. However, for 

many MT-MRI experiments, the entire Z-spectrum need not be collected; a single image with the 

saturation pre-pulse applied at a sufficiently large frequency offset is often adequate for the 

purpose of MTR calculations (Kumar, Jagannathan et al. 2008). 

 

Figure 1.8: A hypothetical Z-spectrum for conventional MT from immobile macromolecules has 

a large width, with noticeable MT effects at saturation frequency offsets of 100 kHz. Adapted 

from Zhou 2006. 
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1.3 APPLICATIONS OF MAGNETIZATION TRANSFER MRI 

MT-MRI has previously been applied to enhance contrast in MR angiography (Parker, 

Buswell et al. 1995) and brain imaging for multiple sclerosis (Mehta, Pike et al. 1995, Tozer, 

Ramani et al. 2003). Recently, quantitative MT-MRI has been utilized to detect the 

macromolecular protons in the prostate to distinguish cancer from healthy tissue (Arima, 

Hayashi et al. 1999, Kumar, Jagannathan et al. 2008, Kumar, Jagannathan et al. 2012), as 

prostate cancer tissues exhibit greater MT effects than healthy peripheral zone tissues based on 

the greater amount of relatively stationary structural tissue proteins and lipids (Riches 2009). 

MTR has recently been studied as a potential biomarker for bowel fibrosis (Pazahr, Blume et al. 

2013, Martens, Lambregts et al. 2014). As of May 2015, there have been over 1700 publications 

on MT-MRI and over 400 publications on quantitative MT-MRI indexed in PubMed since 1988. 

1.4 CHEMICAL EXCHANGE SATURATION TRANSFER 

 Chemical exchange saturation transfer (CEST) is a type of magnetization transfer where 

the decrease in water signal is due to the exchange of protons between solute molecules and 

water. Like MT from immobile macromolecules, CEST is most simply described using a two 

pool model with one pool representing the solute protons and the other pool representing the 

water protons. Unlike the protons associated with immobile macromolecules which have a broad 

RF absorption line shape that is approximately centered about water resonance, the solute 

protons have an RF absorption line shape that is narrow and asymmetric with respect to water 

resonance (Figure 1.9). The chemical shifts of some physiologically relevant types of solute 

protons are shown in Figure 1.10. (Zhou and van Zijl 2006) 
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Figure 1.9: The RF absorption spectra of water and a NH solute pool (left) have a much narrower 

bandwidth than that of the broad macromolecular pool describing traditional magnetization 

transfer. Much like traditional MT, saturation is transferred to the water pool, reducing the 

amount of detectable water signal (right). Adapted from Ziv 2013. 

 

 
Figure 1.10: The chemical shifts of common solute protons for CEST-MRI in vivo. Adapted 

from Liu 2013. 

 

 Similar to magnetization transfer from immobile macromolecules, the magnetization of 

the water and solute pools may be described by modified versions of the Bloch equations which 

include exchange terms: 

 
𝑑𝑀𝑥

𝑠

𝑑𝑡
= −Δ𝜔𝑠𝑀𝑦

𝑠 − 𝑅2
𝑠𝑀𝑥

𝑠 − 𝑘𝑠𝑤𝑀𝑥
𝑠 + 𝑘𝑤𝑠𝑀𝑥

𝑤  (1.12) 

 
𝑑𝑀𝑦

𝑠

𝑑𝑡
= Δ𝜔𝑠𝑀𝑥

𝑠 +  𝜔1𝑀𝑧
𝑠 − 𝑅2

𝑠𝑀𝑦
𝑠 − 𝑘𝑠𝑤𝑀𝑦

𝑠 + 𝑘𝑤𝑠𝑀𝑦
𝑤  (1.13) 

 
𝑑𝑀𝑧

𝑠

𝑑𝑡
= −𝜔1𝑀𝑦

𝑠 − 𝑅1
𝑠(𝑀𝑧

𝑠 − 𝑀0
𝑠) − 𝑘𝑠𝑤𝑀𝑧

𝑠 + 𝑘𝑤𝑠𝑀𝑧
𝑤  (1.14) 

 
𝑑𝑀𝑥

𝑤

𝑑𝑡
= −Δ𝜔𝑤𝑀𝑦

𝑤 − 𝑅2
𝑤𝑀𝑥

𝑤 + 𝑘𝑠𝑤𝑀𝑥
𝑠 − 𝑘𝑤𝑠𝑀𝑥

𝑤  (1.15) 

 
𝑑𝑀𝑦

𝑤

𝑑𝑡
= Δ𝜔𝑤𝑀𝑥

𝑤 + 𝜔1𝑀𝑧
𝑤 − 𝑅2

𝑤𝑀𝑦
𝑤 + 𝑘𝑠𝑤𝑀𝑦

𝑠 − 𝑘𝑤𝑠𝑀𝑦
𝑤  (1.16) 



11 

 

 
𝑑𝑀𝑧

𝑤

𝑑𝑡
= −𝜔1𝑀𝑦

𝑤 − 𝑅1
𝑤(𝑀𝑧

𝑤 − 𝑀0
𝑤) + 𝑘𝑠𝑤𝑀𝑧

𝑠 − 𝑘𝑤𝑠𝑀𝑧
𝑤  (1.17) 

where Mi
j
 represent the i

th
 component (x, y, and z) of the magnetization of the j

th
 pool (s = solute, 

w = water); ksw and kws represent the first order exchange rates from the solute pool to the water 

pool and the water pool to the solute pool, respectively; ω1 = γB1 where γ is the gyromagnetic 

ratio and B1 is the magnitude of the applied RF saturation pulse; Δω is defined as ω – ω0 where ω 

is the location of the applied RF saturation field and ω0 = γB0 for external magnetic field strength 

B0; and R2 and R1 are the transverse and longitudinal relaxation rates, respectively, of the water 

pool (w) and solute pool (s). These equations apply when the RF saturation pulse is applied 

along the x-direction. (Zhou, Wilson et al. 2004)  

 The imaging procedure for CEST-MRI is similar to the procedure for MT-MRI; an RF 

saturation pre-pulse is applied immediately prior to image acquisition. As with MT-MRI, fast 

imaging techniques such as echo planar imaging (EPI), fast spin echo, and fast gradient echo 

acquisitions are commonly used to minimize the decay of the transferred magnetization. 

Typically many images are acquired, covering a range of saturation frequency offsets. (Zaiss and 

Bachert 2013) 

As with traditional MT, the CEST effect is displayed graphically as the Z-spectrum. The 

solute pools have narrow RF absorption spectra compared to the immobile macromolecules, 

which provide traditional MT, and the location of these absorption spectra near the water 

resonance introduces asymmetry to the Z-spectra (Figure 1.11a and b).  

The CEST effect is described quantitatively as the asymmetry of the MTR with respect to 

water resonance (Figure 1.11c) at a particular offset frequency, MTRasym(ω), which is defined as: 

 𝑀𝑇𝑅𝑎𝑠𝑦𝑚(𝜔) =
𝑆𝑠𝑎𝑡(−𝜔)−𝑆𝑠𝑎𝑡(+𝜔)

𝑆0
  (1.18) 
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where Ssat(-ω) is the signal intensity with the saturation pulse applied at a frequency offset of –ω, 

Ssat(+ω) is the signal intensity with the saturation pulse applied at a frequency offset of +ω, and 

S0 is the signal intensity in the absence of saturation (Zaiss and Bachert 2013). Another 

commonly used method of quantifying the CEST effect is the CEST ratio or CESTR, which is 

defined as: 

 𝐶𝐸𝑆𝑇𝑅(𝜔) =
𝑆𝑠𝑎𝑡(−𝜔)−𝑆𝑠𝑎𝑡(+𝜔)

𝑆𝑠𝑎𝑡(−𝜔)
   (1.19) 

The analysis of asymmetry is based on the assumption that the only two factors 

contributing to the Z-spectrum are DWS and the CEST effect; by calculating asymmetry under 

these conditions, the DWS contribution to the MTR is removed.  

 

Figure 1.11: (a) The 
1
H spectrum, showing a peak for the water pool and smaller solute pool, 

which disappears after saturation and (b) the resulting Z-spectrum, with an apparent asymmetry 

at the location of the solute pool. (c) CEST-MRI is quantitatively analyzed by calculating the 

asymmetry of the Z-spectrum. Adapted from Liu 2013. 

 

Alternatively, one study investigated removing the DWS contribution through Fourier 

transform analysis in a technique called time domain removal of irrelevant magnetization 

(TRIM) rather than calculating MTR asymmetry (Yadav, Chan et al. 2013). In this technique, the 
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MTR as a function of saturation frequency offset is Fourier transformed into the time domain, 

where the signal is fit to a combination of three Lorentzian functions. The portion corresponding 

to DWS is removed from the time domain signal and transformed back into the frequency 

domain, yielding a measure of MTR with the contribution from DWS removed. 

1.5 APPLICATIONS OF CHEMICAL EXCHANGE SATURATION TRANSFER MRI 

The unique contrast mechanism provided by CEST-MRI has a number of potential 

applications, including distinguishing tumor from healthy tissue (Jia, Abaza et al. 2011), 

monitoring change in creatine concentration in skeletal muscle following exercise (Kogan, Haris 

et al. 2014), imaging cartilage based on chemical exchange between glycosaminoglycans and 

water (Singh, Haris et al. 2012), and monitoring breast cancer response to chemotherapy (Dula, 

Arlinghaus et al. 2013). Studies have demonstrated an increased CEST effect in brain tumors, 

and have applied CEST-MRI to distinguish peritumoral edema from white matter and to 

differentiate orthotopic gliomas from radiation induced necrosis (Kogan, Hariharan et al. 2013). 

