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Abstract 

Radioactive isotopes of iodine are produced by nuclear power plants as a byproduct 

of nuclear fission reactions. If these isotopes are released into the environment, such as 

during a breach of containment, they constitute a health risk to exposed individuals. To 

mitigate the risk of thyroid cancer due to exposure to radioactive iodine, “iodide 

prophylaxis,” also known as “thyroid blockade,” can be used, usually by administration of 

potassium iodide (KI). In some areas of the world, KI has been provided to the general 

public by their governments as a precautionary measure against potential nuclear power 

plant incidents. However, in the state of Louisiana, only evacuation and sheltering of the 

general public are the planned response to such incidents. The question of whether 

Louisiana’s government should provide KI to the public is a question of risk 

management. This project’s risk assessment provides a framework for determining 

radiation risk from radioiodine release from a nuclear power plant, enabling an 

assessment of the potential benefit of providing KI to the general public in Louisiana. In 

this assessment, a hypothetical radiological incident of similar severity to the Fukushima 

accident was modeled for a nuclear power plant in Louisiana. Environmental transport of 

discharged radioactive iodine was modeled with a Gaussian plume model. Thyroid dose 

was calculated using representative parameters from International Commission on 

Radiological Protection Publication 71. Age- and sex-specific values of excess relative 

risk, lifetime attributable risk, and excess lifetime thyroid cancers were calculated. Lastly, 

the number of excess lifetime thyroid cancers mitigated by thyroid blockade was 

estimated through two separate approaches. This assessment found that a plume 

traveling over highly populated parishes near the power plant could result in 
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approximately 200 excess lifetime thyroid cancers over all age groups. The largest 

number would likely occur in females exposed as children. Thyroid blockade could 

potentially mitigate 80 or more of the excess cancers. These results suggest that more 

comprehensive assessments of KI distribution in Louisiana may be warranted. 
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Chapter 1. Introduction 

1.1. Motivation and Scope 

Louisiana’s Peacetime Radiological Response Plan (Louisiana Department of Health 

2016) states that “During an accident at a fixed nuclear facility, the State of Louisiana will 

consider recommending the use of thyroid protective drug potassium iodide (KI) within 

the affected area for emergency workers, and also for institutionalized persons who are 

unable to evacuate quickly.” Providing the thyroid-protective drug KI to the general public 

as a whole, rather than to only institutionalized persons, is not within the scope of the 

policy, either before or after such an accident. Rather, sheltering-in-place and evacuation 

are considered or recommended based upon the anticipated total effective dose 

equivalent or thyroid committed dose equivalent to affected members of the general 

public. However, governments in other areas of the world have recently distributed, or 

expressed an interest in distributing, KI pills to their general public as a precautionary 

measure against nuclear power plant accidents. For example, Luxembourg undertook a 

preventive KI distribution campaign in 2014 which made KI pills freely available to all of 

its inhabitants (Luxembourg 2014). Similar campaigns were conducted in Switzerland in 

2014 (Switzerland 2014), Netherlands in 2017 (Netherlands 2017), and Belgium in 2018 

(Belgium 2018). Given this trend of governments providing KI pills to their citizens as a 

precautionary measure against nuclear power plant accidents, should Louisiana consider 

doing so as well? 

The decision for Louisiana to provide KI pills to its general public depends on several 

factors. These factors include financial cost; benefit regarding thyroid cancer risk 

mitigation; logistics of storage, distribution, and re-stocking of KI pills; legal issues of 
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widespread administration; and psychosocial ramifications of implementing such a 

policy. The purpose of this thesis was to provide a conservative estimation of thyroid 

cancer risk mitigation provided by KI prophylaxis, which is only one of the factors in 

determining whether KI pills should be provided to Louisiana’s general public. 

The first goal of this assessment was to model a hypothetical worst-case exposure 

scenario due to an unintended discharge at a nuclear facility in Louisiana, and thereby 

estimate the excess thyroid cancer risk posed to the general public as a result of the 

incident. The second goal is to estimate the potential thyroid cancer risk reduction 

provided by KI prophylaxis, assuming the general public has prompt access to KI pills. 

Chapter 2, “Background and Review,” provides a review of relevant terminology and 

concepts that are necessary to interpreting the results of this assessment. Chapter 2 

also provides a detailed discussion of radioactive iodine, with an overarching emphasis 

on toxicological effects as a result of exposure. Chapter 3, “Methods and Materials,” 

details how this assessment was performed and includes justifications of the 

assumptions and quantitative values that were used in calculations. Chapter 4, “Results 

and Discussion,” presents plots and tables representing the results, interpretation of the 

results and their implications, a discussion of the limitations associated with this 

assessment, suggestions for future work, and lastly, the assessment’s conclusions. 
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Chapter 2. Background and Review 

2.1. Dimensions of Risk 

For radiological risk assessment, risk is a function of source terms, environmental 

transport, exposure factors, conversion to dose, and conversion of dose to risk (Till 

2008). The “source term” is the quantity of radioactive material released into the 

environment. The source term is used to derive radionuclide concentrations at locations 

other than the source’s location. In cases of retrospective analysis of a radiological 

incident, such as an unintended discharge from a nuclear plant, downwind monitoring 

stations and field measurements are used to estimate the source term. A hypothetical 

incident was considered for this assessment, so estimates of a plausible source term 

were derived from historical accidents (see Chapter 3). 

“Environmental transport” refers to the dispersion of radionuclides into the 

environment after emission from the source. Environmental transport models are specific 

to the scale of analysis; for example, macroscale atmospheric modeling involves 

transport over several thousand kilometers and considers weather fronts, pressure 

gradients, and rotation of the earth in addition to other large-scale factors. Mesoscale 

and microscale atmospheric modeling consider more granular factors, such as 

convective activity of the Earth’s surface (for mesoscale; ~100 km transport), or surface 

roughness and building wake (for microscale; <~1 km transport). 

“Exposure factors” refer to parameters of the exposed population that are necessary 

to calculate dose and risk. Examples of exposure factors are breathing rate, time spent 

outdoors per day or week, and consumption of particular foods. The exposure factors 
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should be as representative of the exposed individuals as possible to minimize 

uncertainties in dose and risk calculations. 

“Conversion to dose” involves calculating radiation dose from either external 

exposure or intake of radionuclides. For example, dose coefficients from the International 

Commission on Radiological Protection (ICRP) allow calculation of committed effective 

or equivalent dose for a given amount of intake. (The ICRP is a non-governmental 

organization that develops recommendations for government agencies regarding 

radiological protection.) The dose coefficients depend upon the pathway of intake and 

the form of the radionuclide. Generally, such coefficients have a large amount of 

uncertainty due to variability of relevant biological factors among individuals in a 

population. 

“Conversion of dose to risk” involves converting calculated dose into an estimate of 

risk for a chosen endpoint. For this assessment, the calculated risk pertained to 

radiation-induced cancer. Using data from atomic bomb survivors, atomic weapons 

testing, nuclear power plant accidents, and nuclear medicine, the Biological Effects of 

Ionizing Radiation (BEIR) committee has developed risk models for radiation-induced 

cancers (National Research Council 2006). The BEIR committee’s cancer risk models 

are chiefly dependent upon dose, sex, age at exposure, time since exposure, and age at 

risk determination (attained age). The cancer risk models are also dependent upon the 

type of cancer. This assessment used the model for thyroid cancer (see Section 2.2). 

2.2. Communication of Risk 

For reporting the results of this assessment, several different metrics are used to 

communicate risk. Absolute risk (AR) describes the rate of disease in a population. 
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Relative risk (RR) is a ratio of two rates of disease (two ARs) in a population, where the 

two rates differentiate between an exposed group (ARe) and a non-exposed or reference 

group (ARn). Mathematically, RR = ARe/ARn.  

Excess relative risk (ERR) is the fractional increase of the exposed group’s rate of 

disease when compared to the reference group; alternatively, if multiplied by 100, the 

ERR is the percentage increase over the reference group’s rate of disease. 

Mathematically, ERR = RR – 1 if not expressed as a percentage. If the ERR is greater 

than zero, then the exposed group has an elevated risk. 