As of May 2015, there have been 351 publications on CEST-MRI indexed in PubMed. 

1.6 EXTERNAL MAGNETIC FIELD INHOMOGENEITY 

The B0 field inhomogeneity produced by differences in magnetic susceptibility (Section 

1.1.3) shifts MR spectra along the frequency axis, causing the Z-spectrum to shift equivalently 

along the saturation offset frequency axis. In the case of CEST-MRI where the measurements of 

Z-spectral asymmetry are of interest, even small shifts in the positions of Z-spectra can result in 

large changes in asymmetry calculations, rendering them inaccurate unless a B0 inhomogeneity 

correction is applied. Because B0 field inhomogeneity laterally shifts the Z-spectrum by an 

amount proportional to γΔB, the effect can be removed if the magnitude of the B0 field 

inhomogeneity is known (Kim, Gillen et al. 2009). 
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A number of procedures for correcting B0 field inhomogeneity have been demonstrated. 

For sufficiently separated CEST and direct water saturation (DWS) effects, a simple polynomial 

or spline fit is often applied and the minimum of the resulting fit assumed to be the center of the 

Z-spectrum for asymmetry calculations (Zhou, Payen et al. 2003). Another method uses B0 field 

inhomogeneity maps acquired with an appropriate MR acquisition sequence to shift the Z-

spectra; using a gradient echo acquisition with two different echo times, the magnitude of the B0 

field inhomogeneity, ΔB0, is determined from the phase difference between the two images, as 

 Δ𝐵 =
𝜙(𝑇𝐸1)−𝜙(𝑇𝐸2)

𝛾(𝑇𝐸2−𝑇𝐸1)
  (1.20) 

where γ is the gyromagnetic ratio of the proton, TEi are the echo times, and the φ are the 

accumulated phases at each echo time (Haacke, Brown et al. 1999). This procedure has been 

applied to glycosaminoglycan CEST imaging (Wei, Jia et al. 2014). A technique known as water 

saturation shift referencing (WASSR), determines the magnitude of the B0 field inhomogeneity 

effect by collecting a pure DWS image (Kim, Gillen et al. 2009). This is accomplished by 

applying a sufficiently weak RF saturation pre-pulse to minimize interference from both MT and 

CEST effects. Since the resulting DWS is symmetric, the center frequency can be determined by 

reflecting the Z-spectrum about 0 ppm and minimizing the difference between the acquired and 

reflected Z-spectra.  

The points of interest on the Z-spectra for calculating MTR asymmetry are determined by 

the material exhibiting the CEST effect. The Z-spectra are collected at discrete frequency offsets, 

however; MTR asymmetry analysis is performed as a post-processing procedure. After B0 field 

inhomogeneity correction is, the discrete Z-spectral data must be interpolated to calculate the 

MTR asymmetry values. Interpolation is commonly performed by fitting the Z-spectral data with 
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high order polynomials (Jia, Abaza et al. 2011). Other studies have investigated fitting with 

multiple Lorentzian functions with interaction cross-terms for multiple solute pools (Sun 2010).  

1.7 PROSTATE CANCER AND MRI 

In the United States, one in seven men is expected to develop prostate cancer during their 

lifetimes. In 2015, there will be an estimated 220,800 new cases of prostate cancer and more than 

27,500 related deaths, accounting for more than 25% of cancer incidences and 8.8% of cancer 

related deaths in men (Siegel, Miller et al. 2015).  

MRI often aids in the diagnosis and management of prostate cancer. Currently, multi-

parametric techniques are used including T1- and T2- weighted MRI, diffusion weighted MRI, 

dynamic contrast-enhanced MRI, and MR spectroscopic imaging (Langer, van der Kwast et al. 

2009, Hoeks, Barentsz et al. 2011). 

1.8 BLADDER CANCER AND MRI 

There are expected to be 74,000 new cases of bladder cancer and 16,000 related deaths in 

the United States in 2015. Bladder cancer is three times more common in men than in women, 

and is expected to account for 7% of all cancers in men and 4% of cancer deaths in men (Siegel, 

Miller et al. 2015).  

Multi-parametric MRI techniques are often performed to aid in the management of 

bladder cancer. Contrast enhanced and diffusion weighted MRI have demonstrated the ability to 

identify muscle invasion with high accuracy (Green, Durand et al. 2012). These techniques also 

may find applications in evaluating and predicting response to chemotherapy (Nguyen, Jia et al. 

2015).  
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1.9 MOTIVATION FOR RESEARCH 

Currently, CEST-MRI has no universally applied method of data analysis. Z-spectral data 

are interpolated following B0 correction using a variety of methods. This lack of standard 

procedure hinders comparison of results across multiple sites and studies, limiting the adoption 

of MTRasym calculations as a clinically relevant quantitative imaging biomarker. Additionally, no 

standard CEST-MRI phantoms exist to assess the performance of analysis procedures and 

acquisition pulse sequences. The goal of this work was to evaluate curve fitting methods for Z-

spectral data analysis that are based to varying degrees on the physics of CEST-MRI. 

Additionally, this work is to demonstrate the capability of MTRasym calculations based on a 

selected model to distinguish tumor from healthy tissue. 

1.10 HYPOTHESIS AND SPECIFIC AIMS 

The hypothesis of this work was that independently fitting the upfield and downfield 

components of the Z-spectrum with a partially physics-based model will be preferred to fitting 

with high order polynomials based on the quality of fit. Quality of fit was assessed with both 

phantom and prostate MR images. The best quality method was used to calculate MTRasym 

values.  

Aim 1: Compare the quality of fits between a separate upfield and downfield fitting 

procedure and high order polynomial fitting procedure for a CEST-MRI phantom. A CEST-MRI 

phantom was designed, built, and imaged. Z-spectral data were extracted from these images and 

fit using a method with separate upfield and downfield components, as well as two high order 

polynomial models. The small sample bias-corrected Akaike’s Information Criterion (AICc) was 

calculated for each fitting procedure and used to identify a preferred method of curve fitting for 

the phantom images.  
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Aim 2: Compare the quality of fits between the separate upfield and downfield fitting 

model and high order polynomial fitting models for CEST-MRI images of prostate cancer 

patients. Z-spectral data were extracted from images of prostate cancer patients in different 

regions of the prostate. The Z-spectral data were fit with a subset of the models tested in Aim 1. 

The quality of these fits was compared using the small sample bias-corrected AICc, identifying a 

preferred method of curve fitting for the patient images. 

Aim 3: Apply the model to images of bladder cancer patients, and calculate the MTRasym 

values to demonstrate capability of the model. Z-spectral data were extracted from images of 

bladder cancer patients and fit using the preferred method of curve fitting identified in Aims 1 

and 2. The Z-spectral fits were used to calculate MTRasym values in the different regions of the 

phantom to demonstrate that the measures of MTRasym have the ability to distinguish bladder 

cancer from normal bladder tissue. 

1.11 OVERVIEW OF THE THESIS 

The specific aims were used to demonstrate the efficacy of separately fitting the Z-

spectral components upfield and downfield from water resonance. Specifically, a preferred 

method of curve fitting was identified using the AICc for both phantom images and prostate 

cancer patient images, and this preferred method was applied to bladder cancer patient images to 

demonstrate the utility of the preferred model. 

Chapter 2 explains the methods and procedures used to test the hypothesis that fitting the 

upfield and downfield components of the Z-spectra separately is preferable to fitting with a high 

order polynomial, based on a combination of parametric parsimony and discrepancy between the 

Z-spectral data and the fitting model. These methods and procedures include details regarding 

the design and construction of the phantom, as well as the prostate cancer patient imaging 
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technique. Chapter 2 also details the procedure of demonstrating the utility of the model by 

distinguishing healthy bladder tissue from tumor with these measurements. 

Chapter 3 details the results of phantom development as well as comparison of fitting 

models. The preferred model for Z-spectral fitting was identified from the phantom study and the 

retrospective patient study. Additionally, MTRasym measurements made using the preferred 

model were applied to assess their ability to distinguish bladder cancer from healthy bladder 

tissue. 

Chapter 4 discusses the results, including the strengths and limitations of this work. This 

chapter also includes a recommendation for future research directions based upon the outcomes 

presented here. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Z-SPECTRAL CURVE FITTING METHOD – OVERVIEW 

This study proposed a model which separately fits the upfield and downfield components 

of the Z-spectra obtained in CEST-MRI experiments (Figure 2.1). The effects of DWS, MT, and 

the Nuclear Overhauser Effect (NOE) are observed in the region of the Z-spectrum upfield from 

water resonance. The effects of DWS, MT, and CEST are expected to be observed in the 

downfield region of the Z-spectrum. 

 

Figure 2.1: A sample Z-spectrum (open circles). Downfield from water, DWS, MT, and CEST 

effects are expected, while upfield from water DWS, MT, and NOE effects are expected. The 

DWS and MT components of this Z-spectrum are plotted and labeled. 

 

The contribution from NOE is usually neglected in CEST-MRI measurements performed 

at a field strength of 3 T, although it can become significant at higher field strengths; a term can 

be added to account for NOW. NOE was not included in this work. A Lorentzian function was 

used to describe DWS (Zaiß, Schmitt et al. 2011), and a function was chosen for MT depending 

upon the material (Sections 2.1.1 and 2.1.2). 
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 The downfield component of the Z-spectrum could potentially be modeled based on the 

different effects which are present, similar to the upfield component. For instance, using a sum of 

Lorentzian functions describing different solute pools with exchange terms could describe the 

downfield component, including the CEST contribution (Sun 2010). In tissue, however, the 

many different types of solute protons have overlapping regions of RF absorption, resulting in an 

excessive number of fitting parameters relative to the available number of data points. To avoid 

this, a polynomial was used to fit the downfield component.  

These models combining the upfield and downfield components were referred to as the 

“combination model” in this work. The models were identified by the order of polynomial used 

to fit the downfield region of the Z-spectrum. For example, “6
th

 order combination” would refer 

to fitting the upfield region with the DWS and MT components (see Equation 2.1 or Equation 

2.2) and the downfield region with a 6
th

 order polynomial. 

2.1.1 Z-SPECTRAL CURVE FITTING METHOD - PHANTOM 

Previous studies demonstrated that Gaussian functions appropriately describe the MT 

effect in agar (Morrison and Henkelman 1995). In Aim 1, MT in the phantom was provided by 

agar, so the upfield components of the Z-spectra was fit to: 

 
𝑆

𝑆0
= 1 −

𝐴𝑤(
𝐺𝑤

2
)

2

(
𝐺𝑤

2
)

2
+Δ𝜔2

− 𝐴𝑏 exp [− (
1

2
) (

𝛥𝜔

𝐶𝑏
)

2

]  (2.1) 

where Aw and Gw were the magnitude and full width at half maximum (FWHM), respectively, of 

the Lorentzian describing DWS, Δω was the frequency offset from water resonance, Ab was the 

magnitude of MT, and Cb was a constant, determined through curve fitting, describing the width 

of the Gaussian function used  to describe MT in agar. 

 The downfield region was fit to polynomial functions, the orders of which are discussed 

in Section 2.3.5. 
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2.1.2 Z-SPECTRAL CURVE FITTING METHOD - PATIENT 

Although it has been demonstrated that super-Lorentzian functions are a good description 

of MT in tissue, they are very broad relative to DWS and may be treated as constants in a small 

range near water resonance. In Aims 2 and 3, MT is provided by the relatively immobile 

macromolecules in tissue, so the upfield components of the Z-spectra were fit to: 

 
𝑆

𝑆0
= 1 −

𝐴𝑤(
𝐺𝑤

2
)

2

(
𝐺𝑤

2
)

2
+Δ𝜔2

− 𝐴𝑏  (2.2)  

where Aw and Gw were the magnitude and FWHM, respectively, of the Lorentzian describing 

DWS, Δω was the frequency offset from  water resonance, and Ab was the magnitude of MT. 

2.2 MODEL SELECTION CRITERIA 

The preferred fitting model was identified using the small sample bias-corrected Akaike 

Information Criterion (AICc). The AICc compares the quality of proposed fitting models for a 

set of data, with the preferred model having the most negative AICc value (Hurvich and Tsai 

1989). The AICc is calculated based on the residual sum of squares (RSS), the sample size (n), 

and the number of fitting parameters in the proposed model (m), according to the equation: 

 𝐴𝐼𝐶𝑐 = 𝑛 ln (
𝑅𝑆𝑆

𝑛
) + 𝑛

1+𝑚/𝑛

1−(𝑚+2)/𝑛
  (2.3) 

The AICc value was computed in IDL (Version 8.2, Exelis Visual Information Solutions) 

for each of the models tested following the curve fitting procedure. A pairwise Student’s t-test 

was performed in the statistical analysis software R (Version 3.1.0, R Development Core Team) 

to determine if the average AICc values were statistically significantly different for the models. 

The preferred model will be identified as having the most negative average AICc; in cases where 

two models did not have significantly different average AICc values, the most negative 

maximum AICc was used.   
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2.3 AIM 1, APPLICATION OF MODEL TO CEST-MRI PHANTOM IMAGES 

2.3.1 PHANTOM MATERIAL SELECTION 

To create a CEST-MRI phantom, materials were selected with RF absorption covering a 

range of offset frequencies. The materials and their offset frequencies are listed in Table 2.1. All 

of the materials were incorporated in 2% agar to provide a broad MT effect due to immobile 

macromolecules, allowing the phantom to exhibit CEST effects in the presence of MT to mimic 

the situation that would be seen in vivo. Additionally, the agar was prepared with 0.01 M 

phosphate-buffered saline (PBS) with a pH of 7.4 to represent physiological. Three 

concentrations (Table 2.1) were selected for each material, either to match concentrations that 

have been used previously in literature or to use concentrations that are representative of 

physiological conditions. 

Table 2.1: Concentrations of materials included in the CEST-MRI phantom and the 

corresponding frequency offset at which the CEST effects are expected. 

 Material
ref

 Concentration A 

[mM] 

Concentration B 

[mM] 

Concentration C 

[mM] 

Frequency Offset 

[ppm] 

1 *Glycogen
1,2 

10 50 100 1.2 

2 *Glucose
2 

10 50 100 1.3 - 2 

3 *Creatine
3 

10 25 50 1.8 

4 *L-Lysine
4 

1 10 100 3.0 

5 *NH4Cl
5 

100 500 1000 2.4 

6 *Choline
6 

5 15 50 1.0 

7 Agar
5 

2% 4% 6% MT 

* indicates the material was mixed in 2% agar. 

1 Taylor 1996 

2 van Zijl 2007 

3 Kogan 2014 

4 Ward 2000 

5 Desmond 2012 

6 Chen 2006 

 

2.3.2 PHANTOM DEVELOPMENT 

The selected materials were built into an existing MRI phantom (model MRI-R01, Data 

Spectrum Corporation, Durham, NC, USA). This cylindrical, water-filled phantom (Figure 2.2) 
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included plastic inserts which held twenty-one vials of 30 mL total volume each. The vials were 

separated into three groups of seven, shown in Figure 2.2 (right) and Figure 2.3. 

 

Figure 2.2: The Data Spectrum Corporation's MRI phantom. The phantom includes inserts for 

spatial resolution, slice thickness, slice profile, linearity, and quantitative imaging (left), though 

only the quantitative imaging insert (right) is of interest to this study. 

 

  

Figure 2.3: The layout of vials in the CEST phantom. Numbers 1-6 correspond to the materials 

as numbered in Table 2.1, while the letters A, B, and C identify the low concentrations, 

intermediate concentrations, and high concentrations, respectively. Vial 7 in each group 

contained agar alone in concentrations of 2% (7A), 4% (7B), or 6% (7C). 
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Each group of vials contained all six of the materials; one group was the lowest 

concentrations, one was the intermediate concentrations, and one was the highest concentrations. 

In each group, the vial closest to the central axis of the phantom was glycogen, with the 

remaining materials placed counterclockwise in the order of glucose, creatine, L-lysine, NH4Cl, 

and choline (Figure 2.3). The central vial of each group contained the agar with a concentration 

of 2%, 4%, or 6%; the relative concentrations corresponded to the relative material 

concentrations, so that the groups could be identified by the magnitude of the MT effect in the 

agar vials. 

The vials were glass liquid scintillation vials. The vials were filled with 0.36 g of 

powdered agar, 0.11 g of 5% w/v NaN3 as an antibacterial agent (Hattori, Ikemoto et al. 2013), 

and the required mass of material to meet the concentrations listed in Table 2.1. These were 

mixed in PBS to a final mass of 18 g. Each mixture was heated in a water bath at 90°C for 20 

minutes; the mixture was stirred halfway through the heating period. After heating, the mixtures 

were stirred again; the vials were capped and placed on ice to solidify.    

2.3.3 PHANTOM IMAGING PROCEDURE 

T1-weighted and T2-weighted images were acquired to assess the properties of the 

phantom. The images were acquired using a 4 channel head coil on a 3 T MR system (Signa, GE 

Healthcare, Waukesha, WI). T1 mapping was performed using an inversion recovery technique. 

Images were acquired with a fast spin echo pulse sequence with the following sequence 

parameters: a TE of 15 ms; a TR of 7500 ms; multiple TIs of 1900 ms, 1600 ms, 1300 ms, 800 

ms, 600 ms, and 500 ms; an echo train length of 16; receiver bandwidth of 50 kHz; a FOV of 30 

× 30 cm
2
; a slice thickness of 10 mm; a NEX of 1; acquisition matrix of 256 × 256; and the 

frequency encoding direction R/L. Post-processing for the T1 map was performed using the 
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MRMap software (Version 1.4, Daniel Messroghli) written in IDL (Figure 2.4) and freely 

available for download online (http://sourceforge.net/projects/mrmap/).  

T2 measurements were made using a multiple echo time technique from images acquired 

with a fast spin echo pulse sequence with the following sequence parameters: TEs of 7.3 ms, 

14.2 ms, 21.3 ms, 28.5 ms, 35.6 ms, 42.7 ms, 49.8 ms, and 56.9 ms; a TR of 1650 ms; a receiver 

bandwidth of 62.25 kHz; a FOV of 30 × 30 cm
2
; a NEX of 1; an acquisition matrix of 320 × 256; 

and a frequency encoding direction of R/L. Post-processing for the T2 calculations was 

performed using the Dynamic Magnetic Resonance Imaging Software Tool (Version OSU-5.0, 

Division of Imaging Research, The Ohio State University) written in IDL (Figure 2.5). 

 

Figure 2.4: The software MRMap (Version 1.4, Daniel Messroghli) was used to create T1 maps, 

performing the required curve fitting for each pixel. 

 

For CEST-MR imaging, the phantom was imaged on a 3 T MR system (Achieva, Philips 

Healthcare, Cleveland, OH) using a 32 channel digital head coil. Images were acquired using a 
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2D multiple-shot turbo spin echo sequence (msTSE) with a TR of 3000 ms, TE of 26 ms, slice 

thickness of 6 mm, acquisition matrix size of 112 × 100, field of view of 225 × 225 mm
2
, TSE 

factor of 20, NSA of 1, and flip angle of 90˚. A train of RF saturation pre-pulses consisting of 16 

block pulses each 29 ms in length was applied at frequency offsets from 8 ppm to -8 ppm in 0.5 

ppm increments. An additional image was acquired without saturation as a reference. A set of 

CEST-MR images was acquired for each of the following saturation amplitudes: 1.6 µT, 2.4 µT, 

3.2 µT, and 4.0 µT. 