The thyroid cancer risk model used in this assessment was from the BEIR VII report, 

wherein the committee developed a preferred model based upon a pooled analysis of 

seven studies that investigated the excess risk of thyroid cancer as a function of 

absorbed dose (National Research Council 2006). The thyroid cancer model takes the 

form of: 

𝐸𝑅𝑅ሺ𝐷, 𝑒ሻ ൌ 𝛽 ∗ 𝐷 ∗ expሾെ0.83ሺ𝑒 െ 30ሻሿ [1] 

where 𝐸𝑅𝑅 is the excess relative risk, 𝐷 is the absorbed thyroid dose in Gy, 𝛽 is a 

unitless sex-specific parameter, and 𝑒 is the age at exposure in years. The sex-specific 

parameter for males is 𝛽ெ = 0.53, with a 95% confidence interval of 0.14 to 2.0. For 

females, the parameter is 𝛽ி = 1.05 with a 95% confidence interval of 0.28 to 3.9. 

Excess absolute risk (EAR) describes the above-baseline or above-reference rate of 

disease in a population; mathematically, it is the algebraic difference between two ARs. If 

the EAR is greater than zero, then it implies disease occurring at a rate above the natural 

incidence. EAR can be calculated using ERR if the ERR is multiplied by the baseline 

cancer-specific incidence or mortality rate. Lifetime Attributable Risk (LAR) represents 
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the risk of cancer incidence or mortality over a lifetime. LAR is a summation of EAR over 

a lifetime, with each term of the sum weighted by the probability of surviving to 

subsequent ages up to a specified age. Calculation of LAR depends on several 

variables, and the values used in its equation depend on available data, so detailed 

discussion of the LAR calculation is deferred to Section 3.4. 

2.3. Radioactive Iodine 

2.3.1. Synthesis 

Of all isotopes of iodine, only 127I is stable; all others are radioactive (referred to as 

radioiodines). Radioiodines occur in nature in only trace amounts formed by cosmic 

bombardment (Knolls Atomic Power Lab 2010). One additional natural source of 

radioiodines is the exceptionally rare event of a naturally occurring self-sustaining 

uranium fission reactor, such as the Oklo reactor in Africa over one billion years ago, 

which produces radioiodines as fission products (Gauthier-Lafaye 1996). 

The presence of substantial amounts of radioiodines on Earth are due to man-made 

synthesis, such as in atomic weapons testing, nuclear power plant accidents, and fuel 

reprocessing (Prăvălie 2014, Hou 2003). Of the radioiodines produced by such 

reactions, the most relevant isotope regarding toxic effects in humans is 131I due to its 

high uranium fission yield of 2.89% and half-life of 8.023 days (Knolls Atomic Power Lab 

2010). The high fission yield of 131I allows it to be produced in large quantities per 

kilowatt of thermal energy produced, and its half-life is long enough for it to be dispersed 

into the environment. Such characteristics of 131I make it a consistent threat after nuclear 

power plant incidents involving a breach of containment. 
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2.3.2. Exposure to Humans, Flora, and Fauna 

There are many different pathways for exposure to radioiodoines. Radioiodine can 

exist as a particulate, a vapor, or as a solution with the iodine dissolved in water. 

Radioiodines can pose an external threat and/or an internal threat depending on 

concentration of, distance from, time spent near, and shielding around the source. For 

the Chernobyl accident which occurred in 1986, the prominent pathway through which 

the general public was exposed to 131I and other radioiodines was by ingestion of 

contaminated food and drink (mostly milk) (Higley 2006). However, in the modern United 

States the most likely pathway for exposure to radioiodines immediately after a nuclear 

incident is inhalation of a radioiodine-containing plume rather than ingestion of 

contaminated food and drink; this is due to food testing and interdiction procedures that 

would halt the distribution of contaminated food and drink in the event of such an 

incident. Such limits are discussed in Section 2.3.3. 

Non-human animals can be exposed to radioiodines through the same pathways as 

humans, although they are more susceptible to intake by ingestion due to an inability to 

prevent them from ingesting contaminated food or drink after deposition of radioiodine 

onto vegetation or bodies of water in affected areas. Additionally, at sufficient 

concentrations, radioiodines can pose a threat to flora if deposited onto soil near plants 

or onto trees. Because the emissions of radioiodines includes gamma rays and beta 

particles, they present an external hazard to the flora upon which they are deposited. For 

example, in the exclusion zone of Chernobyl where large amounts of radioactive cesium 

and iodine were deposited, coniferous trees were killed and deciduous trees suffered 

partial damage as a result of acute external irradiation (Alexakhin 1994). 
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2.3.3. Exposure Limits 

Because 131I and other radioiodines are radioactive, they can contribute to an 

exposed individual’s cumulative radiation dose over a period of time. Methodologies 

have been developed to approximate an acceptable limit of exposure based upon a 

radionuclide’s properties and route of exposure. 

The derived air concentration (DAC) is used to approximate a limit on the average 

air concentration of a specific radionuclide (ICRP 2015). The DAC depends on an 

assumed breathing rate, number of working hours in a year, dose coefficient 

representing either committed effective dose per unit intake or effective dose due to 

submersion in a radioactive cloud, and some annual effective dose limit. The DAC 

separately considers internal radiation dose from inhalation vs. external dose from 

submersion within a radioactive cloud. The Nuclear Regulatory Commission (NRC) 

imposes a limit for inhalation DAC of 740 Bq/m3 for 131I (CFR 2019). Such limits are 

radionuclide-specific. 

The Safe Drinking Water Act, imposes an effective dose limit due to beta particles 

and gamma photon emission (which therefore includes any radioiodines) present in 

drinking water at 4 mrem/year (CFR 2002). Assuming no other man-made radionuclides 

present, an ingestion of 2 liters of drinking water per day for 365 days, and an ingestion 

dose coefficient of 2.2 µrem/Bq for 131I (ICRP 2012), that dose limit translates to a 

concentration limit or Maximum Contaminant Level (MCL) of 2.5 Bq/L. 

The Food and Drug Administration (FDA) provides recommendations called Derived 

Intervention Levels (DILs) which are based upon the consumption of radionuclide-

contaminated food that, without intervention, would potentially lead to a committed 
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effective dose established by a Protective Action Guideline (PAG) (FDA 2005). A PAG is 

a projected dose to an individual from a release of radioactive material at which a 

specific protective action to reduce or avoid that dose is recommended (EPA 2017). For 

131I, the FDA recommends a DIL of 170 Bq per kg of a diet. Like other limits, this is 

radionuclide-specific. 

A Derived Response Level (DRL) is a level of radioactivity in an environmental 

medium that would be expected to produce a dose equal to its corresponding PAG (EPA 

2017). The DRL’s intended use is to provide a recommendation for making quick 

decisions during time-critical scenarios involving accidental radiological releases (EPA 

2017). As a “default” DRL for various radionuclides in drinking water, the EPA 

recommends that radionuclide levels are assumed to be constant (i.e. replenished) to 

provide greater assurance of conservatism. Assuming one year of constant exposure, 

the DRL for 131I in drinking water corresponds to 820 pCi/L for pregnant women, nursing 

women, and children of age 15 and younger (100 mrem PAG). For the general 

population (500 mrem PAG), the DRL for 131I in drinking water is 10,000 pCi/L. 

2.3.4. Biotransformation and Toxic Effects 

Radioactive iodine and stable iodine are metabolized identically. Upon intake by 

humans, dietary iodide is absorbed through the small intestine, transported into blood, 

and either absorbed by the thyroid gland to be used in the synthesis of thyroid hormones 

or excreted through urine (Leggett 2017). With the iodide in blood, a thyroid follicular cell 

(thyrocyte) uses a sodium-iodide symporter to actively transport the iodide into the cell. 

Once inside the cell, the iodide is moved into the colloid (viscous fluid in the central 

cavity of a thyroid follicle) via the anion transport protein pendrin. In the colloid, thyroid 



10 
 

peroxidase (TPO) performs several critical steps in the creation of thyroid hormones (Ruf 

2006). TPO oxidizes the absorbed iodide and adds the oxidized iodide to the amino acid 

tyrosine to create monotyrosine (MIT) and diiodotyrosine (DIT). TPO either couples MIT 

and DIT to create the thyroid hormone triiodothyronine (T3), or couples two DIT to create 

the thyroid hormone thyroxine (T4). T3 is also produced from T4 via 5'-deiodinase in 

peripheral tissues, which is the more prominent mode of T3 synthesis (Kimura 1987). 