 

Figure 2.5: The Dynamic Magnetic Resonance Imaging Software Tool (Version OSU-5.0, 

Division of Imaging Research, The Ohio State University) was used to calculate T2 values in 

user-defined regions of the phantom. 

 

B0 field inhomogeneity maps were collected after CEST-MR imaging using a 2D fast 

field echo (FFE) technique with the following sequence parameters: a TR of 15 ms; ΔTEs of 1 
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ms, 3 ms, 5 ms, 7 ms, and 9 ms; a slice thickness of 6 mm; an acquisition matrix size of 112 × 

112; a field of view of 225 × 225 mm
2
; NSA of 1; and a flip angle of 8˚. Reconstruction was 

performed automatically with the MR system software. 

2.3.4 Z-SPECTRAL DATA COLLECTION 

The Dynamic Magnetic Resonance Imaging Software Tool was used to extract the Z-

spectral data from the CEST-MR images of the phantom. ROIs were placed in the center of each 

of the 21 materials with margins large enough to avoid any pixels containing the glass walls of 

the liquid scintillation vials. For each of the saturation amplitudes, the average signal intensity in 

each region collected for the 33 CEST-MR images, as well as the average signal intensity in the 

absence of saturation and the average B0 field inhomogeneity. 

 2.3.5 Z-SPECTRAL CURVE FITTING 

Prior to fitting the Z-spectral data, the frequency axis coordinates were corrected for B0 

inhomogeneity by subtracting the average B0 value (in ppm) from the acquired frequency offsets 

(8 ppm to -8 ppm in 0.5 ppm increments). This corrected the lateral shift of the Z-spectra due to 

the B0 field inhomogeneity. 

The indices of the B0-corrected positive and negative frequency offsets were then 

identified. Data points with negative frequency offsets were fit to Equation 2.2. When 

subsequently fitting the downfield (positive) frequency offsets, the fitted zero-frequency value 

from the upfield fit was included with the downfield offset data. Including this fitted upfield 

value in the downfield fit caused the upfield and downfield fits to meet at the 0 ppm frequency 

offset. 

Z-spectral fitting was performed in IDL using the nonlinear least squares curve fitting 

package MPFIT (Markwardt 2009). Two models from literature, a 20
th

 order polynomial and a 
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12
th

 order polynomial, were fit to Z-spectral data for each ROI. The combination model proposed 

in Section 2.1 was fit with downfield polynomials of 3
rd

, 4
th

, 5
th

, 6
th

, 7
th

, and 8
th

 orders to 

determine the preferred degree. Data points with signal intensities less than 5% of the signal in 

the absence of saturation occurred near the center of the Z-spectra, and were not included in the 

fitting procedure because of the poor signal-to-noise ratio of this data. For each of the 8 models 

applied, the AICc was calculated from the fitted Z-spectra in IDL using Equation 2.3. 

2.3.6 ASSESSMENT OF MODEL PERFORMANCE 

 Performance of the models was assessed using the AICc values calculated after the curve 

fitting process. The preferred curve fitting model produced the most negative average AICc 

value. 

2.4 AIM 2, APPLICATION OF MODEL TO PROSTATE CANCER PATIENT IMAGES 

2.4.1 PROSTATE CANCER PATIENT POPULATION 

Eighteen patients with biopsy-proven prostate cancer were included in this retrospective 

study. Thirteen of these patients underwent prostatectomy, while five received radiation therapy. 

An additional two volunteers were included. The average age of those enrolled in the study was 

61.1 years (range, 51 to 76). Tumor staging information was available from final pathology 

reports for the 13 patients who underwent prostatectomy; the distribution of these tumor stages 

was: two T2a, one T2b, seven T2c, and three T3a. The study was approved by an institutional 

review board (IRB) at The Ohio State University and was compliant with the Health Insurance 

Portability and Accountability Act (HIPAA). Informed consent was obtained from each patient.  

2.4.2 PROSTATE CANCER PATIENT IMAGING 

All MR images were acquired with a 3 T MR system (Achieva, Philips Healthcare) using 

a 32 channel phased array coil. Images were selected based on the location of the tumor within 
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the prostate; CEST-MRI images were acquired using a single slice, single-shot turbo spin echo 

(ssTSE) pulse sequence with a TR of 4000 ms, TE of 56 ms, slice thickness of 6 mm, acquisition 

matrix size of 80 × 65, field of view of 140 × 140 mm
2
, TSE factor of 64, NSA of 1, and flip 

angle of 90˚. The RF saturation pre-pulse consisted of sixteen block pulses 31 ms in duration 

with saturation amplitudes of 1.6 µT, 2.4 µT, 3.2 µT, and 4.0 µT. For each of the saturation 

amplitudes, 33 images were acquired with the saturation pre-pulse applied at offset frequencies 

from 8 ppm to -8 ppm in 0.5 ppm increments. An additional image was acquired without 

saturation as a reference. The acquisition time for this process was 3.5 minutes. Additionally, a 

B0 map was obtained for each patient using a 2D fast field echo (FFE) sequence with a TR of 48 

ms, TE1 of 1.58 ms, TE2 of 4.1 ms, slice thickness 6 mm, acquisition matrix of 80 × 65, field of 

view of 140 × 140 mm
2
, NSA of 6, flip angle of 20˚, and acquisition time of 19.5 s. The B0 map 

was created using the scanner’s automatic reconstruction. 

2.4.3 PROSTATE CANCER PATIENT Z-SPECTRAL DATA COLLECTION 

Pathology slides were created from tissue samples from patients who underwent 

prostatectomy. Experienced uropathologists identified the location and extent of the tumors. The 

slides were digitized to create images that could be co-registered with MR images, and regions of 

interest (ROIs) for the peripheral zone (PZ), central gland (CG), and tumor were created by an 

experienced medical physicist. Patients receiving radiation therapy had ROIs delineated by the 

physicist based on T2-weighted imaging and biopsy reports. An example of a pathologic slide 

with the marked tumor location and the resulting tumor ROI overlaid onto the CEST-MR image 

is shown in  Figure 2.6.  
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Figure 2.6: The pathologic slide created by the uropathologist (a) and the corresponding ROI 

drawn in the CEST-MR image (b). 

 

Z-spectral data were extracted from the 232 resulting ROIs using the Dynamic Magnetic 

Resonance Imaging Software Tool. The average signal intensities for each of the 33 CEST-MR 

images, and the image in the absence of saturation, were recorded. The average B0 value from 

the B0 map was recorded.  

2.4.4 Z-SPECTRAL CURVE FITTING 

Prior to fitting the Z-spectral data, B0 field inhomogeneity correction was performed. Z-

spectral fitting was performed in as described in Section 2.3.5. The 20
th

 and 12
th

 order 

polynomials were used to fit the complete set of Z-spectral data. The combination models were 

fit with downfield polynomials of 3
rd

, 4
th

, 5
th

, and 6
th

 order. These orders were selected based on 

the phantom results (see Section 3.1.3).  

2.4.5 ASSESSMENT OF MODEL PERFORMANCE 

 Performance of the models was assessed using the AICc values calculated after curve 

fitting. The curve fitting model providing the most negative average AICc values was identified. 
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2.5 AIM 3, APPLICATION OF MODEL TO BLADDER CANCER PATIENT IMAGES 

2.5.1 BLADDER CANCER PATIENT POPULATION 

25 patients (19 male, 6 female) with biopsy-proven bladder cancer were enrolled in this 

study. The patients had an average age at the time of baseline imaging of 64 years (standard 

deviation, 12 years), and an average weight of 83.7 kg (standard deviation, 19.3 kg). The study 

was approved by an IRB at The Ohio State University and was HIPAA compliant. Informed 

consent was obtained from each patient. 

2.5.2 BLADDER CANCER PATIENT IMAGING 

The patients were imaged on a 3 T MR system (Achieva, Philips Healthcare) using a 32 

channel cardiac surface coil. Images were acquired with a single-shot TSE sequence with the 

following parameters: a TR of 6100 ms; a TE of 56 ms; a TSE factor of 47; a NSA of 1; an 

acquisition matrix of 80 × 65; a FOV of 140 × 140 mm
2
; a slice thickness of 6 mm; and a flip 

angle of 90˚. The acquired slice was positioned to include the tumor with the aid of T2-weighted 

anatomical images. The saturation pre-pulse consisted of 16 block pulses each 29 ms in duration 

with a saturation amplitude of 4.0 µT; 33 CEST-MR images were acquired with the saturation 

pre-pulse applied at frequency offsets from 8 ppm to -8 ppm in 0.5 ppm increments. An 

additional image was acquired in the absence of saturation. The acquisition time for the CEST-

MR images was 3.5 minutes. A B0 field inhomogeneity map was acquired using a dual echo FFE 

technique with the following sequence parameters: a TR of 69.6 ms; TE of 2 ms and 10 ms; a 

NSA of 4; an acquisition matrix of 80 × 65; a FOV of 140 × 140 mm
2
; a slice thickness of 6 mm; 

and a flip angle of 20˚. The acquisition time was 25 seconds. Reconstruction was performed 

automatically by the MR system software. 
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2.5.3 Z-SPECTRAL DATA COLLECTION 

For each bladder cancer patient, ROIs for normal bladder wall (NBW) and tumor were 

delineated based on anatomical T2-weighted images by an experienced medical physicist. The Z-

spectral data in each ROI, including the average B0 value from the field inhomogeneity map, 

were collected with the Dynamic Magnetic Resonance Imaging Software Tool.  