The hormones T3 and T4 are released into circulation and subsequently bind to 

nuclear receptors at various peripheral tissue cells, which lead to increases in 

metabolism and protein synthesis. As a consequence, if radioactive iodine is absorbed 

instead of stable iodine, the thyroid gland and the peripheral tissues where T3 and T4 

are circulated are subject to beta particle and gamma radiation. Due to the thyroid 

gland’s very slow transference of organic iodine (as T3 and T4) to blood relative to other 

organs (Leggett 2017), the thyroid gland is the target tissue that receives the most dose 

from accumulation of radioiodine. The most substantial toxic effect as a result of 

inhalation, ingestion, or absorption of radioiodines is development of thyroid cancer 

(National Research Council 2006). At very high doses (several hundred Gy), the most 

relevant toxic effect is hypothyroidism rather than thyroid cancer due to the loss of 

thyroid cell population that accompanies such high doses. 

2.3.5. Epidemiological Studies 

Most large-scale studies of external exposure to radioiodines involved concurrent 

exposure to other radionuclides (National Research Council 2006). For example, studies 

of atomic bomb survivors included concurrent exposure to not only several radionuclides 

of differing physical forms, but also neutrons. The same applies to studies of nuclear 
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power plant accidents. Additionally, when radioiodines are located outside of one’s body, 

there is no organ specificity. As a result, identifying an effect that is specific to external 

exposure of radioiodines (and yet not applicable to external ionizing-radiation sources of 

similar emission spectra in general) is not meaningful. 

Data concerning risk of thyroid cancer as a result of internal exposure to 

radioiodines, mainly 131I, come mostly from therapeutic and diagnostic scenarios/studies. 

Such studies mostly consist of internal exposure of adults receiving doses from 0.5 Gy 

up to as high as 100 Gy; these studies don’t provide substantial evidence of increases in 

thyroid cancer incidence (for non-childhood exposure) due to a lack of consistent results 

between different studies (National Research Council 2006). Environmental exposure 

studies such as those focused on weapons testing at Nevada Test Site (Kerber 1993), 

Bikini Atoll / Marshall Island (Conard 1984), and the Hanford Site production facility 

(Davis 2004), showed a similar lack of consistency in findings. 

In contrast to the comparatively murky data for adult exposure to radioiodines, 

follow-up studies on the Chernobyl accident showed a marked increase in thyroid cancer 

incidence among those exposed as children (Mettler 1996, Williams 2003, Kikuchi 2004). 

2.3.6. Protective Measures 

“Iodide/Iodine prophylaxis” or “thyroid blockade” is a prophylactic method that 

protects the thyroid gland against radioiodines by redirecting the radioiodines away from 

the target organ and into the kidneys where they are subsequently excreted in urine. To 

accomplish this, a thyroid-saturating dose of stable iodide is ingested such that the 

activity of the sodium-iodide symporter used by thyroid follicular cells decreases to a 

level where a large majority of any further ingested iodide is simply routed to the kidneys 
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and excreted rather than absorbed by the thyroid (Hosten 2012). Timed appropriately, 

this prophylactic measure can prevent a large percentage of thyroid dose that would 

otherwise be received (Blum 1967). 

To represent thyroid blockade when calculating absorbed dose due to internal 

exposure to radioiodines, the latest available iodine biokinetic model by Leggett reduces 

the value of a transference coefficient that represents the organification of iodide in the 

thyroid, which has a baseline age-independent value of 95 day-1 (Leggett 2017). For 

modeling complete thyroid blockade, the transference coefficient is set to zero. Under 

such parameters, modeling shows that thyroid blockade reduces radioiodine dose to all 

affected organs except the stomach, for which there is a moderate increase in dose 

(Leggett 2017). Thyroid blockade is usually incorporated by use of the stable compound 

Potassium Iodide (KI); this is colloquially referred to as “KI Prophylaxis.” 

Because dietary levels of iodine affect the activity of the sodium-iodide symporter in 

thyroid follicular cells, the effectiveness of thyroid blockade at a fixed prophylactic dose 

can vary depending on the pre-exposure dietary levels of iodine. When dietary levels of 

iodine are insufficient for production of T3 and T4, the thyroid enlarges and absorbs 

more iodine from the blood compared to conditions of euthyroidism. As a consequence, 

thyroid blockade is less protective at a fixed prophylactic dose if dietary levels of iodine 

are low prior to exposure (Zanzonico 2000).  
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Chapter 3. Methods and Materials 

3.1. Source Term 

Because this assessment involves risk of thyroid cancer and its potential reduction, 

relevant radioisotopes under consideration are those whose target organ is the thyroid. 

Iodine and its isotopes all target the thyroid, and all isotopes except 127I are radioactive. 

Radioactive iodines are the most significant regarding potential thyroid dose from a 

radiological release involving fission of heavy atoms, as was especially seen at 

Fukushima (IAEA 2015). Table 3.1. summarizes characteristics of several radioactive 

isotopes of iodine that are produced by nuclear fission. 

Table 3.1. Characteristics of radioactive isotopes of iodine produced by nuclear fission 
(Knolls Atomic Power Lab 2010, MIRD 1975). 

 

Only one radioisotope of iodine, 131I, was considered for this assessment as the 

principle hazard. Other isotopes of iodine could be included, but only 131I has substantial 

dispersion and uptake potential due to its long half-life and moderately high fission yield. 

Its 235U fission yield guarantees that it is produced in moderate quantities inside of 235U 

fission reactors operating for commercial power production. 

The basis for the magnitude of 131I release as the source term was rooted in 

historical radiological incidents in which there were substantial releases of radioactive 

Mass Number Half-life 235U Fission Yield (%)
Thyroid Absorbed Dose per Unit 
Cumulated Activity in the Thyroid 
(rad/μCi-hr)

125 59.4 d 0.03 3.00E-03
126 12.89 d 0.06 1.80E-02
129 1.57E+07 y 0.54 7.10E-03
130 12.36 h 1.81 3.90E-02
131 8.023 d 2.89 2.20E-02
132 2.283 h 4.31 6.00E-02
133 20.8 h 6.70 4.60E-02

Characteristics of Fission-Produced Radioactive Iodine Isotopes
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iodine from a nuclear power plant. Historical radiological incidents established a 

plausible magnitude of 131I release for the proposed release scenario of this assessment. 

The historical incidents considered here were those that occurred at Chernobyl and 

Fukushima. The Chernobyl accident, while certainly a substantial release of 131I, does 

not wholly represent the scenario of a release in Louisiana due to differences of design 

between United States’ reactors and Chernobyl’s RMBK-type reactor (National Research 

Council 2004); Chernobyl’s RMBK-type reactor used flammable graphite as a neutron 

moderator and did not have a containment vessel (NRC 1987). The Fukushima accident 

is more relevant because the power plant’s general design is similar to that of United 

States’ reactors, in that both use water as a neutron moderator and have a containment 

vessel (IAEA 2015). The magnitude of core inventory release from Fukushima could 

plausibly occur at a United States facility if a similarly low-probability beyond-design-

basis event were to occur. 

For this assessment, a nuclear power plant in Louisiana was selected as the release 

location. Three nuclear power plants are located in or immediately adjacent to Louisiana: 

River Bend, Waterford 3, and Grand Gulf. Of those three, River Bend is the only power 

plant whose reactor is the same type as Fukushima’s (boiling water reactor); it also is 

located near the highly populated Baton Rouge metropolitan area. Having the release 

point located near a high-population area enables a worst-case conservative model 

regarding numbers of potentially exposed individuals. Therefore, the reactor building at 

River Bend was chosen as the release point. 

With bases selected for the magnitude and location of release, the source term (i.e. 

the release magnitude and rate) was established by assuming the same severity as the 
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historical accident coming from the selected release point. The severity of the historical 

accident was categorized as the percentage of 131I inventory released. To calculate this 

percentage, the total inventory of 131I present in the reactors at Fukushima prior to their 

discharge was estimated using (Lamarsh 2001) 

𝛼௜ ൌ 8.46 ൈ 10ହ ∙ 𝑃௧ ∙ 𝛾௜ ൌ 8.46 ൈ 10ହ ∙ ቀ௉೐

ఌ
ቁ ∙ 𝛾௜ [2] 

where 𝛼௜ is the radionuclide inventory (in Ci), 𝑃௧ is the thermal power generated inside 

reactor (in MW), 𝛾௜ is the fission yield of 131I (unitless), 𝑃௘ is the electric output power of 

reactor (in MW), and 𝜀 is the efficiency of reactor (unitless). This estimation assumed 

that the reactor had operated long enough for the radionuclide’s activity to reach 

equilibrium. Table 3.2. shows the estimated 131I inventory in Ci and Bq using Eq. 2 for 𝛾௜ 

= 0.0289 and an assumption of 𝜀 = 0.33 for the boiling water reactor. 

Table 3.2. Inventory calculation for the 3 reactors (units) at Fukushima that released 
radioactive iodine. 

 

Several studies of Fukushima have estimated the amount of 131I that was released. 

The mean of the estimates of such studies was 144 PBq (IAEA 2015). Consequently, the 

fraction of 131I inventory released at Fukushima was 

Release as percent of 131I inventory = 
ଵସସൈଵ଴భఱ ୆୯

ହ.଺ൈଵ଴భఴ ୆୯
ൈ 100 = 2.6% [3] 

Unit 1 Unit 2 Unit 3

Electric Power Output (Pe) MW 460 784 784

Efficiency (ε) % 33 33 33

Thermal Power in Reactor (Pt) MW 1394 2376 2376

Ci 3.4E+07 5.8E+07 5.8E+07
Bq 1.3E+18 2.1E+18 2.1E+18
Ci
Bq

Fukushima 131I Inventory Calculation
Value

Reactor 131I Inventory (αi)

Total 131I Inventory
1.5E+08
5.6E+18
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For River Bend operating at its licensed capacity of 3091 MW thermal (NRC 2018), 

the corresponding hypothetical fractional release was calculated using (Lamarsh 2001) 

𝑄 ൌ 𝛼௜ ∙ 𝑓 ൌ ሾ8.46 ൈ 10ହ ∙ 𝑃௧ ∙ 𝛾௜ሿ ∙ 𝑓 [4] 

where 𝑄 is the total 131I emission (in Ci), 𝛼௜ is the radionuclide inventory (in Ci), 𝑃௧ is the 

thermal power generated inside reactor (in MW), 𝛾௜ is the fission yield of radionuclide 

(unitless), and 𝑓 is the fraction of inventory released (unitless). The total emission 𝑄 was 

equal to 7.3 ൈ 10ଵ଺ Bq. 

Assuming that the total emission is released over an amount of time similar to the 

period over which a majority of Fukushima’s inventory was released, approximately 4 

days, then the hypothetical emission rate 𝑄ᇱ was 1.8 ൈ 10ଵ଺ Bq/day, or 2.1 ൈ 10ଵଵ Bq/s. 

The emission rate 𝑄ᇱ was the source term for the hypothetical accident scenario 

modeled in this assessment, representing the release rate of 131I from River Bend. The 

emission rate was assumed to be constant for purposes of environmental transport (see 

Section 3.2). When calculating dose, this value was subdivided to account for the 

proportion of gaseous iodine to particle iodine (see Section 3.4). 

3.2. Environmental Transport 

Because the duration of the emission is assumed to be 4 days, this hypothetical 

scenario represented an acute, short-term release. Additionally, the potential transit time 

of emitted effluent was short (hours) compared to the duration of the emission (days) 

based upon local wind speed data that is discussed later in this section. Transit time of 

the effluent, relative to the duration of its emission, is important to identify prior to 

selecting an environmental model because it determines whether the release is a puff or 
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plume. Generally, if the release duration of the effluent is short compared to the transit 

time, then it’s a puff; otherwise, it’s a plume (Pasquill 1984, Till 2008). 

Because the potential transit time of the effluent was short compared to the duration 

of the emission, a Gaussian plume model was an appropriate choice for a transport 

model. An additional advantage of using a Gaussian plume model was that it provided 

results that were obtainable without significant computational power. The Gaussian 

plume model used in this assessment was (Till 2008) 

𝐶 ൌ
𝑄ᇱ

2𝜋𝜇𝜎௬𝜎௭
exp ቈെ

1
2

ቆ
𝑦ଶ

𝜎௬
ଶቇ቉ ൉ ൝exp ൭െ

1
2

൥
൫𝑧 െ ℎ௣൯

ଶ

𝜎௭
ଶ ൩൱ ൅ exp ൭െ

1
2

൥
൫𝑧 ൅ ℎ௣൯

ଶ

𝜎௭
ଶ ൩൱ൡ 

൉ exp ൬െ ଴.଺ଽଷ

ஜ୘భ/మ
𝑥൰ [5] 

where 𝐶 is concentration in air, 𝑄′ is the source term or emission rate, μ is wind speed, 

ℎ௣ is effective stack height, Tଵ/ଶ is the 131I half-life, 𝑥 is downwind distance, 𝑦 is 

crosswind distance, 𝑧 is vertical distance (fixed height at which concentration is 

calculated), and 𝜎௬ and 𝜎௭ are the standard deviations of a Gaussian distribution in the 

crosswind and vertical directions, respectively. Eq. 5 assumes that the concentration is 

reflected into the atmosphere when it encounters the ground (Till 2008). The last 

exponential term of Eq. 5 accounts for radioactive decay of 131I. Values of terms in the 

Gaussian plume model are summarized in Table 3.3. 

The emission rate, 𝑄′, is the source term that was calculated previously (see Section 

3.1). The height at which concentration in air was calculated, 𝑧, was 1.5 meters (5 feet) 

because human intake of the radionuclide occurs near head-height. 

For the effective stack height, ℎ௣, a constant value of 100 m was based upon 

evaluations of the Fukushima accident, where the stack height ranged from 
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approximately 20 to 150 meters depending on the mode of release (Korsakissok 2013). 

For the 20 to 150 m range of stack height, the value of 100 m used for ℎ௣ was somewhat 

arbitrary because the transport model was insensitive to changes in effective stack 

height. This was determined by holding other transport variables constant, varying the 

effective stack height within a 20 to 150 m range, and observing changes in transport. 

Table 3.3. Summary of values used for the Gaussian plume model. 

 
*For an assumed atmospheric stability category. 

For the wind speed, μ, a constant value of 6 m/s was chosen based upon 2018 

climatology data from the National Oceanic and Atmospheric Administration (NOAA 

2018). This value represented a wind speed that was higher than typical monthly 

averages for the Louisiana area. In 2018, monthly average wind speeds ranged from ~3 

m/s to ~5 m/s (NOAA 2018). A higher-than-monthly-average wind speed was used to 

compensate for two factors. The first factor was the Gaussian plume model’s assumption 

of steady-state conditions for a constant atmospheric stability. For steady-state 

conditions and constant atmospheric stability, lower wind speeds generated higher 

concentrations for a given downwind distance but resulted in excessive travel of the 

plume to distances where the model, in its simplest form here, is unlikely to be reliable. 

The second factor was the height of approximately 1.5 meters from which the NOAA 

wind data was measured (NOAA 2018). Determination of the increase in wind speed at 

Term Description Value Unit
Q' Emission rate 2E+11 Bq/s
μ Wind speed 6 m/s

hp Effective stack height 100 m

T1/2
131I half-life 8.023 day

z Observation height 1.5 m

σy Crosswind standard deviation

σz Vertical standard deviation

Dependent on 
downwind distance*

m
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the plume’s stack height of 100 meters, relative to the wind speed measurement height 

at 1.5 meters, was estimated using a wind profile power law relationship that depended 

principally on an assumed “atmospheric stability category” that is discussed later in this 

section. For the wind profile power law relationship detailed in the EPA’s Industrial 

Source Complex 3 (ISC3) dispersion model (EPA 1995), a 4 m/s wind speed at a height 

of 1.5 m corresponded to 6 m/s at 100 m. A wind speed of 6 m/s was adequately 

representative of the area under consideration based upon local climatology data and 

the requisite increase in wind speed at the stack release height relative to the height of 

wind speed measurement. 

The dispersion coefficients 𝜎௬ and 𝜎௭ were calculated using equations from the 

EPA’s ISC3 dispersion model (EPA 1995), which contain equations that have been fitted 

to measured and extrapolated plume dispersion data from Pasquill (Pasquill 1961). The 

fitted equations for 𝜎௬ and 𝜎௭ depend on the “atmospheric stability category” of the 

Pasquill curves. Atmospheric stability categories depend on wind speed range and sun 

insolation during daytime or cloudiness during nighttime. Moderate or strong sun 

insolation during daytime was assumed, as both resulted in the same atmospheric 

stability category. For a 6 m/s wind speed and moderate or strong sun insolation during 

daytime, corresponding to atmospheric stability category C (Pasquill 1961), the 

equations for 𝜎௬ and 𝜎௭ were 

𝜎௬ ൌ 465.11628𝑥 ∗ tan ሺ 0.017453293ሾ12.5 െ 1.0857 lnሺ𝑥ሻሿ ሻ [6] 

and 

𝜎௭ ൌ 61.141𝑥଴.ଽଵସ଺ହ for 𝜎௭ ൑ 5000 [7] 
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where 𝑥 is downwind distance (in km), and 𝜎௬ and 𝜎௭ are dispersion coefficients (in m). 