2.5.4 Z-SPECTRAL CURVE FITTING 

Prior to curve fitting, the B0 inhomogeneity correction discussed in previous sections was 

applied. The upfield component was fit to Equation 2.1, and the downfield component was fit to 

a 4
th

 order polynomial, which was determined to be the preferred Z-spectral curve fitting model 

for phantom images with a saturation amplitude of 4.0 µT (see Section 3.2 and Section 4.4). Data 

points were excluded from the fitting process if the signal average at that frequency offset was 

less than 5% of the signal intensity in the absence of saturation, to avoid data points with a low 

signal-to-noise ratio. 

2.5.5 DISTINGUISHING NORMAL BLADDER WALL FROM CANCER 

The shifted, fitted Z-spectra were used to calculate MTRasym at frequency offsets of 2.0 

ppm and 3.5 ppm, corresponding to the amine and amide protons, respectively. A two-tailed, 

paired Student’s t-test was used to test for significant differences in the MTRasym(2.0 ppm) and 

MTRasym(3.5 ppm) quantities between the NBW and tumor regions. A Shapiro-Wilk test was 

performed to confirm that the data was normally distributed. These tests were performed using 

the statistical analysis software, R (Version 3.1.0, R Development Core Team). P-values less 

than 0.05 were considered significant for all tests.  
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CHAPTER 3: RESULTS 

3.1 RESULTS FOR AIM 1: PHANTOM MODEL SELECTION 

3.1.1 PHANTOM PROPERTIES 

 Average values for T1 and T2 relaxation times and the associated standard deviations and 

standard errors are contained in Table 3.1. Standard deviations for T1 are the standard deviation 

of pixel values from the T1 map, while standard errors for T2 measurements are from the 

Dynamic Magnetic Resonance Imaging Software Tool. 

Table 3.1: Average T1 and T2 relaxation times and the associated standard deviations (σT1) or 

standard errors (SET2) for the regions of the phantom. Table 2.1 contains the concentration 

values for A, B, and C. 

Material Concentration T1 (ms) σT1 (ms) T2 (ms) SET2 (ms) 

Agar  A 2360 170 136 6 

B 1910 540 66 2 

C 1710 120 56 2 

Choline  A 2370 140 125 7 

B 2410 150 136 6 

C 2410 170 145 6 

Creatine A 2500 300 190 13 

B 2340 160 153 6 

C 2550 430 167 17 

Glucose A 2410 150 146 6 

B 2320 120 115 5 

C 2350 150 112 4 

Glycogen A 2410 120 131 8 

B 2240 110 121 5 

C 2060 390 114 4 

Lysine A 2400 310 129 2 

B 2370 260 115 7 

C 2480 660 154 27 

NH4Cl A 2480 210 130 6  

B 2630 420 101 6 

C 2660 605 99 8 

Water  2960 180 1030 520 

  

The B0 field inhomogeneity maps are shown in Figure 3.1. The measured B0 field 

inhomogeneity increased with increasing difference in echo times. The B0 field inhomogeneity 
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map with a ΔTE of 5 ms was used for the CEST-MR image post processing because it was the 

largest echo time difference that did not produce noticeable artifacts due to large phase 

differences. 

 

Figure 3.1: The B0 field inhomogeneity maps created with echo time differences of (a) 1 ms, (b) 

3 ms, (c) 5 ms, (d) 7 ms, and (e) 9 ms. A phase wrapping artifact is evident for echo time 

differences of 7 ms and 9 ms. 

 

3.1.2 PHANTOM CURVE FITTING RESULTS 

 Representative examples of the curve fitting results for CEST-MR Z-spectra with a 

saturation amplitude of 1.6 µT are shown in Figure 3.2. The Z-spectra from a low saturation 

amplitude were more sharply peaked than those from higher saturation amplitudes. This caused 

the combination models using low order polynomials to perform poorly visually in the region of 

the Z-spectrum upfield from water resonance, indicated by the arrow in Figure 3.2a. The 

combination models using higher order polynomials perform well visually, though the 8
th

 order 

combination model shows some oscillation near the end of the fitting interval, indicated by the 

arrow in Figure 3.2b. The two polynomial models both experience significant oscillation near the 

ends of the fitting intervals, indicated by the arrows in Figure 3.2c and Figure 3.2d.  

 Representative examples of the curve fitting results for CEST-MR Z-spectra with a 

saturation amplitude of 4.0 µT are shown in Figure 3.3. At this high saturation amplitude, the Z-

spectra became less sharply peaked. The broader shape of the Z-spectra decreased the size of the 

oscillations near the edges of the interval for all models, and in many cases eliminated all 

oscillations. The visual performance of the combination model using a low order polynomial 



35 

 

improved as the saturation amplitude increased, as shown by the difference between Figure 3.2a 

and Figure 3.3a. In some cases, the combination models using high order polynomials had large 

deviations from the expected shape due to the excluded data points around 0 ppm, indicated by 

the arrow in Figure 3.3b. The 12
th

 order polynomial performed well visually at this high 

saturation amplitude, shown in Figure 3.3c. The 20
th

 order polynomial exhibited oscillations 

even at this high saturation amplitude, shown in Figure 3.3d.  

 

Figure 3.2: The Z-spectrum for Glucose concentration C with a saturation amplitude of 1.6 µT fit 

with (a) the 3
rd

 order combination model, (b) the 8
th

 order combination model, (c) the 12
th

 order 

polynomial model, and (d) the 20
th

 order polynomial model. 
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Figure 3.3: The Z-spectrum for Glucose concentration C with a saturation amplitude of 4.0 µT fit 

with (a) the 3
rd

 order combination model, (b) the 8
th

 order combination model, (c) the 12
th

 order 

polynomial model, and (d) the 20
th

 order polynomial model. 

 

3.1.3 PHANTOM MODEL SELECTION 

 The distributions of AICc values for the Z-spectra with a saturation amplitude of 1.6 µT 

are displayed as boxplots in Figure 3.4. The average AICc values are listed in Table 3.2, ordered 

by increasing average AICc. The combination models utilizing low order polynomials did not 

perform well at this saturation amplitude using the AICc as a metric due to a high residual sum 

of squares. The large AICc of the high order polynomial fitting was due to the large number of 

fitting parameters rather than the goodness of fit. The 6
th

 order combination was the preferred 
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model for the 1.6 µT saturation amplitude as it has the most negative maximum AICc of the 

subset of models with the most negative but statistically indistinguishable average AICc. 

 

Figure 3.4: The distributions of AICc values averaged over all material concentrations with the 

saturation amplitude of 1.6 µT. The averages indicated on the boxplots are median values. * 

indicates the preferred model. 

 

Table 3.2: AICc results of the models for the saturation amplitude of 1.6 µT, ordered by 

increasing average AICc.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 6
th

 order -263.0 24.3 -317.4 -229.9 

2 Combination, 7
th

 order -261.5 24.6 -316.2 -224.0 

3 Combination, 8
th

 order -261.4 23.7 -310.8 -223.9 

4* Combination, 5
th

 order -240.9 17.1 -279.6 -210.1 

5** Polynomial, 12
th

 order -200.7 23.5 -248.4 -169.1 

6** Combination, 4
th

 order -190.8 16.6 -240.1 -174.1 

7** Combination, 3
rd

 order -158.7 12.0 -197.7 -148.5 

8** Polynomial, 20
th

 order -133.9 32.2 -184.9 -49.9 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

 The distributions of AICc values for the Z-spectra with a saturation amplitude of 2.4 µT 

are displayed as boxplots in Figure 3.5. The average AICc values for each model and the 

associated standard deviations, minimums, and maximums are listed in Table 3.3. The 4
th

 and 5
th
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order combination models showed lower average AICc compared to the 1.6 µT saturation 

amplitude Z-spectra, with the 5
th

 order combination having the most negative average AICc. As 

with the 1.6 µT saturation amplitude, the poor performance of the 20
th

 order polynomial model 

was due to the large number of fitting parameters relative to the number of data points, while the 

poor performance of the 3
rd

 order combination model was due to the relatively high sum of 

squared residuals. The 5
th

 order polynomial model was the preferred model for the 2.4 µT 

saturation amplitude because it had the most negative maximum AICc of the subset of models 

with the most negative but statistically indistinguishable average AICc. 

 

Figure 3.5: The distributions of AICc values averaged over all material concentrations with the 

saturation amplitude of 2.4 µT. The averages indicated on the boxplots are median values. * 

indicates the preferred model. 

 

 The distributions of AICc values for Z-spectra with a saturation amplitude of 3.2 µT are 

displayed as boxplots in Figure 3.6. The average AICc values for each model are listed in Table 

3.4. The relatively large saturation amplitude improved the performance of the combination 
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model relying on the lower order polynomials to fit the region of the Z-spectra upfield from 

water resonance. The average AICc values for the 20
th

 order polynomial continued to increase as 

more data points fell below the exclusion threshold for the fitting procedure which further 

increased the ratio of fitting parameters to the number of data points.  The 6
th

 order combination 

model was the preferred model for the 3.2 µT saturation amplitude because it had the most 

negative maximum AICc of the subset of models with the most negative but statistically 

indistinguishable average AICc. 