The dispersion coefficients from Pasquill were for an approximate 10-minute averaging 

time (Pasquill 1961), which is less than this hypothetical release’s duration of 96 hours. 

The coefficients could have been adjusted to compensate for that difference by using an 

empirical formula (Gifford 1982), but that adjustment would have resulted in further 

diffusion of the plume. It was a conservative approach to exclude the empirical 

adjustment because, by excluding it, the resultant plume covered a larger area. The 

Gaussian plume model used in this assessment was calculated with the software 

MATLAB R2018a by MathWorks.  

3.3. Population Exposure Factors 

The plume of 131I was assumed to travel along a worst-case path, which was defined 

as the straight-line path from the radionuclide release point that results in the largest 

potential risk to the exposed population. This assessment defined a metric called 

cumulative susceptibility to excess risk (CSER) to determine which populations near the 

radionuclide release point were most susceptible to excess risk due to 131I exposure. The 

CSER for a population P was defined as 

CSER୔ ൌ ∑ ሺ𝛼 ൈ 𝛽ሻ௜,୫ୟ୪ୣୱ௜ ൅ ∑ ሺ𝛼 ൈ 𝛽ሻ௜,୤ୣ୫ୟ୪ୣୱ௜  [8] 

where CSER୔ is cumulative susceptibility to excess risk for population P, 𝛼௜ is ERR per 

Gy of thyroid dose for demographic 𝑖 of population P, and 𝛽௜ is the size of demographic 𝑖 

(i.e. number of people). The CSER does not account for varying population density 

within a given area or that doses received by individuals within the population vary 

according to several factors. 
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The demographic categories for this assessment comprised age groups from <5 

years to 39 years of age at exposure. Individuals over this age were not included in the 

population because the risk of radiation-induced thyroid cancer, the risk endpoint for this 

assessment, is low (National Research Council 2006). In older individuals, the principal 

risk is destruction of thyroid tissue rather than thyroid cancer. This is illustrated by the 

FDA’s recommendations of KI prophylaxis as a thyroid protective measure, whereby the 

intervention level is a projected thyroid dose of ≥500 cGy for those over 40 years old 

versus ≥10 cGy for those aged 18 to 40 years at the time of exposure (FDA 2001). 

The sizes of the demographics, 𝛽௜, in the Louisiana parishes surrounding the River 

Bend nuclear power plant were calculated from 2017 demographic estimates derived 

from 2010 census data (ACS 2018). Population density within each parish was assumed 

to be uniform. Demographics were defined for 8 age groups for both males and females; 

the age groups were <5, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, and 35-39 years old. 

For determining the ERR per Gy for each demographic, 𝛼௜, the BEIR VII committee’s 

risk model for thyroid cancer was used (National Research Council 2006). 𝛼௜ was 

calculated as 

𝛼௜,୫ୟ୪ୣୱ ൌ
1
5

෍ 0.53 ∗ expሾെ0.083ሺ𝑒 െ 30ሻሿ
௘∈௜

 [9] 
 

for males and 

𝛼௜,୤ୣ୫ୟ୪ୣୱ ൌ
1
5

෍ 1.05 ∗ expሾെ0.083ሺ𝑒 െ 30ሻሿ
௘∈௜

 [10] 

for females, where the 𝑒 are the ages at exposure in years within each demographic. 
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3.4. Conversion to Dose and Risk 

As discussed in Section 2.3.2, inhalation dose is the dominant pathway for exposure 

following a release of 131I from a nuclear power plant; the ingestion pathway is 

constrained by interdiction procedures that halt distribution of contaminated food and 

drink (see Section 2.3.2). Consequently, only the inhalation pathway was included in 

calculation of dose. 

To determine the amount of 131I inhaled by exposed populations, ventilation 

parameters and time expenditures (hours spent per day at some level of physical 

activity) from ICRP Publication 71 were used (ICRP 1995). Because this assessment 

modeled a worst-case scenario where no evacuation or sheltering occurs, it was 

assumed that populations are exposed for 24 hours per day, totaling to 96 hours of 

exposure over the scenario’s release duration of 4 days. The total intake of 131I for each 

demographic was calculated as 

𝐼௜ ൌ 𝐵𝑅௜ ൈ 𝑇𝐸௜ ൈ 𝐻𝐸 ൈ 𝐶 [11] 

where 𝐼௜ is the total intake of 131I for demographic 𝑖 (in Bq), 𝐵𝑅௜ is the breathing rate for 

demographic 𝑖 (in m3/hr), 𝑇𝐸௜ is the normalized time expenditure for demographic 𝑖 

(unitless), 𝐻𝐸 is the exposure time (in hours), and 𝐶 is the concentration of 131I in air (in 

Bq/m3). 

For relating inhalation of 131I to dose, 80% of the emitted iodine was assumed to be 

in the form of elemental iodine as a gas, and 20% was an aerosol with a 1 µm activity 

median aerodynamic diameter (AMAD), which is similar to observations at Fukushima 

(IAEA 2015). Both forms of iodine were assumed to transport identically with regard to 

the environmental transport model because gravitational settling and deposition effects, 
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which are the principal differences between atmospheric transport of particles and gases 

(Brenk et. al 1983), were not incorporated into the transport model. This assumption 

likely overestimated airborne concentrations due to a lack of removal of iodine from the 

plume as it was transported (Lakes 2019). 

Sex-averaged committed equivalent dose coefficients from ICRP Publication 71 

were used to calculate thyroid committed equivalent dose for the 131I inhalation pathway. 

Because 131I emits only photons and beta particles (Knolls Atomic Power Lab 2010), 

whose radiation weighting factors are equal to 1 (ICRP 2007), the thyroid committed 

equivalent dose given by the dose coefficients in Sv was equal to the thyroid absorbed 

dose in Gy. This conversion was necessary because the appropriate unit for the thyroid 

cancer risk model used in this assessment is Gy, not Sv (National Research Council 

2006). Dose coefficients used for each demographic are summarized in Table 3.4. Dose 

was calculated identically for males and females; the dose to males and females per 

intake are about the same because both intake and body mass are about 20% lower for 

females (ICRP 1995). Additionally, iodine retention does not appear to differ substantially 

between sexes (Leggett 2017). 

Table 3.4. Dose coefficients used for each demographic (ICRP 1995). 

 

Cohort
Age 
Range 
(Years)

Median 
Age 
(Years)

Gaseous Thyroid 
Dose Coeff. for 
Median Age (Gy/Bq)

Aerosol (AMAD=1µm) 
Thyroid Dose Coeff. 
for Median Age 
(Gy/Bq)

1 <5 2 3.20E-06 1.40E-06
2 5-9 7 1.90E-06 7.30E-07
3 10-14 12 9.50E-07 3.70E-07
4 15-19 17 6.20E-07 2.20E-07
5 20-24 22 3.90E-07 1.50E-07
6 25-29 27 3.90E-07 1.50E-07
7 30-34 32 3.90E-07 1.50E-07
8 35-39 37 3.90E-07 1.50E-07
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Because the Gaussian plume model can calculate radionuclide concentrations down 

to arbitrarily small values, a cutoff value was needed to define the plume boundary. 

Louisiana’s Peacetime Radiological Response Plan states that evacuation is 

recommended for areas where the exposed population is anticipated to receive a thyroid 

committed dose equivalent (CDE) ≥5000 mrem (Louisiana Department of Health 2016). 

The plume boundary concentration (BC) was calculated using the concentration of 131I 

(80% gaseous and 20% 1 µm AMAD) that resulted in a thyroid CDE of 5000 mrem (0.05 

Sv) for a person <5 years of age engaged in light exercise for the entirety of the 

hypothetical release (4 days, or 96 hours). The BC was calculated as 

BC ൌ ୘୦୷୰୭୧ୢ େୈ୉ ୐୧୫୧୲

େୈ୉ େ୭ୣ୤୤୧ୡ୧ୣ୬୲
ൈ ଵ

୍୬୲ୟ୩ୣ
 [12] 

and when parameters from ICRP Publication 71 (ICRP 1995) were applied, 

BC ൌ
0.05 Sv

3.23 ൈ 10ି଺ ∗ 0.8 ൅  1.4 ൈ 10ି଺ ∗ 0.2 Sv
Bq

ൈ
1

0.35 mଷ

hr ∗ 96 hr
ൌ 520 Bq/mଷ 

which was rounded down to 500 Bq/m3 for convenience, to become the cutoff value that 

defined the plume boundary. 