Table 3.3: AICc results of the models for the saturation amplitude of 2.4 µT, ordered by 

increasing average AICc.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 5
th

 order -248.3 20.1 -282.1 -217.8 

2 Combination, 6
th

 order -246.2 20.4 -279.8 -212.1 

3 Combination, 7
th

 order -245.8 20.1 -277.5 -205.2 

4* Combination, 8
th

 order -241.3 20.9 -273.6 -199.7 

5** Polynomial, 12
th

 order -235.0 21.5 -273.9 -176.1 

6** Combination, 4
th

 order -227.5 10.5 -246.5 -206.9 

7** Combination, 3
rd

 order -175.3 16.0 -232.9 -160.9 

8** Polynomial, 20
th

 order -79.2 34.9 -168.4 -12.0 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

The distributions of AICc values for the Z-spectra with a saturation amplitude of 4.0 µT 

are displayed as boxplots in Figure 3.7. The average AICc values for each model are listed in 

Table 3.5. The performance of the combination models using low order polynomials improved 

further at the large saturation amplitude, with the 5
th

 order combination model having the most 

negative average AICc value and the 4
th

 order combination having the most negative maximum 

AICc value. The AICc values for the 20
th

 order polynomial continued to increase with increasing 

saturation amplitude as more data points fell below the exclusion threshold and the ratio of 

fitting parameters to data points increased further. The 4
th

 order combination was the preferred  
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model because there was no significant difference (p > 0.05) between the average AICc value for 

the 4
th

 order combination and 6
th

 order combination models, but the 4
th

 order combination model 

had the most negative maximum AICc value. 

 

Figure 3.6: The distributions of AICc values averaged over all material concentrations with the 

saturation amplitude of 3.2 µT. The averages indicated on the boxplots are median values. * 

indicates the preferred model. 

 

Table 3.4: AICc results of the models for the saturation amplitude of 3.2 µT, ordered by 

increasing average AICc.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 6
th

 order -237.3 17.1 -264.3 -200.7 

2 Combination, 7
th

 order -236.4 21.0 -275.4 -194.8 

3 Combination, 4
th

 order -233.9 16.1 -253.5 -198.5 

4 Combination, 5
th

 order -230.6 15.9 -260.8 -196.4 

5 Combination, 8
th

 order -230.6 22.3 -275.3 -186.9 

6 Polynomial, 20
th

 order -227.5 24.7 -274.7 -176.4 

7** Combination, 3
rd

 order -197.0 16.7 -249.5 -178.1 

8** Polynomial, 20
th

 order -41.9 68.1 -143.0 186.3 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 
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Figure 3.7: The distributions of AICc values averaged over all material concentrations with the 

saturation amplitude of 4.0 µT. The averages indicated on the boxplots are median values. * 

indicates the preferred model. 

 

Table 3.5: AICc results of the models for the saturation amplitude of 4.0 µT, ordered by 

increasing average AICc.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 5
th

 order -229.9 23.6 -266.5 -178.7 

2 Combination, 4
th

 order -229.3 22.4 -270.3 -184.3 

3 Combination, 6
th

 order -228.1 25.3 -263.4 -173.7 

4 Combination, 7
th

 order -222.3 26.0 -262.1 -168.3 

5 Polynomial, 12
th

 order -221.2 35.9 -291.2 -149.5 

6 Combination, 8
th

 order -215.9 25.2 -254.3 -167.0 

7** Combination, 3
rd

 order -211.5 16.1 -238.2 -179.5 

8** Polynomial, 20
th

 order 105.1 201.3 -53.7 920.3 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

 The distributions of AICc values for the combination of all saturation amplitudes are 

displayed as boxplots in Figure 3.8. The average AICc values for the combination of all 

saturation amplitudes are listed in Table 3.6. Although the model with the most negative AICc 

value was the 6
th

 order combination, there was no significant difference (p > 0.05) between AICc 

values for the 5
th

, 6
th

, 7
th

, and 8
th

 order combination models. Because of this, the 5
th

 order 
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combination was identified as the preferred model because it had the most negative maximum 

AICc value of that group of models. 

 

Figure 3.8: The distributions of AICc values for all of the fitting models tested for the CEST-

MRI phantom at all saturation amplitudes. * indicates the preferred model. 

 

Table 3.6: AICc results of the models for all saturation amplitudes, ordered by increasing 

average AICc.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 6
th

 order -243.7 25.2 -317.4 -173.7 

2 Combination, 7
th

 order -241.5 26.8 -316.2 -168.3 

3 Combination, 5
th

 order -237.4 20.5 -282.1 -178.7 

4 Combination, 8
th

 order -237.3 28.1 -310.8 -167.0 

5* Polynomial, 12
th

 order -221.1 29.4 -291.2 -149.5 

6* Combination, 4
th

 order -220.4 24.1 -270.3 -174.1 

7** Combination, 3
rd

 order -185.6 25.3 -249.5 -148.5 

8** Polynomial, 20
th

 order -37.5 139.2 -184.9 920.3 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 
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 The preferred model selected by the AICc depended on the amplitude of the saturation  

pre-pulse. Table 3.7 lists the preferred fitting model for each of the saturation amplitudes tested. 

A combination models was preferred for all saturation amplitudes tested, and the order of the 

polynomial used for the portion of the Z-spectrum upfield from water resonance decreased with 

increasing saturation amplitude. 

Table 3.7: The preferred fitting models for the CEST-MRI phantom images as selected by AICc 

for each of the saturation amplitudes tested.  

Saturation Amplitude Preferred Model 

1.6 µT 6
th

 Order Combination 

2.4 µT 5
th

 Order Combination 

3.2 µT 6
th

 Order Combination 

4.0 µT 4
th

 Order Combination 

All Amplitudes 5
th

 Order Combination 

 

3.2 RESULTS FOR AIM 2: MODEL SELECTION WITH PATIENT IMAGES 

3.2.1 PROSTATE CANCER PATIENT CURVE FITTING RESULTS 

 A representative sample of the curve fitting results for Z-spectra acquired from the 

prostate cancer patient images with a saturation amplitude of 1.6 µT is plotted in Figure 3.9, with 

deviations from the data indicated with arrows. As with Z-spectra from phantom images, those 

acquired with low saturation amplitudes were more sharply peaked and experienced significant 

oscillation near the edge of the fitting interval. The low order combination models did not 

perform well when the Z-spectra were sharply peaked, and all of the models experienced at least 

some deviations. 

 A representative sample of the curve fitting results for a Z-spectrum acquired from the 

prostate cancer patient images with the saturation amplitude of 4.0 µT is plotted in Figure 3.10. 

The increased saturation amplitude increased the width of the DWS contribution. The 3
rd

 order 

combination model appeared to have inadequacies at this saturation amplitude, indicated by the  
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arrow in Figure 3.10a, while the higher order combination models, shown in Figure 3.10b, 

performed well visually. Oscillations near the edge of the interval were greatly reduced for the 

12
th

 order polynomial model, shown in Figure 3.10c. The 20
th

 order polynomial, shown in Figure 

3.10d, exhibited oscillations near the edge of the interval for this saturation amplitude.  

 

Figure 3.9: The Z-spectrum of the central gland region of the prostate from an image set acquired 

with a saturation amplitude of 1.6 µT. The Z-spectrum was fit with (a) the 3
rd

  order combination 

model, (b) the 6
th

  order combination model, (c) the 12
th

  order polynomial model, and (d) the 

20
th

  order polynomial model. 
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Figure 3.10: The Z-spectrum of the central gland region of the prostate from an image set 

acquired with a saturation amplitude of 4.0 µT. The Z-spectrum was fit with (a) the 3
rd

 order 

combination model, (b) the 6
th

 order combination model, (c) the 12
th

 order polynomial model, 

and (d) the 20
th

 order polynomial model. 

 

3.2.2 PATIENT MODEL SELECTION 

 The distributions of AICc values for the Z-spectra with a saturation amplitude of 1.6 µT 

are displayed as boxplots in Figure 3.11. The average AICc for each model is listed in Table 3.8, 

ordered by increasing average AICc. The combination models outperformed the high order 

polynomial models using the AICc as a metric due to the polynomials’ high ratio of fitting 
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parameters to the number of data points, though this is not visually apparent in Figure 3.9. The 

5
th

 and 6
th

 order combination models outperformed the 3
rd

 and 4
th

 order combination models due 

to their smaller residual sums of squares. The 6
th

 order combination was the preferred model for 

the 1.6 µT saturation amplitude because it had the most negative average AICc. 

 

Figure 3.11: The distributions of AICc values for all regions of the prostate with a saturation 

amplitude of 1.6 µT. The averages indicated on the boxplots are median values.* indicates the 

preferred model. 

 

Table 3.8: AICc results of the models for the saturation amplitude of 1.6 µT for the prostate 

cancer patient images.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 6
th

 order -200.9 23.2 -243.3 -141.8 

2* Combination, 5
th

 order -189.6 20.4 -227.6 -138.2 

3** Combination, 4
th

 order -177.3 20.5 -228.0 -123.1 

4** Combination, 3
rd

 order -176.5 21.8 -224.2 -124.2 

5** Polynomial, 12
th

 order -151.7 17.7 -193.1 -113.2 

6** Polynomial, 20
th

 order -120.7 30.9 -165.2 -42.2 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

 

 



47 

 

 The distributions of AICc values for the Z-spectra with a saturation amplitude of 2.4 µT 

are displayed as boxplots in Figure 3.12. The average AICc for each model is listed in Table 3.9, 

ordered by increasing average AICc. The combination models outperformed the 20
th

 order 

polynomial model, though the 12
th

 order polynomial model outperformed both the 3
rd

 and 4
th

 

order combination models. The 5
th

 order combination was the preferred model for a 2.4 µT 

saturation amplitude because it had the smallest maximum AICc of the subset of models with the 

most negative but statistically indistinguishable average AICc. 

 

Figure 3.12: The distributions of AICc values for all regions of the prostate with a saturation 

amplitude of 2.4 µT. The averages indicated on the boxplots are median values. * indicates the 

preferred model. 