Parish-specific uniform population densities were assumed when calculating thyroid 

absorbed dose, ERR, and Lifetime Attributable Risk (LAR, see Section 2.2). Because of 

that assumption, values of dose and risk were calculated for every potential location 

within the plume. Thyroid absorbed dose was calculated using the ICRP dose 

coefficients shown in Table 3.4. ERR was calculated using the BEIR VII thyroid cancer 

risk model from Eq. 1. Values of ERR from this assessment were plotted as averages 

over 5-year age range groups and included the expected value, upper bound, and lower 

bound for each data point. 
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LAR was calculated as 

𝐿𝐴𝑅ሺ𝐷, 𝑒ሻ ൌ ∑ 𝐸𝑅𝑅ሺ𝐷, 𝑒ሻ ൈ 𝜆ூ
௖ሺ𝑎ሻ ൈ ௌሺ௔ሻ

ௌሺ௘ሻ
ଵ଴଴
௔ୀ௘ା௅  [13] 

where 𝐸𝑅𝑅 is the excess relative risk, 𝐷 is the absorbed dose, 𝑎 is the attained age, 𝑒 is 

the age at exposure, 𝐿 is the latent period (assumed to be 5 years), 𝜆ூ
௖ሺ𝑎ሻ is the age- and 

sex-specific cancer incidence rate, 𝑆ሺ𝑎ሻ is the probability of surviving to age 𝑎, and 𝑆ሺ𝑒ሻ 

is the probability of surviving to age 𝑒. The fraction 
ௌሺ௔ሻ

ௌሺ௘ሻ
 is the probability of surviving to 

age 𝑎 conditional on survival to age 𝑒. 

 Values of 𝜆ூ
௖ሺ𝑎ሻ were obtained from 2011-2015 Surveillance, Epidemiology, and 

End Results (SEER) registries for all stages (malignant) of thyroid cancer (NAACCR 

2018). Louisiana-specific thyroid cancer incidence, when not suppressed, was used. 

When Louisiana-specific incidence was suppressed, the United States average was 

used. For females aged less than one-years old, both the Louisiana and United States 

average incidence was suppressed, so a value of 0.01 per 100,000 was assumed. This 

assumption was intended to represent a non-zero incidence rate; for comparison to other 

rates, the assumed incidence rate was lower than all other demographic incidence rates, 

with the closest being 0.02 per 100,000 for males aged two-years old (NAACCR 2018).  

Because the incidence rates from SEER registries are given over a range of ages 

rather than for single years of age, linear interpolation was used to determine incidence 

rates for single years of age. For ages 85 and up, linear interpolation was not used, and 

instead the constant incidence rate for ages 85 and up (given by SEER data) was used. 

Values of S(a) and S(e) for single years of age were obtained from 2015 Life Tables 

(Arias 2018). Values of LAR from this assessment were plotted as averages over 5-year 



26 
 

age range groups and included the expected value, upper bound, and lower bound for 

each data point. 

Excess lifetime thyroid cancers were calculated by multiplying percentile values of 

the demographic-specific LAR distribution by the total number of exposed people within 

a given demographic. To calculate the total number of exposed people, the assumed 

parish-specific uniform population densities were multiplied by the area of plume 

coverage over the affected parishes. The area of plume coverage for each parish was 

approximated by dividing the plume into 60 rectangular segments and then summing the 

area of segments located within the parish of interest. To calculate the total number of 

exposed people within each demographic, parish-specific proportions of each 

demographic were assumed to hold constant over the plume area. For example, if 3% of 

a parish’s population was males aged 10-14, then it was assumed that 3% of the 

population within an exposed area of that same parish was males aged 10-14. 

3.5. Reduction of Risk 

For modeling thyroid cancer risk reduction by KI prophylaxis, the thyroid absorbed 

dose was multiplied by a reduction constant. The value of the constant was determined 

by two approaches. 

The first approach, termed the “ideal model,” used results from a biokinetic model for 

iodine in humans (Leggett 2017), where the thyroid was considered blocked during the 

entirety of exposure to 131I. To model complete thyroid blockade, a transference 

coefficient of the biokinetic model that represents the organification of iodide in the 

thyroid was set to zero. Reduction of thyroid dose was calculated from the ratio of thyroid 
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CDE per Bq with complete thyroid blockade versus without thyroid blockade for 

intravenous injection of 131I into an adult male (Leggett 2017). 

The second approach, termed the “Poland model,” used results from an evaluation 

of approximately 17.5 million individuals in Poland who were administered KI in response 

to the Chernobyl accident (Nauman 1993). In the evaluation, thyroid doses to the 

exposed population were reconstructed, and the dose reduction due to thyroid blockade 

was estimated in consideration of ingestion and inhalation pathways and the timing of KI 

administration relative to exposure to 131I (Nauman 1993). 
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Chapter 4. Results and Discussion 

Figure 4.1. shows the downwind and crosswind concentration of airborne 131I from a 

release point located at the origin of the plot. Figure 4.1. was generated using MATLAB 

R2018a by MathWorks, and the resolution of the plot is 25 meters (i.e. there is one data 

point of concentration every 25 meters).  

 
Figure 4.1. Steady-state concentration of airborne 131I for a wind speed of 6 m/s, at an 

observation height of 1.5 m, due to an emission rate of 2*1011 Bq/s. 

The CSER for parishes within a 50-mile radius for the release point, sorted by 

descending CSER, is shown in Table 4.1. The results from Table 4.1. indicated that the 

worst-case (highest CSER) straight-line plume path consists of exposure to East Baton 

Rouge, Ascension, East Feliciana, and West Feliciana parish. 
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Table 4.1. CSER of Louisiana parishes that are within a 50-mile radius of the reactor 
building of River Bend Nuclear Station. 

 

Figure 4.2. shows a Google Earth (Google 2017) overlay of the 131I plume to-scale 

traveling over its worst-case (highest CSER) path, assuming uniform population density 

over exposed areas. The plume extends for approximately 90 km (56 mi) from the 

reactor building of River Bend Nuclear Station, which was the release point for this 

hypothetical scenario. 

Louisiana Parish within 50‐mile 

radius of release point
CSER (ERR‐Person/Gy)

East Baton Rouge 702377

Livingston 220850

Tangipahoa 214894

Ascension 201030

St. Landry 139430

St. Martin 84462

Avoyelles 61100

Iberville 45027

West Baton Rouge 41269

Point Coupee 31179

Concordia 29706

East Feliciana 23072

West Feliciana 15848

St. Helena 14330
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Figure 4.2. To-scale overlay of the modeled 131I concentration over its worst-case path 

according to the CSER; this assumes uniform population density within each parish. 
The plume’s heading is 144.3 degrees from due north and extends for approximately 
90 km (56 mi) from the release point. The source is located at latitude 
30°45’26.67”N, longitude 91°19’54.89”W (Google 2017). 

Table 4.3. summarizes the number of exposed people within the plume path. As 

discussed in Section 3.4, the numbers of exposed people within each demographic were 

used when excess cancers were calculated. Due to the Baton Rouge population, the 

largest number of people exposed were those between 20 and 24 years of age. 
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Table 4.3. Total number of exposed individuals within the worst-case plume path. 

 
*The number of significant figures shown is not meant to imply precision. Values shown 

are the resultant product of plume area coverage and parish-specific uniform 
population densities. 

4.1. Thyroid Absorbed Dose 

Figure 4.3. plots thyroid absorbed dose in cGy due to inhalation of 131I for each age 

group for both sexes combined, as a function of age at exposure. These are composite 

values for each age group, calculated from doses to individuals within all possible 

locations of the plume. Figure 4.3. indicated that this hypothetical exposure scenario 

would likely warrant an evacuation from the affected areas because the median thyroid 

dose for those aged <15 years old meets or exceeds 5 cGy, which corresponds to 

Louisiana’s 5-rem thyroid CDE threshold for recommendation of evacuation (Louisiana 

Department of Health 2016). The dose distribution for each age group was clumped 

towards lower doses, with high-dose tails caused by the assumption of uniform 

population density (i.e. there was at least one person of each age group in the highest-

Age Sex Number Exposed*
Male 6,261
Female 6,055
Male 6,079
Female 5,865
Male 5,923
Female 5,796
Male 6,414
Female 6,509
Male 9,020
Female 9,192
Male 7,178
Female 6,969
Male 6,395
Female 6,542
Male 5,896
Female 6,310

106,404

Total Number of Exposed Individuals

<5

5-9

10-14

15-19

20-24

25-29

30-34

35-39

All



32 
 

concentration areas of the plume). Table A.1. provides the percentile values of dose that 

comprise Figure 4.3.   