 

The distributions of AICc values for the Z-spectra with a saturation amplitude of 3.2 µT 

are displayed as boxplots in Figure 3.13. The average AICc values for the saturation amplitude 

of 3.2 µT are listed in Table 3.10, ordered by increasing average AICc. As saturation amplitude 

increased, the Z-spectra broadened, and the performances of the low order polynomials within 

the combination models improved, as seen in Figure 3.10. The visual performance improvement 
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at higher saturation amplitudes seen for the 12
th

 order polynomial model was reflected in the 

AICc values. The 4
th

 order combination was identified as the preferred model because it had the 

most negative maximum AICc value of the subset of models with the most negative but 

statistically indistinguishable average AICc. 

Table 3.9: AICc results of the models for the saturation amplitude of 2.4 µT for the prostate 

cancer patient images.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 5
th

 order -202.6 20.5 -240.3 -158.6 

2 Combination, 6
th

 order -200.3 19.6 -237.9 -154.7 

3 Polynomial, 12
th

 order -195.1 24.7 -243.7 -143.4 

4* Combination, 4
th

 order -193.6 19.4 -236.9 -153.0 

5** Combination, 3
rd

 order -177.2 15.4 -212.5 -141.3 

6** Polynomial, 20
th

 order -122.7 27.5 -183.2 -58.7 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

 

Figure 3.13: The distributions of AICc values for all regions of the prostate with a saturation 

amplitude of 3.2 µT. The averages indicated on the boxplots are median values. * indicates the 

preferred model. 
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Table 3.10: AICc results of the models for the saturation amplitude of 3.2 µT for the prostate 

cancer patient images.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 4
th

 order -204.9 24.1 -251.6 -149.1 

2 Combination, 5
th

 order -203.8 23.7 -250.2 -147.2 

3 Combination, 6
th

 order -200.8 23.4 -246.9 -144.5 

4 Polynomial, 12
th

 order -200.7 27.3 -263.4 -133.1 

5** Combination, 3
rd

 order -188.6 18.2 -223.8 -138.3 

6** Polynomial, 20
th

 order -129.5 30.7 -186.9 -54.8 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

 The distributions of AICc values for the Z-spectra with a saturation amplitude of 4.0 µT 

are displayed as boxplots in Figure 3.11. The average AICc values are listed in Table 3.12. 

Though there were no statistically significant differences in average AICc value between the 3
rd

, 

4
th

, 5
th

, or 6
th

 combination models or 12
th

 order polynomial model, the 3
rd

 order combination 

model was preferred because it has the most negative maximum AICc.  

 

Figure 3.14: The distributions of AICc values for all regions of the prostate with a saturation 

amplitude of 4.0 µT. The averages indicated on the boxplots are median values. * indicates the 

preferred model. 
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The distributions of AICc values for the Z-spectra at all saturation amplitudes are 

displayed as boxplots in Figure 3.15, and the average AICc values for all saturation amplitudes 

are listed in Table 3.12. There was no significant difference in average AICc values between the 

5
th

 and 6
th

 order combination models. The preferred model considering all saturation amplitudes 

was the 6
th

 order combination model, which had the smallest maximum AICc between the subset 

of models with the most negative but statistically indistinguishable average AICc. 

Table 3.11: AICc results of the models for the saturation amplitude of 4.0 µT for the prostate 

cancer patient images.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 4
th

 order -208.9 23.1 -244.2 -146.9 

2 Combination, 5
th

 order -205.0 23.1 -239.1 -145.4 

3 Combination, 6
th

 order -203.0 22.8 -248.4 -147.3 

4 Combination, 3
rd

 order -201.6 20.6 -233.5 -150.9 

5 Polynomial, 12
th

 order -200.1 27.5 -253.7 -130.3 

6** Polynomial, 20
th

 order -132.1 30.1 -181.7 -71.9 

 * indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

 

Figure 3.15: The distributions of AICc values for all regions of the prostate and all saturation 

amplitudes. The averages indicated on the boxplots are median values. * indicates the preferred 

model. 



51 

 

Table 3.12: AICc results of the models for all saturation amplitudes for the prostate cancer 

patient images.  

Rank Model AICcmean σAICc AICcmin AICcmax 

1 Combination, 6
th

 order -201.3 22.2 -248.4 -141.8 

2 Combination, 5
th

 order -200.2 22.7 -250.2 -138.2 

3* Combination, 4
th

 order -196.2 24.9 -251.6 -123.1 

4** Polynomial, 12
th

 order -186.9 31.9 -263.4 -113.2 

5** Combination, 3
rd

  order -186.0 21.6 -233.5 -124.2 

6** Polynomial, 20
th

 order -126.2 30.0 -186.9 -42.2 

* indicates a significant difference (p < 0.05) between the marked model and the model with the 

minimum AICc. ** indicates p < 0.001. 

 

The preferred model selected by the AICc depended on the saturation amplitude. Table 

3.13 lists the preferred fitting model for each of the saturation amplitudes tested. As seen with 

the phantom images, the combination models were preferred to the high order polynomial 

models for all saturation amplitudes tested, and increasing saturation amplitude decreased the 

required order of the polynomial used for the portion of the Z-spectrum upfield from water 

resonance. 

Table 3.13: The preferred fitting models for the prostate cancer patient images as selected by 

AICc for each of the saturation amplitudes tested.  

Saturation Amplitude Preferred Model 

1.6 µT 6
th

 Order Combination 

2.4 µT 5
th

 Order Combination 

3.2 µT 4
th

 Order Combination 

4.0 µT 3
rd

 Order Combination 

All Amplitudes 6
th

 Order Combination 

 

3.3 RESULTS FOR AIM 3: BLADDER CANCER IMAGES 

3.3.1 CURVE FITTING RESULTS 

 The bladder cancer patient images were acquired with a 4.0 µT saturation amplitude. 

Data  points  were  excluded  when  the  signal  intensity  at  a  frequency  offset  fell  below  the 
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threshold of 5% of S0, a procedure consistent with the exclusion procedure for the phantom data 

sets. Because of this, the 4
th

 order combination was selected as the model for fitting the Z-spectra 

rather than the 3
rd

 order combination model preferred for the prostate cancer patient images 

acquired with a 4.0 µT saturation amplitude. 

 A representative example of Z-spectra and the resulting curve fits are plotted for both the 

NBW and tumor regions in Figure 3.16. Generally, the points of the Z-spectra near water 

resonance for tumor regions fell beneath the exclusion threshold. The NBW regions typically had 

higher signal, and few data points were excluded from curve fitting. Seven patients had NBW Z-

spectra that appeared noisy compared to the Z-spectra for other patients. A representative 

example of these Z-spectra and the resulting curve fits are plotted in Figure 3.17. This may be 

due to patient motion during the acquisition. 

 

Figure 3.16: A representative example of Z-spectral curve fits and MTRasym(ω) calculated from 

the interpolated Z-spectra for (a) the NBW region and (b) the tumor region of the bladder cancer 

patient images. 
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Figure 3.17: An example of (a) a small ROI for the NBW region, and (b) the Z-spectrum in that 

ROI for a patient who may have experienced bladder motion during acquisition. 

 

3.3.2 BLADDER CANCER PATIENT MTR ASYMMETRY RESULTS 

 Using the Shapiro-Wilk test for normality on the distribution of MTRasym(2.0 ppm) and 

MTRasym(3.5 ppm) values in both the NBW and tumor regions, the null hypothesis of normality 

was unable to be rejected, enabling the use of the Student’s t-test. 

 A paired statistically significant difference was found between the MTRasym(3.5 ppm) 

quantities in the NBW and tumor regions (p < 0.001), while no significant difference (p > 0.05) 

was found  between the MTRasym(2.0 ppm) quantities between the NBW and tumor regions. 

 The average MTRasym(3.5 ppm) value in NBW regions was -0.0119 ± 0.0478, while the 

average value in tumor regions was 0.0336 ± 0.0225 (Figure 3.17a). The average MTRasym(2.0 

ppm) value in NBW regions was -0.0020 ± 0.0569, while the average value in tumor regions was 

0.0176 ± 0.0222 (Figure 3.17b).     
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Figure 3.18: Boxplots of the distribution of (a) MTRasym(2.0 ppm) values and (b) MTRasym(3.5 

ppm) values in both the NBW and tumor regions. 
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CHAPTER 4: DISCUSSION AND CONCLUSIONS 

4.1 RESULTS SUMMARY 

 In this work, a Z-spectral curve fitting model was proposed which separated the 

components of the Z-spectrum upfield and downfield from water resonance during the fitting 

process. Reported methods of Z-spectral analysis relied on high order polynomials for 

interpolation, which were not based on the physics of CEST-MRI and were prone to exhibiting 

oscillations near the edge of the fitting interval under some circumstances. The model proposed 

in this work was partially based on the solution to the Bloch equations modified to account for 

the transfer of magnetization between pools of protons either associated with solutes, immobile 

macromolecules, or free water, and relies on lower order polynomials to fit half of the Z-

spectrum. This method of fitting both provided some physically meaningful fitting parameters 

and reduced the magnitude of the oscillations. This method of fitting the upfield and downfield 

sections separately was shown to be preferred based on the AICc model selection criterion. The 

capability of MTRasym calculations made using this model to distinguish tumor from healthy 

tissue was demonstrated for bladder cancer. The motivation for this work was the lack of a 

standard procedure for data processing in CEST-MRI studies, combined with a lack of a standard 

phantom for comparing results across MR systems. 

 It was hypothesized that a model which fit the regions of the Z-spectrum upfield and 

downfield from water separately would result in fits of similar quality as the high order 

polynomial functions reported in the literature while reducing the required number of fitting 

parameters, and thus maintaining the ability to calculate useful MTRasym values. This was tested 

by first applying the models to a comprehensive CEST-MRI phantom and calculating the AICc 

for each to determine a preferred curve fitting model based on the minimum average AICc value. 
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A subset of these models was then applied to a set of prostate cancer patient images and again 

the preferred model was identified as the minimum average AICc. Finally, a model was selected 

from the phantom and prostate cancer results and applied to bladder cancer images; 

MTRasym(2.0 ppm) and MTRasym(3.5 ppm) values were calculated for both NBW and tumor 

regions to determine if these regions could be distinguished by differences in MTR asymmetry 

values. 