 
Figure 4.3. Thyroid absorbed dose as a function of age at exposure due to inhalation of 

131I. Horizontal lines of the boxes represent 25th, 50th, and 75th percentiles. 

For comparison of these results to the Fukushima accident upon which the exposure 

scenario is based, the majority of emergency workers (17,804 of 19,561; 91%) who 

assisted during the Fukushima accident were estimated to have received thyroid 

absorbed doses of less than 10 cGy (IAEA 2015). Concerning thyroid dose to the 

general public from the Fukushima accident, an assessment from the World Health 

Organization estimated a typical dose band to those in the Fukushima Prefecture of 1-10 

cGy, with one particular location having an estimated 10-20 cGy dose to infants (IAEA 

2015). The distribution of thyroid dose shown in Figure 4.3. generally tracked with the 

distribution of thyroid dose from the Fukushima accident, which suggested that the 

results were reasonable for the hypothetical exposure scenario. 
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4.2. Thyroid Cancer Risk 

Figure 4.4. plots ERR for each age group for both sexes. As expected, females 

showed a higher ERR than males because the thyroid cancer risk model used in this 

assessment predicted a higher ERR per Gy for females than males (see Eq. 1), and 

dose was calculated independent of sex. The majority of ERR was below a value of 1, 

which meant that most of the exposed population had less than a 100% increase 

(doubling) of their baseline thyroid cancer risk. The only demographic that exceeded an 

ERR of 1 in their interquartile range was females <10 years of age. In contrast, people 

exposed at >19 years of age had increases in baseline risk that were generally below 

20%, indicating that risk reduction interventions (such as KI prophylaxis) should prioritize 

young populations. Table A.2. provides the percentile values of ERR that comprise 

Figure 4.4. 

 
Figure 4.4. ERR as a function of sex and age at exposure due to inhalation of 131I. 

Horizontal lines of the boxes represent 25th, 50th, and 75th percentiles. 
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Figure 4.5. plots LAR per 1,000 people exposed for each age group for both sexes 

(see Sections 2.2 and 3.4 for definition of LAR). Figure 4.5. indicated that females had a 

LAR that was larger than males by a factor of about 5, meaning that excess lifetime 

thyroid cancer incidence due to exposure was 5 times larger for females than males. 

Table A.3. provides the percentile values of LAR that comprise Figure 4.5. 

 
Figure 4.5. LAR (per 1,000) as a function of sex and age at exposure, assuming a 5-year 

latent period for radiation-induced thyroid cancer. Horizontal lines of the boxes 
represent 25th, 50th, and 75th percentiles. 

Females were expected to have a larger LAR than males for three reasons. The first 

reason was that females generally have a higher baseline thyroid cancer risk than males 

(NAACCR 2018), meaning that their excess absolute risk (EAR, see Section 2.2) for a 

given value of ERR would be larger than for males. The second reason was that females 

generally have a longer life expectancy than males (Arias 2018), so that when LAR was 

calculated, the high incidence rates of old age were weighted more. The third reason 
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was that the thyroid cancer risk model used in this assessment predicts a higher ERR 

per Gy for females than males (see Eq. 1). 

4.3. Risk Reduction 

For the ideal model approach, which assumes thyroid is blocked for the entirety of 

exposure to 131I, thyroid dose was reduced by three orders of magnitude (Leggett 2017). 

The ideal model does not represent a typical dose reduction, but it was helpful to 

estimate the extent to which cross-irradiation from 131I accumulation in non-thyroidal 

tissue would impact thyroid dose when the thyroid is blocked. 

For the Poland model approach, a retrospective evaluation of populations in Poland 

that received KI in response to the Chernobyl accident estimated that thyroid blockade 

reduced thyroid doses by 40% (Nauman 1993). The authors of the evaluation further 

stated that, had there been timely notification of the accident by Russian authorities, the 

dose reduction could have been as high as 60% to 70% with early prophylaxis, 

particularly with respect to inhaled 131I (Nauman 1993). 

Table 4.4. shows the number of mitigated excess lifetime thyroid cancers from 

thyroid blockade for this assessment’s hypothetical exposure scenario, as a function of 

percentiles of LAR. Values in Table 4.4. were presented in the form of their expected 

value followed by their lower and upper bound in parentheses. As expected, based upon 

the results of LAR in Figure 4.5., the majority of excess lifetime thyroid cancers mitigated 

by thyroid blockade were due to females. 

The two approaches of dose reduction shown in Table 4.4. illustrated an ideal 

reduction (“ideal model”), which is unlikely to be achievable in practice, and a plausible 

reduction (“Poland model”) of excess lifetime thyroid cancers. Percentiles of LAR, which 
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are values of lifetime risk that a percentage of the exposed population was below, were 

used as representative values that gauged the conservatism of the estimate of mitigated 

excess thyroid cancers. For example, the number of mitigated excess thyroid cancers for 

the 75th percentile of LAR was likely an overestimate, because it assumed that 100% of 

the population has a LAR that 75% of the population was below. As a consequence, the 

number of mitigated cancers for the 50th percentile of LAR may be a more accurate 

estimate than other values in Table 4.4. The 50th percentile LAR estimate showed that 

the expected number of mitigated excess thyroid cancers was around 200 for the “ideal 

model” and 80 for the “Poland model.” 

Table 4.4. Number of mitigated excess lifetime cancers via thyroid blockade for LAR 
percentiles applied to entire demographics.* 

 
*Number of significant figures shown is not meant to imply precision. Values shown are 

the product of demographic-specific LAR percentiles and total number of exposed 
people within each demographic. Values are presented as their expected value, 
followed by their lower and upper bound in parentheses. 

4.4. Limitations and Future Work 

This project had several limitations that contributed to its uncertainty. Foremost, the 

environmental transport model used in this assessment had several simplifying 

assumptions, such as a constant emission rate, constant wind speed and direction, and 

uniform population densities. An improved assessment should incorporate terrain data, 

weather patterns, varying population densities, and other factors that affect 

environmental transport. Publicly available geographic information from Geographical 

Male Female Total Male Female Total

25th 22 (5, 82) 114 (30, 426) 136 (35, 508) 8 (1, 33) 47 (12, 172) 55 (13, 205)

50th 33 (7, 122) 168 (46, 626) 201 (53, 748) 13 (4, 50) 68 (19, 251) 81 (23, 301)

75th 62 (15, 235) 326 (87, 1212) 388 (102, 1447) 25 (8, 94) 130 (36, 485) 155 (44, 579)

Ideal Model; Mitigated Thyroid Cancers
>99% dose reduction

Poland Model; Mitigated Thyroid Cancers
40% dose reduction

LAR Percentile 
Applied
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Information Systems data could be incorporated into a transport model. Commercial 

dispersion software packages, albeit expensive, include such features. 

Regarding calculation of excess thyroid cancer risk, the risk model used in this 

assessment was the preferred model reported in the BEIR VII report (National Research 

Council 2006). The model was developed using a pooled analysis of data from seven 

thyroid cancer incidence studies, which included atomic bomb survivors. Most of the data 

involved external exposure from x-rays rather than internal exposure from 131I (National 

Research Council 2006), which was the pathway of interest for this assessment. A 

potentially important modifier of the model, though not well-quantified at this time, is 

dietary iodine deficiency (Shakhtarin 2003, Cardis 2005). A Louisiana-specific study of 

urinary iodine excretion could clarify iodine deficiency prevalence among populations 

used for this assessment. This could be factored into the ERR per Gy for the affected 

populations, so that the impact on the protective effect of KI prophylaxis could be 

assessed. 

A factor affecting the calculated LAR is the fact that thyroid cancer incidence in 

Louisiana has been increasing over the past several years (NCI 2019). Because a 

relative risk (RR) model was used for this assessment, an increase in baseline risk yields 

a higher LAR for a fixed RR, which in turn would increase the potential number of excess 

lifetime thyroid cancers induced by the hypothetical event described in this assessment. 