For the phantom and prostate cancer patient images acquired at all saturation amplitudes, 

a combination model was preferred using a 5
th

 and 6
th

 order polynomial, respectively, to describe 

the downfield regions of the Z-spectra. A 4
th

 order combination fitting method was applied to 

bladder cancer patient images and the MTRasym(3.5 ppm) calculations were found to be 

significantly different between NBW and tumor regions, demonstrating the ability of 

MTRasym(3.5 ppm) calculations made using this model to distinguish NBW from tumor. 

In addition to incorporating some physical meaning, this model has the potential to be 

extended further to include terms describing Z-spectral contributions from NOE which would 

make it suitable for application to CEST-MRI at ultra-high field strengths (greater than 3 T). 

4.2 LIMITATIONS OF PROPOSED MODEL 

The Lorentzian lineshape describing the effect of DWS in the combination upfield and 

downfield fitting method was based on the solution to modified Bloch equations under the 

assumption of weak saturation (Zhou, Wilson et al. 2004, Zaiß, Schmitt et al. 2011). In many 

experimental conditions, this assumption will not be satisfied as the water signal will be fully 

suppressed at saturation frequency offsets close to water resonance. This could result in large 

variances in MTR asymmetry calculations made in regions where the assumption of weak 

saturation fails. 



57 

 

As with all methods for interpolating Z-spectra for MTR asymmetry calculations, 

accurate B0 field inhomogeneity maps are required to ensure accurate calculations. Methods 

which shift the Z-spectrum based on curve fitting results have the advantage of not requiring user 

input when selecting appropriate sequence parameters for acquiring B0 field inhomogeneity 

maps. Figure 3.1 demonstrates variation in B0 field inhomogeneity measurements made using the 

same technique with differences in echo time separation. It has been shown that B0 

inhomogeneities as small as 0.1 ppm can significantly affect the asymmetry calculations (Kim, 

Gillen et al. 2009).  

Separating the curve fitting process into two parts takes additional time to process. While 

not problematic when fitting ROIs, the extra time may become an issue if the technique was 

applied on a per-pixel basis. Processing multiple slices per image data set will add even more 

time. 

The present study only assesses the MTRasym values calculated using a single instance of 

the combination model. This offers no basis for comparing the results of the high order 

polynomial models reported in the literature to the results of the combination model. 

4.3 AIM 1, DISCUSSION 

 Eight fitting models were applied to 84 data sets. Average AICc was calculated for each 

model, with the models then ranked from the most negative average AICc to the largest average 

AICc value. The 20
th

 order polynomial model ranked last in 79 of the 84 data sets tested, and 

ranked next to last for the remaining 5 data sets. Although the 20
th

 order polynomial had the 

lowest residual sum of squares for every data set, it consistently had the largest average AICc 

because of the large ratio of fitting parameters to data points. 
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 At lower saturation amplitudes, the combination model with low order polynomials for 

the downfield region of the Z-spectra generally performed poorly based on the AICc model 

selection criteria, which was the result of the low order polynomial being unable to fit the 

sharper curve in the Z-spectra. This contrasted with the 20
th

 order polynomial which appeared to 

fit the data well but was heavily penalized by the AICc for having many fitting parameters. 

Increasing the saturation amplitude both increased the width of the DWS component of the Z-

spectra and increased the magnitude of the MT component (Zaiß, Schmitt et al. 2011), resulting 

in the shoulders of the Z-spectra being less pronounced; this enabled the lower order polynomials 

to perform better for the combination model. The 20
th

 order polynomial fitting clearly exhibited 

oscillations near the edges of the fitting intervals with the higher saturation amplitudes. 

 Near 0 ppm, where data points were excluded from the fitting process due to falling 

beneath a threshold of signal of 5% of S0, the assumption of weak saturation failed. The 

saturation amplitudes were chosen to reflect values that have been used in past experiments in 

vivo (Jia, Abaza et al. 2011). In the future, imaging with a lower saturation amplitude may be 

preferable to increase the number of data points for which the weak saturation approximation is 

applicable. The performance of the 20
th

 order polynomial model suffered due to this exclusion of 

data points during the curve fitting process, effectively increasing the ratio of the number of 

fitting parameters to the number of data points. 

4.4 AIM 2, DISCUSSION 

Six fitting models were applied to 232 Z-spectral data sets acquired from the prostate 

cancer patient images. Similar to the phantom results, the 20
th

 order polynomial model had the 

greatest average AICc values over all data sets despite having the least residual sum of squares 

values for all data sets. 
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As with the phantom results, the combination models were the preferred curve fitting 

models. The order of the polynomial used to fit the downfield region of the Z-spectra decreased 

with increasing saturation amplitude. This was due to the increase in the MT effect as well as the 

broadening of the DWS component of the Z-spectra, as referenced in the previous section. At 

lower saturation amplitudes, the 3
rd

 and 4
th

 order polynomials used for the combination model 

did not adequately fit the Z-spectra. At higher saturation amplitudes, the combination models 

using 3
rd

 and 4
th

 order polynomials were preferred based on having smaller average AICc values. 

For the Z-spectral data from prostate cancer patient images, data points near the center of 

the Z-spectra were not excluded because of previous experience with these data sets indicating 

that this would not be necessary to achieve good fitting (Schurr, Elias et al. 2014). This previous 

study applied Equation 2.1 to the full set of Z-spectral data. Although regions in the center of the 

Z-spectrum were close to the exclusion threshold applied to the phantom Z-spectra, the quality of 

the fitting was still good based on the average AICc values used for the preferred model 

selection. 

4.5 AIM 3, DISCUSSION 

The 4
th

 order combination model was applied to the bladder cancer patients because this 

had the most negative average AICc values for the phantom at a saturation amplitude of 4.0 µT, 

which was the saturation amplitude used during the acquisition of the bladder cancer patient 

images. The curve fitting procedure in the bladder followed the same exclusion process as in the 

phantom. For this reason, the preferred 4
th

 order combination model from the phantom study was 

selected over the preferred 3
rd

 order combination model from the prostate cancer patient study. 

The MTRasym(3.5 ppm) values were statistically significantly greater in the tumor regions 

than the NBW regions, which showed that this quantity has the potential to distinguish these 
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regions. The MTRasym(2.0 ppm) values were not statistically significantly different between the 

two regions, but this potentially was due to the large saturation amplitude used in the experiment. 

The signal intensity at a frequency offset of ±2.0 ppm was very close to the exclusion threshold 

for many of the Z-spectra. Repeating the experiment with a reduced saturation amplitude may 

yield different results. 

 The Z-spectra collected in the NBW regions for some patients did not have the smooth Z-

spectral shape as shown for the phantom or prostate cancer patient images. This was likely due to 

bladder motion during the imaging procedure. For frequency offsets far from water resonance, 

the ROI can be adjusted to account for motion; however, at frequency offsets close to water 

resonance there is low signal and it is not always possible to account for motion. The ROIs for 

the NBW regions were very small, and the boundaries of the bladder wall were not always clear 

in the CEST-MR images. Though to date there have been no studies on CEST-MRI of bladder 

cancer published and indexed in the PubMed database, the quantity MTRasym(3.5 ppm) has been 

shown in studies of other sites to have the ability to distinguish disease from healthy tissue (Jia, 

Abaza et al. 2011). 

4.6 DIRECTION OF FUTURE WORK 

Future work on this fitting model may need to constrain the slopes of the fits in the 

upfield and downfield regions to match at the origin to prevent artifacts in MTR asymmetry 

calculations at saturation frequency offsets close to water resonance. This will become more 

important at lower saturation amplitudes, or for imaging solutes which exhibit a CEST effect 

near water resonance such as glycogen. Eventually, the combination model for curve fitting 

could be written into a standalone image processing software and made available for use by the 

community. 
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Establishing MTRasym calculations as a clinically relevant quantitative imaging biomarker 

will require additional work to establish the scan-rescan and cross-system reproducibility. A 

standard CEST-MRI phantom will be useful for this process, and the phantom used in this study 

could be modified for this role. The size of the phantom should be reduced to enable it to fit in 

smaller detector coils. Changing the temperature or pH of the phantoms may be useful as well. 

If new terms were added to the fitting model to account for NOE, the model could be 

applied to CEST-MRI at ultra-high field strengths. Many CEST-MRI studies are performed at 

field strengths greater than 3 T, and adapting the model to apply to these conditions would 

increase the number of studies for which the model would be relevant. 

The bladder cancer study could be extended to include patient images from follow-up 

MR scans. For patients undergoing chemotherapy for instance, one could assess changes in 

MTRasym in response to therapy. Another venue is to assess whether MTRasym can predict a 

patient’s response to chemotherapy. 

In conclusion, the Z-spectral analysis method proposed in this study of fitting the upfield 

and downfield regions of the Z-spectrum separately provided a better model than some higher 

order polynomial models reported in the literature, according to the AICc model selection 

criteria. This was demonstrated in both phantom and patient images using multiple amplitudes 

for the saturation pre-pulse. Additionally, the model provided a model based in part on the 

physics of MT-MRI and CEST-MRI. The application of the model to bladder cancer patients 

demonstrated that the MTRasym(3.5 ppm) calculations performed using the combination can 

provide quantitative methods of distinguishing NBW from bladder cancer, a site which has not 

been previously studied by with CEST-MRI.   
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