Lastly, this assessment addressed only one factor pertaining to the risk 

management question of whether Louisiana should provide KI pills to its general public. 

Future work that addresses other factors of this question would be beneficial. The other 

factors include financial cost; logistics of storage, distribution, and re-stocking of KI pills; 
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legal issues of widespread administration; and psychosocial ramifications of 

implementing such a policy. Additionally, future work that models risk reduction from 

anticipated evacuation and sheltering without thyroid blockade, and an associated 

comparison to the risk reduction from thyroid blockade without evacuation and 

sheltering, should aid decision-making for this issue. 

4.5. Conclusion 

This assessment provided a preliminary screening of the Louisiana-specific benefit 

of thyroid cancer risk reduction due to thyroid blockade in a hypothetical exposure 

scenario. Results indicated that thyroid blockade reduced a number of excess lifetime 

thyroid cancers that was on the order of 80 across approximately 100,000 exposed 

individuals, though the bounds on this estimate were large. The majority of mitigated 

excess lifetime thyroid cancers were due to dose reduction in young females. Given 

these results, more comprehensive assessments of KI distribution in Louisiana may be 

warranted. By generating these results, people in positions of risk management for 

Louisiana have access to Louisiana-specific information regarding the risk reduction 

benefit of thyroid blockade for the general public. 
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Appendix A. Percentile Data of Dose, ERR, and LAR 

Table A.1. Percentiles of Thyroid Absorbed Dose by Age at Exposure 

 
 
Table A.2. Percentiles of Excess Relative Risk by Sex and Age at Exposure 

 
*“LB” indicates lower bound, and “UB” indicates upper bound. 
 

 
 
 
 
 
 
 
 
 
 
 
 

25th 50th 75th

<5 3.86E+00 5.68E+00 1.10E+01
5-9 3.82E+00 5.63E+00 1.09E+01

10-14 3.36E+00 4.95E+00 9.57E+00
15-19 2.86E+00 4.21E+00 8.13E+00
20-24 2.00E+00 2.94E+00 5.69E+00
25-29 2.00E+00 2.94E+00 5.69E+00
30-34 2.00E+00 2.94E+00 5.69E+00
35-39 2.00E+00 2.94E+00 5.69E+00

Thyroid Absorbed Dose (cGy)Age 
(Years)

Percentiles of Thyroid Absorbed Dose by 
Age at Exposure

Mean LB UB Mean LB UB Mean LB UB
Male 2.11E-01 5.56E-02 7.95E-01 3.10E-01 8.19E-02 1.17E+00 5.99E-01 1.58E-01 2.26E+00
Female 4.17E-01 1.11E-01 1.55E+00 6.14E-01 1.64E-01 2.28E+00 1.19E+00 3.17E-01 4.41E+00
Male 1.38E-01 3.64E-02 5.19E-01 2.03E-01 5.35E-02 7.65E-01 3.92E-01 1.03E-01 1.48E+00
Female 2.73E-01 7.27E-02 1.01E+00 4.01E-01 1.07E-01 1.49E+00 7.76E-01 2.07E-01 2.88E+00
Male 8.00E-02 2.11E-02 3.02E-01 1.18E-01 3.11E-02 4.44E-01 2.28E-01 6.01E-02 8.59E-01
Female 1.58E-01 4.22E-02 5.88E-01 2.33E-01 6.22E-02 8.66E-01 4.51E-01 1.20E-01 1.67E+00
Male 4.49E-02 1.19E-02 1.69E-01 6.60E-02 1.74E-02 2.49E-01 1.28E-01 3.37E-02 4.82E-01
Female 8.89E-02 2.37E-02 3.30E-01 1.31E-01 3.49E-02 4.86E-01 2.53E-01 6.74E-02 9.39E-01
Male 2.07E-02 5.47E-03 7.82E-02 3.05E-02 8.06E-03 1.15E-01 5.90E-02 1.56E-02 2.23E-01
Female 4.11E-02 1.09E-02 1.53E-01 6.04E-02 1.61E-02 2.25E-01 1.17E-01 3.12E-02 4.34E-01
Male 1.37E-02 3.62E-03 5.16E-02 2.01E-02 5.32E-03 7.60E-02 3.89E-02 1.03E-02 1.47E-01
Female 2.71E-02 7.23E-03 1.01E-01 3.99E-02 1.06E-02 1.48E-01 7.72E-02 2.06E-02 2.87E-01
Male 9.04E-03 2.39E-03 3.41E-02 1.33E-02 3.51E-03 5.02E-02 2.57E-02 6.79E-03 9.71E-02
Female 1.79E-02 4.77E-03 6.65E-02 2.64E-02 7.03E-03 9.79E-02 5.10E-02 1.36E-02 1.89E-01
Male 5.97E-03 1.58E-03 2.25E-02 8.78E-03 2.32E-03 3.32E-02 1.70E-02 4.49E-03 6.41E-02
Female 1.18E-02 3.15E-03 4.39E-02 1.74E-02 4.64E-03 6.46E-02 3.36E-02 8.97E-03 1.25E-01

50th 75th

25-29

30-34

35-39

Excess Relative Risk (ERR) Percentiles by Sex and Age at Exposure*

<5

5-9

10-14

15-19

20-24

Age 
(Years)

Sex
ERR (unitless)

25th
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Table A.3. Percentiles of Lifetime Attributable Risk by Sex and Age at Exposure 

 
*“LB” indicates lower bound, and “UB” indicates upper bound. 

   

Mean LB UB Mean LB UB Mean LB UB
Male 1.38E+00 3.63E+01 5.19E+02 2.02E+00 5.35E+01 7.64E+02 3.91E+00 1.03E+02 1.48E+03
Female 7.45E+00 1.99E+02 2.77E+03 1.10E+01 2.93E+02 4.08E+03 2.12E+01 5.66E+02 7.88E+03
Male 8.99E-01 2.37E+01 3.39E+02 1.32E+00 3.49E+01 4.99E+02 2.56E+00 6.76E+01 9.65E+02
Female 4.87E+00 1.30E+02 1.81E+03 7.16E+00 1.91E+02 2.66E+03 1.38E+01 3.69E+02 5.14E+03
Male 5.19E-01 1.37E+01 1.96E+02 7.64E-01 2.02E+01 2.88E+02 1.48E+00 3.90E+01 5.57E+02
Female 2.80E+00 7.47E+01 1.04E+03 4.12E+00 1.10E+02 1.53E+03 7.97E+00 2.13E+02 2.96E+03
Male 2.88E-01 7.60E+00 1.09E+02 4.23E-01 1.12E+01 1.60E+02 8.18E-01 2.16E+01 3.09E+02
Female 1.54E+00 4.10E+01 5.71E+02 2.26E+00 6.03E+01 8.40E+02 4.37E+00 1.17E+02 1.62E+03
Male 1.30E-01 3.43E+00 4.91E+01 1.91E-01 5.06E+00 7.22E+01 3.70E-01 9.77E+00 1.40E+02
Female 6.83E-01 1.82E+01 2.54E+02 1.00E+00 2.68E+01 3.73E+02 1.94E+00 5.18E+01 7.22E+02
Male 8.35E-02 2.21E+00 3.15E+01 1.23E-01 3.25E+00 4.64E+01 2.38E-01 6.28E+00 8.97E+01
Female 4.24E-01 1.13E+01 1.57E+02 6.24E-01 1.66E+01 2.32E+02 1.21E+00 3.22E+01 4.48E+02
Male 5.27E-02 1.39E+00 1.99E+01 7.75E-02 2.05E+00 2.92E+01 1.50E-01 3.96E+00 5.65E+01
Female 2.55E-01 6.80E+00 9.47E+01 3.75E-01 1.00E+01 1.39E+02 7.25E-01 1.93E+01 2.69E+02
Male 3.28E-02 8.67E-01 1.24E+01 4.83E-02 1.28E+00 1.82E+01 9.34E-02 2.47E+00 3.53E+01
Female 1.49E-01 3.98E+00 5.54E+01 2.20E-01 5.86E+00 8.16E+01 4.25E-01 1.13E+01 1.58E+02

Age 
(Years)

Sex

<5

5-9

10-14

15-19

20-24

25-29

30-34

35-39

LAR (per 1,000)

25th 50th 75th

Lifetime Attributable Risk (LAR) Percentiles by Sex and Age at Exposure*
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